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Abstract
The measurement of dynamic joint kinematics in vivo is important in order to under-

stand the effects of joint injuries and diseases as well as for evaluating the treatment ef-

fectiveness. Quantification of knee motion is essential for assessment of joint function for

diagnosis of pathology, such as tracking and progression of osteoarthritis and evaluation

of outcome following conservative or surgical treatment. Total knee arthroplasty (TKA) is

an invasive treatment for arthritic pain and functional disability and it is used for deformed

joint replacement with implants in order to restore joint alignment. It is important to de-

scribe knee kinematics in healthy individuals for comparison in diagnosis of pathology and

understanding treatment to restore normal function. However measuring the in vivo dy-

namic biomechanics in 6 degrees of freedom with an accuracy that is acceptable has been

shown to be technically challenging. Skin marker based methods, commonly used in hu-

man movement analysis, are still prone to large errors produced by soft tissue artifacts.

Thus, great deal of research has been done to obtain more accurate data of the knee joint

by using other measuring techniques like dual plane fluoroscopy. The goal of this thesis

is to use high-speed stereo radiography (HSSR) system for measuring joint kinematics in

healthy older adults performing common movements of daily living such as straight walk-

ing and during higher demand activities of pivoting and step descending in order to estab-

lish a useful baseline for the envelope of healthy knee motion for subsequent comparison

with patients with TKA. Prior to data collection, validation and calibration techniques as

well as dose estimations were mandatory for the successful accomplishment of this study.
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Chapter 1

Introduction

The description of human joint kinematics during daily living activity is the main goal

of human motion analysis. Measurements of the 3D kinematics of the human joint dur-

ing movement is important for comprehending and evaluating the function of the joint as

well as for several clinical purposes such as characterizing pre- and post-operative joint

motion and to enable better prosthesis design. However, measuring the in vivo dynamic

biomechanics in six degrees of freedom (position and orientation) with an accuracy that

is acceptable has been shown to be technically challenging. To analyze the in vivo hu-

man joint motion several techniques have been developed. Researchers have used in vitro

(cadavers) [5, 6], noninvasive (gait laboratories) [7, 8] and in vivo (roentgen stereopho-

togrammetry and fluoroscopy) [9, 10] methods for assessing human joint motion. Cadav-

eric and Static X-ray measurement techniques often do not accurately reflect loads that

happen during typical movements and their predicted outcome is not reliable. Therefore,

treatments aimed at improving the joint function should be evaluated when the data are

acquired from dynamic measurement methods which need the estimation of six degrees of

freedom (DOF) of objects to be determined during dynamic activities. The most common

methods for assessing dynamic movements are based on skin-mounted markers; however
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these methods include errors due to skin and soft tissue motion [11]. Medical imaging such

as magnetic resonance imaging (MRI) and computed tomography (CT) allow assessing

movement of the underlying bone directly but limit the analysis to quasi-static conditions.

Fluoroscopic imaging technique have been extensively used for the analysis of joint motion

during dynamic activities. Single plane fluoroscopy has proven to be a precise method for

establishing joint position along the axis parallel to the image plane with sub-mm accuracy;

however it is proven to be imprecise in the out of plane motion[12]. To overcome the in-

herent limitations of these methods researchers have used dual plane fluoroscopy systems

that directly measures three-dimensional skeletal motion with sub-millimeter accuracy. Re-

cently we have developed a high-speed stereo radiography system with high frame rates and

two view planes for three-dimensional tracking of bones and implants with sub-millimeter

accuracy that offers high-speed kinematic measurements of in vivo 6 degrees of freedom

(DOF) joint motion during activities of daily living. The purpose of this thesis is the cal-

ibration, validation of a high speed stereo radiography (HSSR) system and the assessment

of normal knee kinematics during high demand activities in subjects age-appropriate to to-

tal knee arthroplasty (TKA) by using the HSSR system. In order to achieve this goal, we

had to acquire the dose in order to be able to have the international review board approval

(IRB) and recruit subjects that would participate in this study. Moreover, for maintain-

ing the ability of the HSSR to capture the skeletal motion with sub-millimeter accuracy

and resolution, alignment, distortion correction and calibration are the important steps that

need to be done before the data collection. Finally, a validation study was conducted to

demonstrate our system’s accuracy for sub-millimeter tracking of rotations and translations

for a human knee joint, implant and beads.
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1.1 Motivation and Problem Statement

The measurement of dynamic knee kinematics in vivo is important in order to under-

stand the effects of joint injuries and diseases as well as for evaluating the treatment effec-

tiveness. Osteoarthritis appears in the knee more than any other joint and disease devel-

opment and progression are affected by abnormal joint kinematics under weight bearing

conditions. TKA, which is one of the most common orthopaedic knee surgeries, is an

extremely effective treatment for arthritic pain or functional impotence and this treatment

is used in order to substitute a deformed joint with a knee prosthesis. To investigate the

characteristic knee motion is essential for assessment and design improved implants that

intend to restore joint alignment and to achieve full range of knee flexion. Particularly, pre-

cise knowledge of normal knee mechanics provides useful metrics for comparison to knee

function following TKA. High prevalence of knee pain, osteoarthritis, TKA occurs more

frequently in older adults and movement patterns change as we age [13]. Thus, our purpose

was to determine joint kinematics in healthy older adults performing common movements

of daily living like straight walking and during higher demand activities in order to estab-

lish a useful baseline for the envelope of healthy knee motion for subsequent comparison

with patients with TKA.

1.2 Contributions

To our knowledge, no others have evaluated normal knee function for a cohort age-

matched to TKA recipients and during activities that patients with TKA often report to be

troublesome, such as descending a step and executing a turn during walking. Most descrip-

tions of knee kinematics have been for younger adults and for a limited span of activities.

Furthermore, most existing dual plane fluoroscopy systems are often limited by capture
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at rates less than many normal physiological movements, small fields-of-view, and static

configurations. HSSR makes possible the 3D tracking of bones and implants with high

accuracy with 16 inch image intensifiers that allow a field of view nearly 150% larger than

most research radiography systems while the high-speed cameras and 480 volt generators

allow motion capture at up to 120 fps in low-dose pulsed mode or up to 1000 fps in a contin-

uous mode. With the HSSR system we were able to measure knee kinematics during tasks

with increasing demand and to establish a useful baseline for the envelope of healthy knee

motion in adults over the age of 55 that will provide the baseline knowledge for the analy-

sis of the pathological knees and assessment of TKA function for further improvement in

TKA design and rehabilitation.

1.3 Organization of Thesis

This thesis is organized as follows. Chapter 2 provides a literature review where back-

ground information on methods used to measure joint kinematics as well as techniques of

joint tracking are investigated and compared with other existing methods in research. Addi-

tionally an overview of the HSSR system is introduced. Chapter 3 describes the calibration

and the validation methods used in order to demonstrate our system’s accuracy. Chapter 4

discusses all the precise methods used to describe healthy knee kinematics. Finally, Chap-

ter 5 is the application of the HSSR by classifying joint kinematics in healthy older adults

performing common movements of daily living like straight walking and during higher

demand activities.
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Chapter 2

Previous Investigations and High Speed

Stereo Radiography

The measurement of dynamic joint kinematics in vivo is important in order to under-

stand the effects of joint injuries and diseases as well as for evaluating treatment effective-

ness. The main aim of human motion analysis is the description of human joint kinematics

during daily living activity. Joint motion is driven by a combination of dynamic physical

forces (gravitational, inertial and contact), active muscular forces and constraints imposed

by passive structures. Measuring the in vivo dynamic biomechanics in six degrees of free-

dom (position and orientation) with an accuracy that is acceptable has been proven to be

technically challenging. Numerous techniques have been developed to study the in vivo

human joint motion.
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2.1 Literature review-Background

2.1.1 Methods for measuring joint kinematics

There are three different approaches towards the analysis of human joint kinematics.

Researchers have used in vitro (cadavers) [5, 6], noninvasive (gait laboratories) [7, 8] and in

vivo (roentgen stereophotogrammetry and fluoroscopy) [9, 10] approaches to assess human

joint motion. Cadaveric and Static X-ray measurement methods often do not accurately

reflect loads that occur during typical movements and they do not give a reliable predicted

outcome. For that reason, treatments aimed at improving the joint function should be eval-

uated when the data are obtained from dynamic measurement methods which requires the

estimation of six degrees of freedom (DOF) of objects to be determined during dynamic

activities.

2.1.2 Marker-based motion capture techniques

The most commonly used methods for assessing dynamic movement rely upon skin-

mounted or bone implanted markers. Reconstruction of human movement based on skin-

mounted optical markers has become a standard procedure in clinical practice. These mark-

ers are mounted and attached to the skin surface of the body segments to be analyzed. It

is well established that markers placed on the skin tend to slide relative to the underlying

bones because of the interposition of soft tissues. This interposition is the origin of two

sources of error: anatomical landmarks mis-location and soft tissue artifacts (STA). The

latter one has been recognized to be the major source of errors in human motion analy-

sis. Much previous work has been done in quantifying the magnitude nature and effects

on estimating bone motions from skin marker. Several methods have been developed to

compensate for the marker cluster deformation but the problem with them is that STA can
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cause unrealistic motions of the joints. These source of errors associated with STA are dif-

ficult to eliminate non-invasively. The use of skin marker-based methods to describe joint

surface kinematics during motion is also difficult due to lack of joint surface information.

When applied to measuring knee joint kinematics by using skin-mounted markers, soft

tissue and structures surrounding the knee interfere with the actual underlying kinematics

and task-displacements of individual skin-mounted markers relative to the underlying bone

of more than 20 mm are reported [11]. Another example would be the measurement of

3-D kinematics of the upper extremity of the body. Upper limb motion may be spatially

complex especially in the shoulder and this makes the use of markers attached to wands

prone to interference with other limb segments and subject to inaccuracies from soft tissue

oscillations and inertial effects.

To overcome the inherent inaccuracy of skin-mounted markers, markers have been

mounted on pins and inserted into the underlying bones. Although this approach can pro-

vide high-quality kinematics data, its invasive nature as well as the risk of infection has

limited its application in human movement studies. Using the bone pin technique, errors

due to skin motion of up to 10 mm of translation and 8 degrees of rotation have been

observed [14].

X-ray imaging avoids the problem of skin motion error, and is relatively safe and non-

invasive but limits the analysis to quasi-static conditions and does not allow for 3-D mea-

surement of joint kinematics. Existing 3D techniques such as Computed Tomography (CT)

and Magnetic Resonance Imaging (MRI) allow assessing movement of the underlying bone

directly although CT and MRI are not yet capable of achieving high frame rates required

for estimating dynamic function. Furthermore, these methods are costly and the restric-

tions imposed by the imaging environment (typically a small-diameter cylindrical space)

prevent full motion kinematics measurement during functional activities like walking. Fi-

nally CT/MRI will be really difficult to use with subjects that have prosthetic parts in their
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bodies because of the detrimental effects of large metal objects on both modalities. The

limitations of existing methods described above may be overcome by fluoroscopic/radio-

graphic imaging, which enables direct visualization of the bone.

2.1.3 Dynamic Radiography

Until today the only way to measure the motion of structures inside the body during

human motions such as walking, jumping or running is by using the fluoroscopic imaging

or dynamic radiography. Dynamic radiography allows real-time tracking of joint motion

by using X-ray imaging and capturing X-ray videos. Fluoroscopy, being dynamic radiogra-

phy, captured at low frame rates and with low radiation energy, allows following dynamic

anatomical/physiological processes in real time in vivo, with an obvious drawback of ac-

quiring two-dimensional images. Fluoroscopy is an imaging technique where X-rays are

emitted from a tube, pass through the joint and strike on a fluorescent screen coupled to an

image intensifier and a video camera. Images are recorded and played on a monitor and the

result is perspective projections of the joint, recorded as a continuous series of images. A

preliminary CT scan or MRI imaging, allow making a 3-D bone model that can convert the

2-D fluoroscopic image with a shape matching technique. Fluoroscopic techniques provide

the most direct way to measure joint motion. Single plane and biplane fluoroscopy have

been used extensively to track movement inside the body with sub-millimeter accuracy.

Biplane fluoroscopy is also known as dual plane fluoroscopy , 3D radiography, stereoradio-

graphy as well as other titles. Direct 3-D measurements of bone position have been investi-

gated by using marker-based techniques and image-based techniques [15, 16, 17]. Each of

these techniques is based on single-plane or dual plane X-ray exposure. The marker-based

techniques require implanting radioopaque markers inside the bone. Although this method

can be implemented during surgery the application of this technique to healthy subjects
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is severely restricted due to ethical reasons. Finally, matching radiographic images with

3D models of bones or implants is a preferable technique for accurately measuring in vivo

kinematics.

2.1.4 Single Plane Fluoroscopy

Being able to estimate three-dimensional skeletal kinematics during daily activities

such as walking, is important for accurate modeling of joint motion and loading, and is

necessary for several orthopaedic research applications including providing input data to

modeling applications and identifying the effects of injuries and diseases. For example,

accurate measurement of joint kinematics is important in understanding the pathogenesis

of osteoarthritis and its symptoms and for developing methods in order to provide comfort

from joint pain. Single-plane fluoroscopy has been used to track movement inside the body

and measure in vivo 3D kinematics with sub-millimeter accuracy for different joints in the

human body like the spine , elbow, shoulder as well as the natural and prosthetic hip, knee

and ankle.

Researchers have used extensively single-plane fluoroscopy in order to measure natural

knee motion and the kinematics of artificial knees [18, 12, 19]. The silhouette of a metallic

component is clearly observable in a 2-D fluoroscopic image because the metallic com-

ponents have precisely known geometric features and produce some edges in fluoroscopic

images. The 3-D posture (6DOF) of a metallic implant can be estimated by matching the

calculated projection of the implant’s 3-D model with the silhouette. Several researchers

have applied this technique to the measurement of natural knee motion [17, 12] however,

the accuracy of their results was lower than that of studies applied to implanted knee joints

due to weaker contrast of human bones and non perfect 3-D bone models.

9



The authors in study [12] performed an in vivo fluoroscopic analysis of the normal hu-

man knee. The objective was to use single-plane fluoroscopy and computed tomography

(CT) to accurately determine the three-dimensional, in vivo, weight-bearing kinematics of

five normal knees. Three-dimensional computer aided design models (CAD) of each sub-

ject’s femur and tibia were recreated from the 3-D CT bone density data. Five healthy

subjects subsequently did five weight-bearing activities (deep knee bend, normal gait, ris-

ing from a chair, stair descent) while under fluoroscopic surveillance. The results showed

that during all five activities the lateral condyle experienced significantly more anterior-

posterior translation, leading to axial rotation of the tibia relative to femur. This study pro-

vides an accurate three-dimensional, in vivo kinematic analysis of the normal knee under

weight-bearing conditions, while the subjects did multiple different activities. The pre-

sented data may provide useful information for future knee simulation studies and a better

baseline of kinematic data for future total knee arthroplasty design.

Another reason for using fluoroscopy to study kinematics of the knee and the signifi-

cance of understanding the weight-bearing forces and shear stresses applied to bearing sur-

faces is that this knowledge is highly important for total knee arthroplasty (TKA). Approx-

imately 177,000 total knee replacements (TKA) operations were performed in the United

States in 1991, a 26% increase from the number implanted in 1990 in [20]. Accurate mea-

surements of knee replacement kinematics during functional activities would provide the

basis for assessing the performance of current designs and also the basis to design devices

with improved kinematics. For artificial knees, single-plane fluoroscopy has been used to

measure implant motion directly [21], [22]. An X-ray fluoroscopy based technique was in-

vestigated for the measurement of 3-D TKR kinematics during dynamic activities in [19].

The measurement approach is based on the concept that given the imaging geometry of the

fluoroscope and the surface geometry of the prosthetic components, a computer can create

an image which matches any experimentally acquired image of the knee. The kinematic
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measurement approach is based on imaging the knee joint as it moves, using the single-

plane fluoroscopy to obtain a sequence of images in which the prosthesis is projected as

a 2-D perspective silhouette. The advantage is that it is a direct measurement of dynamic

prosthetic motion and the information gained form that study will improve our understand-

ing of how these devices are functioning in vivo. The results indicate that knee rotations

can be measured with an accuracy of approximately one degree and that sagittal plane

translations can be measured with an accuracy of approximately 0.5 mm. The accuracy

of estimating the relative pose between knee replacement components in terms of clinical

motion is important in the study of knee joint kinematics.

In Acker et al. [23] the accuracy of single-plane fluoroscopy in determining relative po-

sition and orientation of total knee replacement components is also investigated. Determin-

ing the accuracy of knee joint kinematics calculated by using fluoroscopy shape matching

approach was accomplished by comparing it to optoelectronic motion tracking. The single-

plane fluoroscopy method was used to calculate the relative pose between the femoral and

tibial component, along knee motion axes, while the components were in motion relative

to each other. Calibration and distortion correction parameters were defined by using a

calibration image of radioopaque beads in known patterns. The kinematics of total knee re-

placements were determined in vitro for both methods. The mean differences between the

fluoroscopic and optoelectronic poses and the corresponding limits of agreement calculated

in this study shows the accuracy with which the relative pose between knee replacement

components can be defined by shape-matching single-plane fluoroscopic images and then

optimize the match by using an automated optimization algorithm. The mean accuracy

values and limits of agreement shown from this study can be used to determine whether the

shape-matching approach using single-plane fluoroscopic images is sufficiently accurate

for an intended motion tracking application.
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Similarly an investigation is presented for the glenohumeral translation using single

plane fluoroscopy and shape matching techniques [24]. In this study the glenohumeral

translation in vivo during active shoulder abduction in the scapular plane is investigated.

The hypothesis was that with the arm at the side, the humeral head would be relatively

inferior with respect to the glenoid and move to the center of the glenoid with arm eleva-

tion in healthy shoulders. Furthermore, another hypothesis was that kinematic variability

would decrease with arm abduction. For the purpose of this study nine healthy subjects

were recruited. The 3D models of the scapula and proximal humerus were created with CT

scans. Fluoroscopic images aligned to the plane of the scapula were captured during ac-

tive arm abduction with neutral rotation.The 3D motions of the scapula and humerus were

established using model-based 3D-to-2D registration. Humeral translation was referenced

to the glenoid center in the superior/inferior direction. A custom shape-matching program

was utilized to acquire 6 DOF shoulder kinematics. Glenohumeral translations perpendic-

ular to the image plane were not considered precise enough to be reported. The results

demonstrated that the humerus moved an average of 1.7 mm superior with arm abduction,

from an inferior location to the glenoid center. Also, all shoulders exhibited the same pat-

tern of motion, with most variability in the data appearing to result from the definition of

the glenoid center. The variability in glenohumeral transaltion among the nine shoulders

reduced significantly from initial to final arm abduction. According to the authors the 3D

fluoroscopic analysis of shoulder kinematics can give significant information for improved

understanding of shoulder function.

One of the disadvantages, though, of single-plane fluoroscopy is that it is not precise

enough in the out of plane direction [12, 16, 15]. In addition, bone edge attenuation for

normal joints has been suggested to be the primary factor that limits the theoretical accuracy

in measuring bone poses with single-plane fluoroscopy. These limitations may be overcome

by using a dual plane fluoroscopy system.
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2.1.5 Dual Plane Fluoroscopy

Dual plane fluoroscopy is the method where an additional single plane fluoroscope is

oriented at an oblique angle and images are taken from both single plane fluoroscopes si-

multaneously. By using this method, the movement of the structures inside the body in six

degrees of freedom, translation and rotation, can be determined with sub-millimeter accu-

racy. It is used to characterize kinematics in healthy normal and symptomatic population

and can be adapted to measure high-speed human joint motion in vivo. Hip, knee and an-

kle kinematics during functional activities such as running or shoulder kinematics during

throwing can be estimated. Since dual plane fluoroscopy has the ability to quantify six

DOF joint motion with high accuracy during dynamic movements it finds many applica-

tions in orthopaedics, bioengineering and sports medicine. Accurate measurement of joint

motion derived from this method helps assessing joint function and improving the design

of an implant. Moreover the dual plane fluoroscopy kinematic data may be also used as

input to assess deformation of joint structures, to derive contact stress distributions and for

different modeling applications. This information is also essential for planning surgeries or

rehabilitation therapies.

The purpose of study in Bey et al [25] was to assess the accuracy of biplane X-ray

imaging combined with a new model-based technique for measuring patellofemoral (PF)

joint motion. The distal femur and patella compose the patellofemoral (PF) joint. In or-

der to validate this technique, tantalum beads were implanted into the femur and patella of

three cadaveric knee specimens and then biplane fluoroscopic images were recorded while

manually flexing and extending the specimen. The model-based tracking technique system

as well as a dynamic radiostereometric analysis (RSA) (gold standard) were used to define

the position of the femur and the patella. This CT model-based technique for precisely

measuring the in vivo joint motion from biplane fluoroscopic images tracks the position of
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bones by maximizing the correlation between biplane X-ray images and Digitally Recon-

structed Radiographs (DRRs). Usually knee flexion is accomplished with the tibia rotating

relative to a fixed femur. In this case both the femur and the patella are moving relative

to a fixed tibia. The biplane X-ray images were acquired at 60 frames per second for 1.5

seconds. The model-based tracking method applies a ray-tracing algorithm to project a

pair of DRRs from the CT-based bone model. By maximizing the correlation between the

DRRs and the biplane X-ray images the in vivo position of the bone as well as its orienta-

tion can be estimated. The orientation and the 3-D position of the femur and patella were

defined independently for all frames for each trial. Bias and precision were used in order

to quantify the accuracy of this technique. Results demonstrated that the outcomes from

both techniques are in high agreement. Patellofemoral joint (PF) motion is important to

be accurately measured for understanding the consequences of a conservative and surgical

treatment of PF pain syndrome and the results from this research showed that this technique

is sufficiently accurate in measuring clinically relevant changes in PF joint motion follow-

ing conservative or surgical treatment. One disadvantage of this technique is the amount

of the X-ray exposure the subjects must undergo from the CT scan and the biplane fluo-

roscopy and that limits the number of trials that can be performed. Furthermore the field of

view is constrained to the biplane X-ray system’s 3-D imaging volume.

In Myers et al. [26] a study was undertaken to measure, describe and compare tibiofemoral

rotations and translations of soft and stiff landings in healthy individuals by using dual

plane fluoroscopy. Although anterior cruciate ligament (ACL) injury prevention programs

have been denoted to be efficient at teaching athletes to avoid stiff landings, the overall

occurrence of non contact ACL injury and surgical reconstructions remains high in both

men and women. Biplane fluoroscopy systems enable the accurate measurement of 6 de-

grees of freedom kinematics of the knee joint during dynamic activities. The in vivo 3-D

lower extremity, knee kinematics of three men and ten women, were collected as they per-
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formed the landing from a 40-cm height. All subjects were instructed to perform soft and

stiff landings. Stiff landings produced significantly greater ground reaction forces (GRFs)

and knee extension moments but did not cause increased amounts of anterior tibial transla-

tion or knee rotation in either varus / valgus or internal / external rotation when compared

with soft landings in healthy individuals under these testing conditions. The results of that

study showed the ability of the musculature and soft tissues around the knee joint to keep

translations and rotations of the knee within a small, safe range during controlled tasks of

differing demand.

The authors in paper [27] adapted a Dual Fluoroscopic Imaging technique (DFIS) to

investigate the various in vivo dynamic knee motions as well. Furthermore, a thorough

validation of the accuracy and repeatability of the DFIS system was presented during mea-

suring 6 DOF dynamic knee kinematics. For the validation, standard geometric spheres

made from different materials, were used to show the capability of the DFIS method to

determine the object positions under changing velocities. Cadaveric knees were used to

define both the knee positions translated at a known speed and the 6 DOF knee kinemat-

ics during flexion and extension. Also this method was applied to a living subject during

step ascent and treadmill gait for investigating the knee kinematics and demonstrating the

in vivo utilization of the DFIS. The validation showed that knee positions and velocities

can be defined by this method. One of the limitations is the restriction to activities such as

treadmill gait, stair ascent or descent and lunge. The results demonstrated that DFIS, which

is a non invasive technique with low radiation dose, can be used as an accurate and useful

tool.

An analysis for knee prosthesis by using two X-ray sources is conducted in paper [28].

Total knee arthroplasty (TKA) is very successful in comforting pain and restoring joint

function, but the implant failure remains a problem. One of the main reasons of failure is

excessive polyethylene wear. Osteolysis can be induced from wear particles and may cause
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complications like aseptic loosening. Excessive wear is related to the design of prothesis.

In this study the accuracy and the robustness of TKA wear measurements of a model-based

Roentegen stereophotogrammetric analysis (MBRSA) is investigated. An RSA setup and

a knee phantom in which the separation distance between the tibia and femur is known

exactly, are used for the purpose of this study. The phantom setup was used of sawbones

with a total knee replacement in standing position. RSA images were obtained from two

synchronized X-ray sources. The measurement method is addressed for various settings

such as prostheses type, actual separation distance, digital model accuracy and patient po-

sitioning. The robustness of the method is defined by assessing the measurement error as

a function of these parameters. The results showed that the joint separate measurements

based on a model-based RSA are accurate enough for wear studies of knee prostheses. The

limitation of this study is the lack of experiments with in vivo data in which the soft tissue

attenuation can deteriorate contour detection.

A further analysis of the kinematics of knee implants was held at the Department of Or-

thopaedics Leiden University [29]. The authors propose an automated contour detection

method which is integrated in the pose estimation. In this technique, most of the man-

ual work in fluoroscopic analysis is eliminated and is precise enough for clinical research

purposes. In a phantom experiment, with a biplane flat-panel fluoroscopic set-up, the au-

tomated method was compared with a standard method which uses manual selection of

correct contour parts. It is a conventional model-based pose estimation method [30] with

semi-automated contour detection, the Canny edge detection [31]. The purpose of this

study is to validate the new and automated model-based contour detection method, which

is integrated into a model-based pose estimation method. The analysis of a complete fluo-

roscopic data set can easily be automated by propagating the pose from one image to the

next [32]. Both clinical data and phantom were used in order to validate the precision

and accuracy of the clinically relevant in-plane positions and orientations. A fluoroscopic
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image, the relative X-ray focus position, a 3-D surface model of the implant as well as

an initial candidate pose are the main inputs of the automated model-based contour detec-

tion method. The results showed that the most prominent differences are in the systematic

errors where in the automated method the systematic errors are consistently higher. How-

ever, the systematic errors are less important than the standard deviations when implant

kinematics is investigated, where the relative positions of the components are considered.

With respect to standard deviations the two methods gave the same results. Moreover the

standard and the automated method employ the same technique except that the last one

has a second image available from the biplane set-up and that can cause, according to the

authors, the discrepancy in the systematic errors between the two methods. Overall this

research demonstrated that the contour detection can be completely integrated within the

pose estimation with an easier work-flow and less manual work in fluoroscopic analysis

with only minor consequences for the accuracy of the system

Quantifying foot bone motion or measuring dynamic in vivo glenohumeral joint kine-

matics remains a challenging problem. Single-plane fluoroscopy has been used to study

hindfoot kinematics; however the complex anatomy of the foot with many small occluding

bones limits the system. Dual plane fluoroscopy has been successfully used instead in or-

der to overcome this limitation [33]. The biplane fluorscope was used to capture the foot

phantom with metal balls embedded on 3 bones (tibia, calcaneous and first metatarsal). The

metal balls were used in order to embed fixed coordinate systems in the first metatarsal and

calcaneous. The foot phantom was CT scanned and in addition DRRs of the foot phan-

tom were generated to perform a manual alignment with the 2D fluoroscope data. Results

demonstrated sub-millimeter and sub-degree accuracies (0.1 mm and 0.15 0 respectively).

Many researchers have conducted research based on dual plane fluoroscopy systems for

measuring 3D shoulder kinematics analysis in order to achieve significant levels of accu-

racy [34, 35] or to study hip joint kinematics [36]. The glenohumeral joint has the greatest
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range of motion of any joint in the body and, due to its complicated anatomy, measuring the

dynamic in vivo shoulder kinematics is a challenging problem. Therefore, in [35] study, the

authors present the validation of a non-invasive dual fluoroscopic imaging system (DFIS)

model-based tracking technique for assessing dynamic in vivo shoulder kinematics. The

DFIS system tracks the position of bones based on their projected silhouettes to contours

on recorded pairs of fluoroscopic images. For the purpose of this study the authors com-

pared their tracking of the scapula and humerus bones without implantation of any markers

with a radiostereometric analysis (RSA) where titanium beads were implanted in a ca-

daver’s specimens arm. In addition, the repeatability of the DFIS to track the scapula and

the humerus during dynamic shoulder motion was investigated. Their results demonstrated

that this model-based tracking technique was similar to the invasive RSA gold standard

technique within approximately ±0.3mm in translation and ±0.50 in rotation. Further-

more, the repeatability of the model-based tracking technique for the scapula and humerus

was approximately ±0.2mm and ±0.40, respectively. Finally, dual plane fluoroscopy sys-

tem is highly recommended for non-invasively studying the in vivo motion of the shoulder

in both healthy and pathological subjects.

In Martins et al. study [36] a combined high-speed biplane radiography and model-

based tracking technique to study hip joint kinematics and arthrokinematics is presented.

Two fresh-frozen human cadaver pelvises were obtained and consisted of all bone and soft

tissue from the pelvis to the midfemurs and so the study includes a total of four hip joints.

Four 2-mm chrome beads were implanted into the right and left hemipelvis and right and

left femur for each specimen. CT scans were collected in order to create the 3D models

of the bones. Radiographic data were collected during two activities designed to simulate

activities of daily living. The implanted beads were tracked using radiostereophotogram-

metric analysis (RSA) and only three beads are required to perform this analysis. The 3D

bone models and the radiographs were imported into a custom software that automatically
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manipulates the bone model’s position for better alignment with the 2D images in order to

determine the position of the bone. Results from the comparison of model-based tracking

technique to the gold standard RSA using implanted beads showed a bias of 0.2 mm and a

precision 0.3 mm for joint translation and for joint rotation the bias was 0.20 and the preci-

sion was 0.80. Therefore model-based tracking technique of the hip provides the ability to

study hip pathologic conditions noninvasively with high accuracy.

For measuring in vivo six DOF vertebral motion during unrestricted weight-bearing

functional body activities the authors in study [37] used a combined MR and dual fluoro-

scopic imaging technique. Eight healthy subjects participated in this study and all subjects

underwent MRI scans in order to construct 3D vertebral models of L2,L3,L4 and L5 of the

lumbar spine for each subject. Then the target spinal segments were captured using the dual

plane fluoroscopic system while the subject performed several activities including primary

flexion-extension, left-right bending and left-right twisting. The range of vertebral motion

during each activity was defined at L2-3, L3-4 and L4-5 levels. The MR image-based 3D

vertebral models along with the 2D fluoroscopic images were imported into the Rhinoceros

solid modeling software and after the alignment f the 3D models in the 2D images the ver-

tebral positions during in vivo weight-bearing activities were reproduced and in that way

establishing the 6DOF kinematics of the vertebrae at each in vivo position. Findings from

this study demonstrated that the upper vertebrae had a greater range of flexion than the

lower vertebrae during flexion-extension of the body. During bending activity the L4-5 had

a greater range of left-right bending motion than both L2-3.

The accuracy of the dual plane fluoroscopy system is substantially higher than single

plane since it is imprecise in the out of plane direction. As an example, in [27] dynamic

accuracy of dual plane fluoroscopy for the healthy knee was reported to be 0.24mm and

0.16 degrees for translations and rotations respectively while for single plane in [38] the

translations and rotations were 2.00mm and 1.5 degrees respectively [39].
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However, most existing dual plane fluoroscopy systems are often limited by capture

rates less than physiological movement, recording joint motion in small fields of view and

the majority of these systems are static configurations since most of the X-ray equipment is

mounted on large C-arms that can not move freely in space. This volume constraint, limits

the number of dynamic activities and joints that can be captured.

2.2 Methods of tracking

This part of the literature review presents a study of current research activities going

on the Universities and Research Centers around the globe in the area of joint tracking.

The purpose of this literature review is to gather and explain some of the available methods

that have been used to track and measure joint motions derived from X-ray imaging and is

organized as follows: The first section discusses the measurements of joint motion based on

bead tracking. In the second section current research based on implant tracking is presented

while in the last section a summary of papers referring to joint motion based on bone

tracking are presented. At the end, Table 2.1 summarizes the results of the techniques that

are presented in this study.

In most of the papers that are described herein radiostereometric analysis (RSA) is used

as a reference technique. Dynamic radiostereometric analysis (RSA) technique is a well

established and widely accepted method for measuring joint kinematics by tracking the

position of implanted tantalum beads. This technique utilizes ray trace intersections of

implanted metallic spheres to determine the three-dimensional position of objects in space

[34, 40, 27]. Because it is widely accepted it is extensively used as the gold standard for

measuring relative bone and implant motion.
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2.2.1 Section I: Bead Tracking

A study was conducted at the Bone and Joint Center on a novel technique for measuring

in-vivo skeletal kinematics that combines data collected from high-speed biplane radiogra-

phy and static computed tomography (CT) [41]. The purpose was to demonstrate that suf-

ficient precision can be obtained by combining high frame-rate biplane video-radiography

with analysis methods close to RSA during dynamic movement and to introduce a method

for expressing joint kinematics in an anatomically relevant coordinate system. This method

is applied for studying canine ACL deficiency though this technique has been applied sim-

ilarly to human studies. The four components that were used in order to implement this

method are: a) a hardware system for generation and acquisition of high frame rate biplane

radiographs b) a software package for identification and 3-D tracking of bone markers c)

a CT-based system for coordinate system determination and d) a set of kinematic analysis

routines for determining joint motion in anatomically based coordinates. Similarly to static

RSA, implanted radiopaque tantalum bone markers were employed to enable accurate reg-

istration between the two views. Markers were implanted in the distal femur and proximal

tibia in order to maximize inter-marker spacing and to avoid marker overlap. Then the

radiographic process introduces significant defects in the acquired images that must be

corrected to minimize 3-D tracking errors. These errors are corrected before image pro-

cessing and 3-D tracking. Software was developed to search for marker signatures in each

image frame. The resulting 2-D coordinates were saved in a format compatible with the

motion analysis software EVa ( EVa, Motion Analysis,corp.). The EVa software was used

to perform 3-D camera calibration and coordinate reconstruction by using the calibration

cube data and a modified Direct Linear Transformation (DLT) [42]. 3-D bone models

were developed from CT and they were used to determine the transformations between

instrumentation-based and anatomically based coordinate systems. Locations of the tanta-
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lum markers within the bone were determined from CT slices using the public domain NIH

image program (developed at the U.S. National Institutes of Health). Then joint rotations

and translations were calculated. The resulting angles for joint rotations are those described

by Grood and Suntay [43] and the joint translation is defined as the relative displacement

between specific points fixed to each bone.

Precision and repeatability were estimated for in-vivo data and assessed using inter-

marker distance while bias was estimated from phantom tests. Bias measurements were

within the accuracy of the precision milling equipment used to construct the phantom object

and were not significantly different from zero. The level of the precision is sufficiently

accurate and is attainable on live objects performing dynamic movements. Angular errors

were reported based on actual, implanted marker configurations and are dependent on the

specific geometry of the markers implanted into each bone. One limitation of this technique

is the need for CT data from proximal joints near internal organs. This approach can be

used whenever the benefits of very high accuracy outweigh the minimal risks and is well

suited for implementation and validation of dynamic musculoskeletal models for estimating

in-vivo behavior of internal joint structures.

Marker Configuration Model-based Roentgen Fluoroscopic analysis (MCM-based RFA)

is introduced in [44] in order to evaluate how the polyethylene bearing in mobile bearing

knees moves during dynamic activities with respect to the tibial base plate. This technique

uses a marker configuration model of inserted tantalum markers in order to accurately esti-

mate the pose of an implant or bone by using single plane Roentgen images or fluoroscopic

images. The accuracy of this method is investigated in a standard fluoroscopic set-up using

phantom experiments and also this study determines the error propagation of the accuracy

of 3D marker position reconstruction with computer simulations. This technique uses an

MC-model.
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MC-model describes the positions of the markers relative to each other and this can be

assessed by the reconstructed 3D positions of the markers from one or more RSA radio-

graphs using RSA software ( RSA-CMS, Medis, The Netherlands).

The 2D positions of the marker projections in the fluoroscopic images are automatically

detected with an algorithm based on the Hough-transform for circle detection [45]. A cal-

ibration box has been used for calculating the 3D position of the Roentgen focus by the

same procedure as in RSA [46]. This procedure is further explained in detail in the paper.

To be able to correct for distortion and calibrate the set-up a 400x400 mm Perspex cali-

bration box (BAAT Engineering B.V., Hengel, The Netherlands) was used. In the phantom

experiments this calibration box was utilized to obtain the 3D position of the focus and to

define the coordinate system. A two-dimensional N-degree polynomial model was used to

quantify the distortion and calculate the correction parameters. Also for the phantom exper-

iments the phantom used was made of carbon fibre sandwich plates and contained 17 1-mm

tantalum beads attached to each edge. Two rigid bodies define two MC-models within the

phantom. The relative change between the two MC-models in position and orientation

was calculated by comparing their relative pose in two consecutive images. These relative

changes indicate the error of the MCM-Based RFA method [47]. Based on the results

of the phantom study, the error propagation of this technique was assessed by computer

simulations using MATLAB (The Mathworks Inc.,Natick, MA). Five types of simulations

were performed in order to separately investigate the influence of image distortion, MC-

model accuracy, focus position, the relative distance between MC-models, and MC-model

configuration on the accuracy of MCM-Based RFA. In each type of simulation, ten levels

of normally distributed noise with zero mean and set standard deviation was added to the

data of test parameters. These simulations are described in the paper.

The results showed that the highest distortion was found at the boarders of the field

of view. A ninth-order polynomial model was used to correct for image distortion. The
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phantom study established that the in-plane accuracy of this method is 0.1mm and the out

of plane accuracy is 0.9 mm. The rotational accuracy is 0.1 degrees.

From the computer simulations the results showed that the out of plane measurement

error was the most sensitive when noise was added. The measurement error of MCM-

Based RFA is linearly related to the amount of model distortion. Image distortion and

accuracy of models have the largest influence in the accuracy of the method. In the worst

case the results showed that the in vivo measurement accuracy for translations is estimated

to be 0.14 mm (x-axis), 0.17 mm ( y-axis), 1.9 mm (z-axis) and a rotational accuracy of

0.3 degrees. MCM-Based RFA is potentially an accurate clinical useful tool for studying

kinematics after total joint replacement using standard equipment.

2.2.2 Section II: Implant Tracking

At the Department of Orthopaedics Leiden University, kinematics of knee implants is

investigated [29]. The authors propose an automated contour detection method which is in-

tegrated in the pose estimation. In this technique, most of the manual work in fluoroscopic

analysis is eliminated and is precise enough for clinical research purposes. In a phantom

experiment, with a biplane flat-panel fluoroscopic set-up, the automated method was com-

pared with a standard method which uses manual selection of correct contour parts. It is

a conventional model-based pose estimation method [30] with semi-automated contour

detection, the Canny edge detection [31]. The purpose of this study is to validate the new

and automated model-based contour detection method, which is integrated into a model-

based pose estimation method. The analysis of a complete fluoroscopic dataset can easily

be automated by propagating the pose from one image to the next. Both clinical data and

phantom were used in order to validate the precision and accuracy of the clinically relevant

in-plane positions and orientations. A fluoroscopic image, the relative X-ray focus posi-
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tion, a 3-D surface model of the implant as well as an initial candidate pose are the main

input of the automated model-based contour detection method. In order to compare the

new automated and the standard method the error in pose is calculated as the difference for

each pose parameter with respect to the pose obtained by the biplane reference measure-

ment. The initial pose of the model for the new method can be provided by an experienced

user. For the standard model-based pose estimation method the user is responsible for

the Canny edge detection and then the pose is estimated with iterative inverse-perspective

matching followed by a global optimization of the distance between the contour points and

the implant model.

The results showed that the most prominent differences are in the systematic errors

where in the automated method the systematic errors are consistently higher. The pre-

cision was comparable for both methods with a minor difference in the Y-position (0.08

versus 0.06 mm). The precision of each method was so small (below 0.2 mm and 0.30)

that both are sufficiently accurate for clinical research purposes. Moreover the standard

and the automated method employ the same technique except that the last one has a sec-

ond image available from the biplane set-up and that can cause, according to the authors,

the discrepancy in the systematic errors between the two methods. Overall this research

demonstrated that the contour detection can be completely integrated within the pose esti-

mation with an easier workflow and less manual work in fluoroscopic analysis with only

minor consequences for the accuracy of the system.

Similarly in Mahfouz et al [21] a method is presented for registering 3D knee implant

models, but in this case to single plane fluoroscopic images. Although this research is

focused on total knee arthroplasty (TKA) this method, according to the authors, can be

applied to other implanted joints as well. Single plane fluoroscopy has been used because

it allows the patient free motion in the plane between the X-ray source and the image in-

tensifier in comparison with the biplane fluoroscopy that limits the motion of the patient.
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All six degrees of freedom of the pose from a 2-D image can be recovered with an accurate

geometric model of the object and an accurate model from the imaging sensor, from which

the image was formed. This new method that estimates the kinematics of TKA knees from

single plane fluoroscopic images is a robust method with respect to image noise, occlusions

and low object-to-background contrast. Unlike previous techniques in this case an accurate

segmentation of the implant silhouette in the image is not necessary and instead a direct

image-to-image similarity measure was utilized. In this approach, a synthetic fluoroscopic

image of the implant in a predicted pose is produced and this image is correlated to the

original input image. In that way explicit segmentation is not necessary but gives numer-

ous local minima that can produce false registration solutions. This problem is overcome by

using a robust optimization algorithm that finds the global minimum, avoids local minima

and minimizes the error between a predicted and an actual X-ray image. This technique in-

volves four elements: 1) an initialization step, 2) a matching algorithm which evaluates the

match between the observed image and the predicted image from the current hypothesized

pose, 3) a robust optimization algorithm and 4) a method of supervisory control. All these

elements are described in detail in the paper [21] .

Experiments were conducted in order to analyze the convergence properties of the al-

gorithm and to measure how well the registration algorithm could find the best pose of

the femoral component, when it was run from different starting conditions. Accuracy tests

showed that the registration method is highly accurate for measuring relative pose with

the exception of Z translation. A completely independent method using an optical sensor

was used for determining the ground truth pose data that were used as a gold standard.

The overall rms difference in translation was approximately 0.65 mm and the rms error in

rotation was approximately 1.5 degrees.

Additionally in Acker et al [23] a study was conducted to determine the accuracy of total

knee replacement kinematics in vitro that was established via fluoroscopic shape matching
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software and optimization algorithm by comparing it to optoelectronic motion tracking.

By using a custom synchronization software, trials were recorded simultaneously using

a C-arm fluoroscope and an Optotrack Cercus Camera. During five dynamic trials the

femur Sawbone was manually moved through a knee extension cycle. In order to correct

all trial images, calibration and distortion parameters were established using a calibration

image of radiopaque beads in known patterns. The computer aided design models (CAD)

and the undistorted images were imported into an open source shape matching software

program (JointTrack, University of FLorida, Gainesville, FLorida). By manually adjusting

the position and orientation of the CAD models on the display, the contour of the CAD

model was manually matched to the extracted contour of the respective component in the

fluoroscopic image. When the two shape outlines match then the poses were optimized.

The optimization algorithm was based on the technique described in [21]. The evaluation

of the shape matching between the two images was dependent on the combination of two

variables. The first variable was a correlation on the intensity values of the two images

while the second was a correlation on the shape contours. According on [21] results,

the edge contour detection weights more than the intensity correlation. The results from

this study showed that the largest absolute mean differences in relative pose between the

fluoroscopic and optoelectronic results were 2.10, 0.30 and 1.10 in extension, abduction

and internal rotation respectively and 1.3, 0.9 and 1.9 mm in anterior, distal and lateral

translations, respectively. These results can be used to decide if the fluoroscopic shape

matching method described here is adequately accurate for an intended motion tracking

application.

Similarly in Sharma et al [48] the same shape matching technique was used in order

to measure patellofemoral (PF) and tibiofemoral (TF) kinematics before and after total

knee replacement. The goal for this study was to develop and validate a novel in vivo

sequential biplane radiological methods that allows accurate tracking of the PF and TF
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joints, throughout the range of movement under weightbearing, before and after the total

knee replacement. The shape matching of the 3D bone or implant CAD models to the 2D

calibrated and undistorted images is perfomed by using the biplane version of JoinTrack

software (JointTrack Biplane, University of FLorida, Gainesville, FLorida). As already de-

scribed previously this software rotates and translated the 3D model, manually or automat-

ically until the two shapes are perfectly aligned, whether pre- or post-operative. The results

showed that the TF kinematics and PF kinematics were highly accurate (<0.9mm,<0.60)

and repeatable.

2.2.3 Section III: Bone Tracking

Bone tracking is based on three-dimensional shape and texture of the bones. The meth-

ods of tracking bones are based either on the contour detection or on gray-scale detection.

Researchers at the Bone and Joint Center, Henry Ford Hospital, investigated the accu-

racy of a new non invasive model-based tracking technique for measuring three-dimensional

in vivo glenohumeral joint kinematics [34]. They compared this method with a well estab-

lished, accurate dynamic RSA technique that measures joint kinematics by tracking the

position of implanted tantalum beads.

New model-based tracking technique is based on the following concept: Given the

geometry of the biplane x-ray system and a 3-D bone model, which is taken from a CT

scan, a pair of digitally reconstructed radiographs (DRRs) can be generated via-ray traced

projection through the 3-D bone model. The in vivo position and orientation of a given bone

can be estimated after the optimization of the similarity between the two DRRs and the

actual 2-D biplane radiographic images. In order to enhance the matching process a sobel

edge-detector is added to the base images for both the DRRs and the radiographs. Sobel

edge detection works by calculating the gradient of the image intensity at each pixel. The

28



end result is that it produces a value which correlates to how abruptly the image changes at

each pixel. In that way edges can easily be detected.

After developing the 3-D volumetric bone model the model-based tracking process is

performed with a workbench designed by the authors. The graphical tools obtained in

this workbench are described in detail in the paper. In order to get a good visual match

between fluoroscopic images and DRRs for both biplane views, initial estimates for bone

position and orientation were obtained by manually adjusting the six motion parameters.

The quality of the initial guess is measured from the program by: 1) generating a DRR

for each of the biplane views then 2) adding a sobel edge detector output to the original

DRR for the enhancement of each view, 3) calculating the correlation coefficient for each

DRR 4) and finally multiplying the two correlation coefficients to get a system-correlation

measure. By using this technique the 3-D position and orientation of the parts of the body

that are captured were determined independently for all frames for each trial. RSA involves

the determination of the position of the tantalum beads within the CT bone model and then

expressing their 3-D position relative to a fixed laboratory coordinate system [41].

This research showed that the results from the new model-based tracking technique are

in high agreement with the RSA technique. Measurement bias ranged from -0.126 to 0.199

mm for the scapula and ranged from -0.022 to 0.079 mm for the humerus. Precision was

better than 0.130 mm for the scapula and 0.095mm for the humerus. Particularly the results

indicate that the new model-based tracking technique is accurate to within approximately

±0.5 mm of high accuracy validated dynamic RSA technique.

The accuracy in the same new model-based tracking technique is investigated but now

is applied for measuring the patellofemoral joint motion [25]. To assess the accuracy of

this technique model based tracking is compared again to dynamic RSA by computing

measures of bias, precision and overall dynamic accuracy of four clinically-relevant kine-

matic parameters. For the validation of this technique, small beads were implanted into
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the patella and femur of three cadaver knee specimens, biplane radiographic images were

recorded while manually flexing and extending the leg, then the position of femur and

patella was measured with both techniques and finally the results of the model-based track-

ing technique and the RSA which is considered to be the ”gold standard”, were compared.

According to the authors, the results of both procedures are in high agreement. Model

based-tracking is a non-invasive technique and the level of accuracy that it achieves is suffi-

cient enough for addressing clinically relevant questions regarding PF joint function. Over-

all dynamic accuracy was better than 0.395 mm for the three translational measurements

and better than 0.877 degrees for rotational measurements.

On the other hand one disadvantage is the amount of x-ray exposure that limits the

number of trials that can be performed and the field of view is limited to the biplane x-ray

system’s 3D imaging volume.

Another application of the same technique is presented by accurately measuring the

three-dimensional motion of the shoulder’s glenohumeral joint under in vivo conditions [49].

In this study the application of the new model-based tracking technique is demonstrated

for accurately measuring glenohumeral joint translations during shoulder motion in the re-

paired and contralateral shoulders of patients following rotator cuff repair. The results from

this study showed that superior-inferior humeral translation during elevation indicated an

overall range of approximately 2.6 mm which is in agreement with previous works [50].

Also the anterior-posterior humeral translation was measured during external rotation (1.5

mm for repaired shoulder and 2.1mm for contralateral shoulder) which is in agreement with

previous reported studies [51]. The data failed to detect statistically significant differences

between the repaired and contralateral shoulders in superior-inferior translation (p=0.74)

or anterior-posterior translation (0.77).

In Giphart et al [52] the accuracy of a contour-based biplane fluoroscopy tracking knee

kinematics technique is investigated by comparing it to a marker-based method during
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three knee movements with increasing intensity. The purpose of this in vitro study was to

demonstrate weather this contour-based tracking of the knee was equally accurate across a

range of motions of different speeds.

The 3D geometries of the bones were reconstructed from the CT data while the marker

models of the beads were created in Model-Based RSA. Model-Based RSA was also used

to determine the 3D bone and marker positions and orientations from the biplane fluo-

roscopy data. A canny edge-detection filter was used for the bones so the edges will be

automatically detected in the fluoroscopic images and manually assigned as contours of the

femur and tibia/fibula. The position and orientation of the 3D bone models was adjusted in

3D space in a way that contours from the projections of the bone models (black lines) align

well with the bone contours identified in the 2D images (light lines). The markers were

automatically identified in the 2D images and the pose of the marker models was adjusted

so that the marker positions match well with the projection lines. The results demon-

strated that the average bias and precision was 0.01±0.65 0 for rotations and 0.01±0.59

mm for joint translations. According to this study the contour-based method showed sub-

millimeter and sub-degree accuracy and it can be used as a tool for measuring complex 3D

knee movements for different speeds.

In [17] the authors quantify relative and absolute accuracy limitations due to the shape

matching process alone when natural knee kinematics are measured by aligning flat-shaded,

edge detected bone models to single plane fluoroscopic images. For the shape matching

procedure, implant 3-D computer aided design (CAD) models are replaced with geometric

bone models created from medical imaging data. In fluoroscopic images, cortical bone

edges are less well defined than are metallic implant edges. For that reason, a theoretical

accuracy assessment is needed to quantify expected errors in measured joint (relative) and

bone (absolute) kinematics. The results indicate that biased edge detection is the primary

factor limiting the theoretical accuracy of this single plane shape matching procedure. In
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addition this approach is insufficient for measuring in vivo contact areas for arthritis-related

research applications. Biplane fluoroscopy should be used to overcome that limitation.

Massimini et al [35] presents the translation and rotation differences between a non-

invasive markerless dual fluoroscopic imaging system ( DFIS) model-based tracking tech-

nique for calculating dynamic in-vivo shoulder kinematics with respect to widely accepted

RSA marker based technique during simulated dynamic shoulder motion. Additionally the

repeatability of the DFIS to track the scapula and humerus during dynamic shoulder motion

is reported. The technique of model-based tracking which started for stereophotogramme-

try includes a ray trace which is constructed from a point to an image plane to the source

location from two or more independent views. The 3-D position of an object can be deter-

mined by simultaneously tracking multiple points on the object. This method can determine

the 3-D object position based on its projected silhouette to segmented contour in place of

individual points. In this case humerus bone and scapula were manually segmented from

the fluoroscopic images within the virtual DFIS. Bone models of the scapula and humerus

with titanium spheres removed, were manually translated and rotated within the virtual

DFIS until their alignment of their projected silhouettes with the segmented contours was

achieved simultaneously on both image planes. In order to compare the two methods, the

relative position and orientation were determined for both techniques. Furthermore the

repeatability was investigated by tracking the position of the scapula and humerus with re-

spect to fixed laboratory coordinate system. The results for this research showed that the

difference between the markerless model-based tracking technique and the RSA was ±0.3

mm in translation and ± 0.5o in rotation. In addition the repeatability of the DFIS method

for the scapula and the humerus was ±0.2 mm and ±0.4o, respectively.

Miranda et al [53] introduced a new markerless tracking software in order to describe

a method for quantifying the systematic error of biplane fluoroscopy system. Independent

gold standard instrumentation was used to evaluate the systematic error of the W.M. Keck
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XROMM Facility’s biplane videoradiography system using both marker-based and mark-

erless tracking algorithms under static and dynamic motions.

In order to process all marker-based data custom Matlab software (Xrayproject) has

been developed by using standard Direct Linear Transformation (DLT) techniques. Marke-

less XROMM can be performed by auto-registration of a CT volume in the 2D images.

The auto registration algorithm consists of four major components. Digitally reconstructed

radiographs (DRRs) are generated form a CT volume. Secondly both the radiographs and

the DRRS are processed to detect edges and enhance features. Then a normalized cross

correlation is utilized to evaluate the similarity between the DRRs and the radiographs.

Finally, an optimization algorithm iterates over the 6 DOF motion parameters until the de-

sired result has been achieved. The autoregistration algorithm needs an initial guess of the

pose of the bones and this can be done either manually or extrapolated form the previous

tracked frames. There are some parameters that allow the user to manipulate either the

DRRs or the radiographs. Additional filters are available such as contrast and edge detec-

tion that can be applied to both DRRS and radiographs. This auto-registration algorithm

has been implemented in an open source software Autoscoper (Autoscoper, Brown Uni-

versity, Providence, RI, USA) (see also Appendix B). Bone tracking over a video sequence

can be performed with this software. The results from this study demonstrated that both

techniques described here are in high agreement with the gold standard instrumentation for

both static and dynamic activities.

The same markeless tracking software, Autoscoper, was used to process the biplane

radiography data in [54]. In this paper the focus was on comparing kinetic and knee kine-

matic measurements for male and female ACL-intact and ACL-reconstructed subjects dur-

ing a jumo-cut maneuver using dual plane fluoroscopy. The results demonstrated that the

rotational and translational tracking precision for this work was 0.08 0 and 0.45 mm, re-

spectively.
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Conclusions

Based on the literature review, it may be stated that most of the above techniques

achieved high accuracy and can be very useful for establishing joint tracking. Model-based

tracking technique that was introduced from the group of Bone and Joint center achieves

high accuracy levels for measuring in vivo glenohumeral and patellofemoral joint motion.

Additionally, the open source Autoscoper tracking software that makes use of a modern

GPU technology, seems to be a highly accurate and useful tool for bone tracking. The

automated contour detection method for the knee implant kinematics has also sufficient ac-

curacy for clinical research purposes and by using this technique most of the manual work

in fluoroscopic analysis is eliminated. Another software that has been used for either bone

or implant tracking is JointTrack and the studies showed that it can be successfully used

for radiographic model-image registration. Marker Configuration Model-Based Roentgen

Fluoroscopic Analysis (MCM-based RFA) technique has the potential to be an accurate

clinically useful tool for studying kinematics after total joint replacement using standard

equipment.
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Â
◦

(S
)

±
0.

13
m

m
,±

0.
44

Â
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2.3 Overview HSSR at the university of Denver

For diagnosing joint disorders or establishing joint treatment, precise kinematic mea-

surements of in vivo human joint motion are required often at millimeter scale. Measure-

ment of bone-to-bone or implant kinematics with the necessary sub-millimeter accuracy

cannot be provided from traditional optical motion capture systems. Based on the liter-

ature review, dynamic radiography can capture in vivo joint motion with high accuracy.

However, most fluoroscopy-based radiography systems are limited to a single plane, re-

sulting in reduced out-of-plane accuracy. Even most existing bi-plane fluoroscopy systems

as already stated are often limited by capture at rates less than many normal physiologi-

cal movements, small (<12 inch) fields-of-view, and static configurations. To overcome

all these limitations we have developed a High-Speed Stereo Radiography (HSSR) sys-

tem which is a 3D imaging tool for dynamic measurement of bone and joint motion at a

sub-millimeter level (Figure 2.1).

Figure 2.1: The HSSR system configuration

Each imaging plane of the HSSR system consists of an X-ray source and collimator

where the last one reduces the size and shape of the X-ray beam according to the volume
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of interest we want to irradiate on the subject and the image intensifier (II) that converts

X-rays into a visible image. Furthermore high speed, high definition cameras are used for

recording the resulting image. All these radiography components (Figure 2.2 ) of each

image plane are mounted on a custom gantry that allows imaging of a wide range of joints

including cervical spine and shoulder, arm and hand, foot and ankle, knee, hip and lumbar

spine.

Figure 2.2: Radiograpchic components

HSSR is easily reconfigurable since it allows 8 vertical feet of travel of the radiography

components on the actuators, from foot to cervical height and also the distance from the

X-ray source to the image intensifier can be varied from 1.00 to 1.600 m in order to enable

enough capture area for different dynamic activities. Once the gantries, each for one imag-

ing plane, are in position they can be made rigid by using the lockable clusters. The 16

inch image intensifiers allow a field of view nearly 150% larger than most research radiog-

raphy systems (approximately 40x40x40 cm3) while the high-speed cameras and 480 volt

generators allow motion capture at up to 120 fps in low-dose pulsed mode or up to 1000

fps in a continuous mode.
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Finally, to achieve our research goals for human movement capture, the HSSR system

is integrated into an existing marker-based camera system and forceplates. The optical

motion capture system consists of 8 Vicon MX near-infrared cameras (Vicon, Oxford, UK)

that can capture trajectories of spherical surface markers that define anatomical segments

on human subjects. Also four force plates (Bertec, Columbus, OH) that are located within

the floor capture ground force data at the same time with the video motion capture.

Our new developed High-Speed Stereo Radiography (HSSR) system provides the ca-

pability of capturing human joint motion with high frame rates, larger viewing volume, an

open capture area, and two view planes for three-dimensional tracking of bone and implants

with sub-millimeter accuracy.
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Chapter 3

Calibration and Validation of HSSR

System

3.1 Introduction

Generally, dual plane fluoroscopic imaging systems are considered to be the most pre-

cise systems for measuring joint kinematics in vivo with sub-millimeter accuracy. Accurate

calibration methods for biplane systems are used in order to correct for the image distortion

of the imaging devices, to determine the focus position of each X-ray generator relative to

its corresponding imaging device and to accurately estimate the geometric relationship of

the two fluoroscopy systems. There are three major steps to capture accurate images with

the HSSR system: alignment, undistortion, and calibration.

3.2 Alignment

If the fluoroscopy system is moved though, then prior to calibration methods the align-

ment of the X-ray source and the image intensifier must be verified. With the HSSR the
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X-ray generator must be aligned such that the X-ray beam is orthogonal to and centered

on the image intensifier. Alignment is achieved using lasers and lights that are built into

the X-ray source. For vertical alignment the lasers are aligned with the horizontal line on

the image intensifier while the cross hair shadows coming from the X-ray generator are

centered over a small icon in the center of the image intensifiers and are used for lateral

alignment. The final step is to place mirrors flush with the face of each image intensifier

(II). The lasers embedded in the II’s are then projected on the mirrors from the correspond-

ing plane. The reflection cast back on the X-ray source can be checked to ensure it falls

between a mark above and below the laser projection, corresponding to being withing 1

degree of perpendicular. This is a necessary procedure since misalignment can reduce the

image contrast, waste X-ray exposure and reduce the field of view. Once alignment is

achieved, the distortion created by the II’s is then quantified.

3.3 Distortion Correction

Fluoroscopic images tend to have significant geometric distortion due to the image

collection from the lens and image intensifier and that must be corrected for accurate mea-

surements. Image undistortion can be achieved by imaging a low-tolerance perforated steel

sheet with known distances between the holes (3.18 mm diameter holes spaced 4.76 mm

apart in a staggered pattern (9255T641, McMaster-Carr, Robinson, NJ)) that were cut to

fit the face of the image intensifiers. This flat plate is directly positioned in front of the

surface of the image intensifier as shown in Figure 3.1. After the grids are placed on the

image intensifiers a single image is captured using technique characteristics of 50 KV, 80

mA, 24 frames/sec with 0.8 msec pulse-width. The idealized geometry of the perforations

in the images can then be used to correct any distortions and to provide a distance mea-

sure to the pixels of the images by using the XROMM Undistorter (Brown University,RI)

40



software. A distortion correction algorithm compares the spacing between holes as seen

in the fluoroscopic image with the idealized spacing and then a transformation matrix is

calculated for correcting the images. The transformation from the distorted image to the

corrected image after being estimated is applied to all subsequent images.

Figure 3.1: Grids placed in front of the surface of the image intensifier

Figure 3.2 shows the raw distorted image and undistorted image of the steel grid. After

the correction the image is smaller because close to the edges the distorted holes have been

reduced to their initial size.

Figure 3.2: Raw distorted image of a machined steel plate with precise hole sizing and
spacing on the left and undistorted image on the right
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3.4 Calibration

In order to calibrate the 3D space and determine the relative positions and orienta-

tions of the each fluoroscopy system a radio-translucent thermoplastic calibration cube

with 24cmx24cmx20cm dimensions has been designed enclosing 52 tantalum beads with

a diameter of 2 mm and 6 mm as calibration points. The calibration cube consists of four

delrin plates with uniform thickness and five stiff plastic rods that are glued in place and

hold together the calibration object. The calibration cube and the position of the beads on

the plates is illustrated on Figure 3.3. Some of the beads are signified with radio opaque

metal icons for further help in orientation and numbering. Additionally, the size of the

beads alternate between each level.

Figure 3.3: Calibration cube with 52 steel beads

The exact position of the beads was obtained by a coordinate measuring machine

(CMM) with accuracy of 0.001 in. The 3D relationship of the two fluoroscopy systems is

determined after imaging this custom made calibration cube positioned inside the capture

volume of the stereo system. The two images are then imported into an open source cali-

bration tool developed by Brown University, which determines the position and orientation

of the image intensifiers relative to the calibration cube using a direct linear transformation

(DLT) algorithm. DLT is a method of calculating the 3D location of an object (or points

on an object) in space using two views of the object and describes a direct connection be-
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tween 3D coordinates and image coordinates ([55]). At least 12 calibration points should

be visible in both views and four of them should be the ones highlighted with metal rings

for simplicity. The technique factors used for capturing the calibration cube were 50 KV,

80 mA, 24 frames/sec and 0.5 msec pulse-width. The undistorted images are imported into

this software as well as the framespec file that contains the exact coordinates of the beads

from the CMM. Figure 3.4 demonstrates the interface of the software when the images of

the two cameras are loaded.

Figure 3.4: XROMM calibration interface

The next step is to load a reference file that contains only four beads as a starting guess,

preferably the highlighted ones that are always inside the capturing volume, and mark the

reference points onto the image of the first camera. The order and the reference points are

shown in the sidebar. After selecting the four reference points the position of the camera

can be computed and all the visible points are now being selected and camera parameters

are now shown in the sidebar set (Figure 3.5). The matching error of the theoretical pro-

jection of the calibration markers with the measured projection of the calibration markers

is calculated. The same procedure is applied for the second camera and then we can save

all the parameters from both cameras computed with a DLT method.
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Figure 3.5: All the calibration points are being selected and the camera parameters are
shown in the sidebar set

3.5 Validation of system accuracy

In order to validate the system, three methods are used for tracking. Each method

quantifies the accuracy of tracking using both idealized and realistic tracking scenarios.

Prior to validating methods, all the necessary calibration steps followed by image distortion

correction procedures were performed.

3.5.1 Bead Tracking

The two matching custom radiography systems of HSSR were positioned at a relative

angle of 60 0. Emitters allowed capture at 100 frames/sec in a ’low-dose pulsed’ radiation

mode. The custom calibration cube with 52 enclosed steel beads was used to perform bead

tracking. The calibration cube was fixed to a translational and rotational positioning stage

(accuracy to 0.025mm and 0.01 degrees respectively) and imaged at seven positions, 4

translations forming a square with 25.4 mm sides, and 3 rotations at 0.00, 5.00, and 10.00

degrees (see Figure 3.6).
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Figure 3.6: Example translation and rotation of the calibration cube for bead tracking

Figure 3.7: Positional stage used for the validation of the HSSR system

The cube was captured in an initial orientation, then translated and rotated, with five

radiographs after each step. For bead tracking, custom MATLAB (The MathWorks, Inc.,

MA) software (XrayProject) was used to identify bead locations in each frame and to cal-

culate the 3D coordinates of the markers. Then the 3D positions of the beads were used to

calculate frame by frame motion for each marker set. These beads were easily identified

in stereo images as small spheres that have much higher intensity than the background. In

order to designate the system’s accuracy the same three bead markers were identified and

marked on the fluoroscopic images at each position (see Figures 3.8 and 3.9). Using loca-
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tions of the beads on each 2D image and the DLT parameters, a 3D reconstruction of the

bead centroids can be calculated. Thus bead positions were determined and the cube origin

was tracked as a single rigid body.

Figure 3.8: Bead Tracking using XrayProject software

Figure 3.9: Radiograph for bead tracking with example beads for a single plane (yel-
low,blue,red)
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The inter bead distances were compared to the CMM values for each frame. The po-

sitions of the cube were averaged over the 5 frames at each position, and the relative 3D

translations and rotations between each test were then compared to the absolute measure-

ments from the positional stages, and the average overall errors were calculated. The results

for bead tracking revealed an overall mean 3D translational error of 0.2 mm (S.D. 0.1 mm)

and a mean 3D rotational error of 0.11 degrees (S.D. 0.03 degrees). Overall average inter

bead distance error 1 to 2 was 0.104 mm (S.D. 0.083 mm), 0.106 mm (S.D. 0.050 mm) for

beads 1 to 3, and 0.186 (S.D. 0.129 mm) for beads 2 to 3. The overall average error was

0.149 mm (S.D. 0.039 mm) for all beads over the motion. These results prove that HSSR

system can track radio-opaque markers with sub-millimeter accuracy.

3.5.2 Implant Tracking

A cobalt-chromium femoral implant (Sigma by DePuy Synthes ) and a corresponding

CAD model was used in order to perform implant tracking. The femoral implant (Figure

3.10) was fixed via a wooden block to the calibration cube which was fixed to positional

stages. The implant was imaged simultaneously with the cube, following translations and

rotations identical to that used with beads on calibration cube with five radiographs cap-

tured at each position.

Figure 3.10: Femoral implant component
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The implant was then tracked using Autoscoper (Brown University, RI) (see Appendix

B). The images and the femoral CAD model were imported into this open source shape

matching software and Figure 3.11 illustrates stereo radiographs obtained from HSSR and

stereo radiographs visualized in Autoscoper for implant tracking. The position and orien-

tation of the 3D bone models of the femoral component was manipulated in 3D space such

that the CAD geometries edges were simultaneously matched with the 2D projections of

the corresponding silhouette in the fluoroscopic image from each plane.

Figure 3.11: A. Stereo radiographs from HSSR system for implant tracking. B. Stereo
radiographs visualized in Autoscoper for implant tracking at different time points/positions

After manually positioning the implant component (Figure 3.12) the pose was opti-

mized with a downhill optimization algorithm as a part of the Autoscoper software. The

transformation matrices were obtained from Autoscoper and the 3D positions (6DOF) of

the implant were averaged over the 5 frames at each position.
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Figure 3.12: CAD model of the femoral component were simultaneously fitted over the 2D
projections from each plane. This process was repeated for each position, allowing for 3D
positioning to be tracked.

The relative 3D translations and rotations between each test were compared to the pre-

cise measurements acquired from the positional stages and translational and rotational er-

rors were calculated. The results showed that the translational error for the implant tracking

was 0.9 mm and 0.62 degrees for the rotational error. Based on these results HSSR demon-

strates the ability to track implants with sub-millimeter accuracy and thus allows measuring

in vivo kinematics for patients with implants with the accuracy required.

3.5.3 Bone Tracking

In order to perform the bone tracking a knee phantom (a full human cadaveric knee

joint set in a tissue-surrogate thermoplastic) was used (Figure 3.13). The same method

as described for bead and implant tracking is followed for the bone tracking. The knee

phantom was fixed on the positional stages, following translational and rotational motions

and imaged at 32 positions, 21 translations forming a square pattern with increment of

0.254 mm that traveled in and out of plane with the image intensifiers and 11 rotations with

increments of 1 0 for 50 in both directions. Stereo radiography data were collected for each

position at 100 frames per second (Figure 3.14).
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Figure 3.13: Knee phantom.

Figure 3.14: A:Stereo radiographs from HSSR for the knee phantom, B:Stereo radiographs
when they are imported in Autoscoper
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Autoscoper was also used to perform bone tracking. The 3D geometries of the femur,

tibia and fibula were extracted from CT bone density data. These 3D geometries, as well

as the stereo images of the knee phantom, were then imported in Autoscoper for estimating

the 3D position and orientation (pose) of the knee during the translational and rotational

motion on the positional stage. After the shape matching is completed (Figure 3.15) The

transformation matrices were acquired from Autoscoper and the 3D positions (6DOF) of

the knee bones were averaged over the 5 frames at each position. The results showed

an overall mean 3D translational error of 0.151 mm (S.D. 0.133 mm) and a mean 3D

rotational error of 0.41 degrees (S.D. 0.30 degrees). Table 3.1 summarizes the results for

the validation techniques that have been used in order to demonstrate that the HSSR system

is capable of tracking beads, implants and bones with sub-millimeter accuracy.

Figure 3.15: Alignment of the 3D model (orange) with the 2D radiographs in Autoscoper

Translational Error Rotational Error
Bead Tracking 0.2 mm (0.008") ± 0.1 0.11o ± 0.03

Implant Tracking 0.9 mm (0.006") ± 0.7 0.62o ± 0.59
Bone Tracking 0.15 mm (0.0063") ± 0.1 0.41o ± 0.30

Table 3.1: Average overall error for bead, implant and bone tracking
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We see from the results that the bead and bone tracking demonstrated the smallest trans-

lational and rotational error with the bead tracking being more accurate in the rotational

error. The implant tracking erros were higher although still demonstrating sub-millemeter

accuracy. We expect metallic implant edges to be well defined in fluoroscopic images com-

pared to the cortical bone edges. However, it is still challenging due to the opacity of the

implants since any internal edges that would help in performing better alignment are not

visible. Finally our results are similar with other studies based on model-based tracking

methods and using stereo radiography systems. For example in Miranda et al [54] the ro-

tational and translational tracking precision was 0.08 0 and 0.45 mm respectively while in

Bey et al [25] the reported results for patellofemoral tracking were 0.8770 for rotational ac-

curacy and 0.4 mm for translational accuracy. Finally Massimini et al [35] reported model

tracking errors of 0.3 mm and 0.5 degrees.
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Chapter 4

Literature Review- Precise Healthy

Knee Kinematics measurements

Quantification of knee motion is essential for assessment of joint function for diagnosis

of pathology, such as tracking and progression of osteoarthritis and evaluation of outcome

following conservative or surgical treatment. Numerous techniques have been developed to

study the in vivo human joint motion. Joint motion is driven by a combination of dynamic

physical forces (gravitational, inertial and contact), active muscular forces and constraints

imposed by passive structures [56]. For a complete biomechanical analysis of the human

knee joint, precise measurement systems become highly important. Knee is one of the

largest and one of the most biomechanically complex joints in the body and the knee’s

primary motions are flexion-extension. In addition, anterior-posterior displacements as

well as rotation play an important role to its overall function [7]. Figure 4.1 demonstrates

the 6 DOFs of the knee, three translations and three rotations.
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Figure 4.1: The 6 DOFs of the knee

Passive motion of the knee joint is dependent on the interaction between the shape of

the articular surfaces and the various ligaments crossing the knee joint (Figure 4.2). Stan-

dard coordinate systems for the knee are based on mechanical or anatomical axes. Grood

and Suntay, in 1983, presented a joint coordinate system providing a geometric descrip-

tion of the three-dimensional rotational and transnational motion between two rigid bodies,

applied to the knee joint [43]. With this method, the described joint displacements be-

came independent of the order in which the components’ translations and rotations occur.

Investigation of the characteristic knee motion is important for the evaluation and design

of contemporary Total Knee Arthroplasty (TKA) that aims to restore normal knee func-

tion and achieve full range of knee flexion. Flexion of the human knee occurs along the

six degrees of freedom in space and includes rotation along the horizontal axis (flexion),

translation along the saggital axis (roll-back of femur) and rotation over the coronal axis

(femoral external rotation). Knee flexion progresses as a combination of rolling, gliding,

and rotation of the femoral condyles over the tibial plateaus. It has been shown that the

kinematics of artificial knees are different than in normal knees, and involve excessive
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sliding and rotational motions which may lead to high shear stresses at the joint interface.

Motion analysis of normal knees provides references for the analysis of pathological knees,

as in cases of osteoarthritis or ligament injury or in the design of total knee prostheses. In

Chapter 5, HSSR will be utilized for classifying knee joint kinematics in healthy older

adults performing common movements of daily living.

This chapter presents different results of various studies that answer the knee kinematics

question. The studies that are presented here are based on precise measurement systems

for measuring healthy knee kinematics in vivo based on intra-cortical traction pins, fast-PC

MRI, single plane fluoroscopy and dual plane fluoroscopy.

Figure 4.2: Anterior, Medial and Posterior view of the right knee anatomy 1

Intra-Cortical Pins

Although implantation of traction pins into the bone of human subjects can provide very

accurate knee kinematic data due to its highly invasive nature there is a limited population

that can be studied using implantation. Paper [1] focuses on measuring 3D kinematics of

the tibiofemoral joint during normal walking by fixing target markers to the tibia and femur

with the method of intra-cortical traction pins. In order to estimate the position of the tar-

get markers relative to internal anatomical structures, radiographs of the lower limb were
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captured (Figure 4.3). Five healthy subjects with no history of pathology in their lower

limb have participated in this study. The goal of this research was to give an accurate de-

scription of the relative angular and linear movements between the tibia and femur during

walking. The target markers were attached to intra-cortical pins and then fixed directly into

the bones. Photogrammetry was used for providing 3D reconstruction. For measuring 3D

coordinates of the target markers in those five healthy subjects during walking, high-speed

cine cameras were utilized. The relative motion between the two bones was determined

based on a joint coordinate system. For qualifying the motion between the tibia and fe-

mur six reference frames were specified. The global and radiographic reference frame, the

tibial and femoral anatomical reference frame and the tibial and femoral marker reference

frame. The origin and axes of the global and radiographic reference frames were deter-

mined, respectively, by the cube that was used to calibrate the 3D volume through which

the subjects walked and by the smaller cube which was utilized for the radiographs. After

the identification of the bony landmarks on the radiographs, the locations of the origins of

the anatomical reference frames as well as the orientations of their axes with respect to the

individual bones, were defined. Average kinematic patterns of the tibiofemoral joint were

acquired from two trials for each of the five subjects. Results from this research demon-

strated that angular motions other than flexion-extension are of relative small amplitudes

( 50 for abduction/adduction and 10 0 for internal/external rotation) as are the translations

of the tibia. Also the present findings showed that the tibia rotated internally with respect

to the femur as the tibiofemoral joint approached full extension and that puts into question

the accepted view that the tibia rotates externally relative to the femur in the late stages of

the extension. Generally, findings of this study showed the extent of the significant angular

and linear motions that occur about and along each axis of the joint coordinate system that

was used to characterize the relative motion between the tibia and femur.
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Figure 4.3: View from one of the camera positions as the subject walked with the target
triads attached to the femoral and tibial pins [1]

MRI

Magnetic resonance imaging (MRI) is a non-invasive technique has the capacity to

depict soft tissues and bony structures and has proven to be an excellent source for dy-

namic knee joint imaging. The authors in [2] focus on measuring in vivo normative 3D

patellofemoral (PF) and tibiofemoral (TF) kinematics during dynamic motion (Figure 4.4).

The goals of this investigation were, i). to evaluate whether the knee joint kinematics

vary based on gender; ii). and to look into the correlation between the 3D kinematics of

patellofemoral and tibiofemoral joints. For fulfilling those goals, a large normative database

of six degree of freedom tibiofemoral and patellofemoral combination, obtained in a non

invasive way during voluntary knee flexion-extension using fast-PC (dynamic) magnetic

resonance imaging (MRI), was established. Twenty-five healthy subjects (14 female, 11
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male) with an age average of 26.7±8.8 years participated in this study. In some of the sub-

jects both knees were imaged so data for 34 knees in total were acquired. Dynamic MRI

sequences obtained the data from which the 3D kinematics were established. A dynamic

exam included three dynamic trials where the subjects were asked to during dynamic imag-

ing to extend and flex their knee form maximum flexion to full extension and back. From

all three trials the required anatomic information was obtained and selected from the fast-

PC anatomic image representing full extension. 3D rigid body rotations and translations

of the femur, tibia and patella were measured through integration of the fast-PC velocity

data. The kinematics measured here were based on an anatomical coordinate system which

was identified in a single time frame only. The interdependence of six translations and

six rotations specifying the PF and TF kinematics was evaluated using a Pearson’s linear

correlation. In order to generate population averages and to observe differences between

groups, each kinematic variable was interpolated to single degree knee angle increments.

The results demonstrated that few correlations exist between TF and PF joint kinematics.

It was found that only 28 % of the alterability in PF lateral-medial tilt and only 12 % of

the alterability in PF interior-superior translation could be explained by internal-external

rotation and the knee appears not to have coupled rotations at any joint. Furthermore the

results showed that there are no significant differences based on gender. Finally, fast-PC

MRI was found to be able to track the combined 3D PF and TF kinematics along with the

knee musculature; thus, the entire knee joint can be studied at once.
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Figure 4.4: Subject position within the MRI imager [2]

Single Plane Fluoroscopy Systems

Single-plane fluoroscopy has been used extensively in order to measure natural knee

motion. In [3] in vivo 3D knee motion and surface kinematics during active knee extension

under loaded and unloaded conditions were measured by using single plane fluoroscopy

with CT bone models (Figure 4.5). Measurement of the changes of the 3-D motion and

surface kinematics of the knee under different external loading conditions is important for

understanding and evaluating the function of the joint. Specifically in this study, the Knee

Extension Exercise (KEE) has been investigated. KEE has been applied extensively in the

rehabilitation programs of patients with various knee disorders. The 3D kinematics were

measured for eight normal subjects during active knee extension for unloaded and loaded

conditions by using a voxel-based method for the registration of single-plane fluoroscopic

images with CT bone data. Each subject sat on a chair and performed isolated active
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knee extension tests in loaded and unloaded conditions under single-plane fluoroscopic

surveillance at a sampling frame rate of 30 frames/sec. The effects of muscle activity in

response to external loads on the knee kinematics during movement have not been studied

extensively. The main reason for that is that these conditions are difficult to simulate in

vitro and the accurate measurement of the in vivo 3-D joint kinematics during dynamic

movements is not straightforward [57, 58]. Methods based on the registration of two-

dimensional fluoroscopic images and computer models of the components of total knee

replacements have been developed for accurate 3-D kinematic analysis of replaced knee

joints [19, 21]. However, the application of this method to natural knee kinematics has been

limited [59, 12] because human bones have weaker contrast and it becomes more difficult

to identify them in fluoroscopic images in comparison to metallic replacement components

which leads to reduced accuracy. A voxel-based 2-D to 3-D registration method for more

accurate measurement of the natural knee kinematics can be a useful tool for the study of

the in vivo 3-D knee motion and surface kinematics during KEE [60]. Results from this

study showed that the knee kinematics during unloaded conditions was found to be similar

to previous findings. A weight at the ankle did not affect the joint angles but significantly

alter the lateral contact positions during knee extension and also reduced the asymmetry of

the surface kinematics between the medial and lateral condyles. The voxel-based method

used in the current study for the registration of the fluoroscopic images with CT bone model

was shown to be highly accurate.
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Figure 4.5: Schematic diagram showing a subject performing active knee extension under
dynamic single fluoroscopic surveillance [3]

Another fluoroscopic analysis of the normal human knee is presented in study [12]. The

purpose of this investigation was to use single-plane fluoroscopy and computed tomography

(CT) for determining with high accuracy the 3D,in vivo, weight-bearing kinematics of five

normal knees. Three-dimensional computer aided design models (CAD) of each subject’s

femur and tibia were recreated from the 3-D CT bone density data. Five healthy subjects

subsequently did four weight-bearing activities (deep knee bend, normal gait, rising from

a chair, stair descent) and these activities have been captured by single plane fluoroscopic

images. The results showed that during all five activities the lateral condyle experienced

significantly more anterior-posterior translation, leading to axial rotation of the tibia relative

to the femur. This research offers an accurate 3-D, in vivo kinematic analysis of the normal

knee under weight-bearing conditions, while the subjects did multiple different activities.

The presented data may provide useful information for future knee simulation studies and

a better baseline of kinematic data for future total knee arthroplasty design.
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Single plane fluoroscopy was used to accurately determine the 3-D, in vivo, weight

bearing kinematics throughout the entire range of knee flexion of ten normal and five An-

terior Cruciate Ligament deficient (ACLD) knees by Douglas et al. [59]. Weight-bearing

kinematics of ten normal and five ACLD knees were investigated. Each subject performed

subsequently a weight-bearing deep knee bend activity while under fluoroscopic surveil-

lance. During the deep knee bend activity, subjects were asked to begin in full extension

and flex the knee of interest to maximum flexion. The fluoroscope maximum frame rate

was 30 frames/sec. Image distortion and non-uniform scaling can be compensated for by

careful calibration [21]. An advantage of the present experimental model is that it allows

analysis under in vivo weight-bearing conditions throughout the entire range of knee flex-

ion. All ten normal knees experienced posterior femoral translation of their lateral condyle

and minimal change in the position of the medial condyle. ACLD knee experienced pos-

terior femoral translation of their lateral condyle with increased translation of the medial

condyle when compared to normal knee. Normal and ACLD knee subjects demonstrated

similar patterns of posterior femoral translation during progressive knee flexion but they

exhibited different axial rotation patterns after 30 degrees of knee flexion. All ACLD sub-

jects were evaluated relatively soon (< 6 months) after their ACL injury. Differences in

kinematic patterns between normal and ACLD subjects may increase in chronic ACLD

subjects due to attenuation of secondary soft tissue stabilizing structures over time. The

current study determined that accurate 3-D motion of normal and ACLD knees, under in

vivo weight-bearing conditions, can be defined by using single-plane fluoroscopy and a

3-D to 2-D image registration process.

Single plane fluoroscopy systems has proven to be accurate in establishing knee posi-

tion along the axis parallel to the image plane. However, establishing the knee motion in

the direction perpendicular to the image plane has proven to be not accurate enough and

biplane fluoroscopy systems are being used instead to overcome this limitation [12, 16, 15].
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Dual Plane Fluoroscopy Systems

Biplane fluoroscopy systems enable the accurate measurement of 6 degrees of freedom

kinematics of the knee joint during dynamic activities. In Myers et al [26] a study was un-

dertaken to measure, describe and compare tibiofemoral rotations and translations of soft

and stiff landings in healthy individuals by using biplane fluoroscopy. Although anterior

cruciate ligament (ACL) injury prevention programs have been denoted to be efficient at

teaching athletes to avoid stiff landings, the overall occurrence of non contact ACL injury

and surgical reconstructions remains high in both men and women. The in vivo 3-D lower

extremity knee kinematics of three men and ten women were collected as they performed

the landing from a 40-cm height. All subjects were instructed to perform soft and stiff

landings. Stiff landings produced significantly greater ground reaction forces (GRFs) and

knee extension moments but did not cause increased amounts of anterior tibial translation

or knee rotation in either varus / valgus or internal / external rotation when compared with

soft landings in healthy individuals under these testing conditions. The results showed the

ability of the musculature and soft tissues around the knee joint to keep translations and ro-

tations of the knee within a small, safe range during controlled tasks of differing demand.

Also, the same group of Biomechanics research laboratory in Vail used biplane fluoroscopy

to measure describe and compare tibiofemoral rotations and translations of healthy individ-

uals measured in vivo during four functional tasks of increasing demand on the quadriceps

commonly included in rehabilitation protocols [61]. The ACL has been well defined as the

main passive restraint to anterior tibial translation (ATT) in the knee and plays an important

role in rotational stability. The kinematics of the knee during different functional tasks is

affected by joint position, external forces as well as the balance of active and passive con-

tributory forces across the knee. The in vivo 3-D kinematics of ten adult female patients,

with no history of injuries in lower limbs, was measured using biplane fluoroscopy while
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the patients completed four tasks that commonly appear in different stages of ACL reha-

bilitation programs and produce increasing demands. The tasks included an unloaded knee

extension from a seated position, walking at a constant pace of 90 steps per minute, a max-

imum knee isometric extension with the knee in 70 degrees of flexion and a landing from a

height of 40 cm. Results demonstrated that ATT significantly increased as the demand on

the quadriceps increased. On the other hand, internal rotation was not significantly different

between landing, isometric contraction and unweighted knee extension. The knee is able

to effectively constrain ATT and internal rotation, this indicates that the healthy knee has a

safe envelope of function that is tightly controlled even though task demand is elevated.

A high Knee Valgus (KVA) has been successfully used as a predictor for ACL injury in

female athletes [62]. Thus, an accurate assessment of 3-D knee motion and the valgus knee

motion particularly would be essential to fully understand the biomechanical mechanisms

of knee injury, repair and rehabilitation.

Torry et al [4] uses high speed biplane fluoroscopic imaging techniques (Figure 4.6)

to accurately measure and describe the 3-D rotations and translations of the healthy knee

during the stiff drop-landing motion . The relationships between knee flexion-extension,

varus-valgus and internal-external rotations and between Anterior tibial translation (ATT)

and lateral tibial translation (LTT) were determined in order to understand better the cou-

pling of these kinematics during the drop landing. Six male athletes, with no history of

lower extremity injury, were instructed to execute a double-legged, drop-landing maneuver

by stepping off a 40cm high platform onto a force plate. Stiff landings were selected be-

cause they may give more interesting results with greater applications to ACL injury than

do soft landings. For each landing, biplane fluoroscopy data were collected for 1.0 s at

500 frames per second with a shutter speed of 1/2000 of a second. Image distortion was

corrected by imaging an accurately machined aluminum plate with 406 holes in a squared

15mm pattern, directly placed in front of the image intensifier. The focus position of each
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fluoroscopy system and the 3-D relationship between them were calculated after imaging a

15cm3 calibration cube enclosing 15 tantalum markers position. Kinematic accuracies for

tracking tantalum beads and bones using this biplane fluoroscopy system were determined.

The results from this study associate increased knee translations with commonly measured

performance variables such as knee valgus and internal rotation angles that are predictive

of the noncontact ACL injury, in particular the data support the coupling of KVA with knee

ATT and lateral translation during drop landings.

Figure 4.6: Computer rendering of the configuration of the biplane fluoroscopy system [4]

The dual plane fluoroscopic imaging method was used to measure the six-degree of

freedom kinematics and condylar motion of the knee during the stance phase of treadmill

gait at a speed of 0.67 m/sec. For the purpose of this investigation eight healthy subjects,

six males and two females, were recruited in Kozanek et al [63]. The hypothesis was that

the 6 DOF knee kinematics estimated during gait will not be similar with those reported for

non-weightbearing activities, specifically regarding the phenomenon of the femoral roll-
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back and also that during the stance phase of gait the motion of the medial femoral condyle

in the transverse plane is bigger than the motion of the lateral femoral condyle. For creating

the 3D models a 3-Tesla scanner and a double echo excitation sequence have been used.

Then, the dual fluoroscopic imaging system (DFIS) was used to establish knee kinemat-

ics during the stance phase of gait. A modeling software was used after, to align the 3D

MR-based knee model with the 2D fluoroscopic images. The kinematics were estimated

utilizing a joint coordinate system based on transepicondylar axis of the femur. The 6 DOF

kinematics of the knee were averaged among all eight subjects during the stance phase of

gait. Th relation between the flexion-extension motion of the knee and motion in the other

DOF was established using a square of Pearson product moment correlation coefficient

(r2). For comparing the range of motion of the medial and lateral condyles in the transverse

plane, the Student t-test was used. Findings from this study confirmed both hypotheses.

The patterns of motion were different from those referenced in non weight-bearing activi-

ties. The knee demonstrated consistent patterns in all rotations and translations. Internal-

external and varus-valgus rotation, as well as anterior-posterior translation indicated clear

correlation with the pattern of flexion-extension. Furthermore, the medial femoral condyle

excursions were bigger than those of the lateral femoral condyle. In addition, regarding

the phenomenon of femoral rollback, the femur was observed to move posteriorly with ex-

tension and anteriorly with flexion. Finally, these results establish that knee kinematics is

activity dependent and motion patterns of one activity can not be generalized to explicate a

different one.

In Li et al [64] a treadmill was integrated into a dual fluoroscopic imaging system

(DFIS) in order to formulate a gait analysis system. For showing the application of this

system one healthy subject performed gait on the treadmill at different speeds :1.5, 2.0,

2.5 and 3.0 mile/hour MPH. The knee joint was captured from heel strike to toe-off during

three consecutive strides with DFIS. The 3D bone model of the knee was reconstructed by
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tracing the bony contours on saggital plane magnetic resonance (MR) images of the knee

in solid modeling software. The alignment of the model and the 2D fluoroscopic images

was performed using a visual DFIS environment where the in vivo positions of the knee

were reproduced by matching projections of the models to their outlines on the 2D im-

ages. The results showed that the duration of the stance phase decreased with the treadmill

speed. With increasing speed, the amplitude of the knee flexion during stance phase in-

creases. Knee kinematics demonstrated similar patterns for the rotations and translation

under different treadmill speeds.

Precise knowledge of the dynamic knee motion in vivo is essential for comprehending

normal and pathological functions of the knee joint. Although, intra-cortical traction pins

method gives results with high accuracy, it is limited due to its highly invasive nature.

Fast-PC MRI imaging is one of the promising techniques in precise measurement of knee

kinematics but it can not capture the full range of motion during dynamic activities like

walking. Single plane fluoroscopy can provide accurate results during dynamic activities

in the in plane motion; however, it is imprecise in the out of plane motion. Finally all

the above limitations can be overcome with the dual plane fluoroscopy that is capable of

measuring knee kinematics with sub-millimeter accuracy during a wide range of activities

of daily living. Table 4.1 summarizes the studies presented here that have used precise

techniques for assessment of healthy knee kinematics and these data can provide a baseline

knowledge for the analysis of pathological knees.
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Chapter 5

Application to Normal Knee

5.1 Introduction

Quantification of knee motion is essential for assessment of joint function for diagnosis

of pathology, such as tracking and progression of osteoarthritis and evaluation of outcome

following conservative or surgical treatment. Osteoarthritis (OA), appears in the knee more

than any other joint and disease development and progression are influenced by abnormal

joint kinematics under dynamic weight bearing conditions. Total knee arthroplasty (TKA)

is an invasive treatment for arthritic pain and functional disability and it is used for de-

formed joint replacement with implants in order to restore joint alignment. Additionally,

precise measurements of knee kinematics provide input to computational models used to

predict joint function. It is important to describe knee kinematics in healthy individuals for

comparison in diagnosis of pathology and understanding treatment to restore normal func-

tion. Thus, the quality of biomechanical models, the accuracy of treatment evaluation and

diagnosis and the design of implants, are all contingent on the quality of the experimental

methods used in their creation. However, measuring the in vivo dynamic knee biomechan-

ics in six degrees of freedom (position and orientation) with an accuracy that is acceptable
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has been proven to be technically challenging. Traditional marker-based motion capture

has been extensively used for assessing dynamic knee motion but these methods include

errors due to skin and soft tissue motion [11]. For overcoming the inherent inaccuracy of

skin mounted markers, intra-cortical pins methods have been used instead [1] that provide

some of the best quantitative data during dynamic motion. However, due to its highly inva-

sive nature its application is limited for human studies. Medical imaging such as magnetic

resonance imaging (MRI) and computed tomography (CT) allow assessing movement of

the underlying bone directly but limit the analysis to quasi-static conditions, thus, these

methods have inadequate dynamic measurement capabilities for capturing the knee joint

during higher demand activities of daily living. Recently, fluoroscopic imaging techniques

have been used for the analysis of knee joint motion during dynamic activities. Single

plane fluoroscopy have proven to be precise method for establishing knee position along

the axis parallel to the image plane with sub-mm accuracy. However, its accuracy in es-

tablishing the knee motion in the direction perpendicular to the image plane has proven to

be imprecise [12, 16]. Dual plane fluoroscopy systems provide accurate three-dimensional

quantification of six DOF knee kinematics. Researchers have used dual plane fluroscopy

systems to evaluate normal knee kinematics during a baseline knee extension and during

dynamic activities such as normal gait [63, 64], landing [4, 26] and step-up activity [65].

However, most descriptions of knee kinematics have been for younger adults and for a

limited span of activities. Furthermore, joint pathology occurs more frequently in older

adults and movement patterns change as we age [13, 66, 67]. As stated in [68] the abil-

ity of older people to perform activities of daily living decline with age and this may be

caused because during activities like walking, ascending or descending stairs, it requires a

substantially greater effort in older people compared with younger people relative to their

available maximal capacity. Studies have shown that older subjects tend to slow down their

pace and do shorter strides while walking when compared to younger people [69] and
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they adopt a different way of walking in order to increase stability and for fall prevention.

Furthermore, the high prevalence of knee pain, osteoarthritis, TKA in subjects over the age

of 55 requires a baseline description of healthy knee function during demanding activities

of daily living. To our knowledge, no others have assessed normal knee function for a

cohort age-matched to TKA recipients and during activities that patients with TKA often

report to be troublesome, namely descending a step and executing a turn during walking.

Our purpose was to classify joint kinematics in healthy older adults performing common

movements of daily living like straight walking and during higher demand activities in or-

der to establish a useful baseline for the envelope of healthy knee motion for subsequent

comparison with patients with TKA. We have used a high speed stereo radiography system

(HSSR) with high frame rates and two view planes for three-dimensional tracking of bones

and implants with sub-millimeter accuracy. We hypothesized that the amount of motion

in DOFs that are primarily constrained by soft tissue (internal-external (IE) rotation and

anterior-posterior (AP) translation) would be more activity dependent as compared with

DOFs partially constrained by articular geometry (varus-valgus (VV) rotation). Also, we

hypothesized that higher demand activities would elicit greater IE and AP than normal gait.

5.2 Methods and Materials

Subjects

This study had an Institutional Review Board approval and all participants signed an

informed consent. The doses caused from HSSR were calculated using industry stan-

dard software (PCXMC STUK - Radiation and Nuclear Safety Authority, Helsinki, Fin-

land)(Appendix A). The volunteers had no history of injuries or surgeries to the lower

limbs. The in vivo three-dimensional knee kinematics of 6 healthy subjects ( means ±
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standard deviations : age=61.67 ± 5.37 years, body mass= 74.6 ± 7.72 kg, body mass

index [BMI]= 26.7 ± 4.4 kg/m2, height = 168.2 ± 13.7 cm, see also Table 5.1) were mea-

sured using the HSSR system while the subjects completed four tasks. The subjects were

instructed to perform an unloaded knee extension in which the individuals were in seated

position and asked to slowly extend their knee from high flexion to full extension; to walk

at a self selected pace over approximately 9 meters(Figure 5.1); to step down from a 7 inch

platform; and walk into the imaging volume and perform a 900 direction change with the

planted foot of the imaged knee (pivoting).

Subjects Gender Height (cm) Weight (kg) Age BMI
KS02 Female 163 65.8 56 24.8
KS03 Male 174 74.8 61 24.7
KS04 Female 143.5 72.6 57 35.5
KS06 Male 181.61 88.9 70 27
KS07 Male 177.2 74.4 60 23.7
KS08 Male 170.18 71.1 66 24.6

Table 5.1: Subjects Specifications

Figure 5.1: Healthy knee subject during normal gait
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HSSR description

HSSR system is composed of two matching custom radiography systems with 40 cm

(16”) diameter image intensifiers (Thales Inc., TH 9447 QX). High-speed image acquisi-

tion was achieved through integration of high-speed, high-definition (1080x1080) digital

cameras (Miro M-120, Vision Research Inc.,12 bit) onto the image intensifiers. Emitters,

powered by 480 V generators, along with the high speed high definition cameras, enable

capture at 100 frames/sec in a ’low-dose pulsed’ mode.

HSSR validation and calibration

The use of the HSSR system to investigate the relative position and orientation of three-

dimensional bones was validated by using a bead tracking and a bone tracking method.

Stereo radiographic images were collected with the two image planes of the HSSR posi-

tioned at a relative angle of 60 0. For the bead tracking a custom calibration cube with

52 enclosed steel beads was used and was fixed to a translation and rotational positioning

stage (accuracy to 0.025mm and 0.01 degrees respectively) and imaged at seven positions,

4 translations forming a square with 25.4 mm sides, and 3 rotations at 0.00, 5.00, and

10.00 degrees. For bead tracking, custom MATLAB (The MathWorks, Inc., MA) software

(XrayProject) was used to identify bead locations in each frame and to calculate the 3D

coordinates of the markers by using standard DLT techniques. The average translational

error was 0.2 ± 0.1 mm and the rotational error was 0.11 0± 0.030. These results are

comparable with other stereo radiography and tracking methods such as in Tashman et al

reported tracking bead precision of 0.064 mm and 0.310 [41]. For the bone tracking a

human knee phantom was fixed to a translational and rotational positioning stage (accu-

racy to 0.025mm and 0.01 degrees respectively) and imaged at 32 positions, 21 translations

forming a square pattern with increment of 0.254 mm that traveled in and out of plane with
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the image intensifiers and 11 rotations with increments of 1 0 for 50 in both directions. The

bone tracking was performed using Autoscoper a program developed at Brown University

(Brown University, RI). The accurate 3D geometries of the femur, tibia and fibula were

extracted from CT bone density data. These 3D geometries, as well as the stereo images

of the knee phantom, were then imported in Autoscoper for estimating the 3D position and

orientation (pose) of the knee during the translational and rotational motion on the posi-

tional stage. The overall mean translational error was 0.151 ±0.133 mm and the overall

rotational tracking error was 0.410± 0.300. These results are similar to other studies based

on model-based tracking methods and using stereo radiography systems. For example in

Miranda et al [54] the rotational and translational tracking precision was 0.08 0 and 0.45

mm, respectively while in Bey et al [25] the reported results for patellofemoral tracking

were 0.4 mm for translational accuracy and 0.8770 for rotational accuracy.

Image intensifiers introduce significant geometric distortion that must be corrected in

order to perform motion tracking. This can be achieved by imaging a commercially avail-

able radio opaque squared mesh with known positions of the holes (9255T641, McMaster-

Carr, Robinson, NJ). Then the transformation, for removing distortion from the images, was

calculated by using the XROMM Undistorter (Brown University,RI) software and was ap-

plied to all subsequent images. The relative positions and orientations of each fluoroscopy

system were obtained after imaging a custom calibration cube enclosing 52 steel beads of

precisely known position and size, positioned inside the capturing volume of the HSSR.

The relative bead positions from each two-dimensional fluoroscopic image were then digi-

tized by using a custom XROMM calibration tool from Brown University and established

algorithms such as the direct linear transformation (DLT) algorithm [70].
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In Vivo HSSR data collection

The in vivo HSSR data collection for the four different tasks consisted of two parts.

Firstly, the bone tracking 3-D bone models are required and secondly, collecting the HSSR

data during the four activities. The accurate 3D geometries of the knee bones were re-

constructed from the CT data where for each subject a static bone CT with slice thickness

of either 0.6 mm or 1.0 mm using a Siemens scanner, was obtained. Commercial soft-

ware Scanip (Simpleware) was used to reconstruct the three-dimensional geometries of

femur and tibia. The HSSR data of the subjects during the unloaded knee extension were

captured at collection frequency of 50 Hz while for the remaining activities the collec-

tion frequency was 100 Hz. Bone tracking was performed using the XROMM Autoscoper

software which optimized the positions of the three-dimensional bone models to the two-

dimensional stereo radiography images in order to quantify pose (translation and rotation).

The software allows the user to rotate and translate the 3D CT volume in order to perform

2D-3D matching for determining the tibiofemoral tracking throughout the range of motion

[53] (Figure 5.2).
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Figure 5.2: An image of the reconstructed femur and tibia/fibula. Autoscoper was used to
align the projected contours of the imported bone geometries to the stereo images

To define the origin of the femoral coordinate system we used the same method as the

one described in [61]. A cylinder was fitted to the medial and lateral posterior condyles

and the center of the coordinate system was placed at the midpoint of the cylinder center

line. The mediolateral axis (ML) was defined as the line through the long axis of the cylin-

der while the superior-inferior (SI) axis was aligned to the posterior line of the femur. The

Anterior-posterior (AP) axis was defined as the cross product of the ML and SI axes. The

femoral coordinate system was assigned to the tibia at full extension during the knee exten-

sion activity and it was set to be the ”zero” position (Figure 5.3). Using these coordinate

systems, kinematics of the tibia relative to femur were calculated using methods described

by Grood and Suntay [43].
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Figure 5.3: Representative bone geometry model derived from the CT scan depicting co-
ordinate axis used to determine the reference position of the femur and tibia: superior(+)-
inferior (SI), anterior(+)-posterior (AP), medial(+)-lateral (ML)

Data Analysis

Comparisons between the excursion and average values of internal-external and varus-

valgus rotation, and anterior-posterior translation were made across subjects and activities.

Our data during the dynamic trials have been normalized to percent cycle. Kinematics were

filtered using a 4th order low-pass Butterworth filter with a cutoff frequency of 15 Hz.

5.3 Results

During a baseline knee extension all subjects exhibited the same behavior throughout

the 3DOF except from one participant who had different varus-valgus rotation with respect

to the other subjects. Figure 5.4 shows the knee extension trial for all subjects for internal-
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external (IE) and varus-valgus (VV) rotation and anterior-posterior translation (AP) with

respect the flexion-extension (FE) angle. At full flexion the knee was internally rotated for

all subjects and while knee was getting closer to full extension the rotation was constantly

decreasing. The anterior tibial translation (ATT) was similarly higher at full extension and

steadily decreased while the knee was extended. For varus-valgus rotation most subjects

showed a consistent varus rotation throughout the range of knee extension trial except from

one subject who had valgus rotation instead.

The dynamic activities, walking, pivoting and step descending, for IE, VV rotation

and AP translation are presented with respect the percent cycle (Figures 5.5, 5.6,5.7). The

tracking data for gait are for the stance period where the 0% represents the heel strike while

the 100% is for the toe off. The average flat foot (FF) phase occurred at approximately 19%

and the heel off (HO) phase at 48% which are somewhat similar to the existing data for gait

analysis.

During the normal gait the majority of the subjects moved interiorly and the maximum

internal rotation was 90. Most of the subjects for the same activity showed consistency

regarding the varus-valgus rotation where five of them rotated into varus with a maximum

angle of 6.5 0 while only one subject rotated into valgus. The ATT maximum range was

approximately 7mm and four subjects had more posterior translation while three subjects

at full flexion started posteriorly and ended anteriorly at full extension.

Throughout the pivoting trial there was some variation among the subjects for the IE

rotation and AP translation while for the VV rotation the subjects followed the same be-

havior as they did for knee extension. For the pivoting activity the 0% stands for heel strike

and the 100% stands for the toe off. The highest average IE rotation among subjects was

8.38 0±3.750, the highest average AP translation was 3.07mm±3.08mm and the highest

average varus rotation was 4.87 0±0.780 while for the valgus was 3.630±0.550.
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Figure 5.4: Knee Extension trial for 3DOF with respect flexion angle and Knee Extension
with respect percent cycle
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External and valgus rotations for walking and step descending activities as well as IE

rotation for knee extension are found to be predominately negative. For step descending

activity, 0% represents the first impact with the floor and the 100% represents the heel

off. Full weight acceptance (FWA) was between approximately 10-22% and only for one

participant the FWA happened at 47%. All subjects rotated internally and the highest av-

erage was 11.410±3.290. For ATT the highest average was 3.36mm±1.21mm and for VV

-3.840±0.840 and 4.310±0.860 for varus and valgus rotation respectively.
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Figure 5.5: Normal Gait for the 3DOF and the Knee Extension trial
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Figure 5.6: Pivot for the 3DOF and the Knee Extension trial
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Figure 5.7: Step Descent for the 3DOF and the Knee Extension trial
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Excursions during normal gait were lower than during the higher demand activities of

pivoting and step descending as well as from a baseline knee extension. Figure 5.8 demon-

strates the excursion data for all subjects along the activities. Greatest excursions among

the dynamic activities are observed for IE rotation and AP translation throughout pivoting

and step descending. The maximum excursion is 21.170 for IE rotation during the pivoting

activity. The average values for excursion for IE rotation are 14.91±4.09, 8.64±4.32 and

4.36±1.32 for pivoting step descending and walking respectively, 2.55±1.06, 3.26±0.79,

2.92±0.89 for VV rotation and 6.61±3.07, 6.40±1.49, 4.36±1.71 for AP translation.

Thus, IE rotation for step descent and pivot is two or three times greater than normal gait

while for VV rotation only small differences are noted. The AP translation for pivot and

step descent tasks is roughly 50% greater than walking. Table 5.2 summarizes all the av-

erage and excursion values for the 3DOF described here for all 4 activities and subjects.

Excursion is calculated as the difference between the maximum and the minimum for each

DOF. The greatest average excursion among the 4 activities is observed for the knee exten-

sion for all 3DOF with 20.59 ± 9.57 and 5.75±2.53 for IE and VV rotations respectively

and 8.64±3.28 for the AP translation.

Finally Figure 5.9 demonstrates all the activities together for each subject individually

for IE, VV rotation and AP translation. The data points in these graphs help us to investigate

the correlation with the knee flexion angle and demonstrate that V/V rotation is less activity

dependent in comparison with the IE rotation and AP translation. These results can also be

supported from Tables 5.3 and 5.4 that show the standard deviations of the average standard

deviations and the standard deviation for the excursions for the 3DOF across the activities.
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Figure 5.8: Excursion plots for the 3DOF for all the activities.I/E (top), V/V (middle), A/P
(bottom)
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Variable Subjects
Average ± Standard Deviation /Excursion

Knee Extension Pivot Step Descent Walking

Int.- Ext.(o)

KS02
-6.41±3.22 3.13±3.57 -4.73±1.54 1.15±1.49

13.29 12.58 4.93 6.65

KS03
-5.38±7.53 1.12±7.57 -3.49±1.03 -0.28±1.37

28.20 21.17 3.20 4.93

KS04
-17.13±8.58 -3.02±7.24 -11.22±3.95 -6.07±1.14

30.15 18.15 13.47 4.03

KS06
-7.65±4.55 -7.57±2.78 -11.41±3.29 -8.80±1.03

26.92 11.32 13.35 3.66

KS07
-12.11±5.36 8.38±3.75 -1.96±3.20 -0.09±0.69

18.96 10.94 9.92 2.77

KS08
-2.31±2.28 1.54±5.62 -3.23±2.32 -2.98±1.00

6.00 15.30 6.97 4.10

Var.- Val.(o)

KS02
-3.67±1.53 -4.87±0.78 -3.84±0.84 -4.28±1.22

6.08 2.58 2.26 4.57

KS03
-0.97±1.39 -1.03±0.43 -1.37±1.06 -0.24±0.69

6.31 1.63 3.25 2.58

KS04
-1.73±2.03 -2.37±1.46 -2.45±1.22 -1.43±0.63

8.08 4.59 4.68 2.87

KS06
4.07±2.55 3.63±0.55 4.31±0.86 2.89±0.75

7.79 2.38 3.24 2.43

KS07
-3.21±1.14 -1.71±0.54 -2.65±0.99 -2.04±0.66

5.10 2.23 3.21 2.01

KS08
-0.0001±0.23 -2.33±0.40 -1.63±0.75 -3.32±0.80

1.11 1.89 2.94 3.04

Ant.-
Post.
(mm)

KS02
1.21±1.60 3.07±3.08 3.36±1.21 2.56±1.29

6.97 3.15 4.60 4.46

KS03
-0.82±1.68 -1.66±1.79 -0.004±1.13 -1.09±0.61

7.03 7.19 5.09 2.08

KS04
3.37±3.04 0.33±3.37 2.87±2.04 1.51±1.95

10.57 11.89 7.47 6.98

KS06
2.96±2.88 -1.20±1.74 0.42±2.37 -1.40±1.12

12.94 7.04 8.07 4.10

KS07
2.57±2.81 -2.57±1.24 1.75±2.05 -0.33±1.39

10.44 4.05 7.63 5.39

KS08
0.70±0.90 0.53±1.54 -0.78±1.51 -0.79±0.97

3.86 6.33 5.56 3.16

Table 5.2: Average and Excursion values for the 3 DOF for all subjects and activities
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Stand Deviation of the Excursion
Activities IE VV AP
Extension 7.12 1.24 2.57

Gait 1.32 0.89 1.71
Pivot 4.58 1.12 3.07

Step Descent 4.74 0.87 1.49

Table 5.3: Standard deviation of the Excursion
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Stand Deviation of the Averages Stand. Deviation
Activities IE VV AP
Extension 2.44 0.79 0.88

Gait 0.29 0.22 0.45
Pivot 2.02 0.40 0.88

Step Descent 1.12 0.17 1.49

Table 5.4: Standard Deviation of the average standard deviations
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Figure 5.9: All trials together for each subject individually

5.4 Discussion

Accurate knowledge of 6DOF normal knee kinematics is essential for providing infor-

mation on the function of the knee that can be used in order to improve current treatments of

knee pathology. In this chapter we used high speed stereo radiography system to investigate

the kinematics of six healthy knees of older people during a baseline knee extension and

during dynamic activities of daily living including walking, pivoting and step descending.
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The results confirmed our hypotheses that the IE rotation and AP translation are more

activity dependent as compared to VV rotation based on the excursion plots. Excursion in

VV was approximately 30 for the three dynamic activities while IE and AP had different

excursion among the trials with the highest IE excursion reported for the pivoting (14.910).

Furthermore, IE and AP were greater during the higher demand activities than normal gait.

The average values for excursion for IE rotation are 14.91±4.09, 8.64±4.32 and 4.36±1.32

for pivoting step descending and walking respectively and 6.61±3.07, 6.40±1.49, 4.36±1.71

for AP translation. These results are consistent with those found by Myers et al [61] regard-

ing the IE rotation where landing (8.90±2.50), maximum isometric contraction (16.60±7.20)

and unweighted full knee extension (16.10±6.80), each produced higher IE rotation range

than walking (4.20±4.00).

While there has been no study in vivo that compared tibiofemoral kinematics in older

people during pivoting and step descending, the unloaded knee extension and walking have

been investigated and our data are similar to those reported for walking and landing. Our

measurements for walking with respect to axial rotation of the knee showed an internal

rotation with an average value of 30 and this is similar with the values reported in Kozanek

et al [63] (1.6 0 at heel strike to 7.4 0 at toe off). IE had the greater excursion value

among the activities and the biggest variation in the way participants performed the pivoting

trial. During step descending is also observed a relative high range of IE (8.640±4.310)

and is interesting that this value matches with the one found by Myers et al for landing

activity [61] (8.90 ± 2.5 0). Our peak internal rotation was found to be 18.90 ± 8.40 for

knee extension, 8.40± 5.90 for pivoting, 9.90±4.90 for step descent and -5.20±3.40 for

walking. These results are different with the ones reported in Myers et al [61] where the

corresponding peak IE values are 14.50 ± 7.7 0 for knee extension, 19.40 ± 5.7 0 for landing

and 3.90 ± 4.20 for walking.
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ATT had an average excusrion of approximately 6.5mm for the higher demand activities

of pivoting and step descending and 4.4 mm for the normal gait. Li et al [64] measured knee

kinematics for one healthy individual during walking and found similar values that showed

ATT to range from approximately 5 mm during midstance to -2.5mm at toe off. Kozanek

et al [63] also used dual plane fluoroscopy for measuring knee kinematics of 8 healthy

individuals during gait and the average excursion for the AP directions were approximately

5mm. Our results are also very similar with those one found by Myers et al [26]. In My-

ers et al the tibiofemoral kinematics of soft and stiff drop landings for 16 healthy subjects

were investigated and the maximum absolute of ATT translation was 6.4mm±2.4mm and

6.7mm±2.9mm for stiff and soft landings respectively. However, in another study of Myers

et al [61], where the tibiofemoral kinematics during activities of increasing demand were

measured, the results for the AP translation range were 2.9 ± 1.7mm for landing, 3.9 ±

2.6mm for walking and 3.3 ± 1.8mm for unweighted knee extension which are somewhat

lower than the ones we found for the AP translation during the dynamic activities. In the

same study [61] the peak ATT translation was reported to be 5.6 ± 1.9mm for landing,

3.1 ± 2.2 mm for walking and 2.6 ± 2.1mm for the unweighted knee extension whereas

in our study the peak ATT was found to be higher for knee extension (7.3 ± 3.8mm) the

step descend (4.5 ± 1.7mm) showed similar value with the one found for landing while the

for pivoting the peak ATT was found to be smaller (3.1 ± 2.4mm). Similar results were

found for the walking activity (2.2 ± 2.1 mm) as well. In Torry et al [64] they measured

tibiofemoral kinematics during drop landings and the value reported for the total ATT ex-

cursion was 2.1 ± 0.9mm. This value is lower because tibial translations and rotations

measured during landing were referenced to un unloaded knee extension.

Regarding the abduction-adduction motion of the knee, VV rotation was consistent

along the different activities and the highest average range was noted during step descend-

ing (3.260±0.790). Five out of six subjects showed a consistent varus rotation of the tibia
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relative to the femur across all activities. Only one subject rotated into valgus for all tri-

als. These results are consistent with other studies that have reported the knee to rotate

into varus [71, 72] during the stance phase of gait and other researchers found valgus

rotation as in Lafortune et al [1] who investigated the tibiofemoral kinematics during nor-

mal gait by means of intracortical traction pins placed in the femur and tibia of 5 healthy

participants. Seisler et al [2] measured tibiofemoral kinematics during a voluntary knee

extension-flexion using fast-PC (dynamic) magnetic resonance imaging and found an aver-

age for varus rotation of 10.

The limitations of our study should be noted. We measured knee kinematics for six

healthy older subjects in a controlled laboratory environment and some of the subjects

showed some difficulty in naturally behaving throughout the tasks although prior to the

data collection the participants took several practices in how to perform the activities. In

addition, the amount of subjects may be considered relatively small so follow-up work

should include more subjects for better representation of the analysis of the tibiofemoral

kinematics. We also measured kinematics during the stance phase of gait and our tracking

data did not include the heel strike or toe off phase due to the limitation of the HSSR

system because it is difficult to capture the entire motion. That can be corrected by running

separate activities and capturing the ranges of motion we are interested in.

In conclusion, this study investigated the 6DOF of healthy knee kinematics for a cohort

age-matched to TKA recipients during four activities. The data showed that pivoting can

be the most challenging activity since it showed the biggest variation and excursion among

the activities. We saw that higher demand tasks, pivoting and step descending, as well

as a baseline knee extension had greater IE rotation and AP translation than normal gait.

Furthermore, IE rotation and AP translation, proved to be more activity dependent than

VV rotation. We believe that these data will establish a useful baseline for the envelope of

healthy knee motion. One of the future goals is to measure knee kinematics during the same

93



activities to older subjects with TKA for subsequent comparison with the findings reported

from this study. Additionally, a further investigation should be conducted for comparing

healthy knee kinematics between younger and older people sring the same activities and to

establish whether they have similar kinematic patterns.
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Appendix A

A.1 PCXMC

PCXMC is a computer program for estimating patients’ organ doses and the effective
dose in medical x-ray examinations. It permits a free adjustment of the x-ray projection and
other examination conditions of projection radiography and fluoroscopy. The anatomical
data are based on the mathematical hermaphrodite phantom models of Cristy and Eckerman
(1987), with some modifications and user-adjustable phantom sizes [73]. The program also
estimates the risk of death based on cancers generated from radiation exposure [73] The
organ doses are estimated in 29 organs and tissues. The program determines the effective
dose with both the new tissue weighting factors of ICRP Publication 103 (2007) and the
old tissue weighting factors of ICRP Publication 60 (1991) [74] .

A.2 Using the program

The dose estimation for a new test condition with changes of patient age, patient size
or examination geometry from the previously determined cases includes three steps and
these steps require (1) defining the examination conditions, (2) performing the Monte Carlo
simulation, and (3) calculating the organ doses for a specified x-ray spectrum and patient
input dose.

Figure B.1 shows the first graphical user interface where the three buttons on the top
row are executed successively from left to right. If the risk is estimated from the calculated
doses, the risk assessment button is pressed after the three steps above.
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Figure A.1: The main form of PCXMC

If the patient data and the geometric data of the examination are the same from a previ-
ous calculation then the first two of the above steps can be discarded, and the patient dose
calculation is done by applying the step (3) only. Thus, the user does not need to perform
the Monte Carlo simulation again, if just the x-ray spectrum or the amount of radiation
have changed.

The program generates files of different extensions that adds automatically in order to
keep track of the files. The files that include the examination and patient parameters for
Monte Carlo simulation have the extension ’.df2’, the data files generated by the Monte
Carlo estimation have the extension ’.en2’, and the final dose estimations for specific x-ray
spectra and input dose have the extension ’.mG2’. Finally, the risk assessment data use the
extension ’.txt’.

Examination Data Button

By clicking the examination data button it opens a new window (Figure B.2) where the
user can define the patients characteristics like the height, weight. The age will be defined
by checking the proper button. There are also some standard values for the height and
weight according to the age that will be chosen. For the geometric data of the X-ray beam
the focus to skin distance (FSD) must be defined as well as the dimensions of the field of
view (FOV) and the unit of length is assumed to be cm. The ’Beam width’ and ’Beam
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height’ refer to the lateral and vertical dimensions of the x-ray beam, as measured at the
distance FSD from the focal spot of the X-ray tube and in the plane that is vertical to the
central axis of the x-ray beam and they do not refer to the x-ray field size at the image
receptor. The ’Xref’, ’Yref’ and ’Zref’ are the coordinates of an arbitrary point inside the
phantom which is shown on the top right, through which the central axis of the x-ray beam
is directed and these data can be used for specifying the location of the x-ray beam with
respect to the phantom. The phantom image and the ’radiograph’(located on the bottom
right) can be used as a guidance in finding proper coordinates for the reference point.

Figure A.2: The X-ray examination input form of PCXMC

The Projection angle and Cranio-caudal angle can define the direction of the X-ray
beam regarding with the phantom. For the Monte Carlo simulation parameters the maxi-
mum energy shoule be remained at 150 KeV because we do not ant to limit the allowable
X-ray tube voltages. The number of photons is an important factor in defining the statis-
tical precision that will be achieved in the Monte Carlo simulation. The minimum value
should be 10 000 but in order to improve the accuracy of your doe estimation results the
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number of photons should be increased accordingly every time. The ’Draw’ button dis-
plays the currently specified phantom and examination geometry and when something has
been modified then the Draw button should be clicked again. After drawing the phantom
image, the program shows also a simulated ’radiograph’ which demonstrates the organs in
the specified x-ray beam as viewed from the x-ray tube focal spot.

The field size calculator can be used in order to calculate the FSD and the width and
height of the x-ray beam at the patient’s entrance and when th Use this Data button is being
clicked only then these data influence the dose calculations. For using the calculator, the
x-ray beam size at the image receptor plane, the distance between the x-ray source and the
image intensifier (FID), and the distance between the patient’s exit surface and the image
intensifier , must be known. Since we always have in mind though to calculate dose based
on conservative values always a big FOV should used. After finishing editing the data they
can be saved by clicking the ’Save Form’ or ’Save Form As’ buttons.

Simulate Button

The simulate button opens a new form to perform the Monte Carlo simulation (see
Figure B.3). Clicking the ’Open data for Monte Carlo simulation’ button you can choose
a definition file for the simulation. Several files can be chosen simultaneously by keeping
the ¡Ctrl¿ button pressed while choosing definition files. Then the program will simulate
these conditions one after another automatically, without the user interfering.
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Figure A.3: The Monte Carlo Simulation form

The Energy displays the photon energy during calculation, ’Lot No’ displays the num-
ber (1 to 10) of the current batch, and ’Photons in the lot’ displays the number of photons
simulated at the current energy level in the current batch. The outcomes of the simula-
tion are automatically saved with same name used for the definition file of the simulation
conditions, but the extension ’.df2’ is substituted by ’.en2’.

Compute Doses Button

Compute Doses button opens a form (see Figure B.4) for estimating the patient’s organ
doses in an X-ray test. The data for the presently loaded x-ray energy spectrum defined by
the x-ray tube voltage (kV), anode angle and total filtration) are displayed on window.
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Figure A.4: The dose calculation form. Before a file has been opened the table is empty

In order to change the spectrum accordingly for each test every time the user must click
on the ’Change X-ray Spectrum’ button and determine the x-ray tube voltage, target angle,
and total filtration in the form that appears (Figure B.5). For the HSSR system the X-ray
tube Anode angle is going to be 12 0 and for filtering the AI 13 material with 3.00 mm
thickness will be entered. After all the parameters are specified then someone can exit by
pressing either Exit:generate this spectrum or Exit: Keep old spectrum.

109



Figure A.5: Calculation of th X-ray spectrum form of PCXMC

Clicking the ’Open MC data for dose calculation’ button asks to select an .en2 file which
already has been calculated from previous steps and choose the file you wish to estimate
results for and open it. A new window will appear (see Figure B.6) and then you will need
to specify the input dose. In our case the x-ray tube current-time product (mAs) will be
used. Then the input dose quantity is being converted to incident air kerma in milligrays.

Figure A.6: The patient input dose specification form of PCXMC
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Then the estimated organ doses and other dose quantities are shown (in milligray, or
equivalently, in millisievert) as well as their estimated statistical precision. If the user does
not like the statistical precision results, the Monte Carlo simulation should be repeated with
a higher number of photons (greater value of ’Number of photons’ in the Examination data
form). For saving the data press the ’Save as’ button and then you can exit by pressing the
main menu button in order to continue to the next step for calculating the Risk Assessment
if you wish.

Risk Assessment Button

This button opens a form (see Figure B.7) for obtaining the risk of radiation-induced
cancer death. PCXMC also informs the user whether high doses are found that may cause
deterministic health effects.

Figure A.7: The risk assessment form of PCXMC. WHen it is firstly open the form shows
data of 30 yeal old European with no radiation exposure

For that step the user needs to enter correct patient data for the age, gender and mortality
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statistics (Euro-American, Asian or Finnish). These data can be manually entered or to
obtain them from previously calculated dose files (.mG2). If the equivalent doses have
been acquired from dose files (.mG2) estimated with PCXMC, then the program takes care
of the proper value of the weighted remainder dose. You can chose the already estimated
equivalent doses by clicking the ’Open dose data (and clear old doses)’ button. If some
of the estimated doses are really high (more than 10 Sv), the corresponding fields will
become yellow, and if the dose has too great value for a successful estimation, the color of
the field is red. After defining all the input data the risk assessment will be calculated by
clicking on the ’Calculate Risks’ button. A yellow warning label ’Risk data have not been
updated: Click ’Calculate risks’ on the window shows that input data have been edited, and
do not anymore match with the risk data shown on the form. The data are up to date and this
warning label will disappear when the user presses the ’Calculate risks’ button or that label.
The risk calculation defines the person’s risk of exposure induced cancer death (REID), the
expected length of his/her remaining life, the mean loss-of-life (LL E) and the mean loss
of life in case that the radiation induced cancer is realized (LL E/REID). This form also
demonstrates a bar chart of the probability (the site-specific REID value) of several cancer
types generated from radiation exposure.

A.2.1 Dose estimations for HSSR projects

Knee

Figure A.8: Dose Estimates for KS01 healthy knee subject
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Figure A.9: Dose Estimates for KS02 healthy knee subject

Figure A.10: Dose Estimates for KS03 healthy knee subject
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Figure A.11: Knee Dose Estimates by using pulsed radiographic mode for 1 ms of exposure

Figure A.12: Knee Dose Estimates by using pulsed radiographic mode for 4 ms of exposure

Hip

Figure A.13: Dose estimates for hip by using pulsed radiographic mode for 1 ms of expo-
sure

114



Figure A.14: Dose estimates for hip by using pulsed radiographic mode for 5 ms of expo-
sure

Figure A.15: Dose estimates for hip by using pulsed radiographic mode for 1/0.4 ms of
exposure and for 100 f/sec

Figure A.16: Dose estimates for hip by using pulsed radiographic mode for different pulsed
widths
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Figure A.17: Dose estimates for Cadaver hip by using pulsed radiographic mode

Shoulder

Figure A.18: Dose estimates for Shoulder by using pulsed radiographic mode
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Figure A.19: Dose estimates for Cadaver Shoulder by using pulsed radiographic mode

Foot

Figure A.20: Dose estimates for Foot by using pulsed radiographic mode for 5 ms of
exposure
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Pelvis

Figure A.21: Dose estimates for Pelvis by using pulsed radiographic mode for 5 ms of
exposure

Torso

Figure A.22: Dose estimates for Torso by using pulsed radiographic mode for 5 ms of
exposure
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Appendix B

B.1 2D-3D matching process

Autoscoper software is used for estimating the 3D position and orientation (pose) of
the human joint that we are interested in. The software allows the user to rotate and trans-
late the 3D CT volume in order to perform 2D-3D matching for determining the tracking
throughout the range of motion. After the shape matching is completed the transformation
matrices, between the origin of the system which is defined from the calibration cube and
the coordinate system of the 3D bone model (as defined from the CT) ,are acquired for
estimating the 3D joint kinematics.

B.1.1 Autoscoper Tracking Tutorial

Step 1. Create a new Trial in Autoscoper
To create a new trial manually, open up a text editor, like an notepad. For each camera in

the file enter the text below substituting the text with the correct specifications. VolumeFlip
allows you to flip the axes of your bone model. 1 means flip and 0 means do not flip. x and
y correspond to the axis within a single image slice, and z corresponds to the axis across the
slices (Default is 0 0 0 meaning no flip and use the default setting. YOU DO NOT FLIP!).

Camera 1 mayaCam csv complete path including file name to mayacam file for camera
1 CameraRootDir complete path to undistorted video frames for camera 1

Camera 2 mayaCam csv complete path including file name to mayacam file for camera
2 CameraRootDir complete path to undistorted video frames for camera 2

VolumeFile complete path including file name to tif file containing bone volume Vox-
elSize in plane x in mm in plane y in mm slice thickness in mm VolumeFlip x y z

After you entered all of the information required, save the text file. Use File/Open menu
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command to open and work with this trial in Autoscoper. An example of a configuration
file is illustrated in the Figure B.1 below.

Figure B.1: An example of a configuration file

Step 2. Update file paths in .cfg file
Step 3. Load.cfg file via [Open Trial] and you will see the new created tracking project

(Figure B.2
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Figure B.2: When the configuration file is loaded in Autoscoper

Step 4. Apply or load saved filters
In order to add a filter, right click on either DRRender or RadRender under a particu-

lar view and select the filters you want to utilize (Sobel, Contrast, Gaussian and Sharpen
filter). Adjust the numbers in the filters until you are satisfied with the result. You can
adjust the values for the filters by pressing the small icon which looks like a wrench (see
Figure B.3). The sobel filter allows for control of edge detection and the Contrast filter
changes object/image contrast. The DRRRender is the 3D bone model being tracked. The
RadRender is the X-ray video that you are tracking on. Apply the filters that you want for
each DrrRenderand RadRender for each camera.
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Figure B.3: Illustration of how to add filters in Autoscoper

( ** For the DRRRender you have an extra choice, to change the sample distance , the
X-ray intensity and the X-ray cut off. Changing the sample distance will affect processing
and redraw times (Figure B.4).)
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Figure B.4: Options for the DRRender in Autoscoper

Load saved filters:
Right click on View 1 with correspondence name and choose Load settings. Do the

same for view 2. For saving instead of Load Settings choose Save Settings (Figure B.5).

Figure B.5: Load or Save filters in Autoscoper
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The Trial with filters applied and is demonstrated on (Figure B.6).

Figure B.6: Demonstration of the knee joint in Autoscoper when the filters are applied

Step 5. 3D view
To see the 3-D view, press on the View button and choose the ’see World view’ (Figure

B.7).
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Figure B.7: World view in Autoscoper

It is significant to move the tracking pivot to the center of the bone model (e.g. knee
joint center) and in order to do that select ’MovePivot’ . When it is centered, click the
’Move Pivot’ button again to set the pivot and you can unclick the ’see World view’ for
now (Figure B.8).
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Figure B.8: Demonstration of positioning the pivot in the center of the femoral component
using the World view

Step 6. Bone Tracking in Autoscoper
By selecting the pivot center or one of the directional arrows, drag the bone render to

the approximate location on the RadRender. It may be also important to Rotate the model
by clicking on the ”Rotate” button and do the same. Use ’Translate’ and ’Rotate’ buttons
to align the 3D model to 2D images until good alignment is achieved (Figure B.9) (to
translate, click and drag the arrows, to rotate click and drag the circles). It is often helpful
to alternate adjustments between planes. When you are done with your alignment save
that position by clicking the S button on your clipboard (Always remember to save your
alignment by pressing S for each frame).
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Figure B.9: 2D-3D alignment of the femoral component as shown in Autoscoper

When you have finished with the manual alignment, you can perform a Track by click-
ing the ’Track’ button and this window will appear as illustrated in Figure B.10. Tracking
performs a downhill Simplex optimization to try to best fit the location of the registered
model over the 2D image.
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Figure B.10: Tracking options in Autoscoper

In both the From Frame and To Frame Prompt, enter the current frame that you are
tracking and keep the Number of Refinements to be 1. For Initial guess select Current
Frame and then press OK. Check the DOS window which will show progress messages
(e.g. Frame 0 done in x iterations) (Figure B.11). Then select ”Retrack” button and wait
for progress messages to appear in DOS window. Keep pressing ’Retrack’ until the same
numbers of iterations are consecutively reached 3 times.
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Figure B.11: DOS window showing when the optimization is completed

Highlight (click and drag box) black points for your current frame in timeline pane
(below model panes) if the result is satisfactory click on ’Tracking’ in utility menu and
select ’Lock’ (you can select the points by highlighting them with your mouse and then
points in time line pane will be colored instead of black (see Figure B.12). If you lock
them it means that the alignment of the 3D model with the 2D images will be locked for
that current frame and even if you perform ’Tracking Options’ that position will not be
affected.
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Figure B.12: How to lock a frame when the 2D-3D alignment for that current frame is
satisfactory

Then you move on to another frame (according to the task, the number of frames
skipped is going to be different, a good place to start is every 4 frames to do the alignment).
If the result is not good enough then again you try to set the alignment manually and then
you perform the ’Tracking Options’ track command. After you finish your alignment for
all of your trial and for example every 4 frames ( and you have locked the alignment for
each of the frames) then you save Tracking by selecting ’Save Tracking’ button in order to
write a file consisting of the 4x4 transformations for each model in each frame. After you
give the name to your file that you want to save, the window as shown below will show up.
Make sure that for the Format and Units Options you select the settings as illustrated in the
Figure B.13 below.
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Figure B.13: Saving options in Autoscoper

You have two available options for the next step. Your choice of these two options is
dependent on what your post processing pipeline looks like. a. The first option is to select
the ’Track’ button and now in the ’Tracking Options’ for Initial Guess to select ’Spline
Interpolation’ instead and the range will be from your first tracking frame (e.g Frame 0) to
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your last locked frame. Press OK and DOS window will show progress messages.
e.g. Frame 0 done in X iterations Frame 1 done in X iterations Frame n done in X

iterations
Select ’Retrack’ (wait for progress messages for all frames to appear in DOS window).

Repeat the ’Retrack’ until same number of iterations are consecutively reached 3 times.
b. Another option is to not perform any optimization (’Track’ and ’Retrack’) and in-

stead when you have finished your tracking every 4 frames to press ’Save Tracking’ and in
the Import/Export Tracking options (see again Figure B.13) use Interpolation Spline (in-
stead of none) and save your file. When you load your tracking file again all the missing
frames that were not purposely tracked now they will be filled with tracking data.

Tracking method followed for the Healthy knees

1. First, do the alignment manually for your current frame until you are satisfied. 2.
Apply optimization (’Track’ and ’Retrack’ option) for that frame. If you feel the alignment
is correct then move on to step 3. Otherwise return to step 1 and reposition the model
manually. There may be times when the tracking feature does not return good results (e.g.
one view occluded, noisy radiographs). In this case it might be better to skip from step
1 to 3 directly. 3. Move on to the next frame you plan to track and repeat steps 1 and
2. As previously mentioned the amount of frames you skip in this step will be dependent
on the task and your confidence in the spline or spline optimization features performed at
the end. 4. Once you have tracked every n frames throughout your trial, you will want
to take time to inspect several different display features Autoscoper offers. Below is a
suggested workflow, but you may find some to be more helpful than others. a. Open the
3D world view and play through thetracking. Be sure to inspect the bone from several
different angles. Keep an eye out for large unrealistic translations and perturbations in the
orientation of the model registration, which typically look like rotations of the coordinate
system shown by the pivot. Consider what these small rotations at the proximal (or distal)
end of the bone would result in translations at the opposing end. b. Given the frames that
look problematic in the 3D view, expand the graph pane to see if you can spot any large
instantaneous rotations or translations. By expanding the graph view, and showing one
DOF at a time, you can readily see these small perturbations. If you notice a large bump
corresponding to an incorrectly tracked frame, you can try to lasso the point on the graph
and, by holding shift, drag the design point into a more reasonable position. Be aware that
the pivot position represents a coupled kinematic rotation to the actual model registration
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and does not correspond directly to the graphed data (e.g. a 1o change of a frame on the
roll/pitch/yaw graph may result in both a rotation and a translation of the model). You will
often have to fix several DOFs at a single frame, realign manually, and return to the graphs
until you are satisfied. 5. Once the kinematics in the 3D view look realistic for the entire
trial, you can either save with spline or perform the optimization spline as discussed earlier
in the document. If you perform the optimization spline, be sure to lock all of your tracked
data points before running this command.
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