

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY
I AUTHOR/FILING TITLE

: _______________ \:l~~H~~_;l _____ L_ ~ -'- _______ _
1

I
1-:ACCES-SIONjCOPY--NO~-------- -- --- ----- ---------

i C'f~Obo5'1t'3 1----------------- ---- --- ---- --- ----------- - - --- ---
I VOL. NO. CLASS MARK

I .

~1~n~ll[lir~1111111I11111111I1111111111

Animation Prototyping of Formal Specifications

by

T.S.Hughes

A doctoral thesis

submitted in partial fulfilment of the requirements
for the award of

Doctor of Philosophy of the Loughborough University of Technology

(1992)

«l by T.S.Hughes (1992)

r--·'"-""· . "-"--'---""----...,
I
~ l',. .' - . . ' " '. '\' !

rl . " 'I I

, ·--::~~_:-=~ __ ~s .. :=l
i .. .• ____ . __ ~._j
~ . t

l ... _ ~(JC)~ ~"k3.1

tN 'I':\'l. ~ Cl(8'

ANIMATION PROTOTYPING OF FORMAL SPECIFICATIONS.

ABSTRACT.

At the present time one of the key issues relating to the design of real-time systems is the specification

of software requirements. It is now clear that specification correctness is an essential factor for the

design and implementation of high quality software. As a result considerable emphasis is placed on

producing specifications which are not only correct, but provably so. This has lead to the application

of mathematically-based formal specification techniques in the software life-<:ycle model.

Unfortunately, experience in safety-<:ritical systems has shown that specification correctness is not, in

itself, sufficient. Such specifications must also be comprehensible to all involved in the system

. development. The topic of this thesis - Animation Prototyping - is a methodology devised to make

such specifications understandable and usable. Its primary objective is to demonstrate key properties

of formal specifications to non-software specialists. This it does through the use of computer-animated

pictures which respond to the dictates of the formal specification.

The major issues discussed in this thesis are:

* .

*

*

*

The role and presentation of specifications in the development of software for real-time

systems.

The applicability of software prototyping, in particular rapid prototyping, to specification

techniques.

The basis of formal specification.techniques and their use as a software specification method.

The development of a new specification methodology based on a structured application of the

Vienna Development Method of software design (defmed here as S-VDM).

The development and construction of automated software tools to enable S-VDM specifiCations

to control the behaviour of graphical displays ("animating the specification ").

The application of S-VDM for the animation of demonstration systems.

DEDICATION.

To Josephine.

ii

ACKNOWLEDGEMENTS.

The author wishes to thank Dr. Jim Cooling for his dedicated supervision of this work. WithoutJim's

friendship, patience and understanding this thesis would never have been published. Also the author

wishes to thank aU the members of the Department of Electronic and Electrical Engineering at

Loughborough University for their support, in particular John Rippon and Tim Baseley for their

assistance with computing matters. Alan Cuff and his coUeagues at Transmitton Limited gave very

useful comments and encouragement during early trials of animation prototyping presentations.

FinaUy, on a personal level, thank you to Josephine, my wife, for sustaining me to the end in so many

ways.

The generosity of RoUs Royce and Associates of Derby in their support of this work is gratefuUy

acknowledged. Also, the author wishes to thank CACI for the provision of the SIMSCRIPT 11.5

package which underpins so much of this wode. FinaUy, but most importantly, thanks to the Science

and Engineering Research Council without whose financial support none of this work would have been

possible.

iii

CONTENTS

ABSTRACf. . ••..••..•••••....•.•..••••••••.••••.•..••.••••••••

DEDICATION. .•••••••.......•.••••••..••.•.••••••••.••..••••.. ii

ACKNOWLEDGEMENTS. .. iii

CONTENTS .•.•....•...•........•......•••.......••••.....•... iv

LIST OF FIGURES. . . . • • • . . • • • • • • . • . . • • • . • . . • . • . • • . • • • • . . . • •. xi

LIST OF SYMBOLS. . ••.......•..•.•....••.••.•...•.••.••....•••. xiii

1 INTRODUCTION . . • • • . • • • . • • . . • . • . . • • • • • . .• . . • • • . •. 1

1.1 Structure of the thesis .••..•.....•.••••..•.•••.••••..•••... 1

1.2 Real-time Embedded Systems•..•.•••..•.•..••.•..•....•. 2

1.3 Software Engineering. • . . • • • • 3

2 SPECIFICATION AND SPECIFICATION ISSUES .•..•••.•...••...•••.•••• 8

2.1 Introduction•..••..•.•.....•....••.•.••. 8

2.2 Specifications in Software Development. • . . • . • • • . • 8

2.2.1 The use of specifications. •.......•.•.•.....•......... 9

2.2.2 The origin of specifications. • • . • . • . . . • • . . • 10

2.2.3 The writing of specifications. • • . • • • . . • . • . . • • . . . • •. 13

2.3 Ways to Improve the Specification Process. • . • • . • • . . • • .. 14

2.4 The Role of Formal Methods in Specification. 17

2.5 The Role of Animation Prototyping in Specification.•............ 18

3 PROTOTYPING AND ANIMATION OF SPECIFICATIONS•.••.....•.. 20

3.1 Software Prototyping.•....•.•............. 20

3.1.1 Prototypes in engineering. • • 20

3.1.2 Prototyping and the Software Life Cycle. 21

3.1.3 Prototyping and the Specification Problem.•......... 21

3.1.4 Different Types of Software Prototyping. 22

3.1.5 Constraints on software prototyping. 26

3.2 Rapid Prototyping.•....... • 26

iv

3.3 Animation Prototyping. • ...•..••....•.••••••••....••..•••.• 27

3.3.1 An introduction to animation prototyping. ..•••....•...•••.. 27

3.3.2 Uses of animation prototyping. . . • . . . • • • . • • • . • • • • . .• 29

3.3.3 Rapid prototyping techniques and animation prototyping. • • . . . • • •• 30

3.3.4 Concluding remarks on rapid prototyping. • • • • • • • • • • • •• 36

3.4 Key issues in animation prototyping. •• • • • • • . • • . • • • • . • . • • . • • • • . •• 36

3.4.1 Experience of animation prototyping. •••••• . . . • . • • • . • . • • •• 36

3.4.2 The model building. ..••••.••..••••.•......••..•••• 36

3.4.3 Using pictures - client-developer communications. •...•••.....• 38

3.4.4 Using the results - onward into software design. •....•••..•.•• 38

3.5 Animation Prototyping of Formal Specifications. . • • . • . • . • • • • • • .•• 39

3.5.1 The basic concept. •..••...•..•••..••..•..•••..•.•• 39

3.5.2 Model building. .•.••..••......••....••........••.. 39

3.5.3 Style of pictures and discussions. •..••.•.•.••.••........ 39

3.5.4 Helping the development of software. . • . . • . . • • • . • 41

3.6 Summary. . ••.•.........•••...•....•.•..••.....•...... 41

4 FORMAL SPECIFICATIONS (GENERAL) •..••..••...•...•........•.... 42

4.1 Introduction. • • • . . • . . • • • . • • • . • . • • . . • • . . . • • . . • • • . 42

4.2 Practical Formal Systems for Software Engineering. .•...•••....•.••.. 42

4.2.1 Different types of formal systems. • • • 42

4.2.2 Model-based systems.•........ 43

4.2.3 Algebraic or axiom-based systems.••.........• 46

4.2.4 Specifying concurrent systems - Process A1gebras. . • . • 48

4.2.5 Temporal and modal logics ••....•..•.••....••.•...... 49

4.3 Advantages and Drawbacks of Formal Systems. 52

4.3.1 Advantages of formal methods. • 52

4.3.2 Drawbacks of formal methods. . . • • 53

4.4 The Final Choice of Formal Method for Animation Prototyping. • 54

5 SPECIFYING SYSTEM REQUIREMENTS USING VDM.•...•.....••.. 56

5.1 Origins of VDM and Current Research. 56

5.2 Mathematical Foundations. • 56

. 5.3 VDM Specifications - describing basic and composite data types. •......... 58

5.4 VDM Specifications - functions, operations and states. 59

5.4.1 Explicit definitions of functions. 59

5.4.2 Implicit definitions of functions.••.................. 60

v

5.4.3 States and Operation definitions. •••.••• • . • • • • • • . • • . • 61

5.4.4 Proofs about states and operations. ••••••.•.•••..•.••••.• 63

5.5 Building and Refining a Specification. ••••.••••..•••••••...•.•••• 65

5.5.1 Operation decomposition. •••••••.••.....•••..•.••...• 65

5.5.2 Decomposition into a sequence. .••••.....•...••...•••.. 67

5.5.3 Weakening specifications. ••.•.••.•.•••••••••..•.••.. • 68

5.5.4 Decomposition into conditionals. • . . • • . • • . • . . . • . • . . • 69

5.5.5 Decomposition into loops. . • • • • • • • . . . • • • 71

5.5.6 Data reification. •••.. . • . . • • • • . • . • • • . • • . 72

5.6 Building and refining a specification - summary. . • • • . • . . • • • . . . • . • . . • . 73

6 ANIMATING FORMAL SPECIFICATIONS ..•...•••........•...•.•....• 74

6.1 Animating Formal Specification - an introduction. • • . • . . • 74

6.2 Examples of animation systems. • •. _ . • • • • • • • • . . . • • . • • • • • • • • 76

6.3 Important Properties of Animation Techniques. ••..•.....•.••..•..•. 78

6.4 Animating Real-Time Embedded Systems - A Conceptual and Theoretical

Framework. • . . . • • . . . • • . • . . . • • • . . . 79

6.4.1 Introduction. •.•..••..•. . . . • • . . • . . • • . • • . . • . 79

6.4.2 SpecifYing systems using VDM. .••...•...•............• 80

6.4.3 Using structure diagrams with specifications. ..••••..•..•.... 80

6.4.4 A structuring methodology for specifications. • 80

6.4.5 Diagrams for structuring. •....••.•••••.....••........ 81

6.4.6 A subset of VDM . . • • • . • . . . • . • . . • • 81

6.4.7 Maintaining consistency in decompositions. ..•.••.......•... 81

6.4.8 Automatic prototype production•..••....•.....•.• ;. 81

6.5 Definition of a Subset of the VDM Notation For Use in Real-Time

Embedded Systems. • . . . • . . . • • 81

6.6 Definition of the Set of States and Data Types. • .. 82

6.6.1 Data types. • • 83

6.6.2 State definition. ..•...••..••.......••.•...••...... 83

6.7 Definition of Operations • . . . • . • . 84

6.7.1 The basic elements of an operation specification. 84

6.7.2 Operation signature.•......•................... 84

6.7.3 External clause•..............•....... 84

6.7.4 Pre-condition clause. 85

6.7.5 Post-Condition Clause. 85

6.8 Definition of the Ordering of Operations. 88

vi

6.8.1 Decomposing operations. . ..•••••••.•...•••.•..•.••.• 88

6.8.2 Representing decomposition with diagrams. .••.•••..•••••... 90

7 TIlE ANIMATION PROCESS IMPLEMENTATION STRATEGY. • ••.••.•••.•. ;. 96

7.1 Overview of The Animation Process. • • . • • . • • • • . • • . . . • • . • • • • • . • •• 96

7.2 Parser Design and Implementation. ..••.•.•.••..•.••...•...•••.• 98

7.2.1 The basic design of the parser. ••.••••.• • • • . • .. 98

7.2.2 Grammar trees and parsing. • • . • • • • • . • . . •. 101

7.2.3 An example of how the one-track grammar works••••... , 102

7.3 Translation to SIMSCRIPT Source Code. ••.•••....•...•••...•.•• 106

7.3.1 General translation strategy. • • • • . . • • . •• 106

7.3.2 Operation translation. • . • 106

7.3.3 Post-condition translation. •. . . • • • . . • . . . • . . •• 107

704 Identification and Implementation of SIMSCRIPT Routines to Support

Graphics Output. • • . . . • . . • • . • • • • . • • 112

704.1 Use of SIMSCRIPT graphical displays. • • . • • •. •. 112

112

7.4.2 Updating the main display.••.•...•...••.•..•••. 112

704.3 Updating local displays. .••.••.••••.••........•.•••. 112

8 DEMONSTRATION ANIMATIONS. •. • . . . • • . • •. 113

8.1 Specification and Animation of a Simple Logic Gate. • 113

8.1.1 The purpose of the specification : 113

8.1.2 Building the specification. .•. • . .. 113

8.1.3 The stages of the animation prototyping process. • 114

8.2 Specification and Animation of a Plant Controller. 120

8.2.1 The purpose of the specification. • • . . •. 120

8.2.2 The formal specification of the system " 120

8.2.3 Animation prototyping the specification.•...•. 122

8.3 Rigorous Proofs of Specification Consistency. ...•............•.... 123

8.3.1 The purpose of proofs. • • • .. 123

8.3.2 Implementability of PlantSequencer. • • 124

8.3.3 Decomposition of PlantSequencer. . • 125

9 COMMENTS AND CONCLUSIONS. 128

10 Recommendations for Future Work. 129

vii

10.1 Improvements to tools and their use. .••..•••..........••.••.•• 129

10.2 Improvements to the formal language. .••....••••••..••....•.•• 130

10.3 More reasoning about time. • . • • . • • . . . • • • . • . . . • . . • •• 131

REFERENCES.•.•••...•.•..•••..•••.•.•••......•..•••...• 132

APPENDIX A. ••.•.•..••...•.•..•••...•..•.•••......•.•••....• 144

A AN EXPERIMENT IN ANIMATION PROTOTYPING•.•....••.•••••.. , 144

A.1. Introduction. . . • • • • • . . . • . • • . • • • • . • . . . • . • . . . • • . • • • • • • .. 144

A.3. Early prototype development. . • • • . • . • • • . . • • . . . • • • • 146

A.4. Prototype refinement.••.•...•..••...•••...•..••. 147

A.5. Final developement. •••.••...••.••.••.••••...••..••.••.. 147

A.6. Lessons learned. • • • • • • • • • • . . • . . • . . •• 148

APPENDIX B. . • . • • • • • • • • • • 150

B AN INTRODUCTION TO FORMAL SYSTEMS. ...•.•. . . • . . . • •. 150

B.1. Introduction. .••••••••.•.. . . . • . • • . • . . • • • • . • • •. 150

B.2. Formal Systems. . • • • • • • . • • • • • • • • • • • . • • • • • • 150

B.2.1. Formal Languages. ••.•.•..••.•......•.•.•..••... 150

B.2.2. Semantics - adding meaning to symbols. ••....•.•........ 150

B.2.3. Inference systems. • • . • • • • •. 151

B.2.4. Proofs and theorems.•....................•. 151

B.2.5. Derivations. • • • • . • • • • . .. 151

B.3. A Simple Example of a Formal System. •.....................•. 152

B.3.1. Propositions. •.••....•..•..•.....•......•...•.. 152

B.3.2. A formal language for propositions. .•.................. 152

B.3.3. Semantics for propositions.•......... 153

B.3.4. Propositional calculus.

B.4. A More Powerful Formal System.

156

160

B.4.!. Predicates•............•. '. . •. 160

B.4.2. Predicate logic. . . . • • .. 161

B.4.3. A semantics for predicate logic. . • • 162

B.4.4. Predicate calculus. .. 162

B.5. Summary. • 163

viii

APPENDIX C. .•••••.•••••••••.•••.•.•••...•.•••.•.•.••.••••... 165

C MATHEMATICAL DETAlLS OF VDM. • • . • . • • • • . • • • • • • • . . • . • • • • • • . .• 165

C.l. Defining Data Types. • . . • • . • • • • • . • . • • . • • . • • • • • • . . • • . • • • •. 165

C.l.l. Simple data types. . • • . • • • • . • • • . . • • • . • . . . • • • • • • . •. 165

C.2. An example implementability proof. • • • • • • • • • . • • • . • • • . • • • • • • . •. 168

C.3. A Simple Plant Cnntroller. •••••.•.••••..•.•.•••••••.•..••• 174

C.3.1. informal specification of the system. • • . • . • • • • • • • • • • . . • •• 174

C.3.2. Formal specification of the system state. ••••••••.••...••• 175

C.3.3. Formal specification of the plant controller.

C.3A. Decomposing the plant controller operation.

175

176

C.3.5. Decomposing the Service operation. . . . • . • . . . • . • • • • • • • •. 178

CA. An Example of Decomposition into Cnnditionals. .•.•••••••..•••••• 180

C.5. Two Examples of Decomposition into Loops. • • . • • • . . .• • • • • • • • • • •. 183

C.5.!. The inference rule for decomposition into loops. •••.••...... 183

C.5.2. A simple example of decomposition into loops. ••••.•.•.•... 183

C.5.3. A more problematic example involving loops. . . • . • • . • • • . . •• 186

APPENDIX D. .•••...••••..•.•.••.•...•.••.••..•••.•......•..• 188

o IMPLEMENTABIUTY PROOF FOR A SIMPLE LOGIC OPERATION. ...••.•..• 188.

D.!. The Function and its Specification. .••.......••......•.•..••.• 188

0.2. The Implementability Proof. .•....•.•...........•.•.••.•.•• 188

APPENDIX E. • . • • • • • • • . . . • . • • • . • • • •. 192

E. EBNF DESCRIPTION OF THE PROJECT'S FORMAL NOTATION. . • • 192

E.l. Names and Literals. ..••..•..•......•.........•.••..•... 192

E.2. Types. . • . . • . • . . • • • . . • 192

E.3. Expressions. ..•.•.....•...•.•..........•.•........... 192

EA. Statements. • 193

E.5. Definitions. .. 193

APPENDIX F .•..•....... 195

F. THE GRAMMAR TREE FOR THE PARSING OF THE FORMAL NOTATION. 195

ix

APPENDIX G. ••..•••...•..•....••••••.••..•••.•••••..••••...• 204

G. ANIMATION PROTOTYPE OF A LOGIC GATE. • .••...••....••• ,...... 204

G.1. Statement of Requirements for the Logic Gate. • . • . • • • . • • . • • . •. 204

G .2. Formal Specification of the Logic Gate. •••••...••.•.••.•..••..• 204

G.3. Animation Code Produced by the Animation Process. • . • • . • . . • • • • • • .. 205

APPENDIX H. •••..••.••••.•.•.•••.••.•••.••.•••.•.•••••.•••.• 209

H. THE NITROGENIHYDROGEN COMPRESSOR PLANT. .•. . . • . . • • . • . . • 209

H.1. The Statement of Requirements. • . . • . • • . • • . • • • • • • . . . • • . . • • •..• 209

H.2. A Formal Specification of The Plant Operation. .•......•..•.••.... 213

H.2.1. State and type specification. . • • . • • . . • . • . • . • • • . . . • . . .• 213

H.2.2. Specification structure. •.•••.••..•••.....•.•..•.. .. 215

H.2.3. Specification of the operation PlantSequencer. • • 217

H.2.4.- Specification of the operation StartUpPlant. .•..••.•.•..••. 219

H.2.5. Specification of the operation DoWorkingCycle. •.•.•..•..•. 222

H.2.6. Specification of the operation ShutPlantDown. . . . • • • 226

H.3. Animation Code Produced by the Animation Process. • • . • . • • . • . . . • • •. 229

H.3.1. Preamble and state initialisation. .•••••••.•••.•... . • • .• 229

H.3.2. Routine PlantSequencer.•............. 231

H.3.3. Routine StartUpPlant. . • • • • . . • . • • . . • . . • . . .• 234

H.3.4. Routine DoWorkingCycle. • 238

H.3.5. Routine ShutPlantDown. • • • 242

H.3.6. Routine Tim.Update.Display. . . . • •• 245

H.3.7. Adding animated graphical displays. . . • • 251

H.3.8. Further decomposition of the specification. • • . • • . .. 263

x

LIST OF FIGURES

Figure 1 A Real-Time System. .••••...•.•.•..•.•..•..•••••.•••.•••.•.• 4

Figure 2 The Software Development LifecycIe. • • • • • . . • • • . • • • . . • . • • • . • • • • • • •• 6

Figure 3 Two Views of a Real-Time System. •••••••...•.••.•••.••...•••..•• 12

Figure 4 A Simple Model of SOR Interpretation. • • • . • • . . • . • . . • • • • • • • • • . •• 15

Figure 5 Watkin's Classification of Prototyping. ••••••..••••.•••..•..•••••.•• 23

Figure 6 Ratcliffs Classification of Prototyping. •.•................••.•••..•• 24

Figure 7 Schneider's Classification of Prototyping. • . • . • • • • . . • • • . • . . •• 25

Figure 8 A Scheme for Rapid Prototyping. . • . • • . • . • • • • . • • . • • • • • • . • • . . . • . . •. 28

Figure 9 The Gap Between Client and Specifier. •..••.•.•.•...•.••...••.•..•. 31

Figure 10 Three Key Aspects of Animation Prototyping. ••••..••..•..•.....•..•. 37

Figure 11 Animation Prototyping of Formal Specifications.••..•.•....••.•••. 40

Figure 12 Stepwise Refinement of a Formal Specification.•....... •• 57

Figure 13 Decomposing an Operation. .•...•...••.......•.............•.• 89

Figure 14 Using Diagrams to Represent Operation Decomposition. • . . . • . . • • . • • .• 91

Figure 15 Associating VDM Text with Diagrams - Ideal Method ..•........ '.• 93

Figure 16 Associating VDM Text with a Single Operation. • . • • 94

Figure 17 Associating VDM Text with a Decomposed Operation. • . . . • . . . • . . . • •. 95

Figure 18 The Stages of the Animation Process. ••.•..............•.....•.... 97

Figure 19 Phases of the Automatic Code Generation. ...•......•..•...•........ 99

Figure 20 Aod_ Gate Animated Prototype - Screen 1. •...•...•••.•..••...•.... 116

Figure 21 Aod _Gate Aoimated Prototype - Screen 2.

Figure 22 Aod_ Gate Animated Prototype - Screen 3.

117

118

Figure 23 Plant Schematic.•.....•..•...•..•.............••..... 119

Figure 24 Structure Diagram of the Plant Specification. • . • • • 121

Figure 25 Token Bus - A Typical Logical Ring. •..•...........•..........•. 145

Figure 26 Plant Schematic. .•.........•..•.•...............••...•..• 210

Figure 27 Structure of the Plant Controller Specification. . . • 216

Figure 28 Plant Controller - PlantSequencer 1 • .. 253

Figure 29 Plant Controller - PlantSequencer 2 . . . • • 254

Figure 30 Plant Controller - StartUpPlant 1 255

'.Figure 31 Plant Controller - StartUpPlant 2

Figure 32 Plant Controller - StartUpPlant 3

Figure 33 Plant Controller - DoWorkingCycle 1

Figure 34 Plant Controller - DoWorkingCycle 2

Figure 35 Plant Controller - DoWorkingCycle 3

xi

256

257

258

259

260

Figure 36 Plant Controller - ShutPlantDown 1

Figure 37 Plant Controller - ShutPlantDown 2 •••••••••••••••••••• '0 ••••••••

261

262

Figure 38 Further Decomposition of the Plant Controller Specification. •••.•••.••••.. 264

xii

LIST OF SYMBOLS •

.., Logical Not. The negation of a sentence can be thought of as the logical opposite of that

sentence.

A Logical And. The sentence P A Q is referred to the conjunction of P and Q. P and Q are

conjuncts of the sentence.

v Logical Or. The sentence P V Q is referred to as the disjunction of P and Q. P and Q are

'disjuncts of the sentence. The truth value of the sentence is "P or Q or both P and Q". It.

is also referred to as inclusive or.

.. Logical Implication or "if •.• then ... ". The sentence P ... Q is read as P implies Q. Care

is needed in the informal interpretation of this connective as, in programming terms, there is

no information covering "otherwise" or "else". Implication should always be referred to truth

tables for exact interpretation.

.. Logical. Equals. This connective is also referred to as double implication. The sentence P

.. Q is true if and only if P and Q have the same truth value.

v The universal quantifier. Universal quantification is used to express propositions of the form

"every object has this property" or "all objects are related in this way", e.g.

Vx • P(x)

3 The existential quantifier. Existential quantification is used to express propositions of the

form "there is at least one object which has this property", e.g.

3x • P(x)

I- The syntactic turnstile. If there is a derivation from P to Wone can write P I- W.

.. The semantic turnstile. The statement P .. W can be paraphrased as, given a set of

assumptions P are true then W is also true.

E.
C An Inference rule. The meaning of this is that if all the sentences, P, above the line are given

then the sentence below the line, C, can be deduced as an immediate consequence.

xiii

B The set of boolean values, i.e. { true, false }.

Z The set of integer numbers.

N The set of natural numbers, positive integers (including zero).

NI The set of natural numbers, strictly positive integers (excluding zero).

R The set of real numbers.

E Set membership, e.g. x E Z denotes that x is a member of the set of integers.

{ .• } A set of values.

{1,2,4}

Set enumeration.

{ nEN I 1 ,;; n ,;; 5 }

Set comprehension.

... The mapping operator, e.g. s ... 123 denotes that s "maps to" 123.

{I "'xl' 3 "'x4}

Map enumeration.

{x.-.x2ENxN I xE{iENI-2:5:i';;3}}

Map comprehension.

[••] A sequence of values.

[12,14,93]

Sequence enumeration.

doubles = [xEN I doub/es(x) = 2 X x]

Sequence comprehension.

'/' Sequence comprehension. The member of the sequence are drawn from the type T.

Sequence coneaten.tion, e.g. [1,2]'13,4]=[1,2,3,4].

V:T Type defmition. Vari.ble V is of type T.

" "Is defined as".

D->R Function mapping from domain D to range R.

A XB The eartesian product of A and B.

xiv

{P}Q{R}
A triple. Where P and R are truth valued expressions and Q is some operation. This notation

asserts that if the state satisfies expression P then the application of operation Q will yield a

state which satisfies the expression R.

xv

1 INTRODUCTION

1.1 Structure of the thesis

The central consideration of this thesis is the involvement of people in developing software for safety

critical, real-time systems. In particular, it considers how these people can accurately specify this type

of system. After considering the hackground to this process, a new technique called animation

prototyping is introduced.

In order to establish the practical applications of this technique, it is necessary to look at the type of

systems at which the technique is aimed and where in the development process it is to be used. These

ideas are considered in detail later in this chapter.

Chapter 2 discusses the idea of systems specifications in detail. By considering how specifications are

written and what they are used for a list of useful properties for specifications and their development.

is suggested. The specific concerns of this thesis are:

*

*

The pitfalls in the translation of client-written requirements into developer written

specifications;

The development of safety-eritical real-time systems from these specifications.

A brief introduction to formal methods is given. This highlights why formal methods are useful in this

work.

Chapter 3 introduces the idea of software prototyping. This is a diverse field and the emphasis is

placed on techniques useful for the early stages of software development.

The approach to prototyping that is used here has two main strands; firstly the use of formal

specification techniques and second the use of animated pictures to aid the discussion and improvement

of the specifications thus written; Formal specifications are used for many reasons but above all

because they provide a concrete result at the end of the prototyping effort. Animated pictures are used

because they provide a more familiar medium for discussions than the mathematic. formulae of the

formal specification.

1

Chapter 4 describes what formal methods are and how they are used. It includes an overview of

different techniques. The impact of the techniques on the specification process is discussed. There are

still problems with an approach based solely on these techniques and these are discussed. The choice

of one particular method for this work, called the Vienna Development Method or VDM, is explained.

Also the idea of animation prototyping of formal specifications is introduced.

Chapter S gives a more detailed description of the Vienna Development Method. Particular emphasis

is placed on the structure of specifications written in this style. The mathematical manipulations called

proofs are one of the central features of formal methods. The purpose and results of these proofs are

shown. The nced for animation prototyping when using formal specifications is again shown.

Having seen the need for animation prototyping of formal specifications, chapter 6 gives a detailed

description of the background issues to the development of a demonstration prototyping tool. A new

specification methodology based on a structured application of the. Vienna Development Method of

software design (defined here as S-VDM) is shown. Also, the requirements for automated software

tools to enable S-VDM specifications to control the behaviour of graphical displays ("animating the

specification") are established. Finally, a diagrammatic technique for showing the structure of S-VDM .

specifications is also defined.

Chapter 7 shows how the implementation of the tool was achieved. This chapter shows the process

of creating an animation prototype from the formal specification ..

Chapter 8 gives a description of a number of animation prototypes which were built. The practical

application of S-VDM for specification is shown. The animation prototyping process and the use of

tools is also illustrated.

A summary of the ideas in the thesis and the scope for future work is given in chapters 9 and 10.

1.2 Real-time Embedded Systems

In order to understand the thesis presented here better it is necessary to address two questions; what

sort of systems are being developed and how does that affect the development approach?

. The characteristics of real-time embedded systems set them aside from many other types of systems.

In these systems the correct functioning of the system is dependent on the timing of data input and

output as well as tbe values of the data. Although computer programs are at the heart of such systems

the correct performance of the system as a whole depends equally on the external non-<:emputer

2

hardware in the system. In general real-time systems gather information from external sensors and

then exert an influence through external devices.· Examples of real-time embedded systems are

, chemical plant control [Williams871, windtunnel control [Williams84), astronomical data acquisition

[Kelton84), fighter plane control [Kaplan8S), space shuttle control [Carlow841, radar applications ,

[Fathi84) and amusement park ride control [Nelson81).

Consider the chemical plant controller shown in Figure L This includes such diverse elements as the

computer electronics, pressure sensors, temperature sensors, valves, pipes, pressure vessels, gas

compressors and operator displays and controls. So in real-time systems there is a complex

relationship between the hardware and software: with the software forming only a small part of the

whole.

Let us take a closer look at some of the terms which are used to describe and classify real-time

systems. The first and most obvious property of real-time systems is that they have deadlines; certain

tasks performed by the sys,tems must occur at particular times. The nature of these deadlines divides

real-time systems into two groups. In the first group are systems where the failure to meet a deadline'

is inconvenient but not catastrophic. Systems such as this are called soft real-time systems. Examples

are airline registration systems and CAB graphics systems. The second group of systems have rigid

deadlines, hence the name hard real-time systems. In these systems failure to meet a deadline will lead

to serious or catastrophic results. The high pressure chemical plant shown in Figure 1 is an example

of this type of a hard real-time system.

Within the class of real-time systems there is a sub-class of systems with which this work is especially

concerned; that of safety-critical systems. These are systems where failure of the system can endanger

people's lives. Such systems include aircraft flight systems, nuclear plant controllers and high pressure

chemical plant controllers. Current software engineering practice for such systems places severe

restrictions on the style of software which maybe employed. These restrictions are that:-

*
*
*

All programs are strictly sequential;

There use of interrupts is forbidden;

All Input devices, including timers, are polled.

Having outlined the systems which are of interest here, safety-critical embedded real-time systems, let

us consider how software for these systems is developed.

1-3 Software Engineering.

3

Sensor =-+---'

Valve

Computer
Control

lelllpt3raltu~e Sensor

Pressure Vessel

Compressor

Operator
Workstation

Figure 1 A Real-Time System.

4

Pomberger in his book [Pomberger84] defines software engineering as follows:

• Software engineering is the practical application of scientific understanding to the economical

production and use of reliable and efficient software .•

The waterfall model of software development [Royce70, Boehm76] has been a popular model and it

does give a useful basis for discussion. The model is shown in Figure 2. The work done at each stage

is as follows:-

* Requirements specification. The problem to be tackled and goals of the project are specified.

*

*

*

*

*

*

Documents are produced detailing what problems are to be addressed and constraints such as

cost and timescales.

Functional specification. Decisions are made as to what needs to be done in order to meet

the project goals.

Desigu. Decisions are· made as to how different sub-systems will function together and what

tasks each sub-system will perform.

Coding. This';s when the actual code is produced. Detailed design of sub-systems may also

be a prelude to the coding of that sub-system. Sub-systems will also be tested against their

functional specification.

Integration. This is where the individual sub-systems are brought together to form the

complete system. Eventually the system as a whole will be tested.

Verification and Validation. Verification is checking the whole system to see if it fulfils is

functional specification. Validation is checking the whole system to see if it matches the

original requirements of the user.

Maintenance. This is the process of modifying the system to meet the requirements of the

user. This means correcting bugs not found during the development, adapting the software

to cope with a changing environment and improving the performance of existing features.

There has been a great deal of criticism of this view of software development [McCracken82, Zave84,

Boehm88, Luqi88, Maude91]. The major criticisms are:-

5

Requirements

Functional
Specification

Design

Coding

Integration

Verification &
Validation

Maintenance

Figure 2 The Software Development Lifecycle.

6

..

..

..

..

The lack of feedback between the individual stages •

The lack of early feedback on accuracy of requirements •

The indistinct boundaries between specifications and implementations .

The flexible nature of requirements as project progresses .

The most serious of all these criticisms is the lack of early feedback on the accuracy of the

requirements. If the requirements are not accurate then all subsequent development will achieve is to

produce a system (possibly of high quality software) that performs the wrong set of tasks. A related

problem is the correct interpretation of requirements to produce a specification. These ideas are

considered more fully in chapter 2.

As has already been stated the communication of ideas is seen as central to this work. Between each

of the above stages there is a flow of information. It is important to ask questions about this

information such as:-

..

..

..

..

..

..

..

Who is involved in the process?

What information do they need?

Who has this information?

To who else is the information useful?

How can the information be exchanged between parties?

How can psrties check each others view of the information?

How can the information gathered best be passed on to subsequent stages of development?

. Subsequent chapters show how animation prototyping of formal specifications of real-time systems can

address these issues.

7

2 SPECIFICATION AND SPECIFICATION ISSUES

2.1 Introduction

In this chapter, the role of specifications within the software development Iifecycle is be shown.

Particular emphasis is placed on what specifications are, how they are written aod what they are used

for. A very importaot part of this process is the communication of ideas between people.

Correctly specifying the requirements of a software system is a crucial task; mistakes made here affect

all subsequent stages of software development [Hughes87, DeMarco78). Experience has shown that

rectifying such errors is both costly aod time consuming [DeMarco78). As a result, maoy techniques

have been developed to aid the specification process: De-Marco methods, CORE, SSADM, for instance

[ST ARTS87). These, although they are rigorous, lack mathematical formality; thus their correctness

cannot he proven. Consequently, there has been a major move to introduce formal methods into the .

specification process [DEF ST AN 00-55). Formal methods, although. they provide maoy benefits, do

not aid communication in maoy situations. A new technique, animation prototyping, aims to alleviate

some of these communications difficulties.

2.2 Specifications in Software Development.

The conventional approach to software development has come under much criticism [Ramamoorthy84,

Zave84, Swartout82, Balzer83, McCracken82). The main objections cited are that its divisions

between the different phases of the development are too rigid. It is argued that the development

process is one in which the various stages overlap and interact considerably. A very similar argument

took place between the advocates of rigid engineering design methodologies aod cognitive

psychologists. The psychologists argued that real designers do not think in discrete stages

[Snodgras88). Therefore, they argue, design methodologies should support a wider, more flexible

approach to the whole design process and the influence of decisions at all stages on the final solution

should he recognised.

Balzer [Balzer83) aod others recognise that in software engineering too the specification of a system

is inevitably intertwined with the nature of the fmal implementation. Furthermore, the assumption that

the specification can be fixed at an early stage in the development process is a too idealistic

8

[Brookes87]. The developers' perception of the customers' requirements always change. This is

inevitable as the developers start with only a limited appreciation of the customers' domain. Despite

this criticism, specifications are part of all software development approaches [STARTS]. In order to

consider the role of specifications, three main questions need to be answered. These questions are :-

(a) What are specifications used for?

(b) Where do they come from?

(c) How are they written?

The profound effects of bad specifications on software quality cannot be ignored and consequently this

is a specification-centered view of software development. As has already been stated the flow of

information between groups involved in these processes is very important [potts88].

"(f)his brings us to the most important requirement of all: we need methods, no! data flow

diagrams or formal systems but real methods, methods that assist in the elicitation of expert

domain knowledge and consolidation of knowledge from different sources, methods that bristle·

with heuristics to check the consistency, quality and appropriateness of the specification,

methods that define the viewpoints from which one can inspect the specification, methods

which produce specifications that can be used by clients, lawyers, requirements analysts,

project managers, quality assurance auditors, hardware interface engineers, and software

developers. These people are people. With so many of them involved it is time software

engineers started paying more serious attention to the human factors of specification methods. "

Consequently in considering the process of specification the following points are highlighted:-

*
*
*
*
*
*
*

Who is involved in the process?

What information do they need?

Who has this information?

To who else is the information useful?

How can the information be exchanged between parties?

How can parties check each others view of the information?

How can the information gathered hest be passed on to subsequent stages of development?

2.2.1 The use of specifications.

The end users of the software specification are the software designers. Their job is to decide in detail

how the software will accomplish its task. They need a clear statements about function, performance,

9

interfaces and constraints. The specification is an expression of these goals. The overall aim of this

process is to form first an architectural design and then a detailed design of the system.

The software designers are usually not the same designers as those who wrote the software

specification. Consequently, as with the SOR document, the clarity and accessibility of the information

in the specification document is crucial to the success of the design and subsequent phases. This

requirement of specifications is emphasised when considering ways to improve the specification

process.

Architectural design takes the functional and non-functional requirements and forms a structure of

clearly defined software components. Each components performs a specific task which relates to the

identified requirements. This is not a trivial task because of the large amount of information to be

organised. In order to help them in this task there are a number of different development tools and

methods. The STARTS Guide [ST ARTSS7] contains a comprehensive review of many such software

development tools.

Detailed design adds detail to the structure and components in the architectural design. This activity

leads into the coding and testing of an implementation. It should also be noted that the specification

will be needed by those testing the software. Their job is to ensure that the software meets all its

requirements of function, performance, interfaces and its constraints. In safety-critical software,

traceability between the requirements and the deliverable software is a very important; So clear,

easily-accessible specifications are essential in the development of such systems.

2.2.2 The origin of specifications.

As with any engineering discipline tbe successful development of a software system depends on a clear

understanding of tbe role of that system. This implies that designers must begin a project with a

thorough analysis of the problem and a sound strategy for development of solutions to that problem

[PragerS7]. In industrial and, more specifically, military software development great emphasis is

placed upon long and wordy statements of the problem. For real-time embedded systems, software

specifications are generated during the overall system design pbase. These specifications are defined

in a Statement of Requirements (SOR) document, this being produced by the systems designers. In

industrial and defence applications, systems designers are usually engineers, with backgrounds in fields

such as mechanical, avionic, chemical and civil engineering. Software engineers are rarely employed

in this role. This is one source of problems when subsequently writing specification. SOR documents

are the starting point for software specification. It is essential, therefore, to know what sort of

information do they contain.

10

According to the STARTS guide, the four main software requirements covered by SOR documents

are:-

* Function - what is the software supposed to do.

* Performance - how well it should perform these tasks.

* Interfaces - how it fits in with its environment. Interfaces can be further categorised as:-

Physical: how people interact with the software.

how the software interacts with external devices.

Software: how it interacts with other software,e.g. operating systems and databases.

* Constraints - what may and may not be done.

This information, and particularly the constraints, derive from design decisions taken even this very

early stage of the development process. Real-time embedded systems are, by their very nature, only

small parts of much larger systems. Consequently the overlap between specification - stating WHAT

is to be done - and design - deciding HOW it is to be done - is very marked [Swartout821. Figure 3

shows two contrasting views of a real-time system. It is apparent from this that many design

constraints will have been placed on the software during the specification and design of the whole

system. So the requirements for a real-time system derive from design decisions made to meet much

higher level specifications. Consider the following example:-

Managers at a large chemical manufacturing company perceive an increase in the markets

demand for a new organic chemical. Their requirement for profitable production of this

chemical is translated into the specification - build a production plant to produce X tonnes per

year of chemical Y at price £Z per tonne. Using this specification, chemists, chemical

engineers and plant engineers decide on what method of production to employ. Their

requirement for physical devices to implement this process becomes a number of new

specifications such as - a storage vessel to hold W tonnes of a chemical, piping to withstand

V KPa, heaters to produce U watts, a temperature controller, a valve sequencer and a pressure

controller. Some of these specify the physical plant while other devices seem to have

functions which may require microprocessor control. One such device, a temperature

controller, is to be implemented using a microprocessor. Finally a specification for real-time

. software is generated.

This example serves to illustrate the very close link between real-time software and the larger system

of which it is part. The specification for real-time software is the result of a number of higher-level

design decisions. These decisions are taken by people who are not necessarily software engineers.

The software to be developed must meet the requirements of these people and thus software engineers

11

The Plant Engineer

Production
Targets

.

Chemical
Reactions

Cross
Compilation

Code
Structuring

Performance
Targets

Controller

Piping, Valves
Storage

Problems

The Software Enginee

Figure 3 Two Views of a Real-Time System.

12

must be able to communicate their thoughts effectively to non-software engineers.

So in summary, before a specification is written, the system designers:-

* Analyze the problem thoroughly from their own point of view;

* Form a strategy for developing a system to solve that problem;

* Write a statement of requirements document stating the problem and the required form of

solution.

This statement of requirements document is used by the software designers as the basis for their

software specification.

2.2.3 The writing of specifications.

There is a great deal of information passed from system designers and engineers to software designers

in the SOR document. Software specification is the process by which software designers assimilate

and organize this information for use by software engineers. There are a number of problems which

make this a difficult task.

The first hurdle is the use of specialist terminology. Systems engineers have a good understanding of

the system domain: function, structure and behaviour. SOR documents are written from their point

of view, that is, the external environment of the software. Normally they are expresse.d using the

technical language and terms of the application environment. The software designer, by contrast, is

unlikely to have such detailed knowledge. Thus he is faced with the problem of interpreting the

requirements of the specification; then translating these into a form which can be used during the

software design phase. This task can be difficult enough when the requirements documents are clear,

precise and correct. Unfortunately, as they are frequently ambivalent, ambignous, incomplete, and

sometimes in error [Meyer85J, it may be an extremely onerous task. This is the second hurdle in the

development of good quality specifications.

Technical language is not the only problem with SOR documents. A clear understanding of the

requirements is obstructed by the text of the SOR being:-

(a) Ambivalent. The SOR is written so that it can mean one thing or another or possibly both.

(h) Ambiguous. The SOR fails to make its Point clearly enough for the reader to understand.

(c) Incomplete. A vital, or useful, piece of information has been omitted.

(d) Inconsistent. The SOR includes contradictory information.

13

(e) Complex. The SOR contains all necessary information, but in such a way as to make

comprehension difficult.

(t) Wrong. The SOR contains information that is not true. Such errors derive from many.

different sources.

Such problems can only be resolved satisfactorily by consultation with the system designers. This is

also not a trivial exercise. Discussions between the system designers and software designers can also

highlight further problems with the SOR and its interpretation:-

(h) What the SOR describes is not always what was intended by the system designers or is

actually needed by the user.

(i) The software designers have incorrectly interpreted what the SOR says.

From this it can be seen that developing a good quality specification is a highly interactive process.

Figure 4 shows a simple model of the interpretation of the SOR to build a specification. This

illustrates the importance of discussions between the parties. Through these discussions and the

increased understanding that develops, both the specification and the SOR are improved.

2.3 Ways to Improve the Specification Process.

The central theme of the specification process is the communication of ideas and information between

different groups of people involved in the software development process. Specifications are essentially

a bridge between the systems designers requirements and the software designers efforts to build

software to meet them. Any improvements to this process must thus aim to smooth the passage from

SOR to specification and thence to software design and testing.

The transition from SOR to specification is a highly iterative process. Improvements to this transition

process include:-

(a) Careful writing of SOR documents.

(h) Using good structure so that requirements are easily accessible to both systems designers and

software specifiers.

(c) Explanation or avoidance of highly specialised technical language.

(d) Review of specifications with respect to the SOR. The software specifiers need to express

their understanding of the requirements clearly to the system designers.

14

SOR

Specification

Improvements

Improved
interpretation

Discussions
Problems

Figure 4 A Simple Model of SOR Interpretation.

15

Producing specifications which can analysed systematically is another way to aid the specification

process [Ramamoorthy84). When the specification is being produced the specifiers need to answer

certain questions. They also need to convince the system designers that such questions have been

answered. Some of the questions which might be posed by the specifiers are listed below.

What does the specification say?

Is it consistent within itself?

Is it consistent with the specifiers' view of the system?

Is it consistent with the system designers' view of the system?

Is it complete within itself?

Does it contain all the information needed?

Is it correct within itself?

Is it syntactically correct?

Is it semantically correct?

Is it feasible?

Is it correct?

Does it describe the system as the specifiers understand it?

Does it describe the system as the system designers understand it?

Will the specified system perform the desired tasks?

Will the specified system meet safety requirements?

These are important points for the specifier, but the management of this process is equally important.

Any approach to specification ideally should support :-

(a) The coordination of teamworking;

(b) The documentation of benchmarks for acceptable functionality and performance;

(c) The ability to express design decisions;

These points aid the writing of a specification which accurately expresses the system designers

requirements. However, the software designer as end users of the specification need considering. In

order to aid the production of software in line with the requirements, a specification must state the

requirements :-

16

(a) Unambiguously. All requirements must be carefuIly written so as to avoid different

interpretations.

(b) Completely. All significant information must be provided. Tenns must be clearly defined.

(c) Verifiably. Where possible measurable quantities or properties required should be provided.

(d) Consistently. Statements about requirements must not conflict.

(e) Traceably. The origins of each requirement should be clear.

To overcome some of these problems, and to improve software quality and productivity, the use of

mathematically based specification languages, or formal methods, has been proposed [Gibbons87,

Cohen82). A second technique, software prototyping, has been proposed in order to address the

problems of communication and requirements analysis [Budde84). The next two sections give a brief

introduction to these techniques and suggest how the two can be combined.

2.4 The Role of Fonnal Methods in Specification.

Formal methods are based on mathematical formal systems. They use a mathematicaIly based formal

notation and reasoning system to describe and analyze the structure, function and behaviour of software

systems. CarefuIly applied to the development of software, they form the basis for a rigorous

engineering approach [AL VEY84).

The role of formal notations in software engineering varies considerably. Some methods are intended

to cover a large portion of the software life cycle. VDM [Jones90). for instance, embraces the cycle

from specification through to coding. Others. such as FOREST [Goldsack88), address themselves only

to the problem of stating system specifications. Here the concern is mainly with the specification

aspects of formal methods.

There are a number of claimed benefits for the use of formal specification techniques [HaIl90). First,

they introduce precision, rigour and clarity of thought into the process. As a result, the specification

document is likely to be correct, consistent and complete. Second, the document itself can be used as

a firm basis for interaction between the software designers and the system specifiers. Third. this

approach also raises the visibility of the project as documentation is produced from the beginning of

work.

The application of this approach rarses questions as to who should produce the formal specifications.

Few systems designers have knowledge or experience of discrete mathematics and formal reasoning,

17

the basis of formal specification techniques. Consequently, it becomes necessary to employ specialists

to convert the informally expressed requirements of the system designers into formal software

specifications. When they complete their work the resulting formal specifications are presented to the

system designers for approval and agreement. But the notation used is fully comprehensible only to

the experts who produeed the formal specifications. The systems designers must decide whether their

requirements are being correctly specified. This, at the present time, is a major problem for the

designers of real-time embedded systems.

A final - crucial - point concerns the use of formal methods for proving the correctness of

specifications. Proponents of this approach stress the confidence obtained by using mathematical

techniques in place of conventional procedures. But rarely are the complexities of proof discharges

highlighted. To illustrate this point, Appendix D contains the discharge of the implementability proof

for the very simple logic function specified there. Its intricacy raises a serious question. How

confident can we be in our ability to detect errors in such mathematical workings?

The need to make formal specifications comprehensible to non-specialists is great. The recognition

that system designers need to assess the accuracy of formal specifications is the main motivation behind

the approach to specification called animation prototyping.

2.5 The Role of Animation Prototyping in Specification.

The approach used in this project is called animation prototyping. The essential objective of animation

prototyping is to illustrate the key properties of specifications to non-<:nmputer specialists by using

computer-animated pictures [Cooling89]. It provides a demonstration of executable specifications

('animates the specification') in terms of the SYSTEM domain. Animation prototyping may be used

to express both the SOR objectives and those of the formal specification document. In this way the

system and software designers are more easily able to evaluate the interaction of the software with its

environment. This interaction leads to a greater understanding of the system objectives and operation;

in turn this should result in software which more accurately meets the needs of the client.

Commercial software projects place severe restrictions on development time and cost. For animation

prototyping to be acceptable in this sort of environment, it must fulfil three main objectives:-

(a) Model production must be done quickly - typically no more than a few weeks.

18

(b) Clients should need only a minimal knowledge of technical jargon to understand the model

behaviour.

(c) Both client and developer must be able to interact with the model and thus increase their

mutual understanding of the problem.

In the commercial development of software, hand-built prototypes are prohibitively expensive. It is

therefore necessary to consider what techniques and tools can be used to help in the model bUilding.

On this basis, the approach suggested here is to use an executable program, derived automatically from

the formal specification, to animate pictures on the computer screen. In this way, animation

prototyping aims to help in the discussion and understanding of the problem and the ideas expressed

in the formal specification. Animation prototyping and other forms of software prototyping are

discussed in more detail in chapter 3.

19

3 PROTOTYPING AND ANIMATION OF SPECIFICATIONS

3.1 Software Prototyping.

3.1.1 Prototypes in engineering.

Looking at other engineering disciplines can give an interesting perspective on what prototyping means.

In the aerospace industry, full scale working prototypes of aircraft are commonplace. Every year

automobile industrial shows are filled with the latest prototype designs. Much electronic design these

days is accomplished through computer aided design packages. These offer not only tools for laying

out designs but also functional simulators. Thus an engineer can see some of the important features

of a design before the actual production work commences. It is worth mentioning that these are

disciplines where the investment in production equipment is considerable. Thus it is necessary to know

< or have a high degree of confidence) that a design works before production commences. However

the production costs of software are escalating to levels where such confidence building is becoming

essential.

. In software engineering the use of prototypes has also been advocated. Software prototypes have been

variously described:

"Prototypes present the user with a relatively realistic view of the system as it will appear."

[Mason83]

"A prototype is an executable model or pilot version of the intended system." [Luqi88a]

"A system that can solve parts of a problem and is used to show potential value to

management and prospective sponsors." [Jordan89]

These quotes, particularly the last one, could be made by engineers from any field. It can be seen that

prototypes have many possible uses:

<a) To test the feasibility of various different design approaches.

(b) To test particular technical aspects of a deSign < eg Space shuttle Enterprise which has no

engines but mimics the glide characteristics of the full working shuttles)

20

(c) To attract funding for further development work (eg Experimental Aircraft Project).

(d) To test user or customer reaction to a particular design (eg New car designs).

3.1.2 Prototyping and the Software Life Cycle.

Software engineers should adopt prototyping essentially because they suffer from the same problems

which other engineers use prototyping to solve. The engineer's job is to efficiently build a system to

solve a customer's needs. In real-time embedded systems, the "customers" are the systems designers.

It is they who produce the SOR document and it is their requirements which must be satisfied. There

are a number of key aspects to this problem:

(a) Correctly identifying the problem to be solved.

(b) Generating possible approaches to solving this problem.

(c) Using professional judgement to select the "best" approach.

(d) Overseeing and helping with the resolution of detailed technical problems encountered in the

realization of a solution using the chosen approach.

(e) Ensuring the efficient production of a quality product for delivery to the customer.

Effective methods of code design and production enable software engineers to fulfil the last two

objectives. Better methods of dealing with the first three issues are noW needed.

As discussed in the previous chapter, there have been a number of different proposals as to what should

replace the conventional life cycle model. The one on which the work described here is based is

software prototyping.

3.1.3 Protntyping and the Specification Problem.

The largest and most important task facing software designers is to establish the customers'

requirements for the system. It has been shown by De Marco [DeMarco78] that problems are caused

by errors in the writing and interpretation of the statement of requirements document. Furthermore,

these errors are very expensive to correct in terms of time and money [DeMarco78]. Brookes

[Brookes87] argues that a system cannot be correctly specified without the customer being able to test

a working version of the product. Proponents of rapid prototyping support these views and aim to

provide a cost effective means of producing a demonstratable version of the design concept [Maude91].

As seen in the previous chapter, specifying a real-time system is made more difficult by

21

communications difficulties between system designers and software specifiers. The interpretation of

the system requirement is requires a great deal of discussion between the people involved. With the

differing perspectives involved it is one in which misunderstandings easily occur. There is a need for

all parties to be able to explore a commonly agreed definition of the problem. This requires a method

of defining the problem which is easily understood by both parties. This is one of the major reasons

for adopting the use of animation prototyping.

3.1.4 DilTerent Types of Software Prototyping.

Software prototyping is a relatively new development in software engineering. There are many

different types of software prototyping. Various classifications have been proposed for the different

types of software prototyping. Watkios [Watkios88] proposes a useful definition as shown in Fignre S.

Although it depends a little too much on the reference to a conventional software life cycle model,

Ratcliffe's [Ratcliff88] defmition places more emphasis on WHEN prototyping·occurs than WHAT it

is intended to achieve as shown in Figure 6. Schneider [Schneider87] provides a definition based on

·stages and levels of prototyping. He states the distinction between stages and levels is:

"(Dhe stages of prototyping deal with differences in kind, while the levels of prototyping deal with

differences in degree. "

The relationship between levels and stages of prototyping as envisaged by Schneider are shown in

Fignre 7.

The common factor in all software prototyping is to allow more customer involvement in software

development. This involvement is aimed at producing software which meets the customer's

requirements more closely than conventional methods allow. The vehicle for this involvement is

usually a demonstration of part of the systems proposed functionality or external appearance. Here the

major concern is with using prototyping to extract customer requirements. The techniques of interest

is a type of early prototyping called animation prototyping. The work of Budde et a\ [Budde84] and

Tanik and Yeh [Tanik89] gives a broader view of other types of software prototyping.

22

Formal tendering
specification

~7
Reply by supplier Exploratory prototyping I

{7
S.O.R. I
~7

Requirements
phases

Solution prototyping I
~7

Design phase I Investigative prototyping I I

~7 I Verification prototyping J Build and Maintenance I
phases I Evolutionary prototyping J

F~gure 5 Watk1n's Classlf1cat1on of PrototYP1ng.

23

Requirements 3rr.. Speciflcation!" .. Acceptance,
EIldtation ... '" r Design ... '"' r Implementation ... '" r usage, etc.

Objectives

EARLY
ProtOlyplng

Interface and
Functionality
exploration

MIDDLE
Prototyplng

Interface and
Functionality
Verification and
Validation.

LATE
Prototyplng

Performance
experimentation
and valldaUon

F1gure 6 Ratc11ff's Class1flcat10n of Prototyplng.

24

VJewgraphs

Level o· Paper Prototypes ~ Wh~e Papers

Level 1 • StatIc Screens Ana1yses
(VIewgraphs Intermixed, Minimal Interaction)

Level 2 • Interactive Screens
(Static or 'canned" dynamics with Mode Contro~

Level 3 • Mixed Mode, Active Modules
(Stored Inputs or Simulation Driver

with real a1gorilhms for critical functions)

Level 4 • Laboratory Prototypes
(Real Data, Real Algorithms

some functions stubbed)

Level 5· Raid Prototype
(All functions working at 1east partially,

performing In a real environment)

Figure 7 Schneider's Classification of Prototyping.

25

3.1.5 Constraints on software prototyping.

Prototyping to explore customer requirements occurs at a very early stage in the design process. Thus

any method used should be economical, fast and adaptable, for the following reasons.

(a) Economical: It is possible that the outcome of requirements analysis may be that the system

is not economically viable in its present state. Whether the project is abandoned at this stage

or pursued in a modified form, work upto this stage must be scrapped. Therefore it is

essential that prototyping should not absorb great amounts of resources.

(b) Fast: At this stage answer are needed quickly, especially prior to and during the tendering

phase of the project.

(c) Adaptable: As the development of the prototype is an ongoing process, any methodology

must provide for easy modification of the model.

If these three goals are not achieved three problems may be encountered:

(a) Slow response to customer's enquiries. This may undermine confidence in the developers.

(b) Lack of flexibility. This may lead to a waste of effort in trying to reuse parts of an

inadequate model.

(c) The focussing of excessive efforts on the development of the model. Prototyping should never

be seen as a replacement for design techniques; rather it aims to increase the effectiveness of

such techniques.

Methods designed to support the quick building and evaluation of prototypes are called rapid

prototyping.

3.2 Rapid Prototyping.

The concept of rapid prototyping comes from the field of interactive information handling systems.

Work here showed that to be effective prototyping must be supported by extensive tooi sets [MusaS5,

GommaSl, DeamleyS3, AlaviS4J.

26

If software prototyping is to be widely adopted it must demonstrate clear commercial advantages.

Software production is a competitive business. Thus techniques which are expensive in terms of time

and money won't be accepted unless it can be demonstrated that the rewards for such investments are

commensurately large. Thus there are two main reasons for using "rapid' prototyping.

(a) Reduction of the time spent building prototypes. This makes rapid prototyping a commercial

proposition.

(b) Improving the ability of the software produced to meet client requirements. This is very

important in many real-time applications, particularly safety-<:ritical applications.

In rapid prototyping models are built quickly then demonstrated to the client for evaluation. The

results of this evaluation are then used to modify the model. This process is repested until the

customer is satisfied about the properties demonstrated by the model. A typical scheme for rapid

prototyping is given in Figure 8. In rapid prototyping a question which needs careful consideration

is how customers are to be involved. In the words of Potts, in an piece of work highly critical of

software engineering methods [potts88].

, It is no use 'executing' a specification only to watch it wobble bewilderingly; the behaviour

of the specification must be explained in terms of application-specific constructs with which

the client is familiar .•

The approach adopted in this research project is to use computer-animated demonstrations of the

system's interaction with its external environment. This is called animation prototyping.

3.3 Animation Prototyping.

3.3.1 An introduction to animation prototyping.

There are two central themes in animation prototyping. The first is a model which is used to

demonstrate important properties of the proposed software. The second is the provision of tools and

methodologies to facilitate the quick construction and manipUlation of these models. Animation

prototyping is aimed at the specification of real-time embedded systems.

Building a model is considered important because:-

27

Initial Objectives

Requirements

Design & Build Prototype

Demonstrate Prototype

Evaluate
Prototype

Evaluate
Requirements ;-___J

Final Requirements

Figure 8 A Scheme .for Rapid Prototyping.

28

(a) It acts as a vehicle for communication between customer and developer. The specification

must be assessed to see if it describes the customers' requirements. Real-time systems are

used in areas where the customer bas very specialised knowledge about his own field but very

little knowledge of software engineering. Model building makes the specification

comprebensible to non-software specialists.

(b) It allows both parties to increase their understanding of the problem. In particular, by

demonstrating the dynamic properties of the system, key elements can be identified. This is

of special importance wben dealing with real-time systems where dynamic responses are

complex.

(c) The explicit modelling of the system belps to avoid misunderstandings about the importance

of response requirements. In some cases these requirements are fixed by plant or safety

considerations and are beyond the control of the software developer. In other cases

requirements can be cbanged to eliminate unnecessary, costly design requirements. Sucb

problems arise wben customers do not appreciate the technical difficulty of achieving a

response which is not critical to the system's safe functioning.

In data processing applications, wbere systems are oriented around tbe user interface, generating

feedback from customers about tbe "feel" of a system is relatively easy. There are certain features

which are common to most data processing systems and they bave all spawned specialised prototyping

tools. Hartson's paper [Hartson91] gives a good "state-of-the-art" report on rapid prototyping in this

field. In real-time systems these features are of lesser importance. Of far greater importance is tbe

question of the system's interaction with its external environment.

In order to obtain customer feedback it is necessary to demonstrate the model properties. This must

not require customers to bave a detailed knowledge of software engineering techniques. When rapid

prototyping real-time systems, a mimicking of the system's actions is often the best way to demonstrate

to the customer what the proposed software does. However, unlike data processing problems, there

are few recurrent themes. Tools for real-time animation prototyping must support the modelling of

systems with very diverse behaviour.

3.3.2 Uses of animation prototyping.

Animation prototyping is seen mainly as a vehicle for communication between customers and

developers. These discussions are aimed at a number of different areas where communication

29

difficulties exist.

(a) Tendering for contracts. The production of animated prototypes to demonstrate possible

solutions to customers has advantages:

.. Demonstrating understanding of the customer requirements as currently expressed.

.. Demonstrating in a non-technical manner the results of using different software

techniques.

.. Demonstrating particular products or expertise that the developers possess.

.. As a side effect, producing a useful introduction to the project for new team

members.

(b) Requirements Analysis. To successfully analyse customer requirements, developers need a

means to express their ideas about a system. Animation prototyping can be used to provide

animated models of basic concepts.

(c) Validation of Formal Specifications. As recognised by Potts [Potts88] one of the greatest

problems facing users of formal methods is communication with the customer. More

importantly large formal specifications are very difficult to interpret by any single person.

This problem is especially important in organisations where the people who generate the

informal system concepts do not understand formal notations.

Consider the example in Figure 9. Assessing the formal statement to see if it accurately

expresses the original idea is crucial. The use of animated prototypes translated from formal

problem statements can overcome this problem. The use of animation prototypes in this role

is the main focus of this thesis and is discussed in greater detail later in this chapter.

Animation prototyping is a technique which can enhance communication of the properties of dynamic

systems. It places communication with the customer at the heart of its approach to software

development.

3.3.3 Rapid prototyping techniques and animation prototyping.

Building models of system behaviour quickly is central to animation prototyping. With large, complex

systems this is not an easy task. Current researchers in rapid prototyping have made use of new

developments in software engineering technology to help prototype production. The most widely used

technologies are:-

30

Client's Domain

Informal
Problem

Statement
Translation

Checking

Specifier's Domain

Formal
Problem

Statement

Figure 9 The Gap Between Client and Specifier.

31

* Object-oriented programming and design.

* Executable specifications.

* Knowledge elicitation and representation.

The following sections deal with each of these techniques in turn. It also details work on rapid

prototyping carried out using each technique.

(a) Object-oriented programming and design.

This approach to software structuring proposed by Grady Booch and others has recently become very

popular. Object-oriented design is best described by Booch [Booch86]:

• Simply stated, object-oriented development is an approach to software design in which the

decomposition of a system is based upon the concept of an object. An object is an entity

whose behaviour is characterised by the actions that it suffers and that it requires of other

objects .•

Object-oriented design concentrates on the objects which exist in our model of reality. When

decomposing a problem in this fashion concurrency is expressed as it naturally occurs. For real-time

systems this is very advantageous. In animation prototyping the key issues are rapid model building

and flexibility. Object-orientation addresses these problems by compartmentalising a design into

objects. According to Booch object visibility within a system can be restricted. This means that

changes to the behaviour of an object should have only localised effects on other objects. This

property leads to a greater freedom to modify models which is an important aspect of rapid

prototyping.

Many authors on OOD claim that this approach inherently gives rise to reusable components. They

propose that building a system should consist of recombining existing objects and writing a few new

ones. However, controlling the huge libraries of objects required to make this possible is beyond

current technology. Object libraries on a large scale pose special problems, outlined by Jones

[Jones88], which have yet to be tackled.

There have been a number of suggested applications of this technology to rapid prototyping:-

* The simplest approach to rapid prototyping is to use an object-oriented programming

language, such as SmaIItalk, to produced hand-built, disposable prototypes [Sandberg89].

32

* A more sophisticated approach is to have an toolbox full of objects [Kreutzet90]. These

objects are designed to give the programmers much greater support for building prototypes.

However such prototypes are still hand-built and disposable.

* Of greater interest is the development of object-oriented requirements specification languages

for real-time systems [Diaz-Gonzalez88, Brun086]. These languages have in turn spawned

tools to support the building of animated prototypes [Diaz-Gonzalez89, BaIdassari88]. The

ENVISAGER system described by Diaz-Gonzalez is interesting in that animations use pictures

of the system which would be familiar to the user. The work of Baldassari uses animated

Petri nets. This work has much in common with the executable specifications described in

(b)(ii) below.

(b) Executable specifications.

Much modem software design is achieved through the use of structured design techniques. Many of

these techniques, such as YSM [Ward85, Hatley88, Yourdon89], ISD [Cameron86] and others, have

diagramming formalisms to express system and software structures. Other techniques, such as the

formal methods (see chapter 4) and PSDL [Luqi90], are based on specially designed specification

languages. A number of different authors have proposed systems which allow these specificatiOns to

be executed. It is important to note that executing a specification of a system does not necessarily

produce actions visually comparable to that of that system. Execution can mean a number of different

things:

(i) Question answering: such as "what result do I get if this input is given?" and in more

complex systems "Is there a path which connects this input port to this output port?" are

pennitted [Pacini87]. Such systems are usually based upon the translation of a specification

language into a function language such as LISP, ML or PROLOG. Alternatively the

specification could be written using an expert shell [Iordan89, Noren88]. The interaction with

the prototype is text-based. This work is closely related to the execution and animation of

formal specifications which will be discussed in chapter 4 where formal specifications are

dealt with in greater detail.

(ii) Animated structure diagrams. In these systems tokens are displayed to represent data moving

around a data flow diagram. Also some systems incorporate state transition diagrams where

the current state is highlighted. Different specification systems which have been investigated

for animation are given below:-

33

* Data Flow Diagrams, Control Flow Diagrams and State Transition Diagrams as

described by Ward-Melior [Blumofe88, CoombeJ90]

* Jackson System Development [Adhami88]

* STA TEMA TE [Hare190, Smith88]

* CORE [Kramer88]

The main drawback of these systems is that they use diagrams familiar to software engineers

as the basis for animation. This makes them a good communications vehicle for software

engineers exploring and testing a specification. However, these diagrams may not be

meaningful to non-software engineers and it is with them that serious communications

problems exist.

(iii) Prototype code execution. In this type of system a specification is written in a specially

designed langusge. The specification is then translated into an conventional langusge. The

resulting code is then executed and used in a conventional manner [Luqi90) ..

The work done by Luqi and Berzins provides is the most advanced work in this field. They

have developed an "object-oriented prototyping langusge" [Berzins88] called PSDL in which

specifications are written. The aim of the langusge and its supporting tool set is to allow

rapid prototyping of real-time software. This approach supports the exploration of timing

relationships within software for large real-time systems. The authors claim that PSDL

provides a powerful abstraction technique for describing real-time systems [Luqi88a).(b) The

specification can be executed by translating it into software primitives written in a

conventional programming langusge (the authors use ADA) [Luqi88c]. To aid in this

translation, the system provides for automatic retrieval and combination of software

components [Luqi88d, Luqi90).

(c) Parallel work in knowledge-based systems.

Requirements analysis and specification deals with the expression of a problem. The developer is

trying to ascertain what the customer knows about the problem. Research in knowledge-based systems

is also concerned with the expression of knowledge about a problem and how to solve it. It has been

suggested that rapid prototypers, particularly those involved in requirements analysis, should study

and learn from work which has been done in this field according to Zualkernan [Zualkernan88). Of

special interest are the issues of knowledge representation and knowledge elicitation.

Knowledge is not an easy concept to understand. Many good examples of the difficulties faced in

34

expressing knowledge are given by Dreyfus and Dreyfus [Dreyfus86]. They illustrate their point by

asking what one "knows" about how to ride a bike. The ability to ride a bike is commonplace, but

expressing the knowledge of how to do it is exceptionally difficult. The most important lesson to be

learned from this is for software engineers to recognise the human side of their problems.

Zualkeman proposes that knowledge acquisition techniques developed by researchers in the field of

Artificial Intelligence could be useful for extracting requirements from the customer. He correctly

points out that methods for knowledge acquisition such as protocol analysis [Ericcson84, Johnson87]

are far more sophisticated than those currently used by software engineers.

A rapid prototyping systems which has arisen out of work done in the field of knowledge representation

is FRORL. The FRORL system proposed by Tsai, Aoyama and Chang [Tsai88] uses the concept of

frames and rules to express requirements. The authors identify the aims of their language as follows:

(i) Allow requirements engineers to specify objects in the corresponding application domain, also

the possible changes, constraints and assumptions in the world.

(ii) Allow requirement engineers to describe their concepts about the world.

(iii) Provide a mechanism for data abstraction and the capability for the stepwise refinement

process.

(iv) Pennit completeness and consistency checking of the requirements.

The system appears to be a very useful tool for examining the correctness of a set of requirements.

St-Denis [St-Denis90] describes a similar piece of work based on a knowledge-<lriven systems. The

system again has its own specification language CML. More interestingly the author has carefully

considered the presentation aspects of the animation. The example of a lift system given shows an

animated specification that would be meaningful to non-software specialists.

The concept of frames and rules for the expression of requirements is a sound one, stemming as it does

from a great deal of research carried out in the field of knowledge-based systems. With the

appropriate tool support it should be possible to explore the properties of a set of requirements very

thoroughly from a number of different perspectives. Some authors [Kramer8S, LoucopoulosS9] have

suggested schemes where the tools provide "intelligent" help facilities. They claim that such systems

can provide active guidance to help in the analysis of requirements.

35

3.3.4 Concluding remarks on rapid prototyping.

Of all the approaches to rapid prototyping explored the executable specifications techniques provide

the greatest hope for the near future for four reasons:

(i) They support structured design techniques. This will provide managers with a better degree

of control over prototyping efforts than they have previously had.

(ii) Prototypes derived automatically from specifications will be much cheaper to produce then

specially built prototypes.

(iii) The use of structured design techniques will make incorporating the results of the prototyping

process into subsequent stages of software development easier.

(iv) The use of a single unified approach to software development within an organisation should

be of great benefit in terms of tooling costs and personnel training costs.

The above comments also apply if the specifications executed are based on formal notations. The work

here is based on the use of formal specifications. The basic approach and other related work is

discussed in more detail later in this chapter.

3.4 Key issues in animation prototyping.

3.4.1 Experience of animation prototyping.

In the light of the experimental work described in Appendix A, a much clearer view of the processes

involved in animation prototyping can be seen. In particular, any approach to animation prototyping

must address three inter-related issues. These issues are shown in Figure 10. In formulating a

practical approach to animation prototyping a number of important questions relating to each issue are

posed. They are outlined in detail below.

3.4.2 The model building.

At the heart of animation prototyping is the idea of building a model of system behaviour. The

specifiers need efficient techniques to build potentially large prototypes. Model building raises a

36

Software
Engineering
Team

Model Building
Interface Rapid prototyping

System

Client
Procurement
Team

Model Presentation
Interface

Software Development
Interface

Further
Stages of
Software
Development

Figure 10 Three Key Aspects of Animation Prototyping.

37

number of issues:

(a) How can models be built quickly and economically?

(b) What sort of language should be used to build models?

(i) Procedural.

(ii) Declarative.

(iii) Object-oriented.

(iv) Graphical.

(c) How will the system support the modelling of the passage of time?

(d) Structured design will be needed to support the building of non-trivial models. What sort of

technique should be adopted?

(e) Can development be speeded up by the reuse of certain components?

(I) A powerful user-friendly development environment wiU be needed. Can key features which

would make such an environment particularly successful be identified? If so does such an

environment exist? If not, is it possible to build such an environment?

(g) Support for the output of animated graphics will be needed. How can pictures be built

quickly?

3.4.3 Using pictures - client-developer communications.

Another key issue is the use of animated pictures to show model properties to the customer. A number

of important questions need to be answered.

(a) What type of pictures should be used?

(b) How do customers react to the use of animated pictures?

(c) How can key elements of a system be identified and subsequently animated?

(d) What sort of problems can be identified most easily by using pictures?

(e) What sort of problems are most difficult to identify using pictures?

These issues were clearly highlighted by the experimental work with custom-made prototypes described

in Appendix A.

3.4.4 Using the results - onward into software design.

Once animation prototyping has been used there is a need to convert the findings into a form which

can be used to guide the software design process. Some diagrammatic techniques can produce pseudo

code or executable code. Building prototypes using these techniques not only leads to better

38

prototypes, but also provides very useful results for .the design of the software.

3.5 Animation Prototyping of Fonnal Specifications.

3.5.1 The basic concept.

The approach suggested is the automatic production of animated prototypes from formal specifications.

As a response to the issues highlighted above, the major concern of this work has heen to investigate

a method for assessing the accuracy of system requirements as expressed in a formal specification.

The use of formal specification techniques in commercial projects presents many advantages, but also

presents some difficulties. Formal specifications allow the precise expression of ideas. However, the

mathematically correct specification could actually describe a dangerous system. The correctness of

a specification within itself is no guarantee that the actions described will not have dangerous

consequences. The essential difficulty with formal specifications is the link between mathematical

quantities and properties and their "real world" equivalents. The systematic approach taken here is

shown in Figure 1 I. This approach address the three key issues of animation prototyping mentioned

above in the following ways.

3.5.2 Model building.

As already discussed, an effective animation prototyping system is based on tools which aid the rapid

construction of models. Such a tool must also provide the developer with a powerful means of

expressing the problem structure. Formal methods and their specification languages provide such a

means of expression. In safety-critical real-time systems, where producing a formal specification is

becoming increasingly widespread, production of the prototype stems directly from work done on

producing the specification. This makes animation prototyping by this means more attractive

financially.

Automatically generated prototype code gives a consistent interpretation of formal specifications. This

is an important aspect of this approach. If prototype code were produced manually, how can one be

sure that the animation accurately illustrates what the formal specification means? With the increased

use of automated animators, confidence in the translation algorithms can be increased. Ultimately full

and rigorous proof of these algorithms will be possible.

3.5.3 Style of pictures and discussions.

39

SOR
Improvements

Improved
interpretation

Animation
Prototype r- Problems

Discussions

Figure 11 Animation
Specifications.

Prototyping of Formal

40

The interaction between client and developer is aimed at producing a greater understanding of the

requirements as specified. The animations aid non-computer specialists in understanding the behaviour

described by formal notations, as they are picture based. This in turn helps the developers in the

production of a specification which accurately reflects the clients needs. The pictures used as a basis

for the computer displays are diagrams which are familiar tu the client. The examples of animation

prototyping given in chapter 8 show this in practice.

The separation of model code from the pictures means that the pictures can be altered easily to give

a clearer representation of the problem. With the system used changes to the look of the picture can

be performed immediately and demonstrated without having to rework the model code.

3.5.4 Helping the development of software.

From the software developers viewpoint, the main advantage of animation prototyping directly from

a formal specification is that the result of the prototyping exercise is a carefully constructed formal

specification of the requirements. The formal specification acts as a sound basis for the subsequent

development of the software.

As the software design is often undertaken by software engineers other than the specifiers, the animated

prototype useful aid to understanding the specification and the application of the software.

Furthermore, in safety-<:ritical applications, when the software has been coded, tools like SPADE and

MALPAS can be used to verify the software against the formal specification.

3.6 Summary.

This chapter has given the background to software prototyping. The ideas of rapid prototyping and

animation prototyping have also been introduced. Through the presentation of practical work attention

has been drawn to key areas of concern for viable animation prototyping techniques. In response to

these and other concerns raised in the previous chapter, the use of animation prototypes of formal

specifications has been proposed. The next two chapters give a detailed discussion of what formal

methods are and VDM, the method on which further practical work has been based, in particular.

From this basis chapter 6 discusses the development of a practical approach to animation prototyping

of formal specifications.

41

4 FORMAL SPECIFICATIONS <GENERAL)

4.1 Introduction.

Previous chapters show the need for tools and techniques to aid the specification process. A brief

outline of the use of formal systems for software engineering is given in chapter 1. In this chapter the

concept of formal specifications are discussed in more detail. The mathematical foundations of formal

systems, the tenninology and techniques used in building formal specifications are given in Appeodix

B. This chapter and subsequent ones assume a working knowledge of the concepts introduced there.

A number of the most popular, practical formal systems for software development are given. This

chapter then highlights some of the benefits of using formal specifications and sets this against some

of the more important drawbacks. Also given are the reasons for the choice of one particular system,

called the Vienna Development Method, for practical work on building animation prototypes from

formal specifications.

4.2 Practical Formal Systems for Software Engineering.

4.2.1 Different types of formal systems.

The phrase "formal systems" is used a great deal in mathematical text books on logic and reasoning.

A more commonly encountered phrase, in the context of software engineering, is "formal methods" .

. This is used to describe formal systems developed specifically for application to the specification and

development of software. As will be seen these formal methods are not really "methods" at all; they

do not prescribe a series of actions which if performed will produce a piece of software. Rather, they

are tools which software developers may apply to help them develop software accurately from a

specification.

To better understand the use of the mathematics in the construction of specifications in the most

popular, current formal methods, the following classification is used:-

<a) . Model-based systems.

(b) . Algebraic systems.

42

(c) Process a1gebras.

(d) Temporal and modal logics.

These distinctions are not clear cut. The model-based systems can be used to build systems in an

algebraic style and vice versa. However, systems have been classified according to their more usua1

method of employment.

4.2.2 Model-based systems.

The most widely used formal methods in this class are the Vienna Development Method (VDM) and

Z (VDM is discussed in much greater detail in the next cbapter).

The model-based (also called state-based) approach to specifications centers around a mathematical

model which describes the state of the system in question. In addition to the state there. are also

operations on the state. The formal languages in these methods describe new data types in terms of

fundamental mathematical entities such as Boolean, real, integer and natural numbers. More complex

types can be built by using sets, maps and sequences. These types all have well understood properties

which can be used to reason about data types defined in terms of them .

. Having defined a state, operations which modify that state may be described. Operations are defined

in the following terms:-

(a) input arguments.

(b) output arguments.

(c) influence on state variables.

(d) the relationship between the values of these variables under the action of the operation.

Specifications are thus formed from declarations of data types and definitions of operations on the state.

Such specifications may be • refined· by making details of the data structures in the state closer to those

available in the implementation language. This is called data reification. Alternatively, operations can

be decomposed into simpler operations. This is called operation·decornposition. With both of these

techniques, decomposition and reification, ·proof obligations· arise. That is, it is incumbent upon the

refiner to demonstrate that the refined specification has the same properties as the original specification.

In order to demonstrate this style of specification (and others in later sections) in action, consider· the

following very simple specification of a UFO stack. Informally the stack has the following

properties:-

43

(a) The stack stores natural numbers.

(b) Items may be added to the stack.

(c) The top item on the stack may be inspected.

(d) The top item may be removed from the stack.

(e) Items are removed from the stack according to the last-in first-Qut principle.

As VDM is to be considered in the next chapter, Z will be used here to give demonstration of a

contrasting style of writing model-Qriented specifications. The Z notation was originally developed by

the Programming Research Group at Oxford University, UK. Z is based on predicate calculus and set

theory. It also has a powerful schema notation for organising specifications. This schema notation

allows schema to be combined using operations such as extension, restriction, inclusion and

composition. This notation is dealt with in greater detail in Spivey's book [Spivey89]. The use of the

Z notation in the specification of systems can be found in Hayes' book [Hayes87].

The basic mathematical entity used to represent the stack is a sequence of natural numbers. The

following schema defines the variable "stack".

r Il.Stack ----------,
I
I stack, stack' : N
I
I

Three operations on the stack are to be considered. Operations in Z are defined in two parts. First is '

the signature (the part above the middle dividing line) which declares items of interest on which the

operation depends. Second 'is the predicate (the' part below the dividing line) which describes the

, logical relationship between those items. The next.schema is defmed for inclusion in those operations'

which do nO,t change the state. It simply says that the stack before the operation is the same as the

stack after the operation.

r ZStack ---------...,
I
I stack, stack' : N

I
I
I
I stack' = stack
I
I

The Push operation places a single item on the top of the stack. It has two lines in the signature. The

44

fjlllt ".<l.Stack" declares that this schema is included in the new schema. The predicate, none in this

case, is conjoined with the neW predicate. The second "item?" declares that there is an input argument

of type natural number. The predicate part states that the input is equal to the fjlllt item in the stack

(the "head") after the operation and that the rest of the stack (the "tail") after the operation is equal to

the stack before the operation.

r~h---------------------------------,

.<l.Stack
item?: N

item? = head stack' "
tail stack' = stack

The second operation,· Top,·returns the value of the .item at the top of the stack. The signature is

similar to that for ~h, only now the line ",. Stack" includes that schema and hence Top does not.

change the state. The line· "item!" declares that there is an output argument of type natural number.

The predicate part simply states that the output is equal to the head of the stack before the operation.

rToP-------------------------------------,
I
I
I
I
I
I

ZStack
item! : N

I item! = head stack

I

The third operation, Pop, removes a single item from the top of the stack. It has no input or output

arguments, but it does change the state by' making the stack after the operation equal to the tail of the

stack before the operation.

r Pop ---------------------,
I
I .<l.Stack
I
I
I
I stack' = tail stack

I
I

45

This example serves to give a flavour of model-oriented specifications and helps to show the

similarities and contrasts between the Z and VDM notations. The most striking difference between

them is the lack of separation of pre- and post-ronditions in Z. However, the logical expressions for

pre- and post-ronditions may be derived. This calculation is essentially the reverse of the

implementability proof in VDM.

4.2.3 Algebraic or axiom-based systems.

These systems are based on the representation of a system as sets of data types and equations

describing the properties of those data types. In building an algebraic specification of a data type

theories about the data type are constructed. These theories, in contrast to the model-based approach

above, do not generally introduce general mathematical objects for the purposes of modelling. Instead

they rely only on the underlying logical system for presentation of their theories.

In order to see how this approach works consider again the simple stack specification again. In order

to specify this system a "theory of stacks" is built. Once again the stack consists of natural numbers.

In algebraic specifications one builds a specification by "enriching" or "importing" (depending on the

particular notation) theories about more fundamental data types. Theories of data types typically

consist of two main parts. Firstly, a list of the signatures of all the operations on the data type.

Secondly, a list of axioms describing the relationship between those operations. Also additional

information specific to the notation may be given.

Here, for the sake of simplicity, a very simple algebraic notation is used. This specification consists .

of five parts. These are:

(a) A name for the specification and details of any other specifications which are required.

DATATYPE stack ENRICHMENT OF natural

(b) A definition of the sort (or type) of the entities being described.

SORTS STACK

(c) A signature part where operations are given names and the sorts of their parameters are

defined.

46

OPERATIONS:

Top: STACK NAT

Pop: STACK STACK

Push: STACK X NAT STACK

(d) A variable part where variables used in the axioms part are named and their sorts are given.

VARIABLES:

item: NAT

st: STACK

(e) An axioms part where the relationships between the sort's operations are defined.

AXIOMS:

Top(Push(st,item» = item

Pop(Push(st,item» = st

The interpretation and meaning of this are not obvious. However, the axioms in the system allow

reasoning not only about truth values of statements, but also about the values of objects. It is possible

to substitute equal expressions into other expressions. This is referred to as rewriting expressions and

consequently, as they define equal terms, the axioms are referee to as rewrite rules. Consider the

following expression:-

Top(pop(Push(Push(X,IO),4» •.....•..•......... (1)

where X is some arbitrary stack. To answer the question "what value does Top return under this

sequence of operations?", refer to the above stack specification. It can be seen that:-

Pop(Push(st,item» = st. (2)

The Push operation returns a value of sort STACK. If the substitution st = Push(X,IO) is used in (2)

the expression (1) can be rewritten as:-

Top(Push(X,IO» • . . • (3)

47

From the axiom:-

Top(Push(st,item» = item •••....••.••..•.•••• (4)

It can be seen that expression (3) can be rewritten as:-

10 •...••.••.•.•••••••..•.•.•• (5)

This answer can be verified operationally by hand.

Practical formal methods using this style of specification are Clear [BurstalI80], ACT ONE [Ebrig85],

OBJ [Goguen79] and Larch [Guttag85 Guttag86]. These formal methods essentially contain theories

of theories. That is they are based on mathematical constructs which encompass the building and re

use of theories about data types. From the point of view of animation all these methods are interesting.

Those familiar with functional programming languages such as PROLOG, LISP and ML will see the

possibilities of translating the axioms into rules and functions in those languages. OBJ is the most

advanced in this respect, having a toolkit called ObjEx [ObjEx90] which is, as the name suggests, an

executable subset of OBJ and tools to support the construction of specifications.

The biggest drawback of this style of specification, particularly with large systems, is that the axioms

are difficult to construct. Maintaining the consistency of the axioms in a large specification is difficult.

As Goguen and Tardo [Goguen79] have pointed out:-

"The sad fact is that a disturbingly large number of published algebraic specifications, even

of simple data types, are wrong. '

4.2.4 Specifying concurrent systems - Process Algebras.

Research into concuITency has proved to be a breeding ground for formal systems. The major formal

systems to emerge form this are a Calculus of Communicating Systems (CCS) [Milner80] and

Communicating Sequential Processes (CSP) [Hoare85]. The communication protocol specification

system LOTOS [Brinksma88] is based on CCS and ACT ONE. The process algebras describe the

behaviour of systems by defining their algebra. A system's algebra specifies the components of the

system (agents in CCS and processes in CSP) and what the observed behaviours of those components

will be. The observed behaviour of a component is called its trace.

In the CSP notation "processes' which perform "actions' are specified. Also, CSP includes the notion

48

of traces which are the observed behaviour of processes, i.e. a sequence of the names of all events in

which the process participates. Using the logical calculus combinations of processes, actions and

communications channels can be analysed for deadlock and other useful properties. Consider, once

again, the specification of a simple stack. This time the stack will be specified as a process.

STACK = Po

where Po = (input?x .. p(x»

and P(X)A, = (output!x ... p. I input?y .. P(X)A(y)A,)

The first line defines the STACK to behave like the process P behaves on an empty trace. ,The

behaviour of P in this case is to consume an item ·x· from its input channel and then behave like P

after the single event trace x. The last line says that P after some arbitrary trace s followed by event

x can do two things. It can output x and remove it from the stack, i.e. it subsequently behaves like

P after the arbitrary trace s. Alternatively it can consume an item from its input channel and add it

to the stack, i.e. it behaves like P after the arbitrary trace s followed by the input event x followed by

the input event y. As with the algebraic specification above this definition is recursive.

In particular, the similarity between the observed behaviour of two specifications can be deduced. If

P is some product which meets specification S, i.e. P satisfies S or P sat S. Every set of observations

of the behaviour of P is described by S. Formally this is :-

Vtr.trEtraces{P) ... S

where traces{p) is the set of possible observed behaviours of P. CSP includes a language for

describing traces and a deductive apparatus for reasoning about traces and relationships between traces.

4.2.5 Temporal and modal logics

Temporal, or modal, logic is a property-oriented method for specifying the properties of concurrent

or distributed systems. There are no standard temporal inference systems nor are there standard

temporal operators. However commonly encountered concepts are those of "always", "eventually" and

"n'ext". Unlike classical logic, the truth of temporal logic predicates may change with time. Consider

a predicate P with respect to some sequence of states, the following statements:-

49

DP

OP

OP

can be stated informally as P is true in all future states (always), P holds in some future state

(eventually) and P is true in the next state (next), respectively. Temporal logic specifications are an

unstructured list of predicates which must be satisfied by a given implementation. Yet again consider

the simple stack specification using a temporal logic.

(output!m) ... (inputlm)

«outputlm) Ae • (outputlm'»" • «inputlm') A e • (inputlm»

«inputlm) A e • (inputlm'}) .. (m '" m')

(input!m) .. O(outputlm)

These four predicates may be paraphrased informally. The first predicate states that any message

transmitted to the 'output" channel must have previously been placed on the "input" channel. The

second predicate captures the requirement for the last in first out behaviour of the stack. If a message

m placed on the output channel is preceded by some other message m' also on the output channel, there

must have been a preceding sequence of events consisting of placing m' on the input channel preceded

by an event that placed m on the input channel. The third predicate states that all messages are unique.

The last predicate deals with the Iiveness of the system. It states that each incoming message will

eventually be transmitted.

The FOREST A1vey project produced a more mature modal logic called Modal Action Logic or MAL

[Maibaum86). In MAL a specification consists of two parts, a declarations part and an axioms part.

The key concepts of the modal logic are those of the sorts agent (Ag) and action (Ac).

Modal formulae can be formed as follows:-

If AEAg, aEAc and a is a formula, then

[A,a)a

is a formula.

This means that A is a member of the set of all agents (Ag) and a is a member of the set of all actions

(Ac). The formula should be read as; if agent A does action a then in the resulting state a holds.

These formulae may be used to build formulae using classical logical connectives, e.g ..

50

Pre ... IA,a]Post

This can be read as Pre is a true fonnula before agent A perfonns action a and Post is a true fonnula

aftetwards.

Returning to the simple stack example, the following specification can be constructed:-

Data Sorts: STACK, NATURAL;

Variables:

item: NATURAL;

st: STACK;

Agents:

A,B

Actions:

PUSH: NATURAL x STACK;

POP: STACK;

Predicates:

Top ~ STACK x NAT

Axioms:

lA, PUSH(st,item)](Top(st,item»

F ... lA, PUSH(st,item)][B, POP(st)]F

In particular:

Top(st,item)

... IA,PUSH(st,item)][B,POP(st)]Top(st,item)

51

Most of this is familiar except for the Axioms section. The first axiom states that if some (arbitrary)

agent A performs the action PUSH using the parameters st and item then the predicate top(st, item)

will be true. The second axiom says that if a formula is true then after A performs PUSH and B

performs POP the same formula will be true. The most useful case of this is given; that the top of the

stack is unchanged after a single PUSH followed by a single POP action.

MAL also has the so called • deontic' operators per, obl and ref. These deontic operators have two

arguments an agent and an action. They are informally stated as follows:-

* per. The agent is permitted to perform the action.

* ob!. The agent is obliged to perform the action

.. ref. The agent is permitted to refrain from performing the action.

Using these operators, axioms can be built describing the complex inter-relationship between agents

and sequences of events.

4.3 Advantages and Drawbacks of Fonnal Systems.

4.3.1 Advantages of fonnal methods.

The use of formal methods is seen as having many potential benefits. The positive aspects have been

represented diversely by the many writers on the topics.

Briefly stated [Jones901, the two main arguments in favour of formal methods are:-

(a) The use of mathematics provides precision and brevity.

(b) Designs can be verified. The relationship between a program and its specificatiOll is open to

formal reasoning.

Further to these [Bloomfield88, Floyd85, Ha1l901. formal methods are seen as being useful because:-

(a) Formal methods are very helpful at fmding errors early on and can nearly eliminate certain

classes of errors.

(b) The process of formalisation in tbe early stages of software development will promote the

finding of errors. inconsistencies and missing elements in the requirements. Formal methods

52

work largely by making one think very hard about the system you propose to build.

(c) On the basis of the specification, software developers will be able to answer questions on the

intended functionality of the program at a very early stage.

(d) Programs can be proved to be correct with respect to their specifications. As they contain a

methodological framework within which software may be developed from the specification in

a formally verifiable manner.

(e) Specifications can be transformed into programs according to fixed rules ("mechanically").

(I) In some methods, specifications can be executed and thus serve as a prototype for the future

system.

(g) They are useful for almost any application.

(h) They are based on mathematical specifications, which are much easier to understand than

programs.

(i) They can decrease the cost of development.

(j) They can help clients understsnd what they are buying.

(k) They are being used successfully on practical projects in industry.

In summary formal methods, through their use of mathematics, offer developers a precise and concise

mechanism for specifying systems. By focusing effort on clearly expressing the specification, they give

developers a better understsnding of the nature of the problems being addressed. Through successive

stages a specification can be further refined in a way which verifiably preserves properties of the

original specification. The use of a systematic approach to software development can produce software

which can be checked against its specification by a process of formal reasoning.

4.3.2 Drawbacks of fonnal methods.

There are many criticisms which have been levelled at formal methods [HaIl90j. The more serious

criticisms, for software engineers, are as follows:-

(a) Proofs are very large and the mathematical manipulations are involved.

(b) Specifications are incomprehensible to non-specialists.

Although formal proofs have been suggested as one of the main reasons for using formal methods,

fully formal proofs have yet to enter into widespread usage in the development process. There are two

main reasons for the lack of formal proofs. Firstly, proofs are reasoned arguments. There is nothing

formal or mechanical about the construction of a proof. A proof must be carefully built and revised

repeatedly until it too is correct. The notations are tedious to manipulate, consequently this is a time

consuming and error-prone process, even with small proofs. Secondly, proofs of real systems are very

53

large and involved. In text books, the specifications one sees are written with proof in mind. The

resultant proofs are elegant and compact. With specifications of systems built with incomplete

information about the whole system, the proof of properties will not flow so neatly.

It has been suggested [Hall90] that many of the benefits of formal methods are attainable with little or

no use of formal reasoning. For complex systems development, this could seriously detract from the

appeal of formal methods. Much work has centered around issues such as proofs of safety and timing

properties and it is these issues which have aroused the most interest in formal methods [DEF ST AN

00-55]. Without the support of proofs formal methods are considerably weakened. There are a large

number of published specifications which have errors in them which would have been highlighted by

performing the necessary proofs. In the absence of proofs formal methods could become little more

than very sophisticated specification languages.

The second and more significant drawback in the use of formal methods for the capture of system

requirements is their use of specialised mathematics. While this provides developers with useful

support for their construction of the specification it makes the specification inaccessible to non

specialists. As has already been argued, the building of high quality specifications (formal or

otherwise) relies on discussions about what the specification says. This lack of accessibility is one of

the main reasons for advocating the use of animation prototypes of formal specifications.

4.4 The Final Choice of Formal Method for Animation Prototyping.

The formal method chosen as the basis for the practical work demonstrated here was VDM. The Illliin

requirements were that the method:-

Ca) be mature and well-documented. The primary interest of this work was to explore the

animation of formal specifications and not to address language issues.

(b) have constructs to deal with the ordering of events in time. The specification of real-time

embedded systems is also central to this work.

Cc) support a structured approach to specification building. Specifications may be built by a team

of people working together. There is thus a need to partition a problem into manageable

pieces.

-The first requirement narrowed the field to a choice of five notations; VDM, Z, OBJ, ees and esp.
Languages such as LOTOS and MAL are not really in sufficiently wide usage, in the academic

54

community, nor was sufficient documentation available. The second requirement would appear to

make CCS and CSP the obvious choices, but these notations are only for describing communication

between processes. They are not suitable for describing the internal structure of those processes.

Ultimately, then, the choice was between OBJ, VDM and Z. Subsets of OBJ are executable, however,

its algebraic specification style and, in particular, the term rewriting approach to execution, is not well

suited to the animation prototyping of real-time systems. VDM was chosen, in preference to Z,

because of work already carried out in the department and by the industrial collaborators at Rolls

Royce and Associates.

55

5 SPECIFYING SYSTEM REQUIREMENTS USING VDM.

5.1 Origins of VDM and Current Research.

The ideas of formal specification and rigorous software development methods have their origins in the

1950's and 60's. Work at IBM's Vienna research laboratory on the PUl programming language

produced a formal specification of the language. This specification was based on "operational

semantics" using an approach called the "Vienna Definition Language" [Lucas69]. The need for

mathematical specification techniques and the basic theoretical mechanisms were firmly established by

1970. With this iocreased understanding of the more powerful specification techniques of "denotational

semantics", the VDL approach was imprOVed and became known as META-lV. This meta-Ianguage

was iocorporated with the concept of systematic software development and together this approach

formed the Vienna Development Method or VDM. Bjomer and]ones [Bjomer82] give a thorough

treatment of the theoretical basis of the meta-Ianguage. They also gives example of programming

language specification and program development using VDM. Since then VDM has been further

refined as the theoretical understanding of its mathematical foundations have improved [Bjomer87,

Bloomfield88,]ones90]. The latest developments have occured in the syntax of MET A-IV '. Many of

the new ideas have arisen from the proposed British Standards Institute standard for VDM [BSI89].

5.2 Mathematical Foundations.

The intention of VDM is to allow a designer to transform a specification written in an implicit form

ioto a program which can be implemented in a programming language. The process of transition from

an initial formal specification to an implementation is called stepwise refinement. In this approach,

additional information and design descisions are made at each step (see Figure 12). This produces a

new refined specification. Mathematical checks can be made to see if the important properties of the

previous specification have been preserved and incorporated ioto the new specification. This chapter

and its associated appendix C introduce the concepts of specification and verifiable stepwise refinement

in VDM.

Like the Z specification language discussed in the previous chapter, VDM uses a model-oriented

approach to specification. Thus specifications in VDM have a state which models the system being

specified. It also has a number of operations which influence that state, these are used to specify the

56

Initial
Formal

Specification

Refinement

Unproven
Formal

Specifcation

Further Refinement

Formal Proof

Proven
Formal

Specification

"+

Final
Formal

Specification

Figure 12 Stepwise Refinement of a Formal Specification.

57

functions performed by the system. There are two mathematical cornerstones underpinning VDM,

these being:-

<a) The formal mathematical system of first order predicate calculus, which is an extension of

propositional calculus.

(b) The extension to <a) known as the logic of partial functions, or LPF.

A detailed treatment of the mathematics involved is given by Bjorner and Jones [Bjomer82]. This also

includes an extensive list of references to earlier mathematical texts from which the VDM approach

has developed. Jones [Jones90] gives a much abridged, but more accessible, introduction to these

subjects. It is sufficient here to recognise that the abstract syntax of the MET A-IV language has been

soundly established and that, on this basis, a series of inference rules have been formed. These

inference rules allow the developement of software from MET A-IV specification to be supported by

verification using formal proofs.

5.3 VDM Specifications - describing basic and composite data types.

VDM specifications are built by modelling a system in terms of basic mathematical entities such as

Boolean variables (B) and Natural numbers (N). In addition to these VDM includes three further

entities. These are finite sets, finite maps and finite sequences. Specific instances of the above three

entities may be defined in two ways, enumeration and comprehension, e.g.

enumeration:

s = { \,2,4 }

comprehension:

squares = { x2ENXN I xE{iENI-2:S:i:S:3}}

i.e. square = { -2>-04, -\>+1, ()H(), \>+1, 2>-04, 3>->9 }

The full details of how to define basic entities are given in appendix C.

These simple entities may be used to describe simple data types to be used in a specification. Further

to this VDM has a mechanism for combining simpler entities together to form composite objects. In

many respects these composite objects are like Pascal records. Composite objects have a number of

fields, of specified types, and tags <names) for each of those fields. For instance a composite type for

a buffer of natural numbers of defined size may be defined as:-

58

compose Buffer of

Max-size : NI'

Store: N'
end

Composite objects are most frequently used in the specificationS of state variables and so names may

be associated with the set of composite objects defined:-

Finite_Buffer = compose Buffer of

end

Max-size : NI

Store: N'

The definition of Buffer is not yet complete as the size of the Store field has not been constrained. It

is necessary to restrict the possible combinations of values taken by this data type. This is achieved

by the use of a "data type invariant". This is a truth-valued function which is true for all valid object

of the type. Invariants are defined as follows:-

inv-Buffer(Buf) !!, len Store(Buf) :S: Max-size(Buf)

This says that for valid objects of type Buffer the number of elements in the Store sequence is always

less than or equal to the Max-size of the buffer. The details of how composite objects are defined and

manipulated are shown in Appendix C. With the basic data defmition mechanisms established,

definitions of operations and states can now be considered.

5.4 VDM Specifications - functions, operations and states.

5.4.1 Explicit definitions of functions.

Functions define a fixed mapping from input to output. For any function it is useful to record its

domain (the set of values to which a function may be applied) and its range (the set which contains the

results of the functions application). This is called the function's signature. A function's signature is

written with domain and range sets separated by an arrow. The signature of a function to double a

given number might be:-

59

double: N -+ N

For functions which take more than one argument, the domain is written as the appropriate sets

separated by crosses. For example:-

modulo: N X NI N

Functions can de defined as expressions with terms of other already understood or defined functions.

Double can be defined directly as:

doub/e(1) " 2 .. i

The symbol" means "is defined as". It is used to distinguish from the = symbol and its meaning

notion of equality. The modulo function can be given the direct definition:-

modulo(iJ) " i - i div j

The result of this operation is bound to the value of the expression i - i div j; where div is integer

division.

5.4.2 Implicit definitions of functions.

Direct definition of functions is restrictive when building specifications as too much emphasis is placed

on how a calculation is to be performed. Implicit definition of functions allows one to concentrate on

what a function should achieve. The general format for such definitions is:-

junction (input : input_type) output: output_type

pre ... input .. .

post ... input ... output ...

The first line gives the siguature of the function in a format more recognisable to those familiar with

languages such as Pascal. The pre section or pre-condition is a truth-valued function (pre-function)

defining assumptions about the arguments. It has the signature:

pre-function : input -+ B

The post section or post-condition defines a relationship between the input and output parameters (post-

60

junction). It has the signature:

post:function : input X output -+ B

It is important to note that troth of the post-condition expression is conditional upon the troth of the

pre-condition. Formally the relationship is:

V inputEinput_type • pre:function(input) ... 30UlpUlEoutpUl_type • post

junction(inpUl,oUlpUl)

This may be paraphrased as say for all input of the correct type which satisfy the pre-condition there

exists at least one output of the correct type which with the input satisfies the post-condition. For input

values which do not meet the pre-condition the truth of the post-condition is undefined i.e. the value

of the output is not constrained.

As an example of the merits of implicit specification consider a function which is given a set of natural

numbers and returns the lowest number in that set.

Minimwn(in _set: N-set) /owest : N

pre in_set" { }

post lowest E in_set fI viE in_set • /owest ,;; j

This specification has many advantages. All the required properties are expressed without needing to

detail how such a function might be implemented. The pre-condition states that the input must not be

an empty set. The post-condition states that the returned value must be a member of the input set and

that it must be less than or equal to all other members of that set. Note that for empty sets the function

is undefined.

Unless one is an adherent of a strictly functional style of programming, the idea of specifying complex

computer programs solely in terms of functions is unfamiliar. Of much greater usefulness is the

concept of states and operations which act on states.

5.4.3 States and Operation definitions.

Operations are functions whose applications affect and are affected by a state. Functions defme a fixed

. mapping from input to output. The application of the function double yields 4 when applied to 2

regardless of whether it had previously been applied to other values or not. Operations, however, have

61

a hidden state which is used to record values which affect subsequent results. For example, an

accumulator might respond to an inputof2 with 2, to 10 with 12 and to a second 2 with 14. The state

of an operation is a collection of external variables which it can access and change.

The state of an operation or collection of operations can be defined as a composite object. Consider

the buffer object refered to above. This object could be used as a state as follows:-

state

State of Bul: Buffer

init (mk-State(Bulo» " Bulo = mk-Buffer(256, [])

end

This dermes the state to be called Bul and to be of type Buffer. It also defines an initial state for the

buffer Bulo, where the Max-size is 256 and the Store is an empty sequence.

Operations can now be defined which act on the state. The general format of such operations is :-

OP (i : 7i) 0 : To

ext rd VI : TI

wrv2:T2

pre ... i ... Vt··· v2···

post .•. i ... VI ••• ~2 ••• 0 ••• v2 •••

Most of this is familiar from the implicit definition of functions. However the two lines of the external

clause (keyword "ext") need explanation. The first line states that the operation has read only access

to the state variable VI of type TI i.e. it may use but not change that value. The second line states that

the operation has read and write access to the state variable v2 of type T2 i.e. it may use and change

that value. The pre-condition now has a signature:-

pre-OP : 7i X TI X T2 ... B

The post condition now has to deal with variables whose final values differ from their initial values.

This is done by "decorating" the variable name to indicate initial values (This is conventionally done

with a hook or~. However, this is very difficult to achieve typographically. Therefore the

eonvention of underlining initial values is adopted here, e.g. !2.) The signature of the post-condition

thus becomes:-

62

post-OP: 7] x Tt X TZ X To X Xz ... B

This can be demonstrated by considering an operation which adds an item to the buffer defined above:-

Add_item (item : N)

ext rd Max-size(Buj) : NI

wr Store(Buj) : N·

pre len Store(Buj) < Max-Size(Buj)

post Store(Buj) = Store@uO ~ [item]

This operation is quite straigbtforward. The pre-rondition states that it is only defined when there is

room in the store for at least one more item. The post-rondition states that the store after the operation

is equal to the store before the operation concatenated with a sequence containing the item. This

operation could be redefined to deal with the case when the buffer is full. The specifier may choose

either to discard the new item or lose the item at the other end of the buffer. The latter case will be

shown here.

Add_item (item : N)

ext rd Max-size(Buj) : NI

wr Store(Buj) : N·

pre true

post (len Store(BuD < Max-Size(Buj) 11

Store(Buj) = Store@uO ~ [item]) V

(len Store(BuD = Max-Size(Buj) 11 .

Store(Buj) = tail(Store@uO) ~ [item])

Now the operation has a pre-rondition which is always true i.e. it is valid for all input values. The

post-rondition is now a more complex logical expression. It has two mutually exclusive disjuncts to

deal with the two cases to be consider; when the buffer is full and when it has room. The first disjunct

is the same as the previous operation. The second disjunct states that if the buffer is full then the store

after the operation is equal to the tail of the store sequence before the operation (i.e. the sequence

minus the first element) concatenated with the new item.

5.4.4 Proofs about states and operations.

Up until now the full use of the fOJ1Illllity of VDM has not been introduced. Consider the question,

how do we prove that what has been written makes sense? The first thing to state is that a formal

63

specification can not be linked formally to user requirements. However, the inference rules ofVDM

can be used to show that defined operations are implementable, this is called a satisfiabliIty or

implementability proof. Briefly, an implementability proof is a formal demonstration that for all valid

inputs and initial states there exists some outputs and final states which are valid. The formal statement

of this is:-

if (1 is the state variable and I: is its type

v j!E I: • pre-Opw .. 3crE I: • posl-0P<ff.,cr)

For the Add _item operation, after an expansion of the relavent quantities as shown in appendix C, this

is rewritten as:-

v StorefBuOEN·,Max-size(Buj)EN1, ilemEN •

true .. 3Slore(Buj) E N· •

(len Slore(Butl < Max-size(Buj) A

Slore(Buj) = StorefBuO ~ [item] A

len Slore(Buj) ,., Max-size(Buj) V

(len Store(Butl = Max-size(Buj) A

Store(Buj) = tail(StorefBuO) ~ [item] A

len Slore(Buj) ,., Max-size(Buj))

The proof will take the form of a sequent:-

from StorelBuOEN·,Max-size(Buj)EN1, ilemEN I

true .. 3Slore(Buj) E N· •

(len Store(BuD < Max-size(Buj) A

Slore(Buj) = StorelBuO ~ [item] A

len Slore(Buj) ,., Max-size(Buj) V

(len Store(BuD = Max-size(Buj) A

Store(Buj) = tail(StorelBuO) ~ [item] A

len Store(Buj) ,., Max-size(Buj))

infer V StorelBuOEN·,Max-size(Buj)EN1, itemEN
. .

true .. 3Store(Buj) EN·

(len Store(BuD < Max-size(Buj) A

64

Store(Buj) = Store(BuO ~ [item] A

len Store(Buj) S Max-size(Buj)) V

(lea Store(BuD = Max-size(Buj) A

Store(Buj) = tail(Storel1/uO) ~ [item] A

len Store(Buj) S Max-size(Buj) __ •••••••••••••••••••••••• V-I(l)

This proof is shown in full and explained in appendix C.

This proof demonstrates a number of properties of the operation Add _item as specified:-

(a) There are some valid inputs which satisfy the pre-condition. In this case the pre-<:ondition is

trivial i.e. always true, but it is possible to write pre-conditions which when combined with

data type invariants have no valid solutions.

(h) For all valid inputs there are some valid outputs which satisfy the post-<:ondition. It is

possible (or probable in complex specifications) that the post-<:ondition expression conjoined

with the data type invariant may be inconsistent i.e. it is always false, or be a contingency i.e.

it is insoluble for certain valid inputs. An example of this can be seen if in the definition of

Buffer, Max-size is defined to be of type N instead of NI' In this case, the size of the buffer

can be defined as 0 and it is impossible to apply the operation Add _item to a buffer of 0 size:

the result of the concatenation is always of length c!: 1 which violates the invariant len

Store(Buj) S Max-size(Buj).

These sections have shown how using the basic mathematical entities of VDM, composite objects can

be built to describe more complex data structures. The definition of functions which act on these data

types has been shown in both a direct, or explicit, and implicit styles. The notion of state and the

definition of such states has been covered along with the concept of operations which affect and are

affected by the state have been discussed. Such ideas are suitable for definitions of data types and

operations to manipUlate them. However real-time systems deal with sequencea of events which act

to perfonn specific tasks. The next section looks at how such sequencea of events can be described

using VDM.

S.S Building and Refining a Specification.

S.S.1 Operation decomposition.

65

In order to specify a real-time system it is necessary to set out in what order and under what conditions

events occur. This is achieved by decomposing complex operations into combinations of simpler

operations. The aim here is to implement systems using procedural languages, consequently control

constructs of sequence, selection and iteration are used to link simple operation together. The

decomposition of operations is supported formally by proofs that the decomposition is consistent with

the definition of the operation being decomposed.

Consider the informal specification of a plant controller given in appendix C. In order to specify this

system using VDM, the state is specified as follows:-

valve = {OPEN, CLOSED}

state Plant of

inlet : valve

outlet : valve

vent: valve

init Planto t. mk-Plant(CLOSED, CLOSED, OPEN}

The fail-safe condition is represented in Planto this may also be written as:-

inlet(Planto} = CLOSED 11

outlet(Planto} = CLOSED 11

vent(Planto} = OPEN

The plant controller may be specified as a single operation, thus:-

ext wr inlet: valve

wr outlet: valve

wr vent : valve

pre inlet(Plant} = CLOSED 11

outlet(Plant} = CLOSED 11

vent(Plant} = OPEN

post inlet(Plant} = CLOSED 11

66

outlet(Plant) = CLOSED A

vent(Plant) = OPEN

This states that the operation has no input or output parameters. It has read and write access to all

three state variables. Its pre and post-<:onditions are equivalent to Planto i.e. the fail-safe condition.

5.5.2 Decomposition into a sequence.

In the example plant controller, assume for the moment that the controller just responds to one demand

for service followed by one demand for shutdown. The operation of the controller can be specified

as the sequential composition of two operations, called say Service and Shutdown. This is written:-

Where:-

Plant_Controller: Service; Shutdown

Service()

ext wr inlet: valve

wr outlet: valve

wr vent : valve

pre inlet(Plant) '" CLOSED A

outlet(Plant) = CLOSED A

vent(Plant) = OPEN

post inlet(Plant) = OPEN A

outlet(Plant) = OPEN A

vent(Plant) = CLOSED

ShutdownO

ext wr inlet: valve

wr outlet: valve

wr vent: valve

pre inlet(Plant) = OPEN A

67

outiet(Plant) = OPEN fI

vent(Plant) = CLOSED

post inlet(Plant) = CLOSED fI

outiet(PIant) = CLOSED fI

vent(Plant) = OPEN

The specification claims that the application of Service followed by the application of Shutdown is

equivalent to the application of Plant_controller. This claim can be verified by the use of an inference

rule for sequential composition. Using this rule, appendix C shows the proof of the validity of this

design step.

This procedure can be generalised to longer sequences of operations. Therefore VDM proofs rules

can be used to show that a sequence of operations will bring about a state transition which is identical

to that of another single operation. Interestingly, unlike CSP and CCS, there is no mechanism in VDM

to answer questions like "are two given sequences the same?". Having shown the simple case of

sequential composition the next sections consider the more complex control constructs of selection and

iteration.

5.5.3 Weakening specifications.

Examining the sequential composition rule above and other rules subsequently, it may appear that there

should be certain equivalences between the pre- and post-conditions of operations and sub-operations.

The apparent requirements are that:-

(a) the pre-condition of the first operation in a seqential composition should be equivalent to the

pre-condition of the decomposed operation.

(h) the post-condition of the last operation in a sequential composition should be equivalent to the

post-condition of the decomposed operation.

(c) the pre-condition of an operation should be equivalent to the post-condition of the operation

preceeding it.

The following example serves to illustrate why these requirements are only partially true. Consider

a decomposition of the operation Service. The decomposition will be a sequential composition of three

operation each changing the state of one valve. The operations are defined as:-

68

Close_vent 0
ext wr vent(Plant) : valve

pre vent(Plant) = OPEN

post vent(Plant) = CLOSED

Open_inlet 0

ext wr inlet(PIant) : valve

pre inlet(PIant) = CLOSED

post inlet(Plant) = OPEN

Open _oU/let 0
ext wr oU/let(Plant) : valve

pre oU/let(Plant) = CLOSED

post outlet(Plant) = OPEN

The decomposition is:-

The proof that this design step is valid follows from the inference rule for weakening a specification

and an extended form of the sequential composition rule. As shown in appendix C the application of

these rules to the above decomposition leads to the conclusion that:-

{pre-Se",ice} (Close_vent; Open_inlet; Open_outlet) {post-Se",ice}

This is only possible by taking great care over which states are refered to in the various conditions.

Remember that the operations in the decomposition should not and cannot be examined individually

to determine whether they form a consistent decomposition, this does not make sense. It is the claim

that the operations, taken together as a sequence of three operations, form a consistent decomposition

which is to be proven or denied.

5.5.4 Decomposition into conditionals.

Most of the important points about decomposition have been illustrated in the above section dealing

with sequential composition. In order to illustrate this consider an operation for which consults a

sensor and then sets "flag according to the measurement. The state variables are:-

69

state Detector of

end

pressure : sensor

serve Jlag : flag

sensor: R

flag = {SERVE, SHUTDOWN}

The operation can be defined as:-

Read_sensor 0
ext rd pressure(Detector) : sensor

wr serve Jlag(Detector) : flag

pre true

post (pressure(Detector) ::;; 100 11

serve Jlag(Detector) = SERVE) V

(pressure(Detector) > 100 11

serve Jlag(Detector) = SHUTDOWN)

If this operation is to be decomposed into a conditional statement as follows:-

where:

Read_sensor: if pressure(Detector) ::;; 100 then FlagJerve

else Flag_shutdown

FlagJerve 0

ext rd pressure(Detector) : sensor

wr serve Jlag(Detector) : jlag

pre pressure(Detector) ::;; 100

PfJst serve Jlag(Detector) = SERVE

FlagJhutdown 0

ext rd pressure(Detector) : sensor

wr serve Jlag(Detector) : jlag

pre pressure(Detector) > 100

post serve Jlag(Detector) = SHUTDOWN

70

then, as previously, there is a proof obligation to be satisfied and this is shown in appendix c. The

conclusion drawn from this proof is that:-

(pre-Read Jensor}{if pressure(Detector) ,,; 100 then Flag_serve

else Flag_shutdcwn){post-Read _sensor}

and therefore the decomposition is consistent.

s.s.s Decomposition into loops.

The final control construct to be considered is that of iteration. For consistent decomposition of an

operation into a loop, the loop must be demonstrated to terminate as well as ultimately providing the

desired state transition. Loop termination is easily demonstrated in loops where some variable is

gradually increased or decreased and eventually meets some end point. However in many real-time

systems loops often take the form below:-

WHILE NOT (pressure_alarm=ON) DO

ControlJ>ressure;

Read alarm

END

Intuitively this loop performs a clearly defined purpose: control the pressure while the alarm is not ON.

Appendix C shows two examples of specifications for the decomposition. The first demonstrates how

the proof rule for VDM works. The second shows a more difficult problem. In the second example

there are two conditions to consider:-

(a) Firstly one in which the value of the pressure never rises above 2000. In this case the

pressure alarm is always OFF and the loop never terminates.

(b) Secondly one in which the pressure rises above 2000. In this case the pressure alarm is set

to ON. The loop test is therefore false and the loop terminates. The condition of the state

on termination is equivalent to that specified by post-Controller.

This leads to the conclusion that the loop does not necessarily terminate, but it does under some

conditions. Under the terminating conditions the state is in the condition specified.

71

The notion of triples of the form:-

{pre} S {post}

relies upon the termination of the operation S. This forces the conclusion that for certain

decompositions into loops there is no formal proof mechanism in VDM which can show the consistency

of such decompositions. The loop construct can be analysed to see if under certain circumstances it

does terminate. The condition of the state upon termination can also be examined to show that it is

consistent with the higher level specification. The issue of non-termination of loops is important for

real-time specifiers. Using VDM it is possible to show whether termination of a loop is guaranteed

or not. If termination is not guaranteed it can be shown under what circumstances termination is

possible. Such analysis can provide valuable information about possible problems in a proposed

design.

5.5.6 Data reification.

In the decomposition examples thus far, the data types used have been sets with enumerated

membership. The implementation of such data types in a language like Modula-2 or Pascal is trivial.

However the earlier example of a buffer was defmed in terms of a sequence. This type of data

structure has no direct implementation in these languages. The design of an implementation of the

Buffer specification must therefore change the representation of the data type to some data type which

exists in these languages. This process of changing from abstract mathematical data types to concrete

programming data types is called data reification.

Once again, not surprisingly, proof obligations arise from the decision to use a particular concrete.

representation of an abstract data type. The first element of a proof of a data reification step is a

retrieve function. This is a function which converts a concrete representation into the original abstract

one. Formally, for an absract representation Abs and a concrete representation Rep the retrieve

function has a signature:-

retr-Abs : Rep'" Abs

The most obvious property of such a retrieve function is that it should be adequate i.e. there is at least

one representaion for each abstract value. Formally, adequacy is encapsulated in the proof obligation:-

V a E' Abs • 3r E Rep • retr-Abs(r) = a

72

With adequacy established. operations can be specified in terms of the new representation. There are

two further proof obligations which arise from this design stage. These are to show that the new

operations model the operations on the abstract data types. The first proof obligation is to show the

correct modelling of the domain. It is stated as:-

V r E Rep • pre-A(retr-Abs(r» = pre-R(r)

The second proof is to show correct modelling of the result of the operation application. It is stated

as:-

v r. r E Rep • pre-A(retr-Abs(r) 11 post-R(r, r)

.. post-A(retr-A(r). rerr-A(r»

These proofs depend heavily upon properties of concrete data types being formally defined. Such

definitions are not readily available although Bjomer [Bjomer82] does give an example for the Pascal

language. Jones [Jones90] acknowledges that such proofs are probably best handled by informal

constructive arguments.

5.6 Building and refining a specification - summary.

In this section the VDM notation for defining states and operations has been introduced. Also the

concept of refining a specification for an abstract implicit definition towards a concrete representation

has been introduced though operation decomposition and data reification. Operation decomposition

allows a designer to define sequences of actions and control structures which perform specified tasks.

The fulfilment of the tasks can be demonstrated by formal proofs. Data reification allows a designer

to replace abstract mathematical data types with concrete representations in an implementation

language. The adequacy of the representation can be demonstrated. Operations can be rewritten in

terms of the new representation and the correctness of the new operations with respect to the old

operations can be proven.

In theory it is possible for a designer to refine a specification into an implemetation in a particular

language. Each step of this process can be formally verified and the correctness of the resultant

program with respect to its specification can thus be shown.

73

6 ANIMATING FORMAL SPECIFICATIONS

6.1 Animating Fonnal Specification - an introduction.

An important part of the specification process is an attempt to define client requirements. As with any

high quality specification there is a need for feedback from clients as to the accuracy of the formal

specification in detailing their requirements. As the previous chapters have shown, formal

specifications employ specialised mathematical constructs. Clients, as highly numerate engineers, may

be able to grasp the broad concepts of a well-structured and presented formal specification. The

dilemma for the software specifiers then is that clients may not comprehend al\ the of the formal

specification. Familiarity with the notation used and the specification itself is required to reach a

deeper understanding.

As mathematical notations appear to be a problem is it possible to remove them from discussions with

the client? Hall [Ha1l90j suggests that a well written formal specification can indeed be rewritten

without mathematics. The client is then presented with a more conventional natural language

document. It is argued that because such a document is derived from a carefully constructed

specification it is inherently clearer than a conventional text-based specification. This approach does

have several advantages. The use of formal techniques to build a specification should mean that

important issues within the system have been addressed. The attempt to describe something in

mathematical trerms currently requires much greater thought than writing a text-based specification ..

The problem is that such descriptions may not address what the client sees or knows to be important

issues as the version of the specification that the client sees is still a natural language document. The

problems associated with such specifications were highlighted in chapter 2. Lastly and perhaps more

importantly there are now two translations in this process, from informal requirements to formal

specifications and thence to natural language document. This raises many questions, such as:-

*

*

*

How is the translation from the formal specification to natural language to be accomplished?

Who will verify that all the properties in the formal specification have been accurately

represented in the new document?

Will the resultant document be any easier for the client to analyse than other traditional types

of documents?

74

A different approach to making the meaning of formal specifications accessible to non-specialists is that

of animation. Animating formal specifications is not a single clearly defined concept. As with

prototyping of software, there are a variety of very different approaches to animation. Broadly there

are three types of animation, distinguished by the way in which information is presented to the client.

The approaches are:-

(a) Text-based animations [Goguen82, Henderson86, McAsey85]. This is what is most

commonly meant by animation. In this approach the formal specification is translated into an

executable program. The specification is then exercised to determine its reaction to inputs.

The output from such animations is text i.e. a listing of the current state or descriptions of the

output.

(b) Diagram animations [ToeteneI90]. At the center of this approach are diagrams, such as data

flow digrams, which show the structure and flow of data between processes within a specified

system.

(c) Graphical animations [Hekmatpour88]. The emphasis of this approach is to use pictures to

mimic the appearance of the specified system. The properties of the formal specification can

then be demonstrated in system-specific terms, e.g. menus and heirarchies of menus which

behave in accordance with the specification.

A further distinction between animation techniques can be made along the lines of how the specification

is executed. The two main approaches are:-

(a) actual execution. The specification is translated into a suitable language. The resulting

program is then run with specific input values. The output variables of the specification

would then be bound to the values defined by the specification.

(b) symbolic execution. The specification is translated again, but is run on symbolic input values.

These may be either ranges of values, e.g. all valid inputs, or descriptions of values, e.g. x.

The output from such execution would be either a range of values related to the input range

or a literal description of the result. For example giving the input "x" to a function called

square might result in the output of the literal "square(x)". Symbolic execution is commonly

used with algebraic specifications as axioms used as rewrite rules provides a convenient model

of computation.

Few of the specification languages which have been suggested for animation work are inherently

75

executable. So in order to execute a specification a translation to a programming language is

necessary. Even for small specifications this translation is an error prone process. Problems arise in

two main classes; firstly, tbe misunderstanding of tbe specification by tbe translator; secondly, bad

translation of tbe specification, where tbe properties are well understood but tbe eventual

implementation does not capture all tbe properties. Now it is very important to ensure tbat an

animation is actually a true representation oftbe formal specification. The best solution to this problem

is to perform tbe translation to an animation of a formal specification automatically. Such automatic

translation cannot eliminate all errors, but it can ensure a consistent interpretation of tbe formal

specification constructs and a consistent translation mechanism.

6.2 Examples of animation sysrems.

The following examples serve to illustrate tbe wide variety of approaches to animating formal

specifications. They also give a helpful insight into the possible translation strategies for producing

an executable model of a formal specification.

(a) Algebraic specification languages

(i) OBJ [Goguen82, Goguen84j is an executable algebraic specification language. The ObjEx

tonlse! [Gerrard90j allows a subset of OBJ to be animated. Animations are based on term

rewriting (see chapter 4) and are text-based.

(ii) me too [Henderson86j. Me too is an executable specification language related to tbe

functional programming language Miranda. The language is embedded in a Lisp environment.

Once again tbe interactions are text-based. There is no translation mechanism as functions

defined by tbe specification language can be written as Lisp functions.

(iii) CSP, me too and Ada [Clarke90j. This system combines CSP and me ton. Objects are

specified using me too and communication processes between objects using a subset of CSP.

The execution uses user instantiated versions of tbe defined objects. The progress of

execution is controlled by the user who provides extra information about the timing of events.

The. progress of tbe execution is displayed as text which shows what events will happen next.

(iv) Algebraic specifications, LISP, Prolog and C [Antoy90j. The author's have defined a small

algebraic specification language related to OBJ and Larch. Specifications are translated from

this language to tbe target programming language by a tool. The system of term rewriting

is used for execution and all input and output is text-based.

76

(v) MAL and Prolog [Booth87j. This system uses a subset of the FOREST formal notation

MAL. Specifications are automatically translated to Prolog for symbolic execution. When

executing the specification, the user chooses when events occur and may browse through the

Prolog database to examine the state of the system. It is proposed that this work he continued

to provide support for graphical animation of specifications [Atkinson9Ij.

(b) Model-oriented specification languages.

(i) VDM and Prolog. The process of automatic translation of VDM to Prolog has been clearly

defined [McAsey8Sj. Prototype Prolog programs produced by this process may he queried

in the usual Prolog style. Interactions are thus question and answer sessions about the

application of relations defined in the specification to user-supplied values.

(ii) VDM and Miranda [O'Neill89j. Another approach to animating VDM specifications is

purpose-build miranda prototypes. The animations are text-based with the execution working

with actual data values. The animation sessions have much in common with the use of a

query language.

(iii) VDM to C [Hekmatpour88j. Translating VDM specifications into executable C programs has

also been automated. In this system great emphasis is placed on the specification of user

interface with support provided by the tool for adding menus and windows to a specification.

When a specification is executed the user sees a representation of what the interface is

specified to look like. The main focus of the system is data processing applications.

(iv) Z to Prolog [Dick89j. A scheme for transforming Z specifications to Prolog programs has

been defined. Execution of the specification can produce all outputs generated from an initial

state. It is possible to link the value of state variables to graphical entities to enhance

presentation of the animation.

(v) VDM and Structured Analysis [ToeteneI90j. In this approach to specification and animation,

specifications are built in a graphical form with networks of interconnected objects. From this

network a VDM specification is automatically derived. Using a further tool the VDM

specification is animated. The progress of the animation are shown graphically as changes

in the network.

(vi) Ina Jo [Kemmerer8Sj. Ina Jo has tools for both symbolic and actual execution. The merits

and drawbacks of each appraoch are clearly illustrated by this system. The interactions are

77

. .

all text-based even tbough it is aim at eliciting user requirements.

(c) Executable specification languages

(i) PAISley [Zave911. The PAISley approach to executable specifications is an important piece

of research in this field. Altbough not strictly a formal system PAISley does support formal

reasoning about specification properties. The PAISley system consists of a number of tools

for building and managing specifications. Through an interpreter tool PAISley specifications

can be executed. Executions are text-based and tbe possibility of adding user-friendly

interfaces to demonstrations is recognised.

(ii) RSl.ogic [Pacini871. RSl.ogic is a diagrammatic metbod of capturing event histories.

Properties of tbese diagrams caq be reasoned about using a new formalism called RSLogic.

Execution of specifications is symbolic and achieved by automated translation to Prolog.

When executed tbe specification can be queried about possible histories leading to events.

Answers to queries are in tbe form of listings of possible histories.

(iii) RSF [Degl'Innocenti901. RSF is an event-based executable specification language. The

specific application is timing constraints in real-time systems. Its approach to auimation is

almost identical to tbat of RSl.ogic.

(iv) TRIO [Ghezzi901. The TRIO formal specification language is aimed at tbe specification of

real-time systems. It is closely related to RSF and RSl.ogic in its approach to auimation.

Prolog is tbe implementation language and tbe execution of specifications can generate or test

histories of events witb respect to tbe specification.

The above work provides a guide to the possible approaches to animation and important issues tbat

need to be addressed.

6.3 bnportant Properties of Animation Techniques.

The above pieces of research illustrate tbe important properties which need to be considered in building

and auimating formal specifications. The following major points illustrate tbe influence of the works

on this tbesis:-

(a) Structuring specifications. Specifications contain a great deal of information. In order to

make specifications easier to deal with it is necessary to present that information in a orderly

78

and accessible way. The use of formal mathematical notations gives a degree of consistency

to the presentation. However for large specifications there is a need for further ordering and

structuring. Diagrammatic techniques to illustrate hierarchies and structures are used in a

number of software engineering techniques such as WardlMellor and Jackson Systems

Development. A technique for structuring VDM specifications has been developed. This

technique is discussed later in this chapter.

(b) Animation style. The purpose of animation is to demonstrate important properties of the

formal specification to those unfamiliar with formal notations. This enables observations to

be made as to the correctuess of the formal specification in describing the problem.

Animations must therefore not rely on specialised notations comprehensible only to software

engineers. From the work carried out with animated prototypes of real-time systems it is

clear that computer-animated pictures are a useful way of presenting such properties.

(c) Formal notation. The automated animation of the complete set of constructs in most formal

notations is not possible. This is because:-

(i) Data structures may be defined which are infinite or near infinite. To view even a

single instance of such structures might take many years. Such structures can,

however, be defined mathematically and then viewed as sets of related instances.

(ii) Functions may be defmed with infinite or near infinite domains and ranges. Once

again to view possible values within these sets would take a very long time.

(iii) Functions may be defined which have only a single solution in a very large set of

possible solutions. In a generalized solution this would lead to a lengthy search of

the possible solutions.

(iv) Functions may be defined as non-deterministic. Such functions have more than one

possible solution for their fmal states for a given initial state.

It is thus necessary to restrict the constructs used. It is important however to ensure that any

restrictions made do not preclude the use of the deductive apparatus of the formal system.

6.4 Animating Real-Time Embedded Systems - A Conceptual and Theoretical Framework.

6.4.1 Introduction.

79

The key aspects of animation prototyping of formal specifications for real-time systems are:-

• expressing the specification in VDM.

• using a diagram to express the structure of the specification.

• using a structuring methodology based on hierarchical decomposition principles.

• supporting the structuring methodology by an appropriate diagramming method.

• restricting the VDM subset for simplicity.

• ensuring that the mathematical requirements are faithfully fulfilled (maintained) when

decomposition takes place.

• translating the specification into executable code which runs an animation on a computer.

6.4.2 Specifying systems using VDM.

The use of formal methods gives a firm foundation for the development of the system. As shown in

chapter 5, VDM provides a mechanism for expressing a system's functional specification. The formal

specification can underpin the subsequent software development process as VDM supports a very

rigorous approach to software deVelopment. Furthermore, with its mathematical properties precisely

stated, a VDM specification can form the basis for the automated production of a prototype.

6.4.3 Using structure diagrams with specifications.

Formal specifications of real-time systems are large and complex mathematical texts. The structure

and ordering of functions within the specification needs to be highlighted. The use of diagrams to

represent specifications is widespread in informal structured design techniques such as YSM, JSD and

others. The use of a diagramming method to complement the mathematical rigour of the formal

specification will increase the accessibility of the information and hence aid the specifiers.

6.4.4 A structuring methodology for specifications.

In real-time systems the ordering of operations and their effects on the system is of prime importance.

The role of the VDM specification is twofold. First, it defines a model for the state of the system.

Second, it defines a set of operations which may change affect that state. VDM operations define state

transitions. An initial state, or set of states, is defined and the relationship between those states and

the final state, or set of states, is also defined. Such state transitions can be decomposed to give more

information about system behaviour. The constructs used in the decomposition are sequence, selection

and iteration. The mathematical foundations of these decompositions are shown in chapter 5. Thus

a single defined operation can be decomposed into a series of consecutive transitions which begin and

end in the precisely defined states of the parent operation.

80

6.4.5 Diagrams for structuring.

The particular diagramming method chosen reflects the style of the decomposition. The lackson

Structured Programming approach to structured diagramming supports the decomposition constructs

proposed here. A ISP diagram clearly shows the ordering relationships between parent operations and

their children. A commercially tool, ISP-TOOL, is available which facilitates the drawing, storing and

retrieving of ISP diagrams. Furthennore, ISP-TOOL supports the generation of text from diagrams

which makes automatic prototype production feasible.

6.4.6 A subset of VDM

As discussed earlier, it is not practical to animate specifications written using the complete VDM

notation. Consequently, bearing in mind that real-time systems are to be specified, a subset of the

VDM notation has been defined. This subset is discussed in detail below and its application to practical

systems is shown in chapter 8.

6.4.7 Maintaining consistency in decompositions.

The emphasis of VDM design is the preservation of specification properties throughout the design

process. The deductive apparatus of VDM allows such preservation to be formally verified. The

consistency of a decomposition is shown in two ways. Firstly, the interfaces between operations in

the decomposition are checked. This involves the checking of pre and post-<:onditions of consecutive

operations and the careful tracing of state variable changes brought about by those operations.

Secondly, the operations and the defined decomposition structure are checked to ensure that they bring

about the state transitions defmed by the decomposed operation. The subset of VDM has heen defined

so that this verification is possible within the deductive framework of VDM.

6.4.8 Automatic prototype production.

The majority of people invloved in the production of software-based systems are not specialists in

formal methods. Yet verification of the properties of a formal specification by those people is

nonetheless essential. Animation prototyping is one approach to making key properties of the formal

specification demonstrable to non-specialists. Automatic translation into executable code which runs

an animation on a computer is the key to preserving the meaning of the specification. A practical

process for producing such animations from a formal specification is presented in chapter 7.

6.5 Definition of a Subset of the VDM Notation For Use in Real-Time Embedded Systems.

81

A complete definition of the syntax of the notation used in this project is contained in Appendix E.

The aim of this section is to give an explanation the notation and the reasons behind the choice of the

subset.

The complete VDM specification language is not inherently suitable for animation. Therefore, to

create specifications which can be animated, it is necessary to choose a subset of the language_ The

most important consideration is that the notation and its animation are to be used at a very early stage

in the software development process. Therefore, there is a need to use an abstracted view of the

system, as too much detail wil\ inhibit discussions and obscure important requirements. Also any

notations used must describe the software in a clear and understandable manner. It is proposed that

the fonowing approach is suitable for these purposes.

Specifications are to be built in a model-oriented style. A model-oriented specification comprises:-

(a) A definition of data types. This is limited to enumerated types plus one composite data type.

This composite data type is used to represent the system state.

(b) A definition of a state.

(c) A description of the .set of the possible initial states.

(d) A list of operation definitions.

This approach was chosen in preference to an algebraic, functional style as it was felt that specification

of this type were easier to comprehend. The writing, manipulation and checking of model-oriented

specification is wel\-suited to the heirarchical decomposition of real-time embeded systems.

At a practical level, VDM makes extensive use of special fonts in its syntax. Writing VDM

specifications in this style on a computer requires a special editor or a text post-processor (such as

Latex). The alternative adopted here is to use only a single font and make more use of extra syntactic

symbols. The use of such symbols does not change the semantics of the statements it merely makes

the distinctions between the components in a different manner. The fol\owing definitions thus make

use of only ASCII symbols, available in almost al\ editors.

6.6 Definition of the Set of States and Data Types.

82

6.6.1 Data types.

In order 10 define the state of a system it is necessary 10 define data types. In this project only very

simple data types are used. The use of very simple data types is seen as necessary 10 limit the task

of translation 10 a manageable size. The important issues of assessing the correcloess of specifications

are still highlighted with these data types. The constructs allowed in the subset are chosen carefully

so that the type of problems being considered can still be expressed. The use of complex, dynamic

data structures is not as important in embedded real-time applications as in other types of software.

The types which may be defined are sets of elementary values, enumerated explicitly, e.g.

Valve = {OPEN, CLOSED}

Alarm = {SET, RESET, OVERRIDE}

A true Boolean type is not part of the SIMSCRIPT language. This lack of this highly useful type is

seen as a major drawback of using SIMSCRIPT for further development work.

A single composite data type is allowed. A composite data type is one composed of a number of

fields; each such field has a type as above and a value, e.g.

compose PlantState of

InputValve : Valve

OutputValve: Valve

PressureAlarm : Alarm

end

6.6.2 State definition.

The state name and type are defined in the following manner:

state

PState : PlantState

The set of initial states is defined by a logical expression which evaluates to true for allyalid initial

states e.g.

83

initial

(InputValve(PState) = OPEN

and OutputValve(PState) = OPEN

and PressureAlarm(pState) = RESET)

or (InputValve(PState) = CLOSED

and OutputValve(PState) = CLOSED

and PressureAlarm(pState) = SET)

end

6.7 Definition of Operations

6.7.1 The basic elements of an operation specification.

The definition of operations is done implicitly as suggested by Jones book [Jones90]. There are four

main parts in an implicit operation description of this type:-

lie The operation signature;

* The external clause;

* The pre-condition clause;

* The post-condition clause.

These are described below.

6.7.2 Operation signature.

Each operation has a unique name. Overloading of names is not allowed as this may give rise to

confusion. This name is followed by a list of input arguments with types. This list may be empty.

After this comes a list of output arguments with type. Again this list may be empty. For example:-

And_Gate (Inputl : Logic; Input2 : Logic) Output: Logic

6.7.3 External clause.

The external clause of an operation details the fields of the state variable that the operation affects and

the type of effects caused. The simplest effect is to read a field. This means that an operation uses

84

the value of the particular field but does not change it. This would be specified as follows:

rd PressureAlarm(pState): Alarm

The second effect is a read/write action on a field. This means that an operation uses the value of the

field as it was when the operation began and also the operation may change the value of that field.

This would be specified as follows:

wr InputValve(PState): Valve

6.7.4 Pre-<:ondition clause.

The pre-condition clause defines the range of values over which the operation effects are defined. The

pre-condition is a truth-valued function. E.g.

pretrue

This means that the operation is defined for all possible input values and states. Alternatively:

pre

and

InputValve(PState) = CLOSED

PressureAlarm(pState) = SET

This means that the operation is only defined when this expression evaluates to true i.e. the valve is

open and the pressure alarm is set. For other values the operations outcome is undefined.

6.7.S Post-Condition Clause.

The post-condition clause defines a logical relationship between values of the input, output and external

variables for the operation. This relationship, in the form of a truth-valued function, evaluates to true

in all cases where the pre-condition evaluates to true. If the pre-condition evaluates false then the post

condition may evaluate to true or false i.e. the outcome of the operation is undefined.

In very simple cases the post-condition just specifies the relationship between input and output

arguments. However with external variables which are changed by an operation, there is a need to

differentiate between the initial and final values of these variables. Jones suggests the use of a hook

i.e.

85

x for the initial value.

x for the final value;

There is no ASCII representation for this notation. Therefore the use of the ·Z· [Spivey89] notation

of a prime (') to indicate initial values has been chosen here, i.e.

x' for the initial value;

x for the final value.

It is further defined that all non-<letenninism should be explicitly stated. Non-<letenninism is when

there are many possible final states for a give initial state. Avoiding implicit non-<letenninism means

that all variables which are changed by the operation must appear in the post-condition. Furthermore,

all such variables must have their possible final values explicitly defined. Implicit non-<letenninism

often arises when disjuncts occur in the post-condition.

A typical post-condition, shown in the context of its operation, would be:

Valve_Controller ()

ext rd PressureAlann(pState) : Alano

wr InputValve(PState) : Valve

pretrue

post (InputValve(pState)' = CLOSED

and PressureAlann(pState) = SET

and InputValve(PState) = OPEN)

or (InputValve(PState)' = InputValve(PState)

and PressureAlarm(PState) = RESET)

endpost

This expression has two mutually exclusive outcomes, dependent on the initial condition of the valve

and pressure alarm:-

* the input valve is opened if the pressure alarm is set

* the input valve state does not change if the pressure alarm is reset.

In this operation the final state of the InputValve is uniquely defined by the state of PressureAlarm.

86

A simple operation which has explicit non-<ietenninism in it may be defined as follows:-

Sensor = {HIGH, NORMAL, LOW}

Sensor_Reader ()

ext wr PressureSensor(PState) : Sensor

pretrue

post

endpost

or

or

PressureSensor(PState) = HIGH

PressureSensor(PState) = NORMAL

PressureSensor(PState) = LOW

In this operation the final value of the pressure sensor is completely unrestrained by any initial

conditions. It may take on any value within its type.

As post-ronditions become more complex, with nested disjuncts and conjuncts, ensuring that no implicit

non-<ietenninism has been specified becomes increasingly difficult. The use of mutually exclusive

disjuncts is essential to eliminating implicit non-determinism. This is an important problem for

specifiers of safety-eritical real·time systems. If the final values of variables are not explicitly

constrained then a valid implementation is one in which these variables take on expected values. Such

problems can only be completely eliminated by proving that disjuncts within the post-eondition are

mutual exclusive.

A simple operation which shows implicit non-<ieterminism for the value of OutputValve(PState) is:-

Valve _ Controller2 ()

ext rd PressureAlarm(pState) : Alarm

wr InputValve(PState) : Valve

wr OutputValve(PState) : Valve

pretrue

post (PressureAlarm(PState) = SET

and InputValve(PState) = OPEN)

or (PressureAlarm(PState) = RESET

and InputValve(PState) = CLOSED

and OutputValve(PState) = CLOSED

endpost

87

In this operation, in the case where the pressure alarm is set, the final state of the output valve is

unconstrained. An implementation developed from this specification could behave in three different

ways, it could:-

.. always close the output valve.

.. always open the output valve.

.. either open or close the output valve randomly.

Either one of these implementations would be provably correct with respect to the specification. This

is clearly not a desirable feature of a specification for a safety-<>ritical system. As this is a general

property of any non-deterministic specification, specifiers must be very careful about writing such

specifications. This is the reason for insisting that all non-determinism is made explicit.

6.8 Definition of the Ordering of Operations.

6.S.1 Decomposing operations.

In real-time systems the ordering of operations is important. The ordering is introduced into the

specification as the operations are decomposed. This decomposition is represented using structure

diagrams are used as part of the formal specification. Partly this is done to help in the organisation

and understanding of the specification. Mainly though, as timing information not covered explicitly

in the specification, the structure of the specification does however deal with the ordering of events.

The specification language deals mainly with changes in discrete variables. It is therefore not suitable

for prototyping numerical algorithms. The main aim of this technique is to accurately specify the

operation of real-time embedded systems. The state of the system and changes in that state are the

main issues to be resolved.

Operations are decomposed using standard procedural language constructs i. e. sequence, selection and

iteration. The specification is formed in a hierarchical, top-down fashion as in Figure 13. Consider

the following example:-

A system has an operation A which is to be decomposed into a sequence of two operations

B and C in that order. Operation A has two conditions associated with it pre-A and post-A.

Similarly B has pre-B and post-B, while C has pre-C and pOst-C. Stated informally, in order

to show that using the sequence B followed by C has the same effect as using A the following

88

Operation A

.................................. pre-A

post-A

Operation B

......... pre-B

post-B
.. ...

..

Operation C

pre-C

post-C

Figure 13 Decomposing an Operation.

89

conditions must be met:-

(i) all sets of values which satisfy pre-A must satisfy pre-B: i.e. B must be defined over

the same (or wider) range as A. As described in chapter 5, the concepts of

weakening a specification apply to the decomposition. For example, the higher level

requirement to double a positive number can be satisfied by an operation which will

yield double any number (positive or negative).

(ii) for all the values in (i) the resulting sets of values which satisfy post-B must also

satisfy pre-C. That is C must be defined over the same (or wider) range of values as

the range of results produced by B operating on the range of values defined for A.

(iii) for all the values in (ii) the resulting sets of values which satisfy post-C must also

satisfy post-A. i.e. the sequence B followed by C must produce results which satisfy

the relationships defined by A.

A formal demonstration of the correctness of the decompositions is described in chapter 5. Similar

lines of reasoning can be applied to decompositions using condition and selection constructs. This

approach provides a way for formally checking the decomposition of a specification.

The decomposition can also be demonstrated to be correct informally through the use of animation •

. The animation of operations and sequences of operations is seen as an important aid to effective

communication with the client. The structure of the VDM animation tool is described in chapter 7.

6.8.2 Representing decomposition with diagrams.

Ideally when building diagrams to describe operation decomoposition one boxes would be used for each

operation. The structure of the diagram then represents the decomposition of the operations. Different

boxes can be used to describe the different decomposition structures; sequence; iteration and selection

as in Figure 14. The VDM text describing each operation is stored in a file which is associated with

the relevant box on the diagram as shown in Figure 15. Information regarding the state and initial

conditions can be stored in another text file.

For practical reasons (described in chapter 7) the following approach has been adopted:-

(a) Type definitions, state definitions and initial states are stores in a "header" file. This is a file

associated with the whole diagram.

90

A

I
~ I I

B C D

A is a sequence BeD

A

I
. I I I

0 0 0
B C D

A is a selection B or C or D

A

I
*

B

A is an iteration of B repeatedly

Figure 14 Using Diagrams to Represent Operation
Decomposition.

91

(b) If a box on the diagram represents a single operation which is not decomposed then an

·operation box· is placed below this box as in Figure 16. Operation boxes have text

associated with them. The text associated with this box is the VDM specification of the

operation.

(c) If a box represents a single operation which is to be decomposed into a combination of other

operations then an operation box is placed at the left hand end of the decomposition sequence

as in Figure 17. The text associated with this box is the VDM specification of the WHOLE

operation i.e. what the composed sequence is supposed to do.

The full definition of the decomposition style is given in the EBNF description in Appendix E.

92

Expanded view of Main Operation

VDMTe~.·-

. DeSCription of
.. -' Main Operation

Main
Operation ----

I I I

First Second Third
Operation - Operation r- Operation f-

VDM Text Describing Sub Operations

Figure 15 Associating VDM Text with Diagrams - Ideal
Method.

93

I 1

Simple
Operation

I

Operation Ust

I

1 VDM Text Describing Simple Operation

(a) Basic layout

Open
Vent Valve

I
I 1 I

Operation Ust

1 OpenVentValve ()

wr VentValve(PState) : Valve

pre true

post VentValve(PState) - OPEN

(b) Specific example

Figure 16 Associating VDM Text with a Single Operation.-

94

(a) Temp late

I 1

(b) Exam pie

I 1

Main
Operallon

J I
I

FIrst Second
Operatfon Operation

L
12 I 13

Operation Ust
1 VDM text describing Main Operation
2 VDM text describing first operation
3 VDM text describing second operation

Open Isolation
Valves

I I
I

Open Inlet Open Outlet
Isolation Valve Isolation Valves

I
I 2 I I 3

Operation Ust

1 OpenlsolatlonValves ()
wr InletlsolaUonValve(PState) : Valve

OutleUsolatJonVaIve(pState) :Valve
pre true
post InletlsolationValve(pState) - OPEN

OutleUsolatJonVaIve(PSta!e) - OPEN

1

I

2 OpenlnletlsolatlonValves () 3 OpenOutletlsolatJonVaIves ()
wr InletlsolstionValve(PState) : Valve

pr8 true
post InletlsolaUonVaIve(PState) - OPEN

wr OUIIstisolatlonValve(PSta!e) : Valve
pr8lNe

post OutletlsolationVaIve(PState) - OPEN

Figure 17 Associating VDM Text with a Decomposed
operation.

95

7 THE ANIMATION PROCESS IMPLEMENTATION STRATEGY.

7.1 Overview of The Animation Process.

The purpose of the animation process is to produce an animated prototype which can demonstrate key

properties of a formal specification to non-software specialists. The animation process begins with a

VDM specification (written in the style described in the previous chapter) and ends with an graphically

animated prototype.

The animated prototype consists of two parts:·

(a) A model of the system's behaviour. This is derived by translating the formal specification

into executable code.

(b) Computer generated pictures which show the specified changes in the system's state.

The animated prototype is executed using the SIMSCRIPT noS package. The process of creating an

animation is shown in Figure 18. The tools which are used to perform the different functions are

shown in the figure. These are;

* JSP-TOOL for specification construction. JSP-TOOL is a structured diagramming tool.

Building a diagrammatic tool such as the one described as "ideal" in chapter 6 was not

possible within the timescale of the research project. It was thus necessary to find an already

existing tool and adapt it to this use. JSP-TOOL provides the facilities to draw, store and

retrieve diagrams according to the lackson Structured Programming style. Text can be

attached to these diagrams. Unfortunately, the style of diagrams inlSP-TOOL does not match

exactly the ideal described in chapter 6 and hence the modified approach to diagramming

described has been developed.

* IT-DOC for specification text generation. IT-DOC converts the lSP-TOOL structure diagram

and its associate text into an ASCII text file.

* TP2 for text preprocessing. IT -DOC adds a great deal of extra information such as pagination

and dates to the-specification text. These unwanted characters are removed by the TPZ utility.

TPZ is custom written in Modula-2.

96

Informal
Specification

.... Speci fication construction
TOOL JSP

Specification
Structure
Chart

Docu ment generation
QC JTD

;,-
Specification
Structured
Document

Text preprocessing
TP2

;,-
Specification
Text File

Auto matic code generation
ation tool Anim

;,-
SIMSCRIPT
Animation Code

Figure 18 The stages of the Animation Process.

97

.. The automatic code generator. This custom made toel, written in SIMSCRIPT, performs the

task of translating the specification into an executable SIMSCRIPT program.

Adding pictures and the routines to control the detailed aspects of user input is the final stage in the

process. These routines are desrcibed later in this chapter.

The automatic code generator is the central theme of this work. It works in two phases; a parsing

phase and a translation phase as shown in Figure 19. The task of the parsing phase is to take the text

file containing the specification and analyses its structure according to the grammar tree specified. The

details of the parser are described in the next section. The result of the parsing phase, in the form of

a parse tree and a symbol table, is then used by the translation phase to produce a text file containing

a SIMSCRIPT program. This SIMSCRIPT program can then has graphical output added to it. It is

then compiled and executed.

The integration phase is the final stage of the animation process. The construction of the pictures used

in screen displays is not automated. However, some support to reduce the effort involved in writing

code to support graphical output has been produced. This support is described in the final section of

this chapter.

7.2 Parser Design and Implementation.

7.2.1 The basic design of the parser.

The design of the parser is closely linked to the syntax of the specification language. The parser's task

is to interpret the structure of the specification.

The approach chosen is to convert VDM's syntax to a one-track grammar [Bornat79J. A one-track,

or one symbol look ahead, grammar is one in which the parser reads in one symbol at a time from the

specification. The grammar is structured such that there is only one way to interpret this symbol. The

parser may have many alternatives to search, but only one can be a correct interpretation of the

structure. In order to achieve this conversion to a one-track grammar arbitrary symbols are added into

the syntax of the VDM, e.g the symbols:-

"endpost" to mark the end .of the post-condition expression;

98

Specification
Text File

Operation
Routines

Parse Tree
and

Symbol Table

Grammar
Tree File

Parsing Phase

Translation Phase

Outline
Graphics
Routines

Figure 19 Phases of the Automatic Code Generation.

99

"endspec" to mark the end of the specification.

It is importsnt to realise that the semaotics of the language remains the same. Only the concrete

realisation of that language is affected. The concrete realisation of VDM is a secondary issue; the

semaotics of the language is far more importsnt.

The use of the one-track grammar analyser is augmented by an operator precedence analsyer to parse

the many logic expressions found in a specification. The function of the operator precedence analyser

is described below.

The final result of the parsing is a parse tree and a symbol table. The parse tree is a binary tree which

defines the structure and meaning of the varuious parts of the specification. The nodes of the binary

tree have types that define the particular structure that they represent and pointer to further nodes

which represent the constituent parts of that structure, e.g. the parse tree which defines the signature

of the operation defined as:-

Isolation_Valves (Inlet_valve: Valve) Outlet_valve: Valve

can be shown graphically as:-

. ;.,~

100

'---~ operation

1
1-1 --~ signature

1 1
1 1-1 -- opname
1 1
1 1
1 1
1 L..' --~ arguments

I--~-input

1

1
1
1
1
1
1

t,-_~- type_declare

1
1
1
1
1
1

output

I

1
If----'varname

I
I
I
L' __ ~- typename

1
L..' --~Valve

1
1
1
1 L..' -----I type_declare

body

I

f----vamame

Outlet valve

'-----Itypename

'---~- Valve

The first node states that the section of the specification described by this part of the parse tree is an

operation. The first sub-node (signature) represents the signature section of the specification. There

are two sub-sections to a signature; an operation name (opname sub-node) and an arguments

(arguments sub-node) list. The arguments sub-section bas two further sub-sections; an input list (input

sub-node) and an output list (output). This structure continues until the whole specification has had

all its various sections represented by the appropriate pattern of nodes and sub-nodes.

7.2.2 Grammar trees and parsing.

101

The parser is structured to interpret any given one-track grammar. The grammar used to interpret a

specification is defined in a grammar tree. In this way different grammars can be tried out or existing

grammars extended simply by modifying the grammar tree. The parser implementation can interpret

any valid text file according to any valid grammar tree. A grammar tree is binary tree built using four

types of node; tenninal, non-tenninal, alternative and action nodes. Each node has a special role in

the parsing:-

(a) Terminal nodes. These nodes, denoted by a 't', contain a terminal symbol and a pointer to

the next node in the tree. The terminal symbol is a string of characters. If the current

symbol being examined matches the tenninal symbol then the path used to traverse the

grammar tree defines the structure of the input to this point. If it does not match then the

parser must backtrack through the graph to find an alternative interpretation of the input

symbol.

(b) Non-terminal nodes. These nodes, denoted by an 'n', contain two pointers to further nodes

in the grammar tree. These nodes act like procedure calls, in that part of the graph may be

used repeatedly to interpret similar input structures. The first pointer points to the part of the

tree which may be used to interpret the present input symbol. The second pointer points to

the next node in the tree .

•
(c) Alternative nodes. These nodes, denoted by an 'a', contain pointers to two alternative

branches which can be searched in order to interpret the input structure.

(d) Action nodes. These nodes, denoted by 'action', are used to construct the parse tree. They

contain a text string which denotes the type of node which is to be added to the parse tree.

Alternatively they contain special instructions to the parser to use routines to analyse

expressions. They also contain a pointer to the next node in the grammar tree.

The complete grammar tree for the VD M subset is given in appendix F.

7.2.3 An example of how the one-track grammar works.

In order to better understaod how the parser works, consider the following simple example. The

phrase to be parsed is an operation's pre clause. The text is:-

pre

a=borc=d

post ...•

102

The relevant part of the grammar is :-

OpBody = ExtemalList PreCondition PostCondition.

PreCondition = "pre" PreDeclare.

PreDeclare = "true" I Expression.

PostCondition = "post" PostExpression "endpost".

Briefly this states that an operation body (OpBody) consists of three consecutive parts; an external

clause (ExtemalList); a pre-rondition clause (PreCondition) and a post-rondition (postCondition). The

pre-rondition consists of two parts; the word "pre" and the details of the pre-rondition (preDeclare).

The details of the pre-rondition consists of either the word "true" or an expression (Expression).

Expressions and their interpretation are defined elsewhere in the grammar tree. The post-rondition

consists of three parts; the word "post", an expression (postExpression) and the word "endpost".

The relavent section of the grammar is defined as a tree is :-

3302 action 3303 0 pre_c1ause

3303 a 3304 3307

3304 action 3305 0 true

3305 t 3305 3306 true

3306 t 3306 0 post

3307 action 3308 0 analyse

3308 t 3308 0 post

Graphically this can be represented as:

3302 action "pre _clause"

I
LI __ ~3303 a

I
11---~- 3304 action "true"

I I
'---~- 3305 t "true"

I
I
I
I I 3306 t "post"

I
3307 action "analyse"

3308 t "post"

The parser works as follows. Having recognised the item 'pre" as the beginning of the pre clause the

parser reads the next input item, which is "a", and is directed to node 3302. Node 3302 is an action

103

node. This causes the parser to add a node to the parse tree. The type of node is "pre _clause". The

action node points to node 3303 as the next node. Node 3303 is an alternative node. The parser

records this fact by adding a record of its current position in the grammar tree to a slack. At this stage

the parse tree, stack and current node are as follows:-

parse tree current node

a 3303 3303 a 3304 3307 I

The parser then takes the first path which is node 3304. Another action node adds a "true" node to

the parse tree and the parser moves on to node 3305. At this stage the parse tree, stack and current

node are as follows:-

parse tree current node

3303 3305 t 3306 0 "true"

Node 3305 is a terminal node. The parser compares the contents of this node ("true" ') and the current

item ("a"). These items are not the same and therefore this path is not a correct interpretation of the

input and the parser must backtrack across the grammar graph. To backtrack the parser returns to the

last alternative (node 3303) and takes the second path to node 3307. At this stage the parse tree, stack

and current node are as follows:-

parse tree current node

3307 action 3308 0 analyse

Node 3307 is a special action node which tells the parser to treat the following text as an expression

to be analysed. This analysis is done using the operator precedence analysis routines. When this

analysis has finished the current item will be "post" and the parser wiII be at node 3308. This is a

terminal node and there is a match. There is no pointer to subsequent nodes from node 3308 and this

indicates that the current phrase has been completely matched.

The partial.parse tree for this phrase is:·

104

I--~ pre _clause

I
, or

I--~-=

I---~~ identifier
L--...-a

'---~~ identifier
L--...-b

I--~~ identifier
L--...-c

'---~ identifier
L--...-d

To interpret the rest of the specification, the parser then returns to the nearest non-tenninal node. If

this node contains a pointer to more nodes then the parser pursues that path. If not; the parser returns

to and checks other non-tenninal nodes.

7.2.4 Operator precedence analysis.

The purpose of the operator precendence analysis routines is to parse logical expressions. These

expressions are of the form "A and B or C". The question to be resolved is should this be seen as;

"(A and B) or C"

or " A and (B or C)"?

Expressions are parsed as a left-hand side sUb-expression and a right-hand side sub-expression

connected by an operator. Each operator is assigned two priorities; one for right and one for left. The

priorities used in the implementation of the parser are:-

Operator Left Right

or 1 2
and 1 2

3 2
(6 0
) 0 6
identifier 3 4

The expression analyser begins by getting the first symbol. It then gets the operator. The current

105

operator's left priority is compared with the previous operator's right priority. If the current priority

is greater then the parser must begin a new sub-expression. This it does by recursively calling itself

and treating the returned sub-expression as the right hand side of the current sub-expression. However

if the previous priority is greater then the current sub-expression is returned. Pairs of brackets can be

used to enclose suh-expressions explicitly and so avoid any confusion about possible meaning. The

choice of equal priorities for ·and· and ·or· in the evaluation enforces the use of brackets in this

implementation.

7.3 Translation to SIMSCRIPT Source Code.

7.3.1 General translation strategy.

The translation phase of the animator takes the parse tree and the symbol table and from them produces

SIMSCRIPT code. The code produced by the translation consists of :-

(a) A ·PREAMBLE· containing variable declarations for the defined data types and associated

declarations.

(b) A ·MAIN· routine where the program starts. This routine calls an initialisation routine (see

below) and coordinates the animation.

(c) An ·Initialisation· routine which sets up the state in its initial condition.

(d) A subroutine for each operation which perfonns the operation's defined function. A

subroutine has:-

(i) a unique name;

(ii) a list of input (GIVEN) and output (YIELDING) variables;

(iii) a list of declarations of the input and output variables and any temporary variables

needed;

(iv) a body which implements the operation's defined function.

7.3.2 Operation translation.

The most intricate part of the translation is the production of SIMSCRIPT code to implement the

operation's defined function. Each operation is translated as a separate SIMSCRIPT operation. The

106

main parts of this process are:-

• Forming a SIMSCRIPT operation header to mimic the operation signature.

• Writing code to initialise temporary variables to hold the initial values of external "wr" values.

Translating the pre-condition expression into an IF •.• THEN ..• ELSE statement.

• Translating the post-<:ondition expression into a structured program block which yields values

for free variables. These values are such that the post-<:ondition expression evaluates to true.

• Translating the decomposition of an operation into the appropriate control structures and

operation calls.

Many of the other processes are essentially an enhanced transliteration process whereby VDM symbols

are replaced directly with SIMSCRIPT equivalents. The most difficult part of this process is the post

condition translation.

7.3.3 Post-i:ondition translation.

The post-<:ondition translation involves the manipulation of the parse tree. The aim is to sort variables

into bound and free types. Bound variables are those whose value is fixed throughout the operation,

i.e. input variables, read only external variables and initial values of read/write external variables.

Free variables are all other variables, i.e. output variables and fmal values of read/write external

variables. The post-<:ondition expression is further simplified and sorted according to the type of

variables contained in each sub-expression. Sub-expressions are classified into five types. These are:-

• Simple bound expressions. These are equivalences between bound variables and other bound

variables or bound variables and values, e.g. in an operation containing the following

declaration:-

wr InputValve : Valve

the initial value of the variable InputValve (lnputValve') is a bound variable and hence the

following part of the post-<:ondition is a Simple bound expression:-

post loputValve' = OPEN ...

107

.. Complex bound expressions. These are combinations of simple bound expression using the

logical "and" and logical "or" operators, e.g.

wr InputValve : Valve

post (InputValve' = OPEN

or InputValve' = CLOSED) •••

.. Simple free expressions. These are equivalences between free and bound variables or free

variables and values, e.g.

wr InputValve : Valve

post InputValve = CLOSED .••

.. Complex free expressions. These are combinations of simple bound expressions using the

logical "and" and logical "or" operators, e.g.

wr InputValve : Valve

post (InputValve = OPEN

or InputValve = CLOSED) .•.

.. Mixed expressions. These are combinations of bound expressions with free expressions using

the logical "and" and logical "or" operators, e.g.

wr InputValve : Valve

post (

and

or (

and

InputValve' = OPEN

InputValve = CLOSED)

InputValve' = CLOSED

InputValve = OPEN)

Most post-<:andition expressions are mixed expressions.

After the initial parsing of the specifications, post-<:andition expressions are stored as binary tree. For

example the expression:

A and B and C and D

is stored as:-

and
II---~A
I'--~~and

1-1 -~~B
I and

1-1 --~C
I D

108

In order to make translation possible it is necessary to sort the nodes according to their type. This is

done by converting the binary tree into a multi-branch or n-ary tree. The above expression after

conversion would be stored as a single node with four branches. i.e.

and
I ~A

I ~B

I ~C
I ~D

Each of the five node type is given a priority:-

5 Simple bound

4 Complex bound

3 Mixed

2 Complex bound

I Simple bound

The branches at a single node are sorted according to their priority; 5 is highest and I lowest.

After this manipulation has occurred the modified post-condition parse tree is translated into the

animation SIMSCRIPT code. The ultimate aim is to produce an SIMSCRIPT code to find a final state

which satisfies the post-condition. Formally the final state must satisfy the following conditions:-

for an initial state : "i E E

the final state: "r E E • post·OP("i'''r)

The tactics employed in the translation can be seen in the following example post-condition translation.

The operation is:-

Valve = { OPEN. CLOSED}

Valve~Test (Input: Valve) Output: Valve

ext

pretrue

post (Input = OPEN

and Output = CLOSED)

or (Input = CLOSED

lOO

and Output = OPEN)

endpost

endop

The appropriate section of the parse tree dealing with the post-condition is:-

I--and
I 1--=
I I
I I
I I
I I
I 1...-=

I
I
I
I
I...-and

1--=
I
I
I
I
1...-=

I-- identifier
I I...-Input
I...- identifier

I...-OPEN

I-- identifier
I I...-Output
I...- identifier

I...-CLOSED

I-- identifier
I I...-Input
L- identifier

I...-CLOSED

I-- identifier
I I...-Output
L- identifier

I...-OPEN

The post condition is translated into SIMSCRIPT code as follows. The post-condition consists of a

disjunct expression. Because of the mutual exclusion requirement either one or the other, but not both,

must be true. So each is tested separately. The first sUb-expression is a conjunct expression. It has.

two parts a bound and a free part. The truth value of the bound part is defined by the initial

conditions. It is therefore used as a test to see if this particular sub-expression contains the solution

to the post-condition. If it is true then the final value required for the free part to be true is known

and this value is set. The same process is followed for the second disjunct sub-expression. The

resultant SIMSCRIPT code is:-

IF (Input = .. OPEN)

LET Output = .. CLOSED

ENDIF

IF (Input = .. CLOSED)

110

LET Output = .• OPEN

ENDIF

In more complex expressions this process of using bound expressions to find values for free

expressions is used repeatedly and recursively. This process is sufficient to find solutions to

deterministic post-<Xlnditions. If there are non.<Jeterministic sub- expressions in post-condition then the

translator provides skeleton code for a choice between the possible alternatives. For example, in the

operation:

ValveTest2 (Input: Valve) Output: Valve

ext

pretrue

post

endpost

endop

(

or

Input = OPEN

and Output = CLOSED)

(Input = CLOSED

and (Output = OPEN

or Output = CLOSED))

The post-<Xlndition is translated as:-

IF (Input = •. OPEN)

LET Output = .. CLOSED

ENDIF

IF (Input = .. CLOSED)

SELECT CASE

CASE .. .

LET Output = .. OPEN

CASE ...

LET Output = .. CLOSED

ENDSELECT

ENDIF

1\1

7.4 Identification and Implementation of SIMSCRIPr Routines to Support Graphics

Output.

7.4.1 Use of SIMSCRIPr graphical displays.

There are two main displays used for the animation. There are:-

.. the main display. This shows all the information about the current value of the state

variables.

.. the local display. Qperations with input and output parameters need an additional display

which shows the value of those variables.

The automatic code generator produces outline routines for updating both types of display.

7.4.2 Updating the main display.

A subroutine is generated which contains the outline SIMSCRIPT code to update the main display.

This routine is based on an automatic analysis of the fields which compose the state and the possible

values of these fields.

7.4.3 Updating local displays.

A subroutine is generated for each operation with input and output arguments. This routine contains

the outline SIMSCRIPT code to update the display of these variables. It is again based on an automatic

analysis of the possible values of these variables.

\12

8 DEMONSTRATION ANIMATIONS.

8.1 Specification and Animation or a Simple Logic Gate.

8.1.1 The purpose or the specification.

The purpose of this example is to show clearly the stages involved in building and animating a formal

specification. . The systems to be specified is a simple logic gate. The function of the gate is to

produce an output which is the logical "AND" of its two inputs. The logic gate is informally specified

as follows:-

* The logic gate has two input lines and one output line.

* These lines may be either HIGH or LOW.

* If both input lines are HIGH then the output shall be HIGH.

* In other cases the output line should be LOW.

8.1.2 Building the specification.

An analysis of the problem leads to the following decisions about the form of the specification:

(a) There is no need for a state variable.

(b) One data type drawn from a set, called Logic, containing the elements High and Low, is

needed. This is written as:-

Logic = {High , Low }

(c) The operation, called And_Gate, has two input arguments "Inputl" and "Input2" both of type

"Logic". There is one output argument "Output" also of type "Logic". The operation'

signature is thus written as:-

And_Gate (Inputl : Logic; Input2 : Logic) Output: Logic

(d) There are no effects on external variables. This is written as:-'

113

ext

(e) The function is to be defined over the complete input range. This is written as:-

pretrue

(I) The output is related to the inputs such that if both inputs are High the output is High, if

either input is Low the output is Low. In order to specify these two separate cases the post

condition is written as a disjunct between two mutually exclusive sub-expressions. The first

sub-expression covers the case where the output is "High". The second covers the case where

the output is "Low". This is written as:-

post (Input! = High

and Input2 = High

and Output = High)

or ((Input! = Low

or Input2 = Low)

and Output = Low)

The above statements form the specification of the operation. The complete VD M specification is also

shown in Appendix G. As there is only a single operation the only proof necessary in this case is the

implementability proof. That proof for this operation is shown in Appendix D.

S.1.3 The stages of the animation prototyping process.

After prepartation, the specification is entered as a JSP-TOOL diagram. It is then processed via JT

DOC and TP2 to produce the basic specification text. This text is then passed to the animator which

produces the basic animation code. The complete animation code produced by the automatic code

generator is shown in Appendix G. The main routines produced by the code generator are:-

-Routine- -Purpose-

PREAMBLE SIMSCRIPT Data declarations.

MAIN Where all SIMSCRIPT programs begin.

Implementation of the AND gate's specified function.

114

Tim. Local. Update. And _Gate

Tim. Update. Display

Updates the display of And_Gate variables

Updates the main display of operation name and

condition type.

Finally the graphics and user interaction routines are added. In order to add graphics and user

interaction a number of routines must be added. These are:-

-Routine-

TIM.AND.INPUT

AND. INPUT. CONTROL

-Purpose-

Get input values from user

Control form used for input

TIM.CHOOSE.REPEAT Allows user to choose a further demo

The following three figures (Figure 20, Figure 21, Figure 22) show the displays used in the animated

prototype of this specification.

115

"l
~
11
CD

IIJ
0

)0
!:l
CL
I~
PI
rT
(1)

)0
!:l
a
PI
rT
(1) -- CL

'" 'd .,
0
rT
0
rT
'<
't'l
(1)

tIl
Q .,
(1)
(1)
!:l

I-' .

~
LJ
Itiil L:J

Input1

tnput2

AND Gate OperaUon

Condttlon I I

Output

"'·:-:-: .. ·· ·· .. ·· ·· -:::::::::1 ::::::::1 Continue 1::::::::
:;:::::;' ' ' , ..

"l
~
11
CD

I\)

~

> ::s
0-

IG)
PI
rt
(0

> ::s
fJo
S
PI
rt
(0 - 0--...,
'"cl

8
rt
0
rt
'<
'0
(0

tIl
Cl
'1
(0
(0
::s

'"

High Inputt

High

Input2

AND Gate Operation

Condition I Pre

Output

"J
fo'.

~
11
~

N
N

»0
:::l

I~
PI
rt
CD

»0
:::l
fJ·
S
PI
rt
CD -- a.

00
't!
11
0
rt
0
rt
'<
'0

CD

Cil
Cl
11
(D
(D
:::l

w

High Inputt

High

Input2

,
, EmII

.... "'" ~.o.,.~ _". _

AND Gate OperaUon

Condition Post

Output

High

OUtIellsoIatIon Valve
Low Pressure High Pressure
Gas Inial Gas OUtlet

Compressor Extra High
Jl Pressure

Inlet Jl Vent High Pressure Isolation Valves

low Pressure

Compressor Extra Low
J2 Pressure

J2Vent Presou", Detection
Switches

ch Normally Closed ch Nonnally Open

Valve Valve

Figure 23 Plant Schematic.

119

8.2 Specification and Animation of a Plant Controller.

8.2.1 The purpose of the specification.

The purpose of this section is to shown the application of the animation prototyping process to a more

complex, practical system. The specification of this system shows the use the formal notation defined

earlier to describe more complex pre and post-conditions. Also, the decomposition of operations into

sequences, selections and iterations is shown. Finally the automated production of animation code is

shown.

8.2.2 The fonnal specification of the system.

The system described here is a large chemical plant (shown in Figure 23). Its purpose is to compress

nitrogen. The compressed nitrogen is then stored in liquid form in a storage vessel. Nitrogen is drawn

from the storage vessel for use in other processes. The system consists of two compressors, a storage

vessel, ..: number of valves and a number of alarms. The compression of gas is done cyclically using

first one compressor and then the other. The statement of requirements are briefly outlined in

Appendix H.

These requirements were examined and the variables to describe the state of the plant were formed.

Some simplification of the state variables were made. Valves and alarms with overrides are

represented as a single variable. Also compressors and valves are represented as ON or OFF and

OPEN or CLOSED respectively. The fmal model arrived at is given in appendix H.

The fail safe condition of the plant are an important requirement, therefore the plant specification

begins with the operation PlantSequencer. This operation states that the plant must begin and end in

the fail-safe condition.

This operation was then decomposed into three sub-<>perations and one of those sub-<>perations was

further decomposed. The structure of the specification is shown in Figure 24. The full listings of the

VDM text used to describe the PlantSequencer operation and its sub-<>perations are again given in

Appendix H.

The operation StartUpPlant describes the start up of the plant when there is no high pressure gas in

the system. There are three possible outcomes of this operation. These are represented by the three

disjuncts in the post condition. They three cases are:-

120

PIantS&quenoer

I I
StartUpPlant DoWorkIngCycle ShutPlantDown

Figure 24 structure Diagram of the Plant Specification.

121

(a) The first compressor (Compressorl) starts successfully and begins to compress gas correctly.

The other compressor (Compressor2) remains switched off and isolated from the high pressure

gas.

(b) The first compressor fails to start or compress gas correctly and is switched off, isolated and

has its Lock flag set. The second compressor then starts successfully and begins to compress

gas correctly.

(c) Both compressors fail in some way and are switched off, isolated and have their Lock flags

set.

The operation DoWorkingCycle describes the normal working cycle of the plant during which gas is

compressed using alternate compressors. There are four possible outcomes of this operation:-

(a) At some time during the cycle both compressors fail. They are switched off and isolated.

(b) The operator switch is moved to the OFF position. Both compressors must be switched off

and isolated.

(c) The extra high pressure alarm begins to ring. This is an exceedingly dangerous condition.

Both compressors must be switched off and isolated.

(d) Both compressors failed during StartUp. The working cycle therefore does nothiog.

The operation ShutPlantDown ensures that at the end of the plant operation everythiog is returned to

its fail safe position.

S.2.3 Animation prototyping the specification.

The specification structure diagram and the associated VDM text is processed by IT-DOC and TP2 to

produce the basic animation code. This code is shown in Appendix H. A number of routines to

control graphical output and the user interface are added to this code to produce the final animated

prototype. These routines are:-

122

-Routine-

SET.FORMS

CHOOSE. LEVEL

LEVELl

LEVEL2

LEVEL3

-Purpose-

This routine sets up text to offer a choice between post-condition

options and decomposition level. It also sets up the main display

forms.

This routine allows the user to choose the level of the

decomposition of operations shown.

These three routines control the order

of the operations for each level of

decomposition.

The outline routine Tim.Update.Display is also completed with the relevant details about the display.

These details include:-

the name of the text box for displaying the operation name.

the name of the text box for displaying the condition type.

the details of icons for each state variable and how to update those icons for each value of the

variable.

With these routines added the animation code is compiled to form an executable SIMSCRIPT program.

The graphical displays are also constructed using the SIMSCRIPT forms editor. Finally the animation

prototype is ready for demonstration.

8.3 Rigorous Proofs of Specification Consistency.

8.3.1 The purpose of proofs.

When formal notations are used to specify systems it is possible to formally prove certain things about

the resulting specification. There are many questions which can be posed about the mathematical

meaning and correctness of a formal specification, e.g.

Is the specification syntax correct?

Are the defined operations implementable?

Is the specification internally consistent?

Is the specification a correct refinement of a higher level specification?

123

What properties does a particular data type have?

The main items of interest in this work are:-

(a) Is an operation implementable? That is, for each member of the set of states which satisfies

the pre-condition, is there a corresponding member of the set of states which satisfies the post

condition?

(b) Is the decomposition of an operation into sub-<lperations correct? This problem was outlined

earlier.

This approach is different from much previous work. In the systems considered here the emphasis is

on the ordering of operations as opposed to the data structure and algorithms manipulating those

structures e.g. a formal definition of a stack.

As shown in Appendix D, formal proofs for very simple specifications are extremely tedious.

Therefore only outlines of the main lines of reasoning of proofs are shown here. In fact this probably

gives a clearer picture of what is being proven than pages of mathematical symbols. It is important

to understand, however, that the soundness of such proofs can be demonstrated mathematically if

doubts arise.

8.3.2 Jrnplementability of P1antSequencer.

The implementability of PlantSequencer is readily discernible by inspection. The main lines of

reasoning for this are:

In the pre-rondition:

(a) The pre-rondition expression is a simple conjunction between equivalence

expressions.

(b) No variable is referred to repeatedly in the expression ..

Therefore:

(a) There are no contradictions in the pre-rondition expression.

(b) There are some members ofthe set of states which make the pre-rondition expression

true.

124

In the post-<:<>ndition:

(a) There are nO bound variables in the post-<:<>ndition expression.

(b) No variable is referred to repeatedly.

(c) Equivalence expressions include only variables and members of their defined type

sets.

Therefore:

(a) There are no contradictions.

(b) For all members of the set of states which satisfy the pre-<:<>ndition there are some

corresponding members of the set of states which satisfy the post-<:<>ndition.

This is fairly straightforward as the expressions involved are quite simple. For a specification

involving more complex logical expressions it becomes necessary to use mathematical manipulation of

the expressions. This arises because, as variables are referred to repeatedly, the occurrence of a

contradiction is much more difficult to see by inspection. The following section looks at some more

complex parts of the example specification.

8.3.3 Decomposition of P1antSequencer.

As shown in Figure 24, the PlantSequencer operation is decomposed into a sequence of three sub

operations; StartUpPlant, DoWorkingCycle and ShutPlantDown.

The first question is "do all states which satisfy pre-PlantSequencer also satisfy pre-StartUpPlant?".

The answer to this is yes: the two expressions are identical. So by the same reasoning as above there

are some members of the set of states which satisfy pre-StartUpPlant.

In post-StartUpPlant:

(a) There are no bound variables.

(b) The expression is a disjunct of three sub-expressions.

Now consider each disjunct separately:-

(c) Each disjunct is a conjunct of simple equivalence expressions.

(d) No variable is referred to repeatedly.

125

(e) Equivalence expressions include only variables and members of their defined type

sets.

Therefore:

(a) There are no contradictions or fallacies.

(b) There are members of the set of states for which each disjunct is true.

(c) For all members of the set of states which satisfy the pre-condition there are some

corresponding members of the set of states which satisfy the post-<:nndition.

The next question is for these members of the set of states for which pre-StartUpPlant and post

StartUpPlant are true, is pre-DoWorkingCycle also true. The answer is again yes, as pre

DoWorkingCycle is identical to post-StartUpPlant. So by the same reasoning as above there are some

members of the set of states which satisfy pre·DoWorkingCycle. For these values consider the truth

value of post-DoWorkingCycle:

(a) Post-DoWorkingCycle is a disjunct of two sub-expressions.

(b) The first disjunct can only be true if the initial value of Compressor(PState) is

NONE.

(c) The second disjunct can only be true if the initial value of Compressor(PState) is

COMPI or COMP2.

Therefore the two disjuncts are mutually exclusive.

Consider the first disjunct:

(d) The first disjunct contains no contradictions or fallacies. (It leaves the PState

unchanged.)

Consider the second disjunct:

(e) The second disjunct contains two further disjuncts.

(I) The first sub-disjunct is true if the selected compressor remains the same. In this case

the compressor locks are indeterminate. The second sub-disjunct is true if finally

there is no selected compressor and both compressor locks are set.

(g) The remainder of the second disjunct contains no repeated references or bound

variables.

126

Therefore the second disjunct contains no contradictions or fallacies.

Therefore for all members of the set of states which satisfy the pre-condition there are some

corresponding members of the set of states which satisfy the post-condition.

Now consider the operation ShutPlantDown. Pre-ShutPlantDown consists of two disjuncts. They are

a simplified version of Post-DoWorkingCycle. Do all members of the set of states which satisfy post

DoWorkingCycle satisfy pre-ShutPlantDown?

(a) The pre-condition consists of two disjuncts.

(b) The first disjunct is true in cases where no compressor is selected. These arise from

cases where both compressors fail during StartUpPlant or both compressors fail

during Do WorkingCycle.

(c) The second disjunct is true when DoWorkingCycle ended with the BHP alarm on or

the operator switch off.

(d) There are no other possible outcomes of the sequence StartUpPlant followed by

DoWorkingCycle.

For these values consider the expression post-ShutPlantDown. This expression is identical to post

PlantSequencer and using the reasoning above: for all members of the set of states whicb satisfy the

pre-condition there are some corresponding members of the set of states which satisfy the post

condition.

This sequence of reasoning also leads to the conclusion that the sequence:

StartUpPlant followed by

Do WorkingCycle followed by

ShutPlantDown

Is exactly equivalent to the single operation PlantSequencer.

There are many other checks for consistency which may need to be performed on a decomposition.

Many of these are simple syntactic checks; others pose questions such as "do sub-operations have side

effects (as specified in their external clauses) which are consistent with those of their parent

operation?". The complexity of such proofs increases with the complexity of the formal notations

used. The notation used here attempts to keep things siinple by avoiding the problems involved with

such things as data reification and the temporal or modal logics.

127

9 COMMENTS AND CONCLUSIONS.

This thesis has outlined a potential weakness in the use of formal specifications for industrial projects:

ensuring that such specifications accurately define the client's requirements. The ability of clients to

interpret formal specifications is seen as crucially important in the development of correct software.

Animation prototypes is a means of aiding this interpretation. By eliminating the need to understand

the details of formal notations and their mathematical foundations, it makes formal specifications

accessible to clients. This research has demonstrated the feasibility and suitability of animation

prototyping from formal specification of real-time systems.

The work here bas shown that a restriced set of VDM notations is sufficient to specify real-time

systems whilst retaining the deductive apparatus of the formal system. This facilitates rigorous

checking of specification development. The use of a rigorously provable method of design by

decomposition has been shown. The subset of the VDM notation (here defined as S-VDM) includes

the constructs necessary to support this approach. Structured diagramming techniques which support

this decomposition method have also been defined.

Animation prototypes - that is, the use computer animated pictures - has been shown to be a powerful

technique for the development of system specifications. Further, it is seen as especially advantageous

when used to animate formal specifications. The building and use of custom made animation

prototypes has been shown. A more cost-effective approach to prototyping is to derive prototypes

directly from specifications. Therefore, a theoretical framework for deriving animated prototypes

automatically from specification written in S-VDM has been developed. To demonstrate the

practicality of this, software has been designed which automates the animation prototyping process.

The usefulness of S-VDM for specifying real-time systems has been demonstrated by specifying a

chemical plant controller. The power of the technique of animation prototyping has been shown by

using this specification as the basis for animated demonstrations. These demonstrations use code which

has been automatically derived from the formal specifications using the tools and techniques described

in this thesis.

128

10 Recommendations for Future Work.

The concept and application of animation prototyping has been clearly established in this thesis.

However, a number of key areas of the process could be improved. These compromise:-

* the tool and its use.

* the formal language.

* reaoning about timing in specifications.

10.1 Improvements to tools and their use.

Improvements to the tools used in the animation process would bring a number of benefits. Areas of

particular interest are:-

(a) The placement of VDM text on structure diagrams. Currently the diagramming style used is

restricted by the use of the JSP-TOOL program. The building of specifications would be

greatly enhanced if the VDM text associated with an operation could be stored hypertext style

as described in chapter 7. Work to identify and evaluate different tools which allow greater

flexibility in the style of diagram structuring should be undertaken. Further work on the

animation tool to cope with this new style is seen as very useful.

(b) The linkage between the displays and the automatically generated code. This is a very

important part of the animation process. There is scope for more code generation to be done

automatically. A useful piece of work would be to develop the syntax of a notation to give

more information to the animation tool. The notation would need to describe such things as:

*
*
*

the file names of SIMSCRIPT "forms" used;

the displays used to represent the values of fields in the state;

the text to be displayed in places where the user is asked to choose between

alternatives.

If this infromation were incorporated into the specification text file then a great deal of the

outline SIMSCRIPT code which is currently generated and then completed manually could be

generated entirely automatically.

129

(c) The declaration of local variables. The decomposition structure does not allow this. There

is a need to extend the scope of the specification notation to include such declarations. Also

needed are operations to manipulate the values of such variables. This will lead to more

flexiblibilty in the structured ordering of sub-operations in a decomposition.

(d) The parser error reporting. In the automatic code generator, the parser's current error

reporting is very basic. The process of developing syntactically correct specifications would

benefit greatly from more informative error messages.

(e) Non-<letenninism in specifications. This must be carefully handled by the specifier. It is his

responsibility to ensure that there is no implicit non-<letenninism. If the expression translation

mechanism were more sophisticated, this property of expressions could be highlighted by the

tool. This would be a very useful aid to generating better quality specifications.

10.2 Improvements to the fonnallanguage.

Useful improvements to the current specification notation would include:-

(a) Better structuring of composite data types. At present the data types and operations handled

by the animation tool are very limited. The use of the same basic type but with more

structuring of composite types would help a great deal in the construction of larger and more

comprehensible specifications. This limitation arises mainly through the use of the

SIMSCRIPT language which has only a very limited number of basic data types avaliable.

With SIMSCRIPT, in order to incorporate this, the tool would need to generate special

operations to check for equivalence between two composite variables. It would also need to

produce special routines to assign the field values of one composite variable to the fields of

another. MODSIM (also manufactured by CACI) is a new system which supports the same

graphical features as SIMSCRIPT. However, it has a much more modem style programming

language. Converting the automatic code generator to MODSIM would represent a useful

next step.

(b) The use of number-based types. The current emphasis of the specification language is biased

towards enumerated data types suitable for describing state transitions in systems. The

translation in post-condition expressions of operations sucb as >, <, < = and > = and the

representation in animations of the large number of possible solutions which arise f~om their

130

use would be a valuable piece of work.

(c) The use of negation in logical expressions. In logical expressions, negation is not yet

supported. It would be relatively straightforward to introduce the operators "NOT" and

"NOT. EQUAL " into expressions involving only bound quantities i.e operation pre-conditions,

selection and iteration conditions. However, more work needs to be done on their use in

those expressions which involve free variables i.e post-ronditions and initial states. Again

translation and the presentation of such information in an animation would be central to any

solution of this problem.

10.3 More reasoning about time.

The incorporation of descriptions of time and event dependencies in specifications is very desirable.

A number of notations and theories for reasoning about temporal aspects of specifications have

emerged. The incorporation of temporal notations into animatable specifications may now be possible.

Defining a new notation to incorporate temporal reasoning or using an existing notation, such as MAL,

would provide a very challenging piece of work for a future research.

131

REFERENCES.

Adhami88

A1avi84

ALVEY84

Baldassari88

Balzer83

Berzins88

Bjorner82

Bjomer87

Adhami,E., Shand,J. and McNeile,A., • An Environment for the

Execution and Graphical Animation of a JSD Specification,· Second

IEEIBCS Conference: Software Engineering 88 (liverpool, UK,

11-15thJuly 1988), lEE, London, UK, 1988, pp. 138-142.

A1avi,M., • An Assessment of the Prototyping Approach to Information

Systems Development,· Communications of the ACM, Vol.27, No.6,

June 1984, pp.556-563.

A1vey programme - Software Engineering Document - Programme for

formal methods in system development, A1vey Directorate, London,

April 1984.

Baldassari,M., Barti,V., Bruno,G., ·Object-<lriented conceptual

programming based on PROT nets·, Proceedings of the 1988

International Conference on Computer Languages (Miami Beach, FL,

USA, 9-13 Oct 1988), IEEE Computer Society Press, Washington,

DC, USA, 1988, pp.226-233.

Balzer,R., Cheatham,T., Green,C., ·Software Technologies in the

1990's: Using aNew Paradigm,· IEEE Computer, Vol.16, No.l1, Nov

1983, pp.39-45.

Berzins, V., "Object-Oriented Techniques Based on Specification,"

Proceedings COMPSAC 88 : The 12th International Computer

Software and Applications Conference (Chicago, IL, USA, 5-7 Oct

1988), IEEE Computer Society Press, Washington, DC, USA, 1988,

pp.437-438.

Bjorner,D. and Jones,C.B., "Formal Specification and Software

Development", Prentice Hall International, Inc., 1982.

Bjomer,D., Jones, C.B., Mac an Airchinnigh,M. and Neuhold,E., eds,

"VDM - A Formal Method at Work", Proceedings VDM-Europe

132

Bloomfield88

Blumofe88

Boehm76

Boehm88

Booch86

Bornat79

Brookes87

Brinksma88

Brun086

BSI89

Budde84

Symposium, Lecture Notes in Computer Science, vol.252, 1987.

Bloomfield,R., Marshall,L. and Jones,R., eds, 'VDM - The Way

Ahead', Proceeding 2nd VDM-Europe Symposium, Lecture Notes in

Computer Science, vol.328, Springer Verlag, 1988.

Blumofe,R. and Hecht,A., 'Executing Real-time Structured Analysis

Specifications.' ACM SIGSOFT: Software Engineering Notes (USA),

VoI.l3, No.3, July 1988, pp.32-40.

Boehm,B.W., 'Software Engineering.', IEEE Transactions on

Computers, vol 25, no.12, Dec 1976, pp. 1226-1241.

Boehm,B.W., 'A spiral model of software developement and

enhancement', Computer, vol.21, no.5, May 1988, pp.61-72.

Booch,G., 'Object Oriented Development,' IEEE Transactions on

Software Engineering, VoI.l2, No.2, Feb 1986, pp.211-221.

Bornat,R., 'Understanding and Writing Compilers', MacMillan

Publishers Ltd, Houndsmill, Basingstoke, Hampshire, 1979.

Brookes,F.P. Jr., 'No Silver Bullet: Essence and Accident of Software

Engineering,' IEEE Computer, Vol.20, No.4, April 1987, pp. 10-19.

Brinksma,E., ed. 'Information Processing Systems - OSI - LOTOS -

A Formal Technique Based on Temporal Ordering of Observational

Behaviour', ISO IS 8807/1988.

Bruno,G. and Balsamo,A., 'Petri net-based object-oriented modelling

of distributed systems', Proceedings of the ACM Conference on

Object-oriented Programming (Portland, Oregon, USA October 1986),

1986, pp.184-293.

BSI, "VDM Specification Language: Proto-Standard', ISTI5150, 1989.

Budde,R., Kuhlenkamp,K., Mathiassen,L. and Zullighoven,H. eds ,

133

BurstaU80

Cameron86

Carlow84

Clarke90

Cohen82

Cooling89

Coomber90

CORE86

Davis89

DeMarco78

"Approaches to Prototyping," Springer Verlag, 1984, ISBN 3-

540-13490-5.

Burstall,R.M. and Goguen,I.A., "The semantics of Clear, a

specification language.", In Bjoner,O., ed., Absract Software

Specification, Lecture Notes in Computer Science, voI.86, Springer

Verlag, 1980, pp.292-332.

Cameron,I.R., "An overview of ISO", IEEE Transactions on Software

Engineering, VoI.12, No.2, February 1986, pp.222-240.

Carlow,G.D., "Architecture of the space shuttle primary avionics

software.", Commun. ACM, vol27, no.9, Sept 1984, pp.926-936.

Clarke,R.G., "The desigu and development of embedded Ada

systems", Software Engineering 10urnal, May 1990, pp. 175-184.

Cohen,B., "Justification of formal methods for system specification",

Software and Microsystems, VoI.1, No.s, August 1982, pp. 119-127.

Cooling,J.E and Hughes,T.S., "The emergence of rapid-prototyping

as a real-time software development tool", Proceedings 2nd IEE/BCS

International Conference on Software Engineering, Sept.1989, pp.60-

64.

Coomber,C.J. and Childs,R.E., "A graphical tool for the prototyping

of real-time systems", ACM SIGSOFT Software Enginnering Notes,

vo1.15, no.2, April 1990, pp.70-83.

"CORE - Controlled Requirements Expression", System Oesiguers plc,

Fleet, Hampshire, GU13 8PD, document no. 1986/0786/500IPRlOI58.

Oavis,R.E.,"Truth, Deduction, and Computation: logic for computer

science", W.H.Freeman and Co., NY, USA, 1989.

DeMarco,T., "Structured Analysis and System Specification," Yourdon

Press, New York, NY, USA, 1978.

134

Deamley83

DEF STAN 00-55

Denvir86

Diaz-Gonzalez88

Diaz-Gonzalez89

Dreyfus86

Ehrig85

Ericcson84

Fathi84

France89

Deamley,P.A. and Mayhew,P.I., "In Favour of Systems Prototypes

and Their Integration into the Systems Development Cycle," Computer

Iournal, VoI.26, No.1, Ian 1983, pp.3642.

Defence Standard 00-55. UK Ministry of Defence standard for the

procurement and use of software for safety critical applications,

HMSO, 1989.

Denvir,T., "Introduction to Discrete Mathematics for Software

Engineering", MacMillan Education Ltd, London, UK, 1986.

Diaz-Gonzalez, I.P. and Urban, I.E., "Language aspects of

ENVISAGER: an object-<>riented specification environment for real

time systems", Proceedings of the 1988 International Conference on

Computer Languages (Miami Beach, FL, USA, 9-13 Oct 1988), IEEE

Computer Society Press, Washington, DC, USA, 1988, pp.214-225.

Diaz-Gonzalez, I.P. and Urban, I.E., "Prototyping conceptual models

of real-time systems: a visual perspective", Proceedings of the 22nd

Hawaii Conference on Systems Science (Hawaii, USA, 3-6 Ianuary

1989), Vol2, IEEE Computer Society Press, 1989, pp.358-67.

Dreyfus.H.L. and Dreyfus,S.E., "Mind Over Machine," Blackwell,

Oxford, UK, 1986, ISBN: 0-631-15126-5.

Ehrig,H. and Mahr,B. "Fundementals of Algebraic Specification 1",

Springer Verlag, 1985.

Ericcson,A. and Simon,H.A., "Protocol Analysis, Verbal Reports as

Data," The MIT Press, 1984.

Fathi,E.T. and Fines,N.R., "Real-time data acquisition, processing and

distribution for radar applications.·, Proc IEEE 1984 Real-Time

Systems Symp., Dec 1984, pp.95-101.

France,R.B., "Formal specification using structered systems analysis",

Proceedings of ESEC '89 - 2nd European Software Engineering

135

Galton90

Gibbons87

Goldsack88

Goruma81

Goguen79

Goguen82

Goguen84

Guttag8S

Guttag86

Ha1l90

Conference, Coventry, UK, 11-15 September 1989, Springer Verlag,

Berlin, pp.293-310.

Galton,A., "Logic for Information Technology", J. Wiley and Sons,

NY, USA, 1990.

Gibbons,P.F., "What are formal methods?", Information and Software

Technology, VoI.30, No.3, April 1988, pp. 131-137.

Goldsack,S.J., "Specification of an operating system kemel- FOREST

and VDM compared", VDM 88, Proceedings 2nd VDM-Europe

Symposium, Dublin, Ireland, Sept.1988, pp.88-l00.

Gomaa,H. and Scott,D.B.H., "Prototyping as a Tool in the

Specification of User Requirements, " Proceedings of the 5th

International Conference on Software Engineering, IEEE Computer

Society Press, New York, NY, USA, 1981, pp.333-338.

Goguen,J.A. and Tardo,J. "An Introduction to OBJ: A Language for

Writing and Testing Software", in Proceeding of the Conference on

Specification of Reliable Systems, IEEE Computer Society Press, 1979,

pp.170-189.

Goguen,J.A. and Meseguer,I., "Rapid prototyping in the OBJ

executable specification language", ACM SIGSOFf Software

Engineering Notes, voI.7, no.S, Dec, 1982, pp.7S-83.

Goguen,J.A., "Parameterised programming", IEEE Transactions on

Software Engineering, vol.lO, no.S, 1984, pp.528-S44.

Gnttag,J. V., Horhing,J.J. and Wing,J.M. "Larch in Five Easy Pieces",

Digital Systems Research Center Report, July 1985.

Gnttag,I. V. and Homing I.I. "Report on the Larch Shared Language",

Science of Compnter Programming, voI.6, 1986, pp. 103-134.

Hall,A., "Seven Myths of Formal Methods", IEEE Software, Vol23,

136

Harel90

HatIey88

Hayes87

Hekmatpour86

Hekmatpour86

Henderson86

Hoare85

Hughes87

Iohnson87

Iones88

N09, Sept 1990, pp.11-19.

Harel,D., Lachover,H. et al., 'STA TEMATE: A working environment

for the development of complex reactive systems', IEEE Transactions

on Software Engineering, voI.16, no.4, April 1990, pp.403-414.

Hat1ey,D. and Pirbhai,E., 'Strategies for real-time systems

specification', Dorset Publishing House, 1988.

Hayes,l.(ed}, 'Specification Case Studies', Prentice Hall, 1987.

Hekmatpour,S. and Ince,D.C., 'Ponnal Specification-Based

Prototyping System,' in Software Engineering 86, eds D.Barnes and

P.Brown, IEEE Computing Series VoI.6, ISBN: 0-86341-082-0,

pp.317-335.

Hekmatpour,S. and Ince,D.C., 'Software Prototyping, Formal Methods

and VDM', Addison-Wesley, 1988.

Henderson,P., 'Functional programming, fonnal specification and

rapid prototyping', IEEE Transactions on Software Engineering,

voI.12, no.2, 1986, pp.241-250.

Hoare,C.A.R., 'Communicating Sequential Processes', Prentice Hall

International, 1985.

Hughes,I.M.L. and Prescott,I.C. 'Automation - What of the Future?',

Proceedings 8th International Ship Control Symposium VoI.1, pp.67-

80.

Iohnson.P.E., Zuallcernan,l. and Garber,S., 'The Specification of

. Expertise,' International Journal of Man Machine Studies, 26, 1987,

pp.161-181.

Jones,G. and Prieto-Diaz,R., 'Building and Managing Software

Libraries,' Proceedings COMPSAC 88 : The 12th International

Computer Software and Applications Conference (Chicago, 11., USA,

137

Iones90

Iordan89

Kaplan85

Kelton84

Kemmerer85

Kramer88

Kreutzer90

Loucopoulos89

Luqi88a

Luqi88b

5-7 Qct 1988), IEEE Computer Society Press, Washington, DC, USA,

1988, pp.228-236.

Iones,C.B., Systematic software development using VDM, Second

Edition, Prentice-Hall International, 1990.

Iordan.P.W, Keller,K.S., Tucker,R.W. and Vogel,D., "Software

Storming: Combining Rapid Prototyping and Knowledge Engineering, "

IEEE Computer, Vol.22, No.5, May 1989, pp.39-48.

Kaplan,G., "The X-29: Is it coming or going?", IEEE Spectrum, Iune

1985, pp.54-60.

Kelton,P. W., "Distributed computing for astronomical data acquisition

at McDonalds Observatory.", ibid, pp.83-88.

Kemmerer,R.K., "Testing Formal Specifications to Detect Design

Errors," IEEE transactions on Software Engineering, Vol.ll, No.1,

Ian 1985, pp.32-43.

Kramer,I., Ng,K., Potts,C. and Wbitehead,K., "Tool Support for

Requirements Analysis," Software Engineering Iournal, Vol.3, No.3,

May 1988, pp.86-96.

Kreutzer, W., "Tiny Tim - A Smalltalk toolbox for rapid prototyping

and animation of models", Iournal of Object-oriented Programming

(USA), Vol.2, No.5, 1990, pp.27-36.

Loucopoulos,P. and Cbampion,R. E. M., "Knowledge-Based Support for

Requirements Engineering," Inf. Software Technology (UK), Vol.31,

No.3, 1989, pp. 123-135.

Luqi, Berzins,V. and Yeh,R.T., "A Prototyping Language for Real

Time Software," IEEE Transactions on Software Engineering, VoI.l4,

No. 10, Qct 1988, pp. 1409-1423.

Luqi, Berzins, V., "Rapidly Prototyping Real-time Systems," IEEE

\38

Luqi88c

Luqi88d

Luqi90

McCracken82

Maibaum86

Mason83

Maude91

Meyer85

Milner80

Musa85

Nelson81

Software, Vol.5, No.5, Sept 1988, pp.25-36.

Luqi, Berzins, V., "Execution of a High-Level Real-Time Language,"

Proceedings of Real-time Systems Symposium (Huntsville, AL, USA,

6-8 Dec 1988), IEEE Computer Society Press 1988, pp.67-72.

Luqi, "Knowledge-Based Support for Rapid Software Prototyping,"

IEEE Expert, Vol.3, No.4, November 1988, pp.9-18.

Luqi, "Automated prototyping and data translation", Data and

KnowledgeEngineering, Vo1.5, No.2, North-Holland 1990, pp.167-77.

McCracken,D.D. and Jackson,M.A., "Life Cycle Concept Considered

Harmful," ACM SIGSOFT Software Engineering Notes, Vol. 7, No.2,

April 1982, pp.29-32.

Maibaum, T.S.E., Jeremaes,P. and Khosla,S., "A Modal (Action)

Logic for Requirements Specification", Brown, P.J. and Barnes,D.J.,

eds., "Software Enginnering '86", Peter Peregrinus, 1986.

Mason,R.E.A. and Carey,T.T., "Prototyping Interactive Infomation

Systems," Communications of the ACM, Vol.26, No.5, May 1983,

pp.347-354.

Maude,T. and Willis,G., "Rapid Prototyping: the management of

software risk", Pitman, London, 1991.

Meyer,D, "00 formalism in specification", IEEE Software, Vo1.2,

No.l, Jan 1985, pp.6-26.

Milner,R., "A Calculus of Communicating Systems", Lecture Notes in

Computer Science, vol.92, Springer Verlag, 1980.

Musa,J.D., "Software Engineering: The Future of a Profession." IEEE

Software Vol.2, No. I, Jan 1985, pp.55-{i2.

Nelson, V.P. and Fellows,H.L, "A microcomputer-based controller for

139

ObjEx90

Pacini87

Pomberger84

Potts88

Prager87

Ramamoorthy84

Ratcliff88

Reeves90

Royce70

an amusement park ride.", IEEE Micro, Aug 1981, pp.13-22.

"ObjEx User Reference Manual", Gerrard Software, 24 Duke Street,

Maccelsfield, Cheshire, U.K., 1990.

Pacini,G.P. and Turini,F., "Animation of Requiremenls Specification, "

in Industrial Software Technology, ed R.Mitchel, lEE Computing

Series Vo1.10. Peter peregrims 1987, ISBN: 0-86241'{)84-7,

pp.l07-121.

Pomberger,G., Software Engineering and Modula-2, Prentice-HaII

International (UK) Ltd, UK, 1984.

Potls,C., "The Other Interface: Specifying and Visualising Computer

Systems", in Working With Computers: Theory versus Outcome, ed

G.C.van der Veer. T.R.G.Green, J-M.Hoc & D.M.Murray, Academic

Press, London, 1988, pp. 145-175.

Prager,D.L. and Burke.M.M., "Dependable Software". Proceedings

8th Ship Control Systems Symposium. VolA, 1987, pp.25-33.

Ramamoorthy,C.V., Prakash,A., Tsai,W-T. and Usuda,Y., "Software

Engineering: Problems and Perspectives," IEEE Computer, Vol.17,

No. 10, Oct 1984, pp. 191-209.

Ratcliff.B., "Early and Not-so-early Prototyping - Rationale and

Support," Proceedings COMPSAC 88 : The 12th International

Computer Software and Applications Conference (Chicago, IL, USA,

5-7 Oct 1988), IEEE Computer Society Press, Washington, DC, USA,

1988, pp. 127-134.

Reeves,S. and Clarke,M., "Logic for Computer Science", Addison

Wesley Publishers Ltd, Wokingham, UK, 1990.

Royce,W. W., "Managing the development of large software systems:

concepts and techniques.", Proc WESCON, August 1970. Reprinted in:

Proceedings of the 9th International Software Engineering Conference,

140

Sandberg89

Schneider87

Smith88

Smullyan88

Snodgrass88

Spivey89

St-Denis90

Swartout82

Monterey, CA, USA, IEEE Computer Society Press, 1987.

Sandberg,D.W., "Smalltalk and exploratory prototyping", ACM

SIGPLAN Notes (USA), VoI.23, No. 10, 1989, pp.85-92.

Schneider,R.J., "Prototyping Toolsets and Methodologies:

UserlDeveloper Sociology," Proceedings of 1987 international

-Conference on Systems, Man and Cybernetics, IEEE, New York, NY,

USA, VoI.1, 1987, pp.208-216.

Smith,S.L. and Gerbart,S.L., "STATEMATE and Cruise Control: A

Case2 Study," Proceedings COMPSAC 88 : The 12th international

Computer Software and Applications Conference (Chicago, IL, USA,

5-7 Qct 1988), IEEE Computer Society Press, Washington, DC, USA,

1988, pp.49-56.

Smullyan,R. "Forever undecided: a puzzle guide to GOdel", Oxford

University Press, 1988.

Snodgrass,J.G. and Yun,.D. Y. Y., "Software requirements specification

from a cognitive psychology perspective", Proceedings 1988

international Conference on Computer Languages (Miami Beach, FL,

USA, 9-13 Oct 1988), IEEE Computer Society Press, Washington,

DC, USA, 1988, pp.422-430.

Spivey,J.M., "The Z Notation: a reference manual", Prentice Hall,

1989.

St-Denis,R., "Specifcation by example using graphical animation and

a production system", Proceedings 23rd Annual Hawaii international

Conference on Systems Science (Kailu-Kona, Hawaii, USA, 2-5 Jan

1990), IEEE Computer Society Press, Los A1amitos, CA, USA, 1990,

VoI.2, pp.237-246.

Swartout,W. and Balzer,R., "The Inevitable Intertwining of

Specification and Implementation," Communications of the ACM,

Vol.25, No.7, July 1982, pp.438-440.

141

STARTS87

Tanik89

Tsai88

Ward8S

Watkins88

Williams84

Willimas87

Woodcock88

Yourdon89

Zave84

The STARTS Guide - A guide to methods and software tools for the

construction oflarge real-time systems, NCC publications, Manchester,

1987_

Tanik, M.M. and Yeh, R.T., Rapid prototyping in software

developement, IEEE Computer, Vo1.22, No.S, May 1989.

Tsai,J.J.P., Aoyama,M. and Chang,Y.L., "Rapid Prototyping Using

FRORL Language," Proceedings COMPSAC 88 : The 12th

International Computer Software and Applications Conference

(Chicago, IL, USA, S-7 Oct 1988), IEEE Computer Society Press,

Washington, DC, USA, 1988, pp.410417.

Ward,P.T. and Mellor,S.J., "Structured systems for real-time

systems", Yourdon Press, New York, 1985.

Watkins,P., "Investigation into Improvements in Software Development

Centring on Rapid Prototyping," Final Year Project Report,

Department of Electronic and Electrical Emngineering, Loughborough

University of Technology, April 1988.

Williams,C.D., "The data acquisition, data reducution and control

system (DARCS) for the NRCC 2x3m windtunnel.", Proc IEE 1984

Real-Time Systems Symp. Dec 1984, pp.89-94.

Williams,S.J., "Nitrogen compressor plant simulator", Final Year

Project Report, Dept Electronic and Electrical Engineering,

Loughborough University of Technology, UK, April 1987.

Woodcock, J.C.P. and Loomes,M., "Software Engineering

Mathematics", Pitman Publishing, London, UK, 1988.

Yourdon,E., "Modem structured analysis", Prentice Hall, Englewood

Cliffs, New Jersey, 1989.

Zave,P., "The Operational Verses Conventional Approach to Software

Development," Communications of the ACM, Vo1.27, No.2, Feb 1984,

142

Zualkeman88

pp.104-118.

Zua\keman,I.A. and Tsai,W.T., "Are Knowledge Representations the

Answer to Requirements Analysis?" Proceedings 1988 International

Conference on Computer Languages (Miami Beach, PL, USA, 9-13

Oct 1988), IEEE Computer Society Press, Washington, DC, USA,

1988, pp.437-443

143

APPENDIX A.

A AN EXPERIMENT IN ANIMATION PROTOTVPING.

A.t. Introduction.

There was a need to experience some of the problems which arise during the building and use of an

aoimation prototype. It was decided that certain issues could not be resolved without first·hand

experience. The experiment was arranged with the help of a local company. Transmitton Limited.

The experiment had four phases:

(a) Establishing basic objectives.

(b) Early prototype development.

(c) Prototype refinement.

(d) Final development.

These phases and the lessons learned are set out below.

A.2. Basic objectives.

Engineers from Transmitton acted as customers wishing to use a token bus based local area network.

An animation prototype was built and used to explore problems arising during building and

demonstrations. This prototype formed the basis of discussions and was used to demonstrate important

properties of the system.

The demonstration system was based on the IEEE 802.4 standard. This is a draft standard for access

control in local area networks. This is a bus based system. The system .consists of a number a

stations. These stations are connected to a common communications medium. The right to transmit

over the bus is controlled by the passing of a token from station to station. The order of passing forms

a "logical ring". Each station has a unique logical address. The logical ring is formed such that each

station has a successor whose address is lower than its own address. The station present with the

lowest address is unique in that has a successor whose address is higher than its own. A typical logical

144

...
10 ~ 1

13 I~ 1

-- --
1 5 I 1 2 - I f"'III "1

_~ Direction 0/ Token Passing

Figure 2S Token Bus - A Typical Logical Ring.

145

ring is shown in Figure 25. The token is thus passed from the station with the highest logical address

via other stations in descending order until it reaches the station with the lowest logical address when

it is passed back to the station with the highest address. The process then repeats.

The logical ring is dynamic in that stations may join and leave the ring whenever they wish. Protocols

governing the addition and deletion of stations from the ring have been defined.

A.3. Early prototype development.

The first model built showed only the basic token passing. It was carefully structured to allow for

more complex modelling. Objects were defined which closely reflected the real world structure of the

system. These object were stations, message frames and channel sections. These objects have the

following properties:

(a) Stations. These represent the stations connected to the network. They are responsible for

creating message frames at the appropriate times. They also receive and respond to frames

from other stations. The model of the Access Control Mechanism is contained entirely within

the operation of a single station.

(b) Channel sections. These represent the physical medium connecting adjacent stations. The

whole channel is made up of a number of channel sections connected together. They are

responsible for simulating the propagation of message frames between stations.

(c) Message frames. These represent the packets of data which pass from station to station during

the operation of the network. They are the only mechanism by which stations can detect each

others presence.

The underlying model of the system and interaction in the first model were very basic and consequently

the following important comments were made after the first demonstrations:

(a) Things happen too fast. There is a need to allow single stepping through the model.

(b) Concem was expressed about the ability of the token bus system to deal with the customer

proposed system.

146

At this point it was concluded that a more detailed model of the system would be necessary in order

to dispel these concerns. The following areas were targeted for further development:

(a) Start up procedure. The model should be able 10 demonstrate how the networlc behaves as

stations are switched on.

(b) More details such as logical address should be user definable.

(c) Making the model more interactive. Allowing for stations 10 be switched on or off at any

time during the simulation.

With these objectives established the model was further refined.

A.4. Prototype refinement.

The next model had a number of improvements designed 10 answer the questions posed above.

(a) Station addresses were made user-<lefinable.

(b) A menu bar was added to allow for interaction with the model.

(c) The access control mechanism was partially modelled. At this stage it was unable to deal

fully with the start up procedure.

After demonstration of this new model 10 the euslomers the only real comment made was about the

start up mechanism. More detailed modelling of the access control mechanism was needed to resolve

properly euslomer queries. This objective now became a lop priority. A detailed modelling of the

access control mechanism of the IEEE 802.4 standard was thus undertaken.

A.S. Final developement.

The final demonstration 10 the customers look place with the detailed model completed. This model

was able 10 demonstrate start up, normal operation and ring maintenance fully. The comments about

the model thus shifted 10 issues of presentation. It was generally fell that there was not enough

information displayed on the screen. In particular:

147

(a) Both the stations logical address and its user defined name should be displayed.

(b) A key was needed on screen giving the colour and meaning of the various different protocol

frames which the system uses.

(c) Frames should have directional arrows showing their direction of propagation along the bus.

(d) The access control mechanism is implemented as a state machine. Displaying the current state

of a station's access control machine would be very useful.

A number of other points about the nature of the menu-hased interaction were made:

(a) In the program set up procedure it was not clear how stations numbers relate to the eventual

position of the station icon on the screen.

(b) It would be better to use object-oriented interaction. The user thus chooses the object to

interact with and is then presented with a list of possible actions on that object.

The final model was developed to incorporate these comments.

A.6. Lessons learned.

The project provided some useful experience of animation prototyping:

(a) Timescales. The whole project took about 12 weeks. Much of that time was occupied with

working out how to use a new version of the SIMSCRIPT 11.5 package. With that knowledge

now the same project could be accomplished much more quickly.

(b) Design approach. The decision to adopt an object-oriented problem decomposition was

justified by the flexibility of the resulting model. The modifications made at each stage had

a very limited effect on other parts of the program.

(c) Tool support. In retrospect use of a structured design tool such as PDF much earlier in the

project would have also have been a great help. The specification was large and the model

code increased in complexity very rapidly.

148

(4) Model demonstrations. Great care needs to be taken with what infromation is presented and

the representation of information. Diagrams and symblos which are familiar to the client are

ideal as the basis for displays. All information relavent to the state must be clearly displayed

along with additional indications of what has happened and what is likely to happen next .

. ~-

149

APPENDIX B.

B AN INTRODUCTION TO FORMAL SYSTEMS.

B.l. Introduction.

This chapter is not intended to be a tutorial discussing the inner working of formal systems. Rather.

it aims to give informstion essential to the understanding of the concepts which are encountered. For

those interested in a more detailed discussion of the subject the books by Reeves [Reeves90). Galton

[Galton90). Oenvir [Oenvir86). Woodcock [Woodcock88) and Oavis [Oavis89) are recommended.

B.2. Fonnal Systems.

Formsl systems consist of two parts. a formsl language and a deductive apparatus. If a formal

language is to be useful for reasoning about the world. the symbols in the language must be given some

meaning. a semantics. This is achieved through the provision of an interpretation of the language.

B.2.1. Fonnal Languages.

A formsl language consists of two parts - an alphabet and a syntax. An alpbabet is all the symbols

which are found in the language. A syntax is a set of rules specifying bow these symbols may be

combined together. An acceptable string of symbols in a language is called a well-formed formulae

(wff). The formal language itself is thus just a collection of all its wff. Formal languages are often

specified using a mela-language (a language for describing languages) sucb as Backus-Naur Form

(BNF) or syntax diagrams.

B.2.2. Semantics - adding meaning to symbols.

The collections of symbols thus defined are meaningless; they bear no relatioilship to any quantities

in the real world. To define the semantics of a formal language. meaning must be assigned to eacb

wff allowed by tbe grammar. This is achieve by giving the language an interpretation. The

interpretation assigua meaning from the real world (more properly called the "domain of interest") to

150

each wff. The exact details of interpretations is a very complex issue.

B.2.3. Inference systems.

The formal languages described thus far give the user descriptive power. The second part of a formal

system is a deductive apparatus. This will give the user the ability to manipulate the symbols without

regard to their meaning under any particular interpretation. This is in Jones' words [Jones90] "a game

with symbols". The two components of a deductive apparatus are axioms and inference rules.

Axioms (literally: self-evident truths) are the wffs which can be written down without

reference to any other wffs in the language.

Inference rules are rules which allow the production of wffs in the language as a direct

consequence of other wffs.

B.2.4. Proofs and theorems.

A proof in a formal system is a finite sequence of wffs each of which is either a an axiom or an

immediate consequence of one or more of the preceding wffs. A wff which can be proved within the

formal system is said to be a theorem of the system. Note that all axioms are theorems of the system.

An interpretation of a formal system in which wffs denote statements which can be true or false is:-

Consistent if every theorem of the system interprets to a true statement.

Complete if every true statement can be proved as a theorem.

Unfortunately most useful formal systems are incomplete and there will thus be occasions when it will

prove impossible to prove things which are known to be true. For an excellent introduction to the

complex ideas of undecidability read Smullyan's book [Smullyan88] on GOdel and the limits of

formalisation.

B.2.5. Derivations.

A derivation is the formal equivalent of the argument "if one is given that ... then one can deduce that

... ". A derivation begins with a set of wffs, P, called premises. From this a sequence of wffs is

formed such that each preceding wff is either an axiom, a premise or a direct consequence of one or

151

more of the preceding wffs. The last wff, W, in the sequence of wffs is called a derivation in the

formal system. If there is a derivation from P to Wone can write P W. The symbol is known

ss a syntactic turnstile. It is a metssymbol, i.e. it is not part of the formal language itself, but allows

statements about the formal system to be made. A derivation is simply a manipulation of the symbols

of the wffs, there is no consideration of the meaning of those symbols.

It is important to note that a proof is a special type of derivation in which there are no premises.

Similarly a derivation, P W, in a formal system F corresponds to a proof, W, in another richer

system F' in which all premises, P, are incorporated as axioms along with the axioms and inference

rules of F.

B.3. A Simple Example of a Fonnai System.

B.3.1. Propositions.

A proposition is an expression which can have the value true or false, but not both. The following

statements, for example, are simple propositions:-

Bees are insects.

Some cats are black.

Loughborough is in Devon.

Simple propositions may be combined together, as described below, to form compound propositions.

There are three basic laws of propositions:-

(a) Law of the excluded middle. A proposition must be either true or false.

(b) Contradiction. A proposition cannot be both true and false.

(c) Truth functionality. The truth value of a compound proposition is uniquely determined by the

truth value of its constituent parts.

B.3.2. A fonnai language for propositions.

In order to represent propositions and combine them together, an alphabet and a syntax is needed. The

152

alphabet which will be considered here is as follows:-

Sentences which represent propositions and combinations of propositions can be formed using the

following grammar rule:-

I 11..., 11, sentence

.(11, sentence, .. V .. , sentence, ").

11(11, sentence, .. All, sentence, ")

.(11, sentence, , sentence, ")

.(11, sentence, ""., sentence, 11)11;

The following are all sentences in this language:-

(P~Q)

«P A Qt) ~ R)

«(P V Q) V (P A R» "" -'R)

B.3.3. Semantics for propositions.

In this system the symbol P, Q, R etc. are the truth values of simple propositions. The symbols A,

V, -., ~, ~ represent ways of combining simpler propositions to form compound propositions. These

symbols are called connectives. Conventionally the connectives given above have names. The names

of the connectives are:-

-. Not. The sentence -.p is referred to as the negation of P. The negation of a sentence can

be thought of as the logical opposite of that sentence.

A And. The sentence P A Q is referred to the conjunction of P and Q. P and Q are conjuncts

of the sentence.

V Or. The sentence P V Q is referred to as the disjunction of P and Q. P and Q are disjuncts

of the sentence. The truth value of the sentence is "P or Q or both P and Q". It is also

referred to as inclusive Of.

153

.. Implication or "if ... then •.• ". The sentence p .. Q is read as P implies Q. Care is needed

in the informal interpretation of this connective as, in programming terms, there is no

information covering "othelWise" or "else". Implication should always be referred to truth

tables for exact interpretation.

Equals. This connective is also referred to as double implication. The sentence P .. Q is true

if and only if P and Q have the same truth value.

The principle of truth functionality is adhered to and the truth values of compound expression are

determined by the truth values of their constituent propositions. The connectives have a constant

meaning in different interpretations, but the meanings of the propositions P, Q, R ••• may vary. The

meaning of compound forms can be given in a concise way using truth tables. In the following tables

A, B are simple or compound expression. Tand F denote the logical values true and false respectively.

For simple sentences involving only one proposition the meaning is:-

A (A) -,A

T T F

F F T

Note that it is necessary to give an interpretation to sentences of the form (A) as the same as A for use

when interpreting compound propositions containing brackets.

For sentences which contain two component propositions and a connective the meaning is:-

A B AAB AvB A .. B A++B

T T T T T T

T F F T F F

F T F T T F

F F F F T T

The process of assigning a truth value to a sentence built from connectives and propositions consists

154

of:-

(a) giving an interpretation to the symbols denoting simple propositions.

(b) using the truth tables above to evaluate a truth value for the sentence.

The brackets in the expression are used to determine the order of evaluation of the compound

expression, with inner brackets being evaluated first. In order to demonstrate this consider the

expression ("'(P 11 Q) .. Q). Using a truth table to layout all possible interpretations of this sentence

gives:-

P Q (P IIQ) ..,(P 11 Q) (..,(P 11 Q)+tQ)

T T T F F

T T F T F

F T F T T

F F F T F

This table shows the four possible interpretations of the sentence. If only certain interpretation were

of interest all rows in the column would not need evaluation. The clear problem with such a

mechanism is the very rapid expansion of the number of possible interpretations as the number of

constituent propositions increases. This is the motivation for developing a propositional calculus

whereby interpretations may be examined by syntactic manipulation. That is, sentences may be

manipulated prior to any interpretation.

Sentences may be classified as follows:-

(a) Some sentences always interpret to true. Such a sentences is called a tautology or is said to

be valid.

(b) Some sentences always interpret to false. Such sentences are called inconsistencies or

contradictions and are said to be inconsistent.

(c) Finally some sentences are neither tautologies nor inconsistencies, their truth value depends

on that of their constituent propositions. They are called contingencies.

(d) Tautologies and contingencies are said to be consistent as they evaluate to true under at least

one interpretation.

155

If for some list of sentences P, whenever all the sentences of P are true, then some sentence W is true,

then W is said to be a semantic consequence of the list of sentences P. This is written as P .. W. The

symbol .. is another metasymbol and is called the semantic turnstile. The statement P .. W can be

paraphrased as, given a set of assumptions P are true then W is also true. For example to demonstrate

that P, P /I Q .. Q the truth table is:-

P Q J>./lQ

T T T

T F F

F T F

F F F

Whenever the two sentences on the left of the expression are true (in the first row) the sentence on the

right is true, thus P, P 11 Q .. Q. It is interesting to compare semantic consequence and syntactic

consequence. With the syntactic consequence, symbols are manipUlated without reference to their

possible meaning. Having considered the language of propositions and its semantics the next section

considers a deductive apparatus for propositions.

B.3.4. Propositional calculus.

Propositional calculus is the formal deductive apparatus which facilitates reasoning about the truth value

of simple and compound propositions. The purpose of a deductive apparatus is to allow reasoning to

take place at a purely syntactic level. In this way propositions may be analysed before possible

interpretations are made explicit (c.f. truth tables above). There are many possible choices of

deductive apparatus [Reeves90, Galton90], in VDM, and hence here the system chosen is natural

deduction. This system consists of a number of rules, called inference rules, for introducing and

eliminating the basic connectives. These rules all have long names, e.g /I-Introduction and shortened

names, e.g. "'-E. The form of these rules is a list of sentences above a horizontal line and a sentence

below the line. The meaning of this is that if all the sentences above the line are given then the

sentence below the line can be deduced as an immediate consequence. The only explanation required

is to cite the appropriate rule. This is done by writing the name of the rule and what sentences are

taken as given.

The basic rules are set out below, where A and B are any simple or compound propositions:-

156

/I-Introduction (/I-I)

A.B

A/lB

/I-Elimination (/I-E)

dM
A

V -Introduction (V-I)

..d...
AVB

"'-Elimination (..,-E)

..,..,A

A

"-Elimination (.. -E)

A.A=-B

B

"-Elimination (.. -E)

A"B

A=-B

"-Introduction (.. -I)

A=-B.A=-B

A"B

and

and

and

and

A/lB

B

..d...
BVA

Performing derivations using this subset of the formal system is simply a matter of matching the

grammatical form of the sentence under consideration to the appropriate rule for changing connectives.

157

Consider the following derivation:-

PA(QAR) I- (PAQ)AR

from PA(QAR)

I P ••..••.••.•••••••.•••••••••.••.•••••••••••••.••• A-E(h)

2 QAR ••• A-E(h)

3 Q ••..•••••....••••••.••.•••••••.•••...••••.••.•.• A-E(2)

4 R ...•••••..•.••••..•.•••••.•..•.•••••.•.•..•••••• A-E(2)

5 PAQ •• A-l(I,3)

infer(PAQ)AR ••••••••••••••••••••••••••••••••••••••• A-l(4,S)

The layout of the derivation here needs some explanation as it will be used frequently. The first line,

from ._., lists the premise (possibly more than one) of the derivation. The numbered lines are the steps

in the proof with the right hand anootations giving the justification for each step. Justifications list the

inference rule applied and the line number of the wff(s) to which it is applied. The final line, infer

... , is the desired conclusion.

The set of inference rules is not yet complete. The remaining rules are more complicated in that they

make use of assumptions. Assumptions are internal to a proof and a used to make sulHlerivations.

When the desired result has been derived the assumption is discharged. The derivation Assumplion I

Conclusion may be used for further derivations but no formulae derived within the sub-derivation may

be used outside that sub-derivation. The remaining three rules are:-

v -Elimination (V -E)

AI-C.BI-C.AVB

C

-Introduction (.... 1)

Where A and B are assumptions.

Where A is an assumption.

158

Where A is an assumption.

The rule V -E is a formalised statement of the procedure of reasoning by cases. The rule -'-1

formalises the principle of proof by contradiction. These new rules are illustrated in the following

derivation:-

from P-oQ,Q=>R

SUbderivation(l)

1 from P

1.1 Q.. -E(h,hl)

infer R ••...•••..•••••.••.•.•..•...••..•••..•••••• -E(h,I.I)

infer P=-R ••• -1(1)

The main point illustrated here is the use of sub-derivation(l) to provide the sequent PI-R. This is

then used in the -I rule to justify the final line of the derivation. The following derivation, which

demonstrates the associativity of V , shows the nesting of sub-derivations and discharge of assumptions.

(PVQ)vR I- pV(QVR)

from (PVQ)VR

sUb-derivation(l)

1 fromPVQ

sub-derivation{l.l)

1.1 from P

infer PV(QvR) ••••••••••••••••••••••••••••••••••• V-I(hI.I)

sub-derivation(I. 2)

1.2 from Q

1.2.1 QV R V -I(h1.2)

infer PV(QVR) •••••..•••••••.•.•..•••..••••.••••. V-I(1.2.1)

inferPV(QVR)•............•..•.. V-E(hI,1.1,1.2)

sub-derivation(2)

2 fromR

159

2.1 QV R ••••.••••.•••••••••••.••••••.•.••••••••••••••• V -I(b2)

inferPV(QVR) •••••..•••••••••••...•••••••••••••.••.•• V-I(2.1)

infer PV(QVR) ••••.•...•••••••..•••••.••.••.••••••.••.•• V-E(h,I,2)

Finally there are two important properties of propositional calculus which make it a very useful formal

system; it is consistent and complete. These properties are expressed as follows:-

(a) A formal system is complete with respect to an interpretation if for a set of sentences P

whenever P .. W then PI- W. This means that if interpretations of P and W can be reasoned

about formally then that reasoning can also be conducted formally.

(b) A formal system is ,,?nsistent with respect to an interpretation if for a set of sentences P

whenever PI- W then P .. W. This means that if something can be derived formally then

reasoning about the meanings of the sentences concerned will arrive at the same conclusion.

10 propositional calculus these properties mean that if the derivation PI- W can be performed then

P .. W. Hence if all the sentences of P are given interpretations of true then Walso interprets to true.

Thus syntactic manipulations in the calculus can be used to deduce true things from other true things.

The simple formal system of propositionaI calculus, introduced above, is useful for reasoning about

the truth of simple or compound propositions. 10 the next section the more powerful formal system

of predicate calculus is introduced.

B.4. A More Powerful Fonnal System.

B.4.1. Predicates.

The simple propositional calculus already described can be extended with a small number of extra

constructs to allow reasoning about objects and properties of objects. More specifically predicates are

used to capture properties of objects and relationships between objects. The components of the formal

language which map on to the properties of objects are called predicates. The name given to predicates

is conventionally related to the property captured by the predicate e.g. student(x) might be a predicate

which captures the property of being a student. The x is a free variable, which when filled by the

name of a suitable object to create a proposition. For example, student(Tim) will be true if the object

denoted by Tim is a student and false if Tun is not. Predicates may express relationships between more

160

than one object. The predicate nuurled(x,y) could be used to capture the idea that x is married to y.

The names of predicates are not in themselves important, interpretations wi1\ ultimately place meaning

on the predicates.

B.4.2. Predicate logic.

Extending the fonnallanguage for propositions to al\ow the expression predicates can be done using

the following definition.

sentence = simple yroposition I predicate

" """, sentence

"C', sentence, "V", sentence, ")"

"(It, sentence, "1\", sentence, 11)"

"(", sentence, "=t" t sentence, ")"

"(tI, sentence, " .. ", sentence, ")"

"V", variable _lUlme, ".", sentence;

"3", variable_name, 11.", sentence;

simpleyroposition = "P'I"Q"I"R"I •.. ;

predicate = predicate_name, "(". term list, ")"j

predicate_name = .•. (* Any arbitrary string of characters *);

termlist = term I term, ",", tennlis/;

term = proper_name I arbitrary_name I variable_name;

proper_name = ... (* Any arbitrary string of characters *);

arbitrary_name = "a" I fib'" "e" I ... ;

variable name = "x"l"y"l"z"I ... ;

The two new symbols 3 and V are used to capture the ideas of universal and existential quantification.

Universal quantification is used to express propositions of the form "every object has this property"

or "al\ objects are related in this way". Existential quantification is used to express propositions of the

form "there is at least one object which has this property".

In this language one may say:-

Vx • P(x)

:Ix • Vy • Q(x,y)

Predicates themselves have no truth value. Predicates can give rise to propositions in two ways:-

161

(a) by instantiating their free variables with the names of objects.

(b) by describing the instantiation process itself using the technique of quantification. This is done

using the two new symbols.

For a predicate P(x), with free variable x, both the sentences

3:x: • p(x) Vx' P(x)

are propositions, called quantified expressions. The quantification binds the variable, it is said that x

is bound by the quantification, so that it can no longer be instantiated.

B.4.3. A semantics for predicate logic.

The conventional interpretation for predicate logic is similar, but more complex, than that for

propositionallogic. Any simple propositions and the connectives are interpreted as in propositional

logic. Proper names used are related to objects in the real world. Bound variables in quantified

expressions are not assigned meanings. Predicates denote properties of objects or relationships between

objects. The number of free variables in the predicate should be carefully chosen to match the idea

it expresses.

The validity of sentences in predicate logic can be examined semantically. However this is much more

difficult than for propositionallogic. With universal quantification of very large domains of interest

the properties of many objects will need examining. Similarly with existential quantification finding

a single object for which the property holds may be a very long task. Truth tables will not work with

predicate logic in general and unfortunately there is no other similar mechanism which can show

general validity. Fortunately though there is a deductive apparatus for predicate calculus which is both

consistent and complete for the class of interpretations outlined above.

B.4.4. Predicate calculus.

Predicate calculus is the formal deductive apparatus which facilitates reasoning about the truth value

of simple and compound predicates. Following the above trends the deductive apparatus for predicates

is an extension of that for propositional calculus. As there are two new symbols which have been

introduced there are four new corresponding inference rules. These are, not surprisingly:-

162

v-Elimination (V-E)

Vx • P(x)

p(a)

v-Introduction (V-I)

pea)

Vx • P(x)

3-Elimination (3-E)

3x • P(x)

P(q)

3-Introduction (3-1)

pea)

3x • P(x)

where a is arbitrary_

where a is arbitrary.

where q is a particular name.

where t is any term.

These inference rules may be used in the same fashion as those for propositional calculus. As the

deductive apparatus is consistent and complete, the results for syntactic and semantic consequences

being equivalent hold. Therefore the predicate calculus may be used to analyse the truth of sentences

in the predicate logic.

B.S. Summary.

In this appendix the basic terminology of formal systems has been introduced. The concepts of formal

languages and semantics have been shown and their application to the formal systems of propositional

logic and predicate logic has been shown. The power of such systems come from their deductive

apparatus, which allows the analysis of complex sentences to determine their truth. The use of the

propositionai calculus in derivation has been shown.

163

Finally the reader should be aware that the terms propositional calculus and predicate calculus are

widely used. The systems actually referred to often differ widely or subtly from those detailed here.

The assumptions such systems are based on, as well as the interpretations used, must be carefully

examined. Formal systems for software engineers, like tools for other engineers, should only be used

carefully and in accordance with the manufacturer's instructions.

164

APPENDIX C.

C MATHEMATICAL DETAILS OF VDM.

C.t. Defining Data Types.

C.t.t. Simple data types.

VDM specifications are built by modelling a system in terms of basic mathematical entities. These

entities are:-

(a) Boolean variables, here written as B.

(b) Integer numbers, here written as Z.

(c) Natural numbers, positive integers (including zero), here written as N.

(d) Natural numbers, strictly positive integers (excluding zero), here written as Nl .

(e) Real numbers, here written as R.

In addition to these VDM includes three further entities. These are:-

(a) Finite Sets. A set is an unordered collection of distinct objects.

(b) Finite Maps. Maps are associations between two sets of elements, the key set and the value

set. Each, unique, key element is associated with an element in the value set.

(c) Finite Sequences. A sequence is an ordered collection of objects.

Specific instances of the above three entities type may be defined in two ways, enumeration and

comprehension:-

For sets:

enumeration:

s = { 1, 2, 4 }

primary_colours = { RED, GREEN, BLUE }

comprehension:

numbers = { nEN I 1 ,,;;; n ,,;;; 5 }

where E denotes set membership

i.e. numbers = { 1, 2, 3, 4, 5 }

165

For maps:

enumeration:

m = {I xl' 3 x4' 6 xl' 2 xJ, 10 x4}

directions = {ll UP, 22,.. LEFT, 33 DOWN, 44 RIGHT}

comprehension:

squares = {X>-+x2ENXN I xE{iENI-2S:iS:3}}

i.e. square = { -2..w1, -1 1, Q>.oO, 1 ... 1, 2..wI, 3,.,1) }

For sequences:

enumeration:

queue = [120, 41, 1034, 4593 J

comprehension:

doubles = [xE nwnbers I doubles(x) = 2 X x J

i.e. doubles = [2, 4; 6, 8, 10 J

or as previously for a sequence of natural numbers:

stack = N·

These simple entities may be used to describe simple data types to be used in a specification.

C.1.2. Composite objects as data types.

These simple entities may be used to describe simple data types to be used in a specification. Further

to this VDM bas a mechanism for combining simpler entities together to form composite objects. In

many respects these composite objects are like Pascal records. Composite objects have a number of

fields, of specified types, and tags (names) for each of those fields. A composite type for a buffer of

natural numbers of defined size may be defined as:-

compose Buffer of

Max-size : NI'

Store: N·

end

To create an object of this type and assign values to the appropriate field the concept of make-functions

166

is used. To create an empty buffer of size 256 numbers:-

mk-Buffer(256, m

The values of individual fields may be refered to using selector functions. Selectors when applied to

composite values yield the component value. In the above example of a buffer the are two selector

functions. Their siguatures are:-

Max-size : Buffer ... NI

Store: Buffer ... N'

To change individual fields in a composite object there are a family of I'-functions. Consider the

following composite object:

Buf = mk-Buffer(256, [])

To change the size of the buffer the function is:

1'(Buf, Max-size ... 128)

The resulting object is equivalent to the object formed by writing:-

mk-Buffer(128, [])

The selector functions can be used on this object:

Max-size(BufJ = 128

Store(BufJ =[]

To change the store field the function is:-

1'(Buf, Store ... [200, 6, 6300 1

Composite objects are most frequently used in the specifications of state variables and so names may

be associated with the set of composite objects defined:-

167

Finite_Buffer = compose Buffer of

Max-size : Ni

Store: N.

end

The definition of Buffer is not yet complete as the size of the Store field has not been constrained. It

is necessary to restrict the possible combinations of values taken by this data type. This is achieved

by the use of a "data type invariant". This is a truth-valued function which is true for all valid object

of the type. Invariants are defined as follows:-

inv-Buffer(Buj) " len Store(Buj) ::;; Max-size(Buj)

This says that for valid objects of type Buffer the number of elements in the Store sequence is always

less than or equal to the Max-size of the buffer.

C.2. An example implementability proof.

Brielfy, a satisfiability or implementability proof is a formal demonstration that for all valid inputs and

initial states there exists some outputs and final states which are valid. The formal statement of this

is:-

if a is the state variable and E is its type

v Q:E E • pre-OP(i) .. 3aE E • post-OPCsl,a)

For the Add _item operation above this becomes:-

v ME Buffer, item EN' true .. 3BufE Buffer •

(len Store(BuD < Max-Size(Buj) 11

Store(Buj) = Store(8uD ~ [item]) V

(len Store!BuD = Max-Size(Buj) 11

Store(Buj) = tail(Store(8uOl ~ [item])

As Buf is a composite object this can be'rewritten in terms of its constituent fields as:-

168

v Store(8uDEN',Max-size(Buj)EN1, itemEN •

true .. 3Store(Buj) EN"·
« len StorelBuD < Max-size(Buj) A

Store(Buj) = StordBuD ~ [item]) V

(len StorelBuD = Max-size(Buj) A

Store(Buj) = tail(Store(8uO) ~ [item] » A

inv-Buffer(BIif)

Note also the introduction of the data type invariant. Any final values of the state must be valid objects

of the appropriate type. Using the distribution of A over V and expanding the invariant this is

rewritten as :-

v Store(8uDEN',Max-size(Buj)EN1, itemEN

true .. 3Store(Buj) E N' •

(len StorelBuD < Max-size(Buj) A

Store(Buj) = StordBuD ~ [item] A

len Store(Buj) ,,;; Max-size(Buj) V

(len StorelBuD = Max-size(Buj) A

Store(Buj) = tail(StoremuO) ~ [item] A

len Store(Buj) ,,;; Max-size(Buj))

The proof will take the form of a sequent:-

from StordBuDEN',Max-size(Buj)EN1, itemEN ...

true ... 3Store(Buj) E N' •

(len StorelBuD < Max-size(Buj) A

Store(Buj) = StordBuD ~ [item] A

len Store(Buj) ,,;; Max-size(Buj)) V

(len StorelBuD = Max-size(Buj) A

Store(Buj) = tail(Store(8uO) ~ [item] A

len Store(Buj) ,,;; Max-size(Buj))

Sub-derivation(1)

I from Store(8uDEN', Max-size(Buj)EN1, itemEN

Subderivation(1.1)

1.1 from B E Buffer

169

1.1.1 lea Store(B) ,,;; Max-size(B) __ • _ •••••••••••••••••••••••• inv-Buffer(hl.l}

infer lea Store(B) < Max-size(B) V

Store(B) = Max-size(B) ••••••••••••• property-";;(1.1.1)

Subderivation(1.2)

1.2 from len Store!BuD < Max-size(Bufj

Subderivation(1.2.1)

1.2.1 from Stare(Bufj = Stare(BuO ~ [item]

1.2.1.1 len Stare!BuD < Max-size(Bufj 11

Store(Bufj = Store(BuO ~ [item] • • • • • • • • • • • • •• 1I-1(h1.2. hl.2.1)

1.2.1.2 len Store(BuO ~ [item] ,,;;

Max-size(Bufj •••••••••••••••••••••••••• prop-~(h1.2)

1.2.1.3 len Store(Bufj ,,;;

Max-siZe(Bufj ••••••••••••••• EO -subs(1.2.l.2.h1.2.1)

1.2.1.4 len Store{BuD < Max-size(Bufj 11

Store(Bufj = Store(BuO ~ [item] 11

len Store(Bufj ,,;;

Max-size(Bufj ••••••••••••••••• 11 -1(1.2.1.1. 1.2.1.4)

infer (len Store{BuD < Max-size(Bufj 11

Subderivation(1.2.2)

Store(Bufj = Store(BuO ~ [item] 11

len Store(Bufj s: Max-size(Bufj) V

(len Store{BuD = Max-size(Bufj 11

Store(Bufj = tailCStore(BuQ) ~ [item] 11

len Store(Bufj s: Max-size(Bufj) • • . • • • • • • • • • .• V -1(1.2.1.4)

1.2.2 from Store(Bufj = Store(BuO ~ [item]

1.2.2.1 [item] E N· .. hi

1.2.2.2 Store{BuD E N·•....... defu-Buffer(hl)

1.2.2.3 Store{BuD ~ [item] EN· •...........•...••.•... ~-defu(1.2.2.1. 1.2.2.2)

infer Store(Bufj E N· .•...••.............••. =-subs(h1.2.2. 1.2.2.3)

infer 3 Store(Bufj E N· •

(len Store{Bufl < Max-size(Bufj 11

Store(Bufj = Store(BuO ~ [item] 11

170

Subderivation(I.3)

len Store(Buf) ~ Max-size(Buf)) V

(len Store(BuD = Max-size(Buf) 11

Store(Buf) = taiI(Store@uO) ~ [item] 11

len Store(Buf) ~

Max-siT.e(Buf) •••••••••••••••• 3-1(1.2.1, 1.2.2)

1.3 from len Store{Bufl = Max-size(Buf)

Subderivation(1.3.1)

1.3.1 from Store(Buf) = tail(Store{Buffi ~ [item]

1.3.1.1 len Store{Bufl = Max-size(Buf) 11

Store(Buf) =

tail Store@ufl ~ [item] • • • • • • • • • • • • • • • •• lI-l(h1.3, h1.3.1)

1.3.1.2 len tail (Store{Bufl) =
Max-size(Buf)-1 ••••••••••••••••• prop-tail(hl.2)

1.3.1.3 len (tail (Store{Buf)) ~ [item] =

Max-size(Buf) •••••••••••••••••••••••• len-i(h1.2)

1.3.1.4 len Store(Buf) = Max-Size(Buf) •••• • • • • . • • • • • • • • • • • •• e-subs(h,1.2.2.3)

1.3.1.5 len Store(Buf) ~ Max-Size(Buf) •••••••••••••••••••••• prop-~(h,L2.2.3)

1.3.1.6 (len Store(BuD = Max-size(Buf) 11

Store(Buf) = tail(Store(BuO) ~ [item] 11

len Store(Buf) ~

Max-size(Buf) • • • • • • • • • • • •• 11-1(1.3.1.1,1.3.1.6)

infer (len Store{Bufl < Max-size(Buf) 11

Subderivation(1.3.2)

Store(Buf) = Store(BuO ~ [item] 11

len Store(Buf) ~ Max-size(Buf)) V

(len Store{BuD = Max-size(Buf) 11

Store(Buf) = tail(Store@uOl ~ [item] 11

len Store(Buf) ~ Max-size(Buf)) ••••• , • • • • • • •• V -1(1.3.1.6)

1.3.2 from Store(Buf) = tail(Store@uO) ~ [item]

1.3.2.1 [item] E N'•......... hi

1.3.2.2 Store{BuD E N' : defn-Buffer(hl)

1.3.2.3 tail (Store{Buffi E N'•....•....•...•....... prop-tail(1.3.2.2)

171

1.3.2.4 taiI(Store<Buf) ~

[item] E N· prop-~(1.3.2.4, 1.3.2.1)

infer Store(Buj) E N· -subs(h1.3.2, 1.3.2.4)

infer 3 Store(Buj) E N· •

(len Store<Buf) < Max-size(Buj) A

Store(Buj) = StordBuO ~ [item] A

len Store(Buj) ,,:; Max-size(Buj) V

(len Store<Buf) = Max-size(Buj) A

Store(Buj) = tail(Store@uffi ~ [item] A

len Store(Buj) ,,:;

1.4 3 Store(Buj) E N· •

Max-size(Buj) •••••••••••••••• 3-1(1.3.1,1.3.2)

(len Store(Buf) < Max-size(Buj) A

Store(Buj) = StordBuO ~ [item] A

len Store(Buj) ,,:; Max-size(Buj) V

(len StoreCBuf) = Max-size(Buj) A

Store(Buj) = tail(Store@uO) ~ [item] A

len Store(Buj) ,,:;

Max-size(Buj) ••.•••••••••••• V-E(I.I,1.2,1.3)

infer true .. 3Store(Buj) EN· •

(len Store(Buf) <- Max-size(Buj) A

Store(Buj) = Store@uO ~ [item] A

len Store(Buj) ,,:; Max-size(Buj)) V

(len StoreCBuf) = Max-size(Buj) A

Store(Buj) = tailCStore@uffi ~ [item] A

len Store(Buj) ,,:; Max-size(Buj) ••••••••.••••••••• vac-o-I(1.4)

infer V Store@uOEN·,Max-size(Buj)EN1, itemEN

true .. 3Store(Buj) E N· .

(len Store(Buf) < Max-size(Buj) A

Store(Buj) = Store@uO ~ [item] A

len Store(Buj) ,,:; Max-size(Buj)) V

(len Store(Buf) = Max-size(Buj) 1\

Store(Buj) = tail(Store@uO) ~ [item] A

172

len Store(Buj) S Max-size(Buj» • V-I(I)

This proof can be explained as follows:-

(a) The main sub-derivation (I) is to show that:-

troe .. 3Store(Buj) EN"·
(len Store(BuD < Max-size(Buj) 11

Store(Buj) = Store(BuO ~ [item] 11

len Store(Buj) S Max-size(Buj» V

(len StoreCBufl = Max-size(Buj) 11

Store(Buj) = tail(StoreCBuO) ~ [item] 11

len Store(Buj) S Max-size(Buj))

is a logical consequence of the assumption that:-

StoreCBuOEN',Max-size(Buj)EN1, itemEN

this is stated in sequent form in the first line of the proof.

(h) Sub-<lerivation(l.l) shows the property of the invariant that if the length of Store is less than

or equal to Max-size it is either less than the Max-size or it is equal to the Max-size. This is

obvious, but the technique used to examine the post-<:ondition is argument by cases. Here it

is established that there are two cases to argue.

(c) Accordingly, sub-<lerivation(1.2) argues the first case. Here the aim is to show that a solution

to the post-rondition exists if the buffer has at least one space left in it. Formally this is done

by showing that:-

3 Store(Buj) E N' .

(len StoreCBufl < Max-size(Buj) 11

Store(Buj) = StoreCBuO ~ [item] 11

[en Store(Buj) S Max-size(Buj)) V

(len StoreCBufl = Max-size(Buj) 11

Store(Buj) = tail(Store(BuO) ~ [item] 11

[en Store(Buj) S Max-size(Buj))

173

is a logical consequence of the assumption:-

len Store(BuD < Max-size(Buj)

(d) There are two main parts to this sub-derivation; the further sub-<lerivations(1.2.1) and (1.2.2).

These sbow that the logical expression is true under the assumptions made and that the value

of Store(Buj) needed for the solution is of the correct type.

(e) Combining sub-<lerivations (1.2.1) and (1.2.2) leads to the conclusion that under the

assumption of (1.2) a solution does indeed exist.

(I) Sub-<lerivation (1.3) now argues the second case. The style of rgument is almost identical to

that for (1.2) and the conclusion is the same.

(g) Using the result of (1.1), (1.2) and (1.3), (1.4) deduces that it is generally true that there is

a solution for the post-condition. This allows the discharge of the assumption made for sub

derivation(l).

(h) Finally, the conclusion is drawn that the specification of the operation is indeed

implementable.

C.J. A Simple Plant Controller.

C.J.l. Infonnal specification of the system.

The following informal specification of a plant controller will form the basis for examples on operation

decomposition:-

(a) The system controls three valves: inlet, outlet and vent.

(h) Each valve may be either open or closed.

(c) The fail-safe condition is inlet and outlet valves closed and the vent valve open.

(d) The plant always begins in the fail·safe condition and must end in the same condition.

(e) On demand for service the controller must perform the following sequence of actions:·

(i) close the vent valve.

(ii) open the inlet valve.

174

(iii) open the outlet valve.

(I) On demand for shut down the controller must perform the following sequence of events:-

(i) close the inlet valve.

(ii) close the outlet valve.

(iii) open the vent valve.

C.3.2. Formal specification or the system state.

In order to specify this using VDM the state is specified as follows:-

valve = {OPEN, CLOSED}

state Plant of

inlet: valve

OUlIet : valve

vent: valve

init Planto {!, mk-Plant{ CLOSED, CLOSED, OPEN)

C.3.3. Formal specification or the plant controller.

The plant controller may he specified as a single operation, thus:-

ext wr inlet : valve

wr oUllel : valve

wr vent : valve

pre inlel{Planl) = CLOSED "

oUllel{Plant) = CLOSED "

vent{Plant) = OPEN

post inlel{Planl) = CLOSED "

outlel{Planl) = CLOSED "

vent{Plant) = OPEN

175

C.3.4. Decomposing the plant controller operation.

When reasoning about operations and their effects the notion of triples is a useful one. A triple is of

the form {P}Q{R}. Where P and R are truth valued expressions and Q is some operation. This

notation asserts that if the state satisfies expression P then the application of operation Q will yield a

state which satisfies the expression R. This is most commonly encountered in VDM in the form:-

{pre}S{post}

Using this shorthand notation the inference rule for sequential composition, called ;-1, is formally stated

as:

;-1

where:-

this is called the composition of the post-conditions.

This rule may be used to show that sequential decomposilon:-

Plant_Controller: Service; Shutdown

is consistent where:-

ServiceQ

ext wr inlet: valve

wr outlet : valve

wr venl : valve

pre inlet(Plant) = CLOSED A

outlet(Plant) = CLOSED 11

vent(Plant) = OPEN

176

post inlet(Plant) = OPEN 11

outlet(Plant) = OPEN 11

vent(Plant) = CLOSED

ShutdownQ

ext wr inlet: valve

wr outlet: valve

wr vent : valve

pre inlet(PIant) = OPEN 11

outlet(PIant) = OPEN 11

vent(Plant) = CLOSED

post inlet(Plant) = CLOSED 11

outlet(Plant) = CLOSED 11

vent(Plant) = OPEN

In the above example the aim is to show that:-

{pre-Plant _controller} (Service; Shutdown) {Post-Plant_controller}

the following results are the basis of the proof:-

pre-Plant _controller .. pre-Service .

pre-Shutdown .. post-Service

post-Service I post-Shutdown

.. :I inleti, oUlleti, venti

post-Service((inlet(Plant) = CLOSED 11

outlet(Plant) = CLOSED 11

vent(Plant) = OPEN)) ,

(inletj(Plant) = OPEN 11

outletj(Plant) = OPEN 11

ventj(Plant) = CLOSED» 11

post-Shutdown((inletj(Plant) = OPEN 11

Dutletj(P/ant) = OPEN 11

ventj(Plant) = CLOSED),

177

(inlet(Plant) = CLOSED A

outlet(Plant} = CLOSED A

vent(Plant} = OPEN} }

.. post-Plant_controller

C.3.S. Decomposing the Service operation.

Consider a decomposition of the operation Service. The decomposition will be a sequential

composition of three operation each changing the state of one valve. The decomposition is:-

The operations are defined as:-

Close_vent 0

ext wr vent(Plant} : valve

pre vent(Plant} = OPEN

post vent(Plant} = CLOSED

Open_inlet 0

ext wr inler(Plant} : valve

pre inlet(Plant} = CLOSED

post inlet(Plant} = OPEN

Open_outlet 0

ext wr outlet(Plant} : valve

pre outlet(Plant} = CLOSED

post outlet(Plant} = OPEN

The proof that this desigo step is valid follows from the inference rule:-

weaken

pre." pre;{pre}S{posr};post ... postw

. This can be paraphrased as stating that an operation which satisfies a specification necessarily satisfies

178

a weaker one. A ·weaker· specification is one with a narrower pre-condition or a wider post

condition.

The extended form of the sequential composition inference rule for three operations in sequence is:-

{preI}SI {P"'ll\poSII};

{pr"l}SZ{pre3I\pOslz};

{pre3}S3{post3}

postI I postz I post3 !! 3 cri'Oj E I: • postI (Jr. cri)

1\ postz (cri' "I) 1\ postz ("I' cr)

The proof of the above decomposition is as follows:-

pre-Service.. inlet(Plant) = CLOSED 1\

outlet(Plant) = CLOSED 1\

vent(Plant) = OPEN

.. vent(Plant) = OPEN

.. pre-Close _vent

post-Close_vent .. vent(Plant) = CLOSED 1\

inlet(P/ant) = inletCPlant) 1\

outlet(Plant) = outletCPlant)

.. inlet(Plant) = CLOSED

.. pre-Open _inlet

Note here the explicit statement of the fact that Close_vent does not affect the value of the state

variables inlet and outlet. This comes from the external clause of the definition of Close_vent which

states that the operation only affects the state of vent(Plant).

post-Open _inlet .. inlet(Plant) = OPEN 1\

vent(P/ant) = ventCPlant) 1\

outlet(Plant) = oUlletCPlanl)

.. outlet(Plant) = CLOSED

.. pre-Open _outlet

179

.. 3 inleti , venti,

inletj , outletj' ventj •

post-Close _ venl

.. post-Service

«inlet(Plant) = CLOSED A

outlet(Plant) = CLOSED A

vent{Plant) = OPEN),

(inleti(Plant) = CLOSED A

venli(Plant) = CLOSED A

outleti(Planl) = CLOSED» A

post-Open _inlet

«inleti(Planl) = CLOSED A

venti(Planl) = CLOSED A

outleti(Planl) = CLOSED),

(inletj(Plant) = OPEN A

outlet/Planl) = CLOSED A

ventj(Plant) = CLOSED» A

post-Open _outlet

((inlet/Plant) = OPEN A

outlet/Plant) = CLOSED A

venlj(Plant) = CLOSED),

(inlet(Planl) = OPEN A

outlet(Plant) = OPEN A

venl(Plant) = CLOSED»

From this and the above results it can be deduced that:-

{pre-Service} (Close _ venl; Open _inlet; Open _outlet) {post-Service}

C.4. An Example of Decomposition into Conditionals.

In order to illustrate decomposition into conditionals consider an operation for which consults a sensor

and then sets a flag according to the measurement. The state variables are:-

180

state Detector of

pressure: sensor

serve.flag : flag

end

sensor: R

flag = { SERVE, SHUTDOWN }

The operation can be defined as:-

ReadJensor 0

ext rd pressure(Detector) : sensor

wr serve .flag(Detector) : flag

pre true

post (pressure(Detector) ,;; 100 A

serve .flag(Detector) = SERVE) V

(pressure(Detector) > 100 A

serve .flag(Detector) = SHUTDOWN)

If this operation is to be decomposed into a conditional statement as follows:-

where:

Read_sensor: if pressure(Detector) ,;; 100 then FlagJerve

else Flag_shutdown

FlagJerve 0
ext rd pressure(Detector) : sensor

wr serve .flag(Detector) : flag

pre pressure(Detector) ,;; 100

post serve .flag(Detector) = SERVE

Flag_shutdown 0
ext rd pressure(Detector) : sensor

wr serve .flag(Detector) : flag

pre pressure(Detector) > 100

post serve .flag(Detector) = SHUTDOWN

181

then, as previously, there is an proof obligation to be satisfied and this takes the form:-

{pre A test} ill{Post};{pre A ..,test}EL{post};pre=o6,(test)

{pre}(if test then ill else EL){post}

The third requirement 6,(test) states that the logical expression of the test condition must be defined in

the implementation language. This arises because of the interpretation given to logical expression in

LPF which may differ substantially from that in a programming language.

Applying this to the above example it is not difficult to see that:-

and

pre-ReadJensor A pressure(Detector) ,,;; lOO

.. pre-FlagJerve

post-Read _sensor" (pressure(Detector) ,,;; 100 11

serve Jlag(Detector) = SERVE) V

(pressure(Detector) > 100 A

serve Jlag(Detector) = SHUTDOWN)

.. post-FlagJerve

pre-Read Jensor A .., (pressure(Detector) ,,;; 100)

.. pre-Flag_shutdown

post-ReadJensor .. (pressure(Detector) ,,;; lOO 11

serve Jlag(Detector) = SERVE) V

(pressure(Detector) > 100 A

serve Jlag(Detector) = SHUTDOWN)

.. post-FlagJhutdown

also the test condition is defined in most procedural languages. Therefore:-

(pre-Read_sensor}(if pressure(Detector) S; lOO then Flag_serve

else Flag_shutdown){post-Read_sensor}

and the decomposition is thus consistent.

182

C.S. Two Examples or Decomposition into Loops.

C.S.t. The inference rule ror decomposition into loops.

The rule for decomposition into loops is:·

{inv 11 tert}S{ inv 11 sofar} ;in-al(tert)

{inv}(while tert do S end){inv 11 -,tert 11 (sofarV iden)}

where:-

(a) tert. This is the conventional end of loop condition used in procedural language iteration

loops

(b) inv. This is an expression, called the loop invariant, which limits the states which arise in the

computation. Like data type invariants it is true at all times.

(c) sofar. This is an expression which hold for one or more iterations. To ensure termination

it is necessary that sofar is transitive and well-founded over the set defined by inv. A

transitive expression is one having the following property:-

VX,y,x • j(x,y) 1Ij(y,z) ... j(x,z)

(d) iden. This is an expression which defines that the state is unchanged.

C.S.2. A simple example or decomposition into loops.

Consider the following partial specification:-

Controller 0

ext wr pressure : sensor

wr prersure _alann : flag

pre (prersure ,;; 2000 11

prersure _ alann = OFF) V

(prersure > 2000 11

prersure _ alann = ON)

post prersure > 2000 11

prersure _ alann = ON

If this is to be decomposed into the code fragment:-

183

WHILE NOT (pressure_alann=ON) DO

Controlyressure;

Read alarm

END

with Controlyressure and Read_alarm defined as:-

Control"'pressure 0

ext wr pressure : sensor

pre pressure ,;; 2000

PlJSt pressure = pressure + 10

Read_alarm 0
ext rd pressure : sensor

wr pressure_alarm : flag

pre true

post (pressure S; 2000 "

pressure_alarm = OFF) V

(pressure > 2000 "

pressure_alarm = ON)

Now writing:

Loop : Control"'pressure;Read _alarm

gives Loop as:-

Loop 0

ext rd pressure : sensor

wr pressure_alarm : flag

pre pressure ,;; 2000

post pressure = pressure + 10 1\

(pressure S; 2000 "

pressure_alarm = OFF) V

(pressure > 2000 "

pressure_alarm = ON)

184

The decomposition is of the form:-

While test do

Loop

end

The major steps in the proof of this decomposition are:-

test l!. "(pressure _alarm = ON)

inv l!. (pressure S 2000 /I

pressure_alarm = OFF) V

(pressure > 2000 /I

pressure_alarm = ON)

sofar l!. pressure :2: pressure + 10

inv /I test.. (pressure S 2000 /I

pressure_alarm = OFF) V

(pressure > 2000 /I

pressure_alarm = ON) •

.,(pressure_alarm = ON)

.. pressure S 2000

.. pre-Loop

inv /lsofar.. (pressure S 2000 /I

pressure_alarm = OFF) V

(pressure > 2000 /I

pressure_alarm = ON) •

pressure :2: pressure + 10

.. post-Loop

test is dermed in most procedural languages.

Using the inference rule above gives:-

{inv}(while test do Loop end) {inv /I .,test 11 (sofarv iden)}

inv .. pre-Controller

185

invA -,test A {sofarV iden) ++ (pressure S; 2000 A

pressure _ a/ann = OFF) V

(pressure > 2000 A

pressure_aJann = ON) A

(pressure _ a/ann = ON) A

{pressure ;;" pressure + 1 0 V

(pressure = pressure A

pressure _ a/ann = pressure alann)

.. (pressure > 2000 A

pressure_a/ann = ON) A

{pressure ;;" pressure + 1 0 V

(pressure = pressure A

pressure _ a/ann = pressure alann»

.. post-Controller

Therefore:

{pre-Controller}

{while -'(pressure = ON) do

Control yressure;Read _ aJann end)

{Post-Controller}

and hence the decomposition is valid.

C.S.3. A more problematic example involving loops.

In this example the overall aim is the same but the definitions of Controlyressure and Read_alarm

are:-

Controlyressure ()

ext wr pressure: sensor

pre pressure s; 2000

post true

This is unusual in that the posH:ondition is always true. This simply meams that the value of pressure

is indeterminate i.e. any value within its range. Read alann remains:

186

Read_alarm 0
ext rd pressure : sensor

wr pressure_alarm : j/ag

pretrue

post (pressure s: 2000 A

pressure_alarm = OFF) V

(pressure > 2000 A

pressure_alarm = ON)

Now in this case it is impossible to define the expression sofar to give a monotonicaUy increasing value

of pressure. Hence the termination of the loop cannot be guaranteed. Other expressions for inv, and

test remain the same and hence the loop will terminate under the same conditions as above, i.e. from

the loop invariant

pressure > 2000 A

pressure_alarm = ON will be true.

187

APPENDIX D.

D IMPLEMENTABILITY PROOF FOR A SIMPLE LOGIC OPERATION.

D.1. The Function and its Specification.

The function of the device to be specified is a simple logical and. The device has two inputs and one

output. The inputs and output each have two possible states; high or low. The device is specified as

follows:

Logic = { HIGH, LOW}

And_Gate (inputI : LogiC; input2 : Logic) output: Logic

pre true

post (inputl = HIGH and

input2 = HIGH and

output = HIGH)

or «inputl = LOW or

input2 = LOW) and

output = LOW)

D.2. The Implementability Proof.

The purpose of implementability proofs in general is to show that for all valid inputs to an operation

there exist some valid outputs. The nature proofs are discussed in more detail in Appendix B and

chapter 5.

Formally the aim of the proof is to show that:-

VI1,12 E Logic' pre-And_Gate(I1,12) =>

30 E Logic' post-And_Gate(O,I1,12) PI

188

is valid. Where, for conciseness, 11 = inpUlI, 12 = inpUl2 and 0 = OUlpul.

To accomplish this proof it is necessary to perform a small proof about the general properties of the

type Logic.

from X E Logic

1 X=LOW V X=IllGH .••..••••••.•••••••••••••••••••••• Logic-defn(h)

2 -. -'(X=LOW V X=HIGH) • • • • • • • • • • • • • • • . . • • • . . • . • • • • . • • • •• -. -'-1(1)

3 -'(-'(X=LOW) ,,-.(X=HIGH» ••..•.•••.•••••••••••••••..•... de-M(2)

Suh-derivation(4)

4 from -'(-'(X=LOW) V -'(X=IllGH»

4.1 -.(X=LOW) "-'(X=IllGH) •••••.•..••••••••.••••.•••••. de-M(h4)

infer -'-'(-'(X=LOW) V -'(X=IllGH» •••..•...••.•.....••••.• -'-1(h4,4.1,3)

5 -'(X=LOW) V -'(X=IllGH) •••.•••••.•...•••.••••.•••••••.••• -'-E(4)

6 -. -'X=IllGH V X=LOW • . • • • . • . . • • • • . . • • • . . • • . . . • • •• -. -.-I,comm- V (1)

7 -.X=HIGH .. X=LOW .. -defn(4)

8 -'X=HIGH V -.X=LOW . . . • . . • • • • • . • .. comm- V (3)

9 X=IllGH ... -.X=LOW ••••.•..•.•.••••••..•...••....••.•••. ~efn(6)

10 -'-'X=LOW V X=HIGH •.•••••.••.•...••..•....••••••.... -'-'-1(1)

11 -.X=LOW ... X=HIGH •••.•..•.•..•••...........••.•...•.• =--defn(8)

12 -'X=LOW V -'X=HIGH ...•...••.......•..•.••....•••........ (3) .

13 X=LOW ... -'X=HIGH ..•.••..•...••.•.•...•....•••••••.. ~efn(l1)

infer -'X=HIGH # X=LOW, -'X=LOW # X=IllGH •••.••.....•...•• #-1(5,11,7,9)

In summary this gives the following derivations which are taken as lemmas for the subsequent

derivation:-

Lt X E Logic I- -.X=HIGH .. X=LOW

L2 X E Logic I- -.X=LOW # X=HIGH

Tbe approach to "the implementability proof is to write PI in sequent form.

189

from V 11, 12 E Logic • pre-And _ Gale(I1,12) I-

3 0 E Logic • post-And _ Gate(0 ,11,12)

SulHlerivation(I)

1 from 11,12 E Logic

SulHlerivation(I.I)

1.1 from I1=HIGHA12=HIGH

1.1.1 -'-'(11=HIGHA12=HIGH} ••••.••.•.••..•.•••••.•.• -'-'-I(h1.l)

1.1.2 -'(-'(11 = HIGH} V -'(12=HIGH) •••••••••.•••••••••••• de-M(1.1.1)

1.1.3 -'(11 = LOW V 12=LOW) •.••••••••••.•••...•••••••••• L1(1.1.2)

infer (11 = HIGH A12=HIGH)-o-'(11 = LOW V 12 = LOW) ..•••••...• -I(h1.l,I.1.3)

Sub-derivation(1.2)

1.2 from -'(11 = LOW V 12 = LOW)

1.2.1 -'(11 = LOW) A -'(12= LOW) • • . • • • • • • • • • • . . • • • • . . • • •• -, -'-I(h1.2)

1.2.211 = HIGH A12=HIGH•.....••.•... L2(1.2.1)

infer -'(11 = LOW V 12= LOWF(l1 = HIGH A 12=HIGH) ...•••..•.. V-I(h1.2,1.2.2)

1.3 -'(l1=LOWV 12=LOW)#(11=HIGHA12=HIGH)••.......• #-1(1.1,1.2)

1.4 -'(11 = LOW V 12 = LOW) V (11 = LOW V 12=LOW) .••...••...• excluded middle

1.5 (11 = HIGH A 12 = HIGH) V (11 = LOW V 12= LOW) •. . . . • a-subst(1.3,1.4)

SulHlerivation(1.6)

1.6 from 11 = HIGH A12 = HIGH

Sub-derivation(1.6.1)

1.6.1 from O=H1GH

1.6.1.1 (I1=HIGH A12=H1GH) A O=H1GH•.•.... A-I(h1.6,hI.6.1)

1.6.1.2 «11 = HIGH A 12 = HIGH) A O=HIGH) V

«IJ=LOWVI2=LOW)AO=LOW) •......•..... V-I(1.6.l.l)

infer post-And_ Gate(O,lI,/2) •.......•...•........ And_ Gate-defn(1.6.1.2)

1.6.2 HIGH E Logic•. Logic-defn

infer 30 E Logic' post-And_Gate(O,l1,l2) .•..........•..... 3-1(1.6.1,1.6.2)

Sub-derivation(I.7)

190

1.7 from 11 = LOW V 12 = LOW

Subderivation(1. 7.1)

1.7.1 from O=LOW

1.7.1.1 (11 = LOW V 12 = LOW) A 0= LOW ••••••••.••.••• A-I(h1.7,h1.7.1)

1.7.1.2 «11=HIGH A12=ffiGH) A O=ffiGH) V

«11 = LOW V 12 = LOW) A O=LOW) ••••••••••••• V-I(1.7.1.1)

infer post-And _ Gate(O,I1,I2) .•••••.••••••••••.•••• And _ Gate-<Jefn(1. 7 .1.2)

1.7.2 LOW E Logic •••••.••••.•.•••.•••••••••••.•.••• Logic-<lefn

infer 30 E Logic· post-And_Gate(O,I1,/2) ••..•••••••••••.•• 3-1(1.7.1,1.7.2)

1.830 E Logic· post-And_Gate(O,ll,l2) ••...•••..••..•••• V-E(1.5,1.6,1.7)

infer pre-And _ Gate(I1,/2) ...

o E Logic' post-And_Gate(O,Il,/2) .••••••••••.•..•. vac-I(1.8)

infer v 11,/2 E Logic • pre-And _ Gate(ll,/2) ...

o E Logic' post-And_Gate(O,I1,/2) ..•.•••••••••••.•.•. V-I(l)

191

APPENDIXE.

E. EBNF DESCRIPTION OF THE PROJECT'S FORMAL NOTATION.

E.1. Names and Literals.

UpperCaseCharacter = • A ·1·B·I .•...• I·y·l·z· •

. LowerCaseCharacter = ·a·l·b·I •••••• I·y·l·z·.

NonZeroDigit = ·1·1·2·1 •.... 1·8·1·9·.

Digit = ·0·1 NonZeroDigit.

Integer = NonZeroDigit {Digit}.

Character = UpperCaseCharacter 1 LowerCaseCharacter.

Ident = Character { Character 1 Digit 1·_·1·.·.

QualIdent = Ident .(. Ident .) •.

GeneralIdent = Ident 1 QualIdent.

InitialIdent = Qua1Ident ••••

GeneralPostIdent = GeneralIdent 1 GeneralIdent ••••

GrammarGrapbName = ·vdm· Integer.

E.2. Types.

TypeDefinition = Ident Type.

Type = • =. Enumeration 1 .:. Ideot.

Enumeration = .{. IdentList .} ••

IdentList = Ident { ••• Ident }.

E.3. Expressions.

Expression = Relation 1 Relation ·or· Expression 1 Relation ·and·

Expression.

192

Relation = Equivalence I BracketedExpression.

Equivalence = GeneralIdent • =' GeneralIdent.

BracketedExpression = .(. Expression ')'.

PostExpression = PostRelation I PostRelation 'or' PostExpression I
PostRelation 'and' PostExpression.

PostRelation = PostEquivalence : BracketedPostExpression.

PostEquivalence = GeneralPostIdent • =' GeneraIPostldent.

BracketedPostExpression = '(" PostExpression ')'.

VariableDefinition = Ident ':' Ident.

E.4. Statements.

StatementBlock = Sequence I Selection I Iteration.

Sequence = "SEQ' SequenceStructure ·END·.

SequenceStructure = OperationText { StatementBlock }.

OperationText = 'DO' Integer ':' OperationDefinition

Selection = 'SEL' SelectionStructure { AlternativeStructure } ·END·.

SelectionStructure = .(C' Integer '):' Expression 'end'

StatementBlock.

AlternativeStructure = • ALT' SelectionStructure.

Iteration = '!TR' IterationStructure "END'.

IterationStructure = IterationHeader StatementBlock.

IterationHeader = IterationType .(C" Integer "):' Expression "end".

IterationType = "WO I "F" I "U".

E.S. Definitions.

OperationDefinition = Signature Opbody "endop".

193

Signature = Ident Arguments.

Arguments = "(" [InputArgs] ")" [OutputArgs].

InputArgs = VarDefine { ";" VarDefine }.

OutputArgs = VarDefine { ";" VarDefine}.

OpBody = ExternalList PreCondition PostCondition.

Externa\List = "ext" { ReadExt I WriteExt }.

ReadExt = "rd" QualIdent ":" Ideot.

WriteExt = "wr" QualIdent ":" Ident.

PreCondition = "pre" PreDeclare.

PreDeclare = "true" I Expression.

PostCondition = "post" PostExpression "eodpost".

VarDefine = Ident ":" Ident.

Simple Var = TypeDeclaration.

Simple VarList = Simple Var { Simple Var }.

CompositeVar = "compose" Ident "of" SimpleVarList "end".

VarDefineList = CompositeVar { SimpleVar}.

Definitions = GrammarGraphName VarDefineList "enddefine".

StateDefinition = "state" [VarDefine].

InitiaIStateDefinition = "initial" Expression "end".

SpecBody = StateDefinition InitialStateDefinition StatementBlock.

Specification = Definitions SpecBody

194

APPENDIX F.

F. THE GRAMMAR TREE FOR THE PARSING OF THE FORMAL NOTATION.

'* The number of nodes in the tree

248

'* The grammar tree

100 action 101 0 specification
101 n 102 104 !

102 action 103 0 definitions
103 n 2000 0

104 n 105 0 !

105 action 106 0 specbody
106 n 1000 4000 !

1000 action 1001 0 initial state
1001 t 1001 1002 state
1002 n 1100 1300 !

1100 action 1101 0 state
1101 a 1102 1112 !

1102 n 1103 1106 !

1103 action 1104 0 varname
1104 action 1105 0 identifier
1105 t 1105 0 identifier
1106 t 1106 1107

1107 n 1108 1111

1108 action 1109 0 typename
1109 action 1110 0 identifier
1110 t 1110 0 identifier
1111 t 1111 0 initial
1112 t 1112 0 initial

195

1300 action 1301 0 initial clause
1301 action 1302 0 analyse
1302 t 1302 0 end

2000 action 2001 0 variablelist
2001 a 2002 2006 !

2002 n 2100 2003 !

2003 a 2004 2005 !

2004 t 2004 0 enddefine
2005 n 2000 0 !

2006 t 2006 2007 compose
2007 n 2200 2008 !

2008 a 2009 2010 !

2009 t 2009 0 enddefine
2010 n 2000 0 !

2100 action 2101 0 simplevar
2101 n 2102 2105 !

2102 action 2103 0 varname
2103 action 2104 0 identifier
2104 t 2104 0 identifier
2105 a 2106 2111 !

2106 t 2106 2107 :

2107 n 2108 0 !

2108 action 2109 0 typename
2109 action 2110 0 identifier
2110 t 2110 0 identifier
2111 t 2111 2112 =

2112 t 2112 2113 {

2113 n 2150 0

2150 action 2151 0 elementlist
2151 n 2152 2155

2152 action 2153 0 elementname
2153 action 2154 0 identifier
2154 t 2154 0 identifier
2155 a 2156 2158 !

196

2156 t 2156 2157 ,
2157 n 2150 0 !

2158 t 2158 0 }

2200 action 2201 0 compvar
2201 n 2202 2205 !

2202 action 2203 0 varname
2203 action 2204 0 identifier
2204 t 2204 0 identifier
2205 t 2205 2206 of
2206 n 2207 0 !

2207 action 2208 0 simplevarlist
2208 n 2100 2209 !

2209 a 2210 2211 !

2210 t 2210 0 end
2211 n 2207 0 !

3000 action 3001 0 operation
3001 n 3100 3002 !

3002 n 3003 3005 !

3003 action 3004 0 body
3004 n 3200 3300 !

3005 t 3005 0 endop

3100 action 3101 0 signature
3101 n 3102 3105 !

3102 action 3103 0 opname
3103 action 3104 0 identifier
3104 t 3104 0 identifier
3105 n 3106 0 !

3106 action 3107 0 arguments
3107 t 3107 3108 (

3108 n 3120 3160 !

3120 action 3121 0 input
3121 a 3122 3123 !

3122 t 3122 0)

197

3123 n 3124 3134 !

3124 action 3125 0 type_declare
3125 n 3126 3129 !

3126 action 3127 0 varname
3127 action 3128 0 identifier
3128 t 3128 0 identifier
3129 t 3129 3130 • •
3130 n 3131 0 !

3131 action 3132 0 typename
3132 action 3133 0 identifier
3133 t 3133 0 identifier
3134 a 3135 3136 !

3135 t 3135 0)

3136 t 3136 3137 ;
3137 n 3120 0 !

3160 action 3161 0 output
3161 a 3162 3163 !

3162 t 3162 0 ext
3163 n 3164 3174 !

3164 action 3165 0 type_declare
3165 n 3166 3169

3166 action 3167 0 varname
3167 action 3168 0 identifier
3168 t 3168 0 identifier
3169 t 3169 3170 · ·
3170 n 3171 0

3171 action 3172 0 typename
3172 action 3173 0 identifier
3173 t 3173 0 identifier
3174 a 3175 3176

3175 t 3175 0 ext
3176 t 3176 3177 ;
3177 n 3160 0

3200 action 3201 0 ext list
3201 a 3202 3203

198

3202 t 3202 0 pre
3203 n 3204 3208 !

3204 action 3205 0 declare
3205 a 3206 3207

3206 n 3230 0 !

3207 n 3260 0 !

3208 a 3209 3210 !

3209 t 3209 0 pre

3210 n 3200 0

3230 action 3231 0 read
3231 t 3231 3232 rd
3232 n 3233 0 !

3233 action 3234 0 type_declare
3234 n 3235 3238

3235 action 3236 0 varname
3236 action 3237 0 identifier
3237 t 3237 0 identifier
3238 t 3238 3239 . .
3239 n 3240 0

3240 action 3241 0 typename
3241 action 3242 0 identifier
3242 t 3242 0 identifier

3260 action 3261 0 write
3261 t 3261 3262 wr
3262 n 3263 0 !

3263 action 3264 0 type_declare
3264 n 3265 3268 !

3265 action 3266 0 varname
3266 action 3267 0 identifier
3267 t 3267 0 identifier
3268 t 3268 3269

3269 n 3270 0

3270 action 3271 0 type name
3271 action 3272 0 identifier
3272 t 3272 0 identifier

199

3300 action 3301 0 conditions

3301 n 3302 3309

3302 action 3303 0 pre_c1ause

3303 a 3304 3307 !

3304 action 3305 0 true

3305 t 3305 3306 true

3306 t 3306 0 post

3307 action 3308 0 analyse

3308 t 3308 0 post

3309 n 3310 0 !

3310 action 3311 0 post_clause

3311 action 3312 0 analyse

3312 t 3312 0 endpost

4000 action 4001 0 block

4001 a 4002 4003

4002 t 4002 4100 SEQ

4003 a 4004 4005 !

4004 t 4004 4200 SEL

4005 t 4005 4400 ITR

4100 action 4101 0 sequence

4101 n 4102 0 !

4102 a 4103 4110 i
4103 n 4104 4107 !

4104 t 4104 4105 DO

4105 t 4105 4106 identifier

4106 t 4106 3000 :

4107 n 4150 0 !

4110 a 4111 4112 !

4111 n 4000 4150 !

4112 t 4112 0 END

4150 a 4151 4152 !

4151 t 4151 0 END
4152 action 4153 0 continuation

200

4153 n 4000 4150 !

4200 action 4201 0 selection
4201 n 4202 4207 !

4202 action 4203 0 condition
4203 t 4203 4204 (

4204 t 4204 4205 identifier
4205 action 4206 0 analyse
4206 t 4206 0 end
4207 action 4208 0 selection_body
4208 a 4209 4213 !

4209 n 4000 4210 !

4210 a 4211 4212 !

4211 t 4211 0 END
4212 t 4212 4300 ALT
4213 a 4214 4215 !

4214 t 4214 0 END
4215 t 4215 4300 ALT

4300 action 4301 0 alternative
4301 n 4302 4307 !

4302 action 4303 0 condition
4303 t 4303 4304 (

4304 t 4304 4305 identifier
4305 action 4306 0 analyse
4306 t 4306 0 end
4307 action 4308 0 alternative _body
4308 a 4309 4313 !

4309 n 4000 4310 !

4310 a 4311 4312 !

4311 t 4311 0 END
4312 t 4312 4300 ALT
4313 a 4314 4315 !

4314 t 4314 0 END
4315 t 4315 4300 ALT

4400 action 4401 0 iteration

201

4401 n 4402 4417

4402 action 4403 0 iteration header
4403 n 4404 4412

4404 a 4405 4407 !

4405 action 4406 0 while
4406 t 4406 0 W

4407 a 4408 4410 !

4408 action 4409 0 until
4409 t 4409 0 U

4410 action 4411 0 for
4411 t 4411 0 F

4412 t 4412 4413 (

4413 t 4413 4414 identifier
4414 action 4415 0 condition
4415 action 4416 0 analyse
4416 t 4416 0 end
4417 action 4418 0 iteration _body
4418 a 4419 4421

4419 n 4000 4420 !

4420 t 4420 0 END
4421 t 4421 0 END

/* Key words.

SEQ

SEL

ALT

ITR

END

DO

U

F

W

endspec

enddefine

compose

202

of

end
=

{

I

}

state

initial
endop

)

(

i

ext
pre
wr
rd
true
post
endpost
and
or
!

%

203

APPENDIX G.

G. ANIMATION PROTOTYPE OF A LOGIC GATE.

G.l. Statement or Requirements ror the Logic Gate.

The logic gate is specified as follows:-

.. The logic gate has two input lines and one output line.

.. These lines may be either mGH or LOW.

.. If both input lines are HIGH then the output shall be HIGH.

.. In other cases the output line should be LOW.

G.2. Fonnal Specification or the Logic Gate.

The formal specification of this gate is:-

1* Current version of VDM subset
vdm5

1* Data type definition

Logic = { High , Low }

enddefine

1* state type declaration

state

1* Initial value details

initial

204

end

1* operation specification
And_Gate (Inputl : Logic ; Input2 : Logic) Output : Logic

1* No External Effects

ext

1* operation defined for all input values

pre true

1* Relationship between input and output variables

post (Inputl = High

and Input2 = High

and output = High)
or ((Inputl = Low

or Input2 = Low)
and output = Low

endpost

endop

endspec

G.3. Animation Code Produced by the Animation Process.

The resulting output from the animator is :-

PREAMBLE

END

DEFINE •• High TO MEAN 1

DEFINE •• Low TO MEAN 2

205

ROUTINE And_Gate GIVEN Inputl,
Input2

YIELDING Output

DEFINE Inputl,

Input2,

Output

AS INTEGER VARIABLES

CALL Tim.Update.Display GIVEN And_Gate,

"Pre "

CALL Tim.Local.Update.And_Gate GIVEN Inputl,

Input2,

END

o

IF (Inputl = •• High

AND Input2 = •• High)

LET Output = •• High

ENDIF

IF (Inputl = .. Low

OR Input2 = .. Low)
LET Output = •• Low

ENDIF

CALL Tim.Update.Display GIVEN And_Gate,

"Post"

CALL Tim.Local.Update.And_Gate GIVEN Inputl,

Input2,

Output

ROUTINE Tim.Local.Update.And_Gate GIVEN Inputl,

Input2,

206

DEFINE Inputl,
Input2,

output

output AS INTEGER VARIABLES

SELECT CASE Inputl

CASE •• High

** Update appropriate icon **
CASE •• Low

** Update appropriate icon **
CASE 0

ENDS ELECT

SELECT CASE Input2

CASE •• High

** Update appropriate icon **
CASE .. Low

** Update appropriate icon **
CASE 0

ENDS ELECT

SELECT CASE output

CASE •. High

** Update appropriate icon **
CASE .. Low

** Update appropriate icon **
CASE 0

ENDS ELECT

207

END

MAIN

END

ROUTINE Tim.Update.Display GIVEN Op.Name, Condition

DEFINE Op.Name, Condition AS TEXT VARIABLES

LET DTVAL.A(DFIELD.F(** Op Box Name ** , ** Main.Form

**)

= Op.Name

DISPLAY DFIELD.F(** op Box Name ** , ** Main.Form **)

LET DTVAL.A(DFIELD.F(** Condition Box Name **,**

Main. Form **)

= Condition

DISPLAY DFIELD.F(** Condition Box Name **

Main.Form **)

END

208

, **

APPENDIXH.

H. THE NlTROGEN/HYDROGEN COMPRESSOR PLANT.

H.1. The Statement or Requirements.

The system described here is a large chemical plant. Its purpose is to compress nitrogen. The

compressed nitrogen is then stored in liquid form in a storage vessel. Nitrogen is drawn from the

storage vessel for use in other processes.

The system consists of two compressors (11 and 12), a storage vessel, a number of valves and a

number of alarms. The plant schematic diagram in Figure 26 shows the layout of these components.

The input signals available to the control system are:-

Pressure Sensors

Extra Low

Low

High

Extra High

Compressor Alarms

JI Alarm

J2 Alarm

Possible States

SilentlRinging

SilentlRinging

Silent/Ringing

SilentlRinging

Silent/Ringing

SilentlRinging

The output lines used by the control system are:-

Compressor Signals

JI Start

---J2 Start

JI Stop

J2 Stop

209

OvUet Isolation Valve
Low Pressure High Pressure
aaslnlet aasOu\let

Compress« Extra High
Jl Pressure

Inlet Jl Vent HIgh Pr
Isolation VaNes

LowPressur8

Compress« Extra Low
J2 l'nIssunt

J2Vent Pressure Detection
Switches

c:kJ Nonnally Closed c:kJ Normally Open

Valve Valve

Figure 26 Plant Schematic.

210

Valve Signals

Open Inlet Valve

Open Outlet Valve

Open Bypass Valve

Open 11 Isolation Valves

Open J2 Isolation Valves

Open 11 Vent Valve

Open 12 Vent Valve

Close Inlet Valve

Close Outlet Valve

Close Bypass Valve

Close 11 Isolation Valves

Close 12 Isolation Valves

Close 11 Vent Valve

Close J2 Vent Valve

The controller uses a number of overrides:-

Overrides

Extra Low Pressure aiR

Low Pressure aIR

11 Low Pressure Oil aIR

12 Low Pressure Oil aiR

Possible States

Set/Reset

SetlReset

SetlReset

Set/Reset

Note the compressor alarms have two parts. The first is the Low Pressure Oil alarm, this may be

overridden. The second part includes a number of alarms such as high pressure and temperature

alarms, this may not be overridden. These individual alarms may all cause the compressor alarm to

ring.

The system operates cyclically. One compressor is used to raise the pressure in the storage vessel from

-tIie low pressUre level to~thehigh-pressure level:- The-comptessods then-switched off;-Asgas is

drawn from the storage vessel the pressure falls. When it reaches the low pressure level the other

compressor is used to repeat the procedure.

211

1. At power on or in the event of a power failure the system reverts to its fail safe condition.

That is:-

a) Both compressors are off.

b) The Inlet and Outlet valves are closed.

c) The Bypass valve is open.

d) The isolation and vent valves on both compressors are open.

2. The plant must be shut down if:-

a) The Extra High Pressure alarm is ringing.

b) The Manual Stop button is pressed.

c) Both compressors fail.

3. A compressor has failed if either of the following is true:-

a) Its alarm is ringing.

b) The compressor is running and the Extra Low Pressure alarm is ringing.

4. A compressor which has broken down may not be used again until it has been repaired.

5. Ouly one compressor should be running at a time.

6. When a compressor is running, the compressor which is not being used must be isolated. A

compressor is isolated if all the following conditions are met :-

a) It is off.

b) Its isolation valves are closed.

c) Its vent valve is open.

d) Its Low Pressure Oil alarm is overridden.

7. The start up procedure for a compressor is:-

a) Open the compressor isolation valves.

b) Wait for Low Pressure alarm to ring.

c) Close the compressor vent valve.

----d)--Startthecompressor.-- --- ---

e) After 30 seconds, remove the Low Pressure Oil alarm override.

f) After 40 seconds, close the Bypass valve.

212

g) Open the Inlet and Outlet valves.

This process can be aborted at any stage if the compressor alarm begins to ring. To shut the

compressor down safely the appropriate part of section 8. should be used.

The initial start up procedure is slightly different, as it has to take account of there being very little

pressure in the storage vessel. Two operations are added. Firstly the Extra Low Pressure alarm is

overridden. The procedure then continues as normal until the end when there is a further wait of 3

minutes, when the Extra Low Pressure alarm override is removed.

8. The complete shut down procedure for a compressor is:-

a) The compressor Low Pressure Oil alarm is overridden.

b) The compressor is switched off.

c) The Inlet and Outlet valves are closed.

d) The compressor vent valve is opened.

e) After 40 seconds, the Bypass valve is opened.

f) After a further 20 seconds, the compressor Isolation valves are closed.

A partial shut down of a compressor must use parts a and b, the other parts will depend on the point

at which the compressor breaks down.

9. The end of a compression cycle is indicated by:-

a) The plant needing to be shut down (see 2 above).

b) The compressor breaking down (see 3 above).

c) The High Pressure alarm ringing.

H.2. A Fonnal Specification of The Plant Operation.

H.2.I. State and type specification.

-An informal description-uf the system is-given above. -The formal specification arrived at-is given- ---

below.

213

Using the subset gives the following data type defmitions:-

1* The current version of the specification language:

vdm5

1* The type for defining the state

compose PlantState of

end

Bypass . Valve .
Isoll · Valve ·
Iso12 : Valve

Ventl : Valve

Vent2 · Valve ·
InOutlet : Valve

EHP : Alarm .,"

HP : Alarm

LP : ORAlarm

ELP : ORAlarm

Compressor : Selectedcompressor

Compl : CompState

Comp2 : CompState

ComplLock : Lockout

Comp2Lock : Lockout

ComplAlarm : ORAlarm

Comp2Alarm : ORAlarm

OperatorSwitch : switch

1* Associated data types

Valve = { OPEN , CLOSED }

Alarm = { ON , OFF , UNKNOWN }

ORAlarm = { ON , OFF , OVERRIDE , UNKNOWN }

-Select-edCompressor =TCOMPl -, COMP2-, NONE}--·

CompState = { ON , OFF }

Lockout = { SET , RESET }

214

switch = { ON I OFF I UNKNOWN }

enddefine

The initial state is also a fail safe state. The state and

its initial value are as follows:-

1* state variable name and type

state
pstate : PlantState

1* Initial state

initial

end

(Bypass (PState) = OPEN
and Iso11 (pstate) = OPEN

and Iso12(PState) = OPEN
and Ventl (pstate) = OPEN
and Vent2 (PState) = OPEN

and InOutlet(PState) = CLOSED
and EHP(PState) = UNKNOWN
and HP (Pstate) = UNKNOWN
and LP (pstate) = UNKNOWN
and ELp(pstate) = UNKNOWN
and Compressor (pstate) = NONE
and Compl(PState) = OFF
and Comp2(PState) = OFF

and ComplLock(PState) = RESET

and comp2Lock(PState) = RESET

and ComplAlarm(PState) = UNKNOWN

and Comp2Alarm(PState) = UNKNOWN

and OperatorSwitch(PState) = UNKNOWN

H.2.2. Specification structure.

The structure diagram for the specification is shown in the figure (Figure 27) below.

215

I
StartUpPlant

Figure 27 structure
Specification.

PIantSeq""""""

DoWorIdngCycle

of the

216

I
ShutPtantOown

Plant Controller

H.2.3. Specification of the operation PlantSequencer.

At the highest level the system is defined as only a single operation, specifying the desired start and

end conditions. In this way the requirements for these are explicitly established i.e. whatever happens

during the plant's working, the control system must ensure that the plant ends in the fail safe condition.

The operation is specified as foIlows:-

SEQ

DO 1 :

PlantSequencer ()

ext

pre

wr Bypass (PState) : Valve

wr Isoll(PState) : Valve

wr Isol2(Pstate) : Valve
wr Ventl(PState) · Valve ·
wr Vent2(PState) · Valve ·
wr InOutlet(PState) : Valve
wr EHP(PState) : Alarm
wr HP (pstate) · Alarm ·
wr LP (pstate) · ORAlarm ·
wr ELP(PState) : ORAlarm

wr Compressor(pstate) : SelectedCompressor

wr Compl(pstate) : Compstate

wr Comp2(PState) : Compstate

wr ComplLock(PState) : Lockout

wr Comp2Lock(PState) : Lockout

wr ComplAlarm(PState) : ORAlarm

wr Comp2Alarm(Pstate) : ORAlarm

wr Operatorswitch(PState) : switch

Bypass (PState) = OPEN and

Isoll(PState) = OPEN and
Isol2(PState) = OPEN and

217

post

Ventl(PState) = OPEN and

Vent2(PState) = OPEN and
InOutlet(Pstate) = CLOSED and
EHP(PState) = UNKNOWN and

HP (PState) = UNKNOWN and

LP (PState) = UNKNOWN and

ELP(PState) = UNKNOWN and
Compressor (pstate) = NONE and

Compl(PState) = OFF and
Comp2(PState) = OFF and
ComplLock(PState) = RESET and
Comp2Lock{PState) = RESET and

ComplAlarm(PState) = UNKNOWN and

Comp2Alarm(PState) = UNKNOWN arid

OperatorSwitch{PState) = UNKNOWN

Bypass (PState) = OPEN and

Isol1(PState) = OPEN and
Ventl(Pstate) = OPEN and
Iso12(PState) = OPEN and
Vent2 (pstate) = OPEN and
InOutlet{pstate) = CLOSED
Compl (PState) = OFF and
Comp2{PState) = OFF and

EHP{PState) = UNKNOWN and

HP(PState) = UNKNOWN and

and

LP (pstate) = UNKNOWN and

ELP{PState) = UNKNOWN and

Compressor (pstate) = NONE and
Compl(PState) = OFF and

Comp2(PState) = OFF and

ComplLock{PState) = RESET and

Comp2Lock{PState) = RESET and
-----------ComplAlarm(PState)-=-UNKNOWN-and----------------------------

Comp2Alarm{PState) = UNKNOWN and

OperatorSwitch{PState) = UNKNOWN

218

endpost

endop

This single operation is then decomposed into a sequence of three further operation:-

StartUpPlant

Do WorkingCyc\e

ShutplantDown

H.2.4. Specification of the operation SlartUpPlant.

The operation StartUpPlant describes the start up of the plant when there is no high pressure gas in

the system. There are three possible outcomes of this operation. These are represented by the lhree
disjuncts in the post condition. They three cases are:-

(a) The first compressor (Compressorl) starts successfully and begins to compress gas correctly.

The other compressor (Compressor2) remains switched off and isolated from the high pressure

gas.

(b) The first compressor fails to start or compress gas correctly and is switched off, isolated and

has its Lock flag set. The second compressor then starts successfully and begins to compress

gas correctly.

(c) Both compressors fail in some way and are switched off, isolated and have their Lock flags

set.

The specification of this operation is as follows:-

SEQ

DO 2

startUpPlant ()

ext

wr Bypass (PState)-:Valve-

wr Isoll(PState) : Valve

wr Iso12(PState) Valve

219

pre

post

wr Ventl(Pstate) : Valve

wr Vent2(PState) : Valve
wr Inoutlet(PState) : Valve

wr EHP(PState) : Alarm

wr HP(PState) : Alarm
wr LP(PState) : ORAl arm

wr ELP(PState) : ORAlarm
wr

wr

Compressor (PState) : SelectedCompressor

Compl(PState) : Compstate

wr

wr
wr

wr

wr
wr

Comp2(PState) : Compstate

ComplLock(PState) : Lockout

Comp2Lock(PState) : Lockout

ComplAlarm(PState) : ORAlarm
Comp2Alarm(PState) : ORAlarm

Operatorswitch(PState) : switch

Bypass (PState) = OPEN and

Isoll(PState) = OPEN and

Isol2(PState) = OPEN and

Ventl(PState) = OPEN and
Vent2(PState) = OPEN and

InOutlet(PState) = CLOSED
EHP(PState) = UNKNOWN and
HP(PState) = UNKNOWN and
LP(PState) = UNKNOWN and

ELP(PState) = UNKNOWN and
Compressor (PState) = NONE
Compl(PState) = OFF and
Comp2(PState) = OFF and
ComplLock(PState) = RESET
Comp2Lock(PState) = RESET

and

and

and

and
ComplAlarm(PState) = UNKNOWN and

Comp2Alarm(PState) = UNKNOWN and

OperatorSwitch(PState) = UNKNOWN

220

(Compressor (Pstate) = COMPI and

CompILock(Pstate) = RESET and

Compl(PState) = ON and
Isoll(PState) ,= OPEN and

Ventl(PState) = CLOSED and
Bypass (pstate) = CLOSED and

Inoutlet(PState) = OPEN and

EHP(PState) = OFF and
HP (pstate) = OFF and

LP (pstate) = OFF and

ELP(PState) = OFF and

CompIAlarm(PState) = OFF and

Comp2Lock(PState) = RESET and

Comp2(PState) = OFF and

Iso12(PState) = CLOSED and
Vent2(PState) = OPEN and
Comp2Alarm(PState) = OVERRIDE and

OperatorSwitch(PState) = ON)

or (Compressor(PState) = COMP2 and

Comp2Lock(PState) = RESET and

Comp2(PState) = ON and
Iso12(PState) = OPEN and

Vent2(PState) = CLOSED and
Bypass (pstate) = CLOSED and

Inoutlet(pstate) = OPEN and

EHP(PState) = OFF and

HP (pstate) = OFF and

LP (PState) = OFF and

ELP(PState) = OFF and

Comp2Alarm(PState) = OFF and

CompILock(PState) = SET and

Compl(PState) = OFF and

Isoll(PState) = CLOSED and

Vent I (pstate) = OPEN and
CompIAlarm(PState) = OVERRIDE and

OperatorSwitch(PState) = ON)

221

or (Compressor(PState) = NONE and

ComplLock(Pstate) = SET and

Comp2Lock(PState) = SET and

Compl (PState) = OFF and

Comp2 (PState) = OFF and

Isoll(PState) = OPEN and

Ventl(PState) = OPEN and

Iso12(PState) = OPEN and

Vent2(PState) = OPEN and
Bypass (pstate) = OPEN and

InOutlet(PState) = CLOSED and

EHP(PState) = OFF and

HP (pstate) = OFF and

LP (Pstate) = OFF and

ELP(PState) = OFF and
ComplAlarm(pstate) = OVERRIDE and

Comp2Alarm(PState) = OVERRIDE and
OperatorSwitch(pstate) = ON)

end post
endop

END

H.2.S. Specification of the operation Do WorkingCycle.

The operation DoWorkingCycle describes the nonnal working cycle of the plant during which gas is

compressed using alternate compressors. There are four possible outcomes of this operation:-

(a) At some time during the cycle both compressors fail. They are switched off and isolated.

(b) The operator switch is moved to the OFF position. Both compressors must be switched off

and isolated.

(c) The extra high pressure alarm begins to ring. This is an exceedingly dangerous condition.

Both compressors must be switched off and isolated.

(d) Both compressors failed during StartUp. The working cycle therefore does nothing.

222

The specification of this operation is as foIlows:-

SEQ

DO 3 :

DoWorkingCycle ()

ext

pre

wr Bypass (PState) : Valve

wr Isoli(PState) Valve

wr Iso12(PState) · Valve ·
wr Venti(Pstate) · Valve ·
wr Vent2(PState) · Valve ·
wr InOutlet(PState) : Valve

wr EHP(PState) · Alarm ·
wr HP (PState) : Alarm

wr LP (PState) : ORAlarm

wr ELP(PState) · ORAlarm ·
wr Compressor(PState) : SelectedCompressor
wr Compi(PState) : CompState

wr Comp2(PState) : CompState

wr CompiLock(PState) : Lockout

wr Comp2Lock(PState) : Lockout

wr CompiAlarm(PState) : ORAlarm

wr Comp2Alarm(PState) : ORAl arm

wr Operatorswitch(PState) : switch

(Compressor(pstate) = COMPi and

CompiLock(PState) = RESET and

Compi(PState) = ON and

Isoli(PState) = OPEN and

Venti(PState) = CLOSED and
Bypass (PState) = CLOSED and

InOutlet(pstate) = OPEN and

EHP(PState) = OFF and
HP(PState) = OFF and

223

LP (PState) = OFF and

ELP(PState) = OFF and
ComplAlarm(PState) = OFF and
Comp2Lock(PState) = RESET and

Comp2(PState) = OFF and

Iso12(PState) = CLOSED and

Vent2(PState) = OPEN and
Comp2Alarm(PState) = OVERRIDE and

OperatorSwitch(PState) = ON)

or (Compressor(PState) = COMP2 and
Comp2Lock(PState) = RESET and

Comp2(PState) = ON and

Iso12(PState) = OPEN and

Vent2(PState) = CLOSED and

or

Bypass (pstate) = CLOSED and

InOutlet(Pstate) = OPEN and

EHP(PState) = OFF and
HP (pstate) = OFF and

LP (PState) = OFF and

ELP(PState) = OFF and

Comp2Alarm(PState) = OFF and

ComplLock(PState) = SET and
Compl(PState) = OFF and

Isoll(PState) = CLOSED and

Ventl(PState) = OPEN and

ComplAlarm(PState) = OVERRIDE and

Operatorswitch(PState) = ON)

(Compressor(pstate) = NONE and
ComplLock(PState) = SET and
Comp2Lock(PState) = SET and

Compl(PState) = OFF and
Comp2(PState) = OFF and
Isol1(PState) = OPEN and
Ventl(PState) = OPEN and

Iso12(PState) = OPEN and

224

post

Vent2(PState) = OPEN and

Bypass (pstate) = OPEN and
InOutlet(pstate) = CLOSED and
EHP(PState) = OFF and

HP (PState) = OFF and

LP (PState) = OFF and

ELP(PState) = OFF and
ComplAlarm(PState) = OVERRIDE and

Comp2Alarm(PState) = OVERRIDE and

OperatorSwitch(PState) = ON)

(Compressor (pstate), = NONE and

Bypass (PState) = Bypass (pstate), and
Iso11 (pstate) = Iso11(PState), and
Iso12 (PState) = Iso12(Pstate), and
Ventl(PState) = Ventl(Pstate), and
Vent2(PState) = Vent2(Pstate), and
Inoutlet(pstate) = InOutlet(PState), and

EHP(PState) = EHP(PState), and

HP (PState) = HP (PState), and
LP (pstate) = LP (pstate), and

ELP(PState) = ELP(Pstate), and
Compressor (pstate) = Compressor (pstate), and

Compl(Pstate) = Compl(pstate), and

Comp2(PState) = Comp2(PState), and

ComplLock(PState) = ComplLock(PState), and

Comp2Lock(PState) = Comp2Lock(PState), and

ComplAlarm(PState) = ComplAlarm(PState), and

Comp2Alar.m(pstate) = Comp2Alarm(PState), and
OperatorSwitch(PState) = OperatorSwitch(PState),)

or (
((compressor (Pstate), = COMPl

or Compressor (pstate), = COMP2)

and ((Operatorswitch(PState) = OFF

225

and EHp(pstate) = OFF

a~ Compressor(Pstate) =
Compressor(pstate)')

or (EHP(Pstate) = ON

and 0 per a tor S wit c h (p S tat e) =

Operatorswitch(PState)'

~d compressor(PState) =
Compressor(pstate)')

or (Compressor (pstate) = NONE

and EHp(pstate) = OFF

and Operatorswitch(PState) =
Operatorswitch(PState)'

and ComplLock(PState) = SET

and Comp2Lock(PState) = SET))) and

HP (Pstate) = OFF and

LP(Pstate) = OFF and

ELP(PState) = OFF and

Compl(pstate) = OFF and

Comp2(pstate) = OFF and

Isol1(pstate) = OPEN and

Iso12(PState) = OPEN and

Ventl(PState) = OPEN and

Vent2(PState) = OPEN and

Bypass (PState) = OPEN and

Inoutlet(Pstate) = CLOSED and

ComplAlarm(PState) = OVERRIDE and

Comp2Alarm(PState) = OVERRIDE)

endpost

endop

END

H.2.6. Specification of the operation ShutPlantDown.

The operation ShutPlantDown ensures that at the end of the plant operation everything is returned to

its fail safe position. Its specification is as follows:-

226

SEQ

DO 4 :

ShutPlantDown ()

ext

pre

wr Bypass (PState) : Valve

wr Isoll (pstate) : Valve

wr Iso12(PState) · Valve ·
wr Ventl (PState) · Valve ·
wr Vent2(PState) · Valve ·
wr InOutlet(PState) : Valve

wr EHP(PState) : Alarm

wr HP (PState) · Alarm ·
wr LP (pstate) · ORAlarm ·
wr ELP(PState) : ORAl arm
wr Compressor(pstate) : SelectedCompressor

wr Compl(PState) : CompState

wr Comp2(PState) : CompState

wr ComplLock(PState) : Lockout

wr Comp2Lock(PState) : Lockout

wr complAlarm(PState) : ORAl arm

wr Comp2Alarm(PState) : ORAlarm

wr operatorswitch(PState) : switch

(Compressor(pstate) = NONE and

ComplLock(PState) = SET and

Comp2Lock(PState) = SET and

Compl(PState) = OFF and

Comp2(PState) = OFF and

Isoll (PState) = OPEN and

Ventl(PState) = OPEN and
Iso12(PState) = OPEN and
Vent2(PState) = OPEN and
Bypass (pstate) = OPEN and

InOutlet(PState) = CLOSED and

227

or

EHP(PState) = OFF and

HP(Pstate) = OFF and
LP (pstate) = OFF and

ELP(PState) = OFF and

ComplAlarm(PState) = OVERRIDE and
Comp2Alarm(PState) = OVERRIDE and

Operatorswitch(PState) = ON)

((Operatorswitch(PState)

and EHP(PState) = OFF)
or (EHP(PState) = ON

= OFF

and OperatorSwitch(PState) = ON)
and (Compressor (pstate) = COMPI

or Compressor (pstate) = COMP2) and

HP (pstate) = OFF and

LP (pstate) = OFF and
ELP(PState) = OFF and
Compl(PState) = OFF and
Comp2(PState) = OFF and

Isoll(PState) = OPEN and
Iso12(PState) = OPEN and
VentI(PState) = OPEN and
Vent2(PState) = OPEN and
Bypass (PState) = OPEN and

InOutlet(PState) = CLOSED and

ComplAlarm(PState) = OVERRIDE and

Comp2Alarm(PState) = OVERRIDE)

post Bypass(Pstate) = OPEN and

Isoll(PState) = OPEN and

VentI(Pstate) = OPEN and

Iso12(PState) = OPEN and

Vent2(PState) = OPEN and

Inoutlet(Pstate) = CLOSED and

Compl(PState) = OFF and

Comp2,(PState) = OFF and
EHP(PState) = UNKNOWN and

228

HP (PState) = UNKNOWN and
LP (PState) = UNKNOWN and
ELP(PState) = UNKNOWN and

Compressor (PState) = NONE and

Comp1(PState) = OFF and

Comp2(PState) = OFF and

Comp1Lock(PState) = RESET and
Comp2Lock(PState) = RESET and

Comp1A1arm(PState) = UNKNOWN and
Comp2A1arm(PState) = UNKNOWN and

OperatorSwitch(PState) = UNKNOWN

endpost

endop
END

END

!

H.3. Animation Code Produced by the Animation Process.

H.3.l. Preamble and state initialisation.

The SIMSCRIPT code produced by the animator is as follows:

PREAMBLE

TEMPORARY ENTITIES

EVERY P1antState HAS

A Bypass,

A Is011,

A Is012,

A Vent1,

A Vent2,

229

A Inout1et,

A EHP,
A HP,

A LP,

A ELP,

A Compressor,

A Comp1,

A Comp2,

A Comp1Lock,

A Comp2Lock,

A Comp1A1arm,

A Comp2A1arm,

A Operatorswitch

DEFINE Bypass AS AN INTEGER VARIABLE

DEFINE Iso11 AS AN INTEGER VARIABLE

DEFINE Iso12 AS AN INTEGER VARIABLE

DEFINE Vent1 AS AN INTEGER VARIABLE

DEFINE Vent2 AS AN INTEGER VARIABLE

DEFINE InOut1et AS AN INTEGER VARIABLE

DEFINE EHP AS AN INTEGER VARIABLE

DEFINE HP AS AN INTEGER VARIABLE

DEFINE LP AS AN INTEGER VARIABLE

DEFINE ELP AS AN INTEGER VARIABLE

DEFINE Compressor AS AN INTEGER VARIABLE

DEFINE Comp1 AS AN INTEGER VARIABLE

DEFINE Comp2 AS AN INTEGER VARIABLE

DEFINE Comp1Lock AS AN INTEGER VARIABLE

DEFINE Comp2Lock AS AN INTEGER VARIABLE

DEFINE Comp1A1arm AS AN INTEGER VARIABLE

DEFINE Comp2A1arm AS AN INTEGER VARIABLE

DEFINE Operatorswitch AS AN INTEGER VARIABLE

DEFINE •. OPEN TO MEAN 1
DEFINE •. CLOSED TO MEAN 2

DEFINE •• ON TO MEAN 3

DEFINE .. OFF TO MEAN 4

230

A InOutlet,

A EHP,

A HP,

A LP,

A ELP,

A Compressor,

A Compl,

A Comp2,

A ComplLock,

A Comp2Lock,

A ComplAlarm,

A Comp2Alarm,

A OperatorSwitch

DEFINE Bypass AS AN INTEGER VARIABLE

DEFINE Isoll AS AN INTEGER VARIABLE

DEFINE Isol2 AS AN INTEGER VARIABLE

DEFINE Ventl AS AN INTEGER VARIABLE

DEFINE Vent2 AS AN INTEGER VARIABLE

DEFINE InOutlet AS AN INTEGER VARIABLE

DEFINE EHP AS AN INTEGER VARIABLE

DEFINE HP AS AN INTEGER VARIABLE

DEFINE LP AS AN INTEGER VARIABLE

DEFINE ELP AS AN INTEGER VARIABLE

DEFINE Compressor AS AN INTEGER VARIABLE

DEFINE Compl AS AN INTEGER VARIABLE

DEFINE Comp2 AS AN INTEGER VARIABLE

DEFINE ComplLock AS AN INTEGER VARIABLE

DEFINE Comp2Lock AS AN INTEGER VARIABLE

DEFINE ComplAlarm AS AN INTEGER VARIABLE

DEFINE Comp2Alarm AS AN INTEGER VARIABLE

DEFINE Operatorswitch AS AN INTEGER VARIABLE

DEFINE •• OPEN TO MEAN 1

DEFINE •. CLOSED TO MEAN 2

DEFINE •• ON TO MEAN 3

DEFINE •• OFF TO MEAN 4

231

DEFINE •• UNKNOWN TO MEAN 5
DEFINE •• OVERRIDE TO MEAN 6

DEFINE •• COMP1 TO MEAN 7

DEFINE •• COMP2 TO MEAN 8

DEFINE •• NONE TO MEAN 9

DEFINE •• SET TO MEAN 10

DEFINE •• RESET TO MEAN 11

DEFINE PState AS A POINTER VARIABLE

END

ROUTINE Tim.Initialise.state

CREATE A PlantState CALLED PState

END

Bypass (PState) = •• OPEN

Isol1(PState) = .. OPEN

Iso12(PState) = .. OPEN

Vent1(PState) = .. OPEN

Vent2(PState) = .. OPEN
InOutlet(PState) = .. CLOSED

EHP(PState) = .. UNKNOWN
HP (pstate) = .. UNKNOWN

LP (PState) = .. UNKNOWN

ELP(PState) = .. UNKNOWN

Compressor (pstate) = •• NONE

Comp1(PState) = .. OFF

Comp2(PState) = .. OFF

Comp1Lock(PState) = .. RESET

Comp2Lock(PState) = .. RESET

Comp1Alarm(PState) = •. UNKNOWN

Comp2Alarm(PState) = •• UNKNOWN
Operatorswitch(PState) = .. UNKNOWN

H.3.2. Routine P1antSequencer.

232

ROUTINE PlantSequencer
DEFINE Temp.Tim.Bypass.pstate,

Temp.Tim.Isoll.PState,

Temp.Tim.Iso12.PState,

Temp.Tim.Ventl.PState,
Temp.Tim.Vent2.PState,
Temp.Tim.InOutlet.PState,

Temp. Tim. EHP. PState,

Temp.Tim.HP.PState,

Temp.Tim.LP.PState,

Temp.Tim.ELP.PState,
Temp.Tim. Compressor. pstate,

Temp.Tim.Compl.PState,
Temp.Tim.Comp2.PState,

Temp.Tim.ComplLock.PState,

Temp.Tim.Comp2Lock.PState,
Temp. Tim. ComplAlarm. pstate,

Temp.Tim.Comp2Alarm.PState,

Temp.Tim.OperatorSwitch.PState

AS INTEGER VARIABLES

LET Temp.Tim.Bypass.pstate = Bypass(Pstate)

LET Temp.Tim.Isoll.PState = Isoll(PState)
LET Temp.Tim.Iso12.PState = Iso12(PState)

LET Temp.Tim.Ventl.PState = Ventl(PState)

LET Temp.Tim.Vent2.PState = Vent2(PState)

LET Temp.Tim.lnoutlet.PState = InOutlet(PState)

LET Temp.Tim.EHP.PState = EHP(PState)

LET Temp.Tim.HP.PState = HP(PState)

LET Temp.Tim.LP.PState = LP(PState)

LET Temp.Tim.ELP.PState = ELP(PState)
LET Temp.Tim.Compressor.PState = Compressor(pstate)

LET Temp.Tim.Compl.PState = Compl(PState)
LET Temp.Tim.Comp2.PState = Comp2(PState)

LET Temp.Tim.ComplLock.pstate = ComplLock(PState)

LET Temp.Tim.Comp2Lock.pstate = Comp2Lock(PState)

LET Temp.Tim.ComplAlarm.PState = ComplAlarm(PState)

233

LET Temp.Tim.Comp2Alarm.PState = Comp2Alarm(PState)

LET Temp.Tim.Operatorswitch.PState =
OperatorSwitch(PState)

CALL Tim.Update.Display GIVEN "PlantSequencer",

"Pre "

IF (Bypass (pstate) = •• OPEN

and Isoll(PState) = .. OPEN

and Iso12(PState) = .. OPEN

and Ventl(PState) = .. OPEN
and Vent2(PState) = .. OPEN

and InOutlet(PState) = .. CLOSED
and EHP(PState) = .. UNKNOWN

and HP(Pstate) = •• UNKNOWN

and LP(Pstate) = .. UNKNOWN
and ELP(PState) = .. UNKNOWN

and Compressor(Pstate) = .. NONE

and Compl(PState) = .. OFF

and Comp2(PState) = •• OFF

and ComplLock(PState) = .. RESET

and Comp2Lock(PState) = .. RESET
and ComplAlarm(pstate) = •• UNKNOWN

and Comp2Alarm(PState) = .. UNKNOWN

and OperatorSwitch(PState) = .. UNKNOWN)

LET Bypass (pstate) = •• OPEN
LET Iso11 (pstate) = · . OPEN
LET Ventl(Pstate) = • . OPEN
LET Iso12(PState) = • .OPEN
LET Vent2(PState) '" • .OPEN
LET Inoutlet(PState) = .. CLOSED

LET Compl(PState) = .. OFF

LET Comp2(PState) = .. OFF

LET EHP(Pstate) = .. UNKNOWN
LET HP(PState) = •• UNKNOWN

LET LP(PState) = .. UNKNOWN

234

LET ELP(Pstate) = .. UNKNOWN
LET Compressor(PState) = .. NONE
LET Compl(PState) = .. OFF

LET Comp2(PState) = .. OFF

LET ComplLock(PState) = .. RESET

LET Comp2Lock(PState) = •• RESET

LET ComplAlarm(PState) = •• UNKNOWN
LET Comp2Alarm(PState) = •• UNKNOWN

LET Operatorswitch(PState) = •• UNKNOWN
ENDIF

CALL Tim.Update.Display GIVEN "PlantSequencer",

"Post"

DECOMPOSITION

END

CALL StartUpPlant
CALL DoWorkingCycle

CALL ShutPlantDown

H.3.3. Routine StartUpPlant.

ROUTINE StartupPlant

DEFINE Temp.Tim.Bypass.PState,

Temp.Tim.Isoll.PState,

Temp.Tim.Iso12.PState,

Temp.Tim.Ventl.PState,
Temp.Tim.Vent2.PState,

Temp.Tim.InOutlet.PState,

Temp.Tim.EHP.PState,

Temp.Tim.HP.PState,

Temp.Tim. LP. PState,

Temp.Tim.ELP.PState,

Temp.Tim.Compressor.PState,
Temp.Tim.Compl.PState,

Temp.Tim.Comp2.PState,

Temp.Tim.ComplLock.PState,

235

.. -~

LET
LET

LET

LET

LET

Temp.Tim.Cornp2Lock.PState,
Temp.Tim.CornplAlarm.PState,

Temp.Tim.Cornp2Alarm.PState,

Temp.Tim.Operatorswitch.PState

AS INTEGER VARIABLES

Temp.Tim.Bypass.pstate = Bypass(Pstate)
Temp. Tim. Isoll.PState = Isoll(PState)
Temp.Tim.Iso12.PState = Iso12(PState)
Temp.Tim.Ventl.PState = Ventl(PState)

Temp.Tim.Vent2.PState = Vent2(PState)

LET Temp.Tim.InOutlet.PState = Inoutlet(PState)

LET Temp.Tim.EHP.PState = EHP(PState)
LET Temp.Tim.HP.PState = HP(PState)

LET Temp.Tim.LP.PState = LP(PState)

LET Temp.Tim.ELP.PState = ELP(PState)

LET Temp.Tim.Cornpressor.pstate = Compressor(PState)

LET Temp.Tim.Cornpl.PState = Compl(PState)

LET Temp.Tim.Comp2.PState = Comp2(PState)
LET Temp.Tim.ComplLock.pstate = ComplLock(PState)

LET Temp.Tim.Comp2Lock.pstate = Comp2Lock(PState)

LET Temp.Tim.CornplAlarm.pstate = ComplAlarm(PState)

LET Temp.Tim.Comp2Alarm.PState = Cornp2Alarm(PState)

LET Temp.Tim.OperatorSwitch.PState =
Operatorswitch(PState)

CALL Tim.Update.Display GIVEN "startupPlant",

IF (

"Pre 11

Bypass (pstate) = .• OPEN

and Isoll(PState) = • .OPEN
and Iso12(PState) = • .OPEN
and Ventl(PState) = • .OPEN
and Vent2(PState) = • .OPEN
and Inoutlet(PState) = •• CLOSED

and EHP(PState) = •• UNKNOWN

and HP(Pstate) = •• UNKNOWN

236

and LP(Pstate) = •• UNKNOWN

and ELP(PState) = •• UNKNOWN
and Compressor(PState) = •• NONE
and Compl(PState) = •• OFF

and Comp2(PState) = •• OFF

and ComplLock(PState) = •• RESET

and Comp2Lock(PState) = •• RESET

and ComplAlarm(PState) = •• UNKNOWN

and Comp2Alarm(PState) = •• UNKNOWN

and OperatorSwitch(pstate) = •• UNKNOWN)

SELECT CASE

CASE

.

CASE

LET Compressor(PState) = .• COMPi

LET ComplLock(PState) = •• RESET

LET Compl(PState) = •• ON

LET Isoll(PState) = •. OPEN

LET Venti(PState) = •• CLOSED

LET Bypass(PState) = •• CLOSED

LET InOutlet(PState) = •• OPEN
LET EHP(PState) = •• OFF

LET HP(PState) = •• OFF

LET LP(PState) = •• OFF

LET ELP(PState) = •• OFF

LET ComplAlarm(PState) = .• OFF

LET Comp2Lock(PState) = •. RESET

LET Comp2(PState) = .. OFF

LET Iso12(PState) = .. CLOSED

LET Vent2(PState) = •• OPEN

LET Comp2Alarm(PState) = •• OVERRIDE
LET OperatorSwitch(PState) = •• ON

LET Compressor(PState) = .• COMP2

LET Comp2Lock(PState)-= •• RESET

LET Comp2(PState) = •• ON

237

CASE

LET Iso12(PState) = .• OPEN
LET Vent2(pstate) = .. CLOSED

LET Bypass(Pstate) = •• CLOSED
LET InOutlet(PState) = .. OPEN

LET EHP(PState) = •• OFF

LET HP(PState) = .. OFF
LET LP(PState) = .. OFF

LET ELP(PState) = .. OFF

LET Comp2Alarm(PState) = .. OFF

LET ComplLock(PState) = .. SET

LET Compl(Pstate) = .. OFF
LET Isoll(pstate) = •• CLOSED

LET Ventl(Pstate) = .. OPEN
LET ComplAlarm(PState) = .. OVERRIDE

LET OperatorSwitch(PState) = .. ON

LET Compressor (PState) = • • NONE
LET ComplLock(PState) = •• SET

LET Comp2Lock(PState) = •• SET

LET Compl(pstate) = • .OFF
LET Comp2(PState) = • .OFF
LET Iso11 (Pstate) = • .OPEN
LET Ventl (PState) = • . OPEN
LET Iso12(PState) = • .OPEN
LET Vent2(PState) = • .OPEN
LET Bypass(pstate) = .;OPEN

LET InOutlet(PState) = •• CLOSED

LET EHP(PState) = •• OFF

LET HP (pstate) = •• OFF

LET LP (pstate) = •• OFF

LET ELP(PState) = •• OFF

LET ComplAlarm(PState) = • • OVERRIDE
LET Comp2Alarm(PState) = • • OVERRIDE
LET OperatorSwitch(pstate) = .• ON

ENDS ELECT

ENDIF

238

END

CALL Tim.Update.Display GIVEN "StartUpPlant",

"Post"

H.3.4. Routine DoWorkingCyde.

ROUTINE DoWorkingcycle

DEFINE Temp.Tim.Bypass.PState,

Temp. Tim. Isoll.PState,

Temp.Tim.Iso12.PState,

Temp.Tim.Ventl.PState,
Temp.Tim.Vent2.pstate,

Temp. Tim. Inoutlet.PState,

Temp.Tim.EHP.PState,
Temp. Tim. HP. pstate,

Temp.Tim.Lp.pstate,

Temp.Tim.ELP.PState,
Temp.Tim.Compressor.pstate,

Temp.Tim.Compl.PState,

Temp.Tim.Comp2.PState,

Temp.Tim.ComplLock.PState,
Temp.Tim.Comp2Lock.PState,

Temp.Tim.ComplAlarm.PState,
Temp.Tim.Comp2Alarm.PState,

Temp.Tim.OperatorSwitch.PState

AS INTEGER VARIABLES

LET Temp.Tim.Bypass.pstate = Bypass(pstate)

LET Temp.Tim.Isoll.PState = Isoll(PState)

LET Temp.Tim.Iso12.PState = Iso12(PState)

LET Temp.Tim.Ventl.PState = Ventl(PState)

LET Temp.Tim.Vent2.pstate = Vent2(PState)
LET Temp.Tim.Inoutlet.PState = Inoutlet(PState)
LET Temp.Tim.EHP.PState = EHP(PState)

LET Temp.Tim.HP.PState = HP(PState)

LET Temp.Tim.LP.PState = LP(PState)

239

LET Temp.Tim.ELp.pstate = ELP(pstate)

LET Temp.Tim.Compressor.pstate = Compressor(PState)

LET Temp.Tim.Compl.PState = Compl(PState)
LET Temp.Tim.Comp2.PState = Comp2(PState)

LET Temp.Tim.ComplLock.PState = ComplLock(PState)
LET Temp.Tim.Comp2Lock.pstate = Comp2Lock(Pstate)

LET Temp.Tim.ComplAlarm.PState = ComplAlarm(PState)

LET Temp.Tim.Comp2Alarm.PState = Comp2Alarm(PState)

LET Temp.Tim.OperatorSwitch.PState =
Operatorswitch(PState)

CALL Tim.Update.Display GIVEN "DoWorkingCycle",
npre ..

IF ((Compressor (PState) = .. COMPl

and ComplLock(PState) = •. RESET

and Compl(PState) = .. ON
and Isoll(PState) = .. OPEN
and Ventl(PState) = .. CLOSED

and Bypass(PState) = .. CLOSED

and InOutlet(PState) = .. OPEN

and EHP(Pstate) = •• OFF

and HP(Pstate) = .. OFF
and Lp(pstate) = •• OFF

and ELp(pstate) = .. OFF

and ComplAlarm(PState) = •• OFF

and Comp2Lock(PState) = •• RESET

and Comp2(PState) = .. OFF

and Iso12(PState) = .. CLOSED

and Vent2(PState) = .. OPEN

and Comp2Alarm(PState) = •• OVERRIDE

and Operatorswitch(PState) = •• ON)

OR (Compressor (Pstate) = .. COMP2

and Comp2Lock(PState) = .. RESET

and Comp2(PState) = •• ON

and Iso12(PState) = .. OPEN

and Vent2(PState) = .. CLOSED

240

and Bypass(PState) = •• CLOSED

and Inoutlet(PState) = •• OPEN
and EHP(PState) = •• OFF

and HP(PState) = •• OFF

and LP(PState) = •• OFF

and ELP(PState) = •• OFF

and Comp2Alarm(PState) = •• OFF

and ComplLock(PState) = •• SET
and Compl(PState) = •• OFF

and Isoll(PState) = •• CLOSED
and Ventl(PState) = •• OPEN
and ComplAlarm(PState) = •• OVERRIDE

and Operatorswitch(PState) = .. ON)

OR (Compressor(PState) = •• NONE

and ComplLock(PState) = .. SET

and Comp2Lock(PState) = •• SET
and Compl(PState) = .. OFF
and Comp2(PState) = .. OFF

and Isoll(PState) = •• OPEN

and Ventl(PState) = .• OPEN
and Iso12(PState) = .• OPEN

and Vent2(PState) = •• OPEN

and Bypass(PState) = •• OPEN

and InOutlet(PState) = •• CLOSED

and EHP(PState)= •• OFF

and HP(PState) = •. OFF

and LP(PState) = •• OFF

and ELP(PState) = •. OFF

and ComplAlarm(PState) = •. OVERRIDE

and Comp2Alarm(PState) = •• OVERRIDE

and Operatorswitch(PState) = •• ON))

IF (Temp.Tim.Compressor.PState = .. NONE)
LET Bypass(pstate) = Temp.Tim.Bypass.pstate

LET Isoll(PState) = Temp.Tim.Isoll.PState

LET Iso12(PState) = Temp.Tim.Iso12.PState

LET Ventl(PState) = Temp.Tim.Ventl.Pstate

241

LET Vent2(PState) = Temp.Tim.Vent2.PState

LET InOutlet(PState) = Temp.Tim.InOutlet.PState

LET EHP(PState) = Temp.Tim.EHP.PState

LET HP(PState) = Temp.Tim.HP.PState

LET LP(PState) = Temp.Tim.LP.PState

LET ELP(PState) = Temp.Tim.ELP.PState

LET Compressor(pstate)

Temp.Tim.Compressor.pstate

LET Compl(PState) = Temp.Tim.Compl.PState

LET Comp2(PState) = Temp.Tim.Comp2.PState

=

LET COmplLock(PState) = Temp.Tim.ComplLock.PState

LET Comp2Lock(PState) = Temp.Tim.COmp2Lock.PState

LET COmplAlarm(PState) =

Temp.Tim.ComplAlarm.PState

LET Comp2Alarm(PState) =

Temp.Tim.comp2Alarm.PState

LET OperatorSwitch(PState) =
Temp.Tim.Operatorswitch.PState

ENDIF

IF (Temp.Tim.Compressor.PState = •• COMPl

OR Temp.Tim.Compressor.PState = .. COMP2)

SELECT CASE .••••

CASE •••

LET Operatorswitch(PState) = •• OFF

LET EHP(PState) = .. OFF

LET Compressor(PState) =
Temp.Tim.Compressor.PState

CASE •.•

LET EHP(PState) = .. ON

LET OperatorSwitch(PState) =
Temp.Tim.Operatorswitch.PState

LET Compressor(PState) =
Temp.Tim.Compressor.PState

CASE •.•

242

END

LET Compressor(PState) = .• NONE

LET EHP(PState) = .. OFF

LET Operatorswitch(PState) =

Temp. Tim. Operatorswitch. PState

LET CompILock(PState) = •. SET
LET Comp2Lock(PState) = .. SET

ENDSELECT

LET HP(PState) = .. OFF

LET LP(PState) = .. OFF

LET ELP(pstate) = •• OFF

LET Compl (PState) = • .OFF
LET Comp2 (pstate) = • .OFF
LET Isoll (PState) = • .OPEN
LET Iso12 (pstate) = • • OPEN
LET Ventl (pstate) = • .OPEN
LET Vent2(PState) = • • OPEN
LET Bypass(pstate) = .. OPEN

LET Inoutlet(PState) = .. CLOSED

LET CompIAlarm(PState) = •• OVERRIDE

LET Comp2Alarm(PState) = •• OVERRIDE
ENDIF

ENDIF

CALL Tim.Update.Display GIVEN "DoWorkingCycle",

"Post"

H.3.S. Routine ShutPlantDown.

ROUTINE ShutPlantDown

DEFINE Temp.Tim.Bypass.PState,

Temp.Tim.Isoll.PState,

Temp.Tim.Iso12.PState,

Temp.Tim.Ventl.PState,

Temp.Tim.Vent2.PState,

Temp.Tim.InOutlet.PState,

243

Temp.Tim.EHP.PState,

Temp.Tim.HP.PState,
Temp.Tim.LP.PState,

Temp.Tim.ELP.PState,
Temp.Tim.Compressor.PState,
Temp.Tim.Compl.PState,

Temp. Tim. Comp2. PState,

Temp.Tim.ComplLock.PState,

Temp.Tim.Comp2Lock.PState,

Temp. Tim. ComplAlarm. pstate,

Temp.Tim.Comp2Alarm.PState,
Temp.Tim.Operatorswitch.PState
AS INTEGER VARIABLES

LET Temp.Tim.Bypass.pstate = Bypass(Pstate)

LET Temp.Tim.Isoll.PState = Isoll(PState)

LET Temp.Tim.Iso12.PState = Iso12(PState)

LET Temp.Tim.Ventl.PState = Ventl(PState)

LET Temp.Tim.Vent2.PState = Vent2(PState)

LET Temp.Tim.Inoutlet.PState = Inoutlet(PState)

LET Temp.Tim.EHP.PState = EHP(PState)
LET Temp.Tim.HP.PState = HP(PState)

LET Temp.Tim.LP.PState = LP(PState)
LET Temp.Tim.ELP.PState = ELP(PState)

LET Temp.Tim.Compressor.pstate = Compressor(PState)

LET Temp.Tim.Compl.PState = Compl(PState)

LET Temp.Tim.Comp2.PState = Comp2(PState)

LET Temp.Tim.ComplLock.PState = ComplLock(PState)

LET Temp.Tim.Comp2Lock.PState = Comp2Lock(PState)

LET Temp.Tim.ComplAlarm.PState = ComplAlarm(PState)
LET Temp.Tim.Comp2Alarm.PState = Comp2Alarm(PState)

LET Temp.Tim.Operatorswitch.PState =
Operatorswitch(PState)

CALL Tim.Update.Display GIVEN "ShutPlantDown",
"Pre It

244

IF (

)

(Compressor (PState) = .. NONE
and ComplLock(PState} = •. SET

and Comp2Lock(PState} = .. SET
and Compl(PState} = .. OFF

and Comp2(PState} = .. OFF

and Isoll(PState} = .• OPEN
and Ventl(pstate} = .. OPEN

and Iso12(PState} = .. OPEN

and Vent2(PState} = .. OPEN
and Bypass(pstate} = .. OPEN

and Inoutlet(PState} = .. CLOSED

and EHP(PState} = .. OFF

and HP(PState} = .. OFF
and LP(PState} = .. OFF

and ELP(PState} = •• OFF
and ComplAlarm(PState} = .. OVERRIDE
and Comp2Alarm(pstate} = .. OVERRIDE

and Operatorswitch(PState} = .. ON }

OR (((Operatorswitch(PState) = .. OFF
and EHp(pstate} = .. OFF }

OR (EHP(PState) = •• ON

and OperatorSwitch(PState} = •• ON }

and (Compressor (pstate) = .. COMPl

OR Compressor(pstate} = .. COMP2 }
and HP(PState} = .. OFF

and LP(PState} = .. OFF

and ELP(PState} = •• OFF

and Compl(PState} = •• OFF

and Comp2(PState} = .. OFF

and Isoll(PState} = .. OPEN

and Iso12(PState) = .. OPEN

and Ventl(PState} = .. OPEN

and Vent2(PState} = .. OPEN
and Bypass(pstate} = •. OPEN

and Inoutlet(PState} = .. CLOSED

arid ComplAlarm(PState) = .. OVERRIDE

245

END

and Comp2Alarm(pstate) = •• OVERRIDE))

LET Bypass(PState) = .. OPEN
LET Isoll(PState) = .. OPEN

LET Ventl(Pstate) = .. OPEN
LET Iso12(PState) = .. OPEN
LET Vent2(PState) = .. OPEN

LET Inoutlet(PState) = •• CLOSED
LET Compl(PState) = .. OFF

LET Comp2(PState) = .. OFF

LET EHP(PState) = •• UNKNOWN

LET HP(PState) = •• UNKNOWN

LET LP(PState) = .• UNKNOWN

LET ELP(Pstate) = .. UNKNOWN
LET Compressor(PState) = .. NONE

LET Compl(PState) = •• OFF

LET Comp2(PState) = .. OFF
LET ComplLock(PState) = •• RESET

LET Comp2Lock(PState) = .. RESET

LET ComplAlarm(PState) = .• UNKNOWN

LET comp2Alarm(Pstate) = .. UNKNOWN

LET OperatorSwitch(PState) = •• UNKNOWN
ENDIF

CALL Tim.Update.Display GIVEN "ShutPlantDown",

"Post"

MAIN

END

H.3.6. Routine Tim.Update.Display.

ROUTINE Tim.Update.Display GIVEN Op.Name, Condition

DEFINE Op.Name, Condition AS TEXT VARIABLES

246

LET DTVAL.A(DFIELD.F(** Op Box Name ** , ** Main.Form

**)

= Op.Name

DISPLAY DFIELD.F(** Op Box Name ** , ** Main.Form **)

LET DTVAL.A(DFIELD.F(** Condition Box Name **,**

Main.Form **)

= Condition

DISPLAY DFIELD.F(** Condition Box Name **

Main.Form **)

SELECT CASE Bypass(PState)

CASE •• OPEN

** Update appropriate icon **

CASE •• CLOSED

** Update appropriate icon **

ENDS ELECT

SELECT CASE Isoll(pstate)

CASE •. OPEN

** Update appropriate icon **

CASE •• CLOSED

** Update appropriate icon **

ENDS ELECT

SELECT CASE Iso12(pstate)

CASE •• OPEN

** Update appropriate icon **

CASE •• CLOSED

** Update appropriate icon **

247

, **

ENDS ELECT

SELECT CASE Vent1(PState)

CASE •• OPEN

** Update appropriate icon **

CASE •• CLOSED

** Update appropriate icon **

ENDSELECT

SELECT CASE Vent2(PState)

CASE •• OPEN

** Update appropriate icon **

CASE •• CLOSED

** Update appropriate icon **

ENDS ELECT

SELECT CASE InOutlet(PState)

CASE •• OPEN

** Update appropriate icon **

CASE •• CLOSED

** Update appropriate icon **

ENDS ELECT

SELECT CASE EHP(PState)

CASE •• ON

** Update appropriate icon **

248

CASE •• OFF
** Update appropriate icon **

CASE •• UNKNOWN
** Update appropriate icon **

ENDSELECT

SELECT CASE HP(PState)

CASE • .ON

** Update appropriate icon **

CASE • .OFF
** Update appropriate icon **

CASE • .UNKNOWN
** Update appropriate icon **

ENDS ELECT

SELECT CASE LP(PState)

CASE • .ON

** Update appropriate icon **

CASE • .OFF
** Update appropriate icon **

CASE • . UNKNOWN
** Update appropriate icon **

CASE • • OVERRIDE
** Update appropriate icon **

ENDSELECT

SELECT CASE ELP(PState)

CASE •. ON

249

** Update appropriate icon **

CASE •• OFF

** Update appropriate icon **

CASE • .UNKNOWN

** Update appropriate icon **

CASE • • OVERRIDE

** Update appropriate icon **

ENDSELECT

SELECT CASE Compressor(PState)

CASE • .COMPl

** Update appropriate icon **
CASE •• COMP2

** Update appropriate icon **
CASE · . NONE

** Update appropriate icon **

ENDSELECT

SELECT CASE Compl(pstate)

CASE •• ON

** Update appropriate icon **

CASE .. OFF

** Update appropriate icon **

ENDS ELECT

SELECT CASE Comp2(PState)

CASE •. ON

** Update appropriate icon **

250

CASE •• OFF
** Update appropriate icon **

ENDSELECT

SELECT CASE ComplLock(PState)

CASE •• SET
** Update appropriate icon **

CASE •• RESET

** Update appropriate icon **

ENDS ELECT

SELECT CASE Comp2Lock(PState)

CASE •• SET

** Update appropriate icon **
CASE •. RESET

** Update appropriate icon **

ENDSELECT

SELECT CASE ComplAlarm(PState)

CASE • .ON
** Update appropriate icon **

CASE • .OFF
** Update appropriate icon **

CASE •• UNKNOWN

** Update appropriate icon **
CASE • . OVERRIDE

** Update appropriate icon **

251

ENDS ELECT

SELECT CASE Comp2Alarm(PState)

CASE • .ON
** Update appropriate icon **

CASE • .OFF
** Update appropriate icon **

CASE • • UNKNOWN
** Update appropriate icon **

CASE • • OVERRIDE
** Update appropriate icon **

ENDS ELECT

SELECT CASE Operatorswitch(PState)

CASE • .ON
** Update appropriate icon **

CASE • .OFF
** Update appropriate icon **

CASE • • UNKNOWN
** Update appropriate icon **

ENDS ELECT

END

H.3.7. Adding animated graphical displays.

Note that in StartUp aod DoWorkingCycle there are incomplete SELECT CASE statements. These

are used in the traoslation process when a number of possible solutions to the post condition exist. At

present it is up to the developer to add a method of selecting which one is to be demonstrated. Also

in the update graphics routines there are blaoks to be filled in detailing the effects on the display of a

certain value of a variable.

252

The following figures (Figure 28 to Figure 37) show displays from the animated prototype of this

specification.

253

"!I
~
11
~

Operation Name PlantSequancer

N Pr. Cond~lon
Cl)

'0 ...
0>
::s
rt H}i CXiNTINUEk\1
()
0
::s EHP
rt.
11
0 ... HP ...
(1)

Operator Switch
11

~ ON OFF LP

'0 AlARM ...
0>
::s OFF

ELP

rt
Cl:>
(1)
.a r::
(1)
::s
0
(1)
11

....

"l
~
11 Operation Name PlantSequen<:el'
Cl)

N Post I Condition
ID

'tI
f-'
pr
::s ..
rt

()
EHP 0

::s
rt
'1 OFF
0 HP f-'
f-' Operator Switch ALARM
(1) • '1

~ ON OFF LP
'"

I • 'tI AlARM
f-' ELP PI OFF ::s
rt
CIl
(1)
.!l • C
(1)
::s • 0
(1)
'1

'"

":I
~
11

"
Operation Name ~S~tartU~P::.P=lant:::...-____ ---.J

\01 Pre Condl1!on
0

't! ..-
III
::s
rt I?>i CONTINue({1 ,
()
0 ::s EHP
rt
11 OFF
0 ..- HP ..-
(1)

Operator Switch AlARM
11

~ ON OFF LP
'"

tIl AlARM
rt
III
11 OFF

ELP

rt c::
'0
't! ..-
III
::s
rt

~

~ ...
~
11
CD

w ...
'tI
f-'
III
::s
rt

n
0 ::s
rt
11
0
f-'
f-'
CD
11

~ ...,
CIl
rt
III
11
rt

.a:
'tI
f-'
III
::s
rt

N

Operation Name ~S~taJt\J~PP:...:I.~rrt~ ___ ---,

PTa Condition

Operator Switch

ON OFF

OFF

AlARM

AlARM

OFF

Please choose which end condition you require.

Compressor 1 started
Compressor 2 started (Compressor 1 failed)
Both Compressors failed

•
•

• •

EHP

HP

LP

ELP

"':f
~
t1 Operation Name StartUpPlant
CD

lA! Post I Condition
N

't!
I-'
III
::s
eT
()
0 ::s
eT

OFF '1
0
I-'
I-' Operator Switch ALARM
CD
'1

~ ON OFF
co

CIl
eT
III ON t1
eT
c::::
'0
't!
I-'
III
::s
eT

w

"!I
'§
t1
~

lA>
lA>

"tl
I-'
III
::s
rt

()
0
::s
rt
t1
0
I-'
I-'
(l)
t1

~ I '"
0
0
OS
0
t1
:>;'
fo'.
::s
-a
()
'<
0
I-'
(l)

I-'

Operation Name DoWorI<lngCydo

Operator Switch

ON OFF

PTa Condition

OFF

AlARM

ON

h}i com+~f)1

"'.I
1'.

~
11
~

W
'tl
I-'
PI
::s
rt
Cl
0 ::s
rt
'i
0
I-'
I-'
(1)
'i

N
c-o

Cl

~
0
'i
;>;'
fo'.
::s
"l
Cl
'<
0
I-'
(1)

N

Operation Name DoWorldngCyd.

Operator Switch

ON OFF

Pr. Condition

Please choose which end condition

Both Compressors failed
Operator Initiated shutdown
EHP alarm ringing

P:O:::j ootmtiuii(o:::l :-:.:-:. ;.;-:.

h;j
~
11
CD

'" III

It!
I-'
PJ
::s
rt
()
0
::s
rt
11
0
I-'
I-'
ID
11

N

'" ~
C
0
~
0
11
:>;'
,,".

::s
IQ
()

'<
0
I-'
ID

w

Opera1lon Name DoWortdngCydo

Operator Switch

ON OFF

Post I Condlllon

ALARM

OFF

H\i:OO~NU~(::::1 .' ,: ..

":I
~
t1
CD

w

'"
'0
I-'

'" ::l
rt
Cl
0
:::l
rt
t1
0
I-'
I-'
!1l
t1

~
N

tIl
::>'
C
rt
'0
I-'

'" :::l
rt
C
0
:e:
:::l

~

Operation Name

Operator Switch

ON OFF

ShutPlantOown

Pr. Condition

AlARM

OFF

I::::::::j coN11tiuej{:::1

"l
IQ
t::

Operation Name L..:S:::hut::P1c.:an::.:tD=OWII=-___ -----' t1
CD

Post I Condition W
-J

'"Cl
f-'
AI
!:I
rt

()
0
!:I

EHP
rt
ti OFF
0
f-' HP
f-'
Cl)

Operator Switch ALARM

ti
N
0- ON OFF LP
....

CIl ALARM
!:I'
t::
rt OFF

ELP

'"Cl
f-'
AI
!:I
rt
Cl
0
:f;
!:I ..,

H.3.S. Further decomposition of the specification.

The specification of the plant sequencer was further refioed by decomposing the DoWorkingCycle

operation into five sub-operations: WaitForCyc\eStart, StartCompressor, MonitorPlantAndCompressor,

StopCompressor, PrepareNextCompressor as shown in Figure 38 below.

264

Figure 38 Further Decomposition of the Plant Controller
specification.

265

