3,550 research outputs found

    The presentation of sustainable power source assets in the field of intensity age assumes an imperative job

    Get PDF
    DC to DC converters to interface lesser-voltage higher-control supply to the essential stock shows the most raised proficiency was practiced in the full-connect converter. Non-separated converters bury unified inductor help converters with essential voltage gain and furthermore converters hold lesser profitability, yet they huge in structure, even the quantity of latent parts is diminished. In like manner gives proficient utilization of semiconductor switches, have higher voltage yield and are prepared to work in lesser estimation of D interestingly with every single disconnected converter. High addition topologies are regularly outfitted with high voltage security structures. Few non-disengaged topologies gives voltage hang security circuits are pointless since capacitive fragments and circuit plan are progressed to work under higher information voltage and low power. That requires lesser qualities for convincing RAC obstruction and entomb partnered inductance dispersal to achieve more prominent adequacy of intensity change. Larger supply current needs extensive region of core area inter allied inductors

    A Model of DC-DC Converter with Switched-Capacitor Structure for Electric Vehicle Applications

    Get PDF
    In this paper, a DC-DC converter with an innovative topology for automotive applications is proposed. The goal of the presented power converter is the electrical storage system management of an electric vehicle (EV). The presented converter is specifically compliant with a 400 V battery, which represents the high-voltage primary source of the system. This topology is also able to act as a bidirectional power converter, so that in this case, the output section is an active stage, which is able to provide power as, for example, in the case of a low-voltage battery or a supercapacitor. The proposed topology can behave either in step-down or in step-up mode, presenting in both cases a high gain between the input and output voltage. Simulation results concerning the proposed converter, demonstrating the early feasibility of the system, were obtained in a PowerSIM environment and are described in this paper

    Design and implementation a novel single switch high gain DC-DC converter based on coupled inductor with low-ripple input current

    Get PDF
    A novel high-gain and high-efficiency direct current to direct current (DC-DC) converter is introduced in this paper. The presented converter is suitable for low-voltage renewable energy resources such as photovoltaic (PV) and fuel cell (FC). The existence of series inductance with the input source ensures continuous and low-ramp input current, which is important for extracting maximum power from resources. Using coupled inductor technology and an intermediate capacitor in the suggested converter leads to a high gain voltage. In the presented topology for recovering energy from the leakage inductor, reducing voltage stress on the power switch, and so decreasing overall converter losses, a passive clamp circuit is used. The suitable operation range of duty cycle in the converter, besides the leakage inductor, decreases the problem of reverse recovery in diodes. The low value of the leakage inductor and the low volume and cost of the proposed converter are due to the low turn ratio of the coupled inductor. Details of the operation principles of the proposed converter have been discussed in this paper. The presented simulation and laboratory prototype results verify the theoretical analysis and performance of the suggested topology

    High-Voltage-Gain DC-DC Power Electronic Converters -- New Topologies and Classification

    Get PDF
    This dissertation proposes two new high-voltage-gain dc-dc converters for integration of renewable energy sources in 380/400V dc distribution systems. The first high-voltage-gain converter is based on a modified Dickson charge pump voltage multiplier circuit. The second high-voltage-gain converter is based on a non-inverting diode-capacitor voltage multiplier cell. Both the proposed converters offer continuous input current and low voltage stress on switches which make them appealing for applications like integration of renewable energy sources. The proposed converters are capable for drawing power from a single source or two sources while having continuous input current in both cases. Theoretical analysis of the operation of the proposed converters and the component stresses are discussed with supporting simulation and hardware results. This dissertation also proposes a family of high-voltage-gain dc-dc converters that are based on a generalized structure. The two stage general structure consists of a two-phase interleaved (TPI) boost stage and a voltage multiplier (VM) stage. The TPI boost stage results in a classification of the family of converters into non-isolated and isolated converters. A few possible VM stages are discussed. The voltage gain derivations of the TPI boost stages and VM stages are presented in detail. An example converter is discussed with supporting hardware results to verify the general structure. The proposed family of converters can be powered using single source or two sources while having continuous input current in both cases. These high voltage gain dc-dc converters are modular and scalable; making them ideal for harnessing energy from various renewable sources offering power at different levels --Abstract, page iv

    Back-to-back Converter Control of Grid-connected Wind Turbine to Mitigate Voltage Drop Caused by Faults

    Full text link
    Power electronic converters enable wind turbines, operating at variable speed, to generate electricity more efficiently. Among variable speed operating turbine generators, permanent magnetic synchronous generator (PMSG) has got more attentions due to low cost and maintenance requirements. In addition, the converter in a wind turbine with PMSG decouples the turbine from the power grid, which favors them for grid codes. In this paper, the performance of back-to-back (B2B) converter control of a wind turbine system with PMSG is investigated on a faulty grid. The switching strategy of the grid side converter is designed to improve voltage drop caused by the fault in the grid while the maximum available active power of wind turbine system is injected to the grid and the DC link voltage in the converter is regulated. The methodology of the converter control is elaborated in details and its performance on a sample faulty grid is assessed through simulation

    A comprehensive review on Bidirectional traction converter for Electric vehicles

    Get PDF
    In this fast-changing environmental condition, the effect of fossil fuel in vehicle is a significant concern. Many sustainable sources are being studied to replace the exhausting fossil fuel in most of the countries. This paper surveys the types of electric vehicle’s energy sources and current scenario of the on-road electric vehicle and its technical challenges. It summarizes the number of state-of-the-art research progresses in bidirectional dc-dc converters and its control strategies reported in last two decades. The performance of the various topologies of bidirectional dc-dc converters is also tabulated along with their references. Hence, this work will present a clear view on the development of state-of-the-art topologies in bidirectional dc-dc converters. This review paper will be a guide for the researchers for selecting suitable bidirectional traction dc-dc converters for electric vehicle and it gives the clear picture of this research field

    Isolated Single-stage Power Electronic Building Blocks Using Medium Voltage Series-stacked Wide-bandgap Switches

    Get PDF
    The demand for efficient power conversion systems that can process the energy at high power and voltage levels is increasing every day. These systems are to be used in microgrid applications. Wide-bandgap semiconductor devices (i.e. Silicon Carbide (SiC) and Gallium Nitride (GaN) devices) are very promising candidates due to their lower conduction and switching losses compared to the state-of-the-art Silicon (Si) devices. The main challenge for these devices is that their breakdown voltages are relatively lower compared to their Si counterpart. In addition, the high frequency operation of the wide-bandgap devices are impeded in many cases by the magnetic core losses of the magnetic coupling components (i.e. coupled inductors and/or high frequency transformers) utilized in the power converter circuit. Six new dc-dc converter topologies are propose. The converters have reduced voltage stresses on the switches. Three of them are unidirectional step-up converters with universal input voltage which make them excellent candidates for photovoltaic and fuel cell applications. The other three converters are bidirectional dc-dc converters with wide voltage conversion ratios. These converters are very good candidates for the applications that require bidirectional power flow capability. In addition, the wide voltage conversion ratios of these converters can be utilized for applications such as energy storage systems with wide voltage swings
    corecore