330,807 research outputs found

    Specification and Automated Verification of Real-Time Behaviour —A Case Study

    Get PDF
    In this paper we sketch a method for specification and automaticverification of real-time software properties. The method combinesthe IEC 848 norm and the recent specification techniques TCCS (TimedCalculus of Communicating Systems) and TML (Timed Modal Logic) - supported by an automatic verification tool, Epsilon. The methodis illustrated by modelling a small real-life steam generator example andsubsequent automated analysis of its properties.Keywords: Control system analysis; formal specification; formal verification; real-time systems; standards

    Methodology for object-oriented real-time systems analysis and design: Software engineering

    Get PDF
    Successful application of software engineering methodologies requires an integrated analysis and design life-cycle in which the various phases flow smoothly 'seamlessly' from analysis through design to implementation. Furthermore, different analysis methodologies often lead to different structuring of the system so that the transition from analysis to design may be awkward depending on the design methodology to be used. This is especially important when object-oriented programming is to be used for implementation when the original specification and perhaps high-level design is non-object oriented. Two approaches to real-time systems analysis which can lead to an object-oriented design are contrasted: (1) modeling the system using structured analysis with real-time extensions which emphasizes data and control flows followed by the abstraction of objects where the operations or methods of the objects correspond to processes in the data flow diagrams and then design in terms of these objects; and (2) modeling the system from the beginning as a set of naturally occurring concurrent entities (objects) each having its own time-behavior defined by a set of states and state-transition rules and seamlessly transforming the analysis models into high-level design models. A new concept of a 'real-time systems-analysis object' is introduced and becomes the basic building block of a series of seamlessly-connected models which progress from the object-oriented real-time systems analysis and design system analysis logical models through the physical architectural models and the high-level design stages. The methodology is appropriate to the overall specification including hardware and software modules. In software modules, the systems analysis objects are transformed into software objects

    Software development of reconfigurable real-time systems : from specification to implementation

    Get PDF
    This thesis deals with reconfigurable real-time systems solving real-time tasks scheduling problems in a mono-core and multi-core architectures. The main focus in this thesis is on providing guidelines, methods, and tools for the synthesis of feasible reconfigurable real-time systems in a mono-processor and multi-processor architectures. The development of these systems faces various challenges particularly in terms of stability, energy consumption, response and blocking time. To address this problem, we propose in this work a new strategy of i) placement and scheduling of tasks to execute real-time applications on mono-core and multi-core architectures, ii) optimization step based on Mixed integer linear programming (MILP), and iii) guidance tool that assists designers to implement a feasible multi-core reconfigurable real-time from specification level to implementation level. We apply and simulate the contribution to a case study, and compare the proposed results with related works in order to show the originality of this methodology.Echtzeitsysteme laufen unter harten Bedingungen an ihre Ausführungszeit. Die Einhaltung der Echtzeit-Bedingungen bestimmt die Zuverlässigkeit und Genauigkeit dieser Systeme. Neben den Echtzeit-Bedingungen müssen rekonfigurierbare Echtzeitsysteme zusätzliche Rekonfigurations-Bedingungen erfüllen. Diese Arbeit beschäftigt sich mit rekonfigurierbaren Echtzeitsystemen in Mono- und Multicore-Architekturen. An die Entwicklung dieser Systeme sind verschiedene Anforderungen gestellt. Insbesondere muss die Rekonfigurierbarkeit beachtet werden. Dabei sind aber Echtzeit-Bedingungen und Ressourcenbeschränkungen weiterhin zu beachten. Darüber hinaus werden die Kosten für die Entwicklung dieser Systeme insbesondere durch falsche Designentscheidungen in den frühen Phasen der Entwicklung stark beeinträchtigt. Das Hauptziel in dieser Arbeit liegt deshalb auf der Bereitstellung von Handlungsempfehlungen, Methoden und Werkzeugen für die zielgerichtete Entwicklung von realisierbaren rekonfigurierbaren Echtzeitsystemen in Mono- und Multicore-Architekturen. Um diese Herausforderungen zu adressieren wird eine neue Strategie vorgeschlagen, die 1) die Funktionsallokation, 2) die Platzierung und das Scheduling von Tasks, 3) einen Optimierungsschritt auf der Basis von Mixed Integer Linear Programming (MILP) und 4) eine entscheidungsunterstützende Lösung umfasst, die den Designern hilft, eine realisierbare rekonfigurierbare Echtzeitlösung von der Spezifikationsebene bis zur Implementierungsebene zu entwickeln. Die vorgeschlagene Methodik wird auf eine Fallstudie angewendet und mit verwandten Arbeiten vergliche

    Sound and Complete Runtime Security Monitor for Application Software

    Get PDF
    Conventional approaches for ensuring the security of application software at run-time, through monitoring, either produce (high rates of) false alarms (e.g. intrusion detection systems) or limit application performance (e.g. run-time verification). We present a runtime security monitor that detects both known and unknown cyber attacks by checking that the run-time behavior of the application is consistent with the expected behavior modeled in application specification. This is crucial because, even if the implementation is consistent with its specification, the application may still be vulnerable due to flaws in the supporting infrastructure (e.g. the language runtime system, libraries and operating system). This runtime security monitor is sound and complete, eliminating false alarms, as well as efficient, so that it does not limit runtime application performance and so that it supports real-time systems. The security monitor takes as input the application specification and the application implementation, which may be expressed in different languages. The specification language of the application software is formalized based on monadic second order logic and event calculus interpreted over algebraic data structures. This language allows us to express behavior of an application at any desired (and practical) level of abstraction as well as with high degree of modularity. The security monitor detects every attack by systematically comparing the application execution and specification behaviors at runtime, even though they operate at two different levels of abstraction. We define the denotational semantics of the specification language and prove that the monitor is sound and complete. Furthermore, the monitor is efficient because of the modular application specification at appropriate level(s) of abstraction

    Object Oriented Real Time Simulation Environment for Analysis of Real Time Software Architectures .

    Get PDF
    The problems associated with real-time software development are described and a design of real-time simulation environment (RTSE)to model real-time software architectures is presented. RTSE can be used to model software structure and can dynamically simulate the behaviour of multi-tasking, pre-emptive priority-based real-time software systems. RTSE can be used to identify RT software anomalies like deadlock, starvation, lockout, signal queuing, race conditions, etc with the help of RTSE Report Analyser. The modeller can fine tune his design by re-oriented the timing and system specification to remove anomalies and improve performance and reliabilit

    RT-Syn: A real-time software system generator

    Get PDF
    This paper presents research into providing highly reusable and maintainable components by using automatic software synthesis techniques. This proposal uses domain knowledge combined with automatic software synthesis techniques to engineer large-scale mission-critical real-time software. The hypothesis centers on a software synthesis architecture that specifically incorporates application-specific (in this case real-time) knowledge. This architecture synthesizes complex system software to meet a behavioral specification and external interaction design constraints. Some examples of these external constraints are communication protocols, precisions, timing, and space limitations. The incorporation of application-specific knowledge facilitates the generation of mathematical software metrics which are used to narrow the design space, thereby making software synthesis tractable. Success has the potential to dramatically reduce mission-critical system life-cycle costs not only by reducing development time, but more importantly facilitating maintenance, modifications, and extensions of complex mission-critical software systems, which are currently dominating life cycle costs

    Animation prototyping of formal specifications

    Get PDF
    At the present time one of the key issues relating to the design of real-time systems is the specification of software requirements. It is now clear that specification correctness is an essential factor for the design and implementation of high quality software. As a result considerable emphasis is placed on producing specifications which are not only correct, but provably so. This has led to the application of mathematically-based formal specification techniques in the software life-cycle model. Unfortunately, experience in safety-critical systems has shown that specification correctness is not, in itself, sufficient. Such specifications must also be comprehensible to all involved in the system development. The topic of this thesis—Animation Prototyping—is a methodology devised to make such specifications understandable and usable. Its primary objective is to demonstrate key properties of formal specifications to non-software specialists. This it does through the use of computer-animated pictures which respond to the dictates of the formal specification. [Continues.

    Automated prototyping tool-kit (APT)

    Get PDF
    Automated prototyping tool-kit (APT) is an integrated set of software tools that generate source programs directly from real-time requirements. The APT system uses a fifth-generation prototyping language to model the communication structure, timing constraints, I/O control, and data buffering that comprise the requirements for an embedded software system. The language supports the specification of hard real-time systems with reusable components from domain specific component libraries. APT has been used successfully as a research tool in prototyping large war-fighter control systems (e.g. the command-and-control station, cruise missile flight control system, patriot missile defense systems) and demonstrated its capability to support the development of large complex embedded software. © 2002 Elsevier Science Inc. All rights reserved
    • …
    corecore