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Abstract

This paper presents research into providing, highly
reusable and maintainable components by using au-
tomatic software synthesis techniques. This pro-
posal uses domain knowledge combined with auto-
matic software synthesis techniques to engineer large-
scale mission-critical real-time software. The hy-

pothesis centers on a software synthesis architecture
that specifically incorporates application-specific (in
this case real-time) knowledge. This architecture syn-
thesizes complex system software to meet a behav-
ioral specification and external interaction design con-
straints. Some examples of these external constraints
are communication protocols, precisions, timing and
space limitations. The incorporation of application-
specific knowledge facilitates the generation of math-
ematical software metrics which are used to narrow
the design space, thereby making software synthesis
tractable. Success has the potential to dramatically re-
duce mission-critical system life-cycle costs not only
by reducing development time, but more importantly
facilitating maintenance, modifications and extensions
of complex mission-critical software systems which are
currently dominating life-cycle costs.

1 Introduction
The software development process is time consum-

ing, expensive, and fraught with errors. These char-
acteristics hinder the reuse of software. This paper
presents an approach that seeks to reduce software de-
velopment time while simultaneously increasing soft-
ware reuse. This approach, called RT-Syn, uses char-
acteristics of the software domain to synthesize soft-
ware. Although there is a wealth of structural and syn-
tactic knowledge that can be brought to bear for soft-
ware synthesis, the lack of success in generalized soft-
ware synthesis [15] argues that this knowledge is in-
sufficient, and that domain-specific knowledge is nec-
essary for successful software synthesis.

The chosen domain is real-time software. Software
for real-time applications can be characterized as a
set of time-constrained tasks, l_al-time system fail-
ure is defined as when any task misses its hard dead-
line. Software development and subsequent redevelop-
ment is one of the major bottlenecks of real-time sys-
tem design and maintenance. One method to remove
this bottleneck is to automatically synthesize rea|:tlme
software to meet all system platform and task timing
requirements. We argue that the presence of strict

operation requirements, such as task-level timing con-
straints and compiler and target platform constraints,
can be used to guide synthesis.

RT-Syn builds off of previous work by Setliff [11,
12], Barstow [1], and Kant [9] among others. Gen-
erality is supported by the use of a visual language
as an algorithm specification. Only that application-
specific knowledge relevant to programming-in-the-
small synthesis is currently incorporated within the
RT-Syn synthesis architecture. Within the vernacu-
lar of this particular application domain, this current
project focuses on task-level synthesis issues. Future
work encompasses system-level (programming-in-the-
large) synthesis issues.

Section 2 reviews the current RT-Syn 1.0 architec-
ture and presents a brief overview of each component
within RT-Syn 1.0, including an enumeration of what
knowledge is required to perform task-level synthe-
sis and how that knowledge is represented. Section
3 describes R.T-Syn 2.0, an approach to system-level
software synthesis. This section describes the various
components envisioned within RT-Syn 2.0 and their
interactions. Finally, Section 4 presents an overview
of our progress and a plan for future work.

2 RT-Syn 1.0 Architecture
This section describes the architecture of our ini-

tial version of RT-Syn called RT-Syn 1.0. This ver-
sion incorporates knowledge of the effects of a specific
platform, the DLX processor [4], on task-level synthe-
sis, as well as an algorithm that uses this knowledge to
formulate timing and space requirements estimates for
different implementation possibilities for a task. We
chose the simulated DLX processor for this initial ver-
sion because it is completely modelled and DLXsim
(a program which models the operation of the DLX
processor) keeps statistics useful for checking our de-
sign decisions. Current work in predictable platforms

[18] seeks to design and develop real-world platforms
which exhibit the similar predictable characteristics
exhibited by the DLX processor.

R.T-Syn 1.0 integrates platform characteristics to
synthesize a real-time software task to meet hard dead-
line requirements. The RT-Syn 1.0 automatic syn-
thesis system has five key features. First, a visual
graphical user interface, called Intuition, captures ap-
plication algorithms without implementation specifi-
cations. Second, RT-Syn 1.0 analyzes the task-level
data and control flows to produce worst-case timing
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and space predictions. Third, KT-Syn 1.0 uses these
predictions to select abstract representations of data

structures and algorithm implementations to meet re-
quired timing and space constraints. Fourth, l:tT-Syn
1.0 synthesizes C code from the selected implementa-
tions. Fifth, RT-Syn 1.0 validates the execution of the
code to meet the predicted timing and space utiliza-
tion values.

rimitives_-_

atabase. _

User

÷
[Intuition __atabase_

+
Cod e M aker _(Platfo rrn_lL

_kDatabase_

x'll

xr xt

#exter_
_o.2 xt2

// ,

hftChm kar[a_C3tym4ttf#;_tC_m _k

Figure 1: RT-Syn 1.0 Synthesis Architecture

RT-Syn 1.0 (See Figure I) iscomposed of several
databases and two tools:Intuition,a graphicalpro-
gramming language,and CodeMaker, a real-timesoft-
ware directedprogram synthesissy.stem.

A visualprogramming language m a way toprogram
a system using a visualparadigm. Visual program-
ming languages vary in the levelofrepresenteddetail

[5]."Intuitionprovides a semantic-level,user-friendly,
hierarchicalvisualprogramming environment. This
environment offersseveraladvantages over text-based
environments. It allowsfor the user-friendlyinput of

RT-Syn specificationswith minimum effort.Itshier-
archicalnature allows the user to easilymodify the

description.There isalsolesslearningtime involved.

The concepts behind these_dvantagesare presentina
varietyofexistingvisualprogramming researchefforts

[2,3, I0, 13, 14].
Intuitionacts as a user input system as well as a

high levelvisualalgorithm description.Intuitionde-
scriptionscapture both data flow and controlflowin-
formation. Intuitionissimilarin form and function

to the popular object-orienteddrawing program that
existson personal computers, such as MacDraw. The
user has a paletteof tools,and a window inwhich to
draw a schematic representationof algorithms. Fig-
ure 2 is an example of a Intuitionscreen represen-
tation of a FFT signalprocessingalgorithm. Each
rectangularcellon the screenrepresentsa basicbuild-

ing block of the algorithm. The building block may
be directcomputation or a hierarchicalreferenceto
another Intuition file representing quantities of com-
putations. Data and control flow is captured by the
connecting lines between the cells. There is no data

Figure 2: Representative Intuition Algorithm Repre-
sentation

typing or language representation implied within Intu-
ition. Groups of Intuition algorithmic representation
formulate the Algorithm Database. This database or-
ganizes the algorithms by function and by hierarchical
components.

The cornerstone of the RT-Syn 1.0 schema is a pro-
gram synthesis system which is capable of produc-
ing extremely well-modelled executable code. Code-
Maker, a program synthesis system targeting real-time
signal processing software, guarantees the validity of
the generated code using the following methodology.
First, CodeMaker analyzes all algorithmic represen-
tations available within Intuition that can result in
the required behavior and produces an internal rep-
resentation of the algorithmic data and control flow.

Second, CodeMaker uses knowledge of the platform
to produce implementation ranges mr each specifiable
resource (currently, speed and space). All implemen-
tation possibilities for a particular task are guaranteed
to be within the implementation range. Third, Code-
Maker analyzes the implementation ranges to select
the algorithmic approach most likely to satisfy all of
the required specifiable resource quantities for a par-
ticular task. Fourth, CodeMaker then synthesizes an
implementation of the algorithm that is guaranteed to
meet the required specifications.

The following example illustrates the operations
within CodeMaker, what knowledge is applied, and
how knowledge is applied. In this example, Code-
Maker is directed (via Intuition) to synthesize a FFT
algorithm that executes in X cycles and may consume
no more than Y bytes of data memory. There exist
numerous algorithms that exemplify the FFT behav-
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ior [6]. Each algorithm, regardless of the implemen-
tation, places a differing strain on computation and
memory resources. CodeMaker must select a particu-
lar algorithm and then synthesize an implementation
of the algorithm to specifically meet the requirements
for that task.

CodeMaker first analyzes all algorithmic possibili-
ties and produces a control and data flow graph for
each. The implementation ranges are formed by not-
ing a fairly simple fact. Timing limitations gener.ally
adversely affect space utilization (less time requires
greater space requirements). To discover the mini-
mum speed characteristic for any algorithm, synthe-
size the algorithm while attempting to reach a 'time
= 0' constraint. Of course, this is impossible so syn-
thesis will fail, but the resultant implementation spec-
ification will be the closest to zero and thus the min-
imum time and maximum data memory. Setting a
'space = 0' constraint and synthesizing to meet that
constraint find the implementation that uses the i¢_ast
data memory and maximum time. Program memory
requirements are not considered currently in Code-
Maker. Each algorithm that satisfied the required be-
havior is synthesized twice to produced implementa-
tion ranges for that algorithm. The synthesis process
incorporates knowledge of the platform and maintains
any dependencies within an algorithm. This approach
is used to prune out those possibilities that will fail
early on in the process. The algorithm with a design
space closest to the resource requirements is selected.
It is important to note that the design space is not
convex. There exist points in the design space that
are not reachable. The synthesis process is capable of
backtracking back to this point if the requirements are
not attainable during the final synthesis process.

Synthesis of an implementation requires access
to specific platform-dependent data. The Platform
Database contains modelling information needed to
generate accurate predictions about the timing and
space utilization characteristics of tasks for a given
platform. The bulk of the information in this database
consists of data about primitives. Primitives are the
lowest-level building blocks used by RT-Syn when syn-
thesizing C code. Typically, primitives represent sin-
gle C operations, such as addition, multiph'cation, and

. - . .

_ranchmg operations. Information stored m the plat-
form database includes: the timing and space charac-
teristics of all primitives on this platform, formula to
account of eccentricities in the behavior of the model
of the platform, characterization of any operating sys-
tem calls that will be used, and a characterization
of the C compiler to be used when generating exe-
cutable code. The behavior of platforms and compil-
ers vary widely. As a basic example, some comput-
ers utilize a separate floating-point math unit, which
makes floating-point math a faster alternative to in-
teger math. At a compiler level, different compilers
perform different optimization techniques, so that the
same piece of C code compiled on two different compil-
ers and then run on the same platform will have differ-
ent characteristics. An important feature of the RT-
Syn system that is a result of the Platform Database
is that a given set of tasks can be completely re-

synthesized for different platforms by changing only
the platform selection.

CodeMaker uses the data and control flow graphs,
in tandem with knowledge of the tradeoffs requisite in
a particular target platform (e.g., operating system,
hardware) and target language primitives, to select
implementations. The selection process is performed
bottom-up (or correspondingly output-back-to-input)
on the data flow graph. This graph walking approach
specifically acknowledges the impact of external re-
quirements (the required outputs) on the implementa-
tion selections. In this way, the external requirements
are applied as early as possible and are used to re-
ject portions of the design space that are unworkable.
Only that knowledge pertinent to the task-level pre-
diction and selection is required. Analysis, prediction,
then selection continues until the task implementation
is fully specified. At this point, the implementation
code is constructed.

Experimentation using Intuition and CodeMaker
[16] demonstrate both the efficient synthesis (100's
of lines of code is less than 30 seconds on a MAC
II) possible when application-specific knowledge is in-
corporated within synthesis. Numerous experimenta-
tion [16, 17] also shows the range of implementations
attainable merely by modifying the task-level con-
straints. These experiments show the power of using
application-specific knowledge to synthesize software
to meet a set of specifications and thereby provide for
software reusability. 0nly knowledge of platforms and
primitives particular to data structure and algorithm
selection is incorporated and used within CodeMaker.
This knowledge prunes the design space, while pro-
viding solutions for time and space constrained signal
processing tasks.

RT-Syn 1.0, a real-time task set synthesis archi-
tecture, synthesizes viable C code solutions based on
a user's high-level task set specification. RT-Syn 1.0
takes as input a high-level description of the real-time
tasks to be generated, along with information about
the equipment on which the system will be run and
generates code to implement each task. The code
is guaranteed to meet any resource use requirements.
The next section describes work in progress towards
system-level synthesis using the successes of the RT-
Syn 1.0 system as a foundation.

3 Towards System-Level Synthesis

RT-Syn 2.0 focuses on system-level synthesis. RT-
Syn 2.0 performs all of the synthesis provided by RT-
Syn 1.0 and also generates a scheduler to coordinate
the execution of the individual tasks. The entire sys-
tem will be guaranteed to produce the desired outputs
within the given deadlines and without exceeding the
host equipment's resources.

The RT-Syn 2.0 real-time software synthesis archi-
tecture is shown in Figure 3. Each block in the dia-
gram represents a component in the synthesis archi-
tecture. There are two types of components in the
synthesis architecture: design and database compo-
nents. We first introduce each component, then de-
scribe the advantages of this architecture. We then
describe in detail the functionality of each component

123



Setliff

Database

Database

User

I System I_ In!Rt_onSpecification " 1

I___lgorithm_'_

System | _Database_Strategist

CodeM ak er_Platform" _

Figure 3: RT-Syn 2.0 Synthesis System

in the order that synthesis follows: from user specifi-
cation of a set of tasks to the successful synthesis of
code for each task. The software synthesis process is
not monolithic; rather, the synthesis process is com-
posed of a succession of abstraction levels. Breaking
the software synthesis architecture into the various ab-
straction levels illustrates the design hierarchy. Each
design abstraction level is composed of a design com-
ponent with database components as required. The
highest abstraction level is the user interaction with
the synthesis architecture. The System Specification
component interacts with the user to form a system-
level behavior description. The user interacts with the
synthesis architecture via Intuition.

The second abstractionleveldecomposes the sys-
tem behavior descriptionsinto task levelspecifica-
tions.The System Strategistcomponent analyzes the
system-levelbehavior description,determines what
tasks are required, how the tasks are to be scheduled,
and how resources are to be allocated to each task. All

of these operations require knowledge. This knowl-
edge is captured within three database components:
the Resource Management Database, the Algorithm
Database, and the Platform Database. The Resource
Management Database contains knowledge of current
system resource allocations and results from prior soft-
ware synthesis operations. This information is used
within the System Strategist to aid the design and
synthesis process. The Algorithm Database contains
knowledge about a variety of useful algorithms and the

methods in which they are implemented. Each algo-
rithm in this database is represented using Intuition.
The Platform Database contains modelling informa-
tion for various computer/compiler platforms. This
information is used in the analysis tools within the
System Strategist component and CodeMaker tool.

The third abstraction level decomposes the task
level specifications into code implementations. This
abstraction level has already been developed and dis-
cussed in a prior section of this proposal.

There are several advantages to this architecture.
The decomposition via abstraction level provides a de-
sign focus and limits the amount of design search. The
decomposition also closely mirrors the current devel-
opment process of a system analyst and programmer.
By mirroring this development process, it is possible
to allow both system analysts and programmers to in-
teract with the synthesis architecture. The distinction
between design and database components provides a
growth mechanism.

Isolating the information into three distinct
databases facilitates the expansion of RT-Syn 2.0 to
work with a variety of systems. Extending the knowl-
edge of the Algorithm Database enables the system to
synthesize a wider array of tasks:Adding information
about more systems to the Platform Database allows
RT-Syn 2.0 to model new hardware/compiler plat-
forms. Finally, by updating the Primitives Database,
RT-Syn 2.0 gains the ability to synthesize code in dif-
ferent languages.

The System Specification component serves three
functions. The first function is to enable the user to
specify the set of tasks to be synthesized. The user
specifies a type of task set (out of a list of tasks of
which the system has knowledge), provides informa-
tion about the number of and type of inputs and out-
puts to the set of tasks, and chooses a target plat-
form (from a list of machines for which there exist
timing models). From this information RT-Syn 2.0
constructs a suite of tasks which will perform the de-
sired function and run within the confines of the tar-
get platform's constraints. The output is informa-
tion to the System Strategist about what tasks are
required and what platform is being used. This task
specification information can be very coarse-grained
(e.g., system-level input) or extremely detailed (e.g.,
implementation-level input), depending on the level of
user interaction. The second function of the System
Specification component is to interact with the user
during the design and synthesis process. Interaction
takes the form of behavior simulation. In this way,
the user can validate that the set of tasks given in
the input do indeed satisfy the required mathematical
functionality before synthesizing to meet the needs of
the application.

The Resource Management Database provides in-
formation about system resource allocation results to
the System Strategist. As individual tasks are synthe-
sized, the amount of resources required will solidify
from coarse estimates to accurate predictions. Dur-
ing the synthesis process, the Resource Management
Database is updated to reflect the current state of a

task's resource allocation needs. These needs are rep-
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resented as the set of task descriptors Ci, Ti and Ui task, and allocates resources to each task in the sys-
(which represent worst-case execution time, execution tern. The input to the System Strategist is a system-
period, and utilization, respectively) [8, 7]. level behavior description. The output is a system

The System Strategist acts as the systems analyst scheduler algorithm selection, and a set of task-level
for the synthesis of the set of tasks. Its initial func- descriptions. A task-level description details the be-
tion is to determine what task implementations will be havior algorithm and desired time and space char-
used in the desired system and to choose and develop a acteristics for each task. Analysis is required to
real-time scheduler to manage these tasks. To choose a
scheduler the System Strategist must have knowledge
of a variety of scheduling schemas and have heuris-
tics for deciding which one is most applicable to the
current situation. These heuristics consist of rules de-
rived from real-time scheduling theory. The following
describes the algorithm database and provides a de-
tailed discussion of the operations the System Strate-
gist performs once the synthesis process is underway.

There are two main characteristics of the Algorithm
Database: organization and database entry contents.
The algorithms are organized hierarchically by behav-
ior. Figure 4 illustrates the organization of the Algo-
rithm Database:

Control_ I

Figure 4: Design Organization of the Algorithm
Database

The advantage of this organization is the reduction
of search required to find all algorithms with a certain
behavior. Organization by behavior places each algo-
rithm in a specific behavior class. Each entry in a par-
ticular class possesses the identical behavior but differs
in the corresponding functionality. A behavior hierar-
chy corresponds to the desired system-level user inter-
action. A typical system level specification consists of
a set of behavior descriptions. These behavior descrip-
tions match particular class and subclass behaviors in
the algorithm hierarchy. All algorithms corresponding
to the specified behavior may be immediately retrieved
for analysis. Each entry in the database is a 3-tuple:
algorithm representation, resource constraint ranges,
synthesis history. Each algorithm is represented in In-
tuition. Each entry contains coarse-grained resource
characteristics. These coarse-grained characteristics
define the implementation design space for that algo-
rithm entry. Currently the Algorithm Database con-
tains time and space resource characteristics.

The System Strategist analyzes the system-level be-
havior description as a set of tasks, schedules each

synthesize the scheduler algorithm and task-level de-
scriptions. The System Strategist first accesses the
implementation range information in the Algorithm
Database for each task in the system. The set of
implementation ranges defines the design space that
the scheduling algorithm must guarantee. There is an
enumerable set of scheduling algorithms. The System
Strategist attempts to synthesize all known scheduling
algorithms. The System Strategist applies the under-
lying mathematics of each scheduling algorithm to the
set of implementation ranges. A task specification is
chosen within each range that will result in guaranteed
schedulability. The set of task specifications may not
overutilize system memory constraints. A potential
scheduling algorithm is removed from consideration

(pruned) when it fails to guarantee the task specifica-
tmn set.

Scheduling algorithm analysis iterates with the syn-
thesis of each task in the system. Task synthesis re-
sults in more exact information than the implemen-
tation range information in the Algorithm Database.
More exact information prunes the design space and
allows the reallocation of resources.

4 Conclusions
The real-time software development process is time

consuming. This paper presents work in progress to-
wards alleviating the costs of real-time software sys-
tem design, development, and maintenance. This
work incorporates state-of-the-art scheduling theory
within a software synthesis architecture. This archi-
tecture leverages off of past research into the successful
synthesis of software. Results illustrating the ability
to accurately predict the time and space characteris-
tics of a task and then synthesize an implementation
to meet the prediction can be found in [16, 17]. This
synthesis system successfully generates functional C
code from high-level algorithmic descriptions. The
generated code can be modeled for speed and space
requirements, and these predictions prove to be rea-
sonably accurate for a variety of platforms. The abil-
ity to generate predictable code is the cornerstone of
the RT-SYN s_'stem. By demonstrating the validity
of the synthesis system, we validate the premise of
automated real-time task set synthesis.

The scope of this paper presents work in the initial
phase of the design and development of a real-time
software synthesis architecture. We target the syn-
thesis of uni-task systems with a focus on the use of
prediction to aid synthesis. Future work in this phase
encompasses expanding the repertoire of algorithms
within the Algorithm Database and verifying efficient
synthesis of these algorithms. The second phase of this
work targets on multi-task synthesis. Specifically, we
will incorporate the RT Mach operating system into
the Platform Database. We see this second phase as
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proving the predictability of RT Mach by accurately
predicting synthesis results. The third and final phase
of this work targets system-level synthesis. At this
point, we will introduce real-time network character-
istics into the System Synthesis schedulability anal-
ysis. These characteristics encompass adding a real-
time database and system-level application scenarios.
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