1,055 research outputs found

    Model-based wear measurements in total knee arthroplasty : development and validation of novel radiographic techniques

    Get PDF
    The primary aim of this work was to develop novel model-based mJSW measurement methods using a 3D reconstruction and compare the accuracy and precision of these methods to conventional mJSW measurement. This thesis contributed to the development, validation and clinical application of model-based mJSW measurements for the natural knee and for total knee prostheses. The majority of this work focusses on measuring linear wear of the total knee protheses by estimating the remaining insert thickness with the mJSW. Both in vivo and in vitro research shows that the application of model-based techniques can give a large improvement in measurement accuracy and precision. This applies for measurements based on both Röntgen Stereogrammetric Analysis (RSA) and standard radiographs. Secondary, this work investigated volumetric wear measurement and the effect of patient positioning on the measurement outcome. In conclusion, this work presents convincing evidence that the mJSW measurement accuracy and precision is improved using model-based measurement techniques in RSA images as well as in standard AP radiographs. The next steps towards clinical application are to improve the measurement software and to conduct further research on the influence of knee flexion and implant design on the reliability of mJSW as surrogate for the insert thickness.  LUMC / Geneeskund

    Assessment of Normal Knee Kinematics Using High-Speed Stereo-Radiography System

    Get PDF
    The measurement of dynamic joint kinematics in vivo is important in order to understand the effects of joint injuries and diseases as well as for evaluating the treatment effectiveness. Quantification of knee motion is essential for assessment of joint function for diagnosis of pathology, such as tracking and progression of osteoarthritis and evaluation of outcome following conservative or surgical treatment. Total knee arthroplasty (TKA) is an invasive treatment for arthritic pain and functional disability and it is used for deformed joint replacement with implants in order to restore joint alignment. It is important to describe knee kinematics in healthy individuals for comparison in diagnosis of pathology and understanding treatment to restore normal function. However measuring the in vivo dynamic biomechanics in 6 degrees of freedom with an accuracy that is acceptable has been shown to be technically challenging. Skin marker based methods, commonly used in human movement analysis, are still prone to large errors produced by soft tissue artifacts. Thus, great deal of research has been done to obtain more accurate data of the knee joint by using other measuring techniques like dual plane fluoroscopy. The goal of this thesis is to use high-speed stereo radiography (HSSR) system for measuring joint kinematics in healthy older adults performing common movements of daily living such as straight walking and during higher demand activities of pivoting and step descending in order to establish a useful baseline for the envelope of healthy knee motion for subsequent comparison with patients with TKA. Prior to data collection, validation and calibration techniques as well as dose estimations were mandatory for the successful accomplishment of this study

    Patient-Specific Implants in Musculoskeletal (Orthopedic) Surgery

    Get PDF
    Most of the treatments in medicine are patient specific, aren’t they? So why should we bother with individualizing implants if we adapt our therapy to patients anyway? Looking at the neighboring field of oncologic treatment, you would not question the fact that individualization of tumor therapy with personalized antibodies has led to the thriving of this field in terms of success in patient survival and positive responses to alternatives for conventional treatments. Regarding the latest cutting-edge developments in orthopedic surgery and biotechnology, including new imaging techniques and 3D-printing of bone substitutes as well as implants, we do have an armamentarium available to stimulate the race for innovation in medicine. This Special Issue of Journal of Personalized Medicine will gather all relevant new and developed techniques already in clinical practice. Examples include the developments in revision arthroplasty and tumor (pelvic replacement) surgery to recreate individual defects, individualized implants for primary arthroplasty to establish physiological joint kinematics, and personalized implants in fracture treatment, to name but a few

    Determination and Comparison of In Vivo Forces and Torques in Normal and Degenerative Lumbar Spines

    Get PDF
    In vivo motions of normal and degenerative lumbar spine patients performing extension/flexion were obtained using video fluoroscopy. 3-D models of each patient’s vertebrae were registered to the 2-D fluoroscopy images using a process developed at Rocky Mountain Musculoskeletal Research Laboratory. Temporal equations representing the motions were input into a math model and the forces at the contact point between vertebral levels and the body torques between the vertebrae were the output. The vertical forces in the normal and degenerative patients were similar and ranged from 0.35-0.42 times the body weight of the patient. The maximum torques were higher in the degenerative patient than in the normal patient. The maximum torques between L4 and L5 were 11.1 N*m in the degenerative patient and 9.72 N*m in the normal patient. At L3/L4, the maximum torque was 10.3 N*m in the degenerative and 9.03 N*m in the normal patient. The maximum torques in the degenerative patient were also higher than in the normal patient at the L2/L3 and L1/L2 levels. Left untreated these higher torques could cause deterioration of other levels as the spine tries to compensate for existing degenerative levels. This model will lead to a better understanding of the lumbar spine and could aid in treating lower back pain and in the design of spinal prostheses

    Model-based shape matching of orthopaedic implants in RSA and fluoroscopy

    Get PDF
    Model-based shape matching is commonly used, for example to measure the migration of an implant with Roentgen stereophotogrammetric analysis (RSA) or to measure implant kinematics with fluoroscopy. The aim of this thesis was to investigate the general usability of shape matching and to improve the reliability of shape matching for RSA and fluoroscopy. Several improvements were made to the usability and reliability of model-based shape matching for RSA and fluoroscopy. An automatic contour detection approach was proposed, integrating directly into the estimation of position and orientation of the implant. The accuracy of such estimation was also improved by taking the relation between implant parts into account. The robustness of model-based shape matching was assessed when it is applied fully automatically, demonstrating that manual supervision remains necessary. The standardization of validating new fluoroscopic methods could be a welcome addition to the biomechanical field, making it a lot easier to compare results between methods and experiments. As the technology of fluoroscopy advances, the amount of high quality data is getting larger, and may soon grow beyond the capabilities of manual, supervised pose estimation methods. It is therefore imperative that fully automatic unsupervised methods are developed.UBL - phd migration 201

    Computer Assisted Orthopedic Surgery in TKA

    Get PDF

    Development and Validation of a Markerless Radiostereometric Analysis (RSA)System

    Get PDF
    A markerless radiostereometric analysis (RSA) system was developed to measure three- dimensional (3D) skeletal kinematics using biplanar fluoroscopy. A virtual set-up was created, in which the fluoroscope foci and image planes were positioned. Computed tomography (CT) was used to create 3D bone models that were imported into the virtual set-up and manually moved until their projections, as viewed from the two foci, matched the two images. The accuracy of the markerless RSA system in determining relative shoulder kinematic translations and orientations was evaluated against the “gold standards” of a precisions cross-slide table and a standard RSA system, respectively. Average root mean squared errors (RMSEs) of 0.082 mm and 1.18° were found. In an effort to decrease subject’s radiation exposure, the effect of lowering CT dosage on markerless RSA accuracy was evaluated. Acceptable accuracies were obtained using bone models derived from one-ninth of the normal radiation dose

    Applied AI/ML for automatic customisation of medical implants

    Get PDF
    Most knee replacement surgeries are performed using ‘off-the-shelf’ implants, supplied with a set number of standardised sizes. X-rays are taken during pre-operative assessment and used by clinicians to estimate the best options for patients. Manual templating and implant size selection have, however, been shown to be inaccurate, and frequently the generically shaped products do not adequately fit patients’ unique anatomies. Furthermore, off-the-shelf implants are typically made from solid metal and do not exhibit mechanical properties like the native bone. Consequently, the combination of these factors often leads to poor outcomes for patients. Various solutions have been outlined in the literature for customising the size, shape, and stiffness of implants for the specific needs of individuals. Such designs can be fabricated via additive manufacturing which enables bespoke and intricate geometries to be produced in biocompatible materials. Despite this, all customisation solutions identified required some level of manual input to segment image files, identify anatomical features, and/or drive design software. These tasks are time consuming, expensive, and require trained resource. Almost all currently available solutions also require CT imaging, which adds further expense, incurs high levels of potentially harmful radiation, and is not as commonly accessible as X-ray imaging. This thesis explores how various levels of knee replacement customisation can be completed automatically by applying artificial intelligence, machine learning and statistical methods. The principal output is a software application, believed to be the first true ‘mass-customisation’ solution. The software is compatible with both 2D X-ray and 3D CT data and enables fully automatic and accurate implant size prediction, shape customisation and stiffness matching. It is therefore seen to address the key limitations associated with current implant customisation solutions and will hopefully enable the benefits of customisation to be more widely accessible.Open Acces

    The Application of Zeeko Polishing Technology to Freeform Femoral Knee Replacement Component Manufacture

    Get PDF
    The purpose of this study was to develop an advanced 7-axis Computer Numerical Controlled (CNC) Polishing Machine from its successful original application of industrial optics manufacture into a process for the manufacture of femoral knee components to improve wear characteristics and prolong component lifetimes. It was indentified that the successful manufacture of optical components using a corrective polishing procedure to enhance their performance could be applied to femoral knee implant components. Current femoral knee implants mimic the natural shape of the joint and are freeform (no axis of symmetry) in nature hence an advanced CNC polishing machine that can follow the contours associated with such shapes could improve surface finish and conformity of replacement femoral knee bearing surfaces, leading to improved performance. The process involved generating machine parameters that would optimize the polishing procedure to minimize wear of materials used in femoral knee implant manufacture. Secondly a design of a Non-Uniform Refind B-Spline (NURBS) model for control of the Polishing Machine over the freeform contours of the femoral component. Completing the process involved development of a corrective polishing process that would improve form control of the components. Such developments would improve surface finish and conformity which are well documented contributors to wear and hence the lifeline of orthopaedic implants. By the means of comparison of this technique to that of a conventional finishing technique using pin-on-plate disc testing it was concluded that performance of the CNC polished components was an improvement on that of the conventional technique. In the case of form control their were slight indications through small decreases in peak to valley (PV) error that the process helped reduce form error and could increase the lifetime of femoral knee replacement components. The overall study provided results that indicate the the Zeeko process could be used in the application of polishing of hard-on-hard material combinations to improve form control without compromising surface finish hence improving lifetimes of the implant. The results have their limitations in the fact that the wear test performance was only carried out on orthopaedic implant materials using a pin-on-plate wear test rig. Due to the time limitations on the thesis it can be said that further analysis of correcting form without compromising surface finish on entire implant systems under full joint simulator testing which would provide mre realistic contitions would a more definitive answer be achieved
    • 

    corecore