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ABSTRACT 

In vivo motions of normal and degenerative lumbar spine patients performing 

extension/flexion were obtained using video fluoroscopy.  3-D models of each patient’s 

vertebrae were registered to the 2-D fluoroscopy images using a process developed at 

Rocky Mountain Musculoskeletal Research Laboratory.  Temporal equations 

representing the motions were input into a math model and the forces at the contact point 

between vertebral levels and the body torques between the vertebrae were the output.  

The vertical forces in the normal and degenerative patients were similar and ranged from 

0.35-0.42 times the body weight of the patient.  The maximum torques were higher in the 

degenerative patient than in the normal patient.  The maximum torques between L4 and 

L5 were 11.1 N*m in the degenerative patient and 9.72 N*m in the normal patient.  At 

L3/L4, the maximum torque was 10.3 N*m in the degenerative and 9.03 N*m in the 

normal patient.  The maximum torques in the degenerative patient were also higher than 

in the normal patient at the L2/L3 and L1/L2 levels.  Left untreated these higher torques 

could cause deterioration of other levels as the spine tries to compensate for existing 

degenerative levels.  This model will lead to a better understanding of the lumbar spine 

and could aid in treating lower back pain and in the design of spinal prostheses. 
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1 INTRODUCTION 

 

1.1 Anatomy 

The lumbar spine consists of five lumbar vertebrae, the sacrum and the coccyx 

(Figure 1-1).  Each vertebra is connected to each adjacent vertebral body by three joints, 

one anterior (vertebral disc) and two posterior (facet joints) (Figure 1-1).  The soft tissues 

associated with the lumbar spine are the intervertebral discs, the facet joint capsules, 

ligaments, and muscles (Figure 1-2).  The roles of the spine are to support weight, 

maintain balance, control movement, counter the numerous daily strains that are exerted 

on it during normal recreational and working activities, and to protect the neural elements 

(Niosi and Oxland, 2004).  Although it has tremendous ability to withstand most 

mechanical stresses, failure of some tissues may occur when these stresses exceed the 

limits of various spinal structures.  Consequently, this may result in the genesis of pain 

and also reduction of the spine’s capacity to resist these forces. The most dehabilitating 

pain within the spine often occurs in the lumbar spine, which can lead to the common 

problem of lower back pain (LBP).   

 

1.2 Low Back Pain 

The most common spine related problem is lower back pain.  It is estimated that 

80-90% of the U.S. population will experience lower back pain at some point in their 

lifetime.  It is the most common work-related medical problem in the United States, and  
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Figure 1-1.  Diagram showing the 5 lumbar vertebra, sacrum and coccyx (Left) 3 joint 

system of intervertebral disc and facet joints (Right) – pictures from spineuniverse.com 
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Figure 1-2.  Section of the lumbar spine showing anatomy of bone, muscles, ligaments 

and nerves. – picture from http://www.backpain-guide.com 
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the second most common reason for doctor visits behind the common cold.  Lower back 

pain is the leading cause of disability among people ages 19-45 and is the leading cause 

of missed work days.  People with chronic back pain account for 80% of the cost of 

treatment in workers compensation claims.  Longer life-spans and an increasing 

proportion of middle aged and elderly people make lower back pain an increasingly 

significant problem.  The cost in terms of treatments and missed work is billions of 

dollars annually. (National Center for Health Statistics; Roberts, 1993; Weinstein, 1993; 

Taylor et al., 1994; Luo et al., 2004, World Health Organization; Kelsey and White, 

1980)   

 Bone strength and muscle elasticity decreases as a person ages.  Intervertebral 

discs begin to lose fluid and flexibility, which decreases their ability to cushion the 

vertebrae.  Pain can occur when someone lifts something too heavy or overstretches, 

causing a sprain, strain, or spasm in one of the muscles or ligaments in the back.  If the 

spine becomes overly strained or compressed, a disc may rupture or bulge outward.  This 

rupture may put pressure on one of the nerves connected to the spinal cord.  The pain 

results from the irritation of the nerves.   

A majority of back pain is due to injury or trauma to the back, but degenerative 

conditions such as arthritis or disc disease, osteoporosis or other bone diseases, viral 

infections, irritation to joints and discs, and cancer can also cause lower back pain.  

Obesity, smoking, weight gain during pregnancy, stress, poor physical condition, poor 

posture, and poor sleeping position are factors that can increase the risk of low back pain.  

Scar tissue created from previous back injuries does not have the strength or flexibility of 

normal tissue which can lead to future injury.   
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Lower back pain can also be a sign of a more serious medical problem. Pain 

accompanied by fever or loss of bowel or bladder control, pain when coughing, and 

progressive weakness in the legs may indicate a pinched nerve, diabetes, or another 

serious condition.  (National Institute for Neurological Disorder and Stroke) 

All back pain in the region of the lumbar spine is classified as lower back pain.  

Currently, it is hard to specifically classify lower back pain which leads to difficulty in 

diagnosing and treating different types of pain.  A mathematical model of the lumbar 

spine could help in diagnosis and treatment of lower back pain because the model will 

lead to a better understanding of back pain by determining the in vivo interactive contact 

forces and torques that occur in the lumbar vertebrae during an active movement.  The 

forces and torques in normal and degenerative lumbar spines could be compared using 

the model to aid in determining the cause of lumbar spine pain and degeneration.  

Knowledge of the forces and motions associated with the lumbar spine could also be used 

in future design of spinal prostheses including lumbar disc replacements and facet joint 

replacements by providing a knowledge of the forces and torques that the prostheses will 

need to withstand in vivo.  Therefore, the objective of this present study was to derive a 

three-dimensional mathematical model of the human lumbar spine system to determine 

the in vivo forces at the bearing surface interface and the in vivo torques across rigid 

body segments.  

 

1.3 Treatment 

 Non-surgical methods are the first treatments used for lower back pain.  

Medications including non-steroidal anti-inflammatory drugs, muscle relaxants, and 
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epidural steroid injections may be used to control pain and reduce inflammation and 

muscle spasms.  Physical therapy using ice treatments, heat treatments, ultrasound and 

chiropractic braces are also used to treat lower back pain without surgery.  Manipulation 

of the spine (chiropractics) and traction are also used.  Traction involves applying a 

constant or intermittent force to gradually put the skeletal structure into better alignment.  

Traction is not recommended for treating acute lower back symptoms.  These treatments 

do not cure the problem of lower back pain, they just treat the symptoms.   

 Minimally invasive treatments of the vertebrae include vertebroplasty and 

kyphoplasty.  In vertebroplasty a doctor guides a needle into the vertebral body with the 

aid of imaging (usually fluoroscopy).  A glue-like epoxy is injected and hardens quickly 

which stabilizes and strengthens the bone and provides immediate pain relief.  In 

kyphoplasty, prior to injecting an epoxy, a balloon is used.  The balloon is inserted and 

inflated to restore shape to the bone and reduce spinal deformity.  

Spinal laminectomy, discectomy, and foraminotomy are all surgeries with the 

goal of relieving pressure on the spinal cord and relieving pain.  Spinal laminectomy 

(decompression) involves the removal of the lamina which increases the size of the spinal 

canal thereby relieving pressure on the spinal cord.  The outer wall of a disc, called the 

annulus fibrosis, can tear from injury or weakness due to aging allowing the soft inner 

part of the disc, the nucleus pulposus, to bulge out.  Discectomy involves a small incision 

in the skin over the spine, the removal of some ligament and bone material and the 

removal of some of the bulging disc material or bone spur.  Foraminotomy enlarges the 

bony hole where a nerve root exits the spinal canal.  Bulging discs or joints thickened 

with age can cause narrowing of the space through which the spinal nerve exits (spinal 
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stenosis) causing pain, numbness, and weakness in an arm or leg.  Small pieces of bone 

over the nerve are removed allowing the surgeon to cut away the blockage and relieve the 

pressure on the nerve.  

Other surgical procedures to relieve severe chronic pain include several 

techniques for blocking the transmission of pain through the nervous system.  In these 

techniques, certain nerve roots, nerve fibers, or neurons are destroyed surgically to 

prevent the conduction of pain signals.  (National Institute for Neurological Disorder and 

Stroke) 

Spinal fusion is used to strengthen the spine and prevent painful movements.  A 

fusion is performed to prevent or correct a deformity, to stabilize the spine, or to relieve 

chronic pain (Dooris, et. al., 2001).  The spinal disc or discs between the vertebrae levels 

are removed and the adjacent vertebrae are fused using donor bone grafts or bone grafts 

from the patient’s hip.  Metal devices secured by screws are sometimes used for better 

fixation of the fused vertebrae. Spinal fusion results in some loss of flexibility and range 

of motion in the spine and requires a long recovery period to allow the bone grafts to 

grow and fuse the vertebrae together. 

Artificial disc replacements and total facet replacements are currently being 

looked at for the future of spine surgery as an improvement over spinal fusion.  These 

methods are favorable because they may provide a method of restoring more normal 

motions as well as relieving pain.  Spinal fusion and other methods or stabilization or 

fixation of the spine do not allow for natural motion within the spine which may lead to 

further degeneration in the spine (Etebar and Cahill, 1999; Throckmorton et al., 2003). 
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1.4 Previous Research 

 

1.4.1 Kinematics 

Researchers have previously used several methods to determine kinematics in the 

human body.  These methods include gait lab analysis with skin markers, bone pins, 

Roentgen Stereophotogrammetric Analysis (RSA), cadaver studies, and fluoroscopy.  

Skin markers have been used to study various joints in the body (Andriacchi et al., 1998; 

Soutas-Little et al., 1987).  Skin markers have been used by several groups to study 

kinematics in the lumbar spine (Rowe and White, 1996; Crosbie et al., 1997; Whittle and 

Levine, 1997).  Reflective markers are placed on the skin and tracked using a system of 

video cameras (Figure 1-3).  The cameras have a light source which is directed to the 

markers which then reflect the light back to the cameras.  The markers are placed in 

specific positions to track bony landmarks. The motion of the markers is tracked 

throughout the movement.  

The main problems with the use of markers to track body kinematics are that 

identification of standard bony landmarks can be unreliable and that the soft tissue 

overlying the bony landmarks moves in relation to the underlying bones so the true 

kinematics of the bone are not being measured (Cheze, 2000; Cappozo, 1991).  It has 

been shown that measurement errors of up to 18 degrees in rotation can be obtained 

through skin markers (Murphy, 1990).  The markers themselves can also move during the 

movement due to their own inertia.    
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Figure 1-3.  Example of markers used in gait lab analysis. 

 

 

Bone pins have also been used to obtain in vivo kinematics (LaFortune, 1992).  Bone pins 

are an accurate method of obtaining kinematics from patients, but it is a very invasive 

process that cannot be done on a large number of patients.  The error in one bone pin 

study was found to be less than 0.4 mm (Ramsey et al., 2003). 

Roentgen Stereophotogrammetric Analysis originally involved the placement of 

markers, usually tantalum beads, within the area or interest or within an implant.  These 

markers were studied on the radiographs.  More recently, landmarks on the radiographs 

themselves are tracked.  RSA requires manually defining a large number of markers in 

radiographs, which is a time-consuming process.  There can also be errors involved in the 

manual placements of the markers.  The RSA analysis can also be expensive and invasive 

(Rogers et al., 2005).  RSA does not give kinematic results in dynamic motion because 
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still x-rays are used.  RSA has been utilized to determine the stabilizing effects of lumbar 

fusion or spine implants in several studies (Pape et al., 2000; Gunnarson et al., 2000; 

Johnsson et al., 1999; Goto et al., 2003). 

Cadaver studies allow for physical measurement of motions and forces, but they 

do not accurately model in vivo conditions because it is not possible to identically 

simulate the in vivo conditions in a test setup.  The muscles and ligaments do not have the 

same properties as they do in vivo and the method of restraining the vertebrae in the 

testing setup is not equivalent to in vivo conditions.  The results from in vitro and in vivo 

studies can differ significantly (Rohlmann et al., 1997). 

Fluoroscopy has been used more recently by several groups to study kinematics in 

the knee, hip, shoulder, ankle, spine, and other joints (Dennis et al., 1998; Banks et al., 

1996; Hoff et al., 1998).  Fluoroscopy combined with a method of 2D to 3D registration 

allows for accurate and non-invasive measurement of the true, in vivo kinematics from 

dynamic weight bearing activities that can be applied to a large number of patients.  

Fluoroscopy has been shown to have an error of 0.5° for in-plane translations and less 

than 0.5 mm for in-plane translations (Mahfouz et al., 2003).  A detailed explanation of 

fluoroscopy is the methods section.   

 

1.4.2 Kinetics 

 The two methods for determining in vivo loads that are most widely used are 

telemetry and mathematical modeling.  Telemetry is the direct measurement of forces at 

interfaces or measurement of moments across a joint.  Telemetry can be very expensive 

and is technically challenging due to the instrumentation necessary.  The sample size is 
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small due to the expense, and the implanted sensors can fail after implantation which 

produces no results.  Telemetry has been used to determine forces in the hip joint by 

several groups (Bergmann et al. 1993, 1997; Davy et al. 1998).  Telemetry has been used 

to find forces in the knee joint as well (Taylor et al., 1998; Taylor and Walker, 2001; 

Kaufman et al., 1996).  The use of telemetry in the knee and in other joints has been less 

successful than in the hip joint.   

The use of telemetry in the spine includes animal studies, in vitro human studies, 

and studies that measured the in vivo forces on implanted spinal fixation devices.  In a 

study by Ledet et al., sensors were imbedded into the interbody space in the lumbar spine 

of two baboons.  Real-time in vivo forces were measured.  An interbody spinal implant 

was fitted with strain gauges and was used as a load cell.  The purpose of the study was to 

compare the forces for various activities and postures.  The study found that the forces for 

standing were 2 times body weight and for standing in flexion the forces were 2.6 times 

body weight.  The results from this study, as well as all animal studies, have to be 

evaluated cautiously due to the differences in anatomy and physiology between humans 

and the animals.   

In vitro studies using telemetry are a more cost effective method of finding forces 

in the lumbar spine than in vivo methods.  The sample sizes in these studies can be larger, 

but the accuracy of the data is a disadvantage.  The test set-up and results for an in vitro 

study may not be very accurate in recreating in vivo conditions (Rohlmann et al., 1997). 

Nachemson et al. and Rohlmann et al. have done telemetry on human subjects. 

In the study conducted by Nachemson, distraction rods were telemeterized and the forces 

were measured to be in the range of 0.29 to 3.86 times body weight depending on the 
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activity (Nachemson, 1966).  Rohlmann et al., implanted spinal fixators across various 

vertebral levels in 3 patients.  The fixators were telemeterized to measure forces.  The in 

vivo force results were then compared to previous in vitro studies.  The forces and torques 

found in the patients tended to be higher than the forces found in the cadaver tests.  The 

forces found in the 3 patients ranged from 0 to 0.6 times body weight.  The bending 

moments found in the patients were 5 to 10 Newton meters and bending moments in the 

cadaver studies were slightly lower with the maximum being 6 Newton meters.  Force 

measurements taken with the telemeterized spinal fixation devices are also not the actual 

forces seen at the interface due to the load sharing between the spine and the implant. 

(White and Panjabi, 1990). 

 Mathematical modeling is a theoretical method of determining in vivo forces that 

can be applied to any number of subjects.  There are two main approaches to 

mathematical modeling: optimization to solve an indeterminate muscle force system and 

reduction to minimize the number of unknowns to keep the number of unknowns equal to 

the number of equations that can be developed to solve for the unknowns (Komistek et 

al., 2005).  Mathematical models can utilize forward or inverse dynamic methodologies.  

Forward dynamics outputs kinematics from forces that are input while inverse dynamics 

uses input kinematics to output forces.  Inverse dynamics is the most commonly used 

approach and involves the experimental determination of motions that are input to a 

mathematical model used to predict the forces.  
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1.5 Research Aims 

 Low back pain is a common problem that is a major expense to the health care 

industry and to businesses due to the chronic and debilitating nature of the pain.  The aim 

of this study is to bring a greater knowledge of what forces and torques are present in 

degenerative patients that could lead to low back pain.  A better understanding of the 

forces and torques in the lumbar spine may lead to better methods of diagnosis and 

treatment for low back pain and will help in defining the design parameters of prostheses 

and total facet joint replacements.  This thesis describes the initial model to predict in 

vivo contact forces and torques in any patient that has had fluoroscopy and CT scanning.   
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2 MATERIALS AND METHODS 

 

2.1 Overview 

The methodology of the study was to obtain kinematic data from patients with 

normal and degenerative lumbar spines using fluoroscopy.  Then 3D models of each 

patient’s vertebrae were created and registered to the 2D fluoroscopy images to obtain 

accurate 3D motions through the range of the activity.  These motions were the input into 

a math model which output interactive forces and torques between the lumbar vertebrae 

(Figure 2-1). 

 

 

 

Figure 2-1.  Overview of Process. 
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2.2 Patient Selection 

One normal and one degenerative patient were examined in this study.  The 

patients underwent fluoroscopic surveillance and were CT scanned which will be 

explained in detail in the next sections.  The normal patient was a male in his 20’s.  The 

degenerative patient was an older male in his 70’s.  The normal patient had a normal 

functioning lumbar spine with no reported pain.  The degenerative patient was diagnosed 

with grade I spondylolisthesis of L5 on S1.  Spondylolisthesis is a forward slip of a 

vertebra over the vertebra below it (Figure 2-2). This slippage is often due to a defect in 

the pars interarticularis.  Grade I sponylolisthesis is a congenital dysplasia which in this 

case is abnormal development of the tissues of the S1 superior facet.   

 

 

 

Figure 2-2.  Diagram showing the forward slippage of a vertebra relative to the subjacent 

vertebrae (Left) A defect in the pars interarticularis can cause spondylolisthesis (Right) 

http://orthoinfo.aaos.org/ and  http://www.spine.org/articles/spondylolisthesis.cfm 
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Spondylolisthesis may not cause any symptoms for years after the slippage has 

occurred, but the symptoms include low back and buttocks pain, numbness, muscle 

tightness or weakness in the leg, increased sway back, or a limp.  Symptoms usually 

come from spinal nerves which may be pinched as the vertebrae slips forward.  Once 

symptoms begin, patients usually have constant low grade back discomfort that is 

aggravated by standing, walking and other activities, while rest will provide temporary 

relief (North American Spine Society, 2000).  The degenerative patient also had irregular 

bone growth (osteophytes) and fusion of L5 and S1 (Figure 2-3).   

 

 

 

Figure 2-3.  Frontal view (Left) and sagittal view (Right) of the degenerative patient. 
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2.3 Fluoroscopy 

The subjects were given informed consent to participate in the study (IRB #0607).  

Prior to the fluoroscopic evaluation using a VF-2000 fluoroscope (Radiographic and Data 

Solutions, Inc., Minneapolis, MN), the patients were asked to read and sign a consent 

form for research.  Both subjects underwent fluoroscopic surveillance while performing 

an active extension / flexion activity.  The subjects were asked to start in hyperextension 

and then perform the activity through full flexion.  Single-plane fluoroscopy was used to 

allow free motion and to allow the activity to be performed in a natural manner.  The 

activity was recorded in the sagittal plane (Figure 2-4).  The patient was positioned 

between the x-ray source and the image intensifier, and was asked to stand as close to the 

image intensifier as possible (Figure 2-5).  The examination allowed for full imaging of 

L1 to L5 in both patients.  The fluoroscopy was conducted using a high frequency, pulsed  

 

 

  

Figure 2-4.  Patient undergoing fluoroscopic surveillance while performing 

extension/flexion (Left) Captured image from the fluoroscopy video (Right). 
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Figure 2-5.  Setup of a typical fluoroscopy machine. 

 

 

unit that records to a computer at a rate of 30 Hz.  The radiation exposure of the patient 

was kept to a minimum due to the pulsed nature of the fluoroscopy.  The subjects were 

subjected to 60 kV and 15 mA with 30 Hz pulses (pulses were 0.003 seconds in duration) 

for less than 1.5 minutes.  The exposure for a patient averages between 1.8 and 3.6 rem 

for the activity.   

Fluoroscopy is advantageous to other methods in that it allows for in-vivo analysis 

under dynamic, weight-bearing conditions.  In fluoroscopy, X-rays are emitted from a 

tube, pass through the patient and strike a fluorescent screen where the images are 

intensified and recorded on digital video (Figure 2-5).  The fluoroscopic process creates a 
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prospective projection (Figure 2-6).  This prospective projection allows for direct 

observation and analysis of the patient’s vertebrae.  In this study the bones of the 

patient’s lumbar spine appeared darker than the surrounding soft tissues due to 

differences in density. 

In the perspective projection model, the fluoroscope sensor consists of an X-ray 

point source and the phosphor screen where the image is formed.  The perspective 

projection was important because 3D motions would not be able to be obtained from the 

2D images without it.  Accurate geometric models of the vertebrae must be obtained from 

CT scans as well as an accurate model of the imaging sensor used to form the image.  

The motion of the vertebrae throughout the activity includes rotations and translations 

within the plane of the image and out of the plane of the image.  After calibration of the 

fluoroscopy machine and removal of distortion from the images was completed, the focal  

 

 

 

Figure 2-6.  Perspective projection imaging model (Left), the silhouettes of the models 

can be predicted and compared to the observed silhouettes in the image (Right). 
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length of the imaging system can be determined.  This allowed for the out of plane 

distances to be determined accurately.  When the models of the vertebrae and the model 

of the imaging sensor are known in this perspective projection, it is possible to determine 

the motions in all six directions:  three translational and three rotational.  

Individual frames from the fluoroscopic videos were captured on digital video 

during the performance of the activity at hyperextension, 33% completion of activity, 

66% completion of activity, and maximum flexion (Figure 2-7).  Images were chosen that 

were the clearest and easiest to see all of the vertebrae.  When an image was encountered 

that did not have all five vertebrae of interest that were clearly visible, a different image 

was chosen from the previous or following frames from the video.    

The solid, 3D models of the vertebrae were placed over the silhouettes of the 

corresponding vertebrae in the fluoroscopic images using a computer algorithm based on 

simulating annealing then manipulates the position of the solid model to minimize an 

error score which is compromised of edge and area error score.  This method will be 

explained in a later section. 

 

2.4 Image Processing 

Still images were captured from the fluoroscopy video at various points to 

represent the full range of motion for the activity.  This was done using Adobe Premiere 

Pro™ video editing software.  The four images captured were at full extension, 33% 

completion of motion, 66% completion, and at full flexion (Figure 2-7).  These images 

were 640x480 pixels and 8 bits.   
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Figure 2-7.  Images captured through the entire range of motion.  

 

 

Before any kinematic data was collected, the distortion associated with the x-ray 

images had to be corrected.  Pincushion distortion and spiral distortion were both 

encountered with the fluoroscopic images.  Pincushion distortion is an outward 

displacement of an image point from its true location.  This type of distortion can be seen 

in magnification around the outer edge of the image and it occurs when the mapped 

electrons are transferred from the curved fluorescent image intensifier to the flat output 

screen.  The effect of the pincushion distortion is dependent on the distance from the x-

ray source to the image intensifier. 

Spiral distortion is caused by electrons being affected by the magnetic field 

around the image intensifier.  This distortion causes rotation and translation of the image. 

The velocity of the electrons decreases as they approach the output screen while the 
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magnetic shielding effectiveness increases along the longitudinal axis of the image 

intensifier.  This causes S-shaped distortion in the resulting image.  

The 2D spatial transform for each region bounded by four beads is estimated 

using a known grid of beads.  Metal spheres are placed a known distance apart and 

embedded in plastic.  This grid is imaged using fluoroscopy and is used for calibration 

(Figure 2-8).  The dots in the known grid are control points that are compared to the pixel 

locations of the same dots as seen in the distorted fluoroscopy image.  A list of points is 

created that relate the distorted points to the control points.  Transformation coefficients 

are determined and a function is created to remap the pixels into a reconstructed image.  

The gray level value of the pixels in the reconstructed image is found using bilinear 

interpolation between the surrounding pixels in the distorted image (Mahfouz, et al., 

2003).  These transformation functions were used to remove the distortion from or 

“unwarp” all the fluoroscopy images before kinematics were determined.  After the 

distortion is removed, the focal length can be computed by a two-plane calibration grid, 

with a known displacement between plates (Banks et al., 1996; Mahfouz, et al., 2003). 

 

2.5 CT and 3D Model Creation  

The normal and degenerative patients were CT scanned using a 16 slice scanner 

with a slice interval of 0.3 mm.  The CT scans of each patient were used to create 3-D 

models of the L1-L5 vertebrae.  Segmentation of the CT slices was done using advanced, 

commercially available 3D visualization and volume modeling software (AMIRA). 
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Figure 2-8.  Image of beads showing the distortion (Left) and unwarped image of the 

beads after distortion removal (Right). 

 

 

Differences in the density between bone and soft tissue were utilized to segment the 

vertebrae.  A threshold value was used to differentiate between density values of bones 

and muscles in order to remove soft tissue while retaining the bone (Figure 2-9).  The 

slices were reconstructed into 3D models after segmentation was completed on all of the 

slices (Figure 2-10).  These models are specific to the vertebrae of each patient (Figures 

2-11 and 2-12).  These models were converted to Inventor files made for the Open 

Inventor Toolkit™ (SGI - Mountain view, CA) which is used in the computer 2D to 3D 

registration process.  Models can be made for any patient that has had a CT scan.  The 

patient specific models were needed in order to be able to accurately register the 

constructed 3D models to the 2D fluoroscopy images.   
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Figure 2-9.  Images showing the segmentation process. 

 

 

Figure 2-10.  Sagittal (Left) and bottom (Right) views of the created 3D vertebral model 

of the normal patient’s L4. 
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Figure 2-11.  Frontal view (Left) and sagittal view (Right) of the L4 and L5 models in the 

degenerative patient. 

 

 

Figure 2-12.  Frontal (Left) and Sagittal (Right) views showing the L4 and L5 models  for 

the normal patient. 
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2.6 2D to 3D Registration 

The individual fluoroscopic image frames were analyzed using a software 

package designed to recreate the three-dimensional position and orientation of the 

patient’s spine from two-dimensional fluoroscopic images.  The 2D to 3D registration 

software creates a virtual scene of the fluoroscopic equipment within the computer.  The 

3D solid models of the vertebrae can be manipulated until they overlay the silhouettes of 

the vertebrae in the image.  The fluoroscope creates a perspective which can only create 

one silhouette for a given position and orientation, so recreating this silhouette with the 

3D model places that object in the same position and orientations as in the original x-ray 

image (Figure 2-13).  The Open Inventor Toolkit™ (SGI - Mountain view, CA) 

programming package was used to create a virtual fluoroscope within the computer.  The 

software places the fluoroscopic image in the background of the scene at the location of 

the image intensifier screen.  The vertebral models are placed at the origin of the scene 

with their centroids aligned so that the models are viewed from the sagittal plane.  The 

goal of the approach used for the 2D to 3D registration was to minimize the error 

between the recreated prediction of the x-ray pose and the actual pose in the image.  The 

method used included a matching algorithm between the recreated and actual pose and an 

optimization algorithm.  The process was controlled with a graphical user interface which 

allows for the user to manually fit the initial poses and to control the algorithm.   

 

2.6.1 Matching Algorithm 

The image of the predicted pose and the image of the actual pose were compared using a 

matching algorithm.  The 3D models of the vertebrae were white against a black  
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Figure 2-13.  Images captured from fluoroscopy (Top) and the3D models registered to the 

2D fluoroscopic images (Right). 

 

 

background in the predicted image.  The boundary between the model and the 

background was found and a growing operation was performed which assigned a contour 

score to pixels within 3 pixels of the boundary.  The contour score was inversely 

proportional to the distance from the boundary, which allowed the pixels to contribute to 

the matching score proportionately to their proximity to the boundary.  The actual x-ray 

image was also inverted so that the pixels of the 3D models were white. 

The algorithm for evaluating the degree of match between the actual x-ray image 

and the predicted x-ray image is a combination of an intensity score and a contour score.  

The matching score between the x-ray image and the predicted pose was found using a 

weighted combination of metrics.  The pixel values of the two images are compared 

(intensity matching) as well as the overlap of the edges of the images (contour matching).  

An intensity score is calculated by multiplying the two images together, summing the 
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result, and normalizing by the area of the model image.  Where G(x, y) is the actual x-ray 

image and H(x, y) is the predicted x-ray image, the intensity matching score is 

 

Intensity Matching Score  = ∑
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The model H is a binary image with nonzero values inside the silhouette.  The intensity 

matching score measures the average gray level intensity of the image G inside the 

projection of the models.  The contour matching score is found in a similar manner as the 

intensity matching score.  Where J(x, y) is the input edge-enhanced image and K(x, y) is 

the predicted edge image, the contour matching score is 
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These two scores are combined, with the contour matching value weighted more 

heavily than the intensity matching value.  The intensity matching value helps to guide 

the 3D vertebral models to the correct pose, but the contour matching value is used to 

pinpoint the true locations of the models.  Since the contour score is more heavily 

weighted than the intensity value, the contour score dominates when the 3D vertebral 

models are close to the true solution.  The total matching score produces the highest value 

when the 3D vertebral models are exactly aligned with the silhouettes of the bones in the 

actual x-ray image. (Mahfouz et al., 2003) 
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2.6.2 Optimization 

A simulated annealing algorithm was used in the optimization step of the 2D to 

3D registration.  The matching score was recorded at each estimated pose.  There could 

be multiple large minima and smaller local minima in the matching scores.  The global 

minimum was the number of interest because it was the correct solution.  A simulated 

annealing algorithm was chosen to find the global minimum because this algorithm had 

the ability to get out of local minima.  After the user positioned the models initially, a 

simplex consisting of seven points that represented possible poses and the value of the 

function space at each point were determined.  The algorithm perturbs the worst fit point 

towards the best fit point and after many iterations there was a convergence to the local 

minimum.   

The optimization technique uses a virtual temperature.  The algorithm adds or 

subtracts a variable that is proportional to the temperature score to the function values of 

the simplex.  The temperature makes some solutions appear better than they are which 

aids in avoiding local minima.  When the temperature score decreases, the likelihood of 

an increasing error score decreases.  The temperature score decreases automatically after 

a set number of iterations.  Local minima can be avoided by lowering the temperature 

score gradually.  The simplex is also expanded periodically to examine the fit of more 

distant points.  The majority of the predicted poses are rejected because they lead to 

higher matching scores.  There are higher scores that occur when the simplex is expanded 

periodically.  The algorithm automatically stops when the difference between the best 

and worst fit points is less than a small threshold. (Mahfouz et al., 2003)  
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2.6.3 Error Analysis 

 Error analysis of the 2-D to 3-D registration system performed on knee model 

registration found translational error to be less than 0.1 mm in plane (XY plane) and less 

than 1.4 mm out of plane (Z direction) and rotational error to be 0.4 degrees under ideal 

conditions (Mahfouz et al., 2003).  To determine the error, implants were manually 

placed in known positions in front of the fluoroscopy machine. Then the image capturing 

and 2D to 3D registration was performed and compared to the known values.  Cadaver 

legs with implanted knees were monitored by an optotrack system as well as the 

fluoroscopy machine to compare the results.   

The automatic registration could not be used in every case.  The user fit was 

sometimes the only way to get an accurate fit in some images that were occluded and that 

did not have clear images within a few frames of video.  The instances when the 

automatic registration failed to locate the global minimum were easy to pinpoint because 

the overlay of the models were obviously not fit to the silhouettes of the vertebrae in the 

image or the poses or the poses were not likely to occur biomechanically. 

 

2.7 Kinematic Equations 

The equations representing the motion of the vertebrae throughout the range of 

motion were the input into the math model.  The three translation and three rotation 

values of subsequent vertebral bodies with respect to each other and the Newtonian 

reference frame were obtained from the poses of the vertebrae from the 2D to 3D 

registration process at each captured position.  The transformation matrices of the 

superior vertebrae relative to the subjacent vertebrae were obtained from the registration.   
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The kinematic data of transformations and rotations throughout the range of 

motion was plotted with respect to time (Figures 2-14 and 2-15).  These plots were curve-

fit and temporal equations were developed for x, y, and z rotation and x, y, and z 

translation for L4 with respect to (wrt) L5, L3 wrt L4, L2 wrt L3, and L1 wrt L2.  These 

equations were input into the mathematical model as the orientation angles between the 

vertebrae and the translations between the mass centers of the vertebrae. 

 

 

 

y = 0.001x3 - 0.0052x2 + 0.0086x + 0.0323
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Figure 2-14.  Example of curve-fit translation data in all three directions between L1 and 

L2 in the degenerative patient. 
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y = -0.3828x3 + 3.2045x2 - 7.7341x + 6.8435

y = 0.4027x3 - 2.3204x2 + 3.2304x - 0.5491
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Figure 2-15.  Example of curve-fit rotation data in all three directions between L1 and L2 

in the degenerative patient. 

 

 

2.8 Kane’s Dynamics 

The mathematical model created in this thesis was derived using an inverse 

dynamics approach.  The external load on the system and the motions of the bodies were 

known inputs into the model.  The model had zero degrees of freedom because all 

motions were specified as inputs using the equations obtained from the registration 

process and curve-fitting techniques.  The purpose of the model is to determine the 

internal forces in the system which are the interactive forces at the contact point between 

vertebrae and the resultant body torques.  Kane’s method of rigid body dynamics was 

used along with Autolev™ (a computerized symbol manipulation program).  Autolev™ 

is exceptionally fast at simulating multi-body motions, provides automatic simplification 

of symbolic and numeric expressions, is designed to deal with kinematics, dynamics, 

statics, energy, mass, and inertia problems, and writes compact C or Fortran programs.   
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Kane’s method was used rather than classical methods such as Newtonian and 

LaGrangian methods because it focuses on associated motions over configurations (Kane, 

1983 and 1985).  Kane’s method of dynamics allows for the creation and solution of the 

equations of motion for all of the bodies in a system, simultaneously.  Kane’s method 

generates partial velocities and partial angular velocities that lead to generalized forces.  

Kane’s method uses vector methods to determine these velocities and accelerations 

instead of calculus so problems in differentiation do not arise.  Kane’s method eliminates 

non-contributing forces in the system through the use of generalized forces without the 

incorporation of energy as in Lagrangian methods.  This makes Kane’s method more 

efficient than other methods for multibody systems due to the greater simplicity in 

computation.  Newtonian and Lagrangian methods encounter difficulties with the 

introduction of non-working constraint forces between bodies, the difficulty in the 

calculation of derivatives, the geometry of the system, and the solution of the governing 

equations after they are developed (Huston, 1990).   

 

2.8.1 Partial Velocities 

Generalized coordinates are scalar variables that describe position vectors of all 

points and rigid bodies in the system.  Generalized speeds are velocity vectors that are 

functions of the derivatives of the generalized speeds.  Generalized speeds describe the 

speed of a particle or body in respect to a coordinate system.  Partial angular velocities 

and partial velocities are time varying linear functions of generalized speeds. 

Auxiliary generalized speeds were introduced into the model to extract the 

interactive forces and torques that would generally be noncontributing forces in the 
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system because they make no contributions to the generalized active forces.  The 

auxiliary generalized speeds attribute certain angular velocities and velocities to points 

that do not correspond to the actual velocities without introducing new generalized 

coordinates.  The generalized speeds cause the partial velocities at the point of 

application of the force or the partial accelerations of the body on which a torque acts to 

have non-zero values for certain dot products of partial velocities and partial 

accelerations. 

 

2.8.2 Equations of Motion 

Kane’s method of rigid body dynamics develops equations of motion by using the 

expression:    

 

 Fr + Fr
*=0,  r = 1, 2, … n 

Where  Fr  represents generalized active forces and Fr
* represents the generalized inertia 

forces 

 

This states that the sum of the generalized active forces and the generalized inertial forces 

are equal to zero.  The generalized active forces are quantities formed by taking dot 

products of partial velocities and active forces and dot products of partial angular 

velocities and active torques.  The active forces are external contact forces and distance 

forces such as gravity.  The equation for the generalized active forces is: 

Fr = ∑
=

N

u 1
[AVPi . Fi + AωBi . TBi] 
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Where AVPi  represents the partial velocities of the rigid bodies  

 Fi  represents the resultant active forces  

 AωBi  represents the partial angular velocities of the rigid bodies 

 TBi  represents the resultant active torques 

 

The generalized inertia forces are quantities formed by taking dot products of partial 

velocities and inertia forces and dot products of partial angular velocities and inertia 

torques.  The inertia forces are forces due to the mass of a body.  The equation for the 

generalized inertia forces is: 

 

Fr* = ∑
=

N

u 1
[AVPi . Fi* + AωBi . TBi*] 

Where AVPi  represents the partial velocities of the rigid bodies  

 Fi*  represents the resultant inertia forces  

 AωPi  represents the partial angular velocities of the rigid bodies 

 Ti* represents the resultant inertia torques 

 

Fi* =-mPi (aPi)                 and            TBi* =-αBi · I -ωBi × (I · ωBi ) 

Where mPi is the mass of Pi  

 aPi is the acceleration of  Pi  

α is the angular acceleration of a body in another reference frame 

 I is the central inertia dyadic of the body 

 ω is the angular velocity of the body in another reference frame 



 36

Once all generalized active forces and generalized inertia forces are known, the equations 

of motion can be formulated by using the Autolev™ command Fr + Fr*=0.  This equation 

states that the sum of the active forces and the passive forces in the system is equal to 

zero.  The number of equations created is equal to the number or generalized speeds.  

Each generalized speed is introduced to solve for an unknown, so the number of 

generalized speeds equals the number of unknowns. 

 

2.9 Mathematical Model 

 

2.9.1 Assumptions 

There were several assumptions made in the creation of the model (see FBD 

Figure 2-16).  The first assumption is that the weight of the upper body (everything above 

L1) is the input force into the system.  This weight was taken to be 0.4 * the patient’s 

body weight (Winter, 1990).  Another assumption that was made is that the L5 vertebra 

was fixed.  There were no muscle forces included in the model for simplification 

purposes.  The muscle forces are evident within the torques between bodies.   

 

2.9.2 Theory 

A free body diagram (FBD) of the system was developed (Figure 2-16).  A 

Newtonian reference frame was created as an inertial reference frame.  The command 

AUTOZ ON was used to allow Autolev™ to automatically replace expressions with 

symbols allowing for more efficient evaluation of direction cosine matrices.  The bodies 

A, B, C, D, and E were introduced using the BODIES command to represent the five  
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Figure 2-16.  Free body diagram used to construct the mathematical model. 
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lumbar vertebrae: body A represented L5, body B represented L4, body C represented 

L3, body D represented L2, and body E represented L1.  The BODIES command declares 

names of rigid bodies and defines the mass center of the body.  The FRAMES command 

was used to create a reference frame with a set of mutually perpendicular unit vectors 

fixed in that frame.  Frames were introduced in order to perform the simple rotations of 

one vertebra relative to another vertebra.  Next, the POINTS command introduced the 

various points on the rigid bodies used to determine the unit vectors that describe the 

reference frame for each body (see FBD, Figure 2-16).  Constants for gravity and the 

body weight of the patient were defined.  The masses of the bodies were defined and the 

direction of gravity was specified.  An external load of 0.4*BW was applied on the 

system to represent the weight of the upper body above L1.  

Generalized speeds, their time derivatives and the variables that were solved for 

were introduced using the VARIABLES command.  Twenty four generalized speeds 

were introduced to allow for extraction of the unknown forces and torques that would not 

show up in the equations of motion without the introduction of the generalized speeds 

because they do not contribute to the generalized active forces.  The variables that were 

solved for were interactive forces in three directions between each vertebral level: L4-L5, 

L3-L4, L2-L3, L1-L2, and torques in three directions of each body relative to the 

subjacent body: L4 on L5, L3 on L4, L2 on L3, and L1 on L2 (Figure 2-17).  It is 

imperative when modeling a system, especially the human body, that a moment and a 

torque are not the same.  All torques are moments, but not all moments are torques.  

Therefore, we modeled the lumbar spine understanding the differences between torques 

and moments.  Since muscles were not modeled specifically, we assume that at each  
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Figure 2-17.  Example of forces and torques solved for at the L4 - L5 level. 

 

 

vertebral interface, a resultant torque encompassed all of the muscles across the joint.  

These torques can be thought of as motors causing rotation to occur. 

The Euler or orientation angles of the system were specified using the curve-fit 

temporal equations obtained from the rotations between the vertebrae.  The L5 vertebral 

body was set as a fixed body, so the angles between the Newtonian frame and the frame 

for body A were zero around all three axes.  ӨNA1, ӨNA2, and ӨNA3 are the rotations 

between L5 and the Newtonian frame around the three axes, which are all zero since L5 

is fixed in the model.  ӨBA1, ӨBA2, and ӨBA3 are the rotations between L4 and L5, 

ӨCB1, ӨBC2, and ӨBC3 are the rotations between L3 and L4, ӨDC1, ӨDC2, and 
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ӨDC3 are the rotations between L2 and L3, and ӨED1, ӨED2, and ӨED3 are the 

rotations between L1 and L2. 

The sequential rotations of the system were performed using the SIMPROT 

command.  The order of rotations that was used was a fixed Newtonian x, y, z order 

(N1>, N2>, N3>) (Figure 2-18).  The SIMPROT command relates mutually 

perpendicular vectors fixed in one frame to mutually perpendicular vectors fixed in 

another frame.  The SIMPROT command formed the direction cosine matrix associated 

with a simple rotation of one frame relative to another frame.  To perform this rotation a 

vector whose orientation in both frames does not change during the rotation is needed as 

well as the angle of the rotation.  Three simple rotations were done for each vertebra 

relative to the subjacent vertebrae. 

The ANGVEL command expresses the angular velocity of the second frame in 

frame one and is expressed in terms of Euler parameters, their time-derivatives, and 

mutually perpendicular unit vectors fixed in the second frame.  The angular velocities 

were redefined in order to introduce twelve generalized speeds into the system. 

 

 

Figure 2-18.  Orientation of axes. 
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The angular velocity of body B in reference frame N (NωB) was previously defined as the 

angular velocity of body A in reference frame N (NωA) + the angular velocity of body B 

in reference frame A (AωB).  NωB was redefined as NωA
 + AωB

 + three generalized speeds.  

NωC , NωD
 , and NωE

  were defined in the same manner with three generalized speeds 

introduced for each angular velocity. 

The scalar quantities that were used to form the position vectors between the 

points were input into the model.  There were fixed points at the center of the superior 

and inferior endplates of the vertebrae and at the mass center.  The distances between the 

fixed points were measured using SigmaScan™.  There were also variable contact points 

that were defined by position vectors that went from the fixed point to the contact point 

as the contact point moved throughout the range of the activity.  The variable contact 

points were also measured using SigmaScan™.  The distance from the fixed central point 

to arbitrarily assigned contact points was measured.  The initial contact point was placed 

at the posterior point of the vertebral body and the final contact point was placed at the 

anterior point of the vertebral body.  The other two contact points were placed equally 

between these two points.  This estimation was an initial model of the contact point that 

was determined from looking at the fluoroscopic images throughout the range of motion 

to see where the contact appeared to be occurring.  The measured distances were curve fit 

to give equations for the change in the contact point position over time.  The position 

vectors were formed by assigning directions to the previously defined scalars. 

The translations of one vertebral body relative to the subjacent vertebral body 

were also found from the 2D to 3D registration process in a similar manner as the 

rotations were found.  The temporal equations representing the translations of one 
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vertebral body relative to the subjacent vertebral body were input into the model.  The 

translations were input into the model as position vectors between the mass centers of the 

vertebrae.     

The partial velocities of each of the defined the points were obtained.  The 

velocities of NA and ANF were both zero because L5 (body A) was fixed to the 

Newtonian frame. The velocities of the fixed points AO, ABF, BCF, BO, CO, CDF, DO, 

DEF, EO, and EU were found using the command V2PTS.  This command finds the 

velocity in the first reference frame (A) of a point Q in a second reference frame (B) if 

the velocity in the first reference frame of another point P in the second reference frame 

is known (B).  The angular velocity of the second reference frame (B) in the first 

reference frame (A) and the position vector from point (P) to point (Q) must also be 

known.     

V2PTS(A,B,P,Q)    

Where,  

A=first reference frame 

 B=second reference frame 

 P=first point fixed in the second reference frame 

 Q=second point fixed in the second reference frame 

 

The velocity of AB in reference frame N (NVAB) was found by adding the derivative of 

the position vector from ANF to AB in reference frame N.  (NVBA
 ) was equal to (NVAB

 ), 

but the velocity was redefined to include three generalized speeds.  Nine more 

generalized speeds were introduced in the velocity equations for NVCB , NVDC
 , and NVED 
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at the contact points.  The velocity of BAF in reference frame N (NVBAF
 ) was found by 

adding the derivative of the position vector from BA to BAF in reference frame B to the 

velocity of BA in reference frame N (NVBA
 ).  NVCBF, NVDCF , and NVEDF were found in 

the same manner as (NVBAF).   

After the velocities of the points were known, the auxiliary generalized speeds 

were constrained.  Then the expressions for the forces and torques were developed.  The 

external input force was defined as 0.4*BW and was applied at point EU which was the 

top of the L1 vertebra.  The direction of the force was in the y (N2>) direction (Figure 2-

17). 

Autolev™ creates a set of dynamic, differentiable, algebraic equations in response 

to the command ZERO = FR () + FRSTAR ().  The commands FR and FRSTAR prompt 

Autolev™ to form expressions for the generalized active forces and generalized inertia 

forces.  The command KANE solves this set of equations for the unknown force and 

torque values (Figure 2-18).  Autolev creates a C code that performs the actual 

calculations that solves for the unknown values.  The desired outputs were defined and 

were plotted against time or flexion angle.  

 

2.9.3 Sensitivity Analysis 

A sensitivity analysis was conducted to determine which parameters within the 

mathematical model could alter the results most significantly if they were incorrectly 

modeled or entered as input data. 
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3 RESULTS 

 

3.1 Kinematic Results 

 The 3D motions of all of the bodies can be obtained throughout the entire range of 

the motion using the previously described methods.  The ranges of motion in the 

degenerative and normal patient were significantly different (Figures 3-1 and 3-2).  The 

flexion angle was taken as the angle around the z axis (3 direction) between the L4 and 

L5 vertebrae.  The range of motion around this axis in the degenerative patient was 6.01° 

and 13.47° in the normal patient.  The degenerative and normal patients were facing in 

different directions while performing the activity which can be seen in Figures 3-1 and 3-

2.  Since L5 was fixed in the model, the limited range of motion in the degenerative 

patient as compared to the normal patient could easily be seen in Figures 3-1 and 3-2.  

The motion for the degenerative patient ranged only 0.969° past vertical where the 

normal patient flexed 9.25° past vertical.  This difference in motion led to differences in 

the kinetics between the degenerative and normal patient which was evident in the shapes 

of the force and torque data curves.   

 The rotation around the z axis (3 axis) at the L3-L4 level in the degenerative 

patient was larger than at the other levels (Figure 3-3).  The motion was similar to the 

motion at the same level in the normal patient.  This increase in range of motion at this 

level may be compensating for loss of motion in the lower degenerative levels.    

The difference in the range of motion around the z axis (3 axis) can be seen in 

Figures 3-1 and 3-2, but the differences in the motions in other directions could not be 

seen from these figures.  The rotations around the other two axes x (1>) and y (2>) were  
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Figure 3-1.  Range of motion in the degenerative patient from maximum extension (Left) 

to maximum flexion (Right). 

  

 

 

Figure 3-2.  Range of motion in the normal patient from maximum extension (Left) to 

maximum flexion (Right).  The patient was facing in the opposite direction as the 

degenerative patient. 
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Figure 3-3.  Orientation Angles around the z axis (3 direction) in the degenerative patient 

(Top) and the normal patient (Bottom). 
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greater in the degenerative patient than in the normal patient (Figures 3-4 and 3-5).  The 

rotations around the x axis in the degenerative patient ranged from 4.5 to -0.75° at L1-L2, 

0 to -5° at L2-L3, -2.75 to -8.2° at L3-L4, and 4.0 to -1.0° at L4-L5.  The ranges of 

motion around the x axis in the normal patient were smaller with the range being 0.1 to -

2.3° at L1-L2, 0 to -2.5° at L2-L3, 1.3 to 0.3° at L3-L4, and 2.2 to -1.0° at L4-L5.   

The rotations around the y axis were also greater in the degenerative patient than in the 

normal patient.  The motion around the y axis in the degenerative patient ranged from 1.0 

to -1.0 ° at L1-L2, 4.25 to -0.25° at L2-L3, 2.75 to -6.2° at L3-L4, and 0 to -3.0° at L4-

L5.  The motion around the y axis in the normal patient ranged from -0.2 to -2.2 at L1-

L2, 0 to -1.6° at L2-L3, 1.7 to -0.6° at L3-L4, and 0 to -1.2° at L4-L5. 

 

3.2 Kinetic Results 

 Twenty four unknowns were solved for using the mathematical model.  Twelve 

interactive contact forces and twelve body torques were calculated.  Three forces and 

torques were found at each vertebral level: L1-L2, L2-L3, L3-L4, and L4-L5.  The force 

and torque results were plotted and normalized with respect to time where maximum 

extension represented time equal to zero seconds, 33% completion of the activity 

occurred at 1.0 second, 66% completion of the activity occurred at 2.0 seconds, and full 

flexion occurred at 3.0 seconds (Appendix B).  The results were also plotted against 

flexion angle.  The angle used for the flexion angle was the angle around the z axis (3 

direction) between L4 and L5. 
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Figure 3-4.  Orientation Angles around the y axis (2 direction) in the degenerative patient 

(Top) and the normal patient (Bottom). 
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Figure 3-5.  Orientation Angles around the x axis (1 direction) in the degenerative patient 

(Top) and the normal patient (Bottom). 
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The force results were very similar in the degenerative and the normal patient.  

The differences between the patients were more evident in the torque results.  The forces 

in the degenerative and normal patient were similar at all levels (Figure 3-6).  The 

resultant forces in the degenerative patient and the normal patient ranged from 0.4 to 0.43 

times body weight (Table 1).  The maximum vertical force at the L1-L2 level was 0.405 

times body weight in both the degenerative and normal patient.  The maximum vertical 

force at the L2-L3 level was 0.41 times body weight in both patients.  The maximum 

vertical force at the L3-L4 level was 0.415 times body weight for both patients.  The 

maximum vertical force at the L4–L5 level was 0.42 times body weight in both the 

normal and the degenerative patient. 

The transverse forces, in the x (1) and z (3) were also calculated in both patients.  

The transverse forces in the x direction (1 direction) were very similar in both patients 

(Figure 3-7).  The maximum transverse force in the x direction at L1-L2 was 0.2*BW for 

both patients.  The maximum transverse force in the x direction at L2-L3 was 0.15*BW 

in the normal patient and 0.125 * BW in the degenerative patient.  The maximum force in 

the x direction in the normal patient occurred in full flexion.  The force in the x direction 

 

 

Table 1. Maximum vertical force in both patients. 

Level Vertical Force
L1-L2 0.405*BW
L2-L3 0.41*BW
L3-L4 0.415*BW
L4-L5 0.42*BW  
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Figure 3-6.  Vertical forces at every level for the degenerative patient (Top) and the 

normal patient (Bottom). 

 



 52

Degenerative

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25

-6 -4 -2 0 2 4 6 8 10

Flexion Angle (Degrees)

Tr
an

sv
er

se
 F

or
ce

 (x
) /

 B
W

L4-L5
L3-L4
L2-L3
L1-L2

 

Normal

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25

-6 -4 -2 0 2 4 6 8 10

Flexion Angle (Degrees)

Tr
an

sv
er

se
 F

or
ce

 (x
) /

 B
W

L4-L5
L3-L4
L2-L3
L1-L2

 

Figure 3-7.  Transverse forces in the x (1) direction at every level for the degenerative 

patient (Top) and the normal patient (Bottom). 
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at maximum extension was 0.125* BW in the degenerative patient and 0.1*BW in the 

normal patient.  The force in the x direction at maximum extension at the L3-L4 level 

was 0.04*BW in both patients.  The force in the normal patient at maximum flexion was 

0.054*BW.  The maximum transverse force in the x direction at L4-L5 was close to zero 

in both patients.   

The transverse forces in the z direction (3 direction) were slightly higher in the 

degenerative patient than in the normal patient (Figure 3-8).  The maximum force in the z 

direction at the L1-L2 level was 0.06*BW in the degenerative patient and 0.0225*BW in 

the normal patient.  The maximum force in the z direction at L2-L3 was 0.05*BW in the 

degenerative patient and 0.0175*BW in the normal patient.  The maximum force in the z 

direction at L3-L4 was 0.03*BW in the degenerative patient and 0.015*BW in the normal 

patient.  The maximum force in the y direction at the L4-L5 level was close to zero in 

both cases. 

The differences in the kinetics between the degenerative and normal patient were 

more evident in the calculated torques values than in the force values.  The resultant 

torques and the torques around all three axes were calculated at each level: L4 on L5, L3 

on L4, L2 on L3, and L1 on L2 (Figures 3-9 through 3-15). 

The torque results for the L1-L2 level can be seen in Figure 3-9.  The resultant 

torque in maximum extension at the L1-L2 level was 4.05 N*m in the degenerative 

subject and 4.07 N*m in the normal subject (Table 2).  The degenerative patient’s 

maximum flexion was only one degree past vertical and the resultant torque was 1.14 

N*m at that point.  The maximum flexion of the normal patient was over 9° past vertical. 
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Figure 3-8.  Transverse forces in the z (3) direction at every level for the degenerative 

patient (Top) and the normal patient (Bottom). 
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Figure 3-9.  Resultant torques between L1 and L2 for the degenerative patient and the 

normal patient. 
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Figure 3-10.  Resultant torques between L2 and L3 in the degenerative patient and the 

normal patient. 
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Figure 3-11.  Resultant torques between L3 and L4 in the degenerative patient and the 

normal patient. 
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Figure 3-12.  Resultant torques between L4 and L5 in the degenerative patient and the 

normal patient. 
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Figure 3-13.  Torques around the z axis (3 axis) in the degenerative patient (Top) and the 

normal patient (Bottom). 
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Figure 3-14.  Torques around the y axis (2 axis) in the degenerative patient (Top) and the 

normal patient (Bottom). 
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Figure 3-15.  Torques around the x axis (1 axis) in the degenerative patient (Top) and the 

normal patient (Bottom). 
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Table 2.  Resultant torques at 4.22° extension for both patients (maximum extension for 

the normal patient). 

Level Degenerative Normal
L1-L2 4.05 N*m 4.07 N*m
L2-L3 7.45 N*m 7.15 N*m
L3-L4 10.3 N*m 9.03 N*m
L4-L5 11.1 N*m 9.72 N*m

 

 

 

  The resultant torque at one degree past vertical in the normal patient was 0.422 

N*m which was less than the 1.14 N*m at the same point in the degenerative patient 

(Table 3).  The resultant torque increased in the normal patient as the flexion went past 

one degree and had a maximum 3.91 N*m in full flexion.  The degenerative patient did 

not have a similar increase in flexion because the range of motion was limited.     

The torque results for the L2-L3 level can be seen in Figure 3-10.  The resultant 

torque in maximum extension at the L2-L3 level in the degenerative patient was 7.45 

N*m and 7.15 N*m in the normal patient (Table 2).  The resultant torque in the 

degenerative patient was 2.12 N*m at the maximum flexion which was nearly one degree 

past vertical.  In the normal patient at the L2-L3 level, the resultant torque at a flexion of 

one degree past vertical (equivalent to the maximum flexion in the degenerative patient) 

was 0.769 N*m (Table 3).  The resultant torque increased with flexion angle in the 

normal patient until maximum flexion when the resultant torque reached 7.43 N*m.   
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Table 3.  Resultant torques at one degree past vertical (maximum extension for the 

degenerative patient). 

Level Degenerative Normal
L1-L2 1.14 N*m 0.422 N*m
L2-L3 2.12 N*m 0.769 N*m
L3-L4 2.64 N*m 0.725 N*m
L4-L5 2.31 N*m 0.906 N*m

 

 

 

The torque results for the L3-L4 level can be seen in Figure 3-11.  At the L3-L4 

level, the resultant torque at maximum extension was 10.3 N*m in the degenerative 

patient and 9.03 N*m in the normal patient (Table 2).  The resultant torque at maximum 

flexion in the degenerative patient was 2.64 N*m.  The resultant torque at an equal 

flexion angle in the normal patient was 0.725 N*m (Table 3).  The resultant torque at 

maximum flexion in the normal patient was 10.3 N*m. 

The torque results for the L4-L5 level can be seen in Figure 3-12.  At the L4-L5 

level, the resultant torque at maximum extension was 11.1 N*m in the degenerative 

patient and 9.72 N*m in the normal patient (Table 2).  The resultant torque at maximum 

flexion in the degenerative patient was 2.31 N*m.  The resultant torque in the normal 

subject at a flexion angle equal to the max flexion in the degenerative subject was 0.906 

N*m.  At maximum flexion in the normal patient, the resultant torque was 11.7 N*m 

(Table 3). 
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The torques around the z axis (3 axis) are the highest torques and they dominate 

the resultant torque results (Figure 3-13).  The torques around the y axis (2 axis) were 

very small (Figure 3-14).  The torques in the normal and degenerative patient were all 

under 0.3 Newton meters.  The torques around the x axis (1 axis) were significantly 

different.  The torques were much higher around this axis in the degenerative patient as 

compared to the normal (Figure 3-15).  The maximum torques around the x axis at the 

L3-L4 and L4-L5 level were 3.75 N*m in the degenerative patient and 1 N*m or less in 

the normal patient.  The maximum torque around the x axis at the L2-L3 level was 2.75 

N*m in the degenerative patient and 0.7 N*m in the normal patient.  The maximum 

torque around the x axis at the L1-L2 level was 1.25 N*m in the degenerative patient and 

0.5 N*m in the normal patient.  

The lowest torques are at 1.0 degree of flexion.  The torques are lowest at this 

point because the moment arm is the smallest.  The reason that this occurs at 1.0 degrees 

of flexion instead of 0 degrees of flexion is the flexion angle is the angle between L4 and 

L5 and when that angle is zero, the other levels of the spine are not yet vertical.  The 

higher levels are nearer to vertical when the angle between L4 and L5 is 1.0 degrees past 

vertical. 

 

3.3 Sensitivity Analysis 

The results from the sensitivity analysis determine that the most sensitive parameter 

was the input kinematic data.  Altering the input kinematic data could lead to significant 
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changes in the output kinetic data predicted by the model.   On contrary, changing the 

variable contact points and the inertial values altered the kinetic data only minimally. 
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4 DISCUSSION 

 
4.1 Kinematics 

 This thesis describes a computational model to predict in vivo contact forces and 

body torques in the lumbar vertebrae, L1-L5.  An inverse dynamics mathematical model 

was created to solve for the unknown forces in the system using the reduction method.  

The most sensitive input to the model is the kinematic data from the fluoroscopy and the 

2D to 3D registration process.  The definitions of the variable contact points, masses and 

inertia of the vertebrae do not affect the force results nearly as much.  It is very important 

to have the 3D kinematics accurately defined so the input equations for the rotations and 

translations of the vertebrae.  The accuracy of the 2D to 3D registration is very important 

to the results of the mathematical model.  For this study, one normal and one 

degenerative patient were compared. 

The kinematic results show that the sagittal range of motion (around the z axis) in 

the degenerative patient was much smaller than in the normal patient.  The degenerative 

patient may not have had an equivalent range of motion due to the pain involved in the 

activity.  The patient may have stopped flexing at the onset of pain, or the patient may 

have compensated by flexing at the hip instead of using the lumbar spine to flex.  The 

range of motion in the other two directions, around the x and y axes was greater in the 

degenerative patient than in the normal patient.  These results may show instability in the 

lumbar spine of the degenerative patient, because it has been shown previously that 

degenerative changes in the lumbar spine can lead to increased range of motion in axial 

rotation and lateral bending (Panjabi, 2003; Abumi, et al., 1990).  Spinal instability can 
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be caused by an abnormality in any of three components: the spinal column, the muscles 

surrounding the spinal column, or the neural control unit (Panjabi, 2003).  

Spondylolisthesis has been associated with instability in several studies (Frymoyer and 

Selby, 1985; Nachemson, 1985).   

 

4.2 Kinetics 

The results for the forces in the normal and degenerative patients were very 

similar.  The maximum vertical forces were nearly identical in both patients.  The forces 

are relative to body weight and the forces ranged from 0.415*BW to 0.365*BW.  This is 

reasonable since the external input force applied at L1 was 0.4*BW.  This input force 

represented the weight of the upper body above L1.  The vertical force at the L4 – L5 

level was 0.42 *BW in both the degenerative and the normal patient.  The vertical forces 

are constant at L5 since L5 is fixed in the model.  The maximum vertical forces 

decreased slightly at each higher level because there is less body weight at each higher 

level.  The vertical forces in the normal patient decreased through flexion which did not 

occur in the degenerative patient since the range of motion was much smaller and the 

flexion angle did not go more than 1.0 degree past vertical. 

The forces in the transverse directions were also similar in both patients.  The 

forces in the z direction (3 direction) were small in both patients.  The forces in the x 

direction (1 direction) were largest at maximum extension in both patients and at 

maximum flexion in the normal patient and smallest through the neutral region.  This is 

logical since the vertical force dominates around the neutral region when the spine is 

more vertical.   
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The interactive contact forces found in this study are slightly lower than the forces 

found by Nachemson et al.  Nachemson reported forces of 1.1*BW in a standing subject 

in flexion.  Ledet et al. found higher forces in their animal model of up to greater than 

2.5*BW.  Rohlmann et al. reported forces that were similar to the forces found in the 

model in this thesis.  The forces measured were between 0 and 0.6*BW for all of the 

patients.   

The differences could be due to the fact that the only external force in the model 

was the applied force at L1 that represented the weight of the upper body.  Adding an 

external force at L5 to represent the ground reaction force would also increase the vertical 

forces found in the model described in this thesis.  The differences in the reported muscle 

forces could also be due to the methods of measuring the forces within the spine.  

Nachemson et al. and Ledet et al. measured forces with an implant in the intervertebral 

disc space.  In the studies by Rohlmann et al. the forces were measured within a spinal 

fixator which is more posterior than the intervertebral disc.  None of these previous 

studies modeled a variable contact position between the vertebrae so the forces were 

being measure at one point that was not the contact point throughout the entire range of 

motion.  The muscle forces are not solved for directly in this model.  The muscle forces 

are accounted for in the body torques.   

The torques at the L1-L2 level are very similar in the normal and degenerative 

patient.  The differences are more evident at each lower level.  The largest differences are 

in L4-L5.  This is logical since the degenerative patient had spondylolisthesis of L5 onto 

S1 so the degeneration is at that level.  The anatomy and motions of the L1-L2 level 

would not be affected as greatly as the lower levels by the degeneration at L5, so the 
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kinetic differences in the normal and degenerative patient would not be as large at L1-L2.  

The largest differences show up at the L4 – L5 level where there was a 1.4 N*m 

difference in the torque values in the normal and degenerative patients at maximum 

extension. 

The difference in the range of motion around the z axis in the normal and 

degenerative patient gives rise to the differences in shape of the graphs.  If degenerative 

patient extended to the same range of motion as the normal patient, the torques would 

most likely be higher in flexion just as they were higher at maximum extension and at 

one degree past vertical.  The torques around the z axis (3 axis) experienced by the 

degenerative patient were higher at maximum extension than the torques experienced by 

the normal patient.  The maximum flexion for the degenerative patient was 1.0 degree 

past vertical.  The torques at one degree of flexion were higher in the degenerative patient 

than in the normal patient. 

The torques around the x axis (1axis) were also significantly higher in the 

degenerative patient as compared to the normal patient.  This is a result of the instability 

in the lumbar spine of the degenerative patient.  This instability can be seen in the 

kinematic results (Figures 3-4 and 3-5).  The greater range of motion around this axis in 

the degenerative patient leads to the higher calculated torques.   

The torques predicted using our model were slightly higher than torques in other 

studies throughout the range of motion.  Rohlmann et al. reported torques up to 8 Newton 

meters in extension.  The torques predicted for the lumbar spine in this thesis were 

slightly higher and were up to 11.1 Newton meters at the L4-L5 level.  Unfortunately, 

Rohlmann did not report torques at the L4-L5 level, which didn’t allow us to conduct a 
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direct comparison with the results from his study.  Two patients in our study had L3 

bridged and one patient had L4 bridged by the internal spinal fixation device.  The 

torques would most likely be higher if measured at the lower level.  The published data 

reports torques found in telemeterized implants or in cadavers.  These numbers may not 

be an accurate representation of the true in vivo torque values because the implanted 

cage, interbody device or spinal fixator can alter the biomechanics.  The patients in this 

study were not implanted with any fixation device, so the torques calculated are more 

accurate for in vivo conditions. 

The muscle forces in this model are not solved for directly, but they are accounted 

for in the torques.  The torques in this study may be higher than the forces found in other 

studies because they account for the muscle forces.  The torques found in other studies 

are directly measured and do not account for the muscle forces that cannot be measured 

since the muscles are cut or there is not a direct method of measurement.   

 

4.3 Future Work 

This thesis was an initial step in the model to determine and compare forces and 

torques in normal and degenerative lumbar spines.  The results that were shown were 

only for one normal and one degenerative patient, and should not be generalized for all 

subjects having a normal or degenerative lumbar spine.  The created model can be 

applied to any patient that has undergone fluoroscopic examination and CT scanning.  

The registration software is being updated to output the kinematics automatically which 

will allow the model to be more easily applied to a large number of patients without the 

tedious process of the user manually determining the kinematic equations.  More images 
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could easily be captured an analyzed throughout the motion which may improve the 

kinematic input into the mathematical model. 

In the future, the model will be extended and muscle and ligament forces may be 

added.  This could be done by locating the attachment sites of the muscles and ligaments 

and then by modeling them as springs.  The system could be kept determinate by adding 

more bodies to the system.  The posterior elements of the vertebrae could be modeled as 

separate bodies and micro motions could be added between the different portions of the 

vertebrae and then constrained later in the model.  The discs themselves were not 

included in this initial model, but may be added in the future.  This could be done using 

finite element methods to model the deformation within the discs under loading.   

The contact between the vertebrae may also be changed to better account for the 

load sharing between the vertebral body and the two facet joints.  Each vertebral level has 

three areas of interaction; the two facet joints and the intervertebral disc (White and 

Panjabi, 1990).  The facets and posterior portion of the vertebral body carry most of the 

load in extension, but the majority of the load is transferred to the vertebral body through 

flexion.  It has been reported that increasing degeneration in the lumbar spine leads to 

increasing load across the posterior elements of the vertebrae in extension (Niosi and 

Oxland, 2004).  This load sharing could be accounted for in the future by adding contact 

points that would represent the facet joints.  A switch in the model could allow the model 

to represent the forces across the facets in extension and then shift the load to the 

vertebral body or disc through flexion.   

A variable input force predicted at the hip joint by modeling the whole lower 

extremity may may lead to more accurate lumbar spine forces.  This would help in 



 70

overcoming the limitation of a constant input force that is applied in the current model.  

The lack of an input torque as a result of the weight of the upper body is another 

limitation.  This torque could be included by finding the center of mass of the upper body 

and applying the input force at this location.  Currently, the input force is applied directly 

to the superior surface of the L1 vertebra which is not the exact location of the center of 

mass of the upper body. 
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Appendices 
 

Appendix A-Curve-fitting of Rotations and Translations 
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y = 0.4027x3 - 2.3204x2 + 3.2304x - 0.5491
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Figure A-1.  Curve-fitting of the rotations (Top) and translations (Bottom) for L1-L2 in 

the degenerative patient. 
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Figure A-2.  Curve-fitting of the rotations (Top) and translations (Bottom) for L2-L3 in 

the degenerative patient. 
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y = 1.0142x3 - 4.8331x2 + 2.5776x + 12.463

y = -2.4509x3 + 10.781x2 - 10.773x + 5.7936

y = -2.6994x3 + 12.333x2 - 11.58x + 0.38

-4

-2

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2 2.5 3 3.5

Series1
Series2
Series3
Poly. (Series3)
Poly. (Series1)
Poly. (Series2)

 

y = 0.0003x3 - 0.0012x2 + 0.0013x + 0.0343

y = -0.0013x3 + 0.0058x2 - 0.0054x + 0.0038

y = -0.0007x3 + 0.0021x2 + 0.0003x - 0.0106

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 0.5 1 1.5 2 2.5 3 3.5

Series1
Series2
Series3
Poly. (Series2)
Poly. (Series3)
Poly. (Series1)

 

Figure A-3.  Curve-fitting of the rotations (Top) and translations (Bottom) for L3-L4 in 

the degenerative patient. 



 82
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Figure A-4.  Curve-fitting of the rotations (Top) and translations (Bottom) for L4-L5 in 

the degenerative patient. 
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Figure A-5.  Curve-fitting of the rotations (Top) and translations (Bottom) for L1-L2 in 

the normal patient. 
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Figure A-6.  Curve-fitting of the rotations (Top) and translations (Bottom) for L2-L3 in 

the normal patient. 
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Figure A-7.  Curve-fitting of the rotations (Top) and translations (Bottom) for L3-L4 in 

the normal patient. 
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Figure A-8.  Curve-fitting of the rotations (Top) and translations (Bottom) for L4-L5 in 

the normal patient. 
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Appendix B-Kinetic Results vs. Normalized Time 
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Figure B-1.  Vertical forces at every level for the degenerative patient (Top) and the 

normal patient (Bottom). 
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Figure B-2.  Transverse forces in the x (1) direction at every level for the degenerative 

patient (Top) and the normal patient (Bottom). 
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Figure B-3.  Transverse forces in the z (3) direction at every level for the degenerative 

patient (Top) and the normal patient (Bottom). 
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L1-L2 Torque
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Figure B-4.  Resultant torques between L1 and L2 in the degenerative patient and normal 

patient. 
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Figure B-5.  Resultant torques between L2 and L3 for the degenerative patient and the 

normal patient. 
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L3-L4 Torque
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Figure B-6.  Resultant torques between L3 and L4 in the degenerative patient (Top) and 

the normal patient (Bottom). 
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Figure B-7.  Resultant torques between L4 and L5 in the degenerative patient (Top) and 

the normal patient (Bottom). 
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