
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2016-017 December 15, 2016

Sound and Complete Runtime Security
Monitor for Application Software
M. Taimoor Khan , Dimitrios Serpanos, and
Howard Shrobe

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78073566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Sound and Complete Runtime Security Monitor for

Application Software⇤

M. Taimoor Khan†, Dimitrios Serpanos‡ and Howard Shrobe?

†muhammad.khan@aau.at
‡serpanos@ece.upatras.gr

*hes@csail.mit.edu
†Software Engineering Research Group

Alpen-Adria University, Klagenfurt, Austria
‡ECE, University of Patras and

Industrial Systems Institute/RC ATHENA, Greece
?MIT CSAIL, USA

December 15, 2016

Abstract

Conventional approaches for ensuring the security of application
software at run-time, through monitoring, either produce (high rates
of) false alarms (e.g. intrusion detection systems) or limit application
performance (e.g. run-time verification). We present a run-time se-
curity monitor that detects both known and unknown cyber attacks
by checking that the run-time behavior of the application is consis-
tent with the expected behavior modeled in application specification.
This is crucial because, even if the implementation is consistent with
its specification, the application may still be vulnerable due to flaws
in the supporting infrastructure (e.g. the language run-time system,
supporting libraries and the operating system). This run-time secu-
rity monitor is sound and complete, eliminating false alarms, as well
as e�cient, so that it does not limit run-time application performance
and so that it supports real-time systems. Importantly, this monitor
is readily applicable to both legacy and new system platforms.

The security monitor takes as input the application specification
and the application implementation, which may be expressed in dif-
ferent languages. The specification language of the application soft-
ware is formalized based on monadic second order logic (i.e. first order
logic and set theory) and event calculus interpreted over algebraic data

⇤The part of this work was developed at QCRI.

1

structures. This language allows us to express behavior of an applica-
tion at any desired (and practical) level of abstraction as well as with
high degree of modularity. The security monitor detects every attack
by systematically comparing the application execution and specifica-
tion behaviors at runtime, even though they operate at two di↵erent
levels of abstraction. We define the denotational semantics of the spec-
ification language and prove that the monitor is sound and complete,
i.e. if the application is consistent with its specification, the security
monitor will produce no false alarms (soundness) and that it will de-
tect any deviation of the application from the behavior sanctioned by
the specification language (completeness). Furthermore, the monitor is
e�cient because of the modular application specification at appropri-
ate level(s) of abstraction. Importantly, the application specification
language enables the description of known or potential attack plans,
enabling not only attack detection but attack characterization as well
and, thus, facilitating e↵ective and e�cient defenses to sophisticated
attacks.

2

Contents

1 Introduction 4

2 Related Work 7

3 Application Specification Language 9
3.1 Syntax . 9
3.2 Example . 12
3.3 Formal Semantics . 14

3.3.1 Semantic Algebras . 15
3.3.2 Signatures of Valuation Functions 18
3.3.3 Definition of Valuation Functions 19

4 Security Monitor 21
4.1 Formal Semantics . 22

5 Proof of the Soundness 24
5.1 Proof . 26

5.1.1 Case (⌘) . 26
5.1.2 Case when ⌘ = � . 27

6 Proof of the Completeness 31
6.1 Proof . 33

6.1.1 Case when ⌘ = � . 33

7 Auxiliary Functions and Predicates 36

8 Lemmas 37

9 Conclusion 39

3

1 Introduction

Runtime security monitors are components of defending systems against
cyber attacks and must provide fast and accurate detection of attacks. Con-
ventional run-time monitoring systems su↵er from high false alarm rates, for
both positive and negative alarms, and are ine�cient because their typical
amount of observed parameters is large and possibly irrelevant to a num-
ber of attacks. There are two key reasons for these limitations: first, the
systems do not “understand” the complete behavior of the system they are
protecting, and second, the systems do not “understand” what an attacker
is trying to achieve. Actually, most such systems are retrospective, taking
into account and analyzing historical data, resulting to attack surface signa-
tures of previous attacks and attempting to identify the same signature(s)
in new tra�c. Thus, conventional run-time monitors are passive, waiting
for (and expecting that) something similar to what has already happened to
recur. Attackers, of course, respond by varying their attacks so as to avoid
detection.

Figure 1: Classification of Runtime Security Monitoring Systems

There are two dimensions along which run-time monitoring systems for
security can be classified. The first one is the behavior description method,
i.e. profile-based or model-based. The second one is the behavior compari-
son method, i.e. matching to bad behavior or deviation from good behav-
ior. This classification approach leads to four classes, as shown in Figure 1,
which include existing techniques and systems, each with its own strengths

4

and weaknesses. Profile-based systems that detect attacks by matching with
bad behavior (Class 1 in the figure) typically employ statistical and machine
learning methods to build a profile of bad behavior of the systems and more
specifically, build statistical profiles of attacks (e.g., [27, 28]). These sys-
tems are more robust than model based systems, since the machine learning
techniques tend to generalize from the data presented. However, they do
not provide rich diagnostic information and su↵er from false alarms. Al-
ternatively, profile-based systems that detect deviation from good behavior
(Class 3 in the figure) typically build a statistical profile of normal (good)
behavior and detect deviations from this profile (e.g. [25, 26]). Such anomaly
detectors are even more robust than Class 1 systems, because they do not
depend on historical knowledge of the form of an attack. However, they
have a significant false alarm rate, because they have limited diagnostic in-
formation: when a deviation is detected, the known information about it is
that something out of the ordinary has happened, but there is no su�cient
information whether this is malicious, accidental or just a variation of the
normal behavior beyond the statistically accepted profile.

Model-based systems (Classes 2 and 4 in Figure 1) are popular in highly
secure environments, where successful attacks cause significantly high costs.
Signature-based systems are a typical example in this class (e.g. [23, 24]),
and they look for matches to bad behavior, i.e. they are systems in Class
2. The advantage of such systems is that, when a match occurs, i.e. an at-
tack is detected, the systems have enough diagnostic information available
to ”understand” what the failure has been. However, they lack robustness,
since they will fail to detect an attack, if they have no model of it; thus,
they are susceptible to zero-day attacks and, in general, attacks they have
not been trained for. Finally, model-based systems that employ run-time
software verification to detect deviation from good behavior fall in Class 4 of
the figure. These systems model the good behavior of a system (e.g. [29, 30])
and detect deviations from that behavior using run-time software verifica-
tion techniques. Their advantage is that, whenever the system execution
deviates from good behavior, there is knowledge of the exact problem that
led to the deviation (i.e. the o↵ending instruction or routine). However,
such verification methods (a) require adequate design/implementation in-
formation of the system to operate (which is usually not the case for legacy
systems) and (b) limit run-time system performance, with high impact on
real-time systems, such as industrial control systems (ICS).

Our run-time security monitor falls in Class 4, because it (a) models
normal (good) behavior of the system through a formal specification de-
scription and (b) raises an alarm when the behavior of the application’s
execution deviates from the behavior described in the (executable) speci-
fication. Specifically, our security monitor has an active model of normal
behavior, namely an executable specification of the application [3]. This ex-
ecutable specification consists of a decomposition into sub-modules and pre-

5

and post-conditions and invariant for each sub-module. In addition, data-
flow and control-flow links connect the sub-modules, specifying the expected
flow of values and of control. The pre- and post-conditions and invariant
are arbitrary first-order statements about the set of data values (that flow
into and out of the sub-modules) and about other arbitrary constraints re-
spectively.

Our run-time security monitor is suitable not only for new systems, which
derive application implementation from application specification, but also
for ”legacy” systems, where application implementations exist without ade-
quate (formal or informal) application specifications. This can be achieved
by describing application specification at any feasible level of abstraction
through available specification information. Furthermore, modular applica-
tion specification at any desired level of abstraction also allows us to moni-
tor only attack(s) specific behavior of ”real-time” systems without a↵ecting
their performance at run-time. As our run-time security monitor is using an
executable application specification, it is e�cient for use in real-time system
as has been proven for real-time safety-critical systems [31].

Our run-time security monitor (“RSM”), shown in Figure 2, is the core
component of a larger system named ARMET. ARMET takes as input a
specification (“AppSpec”) and an implementation (”AppImpl”) of the ap-
plication of interest. Based on the specification, the “Wrapper Synthesizer”
of ARMET generates probes to observe the run-time behavior of the ap-
plication that corresponds to the specification elements. During execution
of the “AppImpl”, the RSM checks whether the actual behavior of the sys-
tem (observations generated by ”Wrapper Synthesizer”) is consistent with
the predictions generated from ”AppSpec”. If an inconsistency is detected,
RSM raises an alarm and ARMET suspends the application execution and
proceeds to diagnosis, in order to identify why the execution of ”AppImpl”
did not behave as predicted. In addition to run-time monitoring, ARMET
employs diagnostic reasoning techniques to further isolate and character-
ize the failure [11]. ARMET is highly robust and has high diagnostic data
resolution, which is a key requirement of real-time systems that require
continuous operation even after a successful attack. ARMET achieves con-
tinuous operation through the construction of a far more complex models of
applications.

RSM runs executable application specification in parallel with the actual
application code, comparing their results at the granularity and abstraction
level of the executable specification. The executable specification is hierar-
chical and modular, allowing flexibility in the granularity of the monitor-
ing. Depending on the environment, the executable specification may run
at a high level of abstraction, incurring less overhead, but requiring more
diagnostic reasoning when the program diverges from the behavior of the
executable specification. Alternatively, the executable specification can be
elaborated in greater detail, incurring more overhead, but providing more

6

Figure 2: The Architecture of Core Defending-System

containment.
Optionally, the model can also specify suspected incorrect behaviors of

a component and associated potential attack plans, allowing the diagnostic
reasoning to characterize the way in which a component may have misbe-
haved. Then, diagnosis is a selection of behavioral modes for each compo-
nent of the specification, such that the specification predicts the observed
misbehavior of the system.

Through this work, we introduce a highly reliable run-time security mon-
itor with proven absence of false alarms (i.e. soundness and completeness).
Importantly, the proof establishes a contract between the monitor and its
user such that, if the user establishes the assumptions of the proof, the
monitor guarantees to detect any violation at run-time.

The remaining of the report is organized as follows. In Section 2, we
describe related work and in Section 3 we present the calculus (syntax and
semantics) of the application specification language. In Section 4, we present
the calculus (syntax and semantics) of the security monitor. Section 5 and 6
formulate and proves soundness and completeness of the monitor respec-
tively. The auxiliary functions and predicates are discussed in section 7,
while section 8 presents auxiliary lemmas and sketches of their correspond-
ing proofs. We conclude in section 9.

2 Related Work

The operation of RSM is to check the consistency between the specified
and execution behaviors of an application at run-time. This may be viewed
as a run-time verification problem. The goal of run-time verification is to
specify the intended behavior of a system in some formalism and to generate

7

an executable monitor from this formalism (i.e. specification) that reports
inconsistent execution, if detected.

There has been extensive research on specification based run-time moni-
toring. Most such approaches employ formalism such as context grammars,
regular expressions [13], event calculus [10], temporal logic [7, 6] and rule
systems operating over atomic formulas [9]. Such formalism o↵er limited
expressive power to formalize complex system properties, although they can
be translated into e�cient executable monitors. To addresses the challenges
of run-time monitoring of ”legacy” and ”real-time” systems (namely the lack
of design information and performance respectively), our formalism allows
not only to specify dependencies, system level behavior and security prop-
erties (in case of partial design details), but also to specify internal system
behavior and complex security properties (in case of desired design details)
of such systems as well.

Run-time monitoring of legacy systems has not received significant atten-
tion. However, there have been attempts to apply similar monitoring tech-
niques. For example, Kaiser et al. instrument the systems by probing and
passing data to another component that forms a basis of the system’s model
which is later used to monitor run-time modifications automatically [15].
More recently, Wofgang et al. have automatically generated run-time moni-
tor for network tra�c from a high-level specification language which is based
on first order predicate logic and set theory [14]. Furthermore, based on a
variant of denotational semantics of the specification language and opera-
tional semantics of the monitor [17], they verified soundness of the resource
analysis of the monitor [16]. The resource analysis identifies the number of
instances of the monitor and the number of messages required to detect a
violation.

Model-based executable specifications have been rarely used for run-time
monitoring of real-time systems [18]. However, Barnett et al. have used
ASML as an executable specification language for run-time monitoring [19].
ASML is an extension of ASM, which is based on the formalism of a tran-
sition system whose states are first order algebras [4]. There is no formal
semantics of ASML, however, the operational semantics of some constructs
of ASM has been defined by Hannan et al. [5]. More recently, Choilko et
al. have developed a framework for executable specification based run-time
monitoring of timed systems [21]. In this work, the formalism of the spec-
ification is based on an extended time interval which is a pair of a time
event and a time interval. The formalism for implementation is based on
timed word which is a sequence of time events and the goal of the monitor is
to check the conformance of an implementation word and the specification
trace.

In contrast to the approaches discussed above, the focus of our run-time
security monitor is to check consistency of automatically generated predic-
tions (conditions) from an executable specification language and run-time

8

observations of application execution. The formalism of our specification
language is based on monadic second order logic [20] and event calculus in-
terpreted over algebraic data structures. This formalism allows specification
of faulty behaviors of a system. Furthermore, the formalism enables descrip-
tion of attack plans, which are exploited by the monitor at run-time for early
threat detection against more sophisticated and complex attacks, e.g. ad-
vanced persistent threats. Our formalism is similar to Crash Hoare-logic
that is used to capture the faulty behavior of a file system [22]. Our for-
malism allows sound construction (resp. specification) of high-level abstract
behavior of a system from low-level abstract behavior(s) using a method
analogous to classical set builder. Our security monitor is the first approach
in run-time monitoring that formally assures the absence of false alarms and
thus is sound and complete. For our proof we use the denotational semantics
of the application specification language as described in [2].

3 Application Specification Language

Our executable (application) specification language [3] consists of a decom-
position of an application behavior into sub-modules and pre- and post-
conditions and invariant (behavioral description) for each sub-module: in
rest of the paper, we use the term system for application behavior. The
decomposition is further equipped with data-flow and control-flow links that
connect the sub-modules, specifying the expected flow of values and of con-
trol. The specification also allows to specify potential attack plans for the
components based on attack models and associated rules that imply a cer-
tain attack model.

In the following subsection, we discuss selected high level syntactic do-
mains and their semantics.

3.1 Syntax

Based on the aforementioned description, syntactically, the specification lan-
guage (represented by syntactic domain !) has following three main top level
constructs:

1. hierarchical decomposition (⇣) of sub-modules,

2. behavioral description (⌘) of each sub-module and

3. attack plans (✏) of modules/sub-modules.

The simplified grammar of these top level domains is shown in Figure 3.
In the following we briefly discuss the decomposition and attack plans,

and will focus more on behavioral description, being core and the only one
that is also used in the following sections for semantics and proof.

9

Application Specification ! ::= ... ⇣ ⌘ ✏...
Decomposition ⇣ ::= ↵ | (↵) ⇣
Behavioral Model ⌘ ::= � | (�) ⌘
Attack Plan ✏ ::= � ⇢ | (� ⇢) ✏

...

Figure 3: Top Level Syntactic Domains of the Language

Decomposition (↵)

The hierarchical decomposition ↵ of a component1 consists of

1. its interface

• sets of inputs and outputs respectively

• a set of the resources used by the component (e.g. files, binary
code, ports) and a set of sub-components

• sets of events that allow entry and exit to and from the component
respectively

• a set of events that are allowed to occur during the execution of
the component

• a set of conditional probabilities between the possible modes of
the resources and the possible modes of the component and a set
of known vulnerabilities occurred to the component

2. and a structural model that is a set of sub-components some of that
might be splits or joins of

• data-flows between linking ports of the sub-components and

• control-flow links between cases of a branch and a component
that will be enabled if that branch is taken

The syntactical domain ↵ is defined in Figure 4.
The elements of ↵ are informally discussed above. Further details of ↵

are out of the scope of this paper.

Behavioral Description (�)

The � describes normal (and optionally various compromised) behavior of
a component that includes

• set of inputs and outputs respectively,

• allowable events during the execution in that mode and
1The ”component” and ”module/sub-module” are used interchangeably.

10

↵ ::= define-ensemble CompName
:entry-events :auto | set(Evnt)
:exit-events set(Evnt)
:allowable-events set(Evnt)
:inputs set(ObjName)
:outputs set(ObjName)
:components set(Comp)
:controlflows set(CtrlFlow)
:splits set(SpltCF)
:joins set(JoinCF)
:dataflows set(DataFlow)
:resources set(Res)
:resource-mapping set(ResMap)
:model-mappings set(ModMap)
:vulnerabilities set(Vulnrablty)

Figure 4: Syntactic Domain for Decomposition (↵)

� ::= defbehavior-model (CompName normal | compromised)
:inputs set(ObjName)
:outputs set(ObjName)
:allowable-events set(Evnt)
:prerequisites set(BehCond)
:postconditions set(BehCond)
:invariant set(BehCond)

Figure 5: Syntactic Domain for Behavioral Description (�)

• preconditions on the inputs, post-conditions and invariant, all of that
are first order logical expressions.

The complete syntax of � is defined in Figure 5.

Attack Plan (✏)

The attack plan ✏ consists of a description of potential attack models (�)
and the rules (⇢) that imply a certain attack. Syntactically, an attack plan
includes

• a set of types of attacks that are being anticipated and the prior prob-
ability of each of them,

• a set of e↵ects such that how each attack type can e↵ect mode (nor-
mal/compromised) of a resource and

11

� ::= define-attack-model AtkModName
:attack-types (set(AtkType))
:vulnerability-mapping (set(AtkVulnrabltyMap))

⇢ ::= defrule AtkRulName (:forward)
if set(AtkCond) then set(AtkCons)

Figure 6: Syntactic Domains of Attack Model (�) and Rule (⇢)

• a set of rules expressing the conditional probabilities between attack
types and resource modes.

The syntactic domains of � and ⇢ are defined in Figure 6 resp.
In principle, attack plans are hypothetical attacks based on rules that

describe di↵erent ways of compromising a component. The monitor exploits
such plans to match at run-time and detect any such attack, thus making
the monitor more robust.

3.2 Example

To provide an intuitive grounding for these ideas we will consider an example
of a simple ICS and of its model in the specification language. The system
consists of a water tank, a level sensor and a pump that is capable of either
filling or draining the tank. The tank has a natural leakage rate that is
proportional to the height of the water column in the tank. The tank is
controlled by a PID controller; this is a computational device running a
standard (PID) control algorithm that has a simple structure:

The algorithm has two inputs: The set-point, i.e. the water level that
the tank should maintain and the sensor value provide by the level sensor.
It has a simple output, the command. The algorithm performs the following
computations based on the three parameters notated as Kp, Ki and Kd that
are used as scaling weights in the algorithm as shown in Figure 9 (a).

1. Calculate the error, the di↵erence between the set-point and the sensor
value

2. Calculate three terms:

(a) The Proportional term; this is just the error weighted by Kp.

(b) The Integral term; this is a running sum of the errors seen so far,
weighted by Ki.

(c) The Derivative term; this is a local estimate of rate of change of
the sensor value, weighted by Kd.

12

3. Calculate the sum of the three terms.

4. The value of the sum is the command output of the algorithm.

The command output of the algorithm is sent to the pump, controlling
the rate at which the pump either adds or removes water. The algorithm
is “tuned” by the choice of the three parameters Kp, Ki and Kd; when well
tuned the system responds quickly to deviations from the set-point with
little over-shoot and very small oscillations around the set-point.

Finally, we note that the level sensor can be viewed as (and often is) a
computational and communication device that estimates the actual height
of the water tank and communicates the estimated height back to the con-
troller.

There are two standard categories of attacks on such a system:

• False Data Injection Attacks. These are attacks on the sensor and
its communication channel, such that the controller receives a value
that is di↵erent from the actual level of the tank.

• Controller Attacks. These are penetrations to the computer running
the control algorithm. For our purposes it is only necessary to consider
attacks that overwrite the value of one of Kp, Ki, or Kd. Any such
attack, will cause the controller to calculate an incorrect command.

In either case, the end result is that the level in the water tank will
not be correctly maintained. In the first case, the controller calculates a
correct response to the distorted sensor value. For example, suppose that
the attacker is systematically distorting the sensor value to be too low. In
that case, the controller will continuously issue commands to the pump to
add water to the tank, eventually causing the tank to overflow. In the
second case, a change in value of one of the controller parameters will cause
the controller to calculate in an incorrect command. This can have a variety
of e↵ects, depending on which parameters are changed.

Monitoring of such a system requires its behavioral specification as shown
in Figure 9 (b). The actual system is a cyber-physical system, containing
both physical components (i.e. the tank, the pump) and computational com-
ponents (i.e. the controller and the sensor). The monitor model parallels this
structure; it contains computational models of the controller and the sensor
as well as a computational model of the physical plant. This later model
performs a numerical integration of the di↵erential equations describing the
physical plant’s behavior, e.g. the dynamics of the pump. The application
specification of the controller, essentially mirrors the structure of the algo-
rithm: There is a component that calculates the error term, data-flow links
that connect the error term to each of three parallel steps that calculate the
Proporational, Integral and Derivative terms, finally there is the summation
component that adds the three terms, calculating the command output.

13

(define-component-type controller-step
:entry-events (controller-step)
:exit-events (controller-step)
:allowable-events (update-state accum-error)
:inputs (set-point sens-val)
:outputs (com)

:components
((err-comp :type err-comp :models (normal))
(comp-der :type comp-der :models (normal)) ...)

:dataflows
((set-point controller-step set-point err-comp)
(the-error err-comp the-error comp-der)...))

Figure 7: Decomposition of the Module controller-step

The structural model of the controller is shown diagrammatically in Fig-
ure 9 (b) (N and C refers to normal and compromised behavior and A refers
to possible attacks). The models for the components of the controller are
reasonably straightforward. For example, the normal behavioral model for
the Kd calculation states that the output of the component is the derivative
of the error, weighted by Kd. This is expressed as a post-condition, as shown
in Figure 8.

Notice that what the controller calculates is a discrete approximation of
the derivative of the error term, which is calculated using the previous and
current versions of the error. The value of the error term is conceptually a
state variable that is updated between successive iterations of the controller
computation. In our specification language, however, we model these as
extra inputs and data flows (as we do also for control algorithm parameters
such as Kd). For simplicity, we have omitted these extra items from the
diagram in Figure 9.

The compromised behavioral model states that any other behavior is
acceptable; it does so by stating no post-conditions.

The run-time behavior of the monitor will depend on the strength of
the post-conditions; if these are too weak, the monitor may allow undesired
behaviors..

3.3 Formal Semantics

In this section, we first give the definition of semantic algebras, then dis-
cuss informal description and the formal denotational semantics of the core
construct (i.e. behavioral description) of the specification language.

14

(define-component-type comp-der
:entry-events (compute-derivative)
:exit-events (compute-derivative)
:inputs (the-error old-error kd time-step)
:outputs (der-term)
:behavior-modes (normal compromised))

(defbehavior-model (comp-der normal)
:inputs (the-error the-old-error kd time-step)
:outputs (der-term)
:prerequisites ([data-type-of the-error number])
:post-conditions
([and [data-type-of der-term number]
[equal der-term
(*kd(/(- new-error old-error) time-step))]]))

(defbehavior-model (comp-der compromised)
:inputs (the-error the-old-error kd time-step)
:outputs (der-term)
:prerequisites ()
:post-conditions ())

Figure 8: Normal and Compromised Behavior of comp-der(kd)

3.3.1 Semantic Algebras

Semantic domains1 2 represent a set of elements that share some common
properties. A semantic domain is accompanied by a set of operations as
functions over the domain. A domain and its operations together form
a semantic algebra [8]. The domains of our language are similar to the
domains of any classical programming/specification language (e.g. Java,
JML, ACSL). In the following we declare/define only important semantic
domains and their operations.

Environment Values

The domain Environment holds the environment values of the language and
is formalized as a tuple of domains Context (which is a mapping of identifiers
to the environment values) and Space (that models the memory space). The
Environment domain includes interesting values, e.g. component, attack
plan and resource. Here resource can be binary code in memory, files and

1These domains are common to a program to be monitored, its specification language
and the monitor.

2We use subscript s and r to specify domains for specification and program’s run-
time resp., e.g. States = specification state, Stater = program’s runtime state, State =
combined monitor state.

15

(a) Application implementation

(b) Application specification

Figure 9: A Controller Application and its Model

16

ports etc.
Domain: Environment
Environment := Context ⇥ Space
Context := Identifier ! EnvValue
EnvValue := Variable + Component + AtkPlan + Resource + ...
Space := P(Variable)
Variable := n, where n 2 N represents locations

The domain Environment supports typical selection, update and equality
operations over its values.

State Values

The domain State represents the execution of a program. A Store is impor-
tant element of the state and holds for every Variable a Value. The Data
of the state is a tuple of a Flag that represents the current status of the
state and a Mode to represent the current mode of execution of the state of
a component.
Domain: State
State := Store ⇥ Data
Store := Variable ! Value
Data := Flag ⇥ Mode
Flag := {running, ready, completed}
Mode := {normal, compromised}

The domain State has typical operations, e.g. read and write/update of
values, checking equality of Flag and Mode in a given state, and setting a
certain Flag and Mode of a given state.

Semantic Values

Value is a disjunctive union domain and note that the domain Value is a
recursive domain.
Domain: Value

Value := ObsEvent + RTEvent + Component + AtkPlan + ... + Value⇤

The domain includes semantic values of observable event, a run-time event
and attack plan etc. The equality of the given two semantic values can be
evaluated.

Component Values

The Component formalizes the semantic model of a component as a predi-
cate over decomposition, normal and compromised behavior and a pre-state
and a post-state of the component’s execution respectively. The predicate
is formalized as follows:

17

Component = P(SBehavior ⇥ NBehavior ⇥ CBehavior ⇥ State ⇥ State?3)

where

SBehavior := P(Value⇤ ⇥ Value⇤ ⇥ Value⇤ ⇥ State ⇥ State?)
NBehavior = CBehavior := P(Value⇤ ⇥ Value⇤ ⇥ State ⇥ State?)

Furthermore, SBehavior is defined as a predicate over sets of input and
output values, set of allowable values, a pre-state and a post-state of the
behavior. Also, normal behavior and compromised behavior (NBehavior
and CBehavior) are also defined as predicates over sets of input and output
values, a pre-state and a corresponding post-state respectively.

Attack Values

The semantics domain AtkModel formalizes the attack model and is defined
as a predicate over an attack name, probability of the attack and the cor-
responding vulnerability causing the attack; the attack model is formulated
as follows:

AtkModel := P(Identifier ⇥ FVal ⇥ Vulnerability)

3.3.2 Signatures of Valuation Functions

A valuation function defines a mapping of a language’s abstract syntax struc-
tures to its corresponding meanings (semantic algebras) [8]. The valuation
function operates on a syntactic construct and returns a function from the
environment to a semantic domain.

We define the result of the valuation function as a predicate, e.g. the
behavioral relation (BehRelation) is defined as a predicate over an environ-
ment, a pre- and a post-state and is defined as follows:

BehRelation := P(Environment ⇥ State ⇥ State?)

The valuation functions for the abstract syntax domains of specification
(!), behavioral description (�) and attack plans (✏) have same signatures.
For example, a valuation function signature for � is defined as follows:

���: Environment ! BehRelation

Based on the above relation and the auxiliary semantic inference rules
(see Figure 11), we define valuation functions for � and ✏ in the following
subsection.

3State? = State [{?}

18

3.3.3 Definition of Valuation Functions

Semantically, normal and compromised behavioral models results in mod-
ifying the corresponding elements of the environment value Component as
defined below:

���(e)(e’, s, s’) ,
LET c 2 Component: �CompName�(e)(s, s’, inValue(c)) IN
8 e1 2 Environment, nseq 2 set(EvntName), b1, b2: B,

eseq 2 ObsEvent*, iseq, oseq 2 Value⇤:
�set(ObjName1)�(e)(s, iseq) ^ �set(BehCond1)�(e) (s) ^
noatk(c, e, b1) ^ �set(Evnt)�(e) (e’, s, s’, nseq, eseq) ^
�set(ObjName2)�(e’)(s’, oseq) ^�set(BehCond2)�(e’)(s,s’)^
�set(BehCond3)�(e’) (s, s’) ^ noatk(c, e’, b2)
)
LET v = b1 ^ b2 ^ eqMode(s’, ”normal”) IN

update(c, e’, s, s’, iseq, oseq, v)

where update is an auxiliary semantic rule as shown in Figure 11.
In detail, if the semantics of � in an environment e yields environment

e0 and transforms a pre-state s into a post-state s0 then

• the evaluation of inputs set(ObjName1) yields a set of values iseq in
environment e and state s such that the pre-conditions set(BehCond1)
hold in e and s and the component c has no potential threat (see rule
noatk) and

• the evaluation of allowable events results in environment e0 and given
post-state s0 with some auxiliary sets nseq and eseq and

• the evaluation of outputs set(ObjName2) yields a set of values oseq
in e0 and s0 such that post-conditions set(BehCond2) hold in e1, s and
s0 and

• the invariant set(BehCond2) holds in e0, s and s0, and the component
c has no threat (noatk), finally the environment e0 can be constructed
as follows

– if the post-state is “normal” then e0 is an update to the normal
behavior “nbeh” of the component “CompName”

– otherwise e0 is an update to the compromised behavior “cbeh” of
the component as shown in the corresponding inference rules of
update.

Moreover, the valuation function for attack plan is defined as:

19

t 2 {ENTRY, EXIT, ALLOWABLE, NONE}
typeOf(oe, c) ! t

dataArrives(c, s(i), s0(i)) comp(c, e(i), e0(i), s(i), s0(i), False, 0)
s(i+1) = s(i) s0(i+1) = s(i) setMode(s0(i+1), ”compromised”)

run(ENTRY, c, e, e0, s, s0, i, False)

dataArrives(c, s(i), s0(i)) comp(c, e(i), e0(i), s(i), s0(i), True, 0) setFlag(s0(i+1), ”running”)
s(i+1) = s0(i) e(i+1) = e0(i) mon(components(c), s(i+1), s0(i+1), e(i+1), e0(i+1))

run(ENTRY, c, e, e0, s, s0, i, True)

dataArrives(c, s(i), s0(i)) setFlag(s0(i+1), ”completed”) comp(c, e(i), e0(i), s(i), s0(i), b, 1)
s(i+1) = s0(i) s0(i+1) = s0(i) [b = False) setMode(s0(i+1), ”compromised”)]

[b = True) setMode(s0(i+1), ”normal”)]
run(EXIT, c, e, e0, s, s0, i, b)

inv(c, e(i), e0(i), s(i), s0(i), b1) noatk(c, e(i), b1) s(i+1) = s0(i) e(i+1) = e0(i+1)
run(ALLOWABLE, c, e, e0, s, s0, i, b1 ^ b2)

setMode(s0(i), ”compromised” s(i+1) = s0(i) e0(i+1) = e(i+1)
run(NONE, c, e, e0, s, s0, i, Flase)

nbeh = hinseq, outseq, s, s0i c0 = hc[1], nbeh, c[3], s, s0i
update(c, e1[id(c) 7! c0], s, s0, inseq, outseq, True)

cbeh = hinseq, outseq, s, s0i c0 = hc[1], c[2], cbeh, s, s0i
update(c, e1[id(c) 7! c0], s, s0, inseq, outseq, False)

a = haseq, apseq, vnseqi
atk(atkName, e, e[atkName 7! a], aseq, apseq, vnseq)

b = [8at : AtkName : at = context(e)(AtkName)) notcomp(c, at)]
noatk(c, e, b)

Figure 10: Auxiliary Semantic Inference Rules (A)
20

inv(c, e(i), e0(i), s(i), s0(i), b1) b2 = [x = 0) precond(c, e(i), e0(i), s(i), s0(i), True)]
b3 = [x = 1) postcond(c, e(i), e0(i), s(i), s0(i), True)] noatk(c, e(i), b4)

comp(c, s, s0, e, e0, b1 ^ b2 ^ b3 ^ b4, x)

inv(c, e(i), e0(i), s(i), s0(i), False)
_ x = 0) precond(c, e(i), e0(i), s(i), s0(i), False) _

x = 1) post(c, e(i), e0(i), s(i), s0(i), False) _ noatk(c, e(i), False)
comp(c, s, s0, e, e0, False, x)

9rte arrives(rte, s)
monitors(i+1, rte, c, e, e00, s, s00) mon(cseq, s00, s0, e00, e0, s00, s0, i)

mon(c; cseq, s, s0, e, e0, s, s0, i)

Figure 11: Auxiliary Semantic Inference Rules (B)

���(e)(e’, s, s’) ,
8 s” 2 State, aseq, aseq’, vnseq 2 ISeq, apseq 2 Value⇤:

�set(AtkType)�(e)(s, inState?(s”), aseq, apseq) ^
�set(AtkVulnrabltyMap)�(e) (s”, s’, aseq’, vnseq) ^
atk(AtkModName, e, e’, aseq, apseq, vnseq)

In detail, the semantics of the domain “�” updates the environment e
with a semantic value of AtkPlan such that if

• in a given e and s, the evaluation of “set(AtkType)” yields post-
state s00, a set of attack types aseq and a set of values (conditional
probabilities) apseq and also

• in given e and s, the evaluation of “set(AtkVulnrabltyMap)” yields
post-state s0, a set of attack types aseq0 and a set of vulnerabilities
vnseq, then

• the environment e0 is an update of environment e with the semantic
value AtkPlan, which is a triple of (a) a set of attack types (b) a set
of corresponding probabilities and (c) a set of vulnerabilities causing
the attack types, respectively.

4 Security Monitor

Based on [3], in this section we discuss the informal behavior of our run-
time security monitor whose main goal is to check consistency between a

21

program’s run-time observations and its specification-based predictions and
to only raise a flag if any inconsistency is identified. In detail, when the
application implementation starts execution, a “startup” event is generated
and dispatched to the top level component of the system, which transforms
the execution state of the component into “running” mode. The component
instantiates its subnetwork (i.e. sub-components) and propagates the data
along its data-links by enabling the corresponding control-links (if involved).
When the data arrives on the input port of the component, the monitor
checks if it is complete; if so, the monitor checks the preconditions of the
component for the data and if they succeed, it transforms the state of the
component into “ready” mode. Should the conditions fail, it raises a flag.

After the above startup, the execution monitor starts monitoring the
arrival of every observation (run-time event) as follows:

1. If the event is a “method entry”, then the execution monitor checks
if this is one of the “entry events” of the component in the “ready”
state; if so, then after receiving the data, the respective preconditions,
invariant and absence of attack plans are checked; if they succeed, then
the data is applied on the input port of the component and the mode
of the execution state is changed to “running”.

2. If the event is a “method exit”, then the execution monitor checks
if this is one of the “exit events” of the component in the “running”
state; if so, it changes its state into “completed” mode and collects
the data from the output port of the component and checks for the
corresponding postconditions, invariant and absence of attack plans.
Should the checks fail, the monitor raises an alarm.

3. If the event is one of the “allowable events” of the component, if in-
variant holds and there is no attack plan then it continues execution
and finally

4. otherwise, if the event is an none of the above events, then the monitor
raises an alarm.

4.1 Formal Semantics

Based on the aforementioned description of the execution monitor, we have
formalized the denotational semantics of the monitor by a relation monitor
that is declare and defined as follows:

monitor ✓ AppImpl ⇥ AppSpec ! Environment ! State ⇥ State?
monitor(, !)(e)(s, s’) ,
8 c 2 Component, t, t’ 2 States, d, d’ 2 Environments, rte 2 RTEvent:

�!�(d)(d’, t, t’) ^ ��(er)(er’, s, s’) ^ setFlag(s, “running”) ^
eqMode(s, ”normal”) ^ arrives(rte, s) ^ equals(s, t) ^ equals(er, d)

22

)
8 p, p’ 2 Environment*, m, n 2 State*:

equals(m(0), s) ^ equals(p(0), er) ^
9 k 2 N:

(8 i 2 Nk: monitors(i, rte, c, p, p’, m, n) ^ equals(s’, n(k))) ^
[(eqMode(n(k), “normal”) _ eqMode(n(k), “compromised”)] ^
IF eqMode(n(k), “normal”) THEN

eqFlag(n(k), “completed”) ^ equals(s’, t’)
ELSE ¬ equals(s’, t’)

In detail, the predicate says that if we execute specification (!) in an ar-
bitrary safe pre-state (s) and environment (d) and execute program () in
an arbitrary pre-state (t s.t. s equals t) and environment (er s.t. er equals
d) then there is a finite natural number (k) at which monitor can be ob-
served such that for all iterations until k, the monitor continuous operation.
However, at iteration k, either the monitor is in a ”normal” mode or in a
”compromised” mode. If the mode is ”normal”, then the component un-
der monitoring has finished its job safely and the post-state of the program
execution (t’) is equal to post-state (t) of the specification execution, other-
wise component is compromised and thus the program execution state (s’)
and specification execution state (t’) are inconsistent. The core semantics
of monitor is captured by an auxiliary predicate monitors that is defined as
a relation on

• the number of observation i w.r.t. of a component,

• an observation (run-time event) rte, component c being observed,

• sets of pre- and post-environments e and e0 resp. and

• sets of pre- and post-states s and s0 respectively.

The predicate monitors is formalized as follows:

monitors ✓ N ⇥ RTEvent ⇥ Component
⇥ Environment⇤ ⇥ Environment⇤

⇥ State⇤ ⇥ State⇤?
monitors(i, �rte�, �c�, e, e’, s, s’) ,
eqMode(s(i), ”completed”)
_
[(eqMode(s(i), “running”) _ eqMode(s(i), “ready”)) ^

¬ eqMode(s(i), ”compromised”) ^ �c�(e(i))(e’(i), s(i), s’(i)) ^
9 oe 2 ObEvent: equals(rte, store(�name(rte)�)(e(i))) ^
run(type(oe, c), c, e, e’, s, s’, i, eqMode(s’, ”normal”)))]

In detail, the predicate monitors is defined such that, at any arbitrary obser-
vation either the execution is completed and returns or the current execution

23

state s(i) of component c is “ready” or “running” and the current execution
state is safe and behavior of the component c has been evaluated and there is
a run-time event oe that we want to observe (and thus equals an observation
rte) and then any of the following can happen:

• either the prediction resp. observation is an entry event of the com-
ponent c, then it waits until the complete data for c arrives, if so,
then

– either the preconditions and the invariant of “normal” behavior
of the component hold and there is no potential attack for the
component (as modeled by semantic rule comp in Figure 11); if so,
then the subnetwork of the component is initiated and the sub-
components in the subnetwork are monitored iteratively with the
corresponding arrival of the observation

– or the preconditions and the invariant of “compromised” behavior
of the component hold or some attack plan is detected for the
component, in this case the state is marked to “compromised”
and returns

• or the observation is an exit event and after the arrival of complete
data, the post-conditions and the invariant hold and if there is no
potential threat detected, then the resulting state is marked as “com-
pleted”

• or the observation is an allowable event, the invariant holds and there
is no threat for c, then the c continues the execution

• or the observation is an unexpected event (i.e. none of the above
holds), then the state is marked as “compromised” and returns.

All of the above choices are modeled by the corresponding semantic inference
rule of run, see Figure 11.

5 Proof of the Soundness

The intent of soundness statement is to articulate whether the system’s be-
havior is consistent with the behavioral specification. Essentially, the goal
here is to show the absence of false negative alarm such that whenever the
security monitor alarms there is indeed a semantic inconsistency between
post-state of the program execution and post-state of the specification exe-
cution. The soundness theorem is stated as follows:

Theorem 1 (Soundness of security monitor) The result of the secu-
rity monitor is sound for any execution of the target system and its specifi-
cation, i↵, the specification is consistent4 with the program and the program

4See definition of the corresponding predicate consistent in 7.

24

executes in a safe pre-state and in an environment that is consistent with
the environment of the specification, then

• for the pre-state of the program, there is an equivalent safe pre-state for
which the specification can be executed and the monitor can be observed
and

• if we execute the specification in an equivalent safe pre-state and ob-
serve the monitor at any arbitrary (combined) post-state, then

– either there is no alarm, and then the post-state is safe and the
program execution (post-state) is semantically consistent with the
specification execution (post-state)

– or there is an alarm, and then the post-state is compromised and
the program execution (post-state) and the specification execution
(post-state) are semantically inconsistent.

Formally, soundness theorem has the following signatures and definition.

Soundness ad ✓ P(AppImpl ⇥ AppSpec ⇥ Bool)
Soundness ad(, !, b) ,
8 es 2 Environments, er, er’ 2 Environmentr, s, s’ 2 Stater:

consistent(es, er) ^ consistent(, !) ^
��(er)(er’, s, s’) ^ eqMode(s, ”normal”)

)
9 t, t’ 2 States, es’ 2 Environments:

equals(s, t) ^ �!�(es)(es’, t, t’) ^ monitor(, !)(er;es)(s;t, s’;t’) ^
8 t, t’ 2 States, es’ 2 Environments:

equals(s, t) ^ �!�(es)(es’, t, t’) ^ monitor(, !)(er;es)(s;t, s’;t’)
)
LET b = eqMode(s’, ”normal”) IN

IF b = True THEN equals(s’, t’) ELSE ¬ equals(s’, t’) (G)

In detail, the soundness statement says that, if

1. a specification environment (es) is consistent with a run-time environ-
ment (er) and

2. a target system () is consistent with its specification (!) and

3. in a given run-time environment (er), execution of the system ()
transforms pre-state (s) into a post-state (s’) and

4. the pre-state (s) is safe, i.e. the state is in ”normal” mode,

then

25

• there is such pre- and post-states (t and t’ respectively) and environ-
ment (es’) of the specification execution such that in a given specifi-
cation environment (es), execution of the specification (!) transforms
pre-state (t) into a post-state (t’) and

• the pre-states s and t are equal and monitor ing of the system ()
transforms combined pre-state (s;t) into a combined post-state (s’;t’)
and if

• in a given specification environment (es), execution of the specification
(!) transforms pre-state (t) into a post-state (t’) and

• the pre-states s and t are equal and monitor ing of the system ()
transforms pre-state (s) into a post-state (s’) then

– either there is no alarm (b is True) and then the post-state s’ of
program execution is safe and the resulting states s’ and t’ are
semantically equal

– or the security monitor alarms (b is False) and then the post-
state s’ of program execution is compromised and the resulting
states s’ and t’ are semantically not equal.

In the following section we present proof of the soundness statement.

5.1 Proof

The proof is essentially a structural induction on the elements of the spec-
ification (!) of the system (). We have proved only interesting case � of
the specification to show that the proof works in principle. However, the
proof of the remaining parts can easily be rehearsed following the similar
approach.

The proof is based on certain lemmas (see subsection 8), which are about
the relations between di↵erent elements of the system and its specification
(being at di↵erent levels of abstraction). These lemmas and relations can
be proved based on the defined auxiliary functions and predicates (see sub-
section 7) that are based on the method suggested by Hoare [1].

In the following, we start proof with induction on ⌘.

5.1.1 Case (⌘)

We can re-write (G) as

Soundness ad(, ⌘, b) ,
8 es 2 Environments, er, er’ 2 Environmentr, s, s’ 2 Stater:

consistent(es, er) ^ consistent(, ⌘) ^
��(er)(er’, s, s’) ^ eqMode(s, ”normal”)

26

)
9 t, t’ 2 States, es’ 2 Environments:

equals(s, t) ^ �⌘�(es)(es’, t, t’) ^
monitor(, ⌘)(er;es)(s;t, s’;t’) ^

8 t, t’ 2 States, es’ 2 Environments:
equals(s, t) ^ �⌘�(es)(es’, t, t’) ^
monitor(, ⌘)(er;es)(s;t, s’;t’)

)
LET b = eqMode(s’, ”normal”) IN

IF b = True THEN equals(s’, t’)
ELSE ¬ equals(s’, t’) (G-1)

Here, we have two syntactic cases for ⌘ but we will show only one case
in the following subsection.

5.1.2 Case when ⌘ = �

We can re-write (G-1) as

Soundness ad(, �, b) ,
8 es 2 Environments, er, er’ 2 Environmentr, s, s’ 2 Stater:

consistent(es, er) ^ consistent(, �) ^
��(er)(er’, s, s’) ^ eqMode(s, ”normal”)

)
9 t, t’ 2 States, es’ 2 Environments:

equals(s, t) ^ ���(es)(es’, t, t’) ^
monitor(, �)(er;es)(s;t, s’;t’) ^

8 t, t’ 2 States, es’ 2 Environments:
equals(s, t) ^ ���(es)(es’, t, t’) ^
monitor(, �)(er;es)(s;t, s’;t’)

)
LET b = eqMode(s’, ”normal”) IN

IF b = True THEN equals(s’, t’)
ELSE ¬ equals(s’, t’) (F.1)

From (F.1), we know

• consistent(es, er) (1)

• consistent(, �) (2)

• ��(er)(er’, s, s’) (3)

• eqMode(s, ”normal”) (4)

We show

27

• 9 t, t’ 2 States, es’ 2 Environments: equals(s, t) ^
���(es)(es’, t, t’) ^ monitor(, �)(er;es)(s;t, s’;t’) (G-1.1)

• 8 t, t’ 2 States, es’ 2 Environments: equals(s, t) ^
���(es)(es’, t, t’) ^ monitor(, �)(er;es)(s;t, s’;t’)
)
LET b = eqMode(s’, ”normal”) IN

IF b = True THEN equals(s’, t’)
ELSE ¬ equals(s’, t’) (G-1.2)

Goal: G-1.1

We split the goal (G-1.1) into following three sub-goals:
equals(s, t) (G-1.1.1)
���(es)(es’, t, t’) (G-1.1.2)
monitor(, �)(er;es)(er’;es’, s;t, s’;t’) (G-1.1.3)

Sub-Goal: G-1.1.1

We define

t := constructs(s, �) (5)

We instantiate Lemma (1) with s as s, t as t, ! as � to get

t := constructs(s, �)) equals(s, t) (I.1)

The goal (G-1.1.1) follows from (I.1) and definition (5). ⇤

Sub-Goal: G-1.1.2

We expand definition (2) and get

8 m, m’ 2 State, n, n’ 2 Environment:
��(n)(n’, m, m’) ^ eqMode(m, ”normal)
) ���(n)(n’, m, m’) (F.2)

We instantiate formula (F.2) with m as s;t, m’ as s’;t’, n as er;es’, n’ as er’;s’
and with to get

��(er;es)(er’;es’, s;t, s’;t’) ^ eqMode(s;t, ”normal”)
) ���(er;es)(er’;es’, s;t, s’;t’) (I.2)

We instantiate Lemma (4) with s as s, s’ as s’, t as t, t’ as t’, er as er, er’ as
er’, es as es, es’ as es’, as and get

��(er;es)(er’;es’, s;t, s’;t’) , ��(er)(er’, s, s’) (I.3)

28

We instantiate Lemma (6) with s as s, t as t, t’ and get

eqMode(s;t, ”normal”) , eqMode(s, ”normal”) (I.4)

From (I.2) with assumptions (3), (4), (I.3) and (I.4) we get

���(er;es)(er’;es’, s;t, s’;t’) (I.2’)

We instantiate Lemma (5) with s as s, s’ as s’, t as t, t’ as t’, er as er, er’ as
er’, es as es, es’ as es’, ! as � and get

���(er;es)(er’;es’, s;t, s’;t’) , ���(er)(er’, s, s’) (I.5)

The goal (G-1.1.2) follows from (I.5) with assumption (I.2’).⇤.

Sub-Goal: G-1.1.3

We instantiate induction assumption (on ⌘) with as , ! as �, b as b to
get

8 es 2 Environments, er, er’ 2 Environmentr, s, s’ 2 Stater:
consistent(es, er) ^ consistent(, �) ^
��(er)(er’, s, s’) ^ eqMode(s, ”normal”)

)
9 t, t’ 2 States, es’ 2 Environments:

equals(s, t) ^ ���(es)(es’, t, t’) ^
monitor(, �)(er;es)(s;t, s’;t’) ^

8 t, t’ 2 States, es’ 2 Environments:
equals(s, t) ^ ���(es)(es’, t, t’) ^
monitor(, �)(er;es)(s;t, s’;t’)

)
LET b = eqMode(s’, ”normal”) IN

IF b = True THEN equals(s’, t’)
ELSE ¬ equals(s’, t’) (I.6)

We instantiate (I.6) with es as es, es’ as es’, er as er, er’ as er’, s as s, s’ as
s’ to get

consistent(es, er) ^ consistent(, �) ^
��(er)(er’, s, s’) ^ eqMode(s, ”normal”)

)
9 t, t’ 2 States, es’ 2 Environments:

equals(s, t) ^ ���(es)(es’, t, t’) ^
monitor(, �)(er;es)(s;t, s’;t’) ^

8 t, t’ 2 States, es’ 2 Environments:

29

equals(s, t) ^ ���(es)(es’, t, t’) ^
monitor(, �)(er;es)(s;t, s’;t’)

)
LET b = eqMode(s’, ”normal”) IN

IF b = True THEN equals(s’, t’)
ELSE ¬ equals(s’, t’) (I.6.1)

The goal (G-1.1.3) follows from (I.6.1) with assumptions (1), (2), (3), (4).
Hence goal (G-1.1) is proved. ⇤

Goal: G-1.2

We know

• equals(s, t) (6)

• ���(es)(es’, t, t’) (7)

• monitor(, �)(er)(er’, s, s’) (8)

We show

LET b = eqMode(s’, ”normal”) IN
IF b = True THEN equals(s’, t’)
ELSE ¬ equals(s’, t’) (G-1.2’)

We have two cases here

Case 1: b = True

We know

eqMode(s’, ”normal”) (10)

We show

equals(s’, t’) (G-1.2”)

We define

t’ := constructs(s’, �) (11)

We instantiate Lemma (1) with s as s’, t as t’ to get

t’ := constructs(s’, �)) equals(s’, t’) (I.7)

The goal (G-1.2”) follows from (I.7) with def. (11) and (10).⇤

30

Case 2: b = False

We know

¬ eqMode(s’, ”normal”) (12)

We instantiate Lemma (7) with s as s’ and get

¬ eqMode(s’, ”normal”)) eqMode(s’, ”compromised”) (I.8)

From (I.8) with assumption (12), we know

eqMode(s’, ”compromised”) (13)

We show

¬ equals(s’, t’) (G-1.2”’)

We instantiate Lemma (2) with s as s, s’ as s’, t as t, t’ as t’, er as er, er’ as
er’, es as es, es’ as es’, as , ! as � to get

��(er)(er’, s, s’) ^ ���(es)(es’, t, t’)
^ equals(s, t) ^ eqMode(s’, “compromised”)
) t’ 6= constructs(s’, �) (I.9)

From (I.9), with assumptions (3), (7), (6) and (13) we get

t’ 6= constructs(s’, �) (14)

We instantiate Lemma (3) with s as s’, t as t’, ! as � to get

t’ 6= constructs(s’, �)) ¬ equals(s’, t’) (I.10)

The goal (G-1.2”’) follows from (I.10) with assumption (14). The proof
of (G-1.2’) and (G-1.2”’) implies the goal (G-1.2’). ⇤
Hence, the goal (G-1.2) follows from the proofs of (G-1.2.1) and (G-1.2.2).
The premise eqMode(s’, ”compromised”) of (I.9) shows that the program
execution state s’ has been compromised.⇤

6 Proof of the Completeness

The proof of completeness is very similar to what we have already presented
above for the soundness. However, the proof di↵ers only for the goal (G-1.2)
whose proof is presented in the previous subsection.

In the following, first we formulate the completeness theorem:

31

Theorem 2 (Completeness of security monitor) The result of the se-
curity monitor is complete for a given execution of the target system and
its specification, i↵, the specification is consistent with the program and the
program executes in a safe pre-state and in an environment that is consistent
with the environment of the specification, then

• for the pre-state of the program, there is an equivalent safe pre-state for
which the specification can be executed and the monitor can be observed
and

• if we execute the specification in an equivalent safe pre-state and ob-
serve the monitor at any arbitrary (combined) post-state, then

– either the program execution (post-state) is semantically consis-
tent with the specification execution (post-state), then there is no
alarm and the program execution is safe

– or the program execution (post-state) and the specification execu-
tion (post-state) are semantically inconsistent, then there is an
alarm and the program execution has been compromised.

Formally, completeness theorem has the following signatures and defini-
tion.

Completeness ad ✓ P(AppImpl ⇥ AppSpec ⇥ Bool)
Completeness ad(, !, b) ,
8 es 2 Environments, er, er’ 2 Environmentr, s, s’ 2 Stater:

consistent(es, er) ^ consistent(, !) ^
��(er)(er’, s, s’) ^ eqMode(s, ”normal”)

)
9 t, t’ 2 States, es’ 2 Environments:

equals(s, t) ^ �!�(es)(es’, t, t’) ^
monitor(, !)(er;es)(s;t, s’;t’) ^

8 t, t’ 2 States, es’ 2 Environments:
equals(s, t) ^ �!�(es)(es’, t, t’) ^
monitor(, !)(er;es)(s;t, s’;t’)

)
IF equals(s’, t’) THEN

b = True ^ b = eqMode(s’, “normal”)
ELSE b = False ^ b = eqMode(s’, ”normal”) (G’)

In detail, the completeness statement says that, if

1. a specification environment (es) is consistent with a run-time environ-
ment (er) and

2. a target system () is consistent with its specification (!) and

32

3. in a given run-time environment (er), execution of the system ()
transforms pre-state (s) into a post-state (s’) and

4. the pre-state (s) is safe, i.e. the state is in ”normal” mode,

then

• there is such pre- and post-states (t and t’ respectively) and environ-
ment (es’) of specification execution such that in a given specification
environment (es), execution of the specification (!) transforms pre-
state (t) into a post-state (t’) and

• the pre-states s and t are equal and monitor ing of the system ()
transforms combined pre-state (s;t) into a combined post-state (s’;t’)
and if

• in a given specification environment (es), execution of the specification
(!) transforms pre-state (t) into a post-state (t’) and

• the pre-states s and t are equal and monitor ing of the system ()
transforms pre-state (s) into a post-state (s’), then

– either the resulting two post-states s’ and t’ are semantically equal
and there is no alarm

– or the resulting two post-states s’ and t’ are semantically not
equal and then the security monitor alarms.

In the following, we discuss proof of the completeness statement.

6.1 Proof

6.1.1 Case when ⌘ = �

We can re-write (G’) as

Soundness ad(, �, b) ,
8 es 2 Environments, er, er’ 2 Environmentr, s, s’ 2 Stater:

consistent(es, er) ^ consistent(, �) ^
��(er)(er’, s, s’) ^ eqMode(s, ”normal”)

)
9 t, t’ 2 States, es’ 2 Environments:

equals(s, t) ^ ���(es)(es’, t, t’) ^ monitor(, �)(er;es)(s;t, s’;t’) ^
8 t, t’ 2 States, es’ 2 Environments:

equals(s, t) ^ ���(es)(es’, t, t’) ^ monitor(, �)(er;es)(s;t, s’;t’)
)

IF equals(s’, t’) THEN b = True ^ b = eqMode(s’, “normal”)
ELSE b = False ^ b = eqMode(s’, ”normal”) (F’.1)

33

From (F’.1), we know

• consistent(es, er) (1’)

• consistent(, �) (2’)

• ��(er)(er’, s, s’) (3’)

• eqMode(s, ”normal”) (4’)

We show

• 9 t, t’ 2 States, es’ 2 Environments: equals(s, t) ^
���(es)(es’, t, t’) ^ monitor(, �)(er;es)(s;t, s’;t’) (G’-1.1)

• 8 t, t’ 2 States, es’ 2 Environments: equals(s, t) ^
���(es)(es’, t, t’) ^ monitor(, �)(er;es)(s;t, s’;t’)
)

IF equals(s’, t’) THEN b = True^b=eqMode(s’, “normal”)
ELSE b = False ^ b = eqMode(s’, ”normal”) (G’-1.2)

Goal: G’-1.1

The proof is similar to as for the soundness goal (G.1.1) as discussed in the
subsection. ⇤

Goal: G’-1.2

We know

• equals(s, t) (5’)

• ���(es)(es’, t, t’) (6’)

• monitor(, �)(er)(er’, s, s’) (7’)

We show

IF equals(s’, t’) THEN b = True ^ b = eqMode(s’, “normal”)
ELSE b = False ^ b = eqMode(s’, ”normal”) (G’-1.2’)

We have two cases here

34

Case 1: equals(s’, t’) holds

We know

equals(s’, t’) (8’)

We show

b = True ^ b = eqMode(s’, ”normal”) (G’-1.2”)

To prove the goal, it su�ces to show

eqMode(s’, ”normal) = True (G’-1.2”.1)

We instantiate Lemma (8) with s as s’ and t as t’ and get

equals(s’, t’)) eqMode(s’, ”normal”) (I’.1)

The goal (G’.1.2”.1) follows from (I’.1) with assumption (8’). Hence the
goal (G’.1.2”) is proved. ⇤

Furthermore, the goal shows that there is no alarm when the two post-
states (s’ and t’) are equivalent and are not compromised.

Case 2: ¬ equals(s’, t’) holds

We know

¬ eqMode(s’, ”normal”) (9’)

We show

b = False ^ b = eqMode(s’, ”normal”) (G’-1.2”)

To prove the goal, it su�ces to show

eqMode(s’, ”normal) = False (G’-1.2”.1)

We instantiate Lemma (9) with s as s’ and t as t’ and get

¬ equals(s’, t’)) ¬ eqMode(s’, ”normal”) (I’.3)

The goal (G’.1.2”.1) follows from (I’.3) with assumption (9’). Hence the
goal (G’.1.2”) is proved. ⇤
Furthermore, we instantiate Lemma (7) with s as s’ to get

¬ eqMode(s’, ”normal”)) eqMode(s’, ”compromised”) (I’.4)

From (I’.4) with the proved goal (G’.1.2”) we get

eqMode(s’, ”compromised”)

that shows that the alarm is generated when the post-states (s’ and t’)
are semantically not equal. Furthermore, from the assumption (2’) if follows
that indeed the program execution (post-state) is compromised.

35

7 Auxiliary Functions and Predicates

In this section, we declare respectively define auxiliary functions and predi-
cates that are used in the proof of soundness and completeness above.

• constructs : Stater ⇥ AppSpec ! States

constructs(s, !) = t,
s.t. t = build(!) ^ eqMode(s, ”normal”) ^ abstract(s, t)

• constructs : Environmentr ⇥ AppSpec ! Environments

constructs(e, !) = e’, s.t. e’ = build(!) ^ abstract(e, e’)

• ; : Stater ⇥ States ! State
s;t = state({hI:vi 2 store(s) : ¬9 hI:v’i 2 store(t)} [

{hI:v’i 2 store(t) : ¬9 hI:vi 2 store(s)} [
{hI:v”i : 9 v”: hI:vi 2 store(s) ^ hI:v’i 2 store(t) ^

v” = super(v, v’)}, flag(s))

• ; : Environmentr ⇥ Environments ! Environment
e;e’ = environment({hI:vi 2 context(e) :

¬9 hI:v’i 2 context(e’)} [
{hI:v’i 2 context(e’) : ¬9 hI:vi 2 context(e)} [
{hI:v”i :9 v”: hI:vi 2 context(e) ^

hI:v’i 2 context(e’) ^ v” = super(v, v’)}
, space(e))

• super : Valuer ⇥ Values ! Value
super(v, v’) = v , if �v�✓ �v’�

v’, if �v’�✓ �v�

• super : EnvValr ⇥ EnvVals ! EnvVal
super(v, v’) = v , if �v�✓ �v’�

v’, if �v’�✓ �v�

• equals ✓ P(Stater ⇥ States)
equals(s, t) ,
8 c:Components, !:AppSpec, : AppImpl:

c 2 ! ^ c 2 ^ �c�(er)(s, s’, er’)
) �c�(es)(t, t’, es’) ^
8 id: Identifiers, v: Values: hid, vi 2 store(t)
) hid, v’i 2 store(s) ^ abstract(v, v’)

• consistent ✓ P(Environmentr ⇥ Environments)
consistent(er, es) ,
8 id:Identifier, v: Values, v’: Valuer:
hid, vi 2 context(es)) hid, v’i 2 context(er) ^ abstract(v, v’)

36

• consistent ✓ P(AppImpl ⇥ AppSpec)
consistent(, !) , the safe execution of ”” meets ”!” and ”!”
always executes in a safe state, that can be formulated as follows:
8 s, s’ 2 State, e, e’ 2 Environment:

��(e)(e’, s, s’) ^ eqMode(s, ”normal”)) �!�(e)(e’, s, s’) ^
8 t, t’ 2 States, d, d’ 2 Environments:

�!�(d)(d’, t, t’) ^ eqMode(t, ”normal”)) eqMode(t’, ”normal”)

Semantically, the predicate “consistent” returns True i↵ only such pair
of states (s and s’) are related by ”” which is also related by ”!”.
Here the states and environment are combined of two corresponding
abstractions of specification and implementation respectively. Fur-
thermore, execution of ”!” in a safe pre-state always yields a safe
post-state.

• abstract ✓ P(Stater ⇥ States)
abstract(s, t) ,
8 i:Identifier, v:Values:
hi, vi 2 store(t)) 9 v’:Valuer:hi, v’i 2 store(s) ^

abstract(v, v’)

• abstract ✓ P(Valuer ⇥ Values)
abstract(v, v’) ,
8 ⌧ , ⌧ ’:Type, s:Stater, t:States:

equals(s, t) ^ �v�(s, ⌧) ^ �v’�(t, ⌧ ’)) �⌧ ’�✓ �⌧�

• abstract ✓ P(EnvValr ⇥ EnvVals)
abstract(v, v’) ,
8 ⌧ , ⌧ ’:Type, e:Environments, e’:Environmentr:

consistent(e, e’) ^ �v�(e, ⌧) ^ �v’�(e’, ⌧ ’)) �⌧ ’�✓ �⌧�

8 Lemmas

In this section, we give definitions and corresponding proof hints of lemmas
that were used in the proofs above.

Lemma 1

8 s 2 Stater, t 2 States: t = constructs(s)) equals(s, t)

Lemma 2

8 s, s’ 2 Stater, t, t’ 2 States,
 2 AppImpl, ! 2 AppSpec,
er, er’ 2 Environmentr, es, es’ 2 Environments:
��(er)(er’, s, s’) ^ �!�(es)(es’, t, t’)

37

^ equals(s, t) ^ eqMode(s’, “compromised”)
) t’ 6= constructs(s’)

Proof Hints In principle, from a compromised program state, an equivalent
specification safe state cannot be constructed because the program state may
have inconsistent values for certain variables or new variables etc.

Lemma 3

8 s 2 Stater, t 2 States: t 6= constructs(s)) ¬ equals(s, t)

Lemma 4

8 s, s’ 2 State, t, t’ 2 States,
er, er’ 2 Environmentr, es, es’ 2 Environments,
 2 AppImpl:
��(er;es)(er’;es’, s;t, s’;t’) , ��(er)(er’, s, s’)

Proof Hints The goal follows from the semantics of .

Lemma 5

8 s, s’ 2 State, t, t’ 2 States,
er, er’ 2 Environmentr, es, es’ 2 Environments,
! 2 AppSpec:
�!�(er;es)(er’;es’, s;t, s’;t’) , �!�(es)(es’, t, t’)

Lemma 6

8 s 2 State, t 2 States:
eqMode(s;t, ”normal”) , eqMode(s, ”normal”)

Lemma 7

8 s 2 Stater:
¬ eqMode(s’, ”normal”) , eqMode(s’, ”compromised”)

Lemma 8

8 s 2 Stater, t 2 States: equals(s, t)) eqMode(s, ”normal”)

Proof Hint The definition of equals enables to show the goal. Also because
of the fact, that two states are only equal if they can be constructed in a
safe mode.

Lemma 9

8 s 2 Stater, t 2 States:
¬ equals(s, t)) ¬ eqMode(s, ”normal”)

38

9 Conclusion

We have presented a sound and complete run-time security monitor for
application software, which avoids false alarms (positive or negative). The
monitor implements run-time software verification, comparing an executable
application specification with the execution of its implementation at run-
time. Our main contribution, the proof of soundness and completeness, es-
tablishes an assume/guarantee-based contract between the security monitor
and its user, i.e. the designer of the application to be monitored. Specifi-
cally, if the user establishes the assumptions of the proof, then the monitor
guarantees to detect all deviations of the executions behaviour relatively to
the behaviour defined in the application specification and will never pro-
duce any false alarm at run-time. Importantly, the proof strategy can be a
fundamental building block for:

1. any proof that shows that an abstract description/specification (non-
determinism) of a program is consistent with its concrete descrip-
tion/implementation (determinism/instance),

2. transformation rules to automatically generate sound and complete
monitors (for program execution) from specification and

3. developing proof tactics to prove such tedious goals semi-automatically,
significantly reducing human e↵ort.

Our future work includes the mechanization of this proof in a proof assistant,
specifically Coq, targeting the development of a generic library based on our
proof strategy so that the proof can be applied to any given specification
and implementation.

References

[1] C.A.R. Hoare. Proof of Correctness of Data Representations. Acta In-
formatica, 1(4):271–281, 1972.

[2] Muhammad Taimoor Khan, Dimitrios Serpanos, and Howard Shrobe.
On the Formal Semantics of the Cognitive Middleware AWDRAT. Tech-
nical Report MIT-CSAIL-TR-2015-007, Computer Science and Artificial
Intelligence Laboratory, MIT, USA, March 2015.

[3] Howard Shrobe, Robert Laddaga, Bob Balzer, Neil Goldman, Dave Wile,
Marcelo Tallis, Tim Hollebeek, and Alexander Egyed. AWDRAT: A Cog-
nitive Middleware System for Information Survivability’. In Proceedings
of the 18th Conference on Innovative Applications of Artificial Intelli-
gence - Volume 2, IAAI’06, pages 1836–1843. AAAI Press, 2006.

39

[4] E. Borger and Robert F. Stark. Abstract State Machines: A Method
for High-Level System Design and Analysis. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2003.

[5] Hannan, John and Miller, Dale. Abstract State Machines: A Method
for High-Level System Design and Analysis. Mathematical Structures in
Computer Science:2(4), pages 415–459, 1992.

[6] Barringer, Howard and Goldberg, Allen and Havelund, Klaus and Sen,
Koushik. Program Monitoring with LTL in EAGLE. In Proceedings
of 18th International Parallel and Distributed Processing Symposium
(IPDPS 2004), RISC Report Series, TR-12-08, pages 26–30, IEEE Com-
puter Society, USA, 2004.

[7] Bauer, Andreas and Leucker, Martin and Schallhart, Christian. Run-
time Verification for LTL and TLTL. In ACM Transactions on Software
Engineering and Methodology:20(4), pages 14:1–14:64, 2011.

[8] Schmidt, David A. Denotational Semantics: a methodology for language
development. William C. Brown Publishers, Dubuque, IA, USA, 1986.

[9] H. Barringer, D. Rydeheard, K. Havelund. Rule systems for run-time
monitoring: from Eagle to RuleR. In Journal of Logic and Computa-
tion:20(3), pages 675–706, 2010.

[10] George Spanoudakis and Christos Kloukinas and Khaled Mahbub. The
SERENITY Runtime Monitoring Framework. In Security and Depend-
ability for Ambient Intelligence, Chapter 13, pages 213–237, Advances
in Information Security Series, Springer, 2009.

[11] Shrobe, Howard E. Dependency Directed Reasoning for Complex Pro-
gram Understanding. Technical report, 1979.

[12] Langner, Ralph. Stuxnet: Dissecting a Cyberwarfare Weapon. In IEEE
Security and Privacy, Volume 2, No. 3, pages 49–51. May 2011.

[13] F. Chen, G. Rosu. MOP: An E�cient and Generic Runtime Verifica-
tion Framework. In 22nd ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications (OOPSLA 07), pages 569–588.
ACM, 2007.

[14] Wolfgang Schreiner, Temur Kutsia, Michael Krieger, Bashar Ahmad,
Helmut Otto and Martin Rummerstorfer. Securing Device Communica-
tion by Predicate Logic Specifications. In Proceedings of the Embedded
World Conference 2015, Design&Elektronik, pages 9. Nürnberg, Ger-
many, February 24-26 2015.

40

[15] Kaiser, Gail and Gross, Phil and Kc, Gaurav and Parekh, Janak and
Valetto, Giuseppe. An Approach to Autonomizing Legacy Systems.
In Proceedings of the Workshop on Self-Healing, Adaptive and Self-
MANaged Systems, June 2002.

[16] Temur Kutsia, Wolfgang Schreiner. Verifying the Soundness of Re-
source Analysis for LogicGuard Monitors (Revised Version). In RISC
Report Series, TR-14-08, JKU, Austria, 2014.

[17] Temur Kutsia, Wolfgang Schreiner. Logic Guard Abstract Language. In
RISC Report Series, TR-12-08, JKU, Austria, 2012.

[18] Wasserman, Hal and Blum, Manuel. Software Reliability via Run-time
Result-checking. In Journal of ACM:44(6), pages 826–849, ACM, 1997.

[19] Barnett, Mike and Schulte, Wolfram. Runtime Verification of .NET
Contracts. In Journal of Systems and Software: 65(3), pages 199–208,
Elsevier Science Inc., 2003.

[20] Jesper G. Henriksen, Ole J.L. Jensen, Michael E. Jrgensen, Nils Klar-
lund, Robert Paige, Theis Rauhe and Anders B. Sandholm. MONA:
Monadic Second-Order Logic in Practice. In Tools and Algorithms for
the Constructive and Analysis of Systems, LNCS 1019, Springer-Verlag,
1995.

[21] Chupilko, Mikhail M. and Kamkin, Alexander S.. Runtime Verification
Based on Executable Models: On-the-Fly Matching of Timed Traces. In
Proceedings Eighth Workshop on Model-Based Testing, EPTCS, pages
67–81, 2013.

[22] Haogang Chen, Daniel Ziegler, Adam Chlipala, Nickolai Zeldovich,
Frans Kaashoek. Using Crash Hoare Logic for Certifying the FSCQ
File System. In Proceedings of the 25th ACM Symposium on Operating
Systems Principles (SOSP’15). October 2015.

[23] Vern Paxson. Bro: A System for Detecting Network Intruders in Real-
time. In Proceedings of the 7th conference on USENIX Security Sympo-
sium - Volume 7, USENIX Association, Berkeley, USA. 1998.

[24] Martin Roesch. Snort - Lightweight Intrusion Detection for Networks.
In Proceedings of the 13th USENIX conference on System administration
(LISA ’99). USENIX Association, Berkeley, CA, USA. 1999.

[25] S. Kim, A. L. N. Reddy, and M. Vannucci. Detecting Tra�c Anomalies
through Aggregate Analysis of Packet Header Data. In Networking. 2004.

[26] Lakhina, Anukool and Crovella, Mark and Diot, Christophe. Mining
Anomalies Using Tra�c Feature Distributions. In Proceedings of ACM
SIGCOMM. 2005.

41

[27] Victoria Hodge and Jim Austin. Adaptive, Model-based Monitoring for
Cyber Attack Detection. In Artificial Intelligence Review. 22(2), pages
85–126. October 2004.

[28] Valdes, A. and Skinner, K. Mining Anomalies Using Tra�c Feature
Distributions. In Proceedings of the 3rd International Workshop on
Recent Advances in Intrusion Detection. Springer-Verlag, pages 80–92.
2000.

[29] Watterson, C. and He↵ernan, D.. Runtime Verification and Monitoring
of Embedded Systems. In Software, IET , Volume 1(5), pages 172–179.
October 2007.

[30] Ji Zhang and Betty H.C. Cheng. AMOEBA-RT: Run-Time Verification
of Adaptive Software. In Lecture Notes in Computer Science (Models in
Software Engineering), Springer Berlin Heidelberg, Volume 5002. 2008.

[31] D. Drusinsky and J.L. Fobes. Executable Specifications: Language and
Applications. In Department of Defense Crosstalk Magazine, Journal of
Defense Software Engineering. September 2004.

42

