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Abstract 

Most knee replacement surgeries are performed using ‘off-the-shelf’ implants, supplied with a 

set number of standardised sizes. X-rays are taken during pre-operative assessment and used 

by clinicians to estimate the best options for patients. Manual templating and implant size 

selection have, however, been shown to be inaccurate, and frequently the generically shaped 

products do not adequately fit patients’ unique anatomies. Furthermore, off-the-shelf implants 

are typically made from solid metal and do not exhibit mechanical properties like the native 

bone. Consequently, the combination of these factors often leads to poor outcomes for patients. 

Various solutions have been outlined in the literature for customising the size, shape, and 

stiffness of implants for the specific needs of individuals. Such designs can be fabricated via 

additive manufacturing which enables bespoke and intricate geometries to be produced in 

biocompatible materials. Despite this, all customisation solutions identified required some 

level of manual input to segment image files, identify anatomical features, and/or drive design 

software. These tasks are time consuming, expensive, and require trained resource. Almost all 

currently available solutions also require CT imaging, which adds further expense, incurs high 

levels of potentially harmful radiation, and is not as commonly accessible as X-ray imaging. 

This thesis explores how various levels of knee replacement customisation can be completed 

automatically by applying artificial intelligence, machine learning and statistical methods. The 

principal output is a software application, believed to be the first true ‘mass-customisation’ 

solution. The software is compatible with both 2D X-ray and 3D CT data and enables fully 

automatic and accurate implant size prediction, shape customisation and stiffness matching. It 

is therefore seen to address the key limitations associated with current implant customisation 

solutions and will hopefully enable the benefits of customisation to be more widely accessible.  
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Chapter 1 - Introduction 

 

 

Introduction 

The following chapter presents a brief overview of the knee replacement procedure, as well as 

the key technologies enabling automated implant customisation. The objectives of the thesis 

and its structure are then outlined. 
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1.1. General Introduction 

In a drive to achieve patient-specific implant products with higher degrees of functionality, 

more sophisticated design processes are required to overcome the challenges of cost viability 

and scalability. Current knee replacement customisation processes typically rely on extensive 

manual processing of patients’ Computed Tomography (CT) scans and skilled Computer Aided 

Design (CAD) work to develop bespoke implant component geometries (Jun, 2011). The lack 

of automation inevitably means these solutions are more expensive with longer lead times 

compared to Off-the-Shelf (OTS) alternatives, which simply feature a set number of 

standardised sizes. Consequentially, the widely reported benefits of lower revision rates, 

shorter surgeries and reduced post-procedure pain associated with customised implants (Zeller 

et al., 2017) (Buller et al., 2018) (Ogura et al., 2019), have not been viable for the masses.   

Recent advancements in Artificial Intelligence and Machine Learning (AI/ML), in particular 

computer vision techniques, are enabling previously time consuming and expensive manual 

processes, like the segmentation of CT scans, to be fully automated (Minnema et al., 2018). 

Moreover, numerous authors have shown how the use of statistical models, such as Statistical 

Shape Models (SSM), can be used to enable Three Dimensional (3D) anatomical models to be 

generated from Two Dimensional (2D) X-ray images. Thereby saving imaging costs and 

lowering the risks associated with high levels of radiation exposure (Zhu & Li, 2011) (Tsai et 

al., 2015) (Cerveri et al., 2017). Such technologies are opening a plethora of opportunities to 

eliminate the need for expensive and time consuming manual processes and enable cost 

effective solutions for customising medical products, including knee replacement implants. 
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1.2. Knee Replacement 

To introduce the context of knee replacement, this section gives an overview of the knee 

anatomy, osteoarthritis, the surgical procedure, and both OTS and customised implant models. 

1.2.1. Anatomy of the Knee 

The knee is a complex ‘modified hinge’ joint which maintains stability and control during a 

variety of loading situations. The joint consists of two bony articulations; the articulation 

between the femur and tibia bones bears most of the body weight whist the articulation between 

the patella and femur creates a frictionless transfer over the knee of the forces generated by 

contraction of the quadriceps femoris muscle (Abulhasan & Grey, 2017). Figure 1 provides a 

schematic of the important bones, soft tissues, and features of the human knee. 

 

Figure 1: Anatomy of the human knee © Christy Krames (1999) 
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The knee has six degrees of motion in three different planes including the sagittal, coronal 

(frontal), and axial (transverse), as illustrated in Figure 2. It has the highest range of movement 

in flexion and extension about the sagittal plane. It also facilitates varus and valgus rotation 

about the coronal plane, in addition to medial rotation at the end of the knee flexion and lateral 

rotation at the terminal extension of the knee in the axial plane (Abulhasan & Grey, 2017).  

 

Figure 2: Overview of planes of reference and directional terms © (Nikita, 2017) 

1.2.2. Osteoarthritis and the Surgical Procedure 

Osteoarthritis is characterised by cartilage and other tissues within the knee (as well as other 

joints) breaking down and compromising the joint. Localised areas of cartilage loss increase 

focal stress across the joint, leading to further cartilage loss, misalignment and structural 
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deterioration that ultimately can lead to joint failure. Local inflammation in the connective 

tissue and cartilage may contribute to significant levels of pain and lack of mobility for those 

who suffer with the condition (Scott & Kowalczyk, 2006). 

Knee replacement, otherwise known as knee ‘arthroplasty’, is one of the most common surgical 

procedures with more than 100,000 performed annually in the United Kingdom and over 

700,000 in the United States (Price et al., 2018). The quantity and prevalence of knee 

replacement continues to increase as populations age. The mean age of patients undergoing the 

procedure in the United Kingdom is 70 years with roughly 40% more females requiring knee 

replacement than males (Carr et al., 2012). The main clinical indication for the surgery is 

osteoarthritis which accounts for 94 – 97% of operations (Carr et al., 2012).  

The key steps of the knee replacement procedure involve removing the damaged cartilage 

surfaces of the distal (inferior) femur and the proximal (superior) tibia (Figure 3A – B). This is 

achieved using cutting guides to resect (cut) the bone to the required shape and depth before 

replacement implants are fitted to rebuild the joint and restore biomechanical functionality 

(Sheth et al., 2017) (Figure 3C – E). 

 

Figure 3: TKR surgical procedure – A) Anatomy before surgery with patella removed, B) 

Resected distal femur and proximal tibia, C) TKR components fitted, D) Bones realigned, 

E) Repaired joint with patella fitted © (Jun, 2011) 

 

A)             B)      C)           D)     E)  
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Knee replacement can be ‘total’ where the surfaces of both medial and lateral condyles are 

replaced (as illustrated in Figure 3), or ‘partial’ where only the most affected are replaced with 

‘uni-condylar’ components. Partial replacement is popular for use with younger patients to 

minimise the amount of bone removed (Parratte et al., 2009). Nevertheless, Total Knee 

Replacement (TKR) is by far the most common form of knee replacement due to the 

substantially lower levels of revisions reported (Carr et al., 2012).  

TKR is generally seen as safe with revision rates of approximately 5% after ten years reported 

(Postler et al., 2018). Despite the low revision rates, patient outcomes are often not optimal. 

Mahoney & Kinsey (2010) reported 40% of males and 49% of females experienced at least 

‘occasional mild’ pain two years after surgery with 12% and 16% experiencing ‘moderate to 

severe’ levels respectively. This was supported by Beswick et al. (2012) who looked at long-

term pain (five years post TKR surgery) and concluded an ‘unfavourable pain outcome’ was 

reported for 20% of patients. Pain is often the result of poorly fitting implant components which 

may be functionally acceptable, but can lead to inflammation and be highly uncomfortable for 

patients (Mahoney & Kinsey, 2010).  

1.2.3. Preoperative Assessment and Size Selection 

Before knee replacement surgery is performed, pre-operative assessment is necessary to 

confirm suitability, plan the procedure via templating, and estimate the required implant 

component sizes. Typically, this is done by capturing biplanar X-ray images of patients’ knee 

joints including ‘Anterior-Posterior’ (AP) or ‘front’ (Figure 4A), as well as ‘lateral’ or ‘side’ 

(Figure 4B) projections. The use of CT and/or Magnetic Resonance Imaging (MRI) 3D 

imaging is rarely used for standard OTS implant surgeries due to the high costs, additional 

radiation exposure, and limited accessibility associated with the imaging mediums (Tanzer & 

Makhdom, 2016).  
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Figure 4: A) AP X-ray of knee joint, B) Lateral X-ray of knee joint 

When selecting the best implant components to use the goal is to pick sizes that will provide 

the closest possible fit for individuals, thereby minimising the chance of complications, 

revisions, and pain post-surgery (Culler et al., 2017) (Buller et al., 2018) (Schroeder & Martin, 

2019). Implant manufacturers typically supply models with between 5 – 8 standardised sizes 

(Hitt et al., 2003) (Wernecke et al., 2012). Sizing ranges however vary substantially, with some 

manufacturers providing ‘gender-specific’ solutions such as for the Zimmer Biomet ‘NexGen’ 

model. The size selection process is most commonly performed manually which has been 

shown to frequently result in poor accuracies (Hernandez-Vaquero et al., 2013). Due to the 

poor reliability of the manual process, surgeons can feel the need to re-evaluate the sizing 

during surgery and often opt to implant a different size (Sheth et al., 2017). This can lead to a 

higher chance of human error, as well as longer surgical procedures.  

1.2.4. Implant Types and Designs 

As shown in Figure 5, TKR implants consist of multiple components: A femur component is 

used to recreate the articulating surfaces of the distal femur condyles. It is grooved so the patella 

 

A)       B)   
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can move smoothly against the implant as the joint bends and straightens. The proximal end of 

the tibia is resected and replaced with a flat plate with a pin (keel) which protrudes into the 

centre of the bone for stability. Both the femur component and tibia plate (or ‘tray’) are 

typically made from titanium or cobalt-chromium metal alloys which provide the necessary 

strength, flexibility, resistance to wear, and biocompatibility. Some implants are also made of 

ceramics or ceramic/metal mixtures such as oxidised zirconium (Foran & Manner, 2021). 

 

Figure 5: A) Posterior-stabilised and, B) Cruciate-retaining TKR implant designs © 

(Foran & Manner, 2021) 

For most implants, a strong and durable polyethylene insert, or ‘spacer’ component is usually 

positioned in-between the femur component and tibia plate to add cushioning and achieve an 

effective bearing surface (imitating the meniscus in the natural joint – Figure 1). A small 

number of designs do not have separate metal plates and plastic spacers. In these cases, the 

polyethylene spacer component attaches directly to the bone. Lastly, in some cases, a patellar 

component is used. This is a dome shaped component, made of polyethylene, that duplicates 

the shape of the patella (kneecap). The patella does not always need to be resurfaced. In such 

cases, the bone can be left in place, like shown in Figure 3 (Foran & Manner, 2021).  

 

Post and slot 

features 

PCL groove 

features 

A)                   B) 
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Knee replacement implants come in a variety of models with over 150 different designs 

available on the market (Foran & Manner, 2021). TKR implants can be ‘posterior-stabilised’ 

(Figure 5A) or ‘cruciate-retaining’ (Figure 5B). In posterior-stabilised designs both the cruciate 

ligaments are removed during surgery (visible in Figure 1). To account for this, the tibia plate 

has an internal post that fits into a slot in the femur component to replicate the function of the 

posterior cruciate ligament (i.e., prevent the femur from sliding forward excessively on the tibia 

when the knee is bent). The posterior cruciate ligament is preserved in cruciate-retaining 

designs but the anterior cruciate ligament is still removed. Cruciate-retaining components do 

not have the post and slot features. Instead, they are designed with grooves to accommodate 

the posterior cruciate ligament. The implant type is usually selected for patients whose 

posterior cruciate ligaments are healthy enough to continue stabilising their joint. A small 

number of ‘bicruciate-retaining’ designs are also available where both the cruciate ligaments 

are preserved. These are however relatively new to the market and a limited amount of data 

exists on their performance (Foran & Manner, 2021). 

Knee implants can be classified as ‘mobile-bearing’ or ‘fixed-bearing’. Mobile-bearing 

implants feature polyethylene spacers that are free to rotate short distances inside the tibia plate. 

The design feature allows patients the ability to rotate their knees slightly and more closely 

resembles a natural knee. In fixed-bearing implants the polyethylene spacer is fixed to the tibia 

plate to prevent any axial rotation (Foran & Manner, 2021). Mobile-bearing knee implants are 

designed for potentially longer performance with less wear but require more support from the 

cruciate ligaments to avoid dislocation. Mobile-bearings are therefore usually preferred for 

younger, more active patients (BoneSmart, 2022).  

Lastly, implants can also be cemented in place or press-fitted onto the bone (referred to as 

‘cementless’). Cementation is the most common approach and features a fast-curing bone 



T. Burge Applied AI/ML for Automatic Customisation of Medical Implants 2023 

- 24 - 

cement (typically ‘polymethylmethacrylate’) to attach the femur component and tibia plate. 

Cementless fixation uses implants with textured or coated bone interfacing surfaces to enable 

new bone to grow into the implant and achieve the necessary fixation (Foran & Manner, 2021). 

1.2.5. Customised Implants 

To improve the outcomes of knee replacement, a small number of companies have developed 

shape customisation solutions where implants are designed to more accurately fit individuals’ 

bones, facilitating greater bone preservation (Culler et al., 2017). This is especially useful when 

subjects are observed to have abnormal anatomies which lie outside the range of geometries 

that standardised OTS implants are designed for (Jun, 2011). The leader in the commercial 

customised knee implant space is ConforMIS (Billerica, Massachusetts, US) who offer various 

model options for TKR and uni-condylar implant types (ConforMIS, 2022). An illustration of 

custom designed and conventional femur components (with areas of poor fit highlighted on the 

latter as dashed red circles) is provided in Figure 6. 

 

Figure 6: Custom design and conventional femur components © (Lee et al., 2020) 

Numerous studies have demonstrated that customised knee replacement implants can afford 

better rotational alignment and fit without causing excessive Over or Under Hang (OUH) 
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(Ogura et al., 2019) (Arnholdt et al., 2020). OUH is the resulting gap (positive or negative) 

between the edges of the implanted components and bone after resection. Excessive OUH has 

been shown to lead to complications post-surgery, such as soft-tissue irritation, bleeding, 

osteolysis, laxity in flexion, subsidence, and instability with ≥ 3 mm generally regarded as 

clinically significant (Dai et al., 2014b), (Schroeder & Martin, 2019), (Shao et al., 2020). This 

value was therefore used as a threshold in this research to indicate poor implant fit. 

As a result of their superior fit, custom implants have been shown to afford significantly lower 

transfusion and adverse event rates compared to standard OTS options and patients have 

experienced shorter hospital stays and better discharge disposition (Culler et al., 2017). This 

has translated into revision rates as low as 0.5% after four years compared to 2% for OTS 

products after the same duration (ConforMIS, 2018). Furthermore, authors have argued that by 

using customised implants, the overall cost of knee replacement can be reduced. Buller et al. 

(2018) compared possible cost reductions due to reduced surgery time, problems post-surgery, 

revision rates and implant storage against the typically higher component and imaging costs 

associated with custom solutions. The authors concluded that a net saving of $913.87 per 

patient, per episode of care, could be obtained. Nonetheless, the upfront costs of custom 

components and the additional imaging required can be 20 – 30% higher (Namin et al., 2019). 

Despite the medical benefits, high patient satisfaction levels, and potentially lower costs of 

customised solutions, the technology currently makes up less than 1% of the knee replacement 

market (Evers, 2019). There are several reasons why customisation products are yet to 

revolutionise the industry, but the two principal reasons are believed to be that 1) none of the 

knee replacement customisation solutions identified were fully automated, and 2) that 3D 

medical imaging was always required (Seekingalpha.com, 2019). Consequently, laborious 

manual processing of imaging data and skilled implant design work is necessary which adds 
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costs and lead time (Ortho Baltic Implants, 2020). Requiring 3D imaging (typically CT) is 

problematic as this is not commonly needed for OTS procedures and therefore adds additional 

costs and lead time. CT scans also expose patients to very high levels of radiation – for 

example, a chest CT scan typically delivers more than 100 times the radiation dose of a frontal 

and lateral chest X-ray (Smith-Bindman et al., 2009). Furthermore, they are expensive and are 

not widely available outside of large hospitals in developed countries. As a result, 

customisation solutions are currently used almost exclusively to treat clinical conditions that 

cannot be aptly addressed via OTS, sized implants (Ortho Baltic Implants, 2020). 

1.3. Artificial Intelligence and Machine Learning 

AI/ML is a widely trending topic with applications being deployed in most major business 

segments (Singh, 2018). ‘Artificial intelligence’ is an umbrella term that implies the use of 

computers to model intelligent behaviour with minimal human intervention. ‘Machine 

learning’ is represented by mathematical algorithms that improve learning through experience. 

The two main types of AI/ML algorithms are ‘unsupervised learning’ where an algorithm is 

able to find patterns in data without being provided with any labelled training data or prior 

examples, and ‘supervised learning’ where algorithms rely on previous examples to learn 

features of predefined classes (Hamet & Tremblay, 2017). ‘Deep learning’ is a subset of AI/ML 

that encompasses a variety of unsupervised and supervised feature learning algorithms that 

allow computational models of multiple processing layers to learn and represent data with 

numerous levels of abstraction (Voulodimos et al., 2018). ‘Computer vision’ is the field of 

AI/ML that focuses on using these algorithms to effectively identify and process objects in 

images and videos, primarily via the use of Convolutional Neural Networks (CNNs) 

(Mihajlovic, 2019). 
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CNNs form a class of deep machine learning algorithms that are highly effective at analysing 

patterns. They are designed to process data that come in the form of multiple arrays, such as 

colour images and videos. As such, they are often used in applications including facial 

recognition (Lecun et al., 2015). CNNs learn directly from inputted data which removes the 

need for manual feature extraction and means patterns/features that may not be identifiable by 

humans can be quickly recognised. The structure of CNNs was inspired by biological processes 

in that the connection between the neurons within CNN models resembles the organisation of 

a cat’s visual cortex (El-Sayed & Sennari, 2014). An example of a CNN model architecture is 

shown in Figure 7. 

 

Figure 7: Example of the architecture of a CNN model © (Shah et al., 2020) 

Each layer in the CNN architecture is called a ‘feature map’ where filtering, activation, and 

pooling operations are applied. Filters (convolutions) are applied at different resolutions within 

each feature map in the network with a proportion of the outputs used as inputs to the next. 

Filters start as simple elements, such as edges, and then increase in complexity to levels where 

specific objects can be defined. ‘ReLU’ (Rectified Linear Unit) activation functions are 

typically used after the filters to enable different features within the filtered images to be 

detected. ‘Maximum pooling’ is used to condense the image and enhance features. Usually, as 

the filter depth increases through the network, the output size (image height and width) 



T. Burge Applied AI/ML for Automatic Customisation of Medical Implants 2023 

- 28 - 

decreases (Galvez et al., 2018). The feature map of the input layer of the architecture is usually 

a 3D matrix of pixel intensities for different colours where each pixel can be viewed as a 

separate feature. Depending on the tasks involved, the final layer with different activation 

functions is used to get specific conditional probabilities for each output neuron (Lecun et al., 

2015). CNN networks can include hundreds of feature detecting layers which are typically 

alternated with a sub-sampling (pooling) layer to obtain properties leading to translation and 

deformation invariance (Matsugu et al., 2003). 

Levels of importance (‘weights’) to features are learnt via CNN algorithms when trained with 

manually labelled image data. Weights can be seen as ‘knobs’ that are iteratively adjusted to 

best define the necessary input–output connections of the network in order to facilitate good 

predictions. Connections that are assigned high weightings will permit data to flow through to 

the subsequent filters and layers, consequently making more impact to output predictions than 

those with lower weightings (Lecun et al., 2015). In addition to weights, neural networks can 

feature ‘biases’. Biases add in additional units to the connections within a network to ensure, 

even if previous units have a value of zero, signals will be activated and data pushed forward 

in the network (Guha et al., 2005). The weights and biases of CNNs are learnt iteratively during 

model training by gradually tuning their values across the network, allowing their sensitivities 

to be learnt and model performance to be maximised. 

There are numerous adjustments that can be made to improve how well a model performs, such 

as increasing the number of filter channels, operational steps, and/or the layers of a CNN 

architecture. Hyperparameters, such as the number of epochs (the number of training iterations 

or ‘passes through’ the training data), and batch size (the number of samples/images processed 

before the model is updated), can also be refined to optimise results for specified validation/test 

data (Koller et al., 2016).  
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CNN algorithms can be used to achieve various outputs. Three of the most common uses are 

image classification, object detection and image segmentation (Voulodimos et al., 2018). The 

difference between these is shown in Figure 8.  

 

Figure 8: Difference between A) Image classification, B) Object detection, and C/D) Image 

segmentation © (Wu et al., 2020) 

In image classification (Figure 8A), a CNN model is structured and trained to be able to 

recognise characterising features within an image to predict which of several user specified 

classes the image most likely belongs to. Classes can be binary (positive or negative) or 

multinomial for three or more. Examples of CNN based image classifiers include in the 

detection of tuberculosis (Liu et al., 2017), and for diagnosing COVID-19 (Narin et al., 2021).  

Object detection involves classifying regions of images to find the location of specific objects 

within them and encasing the Region(s) of Interest (ROI) in rectangular bounding box(es). 

Algorithms can be trained to detect various or singular object types within images (Zhao et al., 

2019), such as various instances of cows in (Figure 8B).  
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Image segmentation involves partitioning an image by labelling each pixel to isolate singular 

or multiple regions. The process allows for an image to be simplified into one that is more 

meaningful and/or easier to analyse (Shapiro & Stockman, 2001). ‘Semantic’ segmentation 

aims to predict pixel-wise classifiers to assign a specific category label to each pixel, resulting 

in binary images (Figure 8C). ‘Instance’ segmentation can identify different objects within an 

image and assign each of them a separate categorical pixel-level mask (Figure 8D). 

Segmentation models typically use a modified CNN architecture called a ‘U-net’, shown in 

Figure 9. U-nets enable segmentation models to work with fewer training images and yield fast 

and precise outcomes. In contrast to standard CNN architectures where the network purely 

contracts (downsamples), U-nets also include an expansive, upsampling path. Here the image 

size gradually increases back to the intended output image size as the depth of filters decrease. 

The expansive path typically mirrors the contracting side with pooling operations replaced by 

upsampling operators. The addition of the upsampling steps enable the model to assemble 

precise segmentation outputs in the form of new images (Ronneberger et al., 2015). 

 

Figure 9: Example of an image segmentation CNN U-net model architecture © 

(Ronneberger et al., 2015) 
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1.4. Statistical Shape Models 

Statistical models provide compact and efficient parameterisation of the variation in object 

classes (Davies et al., 2008). In SSMs, the relevant object class is shape, and the models allow 

for a population of semantically similar objects, such as various knee joint anatomies, to be 

described statistically. SSMs include an average 3D ‘base’ shape of a given population, in 

addition to describing the shape variation within it (Ambellan et al., 2019). ‘Principal 

Component Analysis’ (an unsupervised AI/ML method) is used to capture the geometrical 

variation of inputted training data and reduce its dimensionality down to a finite number of 

‘principal components’ or ‘modes of variation’ along which the variation in the data is maximal 

(Seber, 2009) (Smoger et al., 2015). By using a few principal components often each sample 

can be well represented by just a few variables as opposed to potentially thousands (Ringnér, 

2008). In the case of a knee joint, example principal components could include the epicondylar, 

femur, and tibia AP and ML widths, as illustrated in Figure 10. 

 

Figure 10: First three principal components/modes of a knee SSM © (Smoger et al., 2015) 
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The base shape of an SSMs is typically a parameterised mesh model which can be morphed, 

controlled by a specified number of the learnt principal components, to best fit the reference 

points (such as 2D profiles extracted from X-rays). The fitting process is completed iteratively 

using various optimisation algorithms to minimise the discrepancy between the SSM base 

shape and the reference points (Smoger et al., 2017). Once the solution has converged within 

an error tolerance, or the maximum number of morphing iterations is reached, a triangulated 

surface mesh 3D model reconstruction is generated and exported (Tsai et al., 2015).  

1.5. Additive Manufacture 

Additive Manufacture (AM) describes a set of manufacturing methods that function through 

material addition (adding layer upon layer) in contrast to traditional cutting, forming or casting 

methods (Deradjat & Minshall, 2017). There are numerous forms with ‘Powder Bed Fusion’ 

(Figure 11A) and ‘Fused Deposition Modelling’ (Figure 11B) being two of the most common. 

 

Figure 11: Schematics of A) Powder bed fusion, and B) Fused deposition modelling © 

(Velásquez-García & Kornbluth, 2021) 

 

A)                    B)   
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AM can be considered as a new type of ‘agile manufacturing’ that is capable of high product 

variety with minimal tooling required. Furthermore, once appropriate build parameters are 

defined (such as the build orientation, support structuring method, infill methods etc.), a 

significant degree of automation can be achieved, minimising the required labour. It is 

particularly appealing for producing bespoke products compared to standard manufacturing 

techniques as the systems can fabricate parts of almost any geometrical complexity. AM has 

historically been used extensively for prototyping, but is now being used more commonly to 

construct finished products as production speeds and accuracies improve (Tuck et al., 2008). 

Various medical applications of AM have been shown possible including knee replacement 

implants (Namin et al., 2019), lower limb prosthetics (Chen et al., 2016), dental prostheses 

(Liaw & Guvendiren, 2017), wrist splints (Paterson et al., 2014), clavicle plates (Cronskär et 

al., 2015), and spine disks (Yu et al., 2019). The technology is also increasingly being used to 

enable the fabrication of customised medical implants (Giannatsis & Dedoussis, 2009). This 

has largely been because AM processes, such as metal ‘Selective Laser Sintering’ and 

‘Selective Laser Melting’, have been shown to accelerate production, achieve better 

specifications, and reduce costs compared to traditional processes (Javaid & Haleem, 2018). 

Moreover, an increasing number of materials suitable for chronic implantation are compatible 

with AM processes. These include medical grade titanium (such as ‘Titanium 6Al-4V’) and 

medical grade stainless steel (including ‘304L’). The design freedoms of AM are also enabling 

porous structures, such as tissue scaffolds and compliant lattice structures, to be produced more 

efficiently (Munford et al., 2021). 

Despite the many benefits of AM, there are important limitations to note. Some of the key 

points include that build speeds are limited compared to mass-manufacturing processes, like 

injection moulding, which can make scaling production at similar rates challenging (Beaman 
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et al., 2020). The accuracy and resolution of certain AM techniques are often inferior compared 

to common processes like milling. Consequently, finishing processes are usually required to 

achieve smooth surfaces and producing parts requiring high levels of precision can be 

expensive (Wong & Hernandez, 2012). Postprocessing is normally required to remove support 

structures and/or binders. This is time intensive and often done manually. Lastly, only a limited 

number of materials can be used and, due to the layering process, the mechanical properties of 

the produced parts can be anisotropic and differ depending on factors such as build orientation 

(Beaman et al., 2020).  

1.6. Software Pipelines 

In software engineering, a ‘pipeline’ consists of a workflow constituting of a chain of 

processing elements (such as functions or algorithms), arranged so that the output of each 

element is the input of the next. For example, Ribeiro et al. (2009) outlined a pipeline for the 

3D solid and finite element modelling of biomechanical structures. Their pipeline contained 

elements for loading images, image segmentation, mesh adjustments, solid model generation, 

and finite element modelling. Each element in the pipeline contained code which used data 

outputted from previous stages to feed algorithms (such as pretrained models) and transform 

inputs into outputted simulation results. This example was described as a ‘semi-automatic’ 

pipeline where a degree of user input, such as selecting nodes and boundary conditions in the 

simulation, was required. In this thesis, a ‘fully’ automatic pipeline is defined as one in which 

no further user feedback or input is necessitated after selecting the input data. 

Software pipelines are typically formed of computer code and can be developed with or without 

user friendly front-end interfaces, often referred to as ‘GUIs’ (Graphical User Interfaces). The 

knee replacement customisation pipelines developed throughout this work (summarised in 
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Figure 12) were all developed using Python code (a high-level, general-purpose programming 

language) and executed through separate scripts. The standalone pipelines were then built into 

a single software application with a dedicated user GUI. This is described in Appendix 1. 

1.7. Research Objectives 

The research outlined in this thesis aimed to develop several automated ‘pipelines’ to 

demonstrate how customisation can be achieved more effectively for knee replacement, 

focusing predominantly on TKR as the most common type (Carr et al., 2012). Specifically, the 

research was conducted with the following objectives: 

1) Develop both X-ray and CT based, fully automated mass-customisation pipelines for 

knee replacement surgery. 

2) Demonstrate the accuracy of the pipelines across a broad patient population to validate 

their robustness. 

3) Quantify the sensitivity of the pipelines to variations in input parameters and define 

necessary input imaging requirements. 

4) Compare the performance of the X-ray and CT based pipelines with each other, as well 

as with currently available products. 

1.8. Thesis Structure 

Firstly, Chapter 2 starts with a literature review of mass-customisation and the recent 

advancements in the various types of implant customisation and design methodologies. 

Chapter 3 outlies the common materials and methods utilised to develop and test the several 

customisation pipelines developed through this work. 
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Chapter 4 details an assessment of OTS, standard sized TKR implants to establish the best 

possible performance of such products and verify the need for (shape) customisation solutions. 

The results of the analysis also serve as a useful comparison for the subsequent chapters. 

Chapters 5 – 9 outline the various pipelines developed for automating the customisation of 

knee replacement surgery, illustrated in Figure 12. The first three chapters focus on biplanar 

X-rays as input and the last two focus on CT.  

 

Figure 12: Flow chart illustrating the inputs, outputs and data flow of the knee 

replacement customisation pipelines developed in Chapters 5 – 9 

Chapter 5 develops a pipeline to automatically design custom shape knee replacement implant 

components from biplanar X-rays and details initial results.  
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Chapter 6 utilises a Digitally Reconstructed Radiograph (DRR) approach to further evaluate 

the X-ray based pipeline’s performance across a broader population and complete a sensitivity 

analysis of input parameters such as X-ray alignment and calibration accuracy.  

Chapter 7 then utilises the 2D – 3D framework (developed in Chapter 5) to build a pipeline 

capable of automatically recommending the best OTS implant sizes for individuals, based on 

inputted X-rays. A performance analysis of the pipeline is provided. 

Chapter 8 outlines a pipeline using 3D CT scan data to design custom fit knee replacement 

implants and details a results analysis.  

Chapter 9 then studies whether CT scans can facilitate the additional level of implant stiffness 

customisation to optimise recovery and functional performance.  

Finally, Chapter 10 summarises and concludes the research before future work that should be 

completed is proposed. 
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Chapter 2 – Literature Review 

 

 

Literature Review 

The following chapter reviews the relevant literature on mass-customisation, as well as recent 

advancements in medical implant customisation and associated design methodologies. 
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2.1. Mass-Customisation 

‘Mass-customisation’ was defined as the ‘ability to provide individually designed products and 

services to every customer through high process agility, flexibility and integration’ by Davis 

(1989). Da Silveira et al. (2001) then further defined it as the ‘ability to provide customised 

products through flexible processes in high volumes and at reasonably low cost’. Additionally, 

Ferguson et al. (2014) argued that all aspects of a product’s life cycle should be considered 

from marketing through to distribution to facilitate the successful implementation of mass-

customisation solutions.  

Mass-customisation has gained increasing importance in the 21st century and is becoming more 

commonly adopted in economic sectors such as medical devices, automotive, and consumer 

electronics as demand for personalised products increases. Some of the key enablers for its 

increased adoption can be attributed to advancements in imaging technologies and ‘smart’ 

(AI/ML enabled) algorithms, as well as improvements in the scalability and accuracy of AM 

(Gandhi et al., 2013). For companies to successfully implement mass-customisation, Salvador 

et al. (2009) argued that three fundamental capabilities are always required. These include: 

1) Solution Space Development – This involves developing software that enables large 

pools of customers/users to easily translate their preferences/data into unique product 

variants, and/or enable virtual prototyping of custom designs for evaluation. 

2) Robust Process Design – This relates to automation that is not fixed or rigid and reuses 

or recombines existing organisational and value-chain resources to fulfil a stream of 

differentiated customer needs. 

3) Choice Navigation – It is important that customers are supported in identifying their 

own solutions, whilst minimising complexity and the burden of choice. 
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‘Customisation’ can refer to various aspects of medical implant products and their related 

surgeries. The most obvious and common variant is to customise the shape and form of implant 

components for individuals’ unique anatomies. Customisation could refer to the materials used 

to build an implant or incorporating lattice structures to tailor functional performance to match 

patients’ bones. Customisation could simply refer to selecting the most appropriate OTS 

implant size, model, or type for an individual. Aspects other than the implant can also be 

customised, such as the cutting guides used during surgery (Cerveri et al., 2014), or whether 

‘open’ or ‘minimally invasive’ surgery is performed (Fawzy et al., 2008).  

Figure 13 illustrates various levels of customisation, or ‘personalisation’, that can be adopted 

for medical devices. This is categorised along the X axis with the level of automation involved 

with achieving said customisation along the Y axis. Paxton et al. (2022) argued that the ‘holy 

grail’ of medical device personalisation is the top right hand corner where custom-made 

products are enabled with fully automated design and manufacturing processes.  

In knee replacement implants specifically, it was highlighted previously in Chapter 1.2.5 that 

current commercially available customisation solutions have so far failed to achieve large-scale 

success due to their high upfront component costs and long lead times (Ortho Baltic Implants, 

2020). It is believed that this is principally because no solution has so far achieved the holy 

grail of fully automated customisation as defined by Paxton et al. (2022). Therefore, it is 

believed that a true mass-customisation solution is yet to be demonstrated. The following 

sections detail the methodologies identified in the literature that worked towards achieving 

differing levels of medical implant customisation with varying degrees of automation. 
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Figure 13: Medical product personalisation and automation matrix © (Paxton et al., 2022) 

2.2. Patient-Matched Implant Size Prediction 

Hernandez-Vaquero et al. (2013) summarised results from ten studies focusing on determining 

the accuracy of manual, X-ray based knee replacement implant size prediction. The authors 

reported mean pre-operative selection accuracies of 59.2% for femur components and 60.7% 

for tibia plates (when compared to the implanted size). With ±1 size permitted, mean scores of 

97.4% and 96.4% were recorded respectively. 

To improve the accuracy of conventional manual methods and to minimise the potential of 

complications post-surgery, authors have explored using computational approaches. Zheng et 
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al. (2018) developed an X-ray based tool for pre-operative knee prosthesis planning named 

‘3X’. The technology’s workflow featured a knee joint immobilisation device and a calibration 

cage to help keep anatomical alignment consistent between patients and minimise X-ray 

magnification effects. Users of the tool then manually guided the identification of anatomical 

landmarks in captured biplanar X-ray images for bone contours to be extracted via a ‘live-wire 

algorithm’. These were then used to guide SSM models to reconstruct 3D model predictions of 

subjects’ anatomies (illustrated in Figure 14). The models were subsequently used by the 

algorithm to virtually fit potential implant sizes and form component size predictions for 

individuals.  

 

Figure 14: Schematic of the steps involved with the 3X technology to create 3D model 

reconstructions for implant size prediction © (Zheng et al., 2018) 

The authors reported size prediction accuracies for the 3X technology of 78% (96% ± one size) 

for femur components and 70% (100% ± one size) for tibia plates, based on a study featuring 

23 subjects and using sizes selected using 3D CT data as a ground truth comparison. The 

authors did not detail which specific implant model was used for the analysis, nor did they 

highlight how many sizing options were available for the femur or tibia plate components. 
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Massé & Ghate (2021) more recently developed a similar tool named ‘X-Atlas’. The software 

was primarily aimed at creating patient-matched cutting guides from X-ray images, but also 

featured the additional ability to predict implant size. Like 3X, the X-Atlas workflow involved 

manually identifying key anatomical features to extract 2D bone contours which could then be 

used to drive SSM models and generate 3D reconstructions for size prediction. In the study, X-

Atlas was tested using 45 subjects with the Zimmer Biomet ‘Persona’ knee implant. The 

number of available sizes was not reported in the paper, however, specifications for the product 

suggest there were 12 femur component and 9 tibia plate sizes available (Zimmer Biomet, 

2023). Size prediction accuracies of 53.3% (95.6% ± one size) for femur components and 

57.8% (100% ± one size) for tibia plates were reported using the sizes chosen and implanted 

by surgeons during the study as a ground truth comparison. 

Both the processes detailed by Zheng et al. (2018) and Massé & Ghate (2021) featured ‘semi-

automatic’ 2D-3D reconstruction workflows that needed users to perform manual tasks such 

as identifying anatomical landmarks. This would require users to be appropriately trained and 

mean the performance of the tools could be impacted by human error. Several other studies 

were identified that used SSMs to reconstruct 3D models of femur and tibia bones from X-ray 

images, including those by Laporte et al. (2003), Tang & Ellis (2005), Barratt et al. (2008), 

Zhu & Li (2011) and Tsai et al. (2015). All these works adopted similar processes where 2D 

contours, extracted from X-rays via edge detection techniques, were projected onto 2D outlines 

of SSM base shapes during fitting to drive the SSM morphing, as illustrated in Figure 15. 

Consistent 3D model reconstruction accuracies of approximately 1 mm Root Mean Squared 

Error (RMSE) were reported for both bones. Cerveri et al. (2017) further reported that accuracy 

could be improved to ~ 0.75 mm RMSE when three or more (synthetic) X-ray images were 

used to increase the level of anatomical detail captured. Only one study (Baka et al., 2014) was 

identified that detailed an approach that attempted to create 3D reconstructions automatically. 



T. Burge Applied AI/ML for Automatic Customisation of Medical Implants 2023 

- 44 - 

Yet, despite this claim, the authors only detailed how the bone contour extraction process could 

be automated; how automation was achieved for SSM fitting to then create 3D model 

reconstructions was not explored. Moreover, the proposed automated edge detection process 

failed for one out of just six test subjects due to ‘too many spurious edges’.  

  

Figure 15: Knee SSM being fitted to contours from biplanar X-rays © (Tsai et al., 2015) 

The only implant size prediction tool found that claimed to be fully automatic was the 

commercial computerised templating system, ‘Traumacad’, which has an ‘Auto-Knee’ 

function. Like the other examples highlighted, the programme detects anatomic regions in X-

ray images and then positions resection lines to determine position and sizing on both AP and 

lateral images. How the programme completes this automatically was however not found to be 

thoroughly explained in the literature. Seaver et al. (2020) completed a study where 125 

consecutive patients underwent primary TKA and compared the accuracy of using Traumacad 

for selecting the best femur and tibia plate components for individuals against a standard 

manual templating method. The authors highlighted low accuracies for the automated tool, 

reporting femur component accuracies of 19.2% (51.2% ± one size) and tibia plate accuracies 

of 26.4% (71.2% ± one size). Moreover, inaccuracies of up to ± 5 sizes were recorded for both 
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implant types. By means of comparison, manual accuracies of 56% (97.6% ± one size) were 

reported for femur components, along with 61.6% (95.2% ± one size) for tibia plates in the 

study. Due to the significantly inferior size selection accuracies reported with the tool, the 

authors concluded by cautioning surgeons from exclusively using the automatic algorithm. 

2.3. Implant Shape Customisation 

A limited number of articles were identified that evaluated the performance of commercially 

available custom shape TKR implants. Ogura et al. (2019) completed a study featuring 55 

patients fitted with ConforMIS ‘bicompartmental’ custom implants and concluded OUH ≥ 3 

mm was not present in any case. Likewise, Arnholdt et al. (2020) reported no instances of OUH 

≥ 3 mm in a study featuring 91 patients fitted with ConforMIS ‘iTotal CR G2’ implants. In 

contrast, OTS sized implant components have been shown to afford significantly poorer 

outcomes. Mahoney & Kinsey (2010) reported that overhang of ≥ 3 mm was present in 40% 

of 176 male and 68% of 261 female knees studied after surgery when OTS components were 

used. Similarly, Wernecke et al. (2012) reported 49% of 101 subjects would see ‘posterolateral 

overhang enough to cause popliteal tendon impingement’ in a study evaluating six different 

tibia plate designs superimposed on MRI images. Schroeder & Martin (2019) completed an 

intraoperative study comparing OTS and customised implants directly on the same 44 patients. 

The authors reported that cases of tibia plate overhang of ≥ 3 mm would be reduced from 18% 

for OTS implant designs to zero by using customised ConforMIS ‘iTotal CR’ implants, whilst 

underhang would be reduced from 37 to 18%.  

Thorough detail of the workflows for commercially available custom TKR implant solutions, 

such as the market leader ConforMIS, was not possible to obtain. Nevertheless, 

Seekingalpha.com (2019) highlighted that, despite the marketing claims, such solutions are not 
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yet fully automated. Consequentially, the authors of the article argued that manual CAD work 

is often outsourced to foreign countries to save costs from lower labour rates, thus incurring an 

increased risk in terms of quality, future costs, and lead times. In the literature, several ‘semi-

automatic’ methods to customise the shape and fit of knee replacement implants have been 

proposed. Jun (2011) outlined a process using CT imaging to enable reconstructions of 

patients’ knee anatomies to be generated and for important morphological parameters to guide 

the design process to be extracted (Figure 16). Tools such as finite element modelling and 

virtual surgery were then employed to optimise the design for individuals before manufacturing 

implant components using computer numerical controlled milling. In the paper, the authors 

argued that parameter extraction was not automated because it ‘often lacks accuracy and 

stability for feature identification’. 

 

Figure 16: Workflow of custom-made implant design process proposed by © (Jun, 2011) 

Li et al. (2017) and Balwan & Shinde (2020) also proposed similar CT based approaches. The 

former incorporated patient gait measurements and musculoskeletal modelling into the design 
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process, described how patient-specific instrumentation could be produced using the 

reconstructed 3D models, and highlighted that AM could be used to fabricate the bespoke 

geometries. The latter detailed how ‘3D Slicer’ – an open source software for visualisation, 

segmentation, registration and measurement of medical images (Fedorov et al., 2012), used in 

tandem with ‘democratiz3D’ – a suit of image processing tools available at 

www.embodi3d.com, could be used to help improve the efficiency of converting .dcm or 

‘DICOM’ (Digital Imaging and Communications in Medicine – a standard for the 

communication and management of medical imaging information, developed to make image 

data standardised and easy to share between equipment from different manufacturers (Mustra 

et al., 2008)) CT files into 3D bone models for use in developing customised components. As 

with (Jun, 2011) however, both these solutions also required significant input from users to 

process scans and guide the 3D model reconstruction and implant design process. 

Siemens published a white paper on a conceptual ‘Image-to-implant solution for personalised 

medical devices’ which claimed to be able to automate the entire ‘engineer-to-order’ process 

for planning, designing, and manufacture of patient-specific medical devices (Siemens, 2014). 

The paper suggested that by utilising the methodology, the TKR surgical procedure, implants, 

and/or instruments could be customised from inputted CT or MRI scans. Despite this, the 

workflow was found to rely heavily on input from clinicians via a ‘web-based collaboration’ 

interface for surgical planning and to generate implant designs. Furthermore, the white paper 

did not explicitly detail how 3D scans could be segmented automatically to produce the 

required 3D bone models, nor was any information possible to find on the concept’s 

performance or where/how it had been implemented. 

In terms of X-ray based workflows, the only article identified was by Chui et al. (2021) who 

demonstrated that SSMs could be used in parallel with X-ray images to reconstruct the femoral 
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anatomy of ten test subjects, reporting a mean RMSE accuracy of (1.10 ± 0.18) mm. The 

authors used a single epicondyle width measurement taken manually from inputted AP X-ray 

images to morph an average femur shape model and create 3D reconstructions. Like the other 

studies referenced, these models were then used to develop customised femur component 

designs (created via manual CAD work), which were then prototyped via AM.  

In other areas besides knee replacement, authors have demonstrated how advancements in 

computer vision techniques have shown promise for the progression towards automating 

traditionally laborious tasks involved with developing custom implants (Paxton et al., 2022). 

Examples include automating the segmentation of CT scans to expedite the generation of 3D 

models for structures such as the skull (Minnema et al., 2018) and the vertebrae (Lessmann et 

al., 2019). By utilising such technologies, the fully automatic design of customised products, 

including ocular prostheses and cranial implants, has been shown to be possible in a limited 

number of applications (Ye et al., 2018) (Venugopal et al., 2021). 

2.4. Implant Stiffness Customisation 

As mentioned earlier, commonly used knee replacement implant components are made of solid 

metal with stiffnesses significantly greater than the trabecular (spongy/porous) bone present in 

the distal femur and proximal tibia. The stiffness of bone correlates closely with density 

(Munford et al., 2020), which can vary substantially from person to person depending on 

factors including age, sex, weight and conditions like osteoporosis (Burger et al., 1994) 

(Khodadadyan-Klostermann et al., 2004) (Hamilton et al., 2013). Hence, the natural 

distribution of stresses and strains in the joint are inevitably disrupted which can hinder bone 

recovery and lead to extended resorption and increased probability of early revisions (Huiskes 

et al., 1992) (Deen et al., 2018). Nevertheless, positive bone remodelling and apposition can 
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be stimulated by introducing localised strain gradients into implant components (Kumar & 

Narayan, 1984) (Elliott et al., 2016). Therefore, if implants are designed with stiffness matched 

structures that form a mechanical environment close to patients’ native bones, it has been 

argued that it may be possible to further promote these effects (Elliott et al., 2016). 

By using metal based AM techniques, porous (Figure 17A) and compliant (Figure 17B) lattice 

structures can be fabricated. Munford et al. (2022) demonstrated that, by integrating such 

structures into tibia plates, the load in the proximal tibia could be better distributed and the 

mechanical environment of the native bone restored. In contrast, for conventional solid 

implants, the authors reported > 70% of the resected bone area was found to be underloaded 

compared to native loading. 

   

Figure 17: A) Porous acetabular hip replacement component © (Levine et al., 2006), B) 

Compliant stochastic lattice structure © (Kechagias et al., 2022)   

Various companies such as ‘nTopology’ and ‘Synopsys’ offer generative design software tools 

that allow engineers to develop complex lattice structures with a broad variety of both repeating 

and stochastic (random) structures. These tools can be used to create and modify certain areas 

of lattice structures to reflect variations in inputs such as pressure values in the context of 

insoles, or to add strength to regions of medical implants that are known to experience higher 

 

A)                  B) 
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loads (Veloso et al., 2022). Unlike shape customisation however, no commercially available 

solutions were identified that utilise such tools to enable implant stiffness customisation from 

medical images. A limited number of academic studies were found to outline conceptual 

methodologies, including Ghouse et al. (2019) who used micro-CT to characterise the stiffness 

of trabecular bone in the medial femoral condyle of an ovine model. The process, outlined in 

Figure 18, involved initially calibrating density in the CT scans via phantoms included in the 

images, mapping its distribution across the bone, converting to stiffness moduli via the use of 

a relationship built on experimental data, and adjusting the design of lattice structures to match. 

Porous titanium scaffolds with varying stiffnesses to replicate the variation observed were then 

fabricated via AM and implanted into the medial femoral condyles of six ewes. Promising 

levels of bone ingrowth compared to solid structures were reported across the test subjects. 

Munford et al. (2020) outlined a similar method for characterising the stiffness of the proximal 

human tibia bone. The authors highlighted that stiffness moduli varied significantly between 

the ML, AP and IS (inferior – superior) axes. Principally, it was noted a significant difference 

in moduli was found between the medial and lateral condyles, as well as with subchondral 

depth (stiffness decreased rapidly distally from the condylar region). The authors proposed 

various power-law relationships for predicting stiffness moduli from density at different depths 

in the bone and for different axes. They then demonstrated an improved stiffness approximation 

could be obtained by using region and direction specific relationships compared to a global 

model. In subsequent work, Munford et al. (2022) applied the power-law relationships to 

calibrate stiffness variation in the tibia from CT scans and used this to develop implants with 

various types of stiffness matched lattice structures. These included lattices with uniform 

stiffnesses tailored to the mean axial modulus calculated in subjects’ proximal tibia bones, 

lattices graded to replicate the difference in moduli observed between subjects’ native 

condyles, as well as lattices graded with subchondral depth. 
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Figure 18: Process for predicting the 3D stiffness distribution of bone in an ovine model 

from calibrated CT images © (Ghouse et al., 2019) 

Kechagias et al. (2022) provided a detailed process for how the design of stochastic lattice 

structures can be developed to match varying stiffness moduli. Their method, illustrated in 

Figure 19B, demonstrated that stiffness can be adjusted by varying three design parameters, 

namely 1) the connectivity of the lattice (the number of struts connected at each node), 2) the 

density of struts in the structure, and 3) the strut thickness. The design process for achieving 

the stochastic lattice designs by randomly distributing points in a volume, assigning zero 
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thickness struts that comply with specified connectivity and density settings, and then assigning 

appropriate thicknesses, is also outlined in Figure 19A. 

 

Figure 19: A) Design and manufacturing workflow of stochastic lattice structures, B) 

Lattice structure design parameters to influence stiffness © (Kechagias et al., 2022) 

In the approaches detailed, to process and map bone density in CT scans, convert to stiffness 

values, and then use the information gathered to develop stiffness matched lattice structures, 

substantial input from users would be required. To help address this, Yu et al. (2019) proposed 

a process for automatically optimising the design and mechanical properties of personalised 

artificial spinal discs for individuals from CT data. An iterative finite element based 
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optimisation approach was employed to calculate optimised material distribution which could 

then be fabricated using ‘multi-material’ AM to achieve ‘physiological stiffness’ under 

different loading cases. The authors however did not describe how the CT image segmentation 

process required to obtain subjects’ bone stiffness information could be fully automated. 

2.5. Summary 

This chapter reviewed the relevant literature on mass-customisation and workflows for 

enabling various levels of medical implant customisation. A recurring theme identified was 

that a degree of manual input was almost always required to facilitate the processes. Therefore, 

user training would likely be necessary, human error could easily be introduced, and the 

solutions would probably have higher upfront costs and longer lead times compared to standard 

OTS alternatives (Ortho Baltic Implants, 2020). Consequentially, such solutions are not 

believed to be true examples of mass-customisation and will likely not become attractive 

options for widespread adoption until this key limitation is addressed (Namin et al., 2019).  

To summarise the various knee replacement customisation tools identified (both commercial 

and research studies), Figure 20 is provided. The schematic is based on Figure 13 (Paxton et 

al., 2022) and shows the level of knee replacement customisation for each identified 

product/study on the X axis, with its corresponding automation level on the Y. Whether the 

tools are compatible with 2D X-ray images, 3D CT or MRI images, or both is also detailed. 

The figure highlights that the only ‘fully automated’ knee replacement customisation tool 

identified was the Traumacad Auto-Knee software used for predicting appropriate implant size. 

Contrary to this, in other areas of medical implants such as cranial implants (Venugopal et al., 

2021), it was identified that authors have started to use recent advancements in AI/ML 

techniques to enable full automation of customisation processes. 
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Figure 20: Commercial knee replace customisation products and research articles  
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Chapter 3 – Materials and Methods 

 

 

Materials and Methods 

The following chapter outlines the common datasets, algorithms, methods, and performance 

metrics used to construct and evaluate the various knee replacement implant customisation 

pipelines developed.  

 

Most of the contents of this chapter have been published in the following papers:  

• Burge, T.A., Jeffers, J.R.T. & Myant, C.W. (2022) Development of an automated mass-

customization pipeline for knee replacement surgery using biplanar x-rays. Journal of 

Mechanical Design. 144 (2), 1–11. 

• Burge, T.A., Jeffers, J.R.T. & Myant, C.W. (2023) A computational design of 

experiments based method for evaluation of off-the-shelf total knee replacement 

implants. Computer Methods in Biomechanics and Biomedical Engineering. 26 (6),  

629-638. 
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• Burge, T.A., Jeffers, J.R.T. & Myant, C.W. (2022) Performance and sensitivity analysis 

of an automated x-ray based total knee replacement mass-customization pipeline. 

Journal of Medical Devices. 16 (4), 1–12. 

• Burge, T.A., Jones, G.G., Jordan, C.M., Jeffers, J.R.T. & Myant, C.W. (2022) A 

computational tool for automatic selection of total knee replacement implant size using 

X-ray images. Frontiers in Bioengineering and Biotechnology. 10, 1–11.  

• Burge, T.A., Jeffers, J.R.T. & Myant, C.W. (2023) Applying machine learning methods 

to enable automatic customisation of knee replacement implants from CT data. 

Scientific Reports. 13, 1–9. 

• Burge, T.A., Munford M.J., Kechagias S., Jeffers, J.R.T. & Myant, C.W. (2023) 

Automating the customization of stiffness-matched knee implants using machine 

learning techniques. The International Journal of Advanced Manufacturing 

Technology. 
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3.1. Introduction 

In Chapter 2 it was observed that workflows or ‘pipelines’ for customising medical implants 

generally have similar stages. These involve 1) processing inputted images (usually X-ray or 

CT), 2) extracting the necessary geometrical and/or mechanical property data, 3) reconstructing 

patient specific 3D bone models, 4) using the extracted data and models produced to create 

customised components designs or virtually fit various OTS standard sizes, and 5) manufacture 

the implant designs or select the best size. Figure 12 previously provided a top-level overview 

of how this general framework was adapted in this thesis to enable various forms of knee 

replacement customisation to be fully automated. This chapter provides further detail on the 

materials and methodologies that were used to enable the automation of these pipelines. The 

individual pipelines are more thoroughly developed and evaluated through Chapters 5 – 9. 

3.2. Datasets 

Data was retrieved from multiple sources for use in the development and testing of the various 

pipelines outlined in this research. No original human tissue data was collected, instead 

secondary data collected from previous studies and controlled databases was utilised after 

ensuring appropriate ethics approval and informed consent were obtained. Where relevant this 

is further detailed in the following sub-sections. 

3.2.1. Korea Institute of Science and Technology Information 

Data from 98 cadaver subjects was sourced from the Korea Institute of Science and Technology 

Information (KISTI) ‘Digital Korean’ dataset (Lee & Lee, 2010). The dataset featured CT scans 

(in DICOM file format) with a resolution of 0.832 x 0.832 mm, 1 mm axial slice thickness, and 

an image size of 512 x 512 pixels. 3D models in the form of .stl mesh files (raw, unstructured 
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triangulated surface models containing vertices and normal vectors) were supplied with the 

scans for subjects’ left and right femur and tibia bones. Figure 21 illustrates a CT DICOM stack 

(A), a coronal slice through a full body CT scan (B), and a 3D .stl mesh model of the distal 

femur. 

 

Figure 21: A) CT DICOM stack © (Chen et al., 2022), B) Coronal slice through a full body 

CT scan © (Chen et al., 2022), C) 3D .stl mesh model of the distal femur  

The KISTI subjects comprised of Asian Koreans with roughly an even number of males and 

females. Age and height information was provided with subjects ranging from 21 – 60 years 

old and 146 – 176 cm in height. No information was supplied regarding subjects’ health 

conditions, nor the level of joint damage/arthritis present.  

Ethical approval and subject consent were obtained by KISTI who also ensured the data was 

appropriately anonymised before distribution. As the KISTI dataset was shared with Imperial 

College via a material transfer agreement, and thus is not ‘publicly available’, in line with 

Imperial College’s relevant guidelines and regulations, the study protocols and associated 

ethics were reviewed and approved by the Research Governance and Integrity Team at Imperial 

College. Reference number 6423670. 

 

A)              B)    C)
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3.2.2. Osteoarthritis Initiative 

High resolution (0.365 x 0.365 mm) MRI scans of knee joints, with a sagittal slice thickness of 

0.7 mm, an image size of 512 x 512 pixels, as well as AP and lateral X-ray images (like those 

shown in Figure 4), were retrieved from the Osteoarthritis Initiative (OAI) dataset (Nevitt et 

al., 2006). The dataset contained 4,796 subjects (alive at the time of the study), with image data 

captured at multiple time points over eight years. Both AP and lateral X-ray images with 

accompanying MRI data were only available for 122 of the total subjects. 

The OAI subjects included both male and female Americans categorised into ethnicities of 

‘White’, ‘Black’, or ‘Asian’. No further ethnicity detail, such as sub-ethnicity group or country 

of birth, was provided. Subjects ranged from 45 – 79 years old when first enrolled. Height 

information was not provided. All subjects in the dataset had some degree of osteoarthritis. 

Kellgren and Lawrence (K&L) grades for classifying the severity of arthritic joint damage 

(Kellgren & Lawrence, 1956) were supplied for all subjects.  

The OAI database is publicly available for academic purposes and the data can be downloaded 

from https://nda.nih.gov/oai/. In line with Imperial College’s policy, further ethical approval 

was therefore not required to use this data. 

3.2.3. Charing Cross Hospital 

Four ‘fresh frozen’ lower limb CT scans, taken by Charing Cross Hospital, London, were 

retrieved from the Imperial College Healthcare Tissue Bank (ICHTB). The ICHTB is supported 

by the National Institute for Health Research Biomedical Research Centre, based at Imperial 

College Healthcare NHS Trust and Imperial College London. The four CT scans had a 

resolution of 0.738 x 0.738 mm, axial slice thickness of 0.6 mm, an image size of 512 x 512 

pixels, and were taken with a voltage of 140 kVp. The scans each contained five-material 
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calibration density phantoms (Model 3; Mindways Software Inc.), as shown in Figure 22. The 

subjects consisted of solely male subjects of ages 66 – 72. No additional demographic 

information (height, age, health conditions) was provided. 

 

Figure 22: CT slice containing five-material density phantom 

ICHTB is approved by Wales REC3 to release human material for research (17/WA/0161). 

Ethical permission to use the ‘fresh frozen’ lower limb CT scans was granted by ICHTB 

Review Committee under a UK Human Tissue Authority License 12 275.  

3.3. Segmentation of 3D Image Files 

To create 3D bone models from the MRI data provided from the OAI dataset, the ‘Double Echo 

Steady State’ imaging method with water excitation (no fat saturation) was selected to enable 

quantitation of cartilage volume and provide clear contrast to bone over the entire knee (Nevitt 

et al., 2006). Segmentation was completed using the software 3D Slicer as follows.  

Manual segmentation of the bone volume was performed whilst visualising the ROI in the 

sagittal, coronal, axial, and 3D model views simultaneously (Figure 23). Multiple ‘semi-
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automatic’ tools available in 3D Slicer, such as ‘thresholding’ and ‘island removal’, were 

utilised. A consistent ‘median’ smoothing function with a kernel size (the width*height*depth 

size of the smoothing filter used) of 3 mm. This was equivalent to that used to create the 3D 

bone models supplied with the KISTI dataset for consistency. Using these tools, and following 

the MRI segmentation guidance outlined by Ahmed & Mstafa (2022), 3D bone geometries 

(like shown in the top right of Figure 23) were extracted.  

 

Figure 23: Segmentation of a distal femur bone (yellow shaded area) from an MRI scan in 

3D Slicer. Top left – sagittal view, bottom left – coronal view, top right 3D model view, and 

bottom right – axial view 

The .stl models outputted from 3D Slicer were then refined and remeshed using the software 

‘MeshLab’ – an open source mesh processing tool (Cignoni et al., 2008). The refinement 

process involved using the ‘Laplacian Smooth’ tool within MeshLab to smooth out any course 
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areas resulting from the segmentation process in 3D Slicer. For each vertex in a mesh model, 

the Laplacian smoothing algorithm worked by identifying a new position in 3D space based on 

the position of neighbouring vertexes, effectively averaging out (and smoothing) the surface 

(Herrmann, 1976). Equation 1 from (Hansen et al., 2005) describes the Laplacian smoothing 

operation used where �̅�𝑖 was the Cartesian (X, Y, Z) position of vertex i, �̅�𝑗 the position of the 

jth adjacent vertex, and N the number of adjacent vertices to i. 

Equation 1: Laplacian smoothing operation 

�̅�𝑖 =
1

𝑁
∑ �̅�𝑗

𝑁

𝑗=1

 

In MeshLab, Laplacian smoothing was implemented with N being limited to just the immediate 

(connected) neighbours of each vertex in the mesh (Sorkine, 2005). ‘Smoothing Steps’ related 

to how many times the smoothing operation was applied. ‘Isotropic Explicit Remeshing’ with 

a ‘Target Element Length’ of 0.5 mm was then applied. This involved operating directly on the 

original mesh surface and applying local ‘area-based’ modifications, instead of working on an 

‘indirect’ representation of the surface. The number of vertices was adjusted to a density to 

achieve the target element length and their distribution was regularised to improve mesh 

homogeneity (Surazhsky & Gotsman, 2003). 

The software ‘Blender’, an open-source 3D computer graphics software toolset used for various 

applications including 3D modelling, mesh processing and visualisation (Kent, 2014), was 

utilised to trim each mesh bone model to a consistent height of 100 mm. This limited the models 

to the condylar regions at the knee joint and discarded excess bone shaft. To allow the process 

to be completed automatically for multiple mesh models, custom Python scripts were written 

to run within the Blender interface, one for femur bones and another for tibia bones. For the 

femur, the script initially transformed the mesh so that its lowest point in the Z axes was set at 
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0 mm. An XY plane was then created 100 mm above this and the ‘mesh.bisect’ command was 

used to trim the mesh above this point. For the tibia, the script transformed the mesh so that the 

highest point in the Z axes was set at 0 mm before an XY plane was created 100 mm below 

this point and the shaft trimmed in the same manner. The option ‘use_fill’ was set to ‘True’ in 

both scripts so that trimmed meshes were closed after the bisection command had been used. 

It was not possible to perform an analysis to evaluate the accuracy of the segmentation and 

bone mesh model generation method adopted since access to cadaver bones for physical 

measurement could not be obtained. Prior research has shown however that segmentation of 

CT and high resolution MRI files (like those supplied with the OAI dataset) can achieve 3D 

models with RMSE accuracies of approximately 0.5 mm (Van den Broeck et al., 2014). This 

provided confidence that models created via a similar approach could serve as suitable ground 

truth models in this research. 

3.4. Machine Learning Models 

Numerous image classification, object detection, and segmentation models (further introduced 

in Chapter 1.3) were utilised within the various customisation pipelines, all of which were built 

using ‘TensorFlow’ – a flexible machine learning model development platform (Abadi et al., 

2016). The architecture of these CNN models (number of layers and filters, kernel size, 

convolution operators etc., like shown in Figure 7 and Figure 9) were adjusted for each specific 

model application and based off examples found in the literature.  

When training CNN models, an optimiser was used to systematically adjust the attributes of 

the neural network (such as weights and biases). ‘Adam’, a stochastic gradient descent method, 

was used as it is the most commonly adopted optimiser for training CNN models (Kingma & 

Ba, 2015). The optimiser uses estimations of the first and second moments of the gradient to 
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adapt the model learning rate (i.e. the step size or the ‘pace’ at which the values of parameters 

are adjusted in each training iteration (Murphy, 2012)). The goal of the optimiser in training 

models was to select the best possible network weights and biases to minimise the calculated 

‘loss’ when the model was applied to a validation dataset. The loss function is a method of 

determining how well given data is modelled. Perfect predictions across a dataset would return 

a loss of 0. Whereas, if model predictions deviated too much from the known results, then high 

values would be returned. Loss functions can be split into ‘regression losses’ and ‘classification 

losses’ with the latter being relevant in the context of image processing (Parmar, 2018). 

During model training a batch size of 10, and 100 epochs were specified unless stated 

otherwise. Model weights were saved after each training iteration with the configuration with 

the lowest calculated loss when tested on specified validation data selected to minimise 

overfitting and achieve optimal performance. Approximately 10% of training data was reserved 

for validation for all models. Trained models were then tested on new, independent data after 

being incorporated into the full pipelines. 

3.4.1. Image Classification Models 

To train classifier models, images were manually labelled as the relevant classes and sorted 

into ‘train’ and ‘validation’ folders before being imported into TensorFlow. Once models were 

trained, they could then be applied within the customisation pipelines to previously unseen 

images to predict which of the set classes the images belonged to, as illustrated in Figure 24. 

3.4.2. Object Detection Models 

To build object detection models, training and validation images needed to be manually 

labelled with the coordinates of where the corresponding bounding boxes should be placed. 

This was completed using the software ‘ImageJ’, an image processing programme developed 
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at the ‘National Institutes of Health and the Laboratory for Optical and Computational 

Instrumentation’ (Schneider et al., 2012). To obtain bounding box coordinates for each training 

image, the files were loaded into the ImageJ software and a rectangle was manually drawn 

around the area of interest. An image can be seen as an array of square pixels (the smallest 

addressable element in a raster image) arranged in rows and columns (Basavaprasad & Ravi, 

2014). When rectangles were drawn in ImageJ, the point locations of each corner within each 

image (in terms of the pixel row and column numbers) were identified as a series of XY 

coordinates. These were then stored within .csv files (‘comma-separated values’ files are text 

files that have a specific format which allows data to be saved in a table structured format).  

 

Figure 24: Image classification of an X-ray 

To train the object detection models using the labelled data, TensorFlow used the learning 

capabilities of CNNs to iteratively define the distinct features within the labelled regions of 

training bounding boxes to be able to predict where boxes should be placed in new images. 

The application of an object detection model built via this approach is demonstrated in Figure 

25 where the model has been trained to identify the region of CT slice images containing cross 

sections of the left tibia bone.  
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Figure 25: CT slice image containing density phantom with bounding box prediction 

around the left tibia bone © (Burge et al., 2023c) 

3.4.3. Image Segmentation Models 

For segmentation models, creating training data involved producing reference images with 

corresponding mask pairs. The ImageJ software was again used to create the necessary binary 

masks. To achieve this, training images (Figure 26A) were loaded into the software as 24-bit 

three channel colour images and manually labelled using ImageJ’s ‘Paintbrush’ tool to mark 

the relevant areas in white (Figure 26B). The Paintbrush tool worked by adjusting the ‘RGB’ 

(Red, Green, Blue) channels of the pixels contained within the area highlighted by the 

Paintbrush tool to the maximum intensity level (255, 255, 255). The ‘minimum’ pixel value 

settings of the images were then adjusted so the bone (now marked in white) contrasted more 

clearly from the background by linearly mapping pixel intensity values within a range selected 

manually to values in the range 0 - 255. Lastly, the ‘Convert to Mask’ ImageJ command was 

used to create binary mask images (Figure 26C).  The command initially converted images to 

8-bit single-channel greyscale arrays where each pixel had an intensity value of between 0 – 

255 with 0 being black and 255 white. Thresholding was then used where pixels with values < 
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128 were assigned as 0 and where ≥ 128 as 255. The resulting binary images were then saved 

as .PNG files (a file format widely used to display high-quality digital images). 

 

Figure 26: Creating training masks for image segmentation models – A) Training image, 

B) Labelled bone area in image, C) Resulting binary mask image © (Burge et al., 2023c) 

As with bounding box object detection, TensorFlow used the CNN architecture to learn the 

features present in the regions contained within the corresponding masks to develop models 

able to make segmentation predictions for new image data. The output of the segmentation 

predictions was in the form of black and white binary images, like shown in Figure 26C. 

3.5. Edge Detection and Contour Extraction 

To process medical images and define the edges or ‘profiles’ of areas of interest (such as 

bones), edge detection algorithms are commonly employed in image analysis. Common 

algorithms include ‘Canny’ edge detection which utilises a thresholding approach to select 

which pixels within an image should be specified as edges. The approach consists of four key 

steps: 1) reducing noise in the image, usually via use the ‘Gauss smoothing filter’, 2) calculate 

the gradient amplitude and direction (typically 0, 45, 90, or 135 degrees), 3) apply ‘non-

maximum suppression which eliminates non edge pixels, and lastly 4) select the hysteresis 

thresholds which retain or exclude pixels to isolate edges (Xu et al., 2017). 
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Various edge detection methods were evaluated for extracting bone contours directly from 

medical images including ‘Roberts’, ‘Sobel’, ‘Prewitt’, ‘Canny’, and ‘Laplace’ (Shubhangi et 

al., 2012). However, due to the grainy nature of X-ray and CT images, these methods were 

often found to result in high levels of noise and required manual post-processing to reliably 

clean the contours. Cernazanu-Glavan & Holban (2013) demonstrated that to minimise noise 

and enable bone contours to be extracted from X-rays accurately without manual post-

processing, segmentation CNNs (detailed in Section 3.4.3) could be used initially before 

applying an edge detection algorithm to the outputs. In this research, the combination of Canny 

edge detection (Canny, 1986), implemented via the Python module ‘Open CV’ as described in 

(Xu et al., 2017), with CNN segmentation models was therefore adopted. The effectiveness of 

this approach is illustrated in Figure 27A&B. 

 

Figure 27: A) Femur bone segmentation from AP and lateral X-rays, B) Canny edge 

detection applied to segmentation outputs, C) Contours after cleaning algorithm applied 

To further minimise noise artefacts, an automated cleaning algorithm was developed and used 

after the Canny edge detection step. The algorithm worked by disregarding any lines calculated 

to be below a specified minimum length, thus filtering out residual noise and ensuring just the 

 

A)      B)   C)  
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bone contours remained (Figure 27C). The start/end points for the relevant contours were also 

identified, and whether a continuous line between the two was created was confirmed. 

3.6. Digitally Reconstructed Radiographs 

DRRs are typically used to create simulations of conventional 2D X-ray images (‘synthetic X-

rays’) from 3D CT or MRI data (Moore et al., 2011). Authors have outlined multiple methods 

for creating synthetic X-ray images from CT data (Moore et al., 2011) (Moore et al., 2012) 

(Cerveri et al., 2017). In this research, 3D bone models were used to produce 2D profiles to 

mimic those in AP and lateral X-ray projections (as shown in Figure 28). To achieve this, firstly 

3D models were positioned in a desired orientation in 3D space. The 3D points contained 

within models’ .stl files (detailing the beginning/end of mesh elements) were then extracted 

and flattened to 2D. To form AP projections, Y coordinates were removed from each point. 

Similarly, X coordinates were removed to form lateral projections. Projections could then be 

outputted as series of 2D points or as binary images. 

 

Figure 28: Illustration of DRR process using a femur bone model © (Burge et al., 2022b) 
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The DRR approach also afforded the ability to precisely control and vary the orientation of 

inputted 3D models before producing synthetic X-rays. The approach was also not affected by 

magnification errors (like in real X-rays), so dimensional scaling was not required.  

3.7. Iterative Closest Point 

Iterative Closest Point (ICP) is a rigid registration method to establish 3D alignment between 

a set of points on two surfaces. It is the most commonly used matching algorithm in 3D point 

cloud registration (Wang & Zhao, 2017). During the process, one surface was defined as the 

‘target’ whilst the other was defined as the ‘source’. Initially a ‘Nearest Neighbours’ search 

(Yianilos, 1993) was completed for each point on target surfaces to identify its nearest point on 

the source. This step also involved weighting and rejecting points if there were determined to 

be outliers. Once point to point pairs were defined, the target surface was fixed in space while 

the source was transformed via translation and rotation operations to fit it as closely as possible.  

The fitting process was completed iteratively until a specified RMSE between the surfaces was 

achieved, or the number of iterations exceeded a specified level. Equation 2 (adapted from 

(Oomori et al., 2016)) details the equation that the process attempted to solve in each iteration 

for two sets of given points (Ai – source and Bi – target) where R was the rotation matrix and T 

the transformation matrix. 

Equation 2: Relation of source and target points within an ICP transformation 

𝐵𝑖 ≈ 𝑅𝐴𝑖 + 𝑇 

To estimate the rotation and transformation matrices required to minimise the Euclidean 

discrepancy between each point-point pairing in Ai and Bi, and best satisfy the equation, various 

objective minimisation techniques can be used with the ‘singular value decomposition’ method 
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commonly adopted Wang & Zhao (2017). To execute ICP transformations in the pipelines the 

‘ICP’ algorithm provided within the VTK Python module was used which employed the 

singular value decomposition objective minimisation approach. 

ICP transformations are rigid which means the points within source points were only moved 

relative to the target and not themselves, i.e., the shapes of both surfaces were not distorted (as 

can be seen in Figure 29). ICP is particularly useful when there is no correspondence between 

surfaces as, unlike in other registration approaches such as the ‘Kabsch’ algorithm, this is not 

required as an input (Blatov et al., 2019). As such, ICP can be used for registration between 

surfaces that may be vastly different in point density and/or size. For an ICP transform to work 

effectively however, a limitation is that the two surfaces needed to be in ‘reasonably good’ 

initial alignment (Mitra et al., 2004).  

 

Figure 29: A) Mesh of distal femur bone including condyles and beginning of shaft, B) 

Mesh of femur condyles, C) Meshes aligned after ICP transform 

 

A)             C)     

B)  
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3.8. Statistical Shape Models 

SSMs were built using an algorithm originally developed by Nolte et al. (2020). To train SSMs, 

the algorithm first loaded specified 3D bone models (in the form of .stl files) as training data. 

The data was then normalised by, firstly, positioning and aligning the models consistently in 

3D space relative to a selected ‘base shape’ reference model using the ICP method detailed in 

Section 3.7. The training models were then scaled to ensure consistent global sizing relative to 

the base shape. Lastly, for each training model, point correspondence was completed to 

establish point pairings relative to the base shape by leveraging a Nearest Neighbours search 

(Yianilos, 1993). 

After normalisation, Principal Component Analysis was completed to reduce the 

dimensionality of inputted training data and establish the controllable modes of operation 

(principal components) of the SSM. To achieve this, the algorithm developed by Nolte et al. 

(2020) initially calculated the covariance matrix of all feature dimensions (points in the 3D 

models). Eigen decomposition of the covariance matrix was subsequently completed to output 

the corresponding eigen vectors and eigen values. In the context of SSM models, eigen vectors 

represent the directions of variance in the data (i.e., how the base shape could be morphed – as 

illustrated in Figure 10). From the outputs, the eigen vector with the largest corresponding 

eigen value gave the direction of maximum variance and thus the first principal component in 

the SSM. The eigen vector with the second largest associated eigen value represented the 

second principal component and so on (Dutt, 2021). The outputs from the SSM training 

algorithm consisted of a .vtk file (a binary file format comprising of polygonal geometrical 3D 

data, often used for visualisation) to represent the SSM base shape, along with a compressed 

archive file (.ssm), similar to a .zip file, containing detail on the established eigen vectors and 

values.  
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After SSM models had been created via the algorithm they could be loaded into pipelines and 

fitted to geometrical data extracted from inputted medical images (X-rays or CT scans) to form 

3D model predictions. A Python based module, also written and provided by Nolte et al. (2020), 

facilitated this using an iterative optimisation algorithm to morph the base shape of a specified 

SSM in accordance with its principal components (as characterised by the eigen vectors and 

values learnt during training). The optimisation process utilised was based on the process 

published by Berghe et al. (2017). This approach involved iterating over all modes of variation 

in turn to find optimal values using a 1D line search with a ‘bisection algorithm’ incorporated 

to speed up convergence. Convergence was checked using the RMSE of the point to surface 

distances to allow reconstruction of incomplete shapes with a threshold set as 0.01 mm (as 

adopted by Berghe et al. (2017)). If the optimisation failed to converge before a specified 

number of iterations had passed, the process would terminate. The maximum number of 

optimisation iterations was typically set as 100 as it was found minimal improvements were 

achieved beyond this point and consequentially unnecessary compute time was incurred. In 

addition to specifying the error convergence threshold and maximum number of iterations, the 

number of principal components used to fit SSMs to specified data could also be adjusted. This 

facilitated control over the level of model compression used to fit data. 

3.9. Point Depth Models 

To estimate the depth in the third dimension of 2D contours extracted from X-ray images (Y 

for AP and X for lateral contours), and for ‘sparse’ 3D point clouds to be subsequently 

generated and used to inform the morphing of SSM models, ‘Point Depth Models’ (PDMs) 

were developed. PDMs for femur and tibia bones were defined by comparing the Euclidean 

distances (d – the length of a line segment created to connect two points directly) between 2D 

contour points (blue in Figure 30), created from reference 3D models via the DRR method 
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(detailed in Section 3.6), against their nearest point (at the equivalent Z height) in the 

corresponding 3D models (red points in Figure 30).  

 

Figure 30: 2D DRR femur contour points (blue) compared against 3D model points (red) 

for AP (A) and lateral (B) projections 

Before PDM analysis was performed, a consistent alignment was enforced for all reference 

models via a rigid ICP transform (detailed in Section 3.7) using manually orientated models as 

targets. The positioning of the reference models subsequently reflected the anatomical 

alignment in real X-ray projections before DRR contours were captured. The number of points 

considered in the analysis was downsampled to a specified number to be consistent across each 

reference model. The Euclidean distance for each point in each contour from each reference 

model was then converted to a depth coefficient (c) to normalise the measurements taken at 

each point index (n) by dividing the calculated depth (d) by a reference global measurement 

for each model (Wref). For AP contours, the reference measurement was subjects’ lateral 

condylar width (maximum Y width). For lateral contour coefficients, the AP width (maximum 

X width) was used. Depth coefficients ranged from -1 to 1 with negative/positive values 
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representing depths either side of a calculated mid-point (blue lines in Figure 30). Equation 3 

describes the relationship to calculate the depth coefficients for each index along the contours.  

Equation 3: Calculation of PDM depth coefficients at specified contour point indexes 

𝑐𝑛 =
𝑑𝑛

𝑊𝑟𝑒𝑓
 

After depth coefficients had been calculated for each 3D model in the training set, these were 

then plotted along the length of the contours as illustrated for the tibia AP contour as blue points 

in Figure 31. The mean of the depth coefficients (red points) at each point index were then 

calculated, as well as the adjusted means (green points). The adjusted mean accounted for 

outliers and inconsistencies in patient anatomy and alignment by omitting values that were 

outside a specified window from the mean at each index (± 20% for example). Using the 

adjusted mean helped to smooth and generalise the outputted PDM coefficients.  

 

Figure 31: PDM analysis of AP tibia contour (blue points – calculated depth coefficients 

across training models, red – mean of depth coefficients, green – adjusted mean) © (Burge 

et al., 2022a) 
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Once adjusted means for the depth coefficients were calculated, these could then be utilised to 

estimate the depth along new contours (d). This was achieved by rearranging Equation 3 to 

Equation 4 for a particular point index (n). As before, Cn was the depth coefficient at index n 

and Wref was the relevant reference measurement taken from each subject’s X-rays.  

Equation 4: Calculation of estimated depth at specified contour point indexes 

𝑑𝑛 = 𝐶𝑛 × 𝑊𝑟𝑒𝑓 

3.10. Application Programming Interfaces 

An ‘Application Programming Interface’ (API) is a way for two or more computer programmes 

to interface and communicate with each other (Reddy, 2011). In this research, this specifically 

related to Python scripts interfacing with CAD software to facilitate automated implant design 

processes. The free and open-source software ‘FreeCAD’ was utilised within the various 

pipelines as it offered ‘headless’ API functionality which allowed for it to be controlled 

externally by Python scripts (Machado et al., 2019). CAD operations could therefore be 

completed seamlessly without requiring users to manually switch between software packages 

to complete tasks such as loading meshes, extruding shapes, making cuts, adding 

chamfers/fillets, and exporting finished models. The scripted operations could also be adjusted 

to work for different individuals by employing parametric modelling methods. 

3.11. Fit Metrics 

To assess the performance of the pipelines developed in this research, reconstructed 3D bone 

models and implant components generated were evaluated in terms of RMSE and maximum 

OUH. RMSE was used as it provided an average of the global surface-surface fit performance 

in terms of both positive and negative discrepancies. This is unlike mean absolute error which 
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can provide misleading results in cases where similar levels of both positive and negative errors 

exist. Maximum OUH was used in parallel to obtain a local, clinically relevant assessment 

where the maximum mismatch between implant and bone was recorded. 

3.11.1. Root Mean Squared Error 

RMSE is a method which calculates the average Euclidean distance between all points in one 

surface/mesh (source) and another (target) reference. Like for ICP, a Nearest Neighbour search 

(Yianilos, 1993) was used to find the closest point in the target reference mesh to each point in 

the source before each distance was calculated. Equation 5 was used to calculate the RMSE 

where N was the number of points and 𝑥𝑖 − �̂�𝑖 was the Euclidian distance between 

corresponding points on the two surfaces.   

Equation 5: Calculation of RMSE 

 𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖 − �̂�𝑖)2𝑁

𝑖=1

𝑁
 

Two forms of RMSE calculations were performed when assessing the fit performance of the 

various pipelines. The ‘reconstruction’ RMSE was calculated between the surfaces of 3D 

model reconstructions and corresponding ground truth bone models. The ‘component’ RMSE 

was calculated between the relevant surfaces of knee replacement implant components in 

relation to the same ground truth bone models. Prior to the calculations, both bone and 

component models were automatically trimmed to a consistent height of 50 mm for the femur 

and 25 mm for the tibia. This helped focus the RMSE calculation on the relevant condylar 

regions on each bone important for knee replacement components and not skew the results by 

considering unimportant regions, such as the bone shafts. Surface-surface fits are demonstrated 

via heat maps which illustrate the variation in Euclidean distance over the surfaces of 
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reconstructed bone models and implant components in relation to ground truth models in Figure 

32. For the tibia, the latter is shown with the tibia plate’s 2D profile positioned at the intended 

implantation height on the bone. 

 

Figure 32: Distance heat maps for femur and tibia bones compared to ground truth 

models: A) 3D reconstructions and B) Implant components models © (Burge et al., 2023b)   

3.11.2. Maximum Over or Under Hang 

Various methods have been reported for calculating maximum OUH in knee replacement 

implants. Authors have utilised specific regions or measurements such as the widest 

mediolateral dimensions of bones compared to implants (Bonnin et al., 2013) (Dai et al., 

2014b) (Sharma et al., 2017). Others reported fit discrepancies at any point along the edges of 

components (Wernecke et al., 2012) (Clary et al., 2014) (Shao et al., 2020). In this research, 

maximum OUH was calculated as the Hausdorff distance (h) (Aspert et al., 2002) anywhere 

between the edges of the component (C) and the edges of the resected bone (B). The distance 
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(d) between each point on the component (c) and bone (b) was calculated as the Euclidian 

distance. Equation 6 details the maximum OUH calculation. 

Equation 6: Calculation of maximum OUH (Hausdorff distance) 

  ℎ(𝐶, 𝐵) =  𝑚𝑎𝑥 c ∈ C { 𝑚𝑖𝑛 b ∈ B { 𝑑(𝑐, 𝑏)}} 

The locations of calculated maximum OUH for both the edges of a femur component and a 

tibia plate (shown as a 2D profile), in relation to reference bone geometries, are illustrated in 

Figure 33A and Figure 33B respectively.  

  

Figure 33: Identification of the point of maximum OUH for A) Femur component edges 

and B) Tibia plate edges, both compared to ground truth models © (Burge et al., 2023b) 

3.12. Statistical Analysis 

For statistical analysis of results, two-sample t-tests were utilised to evaluate differences in 

means between test subject attribute pairs, such as the performance of left vs. right knee sides. 

Before statistical tests were performed data was confirmed to be approximately normally 

distributed using quantile-quantile plots and results determined to be outliers were removed. p 

values ≤ 0.05 were considered statistically significant throughout the research. 

 

Maximum OUH 

A)                B)   
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To evaluate the correlation strength of continuous variables on performance, such as subject 

age and/or height, Spearman's correlation coefficients were calculated. Coefficients ≤ -0.5 or 

≥ 0.5 were considered significant throughout. 

3.13. Prototype Builds 

To fabricate prototype designs via AM, a AM250 metal powder bed fusion system (Renishaw 

plc, UK) was utilised. Commercially pure ‘titanium grade 2’ powder was used, supplied by 

‘Carpenter Additive’, with particle sizes ranging from 10 – 45 µm. The build chamber was 

vacuumed to −960 mbar and then back filled with 99.995% pure Argon to 10 mbar with an 

Oxygen content of ~0.1%. A consistent laser power of 50 W and point distance of 50 µm were 

used with exposure time adjusted to enable desired variation in strut thickness, as described by 

Ghouse et al. (2017). Prototypes were removed from the build plate after fabrication using 

electro discharge machining. Images of the build structures were then captured using scanning 

electron microscopy using 5 keV and 1nA (Mira Microscope, TESCAN, Czech Republic). 

3.14. Summary 

This chapter provided a general overview of the key materials, methods/algorithms and data 

utilised to build the various knee replacement implant customisation pipelines presented in this 

thesis. Unless otherwise stated, the algorithms and models were all written in Python 3 and 

were adapted for use in each of the pipelines. Specific details, such as how they were trained 

and tested, their designs and architectures, model settings, and how they were connected to 

form automated customisation pipelines, are more thoroughly explained in the method sections 

of the following chapters.  
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Chapter 4 - Assessment of Off-the-

Shelf, Sized Implants  

 

Assessment of Off-the-Shelf, Sized Implants 

The following chapter presents the method for, and results of, a virtual sizing study to explore 

the design space of OTS, sized TKR implant components and determine their theoretical best 

possible performance. 

 

Most of the contents of this chapter have been published in the following paper:  

• Burge, T.A., Jeffers, J.R.T. & Myant, C.W. (2023) A computational design of 

experiments based method for evaluation of off-the-shelf total knee replacement 

implants. Computer Methods in Biomechanics and Biomedical Engineering. 26 (6),  

629-638. 
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4.1. Introduction 

As highlighted previously, OTS implants with standardised shapes and sizes are currently far 

more commonly utilised for knee replacement compared to custom solutions (Evers, 2019). 

Implant manufacturers typically provide up to around eight sizes to cover all potential patient 

anatomies. Implant sizes are usually equally spaced (in terms of global dimensions) and follow 

linear ML-AP relationships (Hitt et al., 2003) (Lim et al., 2013) (Dai et al., 2014a). ML and 

AP sizes, as well as the ML/AP aspect ratios used, differ considerably among the many 

commercial models available and there is no consensus on the optimal (Hitt et al., 2003). 

Numerous articles have investigated the fit of OTS TKR models via clinical approaches. 

Authors have measured the ML/AP sizes for distal femurs and proximal tibias and compared 

these to commercial models (Hitt et al., 2003) (Li et al., 2019) (Budhiparama et al., 2021). 

Others superimposed scans of tibia plates onto MRI images (Wernecke et al., 2012), and 

physically compared the fit of different implant types and sizes intraoperatively (Sharma et al., 

2017). In terms of computational approaches, authors have utilised ‘virtual surgery’ where 

computer models of implants were fitted to digital subjects created from segmented CT scan 

data (Clary et al., 2014) (Dai et al., 2014b) (Shao et al., 2020). These studies however all 

focused on commercial designs with a set number of predefined sizes. Grothues et al. (2022) 

completed a study using 85,143 custom femur component dimensions obtained from 

ConforMIS, and virtually matched these to 1,049 bone models. The authors then used ‘particle 

swarm optimisation’ to find the best possible set size ranges for a various number of sizing 

quantities and assessed the resulting population coverage via a range of OUH fit criteria. No 

studies were however found that explored the full potential sizing window of both OTS femur 

components and tibia plates and definitively determined how successful implants with eight 

standardised sizes could theoretically be.  
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To serve as a useful comparison for the various customisation pipelines developed in Chapters 

5 – 9, the analysis completed in this chapter sought to identify the best possible performance 

for OTS products by adopting a virtual, full factorial, design of experiments based method. 

Whether OTS implants with optimised sizes could ever meet the high performance shown 

achievable with custom products (Ogura et al., 2019) (Arnholdt et al., 2020) was then assessed. 

4.2. Implant Sizing Study Method 

In this section, the base designs of the generic OTS implant components used in the sizing 

study, as well as how the 3D models of said components were scaled and fitted to a test 

population, are outlined.  

4.2.1. Base Implant Model Designs 

Generic base TKR femur and tibia plate components, designed to mimic common manufacturer 

models, were created for use in the study. A single femur component (Figure 34) was created 

by using a femur bone model taken from the KISTI dataset and applying the Laplacian Smooth 

tool within MeshLab with Smoothing Steps set to ‘3’ (in the same way as detailed in Chapter 

3.3) to ‘idealise’ and normalise the geometry, creating a smooth bearing surface. It was then 

cut using operations in ‘Autodesk Fusion 360’ – a commercial CAD tool (Song et al., 2018), 

to resemble the shape of commercially available implants, using the Zimmer Biomet ‘NexGen’ 

as a reference in particular. No fixing pins or rounding/chamfers were included. 

For the tibia plate analysis, both anatomic (asymmetric) and symmetric designs were utilised. 

The profile of the Smith and Nephew ‘Legion’ implant (Smith & Nephew, 2015) was used to 

inform the anatomic shape used (Figure 35A), whilst the standard ‘[E]8’ shape used in (Shao 

et al., 2020) was traced to create the symmetrical (Figure 35B). Tibia plate fit was assessed in 
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2D, as opposed to in 3D like the femur component, as the component’s function is to best match 

the profile of the resected bone on a singular face rather than replicate the 3D form of the bone. 

Similar 2D approaches were adopted by Clary et al. (2014) and Shao et al. (2020).  

 

Figure 34: Generic femur component design 

 

Figure 35: A) Anatomic and, B) Symmetric tibia plate designs © (Burge et al., 2023a) 

4.2.2. Implant Model Scaling and Fitting 

Before the components were fitted to test subject anatomy, the models were scaled in the X 

(ML) and Y (AP) dimensions by multiplying the respective coordinates of the models’ vertex 

arrays by calculated scaling factors (SF). The X and Y scaling factors were established by 

dividing the target ML and AP dimensions respectively (dtarget) by the dimensions of the generic 

base components (dbase), as expressed in Equation 7.  
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Equation 7: Calculation of scaling factors 

𝑆𝐹 =  
𝑑𝑡𝑎𝑟𝑔𝑒𝑡

𝑑𝑏𝑎𝑠𝑒
 

For femur components, scaling was also applied in the Z dimension by using the mean of the 

X and Y scaling factors to keep the height of the implant proportional. The effect of keeping 

the component height constant (without Z scaling), was also evaluated. To cover the measured 

variability in test subjects’ bone dimensions, femur components were scaled in increments of 

1 mm for all combinations of ML and AP dimensions of 40 – 110 mm. Likewise, tibia plates 

were scaled within ML and AP dimensions of 35 – 110 mm and 30 – 75 mm respectively. 

After scaling, the components were virtually fitted to each test subject’s bone models using a 

ridged ICP method (detailed in Chapter 3.7). For femur components, the fitting process was 

performed between the 3D patient anatomy and the implant surface. For tibia plates, the 2D 

profile of the scaled plate was fitted to a 2D cross-section of the bone captured via a bisection 

plane positioned 2 mm below the height of the widest point of the medial condyle, parallel with 

the surface of the tibia plateau (illustrated in Figure 36A). The Z height of this anatomical point 

was determined using Min/Max functions. A cross section (Figure 36B) was then obtained by 

calculating the location at which the plane intersected with elements in the 3D mesh models 

and outputting the established coordinates as a series of new points. The method was used for 

the tibia to achieve the largest possible surface area for stability while minimising bone loss 

and ensuring a continuous resection plane through the bone below the articular surfaces of the 

condyles (Schnurr et al., 2011). The cut section highlighted by the red dashed boxes in Figure 

35 was excluded during the fitting process as this was an implant design feature and not 

intended to match the anatomy. 
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Figure 36: A) Cut plane created through tibia bone positioned at the intended resection 

height, B) 2D profile extracted from bone model © (Burge et al., 2023a) 

4.2.3. Test Subjects 

To serve as test subjects, 47 female and 30 male White American subject knee 3D bone models 

(77 in total) were generated from the OAI dataset by segmenting the supplied MRI data (as 

described in Chapter 3.3). A further 90 female and 77 male Asian Korean bone models 

(including both femurs and tibias) supplied with the KISTI dataset (167 in total) were also 

utilised. The test subjects selected ranged from 21 to 77 years old and all had K&L grades of 

≤ 2, indicating up to mild levels of arthritis or unspecified (Kellgren & Lawrence, 1956). 

4.3. Implant Sizing Study Results and Discussion 

Component RMSE and maximum OUH results were calculated as described in Chapter 3.11 

for all possible implant aspect ratios within the specified size ranges (detailed in Section 4.2.2) 

after being virtually fitted to the test subjects’ ground truth models. This formed a full factorial 

design of experiments resulting in 1,024,800 component fittings in the femur analysis (for both 

with/without Z scaling), as well as 823,500 for each of the tibia plate design variants. From 

these, subsets of ‘best fits’ for each test subject, in terms of both RMSE and maximum OUH, 

were also outputted. 

 

A)                B) 
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4.3.1. Comparison of Implant Design Types and Z Scaling 

Figure 37 shows a box plot of the best fit data in terms of maximum OUH and RMSE for both 

proportional height and fixed height femur components (with and without Z scaling). The 

medians for both fit metrics can be seen to be higher when Z scaling was not applied with 

9.43% of subjects seeing maximum OUH results ≥ 3 mm. Nonetheless, even when Z scaling 

was performed, 2.87% of subjects still had best possible outcomes above the clinically 

significant maximum OUH of ≥ 3 mm. The differences in maximum OUH and RMSE between 

the scaling types were found to be statistically significant (based on Chapter 3.12).  

 

Figure 37: Box plot of test subjects’ best fit femur component results with and without Z 

scaling © (Burge et al., 2023a) 

Figure 38 shows the difference between the best fit data for the two tibia plate designs 

illustrated in Figure 35. The anatomic design was found to produce median values of maximum 

OUH slightly below the symmetric. However, for RMSE, the median of the symmetric design 

was marginally lower than the anatomic, but with more variability. The anatomic design 

resulted in no subjects with OUH ≥ 3 mm, compared to 4.10% for the symmetric. The 

difference in maximum OUH for the two designs was found to be statistically significant but 

the difference in RMSE was not (p value = 0.44).  
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Figure 38: Box plot of anatomic and symmetric tibia plate best fit results © (Burge et al., 

2023a) 

4.3.2. Implant Sizing Requirements 

Based on the results in the previous section, the remainder of the analysis was limited to femur 

components with Z scaling (proportional height designs) and the anatomic tibia plate design. 

Figure 39 shows an example plot of the implant AP and ML sizes that resulted in the lowest 

maximum component OUH across all test subjects. Figure 40 shows the same for ML/AP 

aspect ratios. Both plots are labelled with implant type, subject sex, and ethnicity.  

The large range of implant sizes and aspect ratios required by the different subjects evaluated 

is clearly demonstrated via the high level of variability within the plots. A strong trend can be 

seen in Figure 39 that confirmed, as expected, males typically required larger implant 

components than females (in terms of both ML and AP dimensions). It was found that White 

subjects also required larger implant components compared to Asian subjects. The differences 

in required ML/AP aspect ratios between males and females, as well as between ethnicities, 

were however less pronounced (Figure 40). Nevertheless, large differences within the total 

population can still be seen for both implant types. Lastly, ML/AP aspect ratio was found to 

correlate negatively with AP size, which is supported by Hitt et al. (2003). 
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Figure 39: Best ML and AP sizes to minimise OUH across subjects © (Burge et al., 2023a) 

 

Figure 40: Best ML/AP ratios to minimise OUH across subjects © (Burge et al., 2023a) 
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4.3.3. Optimal OTS Sizes and Best Possible Performance 

To determine the optimal fit performance that generic implants could achieve, the performance 

of all possible combinations of ML and AP dimensions that fell on the linear best fit curves 

shown in Figure 39 were calculated and ranked for up to eight sizing options. Figure 41 and 

Figure 42 show examples of the population covered by the four femur component sizes 

determined to afford the best possible coverage when a threshold of < 3 mm maximum OUH 

was specified. The former illustrates ‘optimised’ spacing where the dimensional difference 

between sizes was not required to be consistent. In this case, a 70.49% population coverage 

was achieved. The latter shows the population coverage when equal spacing between the sizes 

was enforced by omitting combinations with irregular spacing from the analysis. Here, a 

68.44% population coverage was recorded. The colouring within the plots illustrates which test 

subjects were covered (dots) by each of the set implant sizes (diamonds).  

 

Figure 41: Population coverage (in terms of maximum OUH < 3 mm) for four femur 

component sizes with optimised spacing 
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Figure 42: Population coverage (in terms of maximum OUH < 3 mm) for four femur 

component sizes with equal spacing 

For the optimally spaced sizes in Figure 41, the first implant size (S1) covered subjects with 

ML dimensions ranging from 63 to 71 mm, the second (S2) 67 to 77 mm, the third (S3) 70 to 

79 mm and the fourth (S4) 77 to 84 mm. In terms of AP sizes, the first option (S1) covered 

subjects ranging from 50 to 63 mm, the second (S2) 53 to 66 mm, the third (S3) 54 to 69, and 

the fourth (S4) 64 to 72 mm. For the equal spaced sizes in Figure 42, the first implant size (S1) 

covered subjects with ML sizes ranging from 63 to 71 mm, the second (S2) 65 to 74 mm, the 

third (S3) 67 to 79 mm and the fourth (S4) 73 to 84 mm. In terms of AP sizes, the first option 

(S1) covered subjects ranging from 46 to 62 mm, the second (S2) 52 to 63 mm, the third (S3) 

54 to 69, and the fourth (S4) 59 to 72 mm.  

It should be noted that, although some subjects were observed to be well within the anatomical 

sizing ranges generally covered by each implant size, their best possible results still exceeded 

the 3 mm OUH fit threshold. This is particularly clear in Figure 42 around the green implant 

size. This could have been due to the unique form of certain subjects’ anatomies which may 

have been better served by other implant models. Figure 43 illustrates how three different tibia 

plate designs affected bone coverage for a particular subject in a study performed by Stulberg 
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& Goyal (2015). Contrary to this, it was found that in several other cases that test subjects could 

be adequately covered by more than one implant sizing option. 

 

Figure 43: Comparison of bone coverage with ‘anatomic’, ‘symmetric’ and ‘asymmetric’ 

tibia plate shapes © (Stulberg & Goyal, 2015) 

Figure 44 details the outcome of the full analysis for both component and spacing types when 

up to eight sizes were used. Population coverage thresholds of component RMSE < 1.5 mm 

and maximum OUH < 3 mm were used here to indicate both a reasonable global fit and provide 

a more clinically significant metric respectively. Optimised spacing resulted in approximately 

a 2% better population coverage on average compared to equal spacing when four or more 

sizes were used. In terms of component RMSE, > 95% of the test population were found to be 

adequately covered with just three femur component and five tibia plate sizes. Yet, when 

assessing maximum OUH, the best selection of eight optimised sizes covered 79.51% of the 

population for femur components and 88.52% for tibia plates. Therefore, although a reasonably 

low number of sizing options were found to afford a high coverage in terms of global sizing, 

regions of exposed bone and clinically significant OUH would likely still be present in a high 

portion of subjects. This was not surprising given the high level of variation in test subject 

requirements that can be seen in Figure 39 and Figure 40. 
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Figure 44: Population coverage vs. number of femur component and tibia plate sizes for 

equal and optimised spacing © (Burge et al., 2023a) 

To see if introducing gender-specific sizings, like the Zimmer Biomet ‘NexGen’ model, would 

improve population coverage further, the analysis was repeated with two separate sets of 

optimally spaced sizes which used separate linear best fit curves created for males and females. 

Figure 45 demonstrates that, with two sets of eight gender-specific optimised sizes, 84.67% of 

females and 77.57% of males acheived maximum OUH values of < 3 mm for femur 

components, along with 92.70% of females and 94.39% of males for tibia plates. This 

improvement for both component types suggested that, although gender-specific sizes may not 

be needed for a reasonable global fit, they could however help lower areas of clinically 

significant OUH.  
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Figure 45: Male/female population coverage (in terms of maximum OUH < 3 mm) vs. 

number of implant sizes for gender-specific designs © (Burge et al., 2023a) 

4.4. Summary 

This chapter outlined a novel approach to identify the best possible set sizes of OTS TKR 

implant components in order to cover a broad population including a variety of sexes, 

ethnicities, and ages. It was shown that, even with optimally spaced gender-specific ranges, the 

standard eight OTS implant sizes (or 16 with gender-specific options) would likely never be 

able to achieve results comparable to those reported for customised solutions (Schroeder & 

Martin, 2019) (Arnholdt et al., 2020). The results obtained were consistent with those reported 

by Grothues et al. (2022) who found comparable patient coverage was achieved in their study 

when using eight optimised implant sizes. The authors also found that even with 30 

standardised sizes some of the 1,049 subjects were still inadequately covered. Regardless, such 

a large number of implant sizing options would be impractical for clinicians to work with.  
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Despite demonstrating OTS implants would not be satisfactory for all patients, it was found 

that, if optimised, OTS solutions can afford adequate coverage for a large proportion of patients 

(approximately 80% for femur components and 90% for tibia plates). Therefore, if the 

previously highlighted limitations of customisation solutions (the need for 3D imaging, extra 

resource requirements, longer lead times and higher component costs) were to be mitigated, 

custom implants could potentially be used to compliment OTS options by servicing patients 

who lie outside of the standardised sizing architypes.    
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Chapter 5 - X-ray Based Implant 

Shape Customisation Pipeline 

 

X-ray Based Implant Shape Customisation Pipeline 

The following chapter presents a method for, and results of, an automatic knee replacement 

implant shape customisation pipeline, using biplanar X-ray images as an input medium.  

 

Most of the contents of this chapter have been published in the following papers:  

• Burge, T.A., Jeffers, J.R.T. & Myant, C.W. (2022) Development of an automated mass-

customization pipeline for knee replacement surgery using biplanar x-rays. Journal of 

Mechanical Design. 144 (2), 1–11. 

• Burge, T.A., Jeffers, J.R.T. & Myant, C.W. (2022) Performance and sensitivity analysis 

of an automated x-ray based total knee replacement mass-customization pipeline. 

Journal of Medical Devices. 16 (4), 1–12. 
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5.1. Introduction 

As previously detailed, customising the shape of knee replacement implant components can 

afford significantly improved outcomes for patients in terms of fit (Schroeder & Martin, 2019), 

revision rates (ConforMIS, 2018), and potentially save overall costs due to fewer complications 

post-surgery (Culler et al., 2017). Nevertheless, currently available shape customisation 

solutions are believed to only make up a very small proportion of the market because: 

1) Extensive manual image processing and/or implant design work is required.  

2) 3D imaging is necessitated which is not typically needed for OTS implants.  

As a result of the points listed above, current customisation solutions incur higher component/ 

equipment costs, lead times, and increase radiation exposure risks compared to OTS 

alternatives. Moreover, access to the required CT or MRI equipment is often limited, especially 

in developing countries. Consequentially, health suppliers have continued to predominantly 

utilise OTS, sized implants, despite the benefits of customised alternatives being well reported.  

As no previous work identified proposed a fully automated, biplanar X-ray based implant shape 

customisation solution, a proof-of-concept that could mitigate the highlighted limitations is 

proposed in this chapter. The approach adopted employed AI/ML and statistical methods to 

automate the workflow and negate the need for 3D medical images. 

5.2. Pipeline Development and Test Method 

In the following sub-sections, the various stages of the X-ray based implant shape 

customisation pipeline, as summarised in Figure 46, are outlined. Details of the subjects used 

to train and test the pipeline are also provided. 
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Figure 46: Key stages and workflow of the X-ray based implant shape customisation 

pipeline 

5.2.1. Pipeline Training Data and Test Subjects 

Data to train the various models used within the pipeline, including X-ray images and 3D bone 

models, was sourced from both the KISTI and OAI datasets. The OAI dataset was used 

exclusively to test the pipeline as it was the only dataset available which contained both AP 

and lateral knee X-rays, in addition to MRI data which could be used to create ground truth 

models via the process detailed in Chapter 3.3. For test subject inputs to be compatible with 

the pipeline, well-aligned and calibrated AP and lateral X-rays, with sufficient bone shaft 

lengths visible for both the femur and tibia, were required (detailed further in Section 5.2.2). 

The 122 subjects with the required X-rays from the OAI dataset (highlighted in Chapter 3.2.2) 

were therefore qualitatively assessed to determine whether they met the necessary 

requirements. Ultimately, 78 of the 122 subjects were deemed acceptable to be used for testing, 

comprising of 73 White, 4 Black and 1 Asian American subjects, all with K&L grades of ≤ 2 

(none to mild levels of arthritis). No data used for training the pipeline was also used for testing. 

Segment inputted AP and lateral X-rays and apply 

edge detection to extract bone contours. 

Align AP and lateral contours in 3D space and 

calculate reference points/measurements. 

Apply PDMs to estimate depth along contours and 

create sparse 3D point clouds. 

Position reference point clouds on SSM base shapes 

and morph to fit to create 3D model reconstructions. 

Run API CAD scripts to generate implant designs 

using data outputted from pipeline. 

Process  
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5.2.2. Process Inputted X-ray Images 

The first step in the pipeline was to extract geometrical information from inputted AP and 

lateral X-ray images. This was achieved using CNN based segmentation models, trained to 

isolate the femur and tibia bone shapes in inputted X-ray images. Four CNN based image 

segmentation models (one for each X-ray projection of each bone) were built for the pipeline 

using the process outlined in Chapter 3.4.3. These were developed solely for left sided 

geometry as the natural symmetry of femur and tibia bones in the human body could be 

exploited by horizontally flipping input images if the right knee was to be studied. 

The architecture of the segmentation models developed for the pipeline was based on the U-

net structure outlined by Ronneberger et al. (2015). The model is illustrated in Figure 47 using 

an equivalent style and key to Figure 9. Each box in Figure 47 corresponds to a feature map 

with grey boxes indicating where channels were copied from previous layers. The number of 

channels is denoted on top of each box with the image size provided at the lower left (for 

example, 2562 = 256 x 256 pixels). The arrows denote different operations such as convolutions 

and pooling. To achieve accurate segmentations, the U-net CNN architecture proposed by 

Ronneberger et al. (2015) was adjusted to achieve the best results on specified validation data. 

Firstly, an additional filter resolution level (16 x 16 pixels) was incorporated as this was found 

to better capture the bone profiles occupying a large proportion of the X-ray images. The 

number of filter channels used in each layer were also adjusted to those described in Figure 47 

to reach a compromise between model training time and segmentation accuracy. Further detail 

on the structure of CNN models and how they work is provided in Chapter 1.3. 
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Figure 47: Architecture of U-net CNN image segmentation models used within the X-ray 

based implant shape customisation pipeline © (Burge et al., 2022c) 
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X-ray image/mask training pairs were developed from 176 images taken from the OAI dataset 

and used with the hyperparameters and optimiser detailed in Chapter 3.4 to train each model. 

20 of the pairs (~10%) were reserved for validation which were separate to those used to test 

the full pipeline. It is noted that to build well generalised CNN models, capable of accurately 

segmenting specific bones in any inputted X-ray, potentially thousands of varied training 

images would be required (Liu et al., 2017). Due to the lack of suitable data in the OAI dataset 

to train segmentation models for the lateral X-ray projection, it was deemed acceptable in the 

proof-of-concept pipeline to mitigate this by adjusting the contrast and brightness settings of 

inputted X-ray images to improve compatibility with the models. Example results from the four 

segmentation models used within the pipeline are shown in Figure 48. 

 

Figure 48: Bone segmentation (segmented areas shown in blue) © (Burge et al., 2022b) 

For the segmentation models to capture accurate profiles of the femur and tibia bone 

geometries, and for the subsequent pipeline stages to run correctly, the inputted X-rays needed 

a consistent anatomical alignment. Specifically, the AP X-ray needed to be captured straight 

on with both the medial and lateral condyles pointing forward. In the lateral projection, the 

posterior surfaces of the femur condyles needed to be aligned flush. At least 10 cm of both 

femur and tibia shafts were required to be visible and the brightness and contrast needed to 

allow for clear outlines of the bones, as exemplified in Figure 48. 
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To minimise magnification errors and facilitate true reflections of patients’ anatomical 

dimensions, inputted X-rays needed to be calibrated. Various methods have been proposed in 

the literature to scale X-ray images, such as including reference objects of known sizes within 

the X-ray frame (Wimsey et al., 2006) (Schumann et al., 2014). No calibration objects were 

included in the OAI X-rays. Therefore, to ensure consistency between imaging mediums, test 

subjects’ X-rays images were scaled to match dimensions taken from their corresponding MRI 

scans as closely as possible. To facilitate this, a consistent set of measurements were taken of 

subjects’ anatomies, including the maximum femur and tibia condyle widths in the AP view, 

the depth of the condyles in the lateral, and shaft widths in both views. To obtain the 

measurements, the ‘Ruler’ tool within 3D Slicer was used to manually select the relevant 

positions on both image mediums and output the linear distances as illustrated in Figure 49. 

Means of the scaling factors (calculated using Equation 7) were then used to resize each X-ray 

image (maintaining a consistent aspect ratio) to calibrate and align with the MRI data. 

 

Figure 49: A) Various measurements taken from an AP X-ray, B) Maximum femur 

condyle width taken from an MRI scan 
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Within the pipeline, horizontal transforms were performed automatically for subjects’ inputted 

X-rays if the right knee was specified to ensure compatibility with the workflow. The 

segmentation models described above were then applied to the relevant X-ray images to isolate 

the correct bone geometries (Figure 48). A Canny edge detector and cleaning algorithm (as 

detailed in Chapter 3.5) were then used to capture the contours of the femur and tibia bones in 

both projections. Lastly, the contours were separated, converted to Cartesian point coordinates, 

and arranged in sequential order as demonstrated in Figure 50. 

 

Figure 50: Bone contours extracted from an AP X-ray post segmentation, edge detection 

and cleaning with red arrows showing direction of ordered points  

5.2.3. Create 3D Model Reconstructions 

To account for inconsistencies in X-ray orientation, the angle of the bone shafts with respect 

to the Z axis of the contours, were found using reference lines created down the centre of the 

bone shafts (using Min and Max functions) in both the AP and lateral views (Figure 51A). The 

contours were then rotated so that the shafts were aligned vertically (Figure 51B), and trimmed 

to a set height of 65 mm measured from the lowest Z value for the femur (Figure 51C) and 

highest for the tibia. Using a consistent height of 65 mm ensured the condylar regions were 

captured across all test subjects and helped when aligning the contours to SSM base shapes. 
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Figure 51: Adjusting the alignment of a femur contour – A) Original contour, B) Contour 

aligned so shaft is vertical, C) Trimmed and aligned contour © (Burge et al., 2022a) 

Once aligned, reference points were found for both the AP and lateral contours. For the femur 

AP contour, these included the maximum and minimum X coordinates and the minimum Z 

point for each condyle. For the lateral femur contour, the maximum and minimum Y 

coordinates and the minimum Z point were located. The reference points identified for the 

femur are shown as crosses in Figure 52A. For the tibia, the maximum and minimum X and 

maximum Z coordinates were identified for the AP contour. For the lateral, the maximum and 

minimum Y and maximum Z points were found. The reference points identified for the tibia 

are also shown as crosses in Figure 52B. 

Reference points were identified primarily using global Min and Max functions applied within 

each contour. The exceptions were to identify the lowest Z point on the medial condyle in the 

AP femur contour, and the front (maximum Y) point of the condyles in the lateral view. These 

are circled in red in Figure 52A. To identify the lowest Z point on the medial femur condyle 

the AP contour was initially split down the middle, using the maximum and minimum X points 

identified previously, allowing for the lateral side (with the lower hanging condyle) to be 

disregarded. The frontmost point of the femur condyles was found by ignoring the top 20 mm 

of the lateral contour to avoid the beginning of the shaft being unintentionally selected. Using 
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the identified reference points, the lateral and AP contours for both bones could then be aligned 

perpendicularly in 3D space, as illustrated in Figure 52. 

 

Figure 52: Aligned AP and lateral femur contours for (A) Femur and (B) Tibia. Green 

crosses show AP reference points, orange crosses show lateral reference points. Numbers 

relate to PDM contour sections on the femur © (Burge et al., 2022a) 

PDMs were constructed and used in the pipeline to estimate the depth of the points in the 

aligned 2D contours (Figure 52). The models were built and trained as described in Chapter 

3.9 using 20 reference femur and tibia bone models taken from the KISTI dataset. To be 

consistent with the image segmentation stage of the pipeline, a horizontal transformation was 

applied to right sided bones to ensure all reference models used for training had left sided 

geometrical forms. 

For the femur, PDMs were established for separate sections of the two contours (as opposed to 

the full contour as shown in Figure 31), to better account for variations in anatomical form. 

Five separate sections were used for the AP and three for the lateral which were established by 

separating the contours using the previously detailed reference points. The resulting sections 

are labelled numerically in Figure 52A. It should be noted that for section 2 of the lateral 

contour, the region was defined as the curve between the maximum and minimum Y reference 

points and was not subdivided by the minimum Z reference point. This was because the 
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location of the minimum Z reference point was found to vary largely between the training 

models and superior results were obtained by treating this region as a singular section.  

For the AP sections, the lateral maximum femur condyle depth was used as the reference width 

measurement when calculating depth coefficients as described in Equation 3. 75 evenly spaced 

depth coefficients were calculated along sections 1 and 5, whilst 50 were calculated for the 

shorter sections 2, 3 and 4 to achieve ample coverage of the geometry. For the lateral sections, 

the AP maximum femur condyle width was used as the reference width measurement. Here, 

75 depth coefficients were calculated along sections 1 and 2, whilst 50 were calculated for 

section 3. Figure 53 exemplifies the PDM analysis for section 1 of the lateral femur contour 

(following the process detailed in Chapter 3.9). 

 

Figure 53: Example of lateral femur contour section 1 PDM analysis (blue points – depth 

coefficients, red – mean of coefficients, green – adjusted mean) © (Burge et al., 2022a) 

The latter half of section 1 (shown in Figure 53 from approximately point index 35) is 

approaching the transition point where the outline of the femur in the lateral projection shifted 

abruptly between the medial and lateral condyles. This is demonstrated in Figure 54 and can 



T. Burge Applied AI/ML for Automatic Customisation of Medical Implants 2023 

- 107 - 

be seen in the lateral X-rays in Figure 48 where the condyles are overlapping. The abrupt shift 

occurred at subtly different points across the reference models due to differences in alignment 

and anatomical form. This resulted in two clusters of depth coefficients calculated either side 

of the midpoint in Figure 53. Simply using the mean during this region would not have been 

useful so the values were manually refined to exclude coefficients below 0. This resulted in 

only the side of the transition point with the majority of points being included in the adjusted 

mean calculation. In the adjoining section (section 2), the points were refined to exclude 

coefficients above 0, resulting in a clean transition between the two condyles at the interface 

of the sections (shown by the blue arrow in Figure 54). A similar analysis was completed for 

the other AP and lateral sections to ensure the resulting PDM coefficients worked effectively. 

 

Figure 54: Points with depth (red) overlaid on 2D femur contours (black). Green points 

show the section analysed in Figure 53 © (Burge et al., 2022a) 

For the tibia PDMs, the contours were not split into separate sections like in the femur process 

as identifying meaningful and consistent reference points to section the anatomy was not found 

to be feasible nor necessary. 300 depth coefficients were calculated for the AP and lateral tibia 

contours to ensure the geometry was sufficiently covered. An example of the PDM analysis 
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performed to determine the AP tibia adjusted mean depth coefficients across the full length of 

the tibia AP contour can be seen in Figure 31. 

Before the PDMs were applied to the aligned contour points extracted earlier in the pipeline, 

the contours were split into the relevant sections using the aforementioned reference points (for 

the femur), and downsampled evenly along their length to match the corresponding number of 

depth coefficients for each contour/section. Using the patient-specific reference width 

measurements, the depth values for each point along the respective contour sections were then 

calculated using Equation 4. This allowed the aligned 2D contours to be transformed into sparse 

3D point clouds for the femur and tibia bones, as demonstrated by the red and green points in 

Figure 54. These could then be aligned to SSM base shapes using a ridged ICP method (detailed 

in Chapter 3.7). 

100 femur and tibia 3D models (with left sided geometrical forms) were utilised from the KISTI 

dataset to build SSM models to be used within the pipeline (following the process described in 

Chapter 3.8). Like for the PDM reference models, both left and right sided bones were used for 

training after horizontal transformations had been applied to the latter. Two SSMs were built 

for the tibia – a nominal utilising unscaled models, and another using models scaled down by 

multiplying the vertex array of the models by 0.93 (resulting in a 7% reduction in global size). 

This was found to improve registration of the point clouds to the SSM base shapes across the 

full array of subject sizes after alignment issues were identified with smaller subjects when a 

single SSM base shape size was used. Multiple SSM sizes were not found to be necessary for 

the femur SSM. Selection of which tibia SSM to employ was achieved using a threshold value 

of 75 mm for the maximum width of the tibia condylar region (calculated using the femur AP 

reference points shown in Figure 52B). For condyle widths < 75 mm, the scaled/smaller SSM 

was selected. For widths ≥ 75 mm, the nominal SSM was selected. A threshold value of 75 mm 
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was chosen after an assessment of the condylar maximum width in the AP view for the 100 

bone models used to train the SSMs determined the mean to be 74.8 mm (the range is illustrated 

as a box plot in Figure 55). 

 

Figure 55: Range of tibia condyle max AP widths (mm) © (Burge et al., 2022b) 

Once the appropriate SSM base shapes were selected, and the sparse point clouds (generated 

by the PDMs) were fitted via the rigid ICP method (Chapter 3.7), the SSMs were then morphed 

to best fit the reference point clouds following the process described in Chapter 3.8. The 

number of principal components used was limited to two for both bones and the shape of the 

SSM base models were smoothed and ‘idealised’. This approach enabled the global size and 

shape of the anatomy to be captured, whilst imperfections such as holes and osteophytes were 

disregarded. This was important as replicating the damaged anatomy of an arthritic patient too 

closely would lead to implants with poor bearing surfaces and suboptimal biomechanical 

functionally. The effect of using more or fewer principal components, as well as training the 

PDMs and SSMs with differing numbers of reference models, was evaluated (detailed in 

Section 5.3.1). After the SSM fitting process was complete, 3D model reconstructions of 

subjects’ femur and tibia bones (with left sided geometry) were outputted from the pipeline. 
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5.2.4. Generate Custom Implant Designs 

After creating 3D model reconstructions, various additional information was exported from the 

pipeline to enable the automatic implant design process. Firstly, .csv files were outputted 

containing information such as subject ID, knee side, anatomical measurements, and the 

identified reference points. Secondly, further .csv files were created containing 2D coordinates 

constituting profiles of the femur condyles from the AP view, and describing an axial cross-

section of the tibia at the point where the tibia plate was intended to interface with the bone 

after resection (explained further in the following sections). Then, using this information in 

addition to the 3D model reconstructions of the femur and tibia (in the form of .stl mesh files), 

various types and styles of knee replacement implants were produced using the FreeCAD API 

(detailed in Chapter 3.10). 

5.2.4.1. Total Knee Replacement Implant Generation 

The same generic TKR femur component design as used in Chapter 4 (shown in Figure 34) 

was adopted as a proof-of-concept. To customise the component for each subject, firstly, their 

(left sided) 3D surface model reconstructions were imported into FreeCAD and converted into 

solid bodies (Figure 56A). Predefined operations in both the AP and ML orientations were then 

applied to cut the condyles to the required implant shape, as illustrated in Figure 56B and C 

respectively. Finally, features such as fixation pins were extruded, and fillets/chamfers added 

to form the final component shape (Figure 56D). 
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Figure 56: Automatic custom TKR femur component design process © (Burge et al., 

2023b) 

To design custom TKR tibia plates, using the same approach described previously in Chapter 

4.2.2, a 2D cross-section was taken 2 mm below the widest point of the medial condyle on each 

subject’s 3D model reconstructions from a plane created parallel with the surface of the tibia 

plateau (Figure 57A). The profile, imported into FreeCAD as a series of point coordinates 

saved in a .csv file, was converted to a spline sketch and extruded by a thickness of 5 mm to 

form the base shape of the tibia plate component (Figure 57B). Features were then cut for 

interfacing with a polyethylene insert and at the posterior of the plate (Figure 57C). Lastly, a 

fixation pin was extruded on the underside of the tray, and fillets/chamfers were added to form 

the final component shape (Figure 57D).  



T. Burge Applied AI/ML for Automatic Customisation of Medical Implants 2023 

- 112 - 

 

Figure 57: Automatic custom TKR tibia plate design process © (Burge et al., 2023b) 

To design polyethylene insert components, firstly, the same 2D profile used for the subject’s 

tibia plate was used to form the base of the insert by extruding the spline sketch by 30 mm 

(Figure 58A). A 2D profile of the condylar region of the reconstructed femur model in the AP 

projection (outputted by the pipeline) was obtained using the DRR approach (detailed in 

Chapter 3.6). This was then imported into FreeCAD as a series of point coordinates from a .csv 

file outputted by the pipeline and converted into a spline sketch (Figure 58B). The sketch was 

then used to cut through the full thickness of the extruded tibia profile to create the negative of 

the femur component and provide a matching bearing surface (Figure 58C). The positioning of 

the femur condyle sketch in the XZ plane (perpendicular to the extruded tibia profile) was 

determined using reference points extracted from the pipeline. This ensured correct spacing 

and alignment between subjects’ femur and tibia bones was achieved. Finally, the positive of 

the connection feature included on the tibia plate (shown in Figure 57D), was then extruded 

from the bottom side of the insert (Figure 58D). This allowed for the two components to 

effectively interface when assembled.  
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Figure 58: Automatic custom TKR polyethylene insert design process 

For the automated component design processes to work for differing subject anatomical sizes 

and shapes, the dimensions used for the CAD operations were parametrically adjusted using 

information extracted by the pipeline. Scaling factors, calculated using Equation 7, were 

determined using subjects’ maximum condylar AP and ML measurements, relative to nominal 

values taken when completing the process manually with a reference subject. These were then 

applied to the relevant dimensions of the CAD operations to tailor designs for individuals.  

Component designs were created for left knee geometry to be consistent with the outputs from 

the pipeline. If the input X-ray images were specified to be of right sided knees, a horizontal 

transformation was performed within FreeCAD to invert the implant design about the sagittal 

plane. After the design process was complete, the component geometries were exported from 

FreeCAD as .stl meshes to be compatible with fabrication via AM (illustrated in Figure 59). 

For the fit of the resulting components to be assessed, femur components were also outputted 

without pins, nor fillets/chamfers as separate .stl files, along with the 2D profiles used to create 

the tibia plates in the form of point coordinates (saved as .csv files). 
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5.2.4.2. Generation of Other Implant Types and Design Variations 

Pipeline outputs could also be used to facilitate variations on the generic TKR implant design 

by modifying the FreeCAD API scripts. Figure 59 illustrates two different TKR design 

variants: A) shows an implant with a polyethylene insert designed with flat edges on the medial 

and lateral sides whilst B) has curved edges which closely follow the condyles of the femur 

component. Figure 59C illustrates an example where scripts were written to use the pipeline 

outputs to produce uni-condylar implants. Numerous other design variations, such as posterior-

stabilised or cruciate-retaining, mobile-bearing or fixed-bearing, as well as specific 

manufacturer designs, could also be incorporated into the FreeCAD API scripts. 

 

Figure 59: A) TKR implant design with flat edge insert, B) TKR implant design with 

curved edge insert, C) Uni-condylar implant design © (Burge et al., 2022a) 

5.3. Pipeline Test Results and Discussion 

In this section, how the parameters of the X-ray based implant shape customisation pipeline 

were optimised is described, an analysis of initial performance results obtained is outlined, and 

the necessary computational requirements to run the workflow are detailed. 

 

A)     B)    C) 
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5.3.1. Pipeline Parameter Optimisation 

Before testing the pipeline on the 78 OAI subjects reserved for testing, a subset of 20 were 

sampled randomly and used to optimise various pipeline parameters. Parameters included the 

number of principal components used in the SSM models, as well as the number of reference 

models used to train the PDMs and SSMs. The effect of adjusting these settings was evaluated 

independently whilst the other highlighted parameters were kept constant. To assess 

performance, the mean reconstruction to ground truth RMSE (detailed in Chapter 3.11.1) 

across the 20 test subjects was utilised. 

Figure 60 shows the mean femur and tibia results from the 20 test subjects when the pipeline 

was run with between one to five SSM principal components. For both the femur and tibia, the 

best results were recorded when using two. After this point errors started to increase rapidly. 

This was likely because the higher level modes of operation would require more geometrical 

information to drive more subtle geometrical adjustments than could be obtained from the 

sparse point clouds. Consequentially, over fitting was likely occurring above this number. Two 

principal components were therefore selected for both pipeline SSMs to maximise 

reconstruction accuracy and facilitate optimal implant bearing surfaces. 

Figure 61 illustrates the mean femur and tibia results from the 20 test subjects when the pipeline 

was run with PDMs trained with between 2 to 20 3D reference models. The curves show that 

by increasing the number of training models, only marginal improvements were made, and by 

20 test subjects, the curves had plateaued. PDMs trained with 20 reference models were 

therefore used in the pipeline. 
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Figure 60: Impact of varying the number of X-ray based implant shape customisation 

pipeline SSM principal components  

 

Figure 61: Impact of varying the number of 3D models used to train the X-ray based 

implant shape customisation pipeline PDMs 
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Lastly, Figure 62 shows the mean femur and tibia results from the 20 test subjects when the 

pipeline was run with SSMs trained with between 10 to 100 3D bone models. Here, the 

performance of the pipeline continued to improve as more training models were used, 

particularly for the femur SSM. Despite this, the number of training models used for the 

pipeline SSMs was capped at 100 to allow a sufficient number of independent KISTI 3D 

models to be used for training the PDMs and to be used as test subjects in subsequent analyses. 

  

Figure 62: Impact of varying the number of 3D models used to train the X-ray based 

implant shape customisation pipeline SSMs 

5.3.2. Pipeline Performance Results Analysis 

After setting the pipeline parameters (detailed in the previous section), the full X-ray to custom 

shape implant pipeline was tested on the designated 78 OAI test subjects. Before the fit metrics 

were calculated in the femur analysis, the 3D reconstructed model and component surfaces 

(without fixation pins and chamfers/fillets) were fitted to the relevant subjects’ ground truth 

3D models utilising rigid ICP transforms (Chapter 3.7). For the tibia reconstructed model 
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analysis, RMSE was calculated between the 3D surfaces of the reconstructed model and the 

subjects’ ground truth in the same way as for the femur. The tibia plate fit however was 

evaluated in 2D using the same method as adapted in Chapter 4.2.2. Polyethylene insert 

components were not assessed in the fit analysis as they do not interface with the bone.  

Table 1 and Table 2 provide an overview of the test subjects’ demographics and pipeline 

performance across the model reconstruction and component fit metrics for the femur and tibia 

respectively. The results were not separated out based on ethnicity since all but five of the test 

subjects were classed as ‘White’. In the following tables ‘SD’ refers to Standard Deviation. 

Table 1: Summary of X-ray based implant shape customisation pipeline femur results  

 
 

Total, (%) Mean reconstruction 

RMSE (mm), (SD) 

Mean component 

RMSE (mm), (SD) 

Component maximum 

OUH ≥ 3 mm, (%) 

Overall 78 1.09 (0.18) 1.01 (0.17) 14 (18.0) 

Sex 
 

   

Female 45 (57.7) 1.05 (0.13) 0.96 (0.14) 2 (4.4) 

Male 33 (42.3) 1.14 (0.21) 1.08 (0.18) 12 (36.4) 

Knee     

Left 40 (51.3) 1.10 (0.15) 1.02 (0.15) 6 (15.0) 

Right 38 (48.7) 1.07 (0.20) 1.00 (0.18) 8 (21.1) 

 

Table 2: Summary of X-ray based implant shape customisation pipeline tibia results 

 
 

Total, (%) Mean reconstruction 

RMSE (mm), (SD) 

Mean component 

RMSE (mm), (SD) 

Component maximum 

OUH ≥ 3 mm, (%) 

Overall 78 0.98 (0.15) 0.96 (0.29) 7 (9.0) 

Sex 
 

   

Female 45 (57.7) 0.95 (0.14) 0.88 (0.26) 1 (2.2) 

Male 33 (42.3) 1.02 (0.16) 1.07 (0.29) 6 (18.2) 

Knee     

Left 40 (51.3) 0.97 (0.13) 1.00 (0.29) 4 (10.0) 

Right 38 (48.7) 0.99 (0.17) 0.92 (0.28) 3 (7.9) 
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In terms of bone reconstruction, the pipeline was found to be able to create predictions of 

patient anatomy with a consistently high accuracy of approximately 1 mm RMSE. This was 

comparable with results previously reported in the literature for manual processes (Zhu & Li, 

2011) (Tsai et al., 2015). In terms of generating custom implant components, significantly 

better results than generally reported for OTS, sized components (Mahoney & Kinsey, 2010) 

(Wernecke et al., 2012) (Schroeder & Martin, 2019) were demonstrated feasible. However, a 

substantial improvement was not obtained on that calculated theoretically possible in terms of 

the proportion of subjects with maximum OUH ≥ 3 mm if an optimised set of OTS sizes were 

used (based on the analysis completed in Chapter 4.3).  

Lower errors across the three performance metrics were obtained for the tibia compared to the 

femur. These differences were calculated to be statistically significant for the reconstruction 

RMSE and component maximum OUH results. This observation was not surprising due to the 

disparity in bone and component morphological complexity, particularly around the insides of 

the femur condyles where the largest levels of OUH were generally identified. Females were 

found to perform better compared to males across all fit metrics with the differences calculated 

to be statistically significant for all except the tibia reconstruction RMSE which had a p value 

of 0.08. As expected, due to the anatomical symmetry, no statistically significant differences 

between the performance of left and right knees were found for any of the fit metrics.  

Figure 63 shows a comparative box plot of the results and highlights numerous outliers where 

poor fits were recorded, especially for the femur. In these cases, it was found that the inputted 

X-rays were typically (visually) less well aligned compared to those that achieved the best 

reconstruction accuracies and implant fits. Consequently, it was determined that the alignment 

of the anatomy in the inputted X-rays was likely critical and, since it was only retrospectively 
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controlled using a qualitative method (visually assessing anatomical alignment and image 

quality factors such as contrast), this likely influenced the results outlined in this analysis.  

 

Figure 63: Box plot of X-ray based implant shape customisation pipeline results for the 

femur and tibia © (Burge et al., 2022b) 

5.3.3. Pipeline Computational Requirements 

In terms of computation time, the pipeline consistently took less than five minutes to generate 

custom TKR implant designs from inputted X-ray images when run on a personal laptop 

computer (2.38 GHz AMD Ryzen 5 4500U CPU with 6 cores/8 GB memory). This was 

considerably faster than a manual based approach which could easily take hours or days of an 

engineer’s time. Therefore, a significant amount of the 6 – 8 week lead time required for current 

customisation solutions (as reported by Seekingalpha.com (2019)) could be saved.  

5.4. Summary 

In this chapter the feasibility of creating an automated, custom knee replacement implant shape 

design pipeline that used two calibrated biplanar X-ray images as input was demonstrated. The 

pipeline produced well-fitting component designs for the 78 OAI test subjects with 82% of 
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femur components and 91% of tibia plates resulting in maximum OUH results < 3 mm. These 

results were significantly better than generally reported for OTS implants, but comparable to 

what could theoretically be achieved in an optimised scenario. Nevertheless, the proof-of-

concept pipeline demonstrated the need for trained medical and/or engineering professionals 

to supervise or input into the custom design process could be removed and was shown capable 

of producing implant models, compatible with fabrication methods such as AM (after 

appropriate specification of build parameters such as orientation, materials, and support 

structures), in approximately five minutes. Therefore, it is believed that because of the 

performance shown possible by the fully automated pipeline, in combination with the fact only 

2D medical imaging was required, the tool could offer significant cost savings over currently 

available customisations options and make the technology more commercially attractive. 

In the analysis, it was observed qualitatively that the alignment of inputted X-ray images was 

likely highly important for achieving accurate reconstructions and component fits. The effect 

was however not possible to confirm quantitatively since test subjects’ X-rays were used 

retrospectively and no information indicating anatomical alignment was provided with the OAI 

dataset. Additional error could have also been introduced because of factors such as inaccurate 

X-ray scaling and/or poor quality image segmentation (because no reference objects were 

included in the sans and the reasonably low number of training images used respectively). 

Furthermore, due to the data available, the analysis completed in this chapter was performed 

using test subjects with limited ethnic diversity and the influence of only a few demographical 

attributes was possible to assess.   
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Chapter 6 - X-ray Based Pipeline 

Extended Results and Sensitivity 

Analysis 

X-ray Based Pipeline Extended Results and Sensitivity Analysis 

To enable a more thorough assessment of the X-ray to custom knee replacement implant shape 

pipeline, the following chapter outlines a methodology which involved replacing the real X-

ray input with ‘synthetic’ alternatives generated using the DRR method. A sensitivity analysis 

is also detailed which enabled the impact of anatomical alignment and dimensional calibration 

of input X-rays to be quantified. 

 

Most of the contents of this chapter have been published in the following paper:  

• Burge, T.A., Jeffers, J.R.T. & Myant, C.W. (2022) Performance and sensitivity analysis 

of an automated x-ray based total knee replacement mass-customization pipeline. 

Journal of Medical Devices. 16 (4), 1–12. 
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6.1. Introduction 

This chapter details a thorough evaluation of the X-ray based knee replacement implant shape 

customisation pipeline developed in Chapter 5 to further assess its robustness and characterise 

its limitations. To enable this, the DRR method (outlined in Chapter 3.6) was utilised to replace 

the inputted real X-ray images used previously with ‘synthetic’ alternatives. Employing the 

DRR approach allowed for the possible impact of dimensional calibration, anatomical 

alignment, and segmentation errors, highlighted as likely affecting the X-ray based pipeline, to 

be eliminated. This permitted a better understanding of the true potential of the pipeline to be 

obtained and evaluate the robustness of the approach. 

Since only 3D models were required as input for the DRR method, the pipeline could be tested 

using considerably more subjects from multiple datasets compared to when real X-rays were 

used in the previous chapter. The robustness of the pipeline across various subject sexes, knee 

side, ethnicities, age, height, and severity of arthritis could therefore be examined more 

comprehensively. Furthermore, by utilising the DRR method, dimensional scaling and 

anatomical alignment could be treated as input parameters and controlled precisely. This 

enabled a sensitivity analysis to be performed that mimicked alignment and dimensional 

calibration in real X-ray images. Based on this, suitable input imaging specifications for the 

pipeline could then be determined. 

6.2. Pipeline Development and Performance/Sensitivity 

Analysis Methods 

In this section, the development of the DRR based implant shape customisation pipeline is 

detailed, as well as the method used for the pipeline sensitivity analysis. Details of the subjects 

used to test the DRR based pipeline and facilitate the sensitivity analysis are also provided. 
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6.2.1. DRR Based Pipeline Development 

To facilitate the extended analysis, the same method as detailed in Chapter 5.2 was utilised, 

except that the DRR approach (detailed in Chapter 3.6) was used with subjects’ 3D bone 

models as inputs (instead of real X-ray images). A flow chart of the full method is provided in 

Figure 64 with an orange border highlighting the difference to Figure 46.  

 

Figure 64: Key phases and workflow of the DRR based implant shape customisation 

pipeline 

Before being inputted into the pipeline, test subject bone models were consistently aligned to 

reflect the necessary input X-ray requirements detailed in Chapter 5.2.2. All femur condyles 

and tibial plateaus were aligned parallel with the AP direction so that the bone shafts were 

vertical. After the pipeline had generated bone model reconstructions and custom implant 

designs for each test subject, these were then compared back to the respective subjects’ ground 

truth models and the same fit metrics as detailed in Chapter 5.3.2 were calculated. 

Apply DRR method to 3D bone models to create 2D 

profiles in AP and lateral projections and extract bone 

contours via edge detection. 

Align AP and lateral contours in 3D space and 

calculate reference points/measurements. 

Apply PDMs to estimate depth along contours and 

create sparse 3D point clouds. 

 

Position reference point clouds on SSM base shapes 

and morph to fit to create 3D model reconstructions. 
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6.2.2. Pipeline Sensitivity Analysis Method 

To perform the sensitivity analysis, the same workflow as detailed in Figure 64 was adopted, 

except that the alignment of the inputted 3D bone models and scaling of the resulting contours 

from the DRR process were systematically adjusted. The positioning of inputted bone models 

used to create the AP and lateral DRR profiles were manipulated individually to reflect the fact 

two separate X-rays are captured in practice and to allow the impact of variation in each 

projection to be evaluated independently. For the AP projection analysis, model position was 

rotated about the X and Z axes, whilst for the lateral projection, it was rotated about the Y and 

Z (according to Figure 28). Only two axial rotations were adjusted in each as the pipeline 

automatically accounted for rotation normal to the X-ray projection (as illustrated in Figure 

51). For the AP projection, all combinations of rotations about the X and Z axes in increments 

of 1 degree from -30 to 30 were computed for both bones. The lateral projection was kept 

constant. The same was performed for the lateral about the Y and Z axes with the AP projection 

held constant. The rotation ranges were chosen to reflect the approximate variation in 

alignment observed within the OAI X-rays. 

To study the impact of X-ray dimensional calibration accuracy, bone model alignment was 

held constant whilst the AP and lateral profiles outputted from the DRR method were gradually 

scaled. Scaling of width and height was completed equally to keep a consistent aspect ratio. 

All combinations of AP and lateral scaling factors, in increments of 0.01 from 0.85 to 1.15, 

were explored for both bones. The ranges for the scaling multiplication factors were selected 

as an exaggerated estimate for potential error in practice.  

Reconstruction RMSE was used as the sole results metric in the alignment and calibration 

sensitivity analyses as generating custom implant components for every combination of 
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alignments and scales (45,615 for both the femur and tibia) would have been highly 

computationally expensive (estimated to be approximately 4,000 hours of compute time).   

6.2.3. Test Subjects 

Subjects from both the OAI and KISTI datasets were utilised to test the DRR based pipeline. 

In some cases, the MRI data retrieved from the OAI dataset was found to include insufficient 

bone shaft lengths to facilitate models compatible with the pipeline, especially for the tibia. 

Such subjects were consequently excluded from the analysis. In total, 147 femur and 118 tibia 

bone models were created (using the process detailed in Chapter 3.3), and utilised as test 

subjects with demographical information summarised in Table 5 and Table 6. No subject data 

used for training was also used for testing. 

The sensitivity analyses for the femur and tibia were each completed using three different 

subject bone models, selected to represent a broad demographic from across the OAI and KISTI 

datasets. The demographical information of the subjects used for the femur and tibia analyses 

is summarised in Table 3 and Table 4 respectively. 

Table 3: Summary of femur sensitivity analysis test subject demographics 

Subject 
 

Sex Ethnicity Knee side 

1 Male Black Left 

2 Female White Right 

3 Female Asian Right 

 

Table 4: Summary of tibia sensitivity analysis test subject demographics 

Subject 
 

Sex Ethnicity Knee side 

1 Male White Left 

2 Female Black Left 

3 Male Asian Right 
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6.3. Pipeline Performance and Sensitivity Analysis Results 

and Discussion 

In this section the performance results obtained for the DRR based version of the implant shape 

customisation pipeline, as well as the sensitivity analysis, are outlined and discussed. 

6.3.1. DRR Based Pipeline Performance Results 

A detailed summary of the DRR pipeline results for the various datasets and test subject 

demographics is provided in Table 5 for the femur and Table 6 for the tibia. Figure 65 below 

shows a summary box plot of all the results.  

 

Figure 65: Box plot of DRR based implant shape customisation pipeline results for the 

femur and tibia © (Burge et al., 2022b) 

In terms of the key clinical metric, maximum OUH, the results for both the femur and tibia 

improved on average compared to the previous analysis using real X-rays as input from 18% 

and 9% to 15% and 7.6% respectively. It is however noted that the overall mean reconstruction 

and component RMSE results worsened slightly for the tibia from 0.98 mm and 0.96 mm to 

1.04 mm and 1.03 mm respectively. This was likely due to the larger pool of different test 

subjects utilised compared to in the X-ray based analysis. 
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Table 5: Summary of DRR based implant shape customisation pipeline femur results 

 
 

Total, (%) Mean reconstruction 

RMSE (mm), (SD) 

Mean component 

RMSE (mm), (SD) 

Component maximum 

OUH ≥ 3 mm, (%) 

Overall 147 1.03 (0.19) 0.96 (0.18) 22 (15.0) 

Sex 
 

   

Female 82 (55.8) 1.06 (0.18) 0.96 (0.18) 10 (12.2) 

Male 65 (44.2) 0.98 (0.19) 0.95 (0.18) 12 (18.5) 

Knee     

Right 76 (51.7) 1.04 (0.18) 0.97 (0.17) 13 (17.1) 

Left 71 (48.3) 1.02 (0.19) 0.94 (0.18) 9 (12.7) 

Ethnicity     

    White 74 (50.3) 1.01 (0.14) 0.96 (0.15) 12 (16.2) 

    Asian 53 (36.1) 1.00 (0.21) 0.92 (0.22) 5 (9.4) 

    Black 20 (13.6) 1.19 (0.20) 1.02 (0.14) 5 (25.0) 

Dataset     

    OAI 95 (64.6) 1.04 (0.17) 0.97 (0.15) 17 (17.9) 

    KISTI 52 (35.4) 1.00 (0.21) 0.93 (0.22) 5 (9.6) 

Table 6: Summary of DRR based implant shape customisation pipeline tibia results 

 
 

Total, (%) Mean reconstruction 

RMSE (mm), (SD) 

Mean component 

RMSE (mm), (SD) 

Component maximum 

OUH ≥ 3 mm, (%) 

Overall 118 1.04 (0.19) 1.03 (0.29) 9 (7.6) 

Sex 
 

   

Female 65 (55.1) 1.04 (0.17) 1.00 (0.27) 5 (7.7) 

Male 53 (44.9) 1.04 (0.22) 1.08 (0.31) 4 (7.6) 

Knee     

Right 64 (54.2) 1.05 (0.22) 1.04 (0.32) 4 (6.3) 

Left 54 (45.8) 1.04 (0.17) 1.03 (0.26) 5 (9.3) 

Ethnicity     

    White 55 (46.6) 1.03 (0.15) 1.03 (0.25) 3 (5.5) 

    Asian 43 (36.4) 1.00 (0.23) 0.98 (0.29) 3 (7.0) 

    Black 20 (17.0) 1.15 (0.17) 1.17 (0.36) 3 (15.0) 

Dataset     

    OAI 76 (64.4) 1.06 (0.17) 1.07 (0.29) 6 (7.9) 

    KISTI 42 (35.6) 1.00 (0.23) 0.98 (0.29) 3 (7.1) 
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It was found that the difference between the femur and tibia performance was reduced when 

using the DRR method. Nevertheless, the differences in component RMSE and maximum 

OUH results between the two bones were still calculated to be statistically significant. 

A less distinct difference between sexes was observed in the DRR results compared to those 

for the X-ray based pipeline. In contrast to consistently inferior male results across all metrics 

in the X-ray based analysis, when using the DRR approach males outperformed females in 

femur reconstruction and component RMSE, as well as marginally for tibia component 

maximum OUH. Only the difference in femur reconstruction RMSE was found to be 

statistically significant between the sexes. Therefore, it is likely that the observed difference 

linked to subject sex in the X-ray based analysis was not substantiated.  

Inconsistencies in results were identified between the ethnicities evaluated. Asian subjects were 

found to produce the lowest errors for all metrics, except for tibia maximum OUH. White 

subjects followed closely with marginally worse results. Black subjects however showed 

distinctly poorer performance compared to White and Asian subjects across all metrics. All 

differences of Black subjects compared to White and Asian subjects, apart from in terms of 

tibia component RMSE, were found to be statistically significant. This phenomenon was likely 

a result of few Black subjects being used to train the pipeline. Similar observations were made 

by Mahfouz et al. (2012) who highlighted the importance of including a balanced and 

representative range of subjects when training SSMs. 

The KISTI dataset produced on average lower errors across all metrics for both pipelines 

compared to the OAI. The differences could have been due to varying demographics between 

the datasets, the different imaging modalities used for the ground truth data (CT for KISTI and 

MRI for OAI), the fact segmentation of the two datasets was performed by different 

individuals, and/or because the KISTI dataset was used more heavily for training the pipeline. 
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The discrepancy between the datasets was however not found to be statistically significant, 

except for femur component maximum OUH. 

To assess the influence of age and height on the results, Spearman's correlation coefficients 

were calculated using the method detailed in Chapter 3.12. These are detailed in Table 7 for 

the femur and Table 8 for the tibia. Both attributes were found to have minimal impact on the 

pipeline with all correlation coefficients close to 0, except for height in relation to femur 

reconstruction RMSE which had a coefficient of -0.5, indicating a moderate negative 

correlation. Despite this, the fact that the resulting femur component fits had very little 

correlation with height, and the same was not reflected for the tibia, suggested that the 

correlation was likely not representative or important. 

Table 7: Spearman’s coefficients for height and age relating to femur performance 

 
 

Reconstruction RMSE Component RMSE Component max OUH 

Height -0.50 -0.26 -0.08 

Age -0.02 -0.04 0.06 

    

Table 8: Spearman’s coefficients for height and age relating to tibia performance 

 
 

Reconstruction RMSE Component RMSE Component max OUH 

Height -0.09 0.16 0.31 

Age -0.14 -0.05 0 

 

Like in the X-ray based pipeline results, no statistically significant differences between the 

performance of each knee side were found in the DRR analysis. 

All subjects detailed in Table 5, Table 6 and Figure 65 had K&L grades of ≤ 2, indicating mild 

arthritis or unspecified (Kellgren & Lawrence, 1956). To assess the impact of increasing 

arthritis severity on performance, ten additional subjects with moderate (K&L grade 3) and ten 

with severe (K&L grade 4) arthritis were analysed and included in Figure 66 and Figure 67.  
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Figure 66: Box plot of femur results for different arthritis severities © (Burge et al., 2022b) 

 

Figure 67: Box plot of tibia results for different arthritis severities © (Burge et al., 2022b) 

The figures show that the pipeline worked effectively for most subjects with up to and including 

mild levels of arthritis (K&L grade 2). Yet, for moderate and severe arthritis (K&L grades 3 

and 4), well-fitting implants were not achieved for a large proportion of subjects. For the femur 

results, the level of OUH ≥ 3 mm increased to 30% for grade 3 and then to 50% for grade 4. 

For the tibia, the proportion increased to 50% for both grades 3 and 4. It is noted that the results 

for grades 1 and 2 appear to perform slightly better for the tibia than those for grade 0. This is 

however not believed to be representative and was likely because the group sizes were unequal 
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with grade 0 including 147/118 subjects for the femur/tibia respectively, whilst grades 1 and 2 

only contained between 10 – 15 subjects each.  

Due to the high level of deformity and irregular geometry observed at the moderate and severe 

levels of arthritis, and the dissimilarity compared to the training data, the decrease in pipeline 

performance with arthritis severity was expected. 3D imaging would likely be the only option 

to sufficiently capture such irregular bone shape. Nevertheless, as highlighted previously, 

perfectly replicating the morphology of damaged bones was not the objective of the pipeline 

and would in fact be detrimental for designing effective implant components. Therefore, the 

metrics utilised in this analysis, particularly component maximum OUH, are likely not 

reflective of true outcomes for bones with higher levels of arthritis severity. Moreover, 

according to Kellgren & Lawrence (1956), osteoarthritis can be determined to be present from 

K&L grade 2, and patients are usually deemed eligible for TKR surgery from this point 

onwards (Skou et al., 2018). It can therefore be concluded that the pipeline could be suitable 

for most arthritis sufferers who are diagnosed and undergo surgery at a sufficiently early stage. 

Based on the results outlined above using the DRR approach, it is believed that, if X-ray 

alignment and calibration could be adequately controlled, the X-ray based pipeline would be 

capable of affording results superior to those determined to be theoretically possible for 

optimised, OTS components. Despite this, the pipeline still did not meet the exceedingly high 

levels of accuracy shown possible by 3D medical imaging based solutions (Ogura et al., 2019) 

(Arnholdt et al., 2020). To improve results further, increasing the number of X-rays used to 

capture more geometrical information (as demonstrated by Cerveri et al. (2017)), could be 

explored. However, this would incur additional imaging requirements compared to standard 

OTS pre-operative assessments and so was not investigated. 
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6.3.2. Pipeline Sensitivity Analysis Results 

Figure 68 and Figure 69 outline the results of the pipeline sensitivity analysis, split into the AP 

alignment, lateral alignment, and X-ray scaling analyses for the femur and tibia respectively.  

 

Figure 68: Femur sensitivity analysis heat maps © (Burge et al., 2022b) 

The heat maps illustrate how the performance varied across the array of rotations and scaling 

factors investigated in terms of the percentage above each subject’s lowest recorded 

reconstruction RMSE results. The results are shown bucketed into four levels for better clarity 
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with < 10% indicating minimal error increase, < 30% indicating moderate error increase, < 

50% indicating large error increase, and ≥ 50% indicating excessive error increase.  

 

Figure 69: Tibia sensitivity analysis heat maps © (Burge et al., 2022b) 

The heat maps demonstrate that the alignment of subject anatomy had a significant impact on 

pipeline performance. Generally, to achieve within 10% of the lowest recorded reconstruction 

RMSE for each subject, an alignment accuracy of approximately ± 5 – 10° was found to be 

required. The femur alignment, particularly in the lateral projection, was found to be 
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considerably more sensitive than the tibia and afforded a very small window to achieve high 

quality results. The heightened sensitivity of the femur to rotation compared to the tibia was 

likely attributable to the difference in morphologies between the bones: Rotating the condyles 

of the distal femur bone in the lateral view was observed to cause large distortions in the 

resulting 2D profiles. Conversely, the proximal end of the tibia was found to be more 

axisymmetric and so varied less in shape and resulting pipeline performance with axial rotation.  

The impact of positive and negative scaling, replicating inaccuracies in X-ray dimensional 

calibration, were found to be considerable for both bones. The bottom rows of Figure 68 and 

Figure 69 show that the level of error increased rapidly to over 10% above the minimum result 

for most cases with scale values of approximately ± 0.02 (2% error) in the AP projection. For 

the lateral projection however, a wider scaling accuracy ± 0.05 (5% error) was typically found 

to be needed to achieve similar outcomes.   

6.4. Summary 

In this chapter, a DRR method was adopted to eliminate errors stemming from poor X-ray 

quality and evaluate the knee replacement implant shape customisation pipeline (developed in 

Chapter 5) using a larger and more diverse test population. This facilitated a comprehensive 

understanding of the potential performance of the X-ray based pipeline, simulating a scenario 

where well controlled inputs were available. In terms of maximum OUH, results for both bones 

improved compared to the previous analysis using real X-rays and were shown to surpass those 

theoretically possible for optimised, OTS components. Nevertheless, it was established that the 

X-ray based pipeline would still not be able to match the performance previously highlighted 

possible if 3D imaging was utilised.  
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Based on the analysis, it was determined that the X-ray based pipeline would likely not be 

sensitive to differences in subject knee side, sex, height, or age. It was observed that subject 

ethnicity affected performance, with statistically significantly better results recorded for Asian 

and White test subjects compared to Black test subjects. This was however determined to 

probably be a result of low ethnic diversity in the training data and could be mitigated via the 

use of a larger dataset to train the pipeline more broadly. Moreover, the pipeline was found to 

produce lower quality results for subjects who had moderate to severe cases of arthritis. 

Nevertheless, the pipeline was demonstrated to be able to repeatably produce accurate, well-

fitting designs for subjects with damage levels at the stage where knee replacement is usually 

recommended (K&L grade 2). 

Through the pipeline sensitivity analysis, it was confirmed that anatomical alignment, as well 

as dimensional calibration, were highly impactful to 3D model reconstruction accuracy. It was 

found that to achieve high quality results for both bones, anatomical alignment in inputted AP 

and lateral X-rays would need to be accurate to approximately ± 5°, whilst dimensional 

calibration would need to be correct to ± 2%. To facilitate such specifications in practice, an 

alignment protocol similar to that outlined by Nguyen et al. (2022) could be established to 

guide the imaging process. The authors in this study demonstrated that, by ensuring patients 

fully extended their knees, placed their feet at a set distance and alignment relative to a 

standardised positioning template, and distributed their weight equally between each leg, that 

consistent X-ray alignments across multiple anatomical metrics (including the leg) of < 1° for 

30 patients was achieved. Alternatively, an approach like that detailed in (Zheng et al., 2018) 

where a knee joint immobilisation device was utilised, could be explored. To assist with 

dimensional calibration, reference objects of known sizes could be included in the imaging 

frame as highlighted previously (Wimsey et al., 2006) (Schumann et al., 2014). Moreover, the 

use of a calibration cage like in (Zheng et al., 2018) could be considered. To minimise human 
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related error during the X-ray capture process, and facilitate optimal segmentation results, 

additional AI/ML functionality could be incorporated to reject poorly aligned X-rays (Tack et 

al., 2021), and/or enable automatic dimensional calibration by detecting and segmenting 

included calibration objects (Konovalov et al., 2017).  
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Chapter 7 - X-ray Based Implant Size 

Prediction Pipeline 

 

X-ray Based Implant Size Prediction Pipeline 

The following chapter presents a method for, and results of, an automatic OTS knee 

replacement implant size prediction pipeline, using biplanar X-ray images as an input medium.  

 

Most of the contents of this chapter have been published in the following paper:  

• Burge, T.A., Jones, G.G., Jordan, C.M., Jeffers, J.R.T. & Myant, C.W. (2022) A 

computational tool for automatic selection of total knee replacement implant size using 

X-ray images. Frontiers in Bioengineering and Biotechnology. 10, 1–11.  
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7.1. Introduction 

The focus of the last two chapters was on using the biplanar X-ray based 2D – 3D 

reconstruction pipeline to enable automatic customisation of the knee replacement implant 

shape. However, it was identified that it could also be used to enable other forms/levels of 

implant customisation as defined by Paxton et al. (2022), such as OTS implant size prediction.  

In Chapter 2.2, it was highlighted that the accuracy of manual pre-operative X-ray size 

selection for knee replacement implants has been shown to be poor and linked with increased 

rates of complications post-surgery (Culler et al., 2017) (Buller et al., 2018) (Schroeder & 

Martin, 2019). Due to the lack of confidence in the accuracy of pre-operative implant sizing, 

surgeons often decide to implant different sizes than planned if deemed necessary mid-

procedure (Sheth et al., 2017). This can lead to higher chances of human error, longer surgery 

times, and requires various implant sizes to be available in theatre. 

Zheng et al. (2018) and Massé & Ghate (2021) developed tools capable of predicting TKR 

implant size from X-rays. These alternatives to the conventional manual based approach both 

featured ‘semi-automatic’ workflows which required feedback from users to facilitate the size 

prediction process. Consequently, such tools would incur the burdens of additional user 

training and resource to implement in practice. Moreover, both studies only featured a limited 

number of test subjects and evaluated the performance of the respective algorithms on single 

implant models without detailing the number of sizing options available. 

This chapter explores how the X-ray based 2D – 3D pipeline developed in Chapters 5 and 6, 

could be applied to facilitate a ‘fully’ automatic OTS TKR implant size prediction pipeline. 

The hypothesis being that such a solution would be less impacted by inaccuracies in anatomical 

alignment and X-ray calibration (compared to custom implant generation), and may afford an 
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attractive and viable tool which surgeons could rely on more so than currently available 

solutions, such as the highly inaccurate Traumacad Auto-Knee tool (Seaver et al., 2020). 

7.2. Pipeline Development and Test Method 

In the following sub-sections, the various stages of the X-ray based implant size prediction 

pipeline (summarised in Figure 70) are outlined. Details of the subjects used to test the pipeline 

and how its accuracy was evaluated are also provided. 

 

Figure 70: Key stages and workflow of the X-ray based OTS implant size prediction 

pipeline 

7.2.1. Create 3D Model Reconstructions 

Like in (Zheng et al., 2018) and (Massé & Ghate, 2021), the implant size prediction pipeline 

developed in this thesis initially used inputted AP and lateral X-rays to generate 3D estimations 
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of patients’ femur and tibia bones. These could then be used to fit different implant sizes to and 

form predictions. To achieve this automatically, the same method detailed in Chapter 5.2.2 was 

adopted to segment inputted X-rays and extract 2D contours. The process detailed in Chapter 

5.2.3 was then applied to create the 3D model reconstructions using the same PDMs and SSMs.  

7.2.2. Base Implant Model Designs and Sizes 

Access to the official geometry of commercially available TKR implant models and sizes was 

not possible to obtain, nor was acquiring physical samples for reverse engineering. Therefore, 

the same generic base TKR models designs used throughout Chapters 4 – 6 (shown in Figure 

34), were adjusted to reflect global sizes acquired for five commercially available products. A 

3D base model was used for femur components, while a 2D profile was used for tibia plates. 

The width of the base femur component was subtly adjusted for each of the manufactures’ 

models in the analysis to reflect differences in dimensioning approaches between the products. 

The design of the tibia plate was kept constant as no differences were found in dimensioning. 

Sizes for the Zimmer Biomet ‘NexGen’, DePuy ‘Sigma’, Smith & Nephew ‘Legion’, Maxx 

Orthopedics ‘Freedom’ and Stryker ‘Scorpio’ products were used. These models were selected 

to provide a range of the number of implant sizes available, as well as the ML/AP ratios used. 

The AP and ML dimensions for the various sizes for each model were sourced from sizing 

charts contained within the respective manufacturers’ surgical technique manuals. The 

dimensions are listed in Table 9 for femur components and Table 10 for tibia plates.  

The same method used in Chapter 4.2.2 was utilised for scaling the generic base implant models 

to the listed AP and ML dimensions for each manufacturer model and size. The height of the 

3D femur components was kept proportional by scaling the Z dimension in line with the AP 

and ML dimensions in the same manner as before.  
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Table 9: Femur component sizing chart (ML and AP dimensions in mm) 

Zimmer Biomet 

(NexGen) 

DePuy 

(Sigma) 

Smith & Nephew 

(Legion) 

Maxx 

Orthopedics 

(Freedom) 

Stryker 

(Scorpio) 

Id ML AP Id ML AP Id ML AP Id ML AP Id ML AP 

‘B’ 58 50 ‘1.5’ 57 53 ‘2’ 58 50 ‘A’ 54 51 ‘3’ 57 51 

‘C’ 64 54.5 ‘2’ 60 56 ‘3’ 62 55 ‘B’ 58 54 ‘4’ 60 54 

‘D’ 68 58 ‘2.5’ 63 58 ‘4’ 66 59 ‘C’ 62 58 ‘5’ 62 56 

‘E’ 72 62 ‘3’ 66 61 ‘5’ 70 62 ‘D’ 64 60 ‘6’ 65 58 

‘F’ 76 66 ‘4’ 71 65 ‘6’ 73 66 ‘E’ 66 62 ‘7’ 67 61 

   ‘5’ 73 69 ‘7’ 77 70 ‘F’ 70 66 ‘8’ 70 63 

      ‘8’ 80 75 ‘G’ 74 70 ‘9’ 72 65 

         ‘H’ 78 74 ‘11’ 77 70 

            ‘13’ 82 75 

 

Table 10: Tibia plate sizing chart (ML and AP dimensions in mm) 

Zimmer Biomet 

(NexGen) 

DePuy 

(Sigma) 

Smith & Nephew 

(Legion) 

Maxx 

Orthopedics 

(Freedom) 

Stryker 

(Scorpio) 

Id ML AP Id ML AP Id ML AP Id ML AP Id ML AP 

‘1’ 56 41 ‘1’ 59.2 39 ‘1’ 60 42 ‘1’ 59 40 ‘3’ 61 40 

‘2’ 62 41 ‘1.5’ 61.8 40.7 ‘2’ 64 45 ‘2’ 62 40 ‘4’ 63 42 

‘3’ 67 46 ‘2’ 64.6 42.6 ‘3’ 68 48 ‘3’ 66 42 ‘5’ 66 44 

‘4’ 70 46 ‘2.5’ 67.1 44.2 ‘4’ 71 50 ‘4’ 66 46 ‘6’ 68 45 

‘5’ 74 50 ‘3’ 69.6 45.8 ‘5’ 74 52 ‘5’ 71 48 ‘7’ 71 47 

‘6’ 77 50 ‘4’ 74.9 49.3 ‘6’ 77 54 ‘6’ 72 50 ‘9’ 77 51 

   ‘5’ 80.6 53.1 ‘7’ 81 56 ‘7’ 76 52 ‘11’ 82 54 

   ‘6’ 86.8 57.2 ‘8’ 85 59 ‘8’ 78 54 ‘13’ 88 58 

 

7.2.3. Create Implant Size Predictions 

To predict which femur component and tibia plate sizes were the most suited for individuals, 

the pipeline systematically fitted each size of each implant model to the reconstructions 
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generated for each subject’s anatomy using the rigid ICP method detailed in Chapter 3.7. The 

analysis used the same 2D approach for the tibia plate fit as illustrated in Figure 36. This 

involved fitting the 2D tibia plate profiles to corresponding profiles extracted from 

reconstructed tibia bone models (positioned 2 mm below the height of the widest point of the 

medial condyle, parallel with the surface of the medial plateau). Femur component fit was 

assessed in 3D between the surfaces of the scaled components and subjects’ ground truths. 

After each size fitting, the component RMSE and maximum OUH were calculated as detailed 

in Chapter 3.11 and recorded. The size options for each manufacturer model that achieved the 

best fits (according to each of the two metrics) were then outputted as the pipeline’s predictions 

for each test subject. 

7.2.4. Test Subjects and Determination of Best Possible Sizes 

To test the implant size prediction pipeline, the same 78 OAI subjects used in Chapter 5.3 were 

utilised since AP and lateral X-rays, as well as ground truth 3D models, were again required. 

After size predictions were made for all test subjects, all sizes for each implant model were 

positioned via an equivalent ICP method on ground truth models created for each subject using 

the manual MRI segmentation method detailed in Chapter 3.3. This produced the highest 

fidelity representations of the subjects’ anatomies obtainable and was thus used as the method 

of determining the best possible sizes in lieu of physical assessment. Using this approach, the 

best possible sizes for each test subject (in terms of minimising RMSE and maximum OUH), 

for each implant component and model, were recorded. If the pipeline predicted the same size 

using the reconstructed bone model as deemed best via the use of the MRI ground truth model, 

the pipeline prediction was determined to have been correct. 



T. Burge Applied AI/ML for Automatic Customisation of Medical Implants 2023 

- 144 - 

7.3. Pipeline Test Results and Discussion 

In this section, an analysis of performance results obtained for the X-ray based implant size 

prediction pipeline is outlined. The analysis is split into how accurately the pipeline was able 

to predict the best possible implant size for each model for each test subject, and how well the 

implant predictions subsequently fitted the individuals.  

7.3.1. Implant Size Prediction Accuracy 

The results for the pipeline’s femur component and tibia plate size prediction accuracy, 

recorded for each manufacturer model, is reported in Table 11 and in Table 12 respectively. 

Accuracy is shown in terms of optimal size prediction, as well as ±1 size from the optimal.  

Table 11: Femur component size prediction accuracies for each manufacturer model 

Model (No. sizes) 
RMSE correct 

(%) 

RMSE ±1 

correct (%) 

Max OUH 

correct (%) 

Max OUH ±1 

correct (%) 

Zimmer Biomet (5) 85.90 100.00 75.64 100.00 

DePuy (6) 84.62 100.00 83.33 100.00 

Smith & Nephew (7) 75.64 100.00 64.10 100.00 

Maxx Orthopedics (8) 73.08 100.00 65.38 100.00 

Stryker (9) 70.51 98.72 70.51 97.44 

Mean 77.95 99.74 71.79 99.49 

 

Table 12: Tibia plate size prediction accuracies for each manufacturer model 

Model (No. sizes) 
RMSE correct 

(%) 

RMSE ±1 

correct (%) 

Max OUH 

correct (%) 

Max OUH ±1 

correct (%) 

Zimmer Biomet (6) 87.18 100.00 74.36 98.72 

DePuy (8) 85.90 100.00 82.05 100.00 

Smith & Nephew (8) 65.38 100.00 62.82 98.72 

Maxx Orthopedics (8) 83.33 98.72 69.23 97.44 

Stryker (8) 80.77 100.00 75.64 100.00 

Mean 80.51 99.74 72.82 98.98 
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For both component types, it was found the size prediction pipeline consistently more 

accurately predicted the best possible size in terms of component RMSE compared to 

maximum OUH. This was not unexpected due to the sensitivity of maximum OUH to any 

patient-specific local irregularities.  

Of the five manufacturer models used to evaluate performance, it was found that the best 

implant size prediction accuracies (for both component types in terms of RMSE) were achieved 

for the model with the fewest sizes (the Zimmer Biomet ‘NexGen’ (5/6 sizes)). Whereas the 

femur component model with the most sizes (the Stryker ‘Scorpio’ (9 sizes)) achieved the 

lowest prediction accuracies. This observation was likely due to the larger discrepancy between 

sizes in the models with fewer sizing options, thus requiring a lower degree of model 

reconstruction accuracy for the pipeline to correctly predict the most appropriate size. Despite 

not being as accurate in terms of size selection accuracy for implant models with a higher 

number of sizes, the resulting fit outcomes using the pipeline predictions were often found to 

be superior to the best possible NexGen sizes. This observation is further detailed and explained 

in Section 7.3.2. 

Minimal differences in prediction accuracies were observed across the five tibia plate models 

for males and females. For femur components however, males achieved 87.27% for both 

RMSE and maximum OUH, whereas accuracies of 71.11% and 60.44% respectively were 

recorded for females. The statistically significant difference in performance was likely due to 

the large White American male dimensions present in the test subject population – often 

requiring the upper limits of the femur component size ranges or beyond. Females on the other 

hand were found to require a broader range of smaller sizes which made predicting the correct 

option more challenging. Using a better balanced group of subjects, featuring ethnicities 
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generally requiring smaller implant sizes, such as Asian Chinese (Li et al., 2019), would likely 

reduce this affect and result in similar prediction accuracies between sexes. 

To investigate potential correlations between implant size prediction accuracy and subject age, 

Spearman's correlation coefficients were calculated as described in Chapter 3.12. As shown in 

Table 13, these indicated that no strong correlations for both component types and fit metrics 

were present. 

Table 13: Spearman’s coefficients for subject age relating to the pipeline’s implant size 

prediction performance 

 
 

Femur components Tibia plates 

RMSE -0.03 0.21 

Maximum OUH 0.02 0.25 

 

In summary, the results demonstrated that high levels of implant size prediction accuracy were 

obtained in terms of both RMSE and maximum OUH across the five implant model sizes. 

When compared to results reported in the literature for manual planning and templating, the 

size prediction accuracy of the pipeline was shown to be considerably better than the average 

across the ten studies summarised by Hernández-Vaquero et al. (2019), detailed in Chapter 2.2. 

In terms of other computational approaches, the pipeline achieved a better average tibia plate 

size prediction accuracy and matched the level reported for femur components (in terms of 

RMSE) when compared to the tool outlined by Zheng et al. (2018). Moreover, when compared 

to the results reported by Massé & Ghate (2021), the pipeline was on average > 20% more 

accurate for both component types. The large difference in accuracy compared to the latter was 

however likely (at least partially) due to a substantially larger number of sizing options being 

utilised in their study. Lastly, compared to the results published by Seaver et al. (2020) for 
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Traumacad’s Auto-Knee tool, the pipeline was demonstrated to afford markedly improved 

performance whilst still maintaining a fully automated process. 

7.3.2. Resulting Fit of Implant Size Predictions 

For the sizes recommended by the size prediction pipeline for each test subject, implant model 

and fit metric, the resulting fits on the subjects’ ground truth models (in terms of component 

RMSE and maximum OUH) were recorded. These results, alongside those for the best possible 

sizes determined using the ground truth models, are included in Table 14 and Table 15 for 

femur components and tibia plates respectively. 

Table 14: Femur component mean RMSE and mean maximum OUH results for best 

possible sizes and pipeline predictions 

Model (No. sizes) 

Mean prediction 

RMSE (mm), 

(SD) 

Mean best 

possible RMSE 

(mm), (SD) 

Mean prediction 

max OUH (mm), 

(SD) 

Mean best 

possible max 

OUH (mm), (SD) 

Zimmer Biomet (5) 1.31 (0.35) 1.26 (0.36) 3.70 (1.23) 3.55 (1.24) 

DePuy (6) 1.09 (0.23) 1.06 (0.23) 3.02 (0.77) 2.95 (0.77) 

Smith & Nephew (7) 1.14 (0.47) 1.05 (0.22) 3.29 (1.75) 2.89 (0.63) 

Maxx Orthopedics (8) 1.04 (0.18) 0.99 (0.19) 2.91 (0.61) 2.67 (0.53) 

Stryker (9) 1.10 (0.47) 1.03 (0.31) 3.16 (1.71) 2.87 (0.79) 

Mean 1.13 (0.37) 1.08 (0.28) 3.22 (1.32) 2.99 (0.88) 

 

Models with more sizing options generally resulted in better fits in terms of resulting mean 

component RMSE and maximum OUH. Nonetheless, considerable differences in average 

component fits were still recorded between the various (tibia plate) models featuring the same 

number of sizing options. This was found to be true for both the pipeline predictions and the 

best possible outcomes. The importance of optimising sizing dimensions, and not just simply 

offering a larger number of sizes, is therefore emphasised.  



T. Burge Applied AI/ML for Automatic Customisation of Medical Implants 2023 

- 148 - 

Table 15: Tibia plate mean RMSE and mean maximum OUH results for best possible sizes 

and pipeline predictions 

Model (No. sizes) 

Mean prediction 

RMSE (mm), 

(SD) 

Mean best 

possible RMSE 

(mm), (SD) 

Mean prediction 

max OUH (mm), 

(SD) 

Mean best 

possible max 

OUH (mm), (SD) 

Zimmer Biomet (6) 1.77 (1.10) 1.73 (1.12) 3.63 (1.71) 3.48 (1.78) 

DePuy (8) 1.19 (0.36) 1.11 (0.24) 2.70 (0.81) 2.52 (0.57) 

Smith & Nephew (8) 1.25 (0.34) 1.11 (0.24) 2.85 (0.72) 2.53 (0.61) 

Maxx Orthopedics (8) 1.38 (0.71) 1.31 (0.72) 3.20 (1.23) 2.91 (1.26) 

Stryker (8) 1.21 (0.34) 1.10 (0.24) 2.71 (0.74) 2.48 (0.57) 

Mean 1.36 (0.68) 1.27 (0.67) 3.02 (1.16) 2.78 (1.14) 

 

It was often observed that when the pipeline failed to predict the best possible size, the optimal 

component dimensions would have been close to the centre of two adjacent sizes, particularly 

for models with many similar sizing options. As a result, it can be seen in Table 14 and Table 

15 that the fits obtained using the pipeline predictions were on average only marginally inferior 

to the best possible outcomes for both component types. In the literature, it is noted that in such 

scenarios surgeons will usually downsize the component used (Dai et al., 2014b). Future 

iterations of the pipeline could therefore be configured to do the same to better align with the 

standard clinical approach. 

Figure 71 and Figure 72 show the proportion of subjects who achieved maximum OUH < 3 

mm for the various femur component and tibia plate model sizes. The figures demonstrate that 

the level of subjects obtaining below the threshold was approximately 10% less on average for 

femur components compared to tibia plates and that the levels varied significantly between the 

different manufacturer models. The proportion of subjects who saw maximum OUH of ≥ 3 mm 

when the pipeline’s size predictions were used was on average 12% higher (across both implant 

components) than what was determined to be the best possible outcomes using the subjects’ 

ground truth models. Moreover, the proportion of subjects who obtained clinically significant 
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levels of OUH, even when the best possible sizes were used, was above 30% in most cases for 

the femur, as well as in several cases for the tibia. This aligns with the results reported by 

Mahoney & Kinsey (2010) and Wernecke et al. (2012) who documented similar high levels of 

OUH when OTS, sized implants were used. 

 

Figure 71: Proportion of test subjects achieving maximum femoral OUH < 3 mm © (Burge 

et al., 2022c) 

 

Figure 72: Proportion of test subjects achieving maximum tibial OUH < 3 mm © (Burge et 

al., 2022c) 
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7.3.3. Pipeline Computational Requirements 

The pipeline used the same method and thus incurred the same approximate five minutes to 

create 3D model reconstructions of subjects’ femur and tibia bones as the X-ray based implant 

shape customisation pipeline (detailed in Chapter 5.3.3). The computation time required to then 

fit each implant size for a selected manufacturer model and create best option predictions 

depended on the number of sizing options available. Said processing time varied from 

approximately one minute for five size options, to two minutes for up to nine options. This was 

consistent for both femur component and tibia plate predictions when tested on a personal 

laptop computer (2.38 GHz AMD Ryzen 5 4500U CPU with 6 cores/8 Gb memory). In total, 

to reconstruct the anatomy and obtain size predictions for both component types for any of the 

manufacturer models evaluated, no more than 10 minutes was required.  

7.4. Summary 

In this chapter, an automated OTS knee replacement implant size prediction pipeline that 

utilised the X-ray based 3D model reconstruction workflow developed in Chapters 5 was 

developed and assessed. Mean implant size prediction accuracies across the various femur 

component and tibia plate models evaluated between approximately 70 – 80%, and almost 

100% for ± one size, were recorded. The pipeline’s performance was therefore demonstrated 

to exceed that previously reported possible for manual templating, as well as when compared 

to other computational alternatives. Moreover, the algorithms developed by Zheng et al. (2018) 

and Massé & Ghate (2021) were tested on substantially fewer test subjects and the authors only 

used single implant models with one global fit metric in their evaluations. The superior results 

and more comprehensive assessment presented in this chapter, particularly when compared to 

that reported for Traumacad’s Auto-Knee software (Seaver et al., 2020), therefore provide a 
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better justification of the viability of such a tool. However, if a protocol like that detailed by 

Nguyen et al. (2022) was to be in place to control the alignment and calibration of inputted X-

rays, it is likely performance could be improved even further. 

It is hoped that the high accuracy and ease of use of the developed pipeline will increase 

surgeons’ confidence in, and perceived value of, pre-operative size selection. As a result, this 

could minimise the possibility of size changes during surgery, reduce surgery time, lessen the 

level of component inventory required in theatre, lower surgeon accountability for determining 

the right size implants, and ultimately improve outcomes for patients.  
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Chapter 8 - CT Based Implant Shape 

Customisation Pipeline 

 

CT Based Implant Shape Customisation Pipeline 

The following chapter presents a method for, and results of, an automatic knee replacement 

implant shape customisation pipeline, using CT scans as an input medium.  

 

Most of the contents of this chapter have been published in the following paper:  

• Burge, T.A., Jeffers, J.R.T. & Myant, C.W. (2023) Applying machine learning methods 

to enable automatic customisation of knee replacement implants from CT data. 

Scientific Reports. 13, 1–9. 
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8.1. Introduction 

In Chapters 5 – 7 it was demonstrated that biplanar X-rays can be used as input to enable 

automatic reconstruction of patients’ bones and subsequently customise the shape and size 

selection of knee replacement implants. Although using the 2D input medium would minimise 

radiation exposure, costs, and accessibility would not be compromised compared to current 

OTS procedures, precise anatomical alignment and image calibration specifications were found 

to be necessary.  

As an alternative to X-rays, 3D medical imaging, such as CT or MRI, could be adopted to 

obtain more precise geometrical information of subjects’ anatomies, whilst minimising 

alignment and calibration requirements. Although MRI scans would not incur the same 

radiation risk, CT is far more accessible (Ginde et al., 2008). It also incurs less imaging time, 

is less expensive, and can usually achieve a clearer contrast between bone and flesh compared 

to MRI. Due to these advantages, CT is more commonly used for orthopaedic applications, 

including knee replacement (Rathnayaka et al., 2012). 

As outlined in Chapter 2.3, all CT based knee replacement implant shape customisation 

solutions identified in the literature required some level of manual work to facilitate. This 

generally involved segmenting CT scans to generate 3D bone models, refining mesh files, 

and/or completing design work in CAD programmes. Such tasks require highly skilled user 

inputs, and consequentially, the time and (up front) cost constraints required to produce 

customised implants currently make the solutions commercially unattractive. This chapter 

therefore sought to explore how AI/ML and statistical models could be used to enable a fully 

automated, CT based knee replacement implant shape customisation pipeline and investigate 

the potential benefits compared to the X-ray based alternative. 
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8.2. Pipeline Development and Test Method 

In the following sub-sections, the various stages of the CT based implant shape customisation 

pipeline (summarised in Figure 73) are outlined. Details of the data used to train and test the 

pipeline are also provided. 

 

Figure 73: Key stages and workflow of the CT based implant shape customisation pipeline 

8.2.1. Pipeline Training Data and Test Subjects 

As the OAI dataset did not contain CT data and 3D bone models were not supplied with the 

CT scans retrieved from Charing Cross Hospital, the KISTI dataset was used exclusively for 

training and testing the CT based pipeline. Subjects were split into two approximately equal 

sized groups for training and testing. Where possible, data for both knees for each subject was 

Load CT DICOM file and export images of each axial 

slice. 

Apply classifier model to slice images to categorise 

into four bone classes. 

Identify tibia-femur transition point, separate contours 

and create contour stacks for each bone. 
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in CT scan 
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create 3D model 
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implant 

designs 
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Apply femur and tibia segmentation models to isolate 

each bone in the slices. Apply edge detection to 

extract contours from each slice. 

Align contour stacks with tibia and femur SSM base 
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reconstructions. 

Run API CAD scripts to generate implant designs 

using data from pipeline. 
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used. 3D models and CT scans found to be of poor quality were excluded. In total, data from 

51 different subjects (33 female and 28 male) was used for training the pipeline. This consisted 

of slice images from 43 CT scans, as well as 90 femur and 96 tibia 3D models (including both 

left and right bones).  

Test subjects were only selected if both patients’ CT scans and 3D bone models were available. 

45 subjects (20 female and 25 male) were used for testing the performance of the pipeline for 

the femur. 43 subjects (22 female and 21 male) were used for the tibia. No CT data or 3D bone 

models used for training were also included in the test set. 

8.2.2. Identify Region of Interest in CT Stack 

Firstly, the inputted CT DICOM files were loaded into the pipeline and information such as 

pixel resolution, slice spacing, and the number of slices in the stack was recorded. Each slice 

from the CT scan was exported and saved as individual .PNG files (Figure 74A). A classifier 

model was then applied to the slice images to categorise them into four classes: ‘Fibula/Tibia’, 

‘Knee’, ‘Femur’, and ‘Other’. The ‘Knee’ class comprised of images of the condylar region of 

the distal femur, proximal tibia, and patella bones (Figure 74B).  

A CNN architecture, similar to that outlined by Hou & Gao (2021), was utilised for the 

classifier model. The number of filter channels used in each layer were set to those detailed in 

Figure 75 to sufficiently learn the nuances between the four classes and achieve f1 

classification results > 98% on allocated validation data. 8,000 slice images (2,000 for each 

class) from the training set were categorised and utilised with the method detailed in Chapter 

3.4.1 and hyperparameters detailed in Chapter 3.4 to train the model. 800 (200 for each class) 

were reserved for validation. After classifying the CT slices in the pipeline, the bone order was 

determined as ‘tibia-knee-femur’ or ‘femur-knee-tibia’. 
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Figure 74: A) CT slice image, B) Four bone classes, C) Bounding box created around 

ROI, D) Slice image cropped to ROI © (Burge et al., 2023b)  

An object detection model was applied to each slice determined to be within the ‘Knee’ section 

of the CT scan to locate the ROI around the left knee (Figure 74C). This was because, like for 

the X-ray based pipeline, the algorithm was also trained to work with left sided geometry to 

take advantage of the anatomical symmetry of the knee joint. A ‘bounding box regression’ 

object detection model was utilised due to their high accuracy, simplicity and because there 

was no need to detect multiple types of bone within each slice (Lee et al., 2019). A CNN 

architecture, similar to that outlined by Galvez et al. (2018), was utilised as illustrated in Figure 

76. Due to the relatively small area that the left leg occupied in the full CT slice (Figure 74C), 

it was found that the input layer required a high resolution (512 x 512 pixels) to adequately 

capture sufficient detail and reliably identify the ROI. However, since the model only needed 
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to be able to identify bone shapes within the ‘Knee’ section, the number of filters used in each 

layer could be reduced compared to those used in Figure 75. A 5th layer was also added to the 

architecture (like shown in Figure 47 for the X-ray segmentation model) as this was found to 

further improve the accuracy of the bounding box placement. 

 

Figure 75: Architecture of classification model used to split CT slices into four classes 

To train the object detection model, 1,000 images of the ‘Knee’ region, labelled with bounding 

box coordinates around the left knee (defined via the process detailed in Chapter 3.4.2), were 

used with 100 reserved for validation. The same hyperparameters and optimiser as employed 

for the classifier model (listed in Chapter 3.4) were used to facilitate the model training. 
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Figure 76: Architecture of object detection model used to identify the ROI in CT slices  
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After the pipeline had determined the centre of the ROI for each slice, a consistent 160 x 160 

pixel square box, positioned at the median X and Y coordinates, was defined as the average 

ROI across all slices in the ‘Knee’ portion of inputted CT scans. Each slice was then cropped 

to the ROI and outputted as a new .PNG file (Figure 74D). If the pipeline was to be used for a 

subject’s right knee, (un-cropped) slice images were automatically flipped horizontally by the 

pipeline before the object detection step was completed. 

8.2.3. Extract Bone Contours and Create 3D Model Reconstructions 

To isolate the femur and tibia bones from the surrounding tissue in the cropped ROI CT slice 

images, segmentation models for both bones (utilising the same U-net CNN architecture as 

adopted for the X-ray based pipelines (Figure 47)), were applied. To train the segmentation 

models, the hyperparameters and optimiser detailed in Chapter 3.4 were again utilised. 1,832 

and 1,623 training image/mask pairs were generated for the femur and tibia respectively 

following the process detailed in Chapter 3.4.3. These featured CT slices cropped to the ROI 

around the left knee, as well as the right after a horizontal transformation had been applied. 

This helped to increase the volume of training data available. 200 image/mask pairs were 

reserved for validation for each model.  

Both segmentation models were applied to the cropped images before a Canny edge detector 

and filter were employed (as detailed in Chapter 3.5) to extract the bone contours from all 

‘Knee’ slices (illustrated in Figure 77A). To identify the tibia-femur transition point and 

separate the contours into the respective bones, firstly, the area of each slice’s segmented bone 

(for both femur and tibia segmentation model results) was calculated and a univariate spline 

curve fitted to reduce slice-slice noise (illustrated in Figure 78). The transition point was then 

determined by first locating the positions of the largest area for both the femur and tibia bones 

according to the corresponding segmentation models. The slice number at which the tibia and 
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femur curves intersected between these reference points, i.e., where the condyles of the femur 

ended and the tibia plateau began, was then identified as the transition point (highlighted in 

Figure 78). It should be noted that the slight negative segmentation area shown for the tibia at 

the tibia-femur transition point in Figure 78 was an artifact of the univariate spline curve and 

did not affect the pipeline accuracy. 

 

Figure 77: A) Isolated bone areas and extracted contours for the tibia and femur, B) 

Contour stacks, C) Contour stacks positioned on SSM base shapes, D) 3D model 

reconstructions © (Burge et al., 2023b) 

To form ‘contour stacks’ for the tibia, the 2D contours produced using the tibia segmentation 

model, up to the defined tibia-femur transition point, were positioned on top of each other in 

3D space. The contours were separated in the Z direction (normal to the slices) according to 
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slice spacing information retrieved from inputted CT DICOM files. The same was completed 

to form femur contour stacks using contours generated by the femur segmentation model after 

the tibia-femur transition point. The contour stacks were trimmed by five slices at the proximal 

end of the tibia and the distal end of the femur as excessive segmentation noise was found to 

occur in these regions. Example contour stacks for both bones are illustrated in Figure 77B. 

 

Figure 78: Segmented tibia and femur bone cross-sectional areas plotted for each slice 

within the ‘Knee’ region of a CT stack © (Burge et al., 2023b) 

Two SSMs, one for the femur and another for the tibia, were developed following the process 

detailed in Chapter 3.8 using the 90 and 96 3D bone models from the KISTI dataset 

respectively. New SSMs were built instead of using those created previously for the X-ray 

based pipeline to optimise the amount of data available for both train and test whilst ensuring 

independence between the groups. The models comprised of left bones, as well as right bones 

after horizontal transformations had been applied. To create 3D reconstructions of subjects’ 

bones, the contour stacks generated were aligned to the base shapes of each SSM model using 
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a ridged ICP method as detailed in Chapter 3.7 and illustrated in Figure 77C. The process 

detailed in Chapter 3.8 was then used to morph the SSM base shapes to the contour stacks and 

enable 3D model reconstructions of the femur and tibia bones to be generated (Figure 77D).  

In line with the X-ray based pipeline developed in Chapter 5, the base shapes of the SSMs built 

for the CT based pipeline were ‘idealised’ and smoothed to ensure outputs were well-suited for 

designing custom implants. Unlike in the X-ray based pipeline, only one tibia SSM size was 

found to be needed. This was because the contour stacks contained more complete geometrical 

detail compared to the sparse 3D point clouds created from the biplanar X-rays, which 

facilitated simpler alignment with the SSM base shapes. 

It is noted that authors have typically used tools included within segmentation software 

packages (such as 3D Slicer) to generate the 3D bone models required directly from CT scans 

(Jun, 2011) (Li et al., 2017) (Balwan & Shinde, 2020). The resulting triangulated meshes then 

needed refinement, such as smoothing processes, and the quality of the models produced was 

highly dependent on the resolution of the inputted scans. In addition, the number and indexing 

of the resulting mesh faces and vertices, as well as the alignment of outputted models, would 

have differed between scans. This would lead to problems if attempting to automate the 

process. By adopting the contour stack driven SSM approach outlined in this section, these 

issues were mitigated, enabling a reliable fully automated method. 

8.2.4. Generate Custom Implant Designs 

Once 3D model reconstructions were created, the same process used in Chapter 5.2.4.1 was 

adopted to generate custom shape TKR implant components. Like in the X-ray based pipeline, 

the outputs from the CT based pipeline could also be used to produce uni-condylar designs, as 

well as other varieties of TKR styles if desired, as described in Chapter 5.2.4.2.  
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8.3. Pipeline Test Results and Discussion 

In this section, how the parameters of the CT based implant shape customisation pipeline were 

optimised is described, an analysis of performance results obtained for the pipeline is outlined, 

and the necessary computational requirements to run the workflow are detailed. 

8.3.1. Pipeline Parameter Optimisation 

Like for the X-ray based pipeline, the impact of adjusting important parameters associated with 

the CT based pipeline was evaluated before running the full analysis. As increasing the number 

of training models used to build SSMs was previously demonstrated to continuously improve 

results in Chapter 5.3.1, an equivalent analysis was not repeated here. As PDMs were not used 

in the CT based pipeline, this was also not considered. The analysis therefore concentrated 

solely on the number of principal components utilised in the femur and tibia SSMs.  

Like before, a subset of 20 was randomly selected from the test subjects detailed in Section 

8.2.1 to facilitate the parameter optimisation analysis. The number of principal components 

were adjusted from one to five and the mean reconstruction to ground truth RMSE (detailed in 

Chapter 3.11.1) across the 20 test subjects was used to assess performance. The results of the 

analysis are shown in Figure 79. Like with the results presented for the X-ray pipeline in 

Chapter 5.3.1 and illustrated in Figure 60, employing two principal components was found to 

afford the most accurate 3D model reconstructions on average. This was unexpected since more 

geometrical information was available from the 3D CT scans, thus the hypothesis was this 

would better inform the SSM morphing. Yet perhaps the subtleties of the higher order principal 

components learned by the SSMs could not be captured adequately due to the reasonably coarse 

KISTI CT resolution (1 mm axial slice thickness). Nonetheless, to optimise anatomical 
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reconstruction and avoid capturing damaged patient anatomy too closely, the number of SSM 

principal components used for the full results analysis was limited to two.  

 

Figure 79: Impact of varying the number of SSM principal components in the CT pipeline 

8.3.2. Pipeline Performance Results Analysis 

When evaluated on the test subjects detailed in Section 8.2.1, the CT based pipeline 

successfully generated 3D reconstructions of almost all subjects’ anatomies and created highly 

accurate custom implant designs (like shown in Figure 80). Nevertheless, in the case of one 

subject’s tibia bones, the pipeline failed to segment the CT slices and produce contour stacks 

due to erroneous results obtained from the tibia segmentation model. Consequently, the 

subject’s left and right knees were removed from the tibia analysis, leaving 42 subjects (81 

bones). Summaries of the pipeline performance for both the femur and tibia are provided in 

Table 16 and Table 17 respectively. 
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Figure 80: Distance heat map of a custom femur component produced by the CT based 

implant shape customisation pipeline in relation to the ground truth model 

The results show that the CT based pipeline produced more accurate results for both bones 

across all three fit metrics compared to that reported for the X-ray based pipeline in Chapter 

5.3.2, as well as when the DRR method was adopted in Chapter 6.3.1. In particular, the 

proportion of subjects with maximum OUH breaching the clinical threshold of 3 mm was 

substantially improved. The differences between the CT based pipeline and the X-ray and DRR 

results were all found to be strongly statistically different for all fit metrics for both bones 

(utilising the method detailed in Chapter 3.12). A comparison of the performance results across 

the three shape customisation pipelines is provided in Figure 81 and Figure 82 for the femur 

and tibia respectively. It should be noted that, due to the data available, different test subjects 

were used between the three analyses which could have contributed to some of the discrepancy. 
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Table 16: Summary of CT based implant shape customisation pipeline femur results 

 
 

Total 

knees, (%) 

Mean reconstruction 

RMSE (mm), (SD) 

Mean component 

RMSE (mm), (SD) 

Component maximum 

OUH ≥ 3 mm, (%) 

Overall 84 0.87 (0.20) 0.85 (0.21) 6 (7.1) 

Sex 
 

   

Female 37 (44.0) 0.87 (0.19) 0.84 (0.21) 2 (5.4) 

Male 47 (56.0) 0.87 (0.21) 0.85 (0.22) 4 (8.5) 

Knee     

Left 42 (50.0) 0.86 (0.19) 0.83 (0.21) 3 (7.1) 

Right 42 (50.0) 0.88 (0.21) 0.86 (0.22) 3 (7.1) 

 

Table 17: Summary of CT based implant shape customisation pipeline tibia results 

 
 

Total 

knees, (%) 

Mean reconstruction 

RMSE (mm), (SD) 

Mean component 

RMSE (mm), (SD) 

Component maximum 

OUH ≥ 3 mm, (%) 

Overall 81 0.80 (0.15) 0.82 (0.27) 1 (1.2) 

Sex 
 

   

Female 37 (45.7) 0.76 (0.14) 0.79 (0.26) 1 (2.7) 

Male 44 (54.3) 0.83 (0.16) 0.84 (0.28) 0 (0.0) 

Knee     

Left 41 (50.6) 0.82 (0.15) 0.83 (0.29) 1 (2.4) 

Right 40 (49.4) 0.78 (0.15) 0.81 (0.25) 0 (0.0) 

 

Like for the X-ray based pipeline, the results for the CT shape customisation pipeline showed 

lower errors across the three performance metrics for the tibia compared to the femur. The 

differences were again calculated to be significant for 3D model reconstruction RMSE and 

maximum component OUH, but not component RMSE. This therefore reinforced the previous 

observation that, even with the additional 3D geometrical information available from using CT 

scans, capturing the more complex femur morphology via the use of SSMs was more 

challenging than for the tibia. 
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Figure 81: Box plot comparison of X-ray, DRR and CT implant shape customisation 

pipelines results for the femur 

 

Figure 82: Box plot comparison of X-ray, DRR and CT implant shape customisation 

pipelines results for the tibia 

Within the results for each bone, the difference in the CT based pipeline’s performance due to 

sex and knee side was not found to be statistically significant for any of the performance 

metrics. Additionally, neither subject age nor height were found to significantly impact 

performance as all Spearman’s coefficients calculated (r) were -0.1 < r < 0.3. These findings 

were all consistent with the X-ray based pipeline when the DRR approach was used. 
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A limited number of outliers (data points located outside the box plot whiskers) for both bones 

were recorded for the CT based pipeline which can be seen in Figure 81 and Figure 82. It was 

found that, like in the case of the tibia subject that failed, typically these isolated cases of poor 

fit were due to low quality segmentation results. This issue was likely due to overfitting in the 

machine learning and statistical models, caused by the limited data available for training. 

Although a reasonably large number of images were used to train the segmentation models, 

these were sourced from just 43 CT scans, captured via the same equipment, and were purely 

of Asian Korean subjects. Since the accuracy of the pipeline was dependent on quality 

segmentations being acquired for multiple CT slices through the thickness of subjects’ knee 

joints, significantly increasing the volume and diversity of the model’s training data would 

likely be required to completely avoid such failures. 

In comparison to results reported for other (not fully automated) CT based custom shape TKR 

solutions, Chapter 2.3 detailed that Ogura et al. (2019) and Arnholdt et al. (2020) reported no 

instances of OUH ≥ 3 mm. Schroeder & Martin (2019) however concluded 18% of subjects in 

their study had tibia plates that did not meet this threshold. This discrepancy may be because, 

in the first two studies, OUH was measured post-operatively via 2D X-rays and defined as the 

distance between the outermost edges of the tibia/femur condyles and the outermost edges of 

the component. Whereas this differed to the method utilised in this research (detailed in Chapter 

3.11.2) which considered the entire bone-implant interface and likely resulted in higher levels 

of OUH being recorded. The results published by Schroeder & Martin (2019) who also 

measured OUH along the entire bone-implant interface are therefore probably a more relevant 

comparison. Hence, it can be reasoned that the performance of the pipeline could be 

comparable to manual or semi-automated customisation alternatives. 
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8.3.3. Pipeline Computational Requirements 

In terms of solve time, the pipeline was found to consistently process inputted CT DICOM files 

and generate both custom femur and tibia plate components in less than 10 minutes when run 

on a personal laptop computer (2.38 GHz AMD Ryzen 5 4500U CPU with 6 cores/8 Gb 

memory). The longer duration required compared to the X-ray based pipeline was mostly due 

to the requirement of processing thousands of slices in the CT DICOM files to extract the 

contour stacks used to drive the SSMs. This was necessary regardless of the desired pipeline 

output, meaning minimal time savings were realised for subjects requiring just one component 

type (femur component or tibia plate). This was unlike the X-ray pipeline where just the femur 

or tibia bones could be segmented separately from inputted X-rays if purely one type was 

desired. Despite this, the required computation time was still extremely low compared to what 

would be incurred via a manual process.  

8.4. Summary 

In this chapter, it was demonstrated that the CT based implant shape customisation pipeline 

was capable of repeatably producing significantly more accurate 3D model reconstructions and 

custom implant designs for both bones compared to the X-ray alternative outlined in Chapter 

5, as well as when the DRR method was adopted in Chapter 6. The CT based pipeline produced 

virtually no cases of custom tibia plates with maximum OUH ≥ 3 mm, and only 7.1% of femur 

components breached this threshold (when tested on over 80 subject bones). Such results were 

also considerably better than the theoretical best possible calculated for OTS implants (based 

on the analysis in Chapter 4), as well as potentially better than those reported for non-

automated, CT based customisation solutions. In addition, the automated process was 

demonstrated to consistently take less than 10 minutes which would help save a significant 
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amount of the current 6 – 8 week lead times currently associated with customisation solutions 

(Seekingalpha.com, 2019). In summary, using CT data as an input to an automated knee 

replacement implant shape customisation pipeline was therefore shown to offer a robust 

solution which could afford high quality outcomes for most patients, with reduced time and 

resource requirements compared to currently available workflows.  
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Chapter 9 - CT Based Implant 

Stiffness Customisation Pipeline 

 

CT Based Implant Stiffness Customisation Pipeline 

The following chapter presents a method for, and results of, an automatic knee replacement 

implant stiffness customisation pipeline, using CT scans as an input medium. 

 

Most of the contents of this chapter have been published in the following paper:  

• Burge, T.A., Munford M.J., Kechagias S., Jeffers, J.R.T. & Myant, C.W. (2023) 

Automating the customization of stiffness matched knee implants using machine 

learning techniques. The International Journal of Advanced Manufacturing 

Technology. 
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9.1. Introduction 

Thus far, the focus of the customisation pipelines developed has been on optimising the shape 

and fit of TKR implants. However, as previously detailed in Chapter 2.4, the stiffness of these 

products can also be customised to further optimise performance. Implants incorporating lattice 

structures matched to the stiffness of subjects’ bones have been shown to form a mechanical 

environment closer to natural trabecular bone than traditional solid components, enabling 

stresses and strains to be better distributed (Munford et al., 2022). These porous structures with 

localised strain gradients can promote positive bone remodelling and reduce resorption, thereby 

reducing the probability of early revisions being required (Elliott et al., 2016). 

As highlighted previously, authors have outlined methodologies for how the design of lattice 

structures can be matched to the stiffness of trabecular bones via the use of imaging mediums 

containing spatial density information, predominantly CT scans (Ghouse et al., 2019) (Munford 

et al., 2020). Munford et al. (2022) also demonstrated that implant stiffness could be matched 

at differing levels, such as uniformly to a calculated average across the resected bone interface, 

as well as being graded to replicate differences in native condyles and subchondral depth. 

Nonetheless, no studies were found that detailed how the design of such lattice structures could 

be automated to address the significant amount of time necessary to manually process CT 

scans, calibrate, and extract the density information needed to design custom stiffness implants. 

This chapter therefore sought to explore how automated implant stiffness customisation could 

be facilitated by adopting the AI/ML techniques outlined throughout the previous chapters. It 

should be noted that the focus and novelty of the work was not on the design of the implant 

lattice structures themselves, but on how the required density information can be extracted from 

volumetric medical images, calibrated, and converted to stiffness data in a fully automated 

manner. The stochastic lattice design method developed by Kechagias et al. (2022) was then 
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adopted to facilitate an automated end-to-end workflow for generating stiffness matched 

implant designs. 

Although both X-ray and CT images contain density information, the latter does so with a high 

degree of 3D spatial accuracy. It also allows for axial cross sections to be taken at precise 

locations on the anatomy so trabecular and cortical bone can be differentiated (Whitmarsh et 

al., 2011). The implant stiffness customisation pipeline was thus developed solely for CT scans. 

Furthermore, the proof-of-concept framework was developed purely for TKR tibia plates due 

to their lower geometrical complexity and 2D interaction with the bone. 

9.2. Pipeline Development and Test Method 

In the following sub-sections, the various stages of the CT based knee replacement implant 

stiffness customisation pipeline (summarised in Figure 83) are outlined. Details of the data 

used to train, and subjects used to test the pipeline are also provided. 

9.2.1. Pipeline Training Data and Test Subjects 

Of the datasets available, only the four CT scans retrieved from the Charing Cross Hospital 

contained material density phantoms (further detailed in Chapter 3.2.3). Three of these scans 

were used to train various modules within the pipeline, whilst the fourth was kept separate to 

be used as a test subject. Additional CT scans were taken from the KISTI dataset to train aspects 

of the pipeline that did not require a density phantom to be visible within the image.  

9.2.2. Identify Slice of Interest in CT Stack 

To enable the pipeline to extract density information at the point a tibia plate would interface 

with a resected tibia bone, the relevant CT slice from the DICOM image stack first needed to 
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be identified. This was completed in much the same way as the process outlined in Chapter 

8.2.2 for the CT based implant shape customisation pipeline in which the tibia-femur transition 

point was found. The steps equivalent to those in Figure 73 are highlighted in green in Figure 

83. The updated models and workflow implemented for this pipeline are described as follows. 

To better work with CT slices containing a density phantom, a new image classifier model was 

built using the same architecture outlined in Figure 75. The model was trained in line with the 

process described in Chapter 3.4.1 with 4,374 CT slice images obtained from the three Charing 

Cross CT DICOM files designated for training. The images were categorised into the same 

four classes (‘Fibula/Tibia’, ‘Knee’, ‘Femur’, and ‘Other’) as before (Figure 74B). Due to the 

limited diversity in the training data (three CT scans), model validation was completed using 

1,463 slice images from the scan reserved for testing the full pipeline. This is not best practice 

for training AI/ML models as it can lead to overfitting and misleading results. However, for 

the proof-of-concept, it was deemed acceptable in lieu of more data being available. 

An updated boundary box regression object detection model was created (using the same 

architecture shown in Figure 76) to identify the (160 x 160 pixel square) ROI around the left 

knee (as detailed in Figure 74C). 138 CT slice images (containing density phantoms) from the 

‘Knee’ regions in the three Charing Cross CT scans were labelled using the method detailed in 

Chapter 3.4.2 and used for training. Like for the updated classifier model, validation was 

performed using 45 labelled images taken from the one test scan. As before, the pipeline was 

developed solely for the left knee to take advantage of the symmetry between the two sides of 

the human body. Therefore, if the right knee was required, a horizontal transform was applied 

to the slice images in the pipeline before the object detection model was used. 
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Figure 83: Key stages of the CT based implant stiffness customisation pipeline 
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After the average ROI across all slices in the ‘Knee’ section was identified in the same way as 

described in Chapter 8.2.2, the slice images were cropped to size. A segmentation model was 

then used to isolate the bone area from the background in each of the slices (like illustrated 

previously in Figure 77A). Since the cropped images no longer contained phantoms, the same 

left tibia bone segmentation model outlined in Chapter 8.2.3 (trained using data obtained from 

the KISTI dataset) was used. The femur segmentation model was not used in this pipeline since 

accurate segmentations of the femur were not needed. After segmentation, the tibia bone cross-

sectional areas (in terms of pixel count) were plotted through the stack as shown in Figure 84. 

As in Figure 78, a univariate spline curve is shown fitted to the results to reduce slice-slice 

noise and enable the position of the maximum bone area to be identified more reliably. If an 

offset was specified by the user to position the implant more distally or proximally on the tibia, 

the pipeline accounted for this before the slice of interest was selected. 

 

Figure 84: Number of pixels within segmented tibia bone area for each slice within the 

‘Knee’ region of a CT scan © (Burge et al., 2023c) 
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9.2.3. Calibrate Selected CT Slice and Extract Density Information 

Before selected slices could be calibrated and density information obtained, their orientation 

was adjusted in the pipeline to account for variability in patients’ positioning during imaging 

and ensure the bone was aligned in a consistent way. To achieve this, the segmented 2D bone 

area from the selected slice (Figure 85A) was rotated (Figure 85B) and fitted via a rigid ICP 

method (detailed in Chapter 3.7) to a template tibia plate shape of known alignment (Figure 

85C). The calculated rotation was then applied to the selected slice image (Figure 85D). 

 

Figure 85: A) Segmented 2D bone area from selected CT slice, B) Rotation of segmented 

bone, C) Segmented bone rotated to fit a template tibia plate, D) Rotated selected slice 
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Next, a further segmentation model was created using the same CNN architecture as used in 

Figure 47. This was applied to the aligned selected slice image to isolate the five phantom 

material cells from the background detail (illustrated in Figure 86). To train the density cell 

segmentation model, 384 slice image/mask pairings were created (following the process 

detailed in Chapter 3.4.3), utilising images from the ‘Knee’ region in the three Charing Cross 

CT scans, along with 133 pairs from the test scan for validation.  

 

Figure 86: A) CT scan image, B) Density phantom cells segmented from background 

Once isolated, the median pixel intensity values within each segmented circle, in terms of 

Hounsfield units, were calculated. A linear function relating the known densities of the 

phantom’s five K2HPO4 cells, adjusted for water content, against the calculated Hounsfield 

unit values could then be plotted as demonstrated in Figure 87. Using the function of the plot, 

the pixels in the segmented cross-sectional bone area of the selected CT slice (Figure 85A) 

could then be calibrated in line with the approaches detailed in (Ng et al., 2019), as illustrated 

in Figure 18, and (Munford et al., 2020). 
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Figure 87: Plot of density phantom cell pixel intensities (adjusted for water) vs. effective 

K2HPO4 density © (Burge et al., 2023c) 

To correspond better with the density of porous trabecular bone structures, the pipeline adjusted 

the calibrated density values of each pixel from the CT scan image (𝜌𝐶𝑇) to ash (𝜌𝐴𝑠ℎ), and 

then apparent (𝜌𝐴𝑝𝑝) densities using Equation 8 and Equation 9 shown below from (Munford 

et al., 2020). 

Equation 8: Calculation of ash density 

𝜌𝐴𝑠ℎ = 1.22𝜌𝐶𝑇 + 52.6 

Equation 9: Calculation of apparent density 

𝜌𝐴𝑝𝑝 = 1.64𝜌𝐴𝑠ℎ + 10 

Multiple lattice infill design styles were explored which are illustrated in Figure 91 and Figure 

92. To facilitate these designs, first a global average apparent density, taken over the full cross 

sectional bone area, was calculated. The bone area was then split into the left and right condyles 

(using a midline created using global Min and Max functions) and mean apparent densities for 

each were recorded. Lastly, the bone area was split into an array of a specified number of 
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columns and rows (25 x 20) and mean apparent density values for each cell within the array 

were calculated. This was investigated in 2D on the selected slice only as well as through the 

thickness of the tibia to form a 3D density array by repeating the process for each slice distally 

from the selected slice down axially through the length of the tibia bone for the height of the 

tibia plate component. 

9.2.4. Design Implant Lattice Structures 

The method used for creating the lattice designs was adopted from the approach outlined by 

Kechagias et al. (2022), shown in Figure 19. A stochastic lattice with randomly distributed 

nodes was utilised over a more regulated (periodic) structure to better mimic the biological 

randomness of bone and to enable a greater degree of control over the stiffness distribution. 

To characterise the 3D volume of the tibia plate, a simplified version of the generic design 

shown in Figure 57 was utilised for the proof-of-concept. However, the pipeline could be 

adopted for any tibia plate geometry. The 3D model was first loaded by the pipeline as a mesh 

(.stl file), as shown in Figure 88A. Then, using a series of reference points calculated using 

Min and Max functions, including the maximum left, right, top, and bottom component points, 

the mesh points were separated into those comprising of the plate (blue points), the pin (red 

points), and cut-out section (green points), illustrated in Figure 88B. 

 

Figure 88: A) Generic tibia plate mesh model, B) Mesh points split into sections, C) Nodes 

randomly distributed within tibia plate volume © (Burge et al., 2023c) 
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To distribute nodes within the tibia plate model, the plate and pin volumes were first separated 

and enclosed in cuboids as defined by the reference points stated previously. Sufficient nodes 

were then distributed within the two cuboid volumes by setting random X, Y and Z coordinates 

within the constraints of the cuboids so that the required overall nodal density (𝑑𝑁𝑜𝑑𝑒𝑠) was 

achieved. This was calculated using Equation 10 with the target nodal connectivity (Z) and 

strut density (𝑑𝑆𝑡𝑟𝑢𝑡𝑠) as struts/mm3 specified as pipeline input parameters.  

Equation 10: Calculation of nodal density 

𝑑𝑁𝑜𝑑𝑒𝑠 =
2𝑑𝑆𝑡𝑟𝑢𝑡𝑠

𝑍
 

A specified proportion of the nodes were forced to be allocated to the outer faces of the 

structure during the random distribution process to help ensure adequate structural integrity. 

Nodes found to be outside of the plate volume (minus the cut out), or pin, or that did not satisfy 

a Nearest Neighbour (Yianilos, 1993) criterion of 0.5 ≤ x ≤ 3 mm, were eliminated. This 

distance criterion was used to help ensure a reasonable degree of homogeneity of nodes across 

the volume. The node distribution process was repeated iteratively until sufficient nodes had 

been inserted within the total tibia plate volume to satisfy the target nodal density (illustrated 

with a low density in Figure 88C). 

After distributing the nodes, the pipeline then worked through each one systematically and 

assigned zero thickness struts between pairs that satisfied specified user constraints. The 

constraints consisted of minimum and maximum strut lengths (typically 0.5 and 3 mm 

respectively), the minimum angle between struts and the print bed (typically > 25° to ensure 

manufacturability via powder bed fusion), and maximum node connectivity (varied from 

between 4 – 8). The pipeline also checked to confirm that no struts were intersecting and 

removed any duplicates created between the same nodes. Once complete, a check was made 
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for and removed any outstanding nodes that fell below a specified minimum connectivity to 

avoid floating struts which would not contribute to the lattice’s mechanical response (typically 

2). These steps were also repeated iteratively until all nodes present within the structure had at 

least the minimum specified connectivity. 

As detailed in (Kechagias et al., 2022), the stiffness of a stochastic lattice structure can be 

controlled by adjusting the strut density, nodal connectivity, and/or the strut thickness. For 

simplicity, the pipeline was designed to keep the first two variables constant over the total tibia 

plate volume with solely strut thickness altered to achieve stiffness variation. Equation 11, 

taken from (Munford et al., 2020), was used to estimate the apparent stiffness modulus (E) 

from the apparent density (𝜌𝐴𝑝𝑝) data extracted from the earlier stages of the pipeline. 

Equation 11: Calculation of apparent stiffness modulus 

𝐸 = 0.9𝜌𝐴𝑝𝑝
0.55 

For the lattice structure to have the same stiffness (E) as a patient’s trabecular bone, its relative 

density (�̃�), which is the ratio of its apparent density to solid material’s density, first needed to 

be estimated. Relative density was calculated using power-law regression models in the form 

of Equation 12 where the values of 𝑎 (71598.2) and 𝑏 (2.22) depended on the lattice’s localised 

connectivity (Kechagias et al., 2022). 

Equation 12: Form of relative density 

�̃� = √
𝐸

𝑎

𝑏

 

Equation 13 then allowed for the required strut thicknesses (t) for the various lattice designs to 

be calculated for given E values, with node connectivity (Z) and strut density (𝑑𝑆𝑡𝑟𝑢𝑡𝑠) kept 

constant (Kechagias et al., 2022).  
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Equation 13: Calculation of strut thickness 

𝑡 =
√𝐸

𝑎

𝑏

 −  0.0110𝑍 −  0.0252𝑑𝑆𝑡𝑟𝑢𝑡𝑠  +  0.344

1.29
 

9.3. Pipeline Test Results and Discussion 

To test the performance of the implant stiffness customisation pipeline, its accuracy when 

selecting the CT slice of interest and ability to generate various lattice designs were evaluated. 

9.3.1. Accuracy of Identifying CT Slice of Interest 

To verify the accuracy of the implant stiffness customisation pipeline in terms of identifying 

the correct CT slice where the tibia plate would interface with the bone (Section 9.2.2), 

segmentation results for both knee sides from the test CT scan were compared with those 

obtained manually. The analysis is shown in Figure 89 and is limited to the results for the tibia 

condylar regions for clarity. It is demonstrated that (for the one test CT scan) the pipeline was 

able to closely replicate the manual segmentation and slice selection to within one slice (0.6 

mm in terms of Z positioning) for both knees.  

 

Figure 89: Number of pixels in segmented bone area by slice number for manual and 

automatic methods. A) Left knee side and B) Right knee side © (Burge et al., 2023c) 
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Figure 90 shows the outputs from the manual (A) and automated (B) processes to demonstrate 

the negligible difference in the selected slice of interest a discrepancy of one slice (0.6mm axial 

distance in this case) would have. To further quantify the difference, the global mean apparent 

densities for the two slices were calculated using the method detailed earlier in this chapter. 

The manual approach resulted in a density of 233 mg/cm3, whilst the automated approach 

predicted 240 mg/cm3 – a 3% difference. It should be noted that if a CT scan with a larger axial 

spacing between slices was used then a discrepancy of one slice may be more impactful. That 

being said, the greater difference between neighbouring slices likely associated with lower 

resolution scans would also make identifying the correct slice more reliable.  

 

Figure 90: A) Left knee slice selected via manual approach (slice 370), B) Left knee slice 

selected via automated approach (slice 371) 

A limitation of the pipeline that should be noted is that a consistent density phantom was needed 

in the inputted scans to ensure compatibility with the segmentation models. This could however 

be addressed by training the pipeline with slice images containing a range of commonly used 

phantoms. 

 

A)         B) 
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9.3.2. Generation of Implant Lattice Designs and Prototypes 

Using the methods outlined above, different lattice design styles were produced for each knee 

side reflecting the density distribution in the selected CT slices (an example for the left side is 

shown in Figure 91A). Figure 91B demonstrates a structure with a consistent global mean strut 

thickness. Figure 91C demonstrates a structure with left and right condyle mean strut 

thicknesses. Lastly, Figure 91D demonstrates a structure with strut thicknesses mapped over 

the slice as a 25 x 20 cell array. It is clear in Figure 91C that the struts on the left (lateral) side 

are considerably thicker than on the right (medial). Moreover, in Figure 91D the strut 

thicknesses over the area correspond well with the denser (brighter) regions of the bone visible 

in Figure 91A, particularly around the contact point with the lateral femur condyle.  

 

Figure 91: A) Selected CT slice cropped to ROI, B) Global mean strut thickness, C) Left 

and right condyle mean strut thicknesses, D) Strut thicknesses mapped over the slice area 

© (Burge et al., 2023c) 
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Figure 92 demonstrates a lattice design created using a 3D density array. In this example, the 

struts in the pin can be seen to be thinner compared to the proximal (top) surface of the plate 

as the density of the tibia trabecular bone reduces distally from the condylar plateau. 

 

Figure 92: Strut thicknesses mapped in 3D through the tibia bone © (Burge et al., 2023c) 

Prototype designs to trial the full implant stiffness customisation pipeline were fabricated using 

the process detailed in Chapter 3.13. The resulting structures, employing a constant target 

connectivity of 6, minimum connectivity of 2, strut density of 3 struts/mm3, minimum strut 

angle 30°, but varied strut thickness, are shown in Figure 93. The structures in Figure 93A 

correspond to the left and right condyle mean strut thicknesses design shown in Figure 91C, 

while the structure in Figure 93B was designed with strut thicknesses mapped across the bone 

cross section like in Figure 91D. Figure 93C shows the full lattice structure of a prototype tibia 

plate. 

It was identified that, as the angle of the CT slice images (and therefore the density information 

extracted) was determined by the positioning of subjects’ anatomies during the imaging 

process, errors in stiffness matching could potentially occur if the intended bone resection angle 

was substantially different. An imaging protocol to control anatomical alignment, like 

proposed for the X-ray based pipelines, may therefore be required to ensure optimal results. 
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Figure 93: A) & B) show regions of the two prototyped customised lattice designs, imaged 

via scanning electron microscopy. C) Shows a full prototype lattice structure © (Burge et 

al., 2023c) 

9.3.3. Pipeline Computational Requirements 

The computational requirements of the implant stiffness customisation pipeline were evaluated 

by running the process on a personal laptop computer (2.38 GHz AMD Ryzen 5 4500U CPU 
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with 6 cores/8 GB memory). For the first stage (processing the inputted CT scan and selecting 

the appropriate slice), the pipeline was found to take between 7 – 8 minutes. Following this, 

between 1 – 2 minutes were required to align the selected slice, calibrate the image, and export 

the density information. The time taken to generate the lattice structure designs constituted the 

greatest proportion of the total computation time and depended on specified connectivity and 

strut density targets. Figure 94 shows the relationship observed between computation time to 

generate the lattice designs and both these lattice design parameters. Consistent minimum and 

maximum strut lengths (0.5 and 3 mm), minimum strut angle (30°), and minimum connectivity 

(Z = 2) were used for the analysis. For reference, Figure 93C shows a lattice structure built 

with these parameters.  

 

Figure 94: Relationship of computation time to generate lattice structures with differing 

strut densities and connectivity © (Burge et al., 2023c) 

Due to the intricacy of the stochastic lattice structures, conventional CAD packages run on 

computers with standard graphics cards would struggle to render the enormous number of 

resulting faces if such structures were modelled as solids (Munford et al., 2022). Furthermore, 

achieving lattice designs like shown in Figure 93 via a manual approach would take an 
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immense amount of time and would be practically unworkable. These issues were overcome, 

enabling a time efficient process, by adopting the automated, script based approach to design 

lattices with zero thickness struts, adopted from (Kechagias et al., 2022). 

9.4. Summary 

In this chapter, the ability to customise the mechanical properties of implant components to 

match the stiffness distribution in subjects’ bones to a range of fidelities, via the use of CT 

scans, was demonstrated. The pipeline was shown to be able to accurately identify the CT slice 

of interest from a DICOM file and obtain the density information necessary to generate various 

lattice designs with differing levels of stiffness matching, all without any user input required. 

Although a range of customisation levels were shown possible via the workflow, it should be 

noted that Munford et al. (2022) indicated lower levels, such as lattices matched to uniform 

mean stiffnesses, may be sufficient to achieve adequate stress/strain distribution and promote 

bone remodelling effects. Further mechanical and clinical testing would therefore be required 

to fully understand the benefit of the different customisation options exemplified. Computation 

time was shown to take, at maximum, three hours when run on a personal laptop computer 

when a dense lattice infill was specified. This time, although already significantly lower than 

that required to complete the customisation process manually, would be significantly less if the 

pipeline was run on a high-performance computer. It is therefore believed that the potential 

elimination of manual work, high design flexibility, and low computational time requirements 

facilitated through the proposed pipeline, could offer significant cost and resource savings over 

previously published manual methods. 
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Chapter 10 - Conclusion 

 

 

Conclusion 

In this chapter, the various knee replacement customisation pipelines developed are compared 

and the main findings of the research are concluded. The feasibility of a true, mass-

customisation solution for knee replacement is discussed and suggestions for future work are 

given.  
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10.1. Review of Customisation Pipelines Developed 

In this research, various knee replacement customisation pipelines were developed to work 

with two commonly used medical imaging mediums: X-rays and CT scans. Using the former 

as input would offer the significant benefit of not requiring any additional imaging than what 

is currently adopted for most knee replacement pre-operative assessments. Fully automated 

implant shape customisation and OTS size prediction pipelines were shown to be feasible using 

the 2D medium as input, as detailed through Chapters 5 – 7. Although initial results for shape 

customisation were not found to afford meaningful improvements on the theoretically best 

possible performance for standard OTS products (based on the analysis in Chapter 4), superior 

performance was recorded when X-ray alignment and calibration were artificially controlled 

utilising the DRR method in Chapter 6. Furthermore, the performance of the pipeline was 

shown to likely not be significantly impacted by demographical attributes including subject 

sex, knee side, age, and height. Nevertheless, the sensitivity analysis conducted in Chapter 6 

highlighted accuracy was highly dependent on the quality of inputted X-rays, meaning 

consistent anatomical alignment and accurate X-ray dimensional calibration with tight 

specifications would be needed to ensure quality results. Nguyen et al. (2022) demonstrated 

such requirements could be achieved via the adoption of an imaging protocol, however, the 

additional admin incurred may limit the viability of this for implant shape customisation in 

practice. In terms of OTS implant size prediction, the X-ray based pipeline was shown to 

substantially improve upon selection accuracies reported for current manual based approaches, 

even when real X-rays were used as input. Better implant size prediction accuracies were also 

obtained compared to other semi and fully automated software based solutions. 

Chapter 8 explored the benefits of using CT imaging as an alternative input to biplanar X-rays. 

Although CT would expose patients to significantly higher doses of radiation, increase imaging 
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costs and lead times, and access to the imaging equipment is not as widely available as X-ray, 

the enhanced geometrical information available was demonstrated to afford significantly more 

accurate 3D bone model reconstructions. Mean reconstructions of 1.09 mm (femur) and 0.98 

mm (tibia) RMSE were recorded for the X-ray based pipeline. Whereas 0.87 mm (femur) and 

0.80 mm (tibia) RMSE were recorded for the CT based pipeline. This subsequently enabled 

customised implants to be produced with on average 7.1% of cases of maximum OUH ≥ 3 mm 

for the femur and just 1.2% for the tibia, compared with 18.0% and 9.0% respectively when X-

rays were used. Furthermore, the results for the CT based pipeline were found to be 

comparable, or potentially better than, those reported for currently available (non-automated) 

solutions. However, due to the data available for testing, it was not possible to complete a 

demographical results analysis as thorough as was done for the X-ray based pipeline. As such, 

the pipeline’s sensitivity to different ethnicities and arthritis severities could not be quantified. 

More accurate OTS implant size predictions would most likely be achievable using the CT 

based pipeline. This was however not evaluated in depth since the analysis in Chapter 7 

demonstrated that size prediction accuracy was directly correlated with reconstruction 

accuracy. In addition to the benefits afforded by increased geometrical information, using CT 

over X-rays would also reduce the need for tightly controlled anatomical alignment and no 

dimensional calibration would be required. This could afford benefits in terms of resourcing 

and would minimise the possibility of human error being introduced into the process.  

By using CT data, the ability to automatically customise the mechanical properties of implants 

with lattice structures closely mapped to the stiffness gradients in subjects’ trabecular bones 

was demonstrated. Despite this, whether such a high level of stiffness customisation would 

really be needed to achieve the outcomes argued possible by Elliott et al. (2016) is 

unconfirmed. An alternative form of imaging for this application could be ‘Dual-Energy X-

Ray Absorptiometry’ which, due to the datasets available, was not possible to explore in this 
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research. Such imaging would not offer the same degree of density and geometry accuracy, but 

would avoid the inherently high radiation exposure and costs associated with CT (Whitmarsh 

et al., 2011) (Grassi et al., 2017). Additionally, depending on the level of accurateness needed 

to achieve successful patient outcomes, another option could be to use a statistical or AI/ML 

based model trained using density/stiffness data from a range of subjects with differing ages, 

sexes, and ethnicities.  

Using CT data as input was found to incur slightly higher computation times compared to the 

X-ray based pipelines. Nevertheless, both the X-ray and CT based implant size prediction and 

shape customisation pipelines were found to take under ten minutes from image files being 

inputted to producing the desired outputs. This was negligible compared to the hours needed 

to complete the process manually. Significantly more computation time was necessitated for 

the stiffness customisation pipeline due to the complexity of generating stochastic lattice 

designs, especially when high strut densities were specified. The time requirements associated 

with this could however be greatly reduced if additional compute power was available. 

In conclusion, both the X-ray and CT based automated customisation pipelines developed in 

this research presented various opportunities to save costs, lead times, resource, and afford 

improved outcomes for patients compared to currently available manual or semi-automated 

solutions. Instead of picking one over the other, the X-ray and CT based customisation 

solutions could be offered in tandem, allowing users to choose their input preference (given 

the highlighted advantages and disadvantages of each), or to simply use what is available to 

them. The implant size prediction and shape customisation pipelines could also be used in 

partnership. For instance, the former could be used initially to estimate whether satisfactory 

results could be obtained using the best size available from a particular manufacturer’s OTS 

model, before deciding whether an alternative product or full customisation would be needed.  
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10.2. Towards a Mass-Customisation Solution 

The main objective of this research was to develop both X-ray and CT based, fully automated 

mass-customisation pipelines for knee replacement. The various pipelines outlined were built 

in a consistent way which did not require users to segment inputted images, select reference 

points, guide live wire programmes to extract bone contours, or assist in the design of 

customised implants. Users simply need to input X-rays or CT scans, and the algorithms 

operate autonomously. Moreover, various degrees of customisation were exhibited including 

implant size prediction, as well as shape and stiffness customisation. It is believed that these 

reflect the ‘patient-matched’ and ‘custom-made’ levels described by Paxton et al. (2022) and 

satisfy the ‘holy grail’ of medical implant customisation (Figure 13).  

In addition to automating the customisation of products, it was argued by Da Silveira et al. 

(2001) that efficiency in information transfer from customers to manufacturers can determine 

the success of mass-customisation programmes. Since the various pipelines developed in this 

research required an understanding of Python coding to operate, a software application with a 

simple GUI was developed and is outlined in Appendix 1. The software brings together the X-

ray and CT based pipelines into one easy to use interface which requires no knowledge of 

programming and is intended to demonstrate how the solution could be integrated into hospitals 

and/or healthcare practises. Users (clinicians) could easily upload their choice of patient image 

data and then use the software GUI to determine the most appropriate OTS implant sizes, 

customise the shape of implant components, and/or customise stiffness. Thereby facilitating 

the way of working suggested at the end of the previous section. Outputted implant build files 

could be sent directly by the software to a contract manufacturer for production and finished 

components delivered back to hospitals. Due to the high level of autonomy, flexibility in the 

level of customisation possible, ease of use, and potential for simple integration into the 
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healthcare environment, it is believed that this constitutes a true mass-customisation solution 

for knee replacement in line with the definitions outlined by Davis (1989) and Da Silveira et 

al. (2001). Additionally, it is believed that the software GUI also exemplifies the three 

fundamental capabilities argued by Salvador et al. (2009) as necessary for a successful mass-

customisation solution (ease of use, robust process design and choice navigation). 

10.3. Significance of this Project 

It was argued at the beginning of this thesis that prior works were all found to require some 

level of manual input to process images, and/or guide the implant customisation process. 

Consequentially, they fell short of meeting the definition of true mass-customisation solutions 

and this was likely a key reason for their relatively low market adoption. However, by adopting 

AI/ML and statistical techniques, it is believed that the first mass-customisation solution for 

knee replacement surgery has been developed through this research. The proof-of-concept 

software developed (outlined in Appendix 1) would not require extensive training or highly 

skilled users to operate and could be integrated easily into hospitals for clinicians to use. The 

accuracy of the underlying customisation pipelines was thoroughly evaluated across a broad 

patient population to validate the respective processes. Furthermore, by conducting a sensitivity 

analysis, the limits of the (X-ray based) solution were quantified and necessary imaging 

specifications defined. It is therefore believed that the proposed solution is robust and has the 

potential to save healthcare providers significant costs, resource, and lead times. It is hoped 

these benefits will enable knee replacement customisation to become more commercially 

viable so the numerous benefits can be realised by a larger proportion of patients. 

To help illustrate the significance of this project and justify why it is believed to be the first 

true mass-customisation solution, Figure 95 provides an updated version of Figure 20 with the 
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various customisation pipelines developed through the research project incorporated. The 

illustration shows the only comparable solution found to be fully automatic was the Traumacad 

Auto-Knee OTS size prediction tool, detailed previously in Chapter 2.2. As highlighted earlier 

however, this was shown to be highly inaccurate and unreliable (Seaver et al., 2020). The area 

shaded in red to the top right shows the customisation options of the software outlined in 

Appendix 1 are unmatched in terms of the level of automation and the choice of imaging input 

mediums (distinguished by dot colour). In addition to the cost savings likely enabled by being 

fully automatic, the imaging input choice afforded by the solution could be particularly 

important for developing countries where accessibility and the higher cost of CT imaging may 

be prohibitive. Having the option of implant customisation via X-rays as an alternative, with 

only a marginally lower performance, could therefore be a real game changer for these markets.  

Lastly, although the focus of the research was on knee replacement implants, the automated 

customisation frameworks developed could provide significant opportunities for other medical 

products. For example, the pipelines could be modified and applied to many other therapy areas 

such as hip replacements, prosthetics (both orthopaedic and dental), surgical tools and guides, 

face masks, wrist splints and spine disks.  

Based on the conclusions outlined above, it is believed that the objectives of the research 

project, outlined in detail in Chapter 1.7, were met.  
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Figure 95: Comparison of thesis outputs with commercial products and research articles 
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10.4. Future Work 

To enable the customisation pipelines to be better generalised and work more robustly across 

a wide range of patient demographics, a more diverse dataset including subjects from multiple 

backgrounds and imaged using numerous X-ray and CT machines could be established. This 

would be particularly useful for training the stiffness customisation pipeline where only four 

CT scans containing density phantoms could be sourced in this thesis. Collecting primary data, 

as opposed to solely using retrospective secondary data, would allow for properties such as 

anatomical alignment to be better controlled and for calibration objects to be included. A larger, 

more controlled dataset would also facilitate a more comprehensive evaluation of the pipelines 

to supplement and further validate the analysis performed in Chapter 6. In addition, future work 

could look to use methods for obtaining ground truth data with higher accuracies than the 

typical 0.5 mm RMSE possible from CT or MRI scans (Van den Broeck et al., 2014). For 

example, using hand scanning equipment with dissected cadaver bones to obtain 3D models 

with resolutions < 0.1 mm could be investigated (Cazon et al., 2014).  

In this research, the performance of the various customisation pipelines was assessed purely 

via computational methods and no clinical work was completed. Factors such as poor surgical 

implementation were not considered and real patient outcomes, especially for subjects with 

moderate to severe arthritis damage, were not possible to evaluate. Physical prototypes of 

stiffness matched implant designs were fabricated. However, prototypes were not made using 

designs produced by the implant shape customisation pipelines and no mechanical strength 

testing was performed. Future work could therefore look to build on the computational 

approach by further validating performance via laboratory based and clinical means. Moreover, 

limited data for the performance of other customisation solutions was found to be available. To 
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further quantify the benefit of the solutions developed in this work, partnering with the likes of 

ConforMIS to acquire further comparator data would be advantageous. 

In terms of the customisation pipelines, future development could look to integrate finite 

element modelling to predict performance ahead of fabrication (Jun, 2011) (Peto et al., 2019). 

This could facilitate an iterative design optimisation cycle in which implant lattice structures 

and shapes are incrementally adjusted based on results obtained by simulating each iteration 

and calculating sensitivities. Additionally, the possibility of feeding patient and surgeon 

specific data not obtained from image/volume data, such as subject demographical details, 

information about subjects’ lifestyles, and surgeon preferences over implant type/style etc., 

into the customisation pipelines, could also be explored to further improve performance.  

In the literature, mass-customisation is described as broader than just customised design and 

manufacturing methodologies. Ferguson et al. (2014) argued that marketing and distribution 

should also be considered. Further work could therefore look at how the technology could be 

effectively promoted to healthcare providers, how the business model behind the implant 

customisation service should be structured, and how the designs produced could be supplied 

rapidly for surgery. Da Silveira et al. (2001) highlighted that mass-customisation solutions 

must be compatible with high volume production. Work could therefore further explore the 

proposal to use AM as a fabrication process and/or investigate the possibility of using other 

production methods. Further study into compatible build materials, post-processing required, 

sterilisation routes etc. could also be important areas to explore. Additionally, authors have 

studied the economics of mass-customisation (Laureijs et al., 2019). This was not investigated 

in depth in this research but would be valuable to further consider to ensure such a solution 

could be commercially viable. 
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Finally, the practical implications of certifying and commercialising a fully automatic knee 

replacement customisation solution should be further studied. The most significant challenge 

of bringing such a product/service to market would likely be the regulatory requirements 

associated with fully autonomous processes. For example, regulators may require each 

patient’s custom implant designs to be evaluated by trained medical professionals and/or 

engineers before surgery. This could potentially diminish the cost, resource and lead time 

advantages gained from the automatic workflows and adjustments may need to be made to the 

pipelines to negate this. To progress the technology further, the proof-of-concept software and 

individual customisation pipelines outlined could be adapted for specific manufacturer models. 

Partnering with an implant manufacturer to trial this, as well as leveraging their regulatory and 

clinical trial expertise, could hence afford the most streamlined route forwards.  
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Appendix 1 – Custom Knee 

Replacement Software Graphical 

User Interface 

Custom Knee Replacement Software Graphical User Interface 

In this appendix an overview of the software GUI developed to serve as a mass-customisation 

solution for knee replacement implants is detailed.    
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Settings & Input Files Tab 

The GUI is divided into multiple tabs which facilitate the various forms of implant 

customisation. The first tab (shown below) allows users to turn pop-out visuals on/off to present 

results of 3D model reconstructions, component predictions, customised implants, and ground 

truth comparisons. The desired knee side (left or right) can be selected which informs the 

software what information should be extracted from the inputted imaging data and sets the 

geometrical form of any outputted implant designs. The imaging medium (X-ray or CT) can 

be selected and then the relevant file/folder paths for these files can be specified. If ground 

truth 3D models are available for results analysis, the location of these files can also be 

specified. 

 



T. Burge Applied AI/ML for Automatic Customisation of Medical Implants 2023 

- 218 - 

Selecting the ‘Details’ button next to the visuals radio buttons results in the pop out window 

below becoming visible. The window contains supplementary information on the colouring 

used in the result visuals. 

 
Before the user has inputted the necessary input files and selected the ‘Process Inputs & Create 

3D Models’ button, the other pipeline tabs are locked since these require the anatomy to be 

reconstructed as a prerequisite. Once the button is pressed, the relevant pipelines (described in 

Chapters 5.2 and 8.2) will run to produce 3D model reconstructions. If visuals are set to ‘On’, 

windows will pop up after completion with resulting 3D models like those shown below. 
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Once finished, the additional GUI tabs will no longer be greyed out and will be free to select. 

Moreover, if ground truth models were specified, the dark grey ‘Compare to GT’ button to the 

right of ‘Process Inputs’, will also be unlocked. Selecting this button will then position the 3D 

reconstruction models on the ground truth models for visual comparison as shown below. 

A further window will also appear with reconstruction to ground truth RMSE fit results as 

shown below. 

 

Predict Best OTS Implant Sizes Tab 

The next tab allows for users to identify the best possible OTS implant sizes for the anatomy 

in the inputted X-ray or CT image data. Firstly, the user can select whether femur components, 

tibia plates, or both should be evaluated. The specific manufacturer model to be studied can be 
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selected from five different options, each with a different number of sizes, as shown below. 

The ‘Find Best Implant Sizes’ button can then be pressed which runs the size prediction 

pipeline (outlined in Chapter 7.2). 

 

If visuals are set to ‘On’ on the first tab, once the software has identified the best implant 

size(s), these will then be displayed fitted to the 3D model reconstructions for the patient in 

pop out windows as demonstrated below. The location of where the component maximum 

OUH between the component edges and 3D model reconstructions is predicted to occur (red 

dots), will also be shown in another window. 
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Once the process has completed, the predicted best sizes for the individual for the selected 

manufacturer model are shown at the bottom of the tab (exemplified below). Note, the ‘Find 

Best Implant Sizes’ has turned green to indicate that the process has been completed. 
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Like before, the ‘Compare to GT’ button will then be unlocked if ground truth files have been 

specified in the first tab. This will position 3D models of the best OTS components predicted 

by the software on the ground truth models for comparison and highlight the maximum OUH 

as illustrated before. A further window will then appear which will detail the ground truth best 

possible implant sizes as shown below. 
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Customise Implant Design Tab 

The next tab allows for implant components with customised shapes to be generated. Here 

either TKR or uni-condylar implants can be selected. Various design options can be chosen 

such as polyethylene insert (spacer) edge designs and how the implant components are aligned 

(centred or by using patients’ natural alignments). The custom implant components desired 

(femur component, tibia plate, and/or insert (spacer)) can then be selected, along with the 

directory that resulting designs should be saved to. 

 

When the ‘Design custom components’ button is selected, the software runs the pipeline 

detailed in Chapter 5.2.4 and produces the specified custom implant components. If visuals are 

set to ‘On’ on the first tab, the produced custom component models will be displayed in pop 
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out windows. Exemplary TKR components (top row) with two different insert designs (middle 

row), as well as custom unicondylar implant designs (bottom row) are shown below. 
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As before, when the custom implant design process is completed, the ‘Compare to GT’ button 

will then be unlocked. If this button is pressed, models of the custom components will be fitted 

to the ground truth 3D models and the location of the maximum OUH highlighted – like shown 

before for implant size prediction. A further window will also appear with component to ground 

truth RMSE and maximum OUH fit results as demonstrated below. 

 
Customise Tibia Plate Stiffness Tab 

The final tab allows for users to run the implant stiffness customisation pipeline. An additional 

CT file selection option is provided for users to specify a DICOM file where a density phantom 

has been included. The tibia plate geometry that the lattice structure will be designed for can 

then be specified – this could be a custom implant model created by the software, or a specified 

OTS model. An option is provided for users to specify which style of lattice structure they 

would like from the designs detailed in Figure 91, including a uniform mean stiffness, left/right 

condyle mean stiffness, as well as a full stiffness matched array. A desired Z offset can be 

inputted to control where the density information is taken from subjects’ bones. Various lattice 

design parameters can also be specified in the following text boxes including target 
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connectivity, strut density and strut length. Lastly, the directory that the outputted build files 

are to be saved to can be specified. 

 

When the ‘Generate lattice design’ button is pressed, the software will run the pipeline outlined 

in Chapter 9.2 and produce a lattice design and corresponding printing files for additive 

manufacture. If visuals are set to ‘On’ on the first tab, a pop out window will demonstrate the 

lattice structure created as illustrated below. 
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Once the stiffness customisation process is complete, the user will be able to press the 

‘Compare to GT’ button. Here, unlike in the previous tabs, the created lattice design will be 

displayed again in a pop out window alongside the CT slice selected by the software as shown 

below. This allows the user to compare resulting lattice designs against the density distribution 

visible at the relevant point in the bone. 
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Appendix 2 – Permissions Summary 

Table 

 

Permissions Summary Table 

In this appendix a table is provided which summarises permissions gained to reproduce third 

party copyrighted works in this thesis. 
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