Power electronic converters enable wind turbines, operating at variable
speed, to generate electricity more efficiently. Among variable speed operating
turbine generators, permanent magnetic synchronous generator (PMSG) has got
more attentions due to low cost and maintenance requirements. In addition, the
converter in a wind turbine with PMSG decouples the turbine from the power
grid, which favors them for grid codes. In this paper, the performance of
back-to-back (B2B) converter control of a wind turbine system with PMSG is
investigated on a faulty grid. The switching strategy of the grid side
converter is designed to improve voltage drop caused by the fault in the grid
while the maximum available active power of wind turbine system is injected to
the grid and the DC link voltage in the converter is regulated. The methodology
of the converter control is elaborated in details and its performance on a
sample faulty grid is assessed through simulation