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Abstract

Successful application of software engineering methodologies

requires an integrated analysis and design life-cycle in

which the various phases flow smoothly "seamlessly" from

analysis through design to implementation. Furthermore,

different analysis methodologies often lead to different

structuring of the system so that the transition from

analysis to design may be awkward depending on the design

methodology to be used. This is especially important when

object-oriented programming is to be used for implementation

when the original specification and perhaps high-level

design is non-object oriented.

In this report, two approaches to real-time systems analysis

which can lead to an object-oriented design are contrasted:

first, modelling the system using structured analysis with

real-time extensions which emphasizes data and control flows

followed by the abstraction of objects where the operations

or methods of the objects correspond to processes in the

data flow diagrams and then design in terms of these

objects; and second, modelling the system from the beginning

as a set of naturally occurring concurrent entities

(objects) each having its own time-behaviour defined by a

set of states and state-transition rules and seamlessly

transforming the analysis models into high-level design
models.
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A new concept of a "realltime systems-analysis object" is

introduced and becomes the basic building block of a series

of seamlessly-connected models which progress from the
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system analysis logical models through the physical

architectural models and the high-level design stages. The

methodology is appropriate to the overall specification

including hardware and software modules. In software

modules, the systems analysis objects are transformed into

software objects.

1. Introduction

Successful application of software engineering methodologies

requires an integrated life-cycle in which the various

phases flow smoothly from one to another so that backwards

and forwards traceability is straightforward. Jacobson

emphasizes the need for "seamless models" to avoid errors

defining this concept as: "two models are said to be

seamlessly related to one another if concepts introduced in

one of the models can be found in the other model through a

simple mapping" [Jacobson,87].

There is considerable difference of opinion about integrated

life-cycles for the software engineering of real-time

systems. The most widely used approach is based upon

structured analysis and structured design with real-time

extensions [Hatley,88], [Ward,86] and [Bruyn,88]. Another

approach views system development as a set of

transformations starting from the requirements model and

ending with the program model [Jacobson,87]. Jacobson .

More recently, there has been much interest in using object-

oriented programming for the implementation of the software

aspects of the system design. Meyer suggests that object-

oriented programming is the most promising approach to

generating reusable software. [Meyer,87]. For a general

discussion of object concepts, see [King, 89],

[Nierstrasz,89].

Meyer makes two especially interesting points. First, the

top-down design leads to a structure chart with an excess of

data transmission of arguments up and down the structure and

he indicates that object-oriented design is the solution to

this "tramp data" problem. He then states "the law of

inversion": "if there is too much data transmission in your

routines, then put your routines into the data". "Instead of

building modules around operations, and distributing data

structures among the resulting routines, use object-oriented

design which does the inverse by attaching the routines to

the data structures to which they apply".

Meyer's second point is the need for inheritance to defer

features. In particular, he notes that the objects can only

be partially defined in the sense that some operations will

apply to all instances but that many can be defined as to
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their general function but not in detail. He uses an object
called "state" to encapsulate the state-operation of an
example user interface and notes that operations relating to
changing from one state to an other can be completely
defined but a state display operation, while clear as to its
purpose, must necessarily be dependent upon the particular
state being displayed. He indicates that inheritance solves
this difficulty by defining such operations to be "virtual"
in the parent class and then using sub-classes for each kind
of object which requires a different display operation. Thus
some operations are deferred in a manner not unlike the
deferring of detail in standard top-down design.

Parnas emphasises the importance of "data hiding" in
successful designs, suggesting that systems details that are
likely to change independently should be the "secrets" of
separate modules [Parnas,85]. Data hiding is an important
characteristics of objects. It is necessary then to evaluate
the software engineering methodology so that a "seamless"
boundary exists between the systems analysis phases and the
design phases if the design is to be object-oriented.

Falk emphasizes two points: , that the different analysis
methodologies have different starting points for the
modelling of the system which probably leads to different
structuring of the system; and second, that the transition
from analysis to design may be awkward depending on the
design methodology to be used.

In a later paper, Meyer [Meyer,89] argues that the "bottom
up" technique is the real engineering approach and is much
more likely to be successful. He argues that bottom-up
design is the very idea of reusability. He states that the
object-oriented approach to design is a "bottom up" approach
and that its main contribution is to tackle head-on the key
issues of modular design.

Booch emphasizes the limitations of functional decomposition
methods and stresses the advantages of object-oriented
development [Booch,86 and 87],[Meyer,87 and
89],[Parnas,85],. He recommends that each module in the
system denote an object or class of objects from the problem
space. Abstraction and information hiding form the
foundation of this object-oriented development.

Earler, Booch indicates that systems defined this way tend
to exhibit characteristics quite different than those
designed with more traditional functional approaches
[Booch,86]. In particular, they tend to be built in layers
of abstraction, where each layer denotes a collection of
objects and classes of objects with restricted visibility to
other layers. He calls such a layer a "subsystem". He also
indicates that the global flow of control in an object-
oriented system is quite different from that of a
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functionally decomposed system which usually has a single

thread of control. Rather, he says, object-oriented designs
lead to multiple threads of control. The author does not

develop this idea further.

[Bailin,89]Bailin author points out that an analysis

methodology based on structured analysis methods (even with

real-time extensions) does not result in a specification
which can be designed in the form of objects (at least

easily). He points out that structured analysis methods

groups functions together if they are constituent steps in
the execution of a higher level function. However these

functions may operate on entirely unrelated and different

data abstractions. In an object-oriented design, however,

the functions represent "methods" of the object and they

operate on the data abstraction of the object itself.

Consequently, the structured analysis methodology results in
a grouping of functions which are associated with different

objects. To perform object-oriented design, then, it is

necessary to manipulate the results of the structured

analysis so that the modules produced correspond to objects.

The author indicates that this is very difficult and an

undesirable but necessary step. Hence he proposes to

constrain the original analysis to the requirement that the

result be compatible with object-oriented design.

Although there is general agreement about the object-

oriented design and programming methodology once objects
have been selected, it is clear that the selection of

objects is the most critical and difficult part of the

overall system design. From a

system perspective, objects must be grouped into tasks and

packages (in the Ada nomenclature) [Buhr,84],[Nielson,88].

Consequently, the overall design problem becomes one of

determining a structure of the software involving objects,

tasks and grouping of objects and tasks including definition
of their concurrency characteristics, intertask

communication, and scheduling which meets the system
specification.

There is, however, no single generally accepted systems

analysis methodology which leads seamlessly and naturally to

an object-oriented programming implementation for real-time

systems. Rather there are two approaches to systems

analysis which can lead to an object-oriented design:

i. Model the system using structured analysis with

real-time extensions which emphasizes data and

control flows. The resulting leveled data and

control flow diagrams are then used to abstract

objects where the operations or methods of the

objects correspond to processes in the data flow

diagrams. Real-time aspects are supported during
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the analysis phase through states and state-

transition descriptions of control processes.

, Model the system as a set of naturally occurring

entities each having a life-cycle of its own

defined by a set of states and state-transition

rules. The entities become objects. Data flow

diagrams are used to model the processing in each

state and the relationships among objects. These

in turn lead to the definition of operations or

methods for each object. Real-time aspects are
related to concurrent access of the data hidded in

the entities and is left to the design phase.

We conclude that an object-oriented systems analysis is

highly desirable but note that it must be applicable at all

phases and not merely at the software level. To this end,

we introduce the new concept of a "real-time systems-
analysis object" which becomes the basic building block of a

series of seamlessly-connected models which progress from

the system analysis logical models through the physical
architectural models and the real-time software models of

those portions of the system implemented as software in

computers. Because of the concentration on objects from the
beginning, there need be no separate transformation to

create the objects at the real-time software design and

object-oriented programming phases. It is shown that "real-

time objects" suitable for this modeling must have many of
the characteristics we associate with tasks in a software

systems.

We propose an analysis-design life-cycle using these real-

time objects which is closely patterned after the

conventional structured analysis approaches of Hatley

[Hatley,88] , Ward [Ward,86] , and ESML [Bruyn,88]. The

combination of these approaches is first summarized in

section 2. Section 3 defines real-time objects and their

properties. Section 4 presents the life-cycle as a series of
seamlessly connected systems analysis models which culminate

in an object-oriented software design suitable for an

object-oriented programming implementation.

2, Real-time structured analysis plus object-oriented design

The systems analysis and design of real-time systems

practiced today is based upon structured analysis with real-
time extensions. Much of this work is credited to three

authors. Derek Hatley extended the structured specification

methodology to real-time systems and successfully applied

his methodology in the aerospace environment[Hatley,88]. The

so-called real-time extensions added control and timing

mm 5 Dm
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considerations to the data flow diagram specification which

had previously studiously avoided all questions of "how" or

"when". The result is a specification that is much more

qualitative but still not formal.

His methodology produces a requirements model which is a

"logical" or "essential" model of the system. It is not

concerned with hardware or implementation. Processes execute

in zero time to avoid concurrency. The requirements model is

then transformed into an architecture model which represents

the higher levels of hardware and software design.

Ward proposed an extension to system specifications based on

data flow diagrams which allows the depiction of a system as

a network of potentially concurrent "centers of activity"

(transformations), and of data repositories (data stores),

linked by communication paths (flows) [Ward,86]. This allows

the representation of control and timing in a system

specification. The paper is important not only because it is

the basis of a commonly used real-time system specification

methodology (the so-called Ward-Mellor methodology) but

because it introduces the concept of qualitative evaluation

of specification including both essential and implementation

schema. The author calls the specification a "transformation
schema" with the word transformation meaning a process in

the sense of conventional structured analysis but extended
to allow both data and control processes.

ESML is a combination of the real-time system modeling

methodologies of Ward-Mellor and Derek Hatley which is

equally applicable to all three of the common approaches to

specifying a system: functional hierarchy; event-response;

and object-oriented [Bruyn,88]. In addition to combining

the ideas of the two methodologies, ESML attempts to make

the model much more rigorous so that the specification

becomes more quantitative.

We summarize these closely related methods below.

2,1. The requirements model

A requirements specification must be a model of the system

in the sense that applying inputs to the model should

specify the corresponding outputs. That is, to test whether

or not a design or implementation satisfies the

specification, it is necessary to be able to test the design

or implementation and determine whether it produces the same

outputs as the specification. Applying inputs to a model to

determine outputs is called "executing" the model.

Non-real-time structured analysis creates a requirements

model using data flow diagrams and a data dictionary, the
model contains:

Dm 6 m_
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i. data stores which are repositories of persistent data.
A data store has defined data contents. Data read from

a data store does not remove the data from the store.

Data stores contain no state data. Hence their

outputs are a function of their inputs at the time they

are triggered and not upon their past history. They are

assumed to carry out their transformation in zero time

after being triggered. A non-depletable store is a
normal data store which contains a defined contents

which is persistent and may be read and re-read at

will. A depletable store reduces the count of its
contents each time it is read and useful for modeling

energy or resource usage.

• control stores which are repositories of state data

which is persistent over time and a state machine.

Control transforms process input data and control data

processes by signalling them or by activating or

deactivating them. A data process ignores its inputs

when deactivated. An activated data process is

triggered when inputs arrive. A signaled data process

is one which can produce output at any time because it
does not have to wait for data to flow to it along its

data flow inputs. Such a process is triggered by a

control signal which then causes it to response once to

the signal and produce its outputs. Control stores
do contain state data and also contain a state machine.

They also carry out their transformation of control

inputs to ouputs in zero time. They are triggered by

arrival of control inputs.

Buffers are data stores with a specific capacity and

limited to a single data flow input and data flow

output. An arriving flow adds one unit to the buffer
and a flow from the buffer deletes one unit from the

buffer. The author mentions that inputs to the buffer

when it is at its maximum capacity are lost. He does

not defend this strange definition. The author does not
mention reading a buffer that is empty. Note that a

data store, when read, does not remove the information
in the store as does a buffer.

. data flows which are pipelines along which packets of
data of known composition may flow. By data is meant

problem oriented data and not control information• Data

flows may be discrete or continuous and are represented

differently (solid arrow with single or double

arrowhead)• Flows may be value bearing (data flows

whose data contents are either continuously available

mw 7 _
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•

.

•

or available only at discrete instants of time) or non-

value bearing (a signal that an event has occurred)•

control or event flows are represented by a dotted line

with three variations: a control signal has a single

arrow head; an activation control flow has a double

arrowhead pointing toward the process to be activated;

a deactivation control flow has a double arrowhead at

the process to be deactivated but pointing backward.
The addition of control flows which are defined as

pipelines along which control data or no data flow.

When no data flows, the control flow acts like a signal

or interrupt.

Prompts represent control imposed byone control

transformation on another transformation. Prompts are

more extensive than either Hatley or Ward-Mellor

methodologies support. Prompts are:

i.

•

.

disable/enable which make a transformation

(control or data) active or inactive. A process
made inactive loses all intermitant results and

restarts from scratch when activated again. Since

data transformations carry out their actions in

zero time and have no state, they are merely

activated or deactivated by the disable/enable

prompts. Control transformations however do have

an internal state. Disable followed by enable of a

control process causes it to restart in its
initial state.

suspend/resume which makes a process inactive but

without loss of state information so that resuming

the process causes it to continue from where it

left off. Only control transformations have state

so the suspend/resume is relevant to them only.

Suspend/resue and disable/enable are identical for

data transformations which do not have a state•

trigger which causes a data transaction to perform

a discrete time action•

external entities which are undefined boundaries of the

system being specified and which as sources and sinks

of data flows entering and leaving the system. External

entities and data flows entering and leaving them

precisely define the boundaries of the system.

data processes which are stateless transformations of

input data arriving in data flows entering the process

or data read upon demand from a data store. The results

of the transformation are output as data flows to data

stores, external entities, or other processes. Flow

transformations may be primitive (not decomposed

further) or non-primitive (hierarchically decomposed).

Primitive flow transformations must be unambiguously

_ 8 _
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defined so that outputs can be calculated from inputs.

The form of the specification is not fixed by ESML.

• control processes (control specs) which are somewhat

equivalent to a control process which accepts control

flow inputs and produces both control flow outputs and

also sets activation/deactivation of processes. Control

specs may contain a state (internal data). Control

transformations are all primitive and each must be

specified. If the control transformation has no state,

a process activation table can be used. If the

transformation contains a state, a state-transition

specification must be provided•

Control specs are always primitive, that is, not

decomposed and precisely defined by either a state

transition diagram (if they have a state) or by

combinational logic and are denoted by a heavy line

(the "bar") on data flow diagrams. Control flows enter

and leave the bar.

For large systems, it is convenient to build the scheme in a

hierarcy where processes (control and data) at one level are

further decomposed or detailed at the next level done.

Transformation schema may be hierarchically decomposed in

the same way that data flow diagrams in structured

specifications are decomposed. Because of the introduction

of control processes with internal state and finite state

machine, additional rules must be imposed• For example, if a

parent process is deactivated, all its childrun processes
are deactivated also.

The model is leveled. The highest level is shown on the

context diagram which contains one process representing the

system, all the external entities, and all data flows to and

from the external entities• All these flows enter or leave

the system.

The next level decomposes the context process showing the

basic processes and data stores of the system and the data

flows into and out of them. Each process may be further

decomposed into its own data flow diagram which shows the

multiple processes into which it is decomposed and the data

flows among them. Processes which are not further decomposed

are called "primitive" and their transformation must be

defined precisely.

A data dictionary collects all definitions of primitive

processes, data flows and their contents, and data stores

and their contents. The specification then, essentially,

consists of the data flow diagrams and the data dictionary.

Integrity of the model implies that data flows entering and

leaving one level must appear on the level above. The
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leveling is a convenient notation and presentation only.
Conceptually, a single data flow diagram showing primitive
processes only could be drawn.

2.2. The hardware architecture model

Standard structured analysis proceeded toward high level

design by enhancing the logical model. That is, as physical

considerations or design decisions were made, they could be

incorporated into the specification, there transforming the

logical model into a physical model. For example, the

decision to use a certain kind of communication line to

bring input data into the system could be modelled with the

appropriate processes and data stores which are necessary in

such devices. Then decisions were made concerning which

processes were to be implemented in hardware and which in

software. The physical model would be further enhanced to
handle new interfaces and other considerations due to these

decisfons.

The progression to the physical model and its interface to

the design of software (tasks and modules) was relatively

vague in standard structured design. Hatley enhanced this

process with his so-called architecture model.

The transformation of the requirement model to a more

physical model including specification of both hardware and

software modules and the enhancement of the requirement

model using the Hatley notation and approach.

Hatley's architecture model consists of architecture

modules, architecture flows, and an interconnect

specification. An architecture module is simply a boundary

within which are those processes of the data flow diagram

assigned to it. Connecting architecture modules are

information flow channels (also hardware). Flows into and

out of architecture modules must flow across information

channels. The advantage of the information channels is that

they are precisely defined and localize all information

about their capacity and throughput and permit performance

evaluation of the design to be done.

The creation of the hardware architecture is done using the

leveled data and control flow diagrams. Starting with the

top level, the processes are assigned to architecture

modules which are then successively decomposed as lower

levels are considered. At each stage, the only decision is

what modules are to be used and what processes are to be

assigned to each. Of course, hardware decisions usually

imply enhancement of the model to account for

transformations of data from one physical form to another so

it can actually enter or leave a hardware module.

-- i0 --
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A hardware module which is a processor implies that the
processes within it are to be implemented in software. The
Hatley book does not suggest how this is to be done in the
case multiple tasks, real-time operating systems, or real-
time languages such as Ada are to be used. But note that a
decision to use a distributed system (multiple processors)
does indeed specify which processes are to be carried out in
which processor and all details of the communication between
them. For example, an interconnection through messages on a
local area network would entail specification of the local
area network, the message passing protocol, and all
interfaces between the network and the processor. Only the
design of the tasks and software modules and their
interconnection within each processor would be left to carry
out.

Hatley's architecture model is actually a direct extension
of the structured analysis model and as such is a
straightforward transformation from it. The key components
are:

i.

2

3.

•

•

Architecture Flow Diagram -- a diagram showing
hardware modules which contain bubbles allocated

to that module, data flows from one to another,

and data flows cross the boundary of the hardware

module. Specification of a hardwre module is

simply the specification of the processes in the

logical model allocated to it.

Leveled Architecture Flow Diagram -- decomposition

of hardware modules into submodules.

Architecture Interconnect Diagram -- a diagram

showing the hardware modules, the physical

interconnections between modules, and allocating

data flows to the interconnection.

Information Flow Vectors -- specification of

logical data flows flowing along an
interconnection.

Physical Model Enhancement by
-- addition of bubbles to a hardware module for

additional processing necessary to accomodate

the physical form of interconnection of input

and output flows•

-- additional bubbles defining the physical

implementation of a logical data flow

The series of incremental enhancements of the physical model

represents a gradual transition from the logical to the

physical model. Furthermore, it is possible to think of the

high level design process to consist of a succession of

architectural models each of which is a simple

transformation from the previous. This facilitates

considering alternative design decisions. It also means that

the design process is more integrally (seamlessly) linked

-- ii --
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with the specification. Consequently, it is easy to trace

forward and backward between any stages of the

specification-design.

2.3. The software architecture model

Each computer in the hardware architecture model has been

specified by a set of interconnected data and control

processes, data flows, and data stores. Because the

hardware architecture has included computers, it has been

enhanced so that the interface to the computer has been

considered and flows crossing the boundary have been

specified in terms of messages or signals on buses. It is

next necessary to design a software architecture which

consists of a set of interacting real-time tasks which may

be implemented with object-oriented programming.

There are several approaches to this problem all of which

involve the identification of objects from the structured

anlaysis specification [Bailin,89] [Coad,90] [Nielsen,88].

The Nielsen approach is thoroughly docmented and described

here.

The objective of the software architecture Model is to

recognize concurrency problems, and organize the system into

a set of interacting real-time tasks which meet the

specification despite the concurrency problems. Of course,

throughput and response time specifications must also be
met.

The design is based upon virtual machines and objects.

Starting from the data flow diagram oriented architectural

model of the software, a set of communicating sequential

processes are identified by identifying concurrency in the

data flow diagram, considers a process to be a task, groups

tasks into Ada packages, and designs task bodies. Complex

task bodies are further modularized with the objective of

data-hiding which leads to implementation as objects.

For a real-time system, this machines contains a set of

communicating sequential processes. The processes execute in

parallel but each represents a single-thread sequential

action.

The first step is called "process abstraction" which

involves examining the top level data flow diagram and

identifying those bubbles into groups which can be carried

out in parallel. Heuristics for doing this are:

Group bubbles associated with an external device.

Group bubbles which have functional cohesion.

-- 12 --
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Separate bubbles which have time-critical functions so
that they will have their own task.

Separate periodic bubbles for scheduling purposes.
Separate non-critical computationally heavy bubbles so

that they can be assigned to background tasks.
Group bubbles which have temporal cohesion, that is,

have actions which must be carried out at the same
time.

Group bubbles whose storage requirements may require
secondary storage.

Group bubbles that access a shared data base so that
mutual exclusion can be implemented.

It is next necessary to associate the operations with
objects by defining the data structures on which the
operations act. For example, all the operations of a given
process may operate on the same data structure. Then the
object becomes that data structure and that set of
operations.

Operations may be quite complex and operate on data specific
to that operation only or be further decomposed on the data

flow diagram. In these cases, decomposition continues by

defining this operation to be part of a sub-object

containing the data operated on by that operation. This

decomposition produce sub-objects rather than sub-processes.

The major principle used in choosing the objects is data-

hiding, defining the data structures and defining operations

on the data structures which hide the structures from the

users.

Decomposition continues until all operations are associated

with objects and no further decomposition of any operation
is desired.

At this point, the design consists of a set of communicating

sequential processes each of which includes one or more

objects or hierarchies of objects. Notice that there is no

concurrency problem for the objects within a single task. If

objects are shared by two processes, however, there is a

concurrency problem since processes operate in parallel. In

this case, it may be necessary to add additional objects to

control this concurrency (eg, monitors or buffers).

Implementation of the design may now proceed using object-

oriented programming. The task structure and the

interprocess communication of the supporting real-time

oeprating system determine how methods of an object in one

task are used by an object in another task and how

parameters are passed.

-- 13 --
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2.4. Execution of the model

Any specification must be a model of the system in the sense

that applying inputs to the model should specify the

corresponding outputs. That is, to test whether or not a

design or implementation satisfies the specification, it is

necessary to be able to test the design or implementation

and determine whether it produces the same outputs as the

specification. Applying inputs to a model to determine

outputs is called "executing" the model.

A logical or essential model is one in which the system is

assumed to be implemented as virtual machines with infinite

resources. Execution of a process in zero time means that

the process changes state in zero time. Hence the lifetime

of a process consists of a series of state changes or

executions separated by time interevals during which the

state does not change. This is the same concept behind

discrete-event simulation of real-time systems and provides

a sound basis for evaluation and use of specifications.

The importance of the (discrete-event) model is that

responses due to inputs which arrive close together are

predicted in an orderly manner. As a practical

consideration, there are no concurrency problems such as

would arise when two processes both read and update an item

in a data store and when the two processes execute in

parallel in an implementation, the overlap of their

execution may produce erroneous results. This is always a

problem in software implementations since task switching

might occur at arbitrary instants of time due to an

interrupt or other event. Consequently, designs must include

mechanisms to prevent concurrency problems (such as

preventing concurrent use of data items with semaphores,

assigning guard tasks or monitors to data, etc). Thus the

model permits the testing of the specification without

regard to concurrency problems.

Arrival of two inputs at the same instant may result in a

"race" condition in the model. If this is significant in the

model, the model must specify a resolution to such

conditions. Such race conditions become more important as

the model progresses toward a more physical model such as in
the hardware and software architectural models. The

resolution becomes part of the design of the system. Notice

that the successive models incorporate more and more

physical considerations which are often considered to be

design considerations. Thus the use of successive models

blurs the distinction between analysis and design.

The software architecture described above requires the

identification of objects as pointed out by Coad [Coad,90].

-- 14 --
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This step is critical to the success of the system design
and appears only at the software architecture stage. A
criticism of the approach is that this critical step is very
difficult to carry out from the structured analysis
specification and results in a break in the series of
seamless models comparable to that experienced when using
structured design to create the software architecture
[Sanden,85 and 88a], [Seidewitz,86a and b], [Bailin,89].

3, Real-time structured analysis and design for object-oriented programming

Our objective is to provide a seamless analysis and design

methodology which proceeds from the requirements

specification through the actual design phases based

entirely on the use of objects as the basic building blocks

in order to facilitate the transformation from specification

to design to implementation of software using object-

oriented programming.

3.|. Structured analysis in terms of objects

We take the point of view that a requirements specification

is a strict, although non-formal, representation of the

system in the sense that it can be tested to determine the

required response to any sequence of inputs and events.

Hence any design or implementation can be tested and the

results cmpared to those of the requirements specification.

In principle, the requirements specification must be

sufficient to simulate the system response to inputs and

events. Hence an object-oriented specification must be such

that a conceptual simulation of all objects, their

interactions, input events, and data flows taking place in

parallel in real-time yields the required response of the

system over time.

The specification of a software system and in some cases a

non-software system has been discussed by several authors

[Cameron,89], [Bailin,89]. [Coad,90], [Jacobson,87],

[Sanden,85,88a,88b,89a,89b], [and [Shlaer,88 and 89]. We
summarize from Bailin.

Bailin addresses the specification of a software system

starting immediately from an object-oriented point of view

[Bailin, 89]. He uses data flow to link entities (objects)

via "calls". He proposes a top-down approach, decomposing

entities into simpler entities resulting in a set of

entities which can be implemented using object-oriented

programming.

Bailin differentiates between active and passive entities.

Active entities are diagram nodes but passive entities

appear either as data flows or data stores. A passive entity
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corresponds to an entity whose state does not evolve over
time and hence is essentially a data abstraction. Its
methods or functions operate on the data and are initiated
by other entities. Thus an entity is an object, and thus the
system is structured from the beginning as a set of objects.

Bailin allows entities to be decomposed into sub-entities.
Functions are decomposed just as in DFD specifications. The
resulting EDFD hierarchy consists of an upper hierarchy of
entities and sub-entities, a wavy line of lowest-level
entities, and a hierarchy of functions and sub-functions
below each lowest-level entity.

Bailin's object-oriented specification then consists of a
hierarchy of EDFDs and a set of entity relationship (ER)
diagrams. The ER model shows explicitly the relationships
among entities (active and passive). The methodology then
proceeds through the following steps:

i.

2.

3.

4.

.

6.

7.

identify key problem-domain entities.

distinguish between active and passive entities.
establish data flow between active entities.

decompose entities and functions into sub-entities
and functions.

check for new entities

group functions under new entities.

assign new entities to appropriate domains.

Steps 4 through 7 are iterated to get sufficient detail in

the specification• Clearly the method allows the definition

of objects suitable for object-oriented programming.

Bailin indicates that the methodology can be used for

overall system specifications including hardware but

addresses this only by indicating that "entities are

allocated to hardware" _ He does not give any details of

this process. In particular, his concepts of data structures
and calleable functions are not mentioned or defined for a

hardware entity.

There are some problems with his approach to using objects

for systems analysis of general systems as opposed to

software systems. They are:

i•

•

The concept of a "call" of a method is not

appropriate especially for a pair of communicating

hardware objects. Even for software objects, this

is not appropriate for objects which end up in

separate tasks where "triggering" would be more

appropriate.

At the specification level, various objects exist

and operate conceptually in parallel. Hence

concurrency, blocking, and collision must be
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•

defined and understood if the specification is to

actually represent a model of the system.

He makes no distinction between class and instance

of the class.

Our objective is a more general object-oriented systems

analysis procedure which can be used throughout the analysis

project, uses objects throughout so that software objects

evolve naturally from the analysis, and makes objects

created during the analysis as reusable as possible in

similar applications. To this end, we adopt as many of the

concepts of both structured analysis and design and object

oriented analysis as described above as possible in order to

take advantage of techniques which have been demonstrated as

successful and useful in specification writing. We emhasize

those aspects which are different in the discussions below.

In the next section we define a "systems analysis object"

which can be used for the building of a specification or

model of a system at both the essential and physical levels,

and which leads naturally to software objects for those

portions of the system implemented in software.

3.2. Definition ofsy_emsanalys_ o_ects

We first define a Systems Analysis Object which is the basic

building block of object-oriented systems analysis. It

differs from a software object but is transformable to a

software object for those sections of a design which are

implemented as a real-time software system. The guiding

requirement is that an analysis is a model of a system which

we conceptually examine through discrete event simulation of
the model.

We use the following terminology for clarity. An object is

a specific instance of a class which in turn is a template
definition common to all instances of that class Our model

consists of a set of concurrent systems analysis object

instances of classes defined within the model.

A systems analysis object class is similar to the common

notion of a software object but different in important ways.

A class defines an entity containing:

i. an optional state -- a set of attributes (variables)

which define the response of the object instances of

the class to events. For example, an object

representing a military plane might have a state which

indicates whether the airplane is in the cruise or

attack mode.

• application-specific attributes (variables) which may

be private to the class or public to the class. Private
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•

attributes are accessible only to the processes

(methods) of the class, Public attributes are directly

accessible to the processes of any class. The

attributes contain data values relevant to the specific

class and are problem-oriented. They are differentiated

from the state attributes only because the

understanding of the class is so dependent upon the

notion of state that it is worthwhile emphasizing this

concept. The inclusion of public and private

attributes is done in the spirit of data-hiding and for

the purpose of creating re-usable systems anlaysis

objects

processes (methods) which are triggered by a data-flow

(defined below). A process is a transformation of the

object-instance's attributes and state which executes

concurrently with other processes of this and other

objects over time but in the sense of discrete event

simulation. Two different views of processes are

commonly used in discrete event simulations: the "time-

process" view and the "event" view.

In the "event" view, a triggered process is a function

which may change the state and attributes of its object

instance and may trigger other processes of this object

instance or other object instances all at the instant

in time at which the process is triggered. An example

of an "event" process might be the process triggered by

the pilot of the above airplane signalling a change

from cruise to attack modes. The function of the

process would change the state accordingly and enable

and disable other processes of the airplane object

instance (see below)•

In the "time-process" view, a triggered process makes a

series of states changes, each at a discrete instant of

time. In this view of a process, one imagines that the

state and attributes of the object instance are not

changed by the process between these discrete times

instants at which the state is changed. One may view

the process as an "event" process which after the

initial triggering, is triggered again at later time

instants through internal rather than external

controls. Once triggered, a "time-process" ignores

any further triggers because it controls internally the

future triggers which cause state changes. Thus the

evolution over time of such a process is defined by the

process specification itself. Since the process does

nothing between state changes, the time interval

between changes is specified with the Simula

statements: "wait T second" and "wait until some-

event"• Hence the specification of the process is

simply a function containing these statements as well

as the usual structured englished statements used to
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specificy a transformation. The effect of these
statements is to insert a time period between the
succesive state changes specified via the structured
english.

A simple example of a "time-process" might be the
process which "arms" some missles. This process is
triggered by a pilot command. The arming of the missles
takes a finite and significant amount of time. Validity
of the model must take this time in account so that for
example, a firing event cannot occur before the missles
are finished being armed. This process might have the
structured english specification:

disable external triggering of this process
set missle-state to "arming in process"
wait 7 seconds
set missle-state to "armed"
trigger missle-armed process

This specification contains two state changes 7 seconds
apart each of which takes place in zero time. Note that
the first state change prevents external triggering of
this process which means that arrival of an external
trigger would simply be ignored according to this
specification.

It is well known that any dynamic system can be modeled
by either the "event" or "time-process" views. Our

objective is to produce a specification of a system and

clarity of that specification is paramount (as is its

completeness and testability). By allowing both types

of processes within systems analysis objects, we gain

ease of understanding the specification.

We note that the discrete event simulation concept of

state changes in zero-time at discrete time instants

provides a straightforward way to resolve concurrency

problems among object-instances within a specification.

Any concurrency problems due to state changes within a

single object instance or in two or more object

instances at the same time instant are imagined to take

place in some sequence even though they take zero time

and are all completed at that time instant. The

specification must explicitly recognize and resolve any

race conditions or ambiguities which might arise when

this happens. Furthermore, there is no implict queueing

of data flow triggers and their accompanying data. The

flow of a trigger to a process immediately triggers the

process or is totaly ignored. If the specification is

describing a system in which queueing of data triggers

are necessary, this queueing must be explicitly
modeled.
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• enable/disable states of all processes (methods). An

implicit state of the object-instance is always

present. This state indicates for each process whether

it is enabled or disabled. An enabled process responds

to an arriving data-flow trigger. A disabled process

ignores any arriving data-flow trigger. A process

(method) of an object-instance may enable or disable

any other process of the same object-instance but is

prevented from enabling or disabling a process of

another object-instance. Hence in the specification

(model) an object which needs to disable a process of

another object instance must trigger a process (method)

of that other object instance which in turn will do the

disabling.

. receives and transmits triggers along data flows. A

data flow is a defined path along which defined data

packed may travel. Thus data may or may not accompany a

trigger but unlike the "call" of a software method, no

data is returned as part of the trigger. A process

(method) which must output data to any process must

have a data flow to that process and must initiate a

data flow to that process which in turn triggers the

process.

• may inherit state, attributes and processes (methods)

from one or more classes. This inheritance implies that

this derived object class contains all the public and

private attributes of the parent classes as well as
additional attributes defined for this class• All the

processes (methods) of the parent classes are also

inherited. Additional processes may be defined for this

class and any inherited processes may be over-ridden or

redefined for this class. Inheritance is an important

concept in a specification because it permits a class
to be defined as a modification of other classes which

in turn helps decrease the volume of the specification

and increases its understandability. It is particularly

important when attempting to reuse specification

classes because it allows their specialization to the

problem at hand without modification of an already

existing class.

3.3. Object data-flow diagrams

Object-oriented design methods have been frequently

criticized because of the difficulty of tracing the response

to an event whereas this is a positive attribute of

structured analysis data-flow diagrams. In a specification,

it is important to be able to trace the jresponse to an

event and consequently, we emphasize this data flow through

object data-flow diagrams on which are shown object

instances with relevant (but not necessarily all) processes
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identified as part of the object instance and data flows
exiting the process which initiates the data flow and enting
the target process which is triggered by the data flow.
There have been many suggestions for graphical icons which
may be used to display an object-instance, its relevant
processes (methods), and even public attributes
[Wasserman,90]. The data flow icon may be taken to be an
arrow from source process to target process. Data which is
passed with the data flow to the target may be defined in a
data dictionary as in structured analysis methodologies, or
be shown with a companion small arrow with a circle at the
tail as is done in a structure chart in the structured
design methodology. A dash arrow might be used to indicate
pure triggering data flows as is done in real-time
structured analysis for control flows.

The external entitiy of structured analysis is retained as
the source of data flows crossing the system boundary
(entering and leaving the context abstract object).

What ever the graphical icons adopted, the object data-flow
diagram can then be used as a basis for tracing the response
to any event or situation, a major advantage of standard
structured analysis specifications.

3.4. Decomposition of analysis objects

It is advantagous to retain the hierarchial structuring of

the specification as in standard structured analysis and the

Hatley real-time methodology with one exception. The Hatley

real-time structured analysis methodology separates control

and data processes and allows data processes to be

hierarchially decomposed but not control processes. In

effect, all control processes are terminal processes but

only the lowest level data processes are terminal. We adopt

the following decomposition strategy.

Define an abstract object instance as one which itself has

no processes (methods), state, or data attributes but does

contain object instances. All data flows to this object

terminate on processes of the included object instances and

all data flows emanating from this object exit from

processes of the included object instances. All totally

internal data flows are between processes of the included

object instances. A abstract object instance has no defined

class associated with it. Thus the abstract object instance

is simply a conglomeration of object instances for the

purpose of simplying the understanding of the specification.

Define a terminal object instance as any non-abstract object

instance. It must be an instance of a defined class. It has

attributes, state, and processes (methods). The processes

may be terminal or abstract.
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Define a terminal process as a process of an object class

(method) whose transformation is defined explicitly using,

for example, structured english with possible extensions for

time-processes (wait and wait-until). A terminal process is

not further decomposed.

Define an abstract process as a process of an object class

(method) which is further decomposed into a set of processes
in a hierarchial sense. Data flows entering and leaving the

process are the identical data flows entering and leaving

the decomposing set of processes.

Our object-oriented specification, whether at the essential
model level or the physical model level where many design

decisions have been already made, will consist of a set of

object-instances interconnected via data-flows. Furthermore,
if the model were actually simulated, the object instances

simulated would be terminal object instances.

The abstract object instance has the advantage that it is

not necessary to find a single "action verb" to describe the

object. Hence a system can be modeled by an abstract object
which can then be subdivided into subsystems each of which

becomes an abstract object. Terminal object instances are

introduced at the appropriate level. This retains the

hierarchial organization of a structured analysis

specification while forcing an object-oriented structuring

at every level.

It is convenient to allow a terminal object instance (not

its class definition) to contain abstract objects and/or

abstract processes. The abstract object or process then

simply represents the set of terminal objects and processes
in a more compact form for clarity and understanding

purposes. Thus the abstract object or processes could be
substituted by their decompositions.

The development of the hierarchial object-oriented

specification applies decomposition in a variety of
different manners as follows.

i. An abstract object instance might be divided into two

(abstract or terminal) object instances. All entering

and exiting data flows must enter and exit methods of

the two new object instances. For example the system as
a whole might be specified as a single abstract object

(equivalent to a context diagram in structured

analysis) and then decomposed in abstract objects which

represent subsystems of the total system.

, An object class might be divided into two separate

object classes which trigger one another's methods.

Each object instance of the original class would be
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replaced by a pair of object instances of the new
classes with data flows between them. Each data flow

into the original instance would terminate on a method

of one of the replacing instances. Each data flow

leaving the original instance would leave a method of

one of the replacing instances.

• A process of an object class might be decomposed into

several processes with interacting data flows. This is

the standard decomposition of structured analysis•

Notice that decomposition methods (i) and (2) lead to a

hierarchial relationship among abstract and terminal

objects. Decomposition method (3) is a hierarchial

decomposition of a single process of an object.

Another form of decomposition which is not hierarchial may

naturally occur. Two interacting object instances might be

decomposed by grouping some of the attributes and state of

each object instance into a new instance along with

processes (methods) from each as appropriate. The result

would be two redefined object instances and an entirely new

object instance with interacting data flows. Notice that

this decomposition is not hierarchial. This is better

treated as a refinement of objects during the construction

of the model and the two objects simply replaced by the

three. We do this primarily to preserve the hierarchial

relationships among objects.

Note that classes may be defined by deriving them from other

classes (that is, using inheritance). This is not a form of

decomposition although a central structuring method in a

specification. This form is especially useful when deriving

reusable classes or using existing classes produced in other

specifications.

3.5. Form of the structured object-oriented analysis model

The structured object-oriented specification will consist

of:

i , An inheritance diagram or the equivalent showing the

inheritance relationships among classes.

• A specification for each terminal class including its

public and private attributes, contained object

instances, and processes and their specification.

. A hierarchial set of object data flow diagrams starting

from the context level containing a single abstract

object representing the entire system and followed by
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successive decompositions of abstract object instances with
each decomposition of an abstract object instance
consituting a lower level•

The many relationships among objects are all present in one
of the above elements of the specification:

i•

•

•

One object "contains" another: the data portion of a

class definition includes an instance of another object

class. This is shown in the class definitions•

One object "triggers" another: a method of an object

class triggers a method of an instance of another

object class. This is shown in the object data-flow

diagrams.

One object class is "derived" from another or

"inherits" another class. This is shown in the

inheritance diagram•

Of course a separate entity-relationship diagram would be

useful in some specificiations, especially if there are many

object classes representing a data base with application-

dependent relationships among these classes.

4. Structuredobject-oriented an_llysis and design metho_d_logy

Using the concept of systems analysis objects described

above, we now propose the analysis and design phases of a

software engineering life-cycle which uses consistent models

and whose phases may be incrementally applied resulting in a

sequence of seamlessly related models culminating in an

object-oriented model suitable for implementation of real-

time software using object-oriented programming. The life-

cycle does not make a sharp distinction between analysis and

design, preferring instead to emphasize later models as

being closer to the final physical model which is truly a

design in the case of software• We will call this model of

the software portion of a system the real-time software

architecture• In other design methodologies, this final

model might be called "high level design". The principal aim

of this methodology is to identify objects early in the

analysis phase, repeatedly enhance and redefine them in

later phases and end up with objects already specified when

software implementation begins• This is in response to the

often noted statement that it is very difficult to transform

a non-object-oriented specification or high level design

into a set of software objects.

4.1. The steps of the methodology

The structured object-oriented analysis and design

methodology follows that of the real-time structured

analysis life-cycle. The steps are:
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i.

•

•

Create the requirements model

The requirements model in the form of an object

structured specification. This requirement model would

be termed an "essential" model or a "logical" model if

the system does not yet exist but may be a "physical"
model if the system or much of its structure either

exists or is constrained. In any case, this

specification would consists of a set of interacting

object instances and could (at least conceptually) be

simulated to determine the required response to any
events.

Create the architectural model

Following the lead of the real-time structured analysis

life-cycle, the first model would be successively

transformed into an architectural model by imposing

hardware boundaries with hardware connection paths

where appropriate and assigning object-instances from

the previous model to these hardware boundaries•
Enhancement of the model is often necessary such as:

i •

•

3.

adding object classes and instances due to

hardware decisions such as grouping of data flows

along a communication path or changing physical

form of a data flow such as adding sensors and A/D

converters to acquire data for a hardware computer
module.

modifying classes because of splitting of

functions among two or more hardware modules.

modifying classes and adding classes because of

concurrency or sequencing requirements associated
with hardware decisions.

As in the Hatley methodology, hardware boundaries are
introduced which we model as abstract objects.

Similarly, data flows crossing these boundaries have to
be assigned to hardware channels of some kind. Hence

each such channel is modeled as an abstract object•

A design is viewed as a transformation from a

specification to a final physical model perhaps with

several intermediate models. We adopt the approach of

Hatley which suggests a sequence of transformations
each adding hardware/software design decisions and the

necessary enhancements to the object model these imply.
Hence this step may actually result in a series of

models or designs.

Create the software architectural model
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For each hardware module which corresponded to a

computer in the architectural model, a software

architecture must be created. This important step is

discussed separately in the next section.

• Transform system-analysis objects into software objects

Systems analysis objects are not the same as software

objects but are closely related. The final design stage

of the analysis-design life-cycle prior to

implementation of the software is the changover of

objects in the software architecture model to software

objects suitable for object-oriented programming• This

step is discussed separately below.

4.2. The real-time object-oriented software architectural model

Each hardware module in the final hardware architectural

model which has been selected to be a computer must further

be enhanced to specify the hardware architecture• Consider

one such computer module. At this stage, certain object

instances have been assigned to the computer• Furthermore,

all data flows crossing the hardware boundaries have been

specified (through enhancements at earlier stages) as to the

hardware channel across which they travel (eg, standard I/O

operations to other hardware modules which represent

devices, multiplexors, sensors, A/D converters, etc) and the

structured english specification of the terminal processes

(methods) of objects within the module refer to these paths•

However, the objects are still systems analysis objects and

considered to execute concurrently with their stage changes

taking place in zero time. Note that although we are still

working with transformations of the same type of model as

used in earlier stages, this level is actually a high level

design level in most software engineering life-cycles. We

will, however, continue to call it specification to

emphasize the seamless nature of the models we use.

The process of changing the systems analysis objects into a
structure which is amenable to real-time software

implementation takes advantage of the fact that the model is

entirely object-oriented and hence there is no special step

required to identify software objects. We will continue,

however, to enhance the model during these later

specification stages which may introduce additional objects•

Real-time software can be thought of as a set of interacting

tasks executing under the control of a real-time operating

system. The real-time operating system may be implicit (as

in an Ada environment where scheduling and other task-

control statements are part of the implementation language)

or explicit. In the latter case, scheduling and other task-

control statements are not part of the implementation

language but rather are calls to systems services.
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Furthermore, the real-time software is very much dependent
on the specific facilities offered by the real-time

operating system (eg, dynamic control over task priority

level, etc). Nonetheless, the most critical areas of real-

time software design are more general than this and include:

i ,

2.

3.

Identification and resolution of concurrency situations

Design for adequate response time and throughput

Design for adequate error detection and recovery

Concurrency situations arise from access to shared data and

shared modules. Concurrency has already been considered

earlier in the models where public and private data of an

object instance required access control over a period of

time. As object instances are grouped into tasks, inter-task

communication is required, and this may significantly affect
concurrency, response time, and throughput. Error recovery

especially requires enhancement of the model to insure that

adequate data is somehow logged or retained to permit

recovery. These enhancements further affect response time

and throughput and introduce concurrency situations (eg,

transaction logging prior to commit, etc).

The real-time software architectural model consists of a set

of interacting tasks. Each task is represented by a boundary

surrounding certain object-instances. Each task is imagined

to be implemented by a single software module. Hence a task

module may contain one or more object instances. Any data
flows crossing the task boundary must be realized through

inter-task communication. The data flows among the systems

analysis object instances also imply triggering of the

destination process. Within the task, however, the

triggering of software modules realizing processes of the

object instances must be done through software procedure

calls or the equivalent. It is the task itself which is

triggered. Hence the triggering of process modules by data
flows and the transfer of data accompanying a data flow must

be separately considered.

An object instance's access of public data of another

instance has been treated like a simple look-up or read of

the data because no process had to be triggered. In the
software environment, however, this access has to be

specified more completely because the method by which it is

carried out may seriously affect concurrency, response time,

throughput, and error recovery. For example, an object-

instance may contain public data which is shared among many
objects resulting in many tasks sharing the data in the

software model. The object containing the data may be

specified to be a shared module permanently memory-resident

at a known location as opposed to a task. Hence tasks could

directly reference the public data or call the processes

(methods) of this object. This would be equivalent to a

global common data area. Concurrency problems and errors for
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such designs have to be carefully considered in choosing the

objects assigned to tasks which will then access such an

area.

In any case, the software architecture model is derived from

the hardware architecture model by the following steps:

Assign object instances to tasks• This packaging step

is based upon the amount of interaction among objects,

objects whose methods must be carried out at the same

time or at the same rate, etc.

• Specify how the data flows between tasks are to be

implemented via inter-task communication facilities of

the real-time operating system. This may require

enhancement of the object instances including both

modifications to processes and addition of objects.

. Specify how a task is to be triggered or scheduled. For

example, the task may execute periodically, upon demand

of any other task, or upon arrival of a message from

another task through an inter-task communication

facility such as a mailbox. Extensive work has been

done on real-time scheduling [Sha,90].

• Examine the concurrency among the tasks and resolve any

problems using enhancements to the model (eg, addition

of a monitor to control access to public data),

addition of concurrency conventions (eg, introduction

of semaphores),

It is at the software architectural level that the most

critical design is done. The software architecture must be

evaluated in the three critical areas listed above• The

model is still "executable" in the sense that this model can

be simulated as before• A primary purpose of the simulation

is to detect concurrency situations which might invalidate

the design when the tasks execute processes in other than
zero-time.

Prototyping of the objects and tasks at the software

architectural level also provides a means of testing

response time and throughput as well as detecting

concurrency problems•

4.3. Transformation of systems analysis objects into software

objects

Upon completion of the software architectural model,

individual tasks contain systems analysis as opposed to

software objects. Systems analysis objects and software

objects are not the same although they are similar, For
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example, processes of objects communicate with one another
by triggering the destination process and passing data at
the same time. At the physical level in software, the
communication may be a call if both the source and
desination are in the same software module, perhaps a remote
procedure call if they are in different hardware modules on
a network, global references to data, or communication via
inter-task message passing•

A task is represented as a single program. Hence the next
design step is to transform the systems analysis objects
within one task into software objects within one program.
This involves the following conceptual items:

i.

•

•

,

Triggers versus procedure calls• Each data flow may be

replaced by a call of a method of the destination

object with the data transferred as arguments of the

call. This requires enhancement of the object class

definition to turn it into a software object

declaration appropriate to the implementation language•

Enhancement of methods to permit data return to the

source method• Recall that systems analysis objects

permit data transfer only in one direction in order to

preserve the ability to track the response to an event.

BBecause software objects permit exchange of data in

both directions, it is possible to modify the methods

of an object and perhaps simplify them. This would

clearly be possible if methodl of object instancel

triggers methodl of object instance 2 (and passes it

data) which in turn triggers method2 of object

instancel passing it data. Then the two methods of

object instancel might be combined in a single method

which calls methodl of object instance2 with both input

and output arguments.

Explicit scheduling of data flows to control

concurrency. Methods may trigger multiple methods of

other object instances. When data is being shared, it

may be possible to eliminate a concurrency problem with

the data by simply controlling the sequence in which

the other methods are called. This too results in

enhancements to the methods of the software objects•

For a general discussion of concurrency in object-

oriented programming, see [Nelson,91],[Tomlinson,89].

Addition of software-specific objects for control of

data structures, within systems analysis objects, data

might consists of multiple items where specifc items

must be retrieved by one or more identifying keys or by

the sequence in which they were added or they must be

maintained in certain sequences determined by their

data values. In these cases, linked list objects,

sorted array objects and other software specific

objects commonly called "container classes" might be

added to the task's object instances.
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Upon completion of this phase of the specification/design,
software classes are completely specified and implementation
can begin.

4.4. Critical analysis situations

The requirement that a specification be capable of (at least

conceptual) simulation implies that the state of an object

evolve over time as a series of changes at discrete instants

of time separated by time intervals whose duration may be

zero. Each state change takes place in zero time.

This poses two severe conceptual problems for real-time

system specification: first, objects may at times be

unavailable to respond to an input data-flow and yet the

specification must yield the correct response to such

situations; and second, concurrent data-flows to the object

must be possible even in the situation where the object's

response is not instantaneous. The first problem requires

the object's methods be capable of being enabled or

disabled. An enabled method responds when triggered by a

data-flow whereas a disabled method ignores the data-flow.

The second problem further requires explicit management of

concurrent access by including a "monitor" function with the

object.

Consider first objects with unavailability intervals. The

common problem of "Wait n secs" is such a case because of

the need to include a specific time interval before another

event can be occur.

For example, consider the object Antenna representing

an antenna on a space vehicle which cannot be used

until it has been deployed. The method Antenna_deploy

is triggered when the antenna should be readied. But

deployment requires a specific time so that other
methods of Antenna cannot be used until that time has

elapsed. In an entity-life oriented discrete event

simulation language such as SIMULA, the method would

include the "wait n secs" step. There are two solutions

to this problem.

First, object Antenna could include a hidden state

variable indicating whether or not the antenna is

deployed. This variable would remain at its un-deployed

value until changed by, perhaps, an external object

which detects successful deployment. Each Antenna

method must be specified to test the state variable to

determine whether to carry out its response function or

to do nothing in response to a triggering data-flow.

Second, the Antennadeploy method could disable all the

other methods which would then ignore any triggering
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data flows. The external object which detects
successful deployment, would then use an Antenna method
to enable its previously disabled methods.

In either case, specification of objects interacting
with the Antenna object must understand that the
Antenna methods may be disabled or be non-responding at
times and include proper specification for situations
where the methods do not respond.

Consider the common problem of "wait until" in which an

object must synchronize with another object at an

undetermined time defined by a data condition within the

second object.

For example, object Scan is periodically triggered to

scan a temperature data sensor, compare the resulting

value to a limit, and set its internal alarm value

variable to OFF or ON depending upon whether or not the
limit is exceeded.

Depending upon conditions, method Alarm recover of

object Alarm sometimes should be triggered when the

above alarm level goes from OFF to ON. The conditions

under which it is to be triggered are internal to

object Alarm. Thus object Scan cannot know whether or

not to trigger method Alarm recover. This problem can

be handled by decomposing method Alarm recover into two

methods, Alarm connect and Alarm handle where

Alarm connect mends a data-flow to a method of object

Scan which records the desire to be notified, and

Alarm handle is the method which is subsequently

triggered by object Scan when the alarm condition is
detected.

An alternate solution adds a state variable to object

Alarm indicating interest in responding to the alarm

condition. Object Scan can then trigger the alarm

recovery method of object Alarm each time the alarm
occurs and that method can determine whether or not to

respond by examining its internal state variable.

A third solution makes use of enable/disable of the

Alarm recover method itself, still allowing object Scan

to trTgger the method each time the alarm condition

occurs. If object Alarm should not respond, that method

is disabled and hence the triggering data flow is

ignored. If it should respond, the method is enabled

and then responds to the triggering data flow.

Even if methods execute infinitely fast, it is possible to
create a method that takes a finite time to execute.
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For example: Let Object2 be time triggered each l

second at which time the value X and its timestamp are

updated. The clock triggers method O2_update. Let
Object2 have a second method 02 value which returns the

value of X and its timestamp.

Let Object 1 have a method which executes:

t_stamp = current_time - 1

while (current_time - t_stamp) > 0.25

(value,t_stamp) = Object2.O2_value();

The while loop executes an infinite number of times,

producing a wait of up to 0.75 seconds because the loop
executes until the next time tick if its first read is

more than 0.25 seconds old.

Execution of our object-oriented systems analysis model
makes state changes in zero time as in the usual discrete-

event simulation models of systems. This leads to a possibly
ambiguous result because the triggering of an object can

involve triggering of processes of two or more other objects

at the same instant. Changes to the sequence of state

changes which result at a single instant of time can result

in different final states of the system. We note that there

is the same possible ambiguity in the Ward-Hatley-EMSL

models. Such ambiguity is also present in real systems. For

example, the arrival of a set of orders in a mail delivery

and the subsequent filling of those orders can result in
quite different results depending upon the order in which
the orders which were all received at the same time are

actually filled. A particular order might be filled if one

sequence is used but only partially filled for a different

sequence. Clearly the specification of a system must then

specify sequence if in fact the sequence is important. In

the order filling example, the specification might insert a

process (step) which sorts the orders by some criterion

(value of the order, age of inventory of ordered items, etc)

to remove such ambiguity. In the software area, recognition
of possible ambiguities is often important.

For example, suppose that a data-acquisition system is

specified to report sensor values on an exception basis

(that is, report new samples only if the value has

changed more than some specified amount. Suppose it

maintains a list of such exception-values as it

periodically scans the sensors and detects exceptions.

Suppose further that perodically a process collects

exceptions, packs them into a message, and transmits

the messages across a network.

Then the triggering of the scan process which builds

the exception list and the message-packing process

which takes exception values in the list and builds a
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message for reporting might occur at the same instant.

The sequence in which the processes are carried out can

result in the message-packing occurring before the

scanning so that only exception values previously

scanned are packed into a message for transmission.

This would result in a delay in transmission of the

exception values equal to the time between triggering

of scanning if it occurred often and a consequent

deteriation of the response time of the design.

Recognition of this should result in its consideration

in the design, by assigning the objects owning these

processes to different tasks and assigning the scan

task higher priority for example, or by creating

another object which explicitly triggers both of these

processes in the proper order.

5. Conc]usions

The two approaches to analysis and design are very similar

but differ in one significant respect: the object-oriented

approach clusters data and processes into objects from the

very beginning. Hence the transition from analysis to design

in this approach does not require an abrupt change in the

model through the introduction of objects as it does using

the structured analysis methodology followed by the Bailin

approach discussed in section 3.1 which involves abstracting

objects from the data flow diagrams. Although this approach

has been proposed and used [Seidewitz,86a and 86b], it seems

to be much more difficult to carry through and is subject to

more effort if the analysis model ahead of this stage is

modified. In contrast, an analysis model already object

oriented does not require this step and does not require

extra effort to incorporate modifications to the earlier

models. This is the payoff of a series of "seamless" models.

There also seems to be a conceptual simplification using the

object oriented approach with Systems analysis objects as

the basic building blocks since such objects correspond to

natural systems and subsystems whereas structured analysis

requires a single function to be associated with this

decomposition.

One potential advantage for the use of systems analysis

objects may be in the reuse of portions of an analysis

model. For example, an organization which creates multiple

applications often finds that the applications interact with

one another and this interaction is important in the

analysis and design. With an object oriented systems

analysis model, the interaction may result in the sharing of

objects so that previous analysis objects might be

incorporated into the new model. In other situations, the

objects might need to be tailored to a new application and
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again the use of inheritance may allow the reuse of
previously created systems analysis objects.
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