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ABSTRACT OF THE DISSERTATION 

ISOLATED SINGLE-STAGE POWER ELECTRONIC BUILDING BLOCKS USING 

MEDIUM VOLTAGE SERIES-STACKED WIDE-BANDGAP SWITCHES 

by 

Noureldeen Mohamed Anwar Elsayad 

Florida International University, 2019 

Miami, Florida 

Professor Osama A. Mohammed, Major Professor 

    The demand for efficient power conversion systems that can process the energy at 

high power and voltage levels is increasing every day. These systems are to be used in 

microgrid applications. Wide-bandgap semiconductor devices (i.e. Silicon Carbide (SiC) 

and Gallium Nitride (GaN) devices) are very promising candidates due to their lower 

conduction and switching losses compared to the state-of-the-art Silicon (Si) devices. The 

main challenge for these devices is that their breakdown voltages are relatively lower 

compared to their Si counterpart. In addition, the high frequency operation of the wide-

bandgap devices are impeded in many cases by the magnetic core losses of the magnetic 

coupling components (i.e. coupled inductors and/or high frequency transformers) utilized 

in the power converter circuit. 

    Six new dc-dc converter topologies are propose. The converters have reduced 

voltage stresses on the switches. Three of them are unidirectional step-up converters with 

universal input voltage which make them excellent candidates for photovoltaic and fuel 

cell applications. The other three converters are bidirectional dc-dc converters with wide 

voltage conversion ratios. These converters are very good candidates for the applications 
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that require bidirectional power flow capability. In addition, the wide voltage conversion 

ratios of these converters can be utilized for applications such as energy storage systems 

with wide voltage swings. 
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Chapter 1 Introduction to Power Electronic Building Blocks 

1.1     Introduction 

    There is a growing global interest in adopting renewable energy sources at large-scale to 

decrease the reliance on fossil fuels and reduce the CO2 emissions [1]-[14]. In addition, the 

recent developments in energy storage systems made the electrification of transportation more 

economically feasible [15]-[30].  

    Power electronic converters play a critical role in interfacing the different power sources 

and the loads, where they can provide the following functions: 

1) Solving the voltage mismatch between the power source bus and the load bus.

2) Extract the maximum power from a power source (e.g. photovoltaic systems, wind

energy turbines, fuel cells, etc.).

3) May provide galvanic isolation between the power sources and the load.

4) Control the speed and torque of electric motors.

5) In case of grid-connected power electronic systems, they can support the voltage

during voltage sags and support the nominal grid frequency during contingencies,

by adequately controlling the injected active and reactive power to the grid [31]-

[45].

    The concept of the Power Electronic Building Blocks (PEBBs) is based on synthesizing all 

the important power electronic systems from few generic power electronic structures, which 

are referred to as PEBBs. This approach can result in the following outcomes: 

1) Reduction of the number of the spare parts of the power electronic systems

onboard a ship or an aircraft.

1
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2) The mass production of few generic structures can dramatically reduce the total

cost of the power electronic systems.

3) Reduction of the complexity of the maintenance of the power electronic systems.

    The two-level synchronous buck structure (push-pull configuration) is the basic building 

block of all the conventional power electronic systems (i.e. buck dc-dc converter, boost dc-dc 

converter, buck-boost dc-dc converter, single-phase dc-ac inverter, three-phase dc-ac inverter, 

single-phase ac-dc active rectifier, and three-phase ac-dc active rectifier), due to its simple 

circuit structure, low number of active and passive components, simple controller structure, 

and simple gate driver circuits. In addition, it has a common ground between its input and 

output ports which reduces the electromagnetic interference (EMI) noise and require less 

periodic maintenance. Nevertheless, the voltage-conversion-ratios of this converter are low, 

hence, to achieve a high voltage conversion ratio, the converter needs to operate at an extreme 

duty cycle value where its efficiency deteriorates significantly [46]. 

    Designing high-order power electronic converters with wide-voltage-conversion-ratios as 

PEBBs can be a step forward towards more efficient and compact power electronic systems. 

The different categories of the PEBBs and their different configurations will be briefly 

presented. Then, the utilization of high-voltage series-stacked wide-bandgap (WBG) devices 

will be discussed. 

1.2 Overview of the Power Electronic Building Blocks 

    The Power Electronic Building Block (PEBB) is a generic power electronic converter 

circuit that can be configured in different ways to synthesize popular power electronic 

architectures (DC-DC, DC-AC, AC-DC, and AC-AC converters). This can reduce the number 

of spare parts needed onboard a ship, plane, … etc., also the PEBB can reduce the 
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manufacturing cost of the power electronic systems since the mass production of one generic 

power electronic architecture is more economical than producing application-specific power 

electronic architectures. 

    Many literature have discussed different possible architectures for the PEBB, however, all 

of them are either implemented using Silicon (Si), or Silicon Carbide (SiC) Metal Oxide Field 

Effect Transistors (MOSFETs) or Insulated Gate Bipolar Junction Transistors (IGBTs) [47]-

[49], which suffer from high conduction and switching losses. In [50], a PEBB is built with 

Gallium Nitride (GaN) High Electron Mobility Transistors (HEMTs) to reduce the conduction 

and switching losses of the transistors, since the GaN HEMTs have lower on resistance (Ron) 

and less device total charge. The major problem with GaN HEMTs is that their break down 

voltage is relatively lower compared to Si and SiC MOSFETs or IGBTs, which limits the 

utilization of GaN HEMTs to the low voltage applications. Multilevel half-bridge 

configurations can enable the utilization of GaN HEMTs in high voltage applications.  

GaN HEMT symbol

(a) (b) 

Figure 1.1: Possible multilevel half-bridge-based PEBBs, (a) Flying capacitor leg. (b) 

Neutral point clamped leg. 

    These multilevel half-bridge configurations can possibly be based on a flying capacitor 

(FC) leg (as shown in Figure 1.1(a)) or a neutral point clamped (NPC) leg (as shown in Figure 

1.1(b)). The major problem of multilevel configurations is that they require a complex control 

scheme and more switches (as in the NPC) or more high voltage capacitors (as in the FC). The 
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two level half-bridge-based PEBB is the most popular topology in literature and is composed 

of two transistors, these transistors can be either Si or SiC MOSFETs (shown in Figure 1.2(a)) 

or IGBTs (shown in Figure 1.2(b)). This PEBB architecture is limited by the rated voltage of 

the transistors and suffers from high switching and conduction losses. 

(a) (b) 

Figure 1.2: Two level half-bridge-based PEBB, (a) Using Si/SiC MOSFETs. (b) Using 

Si/SiC IGBTs. 

    As a solution to extend the operating voltage of the PEBB beyond the rated voltage of the 

single transistors, a multilevel neutral-point-clamped (NPC) half-bridge can be a PEBB.  

    The rated voltage of this PEBB = (number of levels – 1) X rated voltage of each transistor. 

In [48], and [49], a NPC half-bridge-based PEBB built with SiC MOSFETs is presented. This 

NPC can be built with Si/SiC MOSFETs (as shown in Figure 1.3(a)), Si/SiC IGBTs (as shown 

in Figure 1.3(b)), or GaN HEMTs (as shown in Figure 1.1(b)). The major disadvantages of 

this PEBB architecture: 

- Requires high number of semiconductor devices.

- Requires a complex control scheme.

    Another architecture that can be used to extend the rated voltage of the PEBB beyond the 

rated voltage of the single transistors is a flying-capacitor (FC) half-bridge-based PEBB, 

where a FC half-bridge is used as a PEBB. 

The rated voltage of this PEBB = (number of levels – 1) X rated voltage of each transistor. 
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This FC can be built with Si/SiC MOSFETs (as shown in Figure 1.4(a)), Si/SiC IGBTs (as 

shown in Figure 1.4(b)), or GaN HEMTs (as shown in Figure 1.1(a)). The major disadvantages 

of this PEBB architecture: 

- Requires high number of capacitors, which increases the weight and size.

- Requires a complex control scheme.

(a) (b) 

Figure 1.3: NPC-based PEBB, (a) Using Si/SiC MOSFETs. (b) Using Si/SiC IGBTs. 

(a) (b) 

Figure 1.4: FC-based PEBB, (a) Using Si/SiC MOSFETs. (b) Using Si/SiC IGBTs. 

1.3 Isolated Power Electronic Building Blocks 

    The isolated power electronic building block (I-PEBB) is basically an isolated generic 

power electronic structure that can be used to perform any dc-dc, dc-ac, ac-dc, or ac-ac 

process. This I-PEBB can be based on the bidirectional version of any dc-dc converter (e.g. 
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flyback, forward, isolated SEPIC, isolated Ćuk, etc.). . A design example of an I-PEBB based 

on a modular bi-directional isolated SEPIC converter with an active energy buffer (AEB) is 

shown in Figure 1.5, where the block diagram of the I-PEBB is shown in Figure 1.5(a) and it 

consists of an input port (port I), output port (port II), high frequency (HF) isolation, and an 

AEB. The AEB can be achieved using two transistors in push-pull configuration with a small 

LC filter, as shown in Figure 1.5(b).  

(a) (b) 

(c) 

Figure 1.5: Design example of a modular-SEPIC-based I-PEBB (a) Block diagram. (b) 

Circuit diagram. (c) 3D PCB layout. 

The AEB acts as an active power decoupling stage between two consecutive I-PEBBs. The 

HF magnetic isolation is integrated on the PCB of the I-PEBB, as shown in Figure 1.5(c).    
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(a) 

(c) 

(b) (d) 

Figure 1.6: Possible configurations using the I-PEBB (a) IPOS. (b) ISOS. (c) Three phase 

differential-mode DC-AC system. (d) Consecutive stacking. 

    The I-PEBB provides galvanic isolation between the input and output ports, hence, it can 

be used to synthesize any power processing system based on “Input-Parallel-Output-Series” 

(IPOS), or “Input-Series-Output-Series” (ISOS) architectures, as shown in Fig. 1.6(a) and Fig. 

1.6(b), respectively. Both ISOS and IPOS architectures can be used to synthesize power 

converters that can be used for medium and high voltage applications. Isolated DC/AC power 

processing systems can be synthesized using two I-PEBBs (for single phase) or using three I-

PEBBs (for three phase) systems, as shown in Fig. 1.6(c). Consecutive stacking of the I-

PEBBs can be used to synthesize more complex systems such as AC/AC power processing 

systems.   
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Figure 1.7: A three-phase modular isolated inverter system based on the bidirectional 

version of the isolated Ćuk converter. 

    A three-phase modular inverter based on the bidirectional Ćuk converter is shown in Figure 

1.7, as each phase is composed of an IPOS system. This topology is an example of an I-PEBB 

based on the Ćuck converter-based I-PEBB. 
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1.4 Transformerless High-Order Power Electronic Building Blocks 

    In the past decade solid-state transformers (SST) have emerged as a promising compact 

solution to interface low voltage sources/loads to the MVDC bus of the ship by utilizing 

transformers operating at high frequencies (1kHz < frequency < 100kHz). 

    The advent of wide-bandgap (WBG) semiconductor devices (i.e. Silicon Carbide (SiC), and 

Gallium Nitride (GaN) devices) which can switch efficiently at frequencies higher than 100 kHz, 

enables the power electronic stages to operate at these high switching frequencies.  

    With the advancements taking place to these WBG devices and the increasing capability to 

switch at much higher frequencies, the utilization of the SST with high-frequency 

transformers faces a big challenge. This challenge is due to the increasing core losses of these 

transformers which puts a limit to the reduction of the power electronic stage size and weight. 

Adopting multilevel switching networks have the following advantages: 

1) Distribution of the voltage stress over the power transistors, which enables the 

utilization of transistors with low voltage rating, which leads to a more efficient power 

conversion process. 

2) The effective frequency that is used to design the passive components (inductors, and 

capacitors) equals (n-1).fs, where n, and fs are the number of levels of the switching network, and 

the switching frequency, respectively. This feature minimizes the needed capacitance and 

inductance of the converter, leading to minimization of the passive components size. For 

instance, if fs = 100 kHz, and n = 16, the effective switching frequency used to design the 

passive components = 1.5 MHz.  

    The generic structure of a converter with a multilevel switching network is shown in Figure 

1.8. It is composed of an array of transistors and an intermediary circuit. This intermediary 
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circuit is usually a capacitor network (i.e. flying capacitor network), or a diode network (i.e. 

neutral point clamped network), and this intermediary network distributes the voltage stress 

equally across the transistors. 

Figure 1.8: Generic structure of a power converter with an integrated multilevel network. 

Adopting High-Order Impedance networks have the following advantages: 

1) Enhancing the voltage gain of the power electronic stage.

2) Reducing the voltage stress on the power transistors.

    The high impedance network is composed of a number of capacitors and inductors to 

enhance the voltage gain of the power converter and enable it to reach high values without the 

need for a transformer. 

    It is worth mentioning that, for high frequency operation (>1MHz), the inductors will work 

in continuous conduction mode (CCM) with ripple current less than 5%, thus, the core losses 

of the inductors of the high impedance networks can be neglected. 

    A generic architecture of a converter with high-order impedance networks is shown in 

Figure 1.9. The impedance networks can either be before the switching network, after the 

switching network, or in both locations.  
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The impedance network after the switching network enhances the voltage gain and reduces 

the voltage stress on the transistors, while the other impedance network enhances the voltage 

gain further. 

Figure 1.9: Generic structure of a power converter with an integrated high-order impedance 

network 

Adopting High-Order Impedance and multilevel switching networks have the following 

advantages: 

1) High voltage gain without the need for a transformer.

2) Less voltage stress on the transistors compared to conventional multilevel architecture,

which makes it feasible to implement this family of converters with transistors with low 

voltage ratings.  

(Note: Transistors with lower rated voltage have the capability to switch much faster and more 

efficiently compared to their counterparts with higher rated voltage). 

3) The effective frequency of the proposed high-order multilevel converters can be

optimized to be in the Mega-hertz range, by properly selecting the number of levels of the 

switching network, and optimally designing the high impedance networks. 

4) Absence of core losses, because of the absence of transformers, and operating the

inductors in CCM mode with low current ripples. 
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    A generic architecture of the proposed converters with multilevel high-order impedance 

networks is shown in Figure 1.10. 

Figure 1.10: Generic structure of a power converter with an integrated multilevel high-order 

impedance networks. 

1.5 Series-Stacked WBG Devices for High-Voltage Applications. 

    Currently the maximum breakdown voltage of available semiconductor switching devices is 

lower than the voltage needed for medium-voltage and high-voltage power systems. In order to 

increase the breakdown voltage of semiconductor switching devices, it is meaningful to use 

multiple of them in series connection. However, this approach is impeded by the non-ideality of 

the switches, leading to transit unequal voltage sharing across the series switches, which may 

in turn result in cascaded failure of the switches [51]. An investigation is needed when using 

devices in series, since both static (steady-state) and dynamic (switching transition) voltage 

balancing of devices are very critical and need to be satisfied. 

    The major concern in using semiconductor switching devices in series is identical voltage 

sharing between them in static and dynamic operation. When the switches are OFF (static), 
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the difference between their leakage currents and also their output capacitances cause unequal 

blocking voltage across them. Static voltage balancing can be simply achieved by using a resistor 

with optimized value in parallel with each device. In switching transitions (dynamic), it is more 

difficult to guarantee equal voltage sharing between devices [52].  

The methods for solving dynamic voltage sharing issue of series devices can be classified into load-

side and gate-side techniques.   The simplest technique is to use a passive snubber circuit in the load-

side. In this approach, excessive power losses is introduced in the snubber resistors specifically in 

high-power applications [52]. To solve this problems, active gate control techniques are 

introduced in which a control loop is designed to control the devices voltage using an active gate 

control circuit. This approach requires a complex drive circuit, has low reliability and high 

switching loss [51], [53]. 

    Recently, another category of techniques has been proposed that utilize simple auxiliary 

voltage balancing circuits in the gate-side of series connected semiconductor switching 

devices. These techniques that are usually referred to as quasi-active gate controllers, have less 

complex gate driver, lower switching losses, lower cost, and higher reliability compared to active 

gate control schemes [51]-[53]. 

    So far, a lot of studies are conducted on series connection of Si switching devices and also SiC 

MOSFETs to enhance the breakdown voltage. Yet there appears to be a lack of a 

comprehensive study on series-connected GaN-HEMTs. As explained, GaN-HEMTs offer some 

superior characteristics compared to other switching devices. Increasing the breakdown voltage by 

connecting devices in series would make GaN-HEMTs one of the most promising candidates for 

high-voltage and high-frequency applications. 
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1.6 Research Objectives 

    The main research objectives of this dissertation is to develop new power electronic 

structures that can operate efficiently under wide range of voltage conversion ratios and are 

suitable for high-voltage and high power applications. In addition, the developed new 

architectures provide high power density, high specific power, and minimal EMI filtering 

requirement. Accordingly, the features of the proposed new topologies can be summarized in 

the following points: 

1) Continuous input current im order to prolong the lifetime of the power source (i.e.

battery, ultra-capacitor, fuel cell, etc.) connected to the converter.

2) Wide voltage conversion ratios to be able to operate at moderate duty cycle values,

hence, have an acceptable efficiency throughout the broad range of voltage gain.

3) The potential difference between the grounds of the ports of the converters should be

constant in order to minimize the leakage currents, hence, reduce the required periodic

maintenance.

    In order to understand the effect of the potential difference between the grounds of the 

power converter’s ports on the operation, we need to depict the converter equivalent circuit 

including the parasitic capacitance between the grounds, as shown in Figure 1.11: 
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Figure 1.11: The generic equivalent circuit of a dc-dc converter including the parasitic 

capacitance between its grounds. 

    The parasitic capacitance (Cparasitic) depicted in Fig. J is usually caused by the package or 

casing of the power converter. The potential difference between the grounds of the input and 

output ports is depicted by (VG) in Figure 1.11. When VG is zero (= common ground) or a 

constant voltage, the leakage current iLeakage = 0. When VG is a high-frequency ac voltage, high 

leakage current will flow between the grounds through Cparasitic, as shown in Figure 1.11. 

Based on that, the major aspects of this dissertation are: 

1) Develop new transformerless unidirectional dc-dc power converters with wide voltage

gain range in order to suite fuel cell and renewable energy systems.

2) Develop new transformerless bidirectional dc-dc power converters with wide voltage

gain range in order to suite electric vehicles and energy storage systems.

3) Design novel isolated high-frequency link dc-ac power converters with reduced switch

count for medium-voltage supercharging stations for electric vehicles.

4) Developing high-voltage Gallium-Nitride (GaN) switching modules using series

stacking, and using these modules in developing high voltage power electronic

building blocks.

1.7 Original Contribution of This Thesis 

The main contributions of this dissertation are the following: 

1) Developing a new multilevel dc-dc converter that is based on a three-level flying-

capacitor switching network and an LC2D network. This converter has wide voltage

gain, low voltage stress on the power switches, and a common ground between the
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input and output ports. This converter is unidirectional, hence, it can be used in fuel 

cell and renewable energy applications. 

2) Developing a new single-switch dc-dc converter with universal input voltage, high 

semiconductor utilization factor, and a common ground between its input and output 

ports. This converter integrates an L2C3D2 with a boost converter to widen its gain 

range and reduce the voltage stress on its power switches. This converter is suitable for 

fuel cell and renewable energy applications.

3) Designing a novel single-switch dc-dc converter that is based on the SEPIC converter with 

an integrated dual-switched-capacitor network. This converter has broad voltage gain, 

low voltage stress on its passive and active devices, and a constant potential difference 

between its input and output ports. This converter is suitable for fuel cell and renewable 

energy applications.

4) Developing a new SEPIC based dc-dc converter that utilizes a discontinuous current 

quasi-Z-source network and a dual-switched-capacitor switching networks. The 

converter supports unidirectional power flow, thus, it suites the renewable energy and fuel 

cell systems.

5) Design and implementation of a new bidirectional buck-boost converter that has broad 

voltage gain range, as it supports the buck and boost operations in both power flow 

directions. This converter can be used in electric vehicles as an interface between the 

battery pack and the dc-link of the three-phase inverter.

6) Analysis and development of a novel bidirectional transformerless dc-dc converter with 

wide voltage conversion ratios, a common ground between the ports of the converter, 

and continuous current at the low voltage port. This converter is suitable for
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energy storage systems that have wide voltage swings in their output voltage (i.e. ultra-

capacitors). 

7) Design and development of a new extendable bidirectional dc-dc converter with high 

voltage conversion ratios. This converter can directly interface the energy storage 

systems that have low output voltage to the load bus with voltage gain ≥20, without the 

need to any magnetic coupling components (i.e. coupled inductor or high-frequency 

transformer).

8) Development of high-voltage series-stacked GaN module and utilized it in a high-

voltage power electronic building block.

9) Development of two new high-frequency ac link systems with reduced switch count. 

These two proposed dc/ac converters provide galvanic isolation and can be used for 

the electric vehicle’s supercharging stations that are connected to the medium-voltage ac 

grid.

1.8 Dissertation Organization 

    Chapter 2 gives an overview and full literature review of the non-isolated unidirectional 

and bidirectional dc-dc converters in literature. In addition, it gives a thorough literature 

review of the isolated high-frequency ac-link dc-ac converters that can be used for medium-

voltage applications. 

    In chapter 3, a three-level step-up converter that is based on a flying-capacitor switching 

network and an integrated LC2D network is analyzed and proposed. Its voltage gain, voltage 

stress on the semiconductor devices, and the current stresses on its active and passive 

components are derived. In the end, the experimental results are given and compared with the 

theoretical analysis. 
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    In chapter 4, a new single-switch unidirectional converter with universal input voltage 

is discussed for the application of electric vehicles with fuel cells. The current and 

voltage stresses on the power switches and diodes and analyzed. Additionally, the voltage 

gain of the converter and a comparative study with other step-up converters are given. The 

experimental verification and the conclusion are presented at the end of the chapter. 

    In chapter 5, a novel single-switch converter that integrates a SEPIC dc-dc converter with 

a dual-switched-capacitor network is discussed and analyzed. The electrical stresses on 

its active and passive components are mathematically derived and verified by the 

experimental results at the end of the chapter. 

    In chapter 6, a SEPIC-based dc-dc converter that utilizes a discontinuous current quasi-Z-

source network and a switched-capacitor network for fuel cell vehicles is proposed 

and mathematically analyzed. The design of the passive and active components is given, and 

the electrical stresses on the power switch and diodes are discussed and experimentally 

verified. 

    In chapter 7, a new transformerless buck-boost dc-dc converter that can perform the buck 

and boost operations in both power flow directions is presented and analyzed. The design of 

the active and passive components and the electrical stresses on the power switches are 

given. At the end of this chapter, the experimental validation and the conclusion are 

presented. 

    In chapter 8, a novel non-isolated dc-dc bidirectional converter with wide 

voltage conversion ratios is presented and discussed for the application of energy storage 

systems. The selection of components and a comparative study with other 

bidirectional dc-dc converters are given, and the experimental validation is given at the end 

of the chapter. 
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    In chapter 9, a new extendable bidirectional dc-dc converter that has high 

voltage conversion ratios is discussed. The mathematical analyses of its voltage gain and 

electrical stresses on its power switches are derived and verified by the experimental results. 

    In chapter 10, two cascaded high-frequency-ac-link converter for super charging stations’ 

applications are discussed and analyzed. A novel current controller is discussed and 

the control strategy during grid faults is presented. Simulation results 

from MATLAB/SIMULINK software are given at the end of the chapter to verify the 

theoretical analyses. 

    In chapter 11, A two-level power electronic building block built with GaN high 

electron mobility transistors (HEMTs) and a Nanocrystalline inductor is discussed. The 

possible dc-dc, single-phase/three-phase dc-ac topologies are presented, and the isolated 

gate drivers are discussed. The experimental results are given at the end of the chapter. 

    In chapter 12, a high-voltage series-stacked GaN HEMT module for electric 

vehicle applications is discussed and analyzed. The comparative study with its Silicon 

and Silicon Carbide counterparts are presented. The LTspice simulation results and the 

experimental results at the end of the chapter are used to verify the theoretical analysis. 

    In chapter 13, a power electronic building block with series-stacked GaN modules 

is discussed. The possible dc-dc, single-phase/three-phase dc-ac converter topologies 

are analyzed and presented. Different applications are discussed at the end of the chapter. 

    In chapter 14, a conclusion of this dissertation and an insight on recommended future work 

are given. 
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Chapter 2 Power Electronic Building Blocks for Renewable, Electric Vehicle, and 

Energy Storage Applications: Literature Review 

2.1     Introduction 

    The declining costs of sustainable energy systems and the global interest in reducing the 

CO2 emissions and the reliance on fossil fuels, the electrification of the means of 

transportation has attracted a lot of  interest [54],[55]. Electric vehicles (EVs) powered with 

fuel cells are important players in the clean energy vehicles segment as the fuel cell is a clean 

source of energy with zero emissions, also it has high output current density and high 

efficiency [16], [17]. Nevertheless, the fuel cell has soft output characteristics where its output 

voltage drops noticeably as the output current increases, hence, it cannot be used to directly 

feed the inverter of the EV. A step-up dc-dc converter has to be used as an interface between 

the fuel cell and the dc-link of the inverter, as shown in Figure 2.1, where the dc-dc converter 

solves the mismatch between the fuel cell voltage and dc-link voltage. 

Figure 2.1: The typical powertrain of a fuel-cell powered electric vehicle. 

    Another approach to reduce the CO2 emissions is by increasing the integration of renewable 

energy systems. The output voltage of the renewable energy source changes based on the 

environmental conditions and the operating load point (can be varied using a MPPT). Figure 
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2.2 shows a photovoltaic system connected to the grid via a dc-dc converter followed by a 

power inverter. A dc-dc converter with wide voltage gain range is needed to solve the 

mismatch in voltage levels between the renewable energy source and the dc-link bus of the 

inverter. 

Figure 2.2: The typical architecture of a grid-connected PV system. 

    Due to the increasing demand of energy, and environmental concerns associated with 

electrical energy generation from fossil fuels, the development of microgrids integrating 

renewable energy sources has attracted major interest. The increasing penetration of these 

intermittent renewable energy systems can impose disturbances to the power grid. This 

requires integration of energy storage units (ESUs) to smoothen the fluctuations in power 

generation by maintaining the balance between renewable power generation and consumption. 

   The generic architecture of a dc microgrid with renewable energy generation and assisted 

by ESUs is shown in Figure 2.3. The renewable sources are connected to the dc bus of the 

microgrid via unidirectional power electronic converters, while the ESU is decoupled from 

the dc bus by a bidirectional dc-dc converter. This bidirectional dc-dc converter allows the 

ESU to absorb the excessive energy when the power generation exceeds the demand, and 

release energy when the demand exceeds generation. 

    Additionally, the EV powertrain is another version of microgrids, where the bidirectional 

dc-dc converter pushes power from the ESU to the dc-link of the three-phase inverter in the

motoring mode, and absorbs power from the dc-link back to the ESU in the regenerative 

braking mode. 
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Figure 2.3: The typical architecture of a dc microgrid supported with renewable energy 

sources and energy storage units. 

    Figure 2.4 shows the typical architecture of the powertrain of an electric vehicle. The ESU 

is connected to the dc-link bus of the three-phase inverter via a bidirectional dc-dc converter. 

Figure 2.4: The typical architecture of an EV powered by energy storage units. 

2.2 Non-Isolated Unidirectional Conventional DC-DC Structures 

    Non-isolated unidirectional dc-dc converters process the power in one power flow 

direction. It has many applications such as in renewable energy systems, fuel cell systems, 

and consumer electronics. In this subsection, we cover the two-level unidirectional 

conventional dc-dc converter, the multilevel unidirectional dc-dc converters, switched-

capacitor unidirectional dc-dc converters, switched inductor unidirectional dc-dc converters, 

and quadratic unidirectional dc-dc converters. 



23 

2.2.1 Two-Level Unidirectional Conventional DC-DC Converter 

    The topology of this converter is shown in Figure 2.5, as it is composed of one switch, one 

diode, one capacitor, and one inductor. This converter is very popular for step-up due to its 

simple structure, having a common ground between its input and output ports, having a 

continuous input current, and simple gate driving. Nevertheless, this converter cannot be used 

for applications that require high step-up conversion ratios (> 5), due to the existence of 

parasitic components in its passive and active components. Additionally, at high step-up 

voltage gains the efficiency of this converter deteriorates noticeably due to the high voltage 

and current stresses on its semiconductor devices. 

Figure 2.5: The two-level unidirectional conventional dc-dc converter. 

2.2.2 Multilevel Unidirectional DC-DC Converters 

    The multilevel dc-dc converter topologies aim to reduce the voltage stresses on the 

semiconductor devices of the dc-dc converter, hence, power switches and diodes with lower 

rated voltage can be utilized which yields better efficiency compared to the two-level 

converter [56]-[80]. Another advantage is that the frequency of the ripple current of the input 

inductor increases as the number of levels increases, which results in more compact dc-dc 

converters with smaller and lighter power inductors. 

    The three-level boost (TLB) converter is one of the most commonly adopted multilevel dc-

dc converters due to the low number of passive and active components compared to the other 

multilevel dc-dc converter. Its unidirectional version is shown in Figure 2.6, as it is composed 
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of two switches, two diodes, one inductor, and two capacitors. The voltage stress on its 

switches and diodes equal half of its output voltage. The voltage gain of this converter is 

similar to that of the two-level converter, which means it is not suitable for high step-up 

applications. Additionally, it lacks a common ground between its input and output ports which 

result in higher electromagnetic interference (EMI) noise and requires more filtering. 

Figure 2.6: The three-level unidirectional conventional dc-dc converter. 

Figure 2.7: A unidirectional neutral-point-clamped dc-dc converter. 

    The neutral point clamped converter is another popular multilevel dc-dc converter, as it also 

reduces the voltage stresses on the semiconductor devices and diminishes the size of the input 

inductor. It has a common ground between its input and output ports and has a continuous 

input current. The circuit structure of this converter is given in Figure 2.7. 
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    The voltage gain of this converter is similar to that of the two-level converter, which means 

it is not suitable for high step-up applications. Additionally, it requires a higher number of 

power switches compared to the other multilevel dc-dc converters. 

    The flying-capacitor converter is another attractive step-up multilevel dc-dc converter, as it 

also reduces the voltage stresses on the semiconductor devices and reduces the size of the 

input inductor. It has a common ground between its input and output ports and has a 

continuous input current. The circuit structure of this converter is given in Figure 2.8. 

Figure 2.8: A unidirectional flying-capacitor dc-dc converter. 

    The voltage gain of this converter is similar to that of the two-level converter, which means 

it is not suitable for high step-up applications. Additionally, it requires a higher number of 

capacitors compared to the other multilevel dc-dc converters. 

2.2.3 Switched- Capacitor Unidirectional DC-DC Converters 

    The switched-capacitor dc-dc converter is an attractive way to step-up the voltage using a 

charge pump circuit which is adopted in a lot of converters. The voltage level stepping-up 

using the charge pump circuit takes place from the transfer of capacitive energy and does not 

require any magnetic components. The switches capacitor converters are very popular 
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topologies as they have a modular structure, thus, their voltage gain can be systematically 

enhanced by increasing the number of switched capacitor cells [81]-[107]. 

    One of the major drawbacks of the switched-capacitor topologies is the high inrush current 

during the start instant, which may affect the efficiency, the power density, and the specific 

power of the dc-dc converter. One of the ways to reduce the high inrush currents in the 

switched-capacitor converters is by putting an inductor at the output port to construct a buck 

converter in the already existing power switch(es). This way provides efficient voltage 

regulation and reduces the inrush currents, which is known as soft charging switched-

capacitor converter.  

    Figure 2.9 a unidirectional switched-capacitor dc–dc converter with the common features of 

the switched-capacitor converters such as compact size and low weight. This converter has a 

continuous input current. 

Figure 2.9: A unidirectional switched-capacitor dc-dc converter with diode-capacitor 

multipliers. 

    Another switched-capacitor dc–dc converter with a resonant operation is presented in 

Figure 2.10. In this converter, a resonant small inductor is utilized in the first stage to realize 

zero-current switching. Accordingly, the inrush that usually takes place in conventional 

switched-capacitor converters can be minimized. 
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Figure 2.10: A unidirectional switched-capacitor dc-dc converter with diode-capacitor 

multipliers and a small resonant inductor. 

Figure 2.11: A modular asymmetrical switched-capacitor dc-dc converter. 

    Figure 2.11 presents a modular asymmetrical switched-capacitor dc–dc converter with a 

shared capacitor voltage rating. Due to the modularity feature of its circuit, this topology is 

capable of realizing high voltage conversion ratios and needs output capacitors with low 

capacitance and low voltage rating. This converter utilizes only two power switches. The 

voltage gain of this converter can be simply extended by increasing the number switched 

capacitor cells. In addition, the control of this topology is simple and voltage stress on the 

semiconductor devices is low. 
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    Voltage multiplier circuits are attracting a lot of attention in the applications that require 

high step-up voltage conversion ratios as they have a simple circuit structure. Figures 2-12 to 

2-18 present some of the important structures known as voltage multiplier cell dc–dc

converters. Some of these architectures have only diodes and capacitors (as in Figure 2-12, 

Figure 2-13, and Figure 2-14) and thus they are called in the literature as diode-capacitor 

voltage multiplier cell dc-dc converters. Other voltage multiplier cell dc-dc converters have 

more active components, such as an auxiliary power switch (Figure 2-15), while other voltage 

multiplier cell dc-dc converters utilize inductors to enhance the step-up voltage gain (Figure 

2-16 and Figure 2-17). Some topologies of the voltage multiplier cell dc-dc converters with

vertical structures have been introduced, as the topology shown in Figure 2-13. 

Figure 2.12: Unidirectional voltage multiplier cell dc-dc converter 1. 

Figure 2.13: Unidirectional voltage multiplier cell dc-dc converter 2. 

    The operation and dynamic performance of the voltage multiplier cell converters presented 

in Figure 2-12, Figure 2-13, and Figure2-14 are identical and their voltage gain relationships 

are similar: (1+ D)/(1 - D), as D is the duty cycle of the main switch. When a small inductor 

(typically between 1 to 4 μH) is used in the voltage multiplier cell dc-dc converters in Figure 
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2-14, a zero current switching (ZCS) transition can be be realized for the diodes and switch,

which can noticeably improve the efficiency of the converter by reducing the switching losses. 

Figure 2.14: Unidirectional voltage multiplier cell dc-dc converter 3. 

Figure 2.15: Unidirectional voltage multiplier cell dc-dc converter 4. 

Figure 2.16: Unidirectional voltage multiplier cell dc-dc converter 5. 

    The voltage multiplier cell dc-dc converter in Figure 2-16 utilizes an inductor and a 

capacitor in order to enhance the voltage conversion ratio of the dc-dc converter. The voltage 

multiplier cell dc-dc converter in Figure 2-17 has the highest voltage gain compared to the 

other voltage multiplier cell dc-dc converters, nevertheless, the voltage stress on its switch is 

high. 

    In the voltage multiplier cell converter in Figure 2-14, a single inductor connected in first 

stage is capable of realizing the zero current switching on all the semiconductor devices. 
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Figure 2.17: Unidirectional voltage multiplier cell dc-dc converter 6. 

2.2.4 Switched-Inductor Unidirectional DC-DC Converters 

    The Voltage Lift structure is an alternative useful technique that is widely utilizes in dc–dc 

converters to enhance voltage conversion ratio. This method is based on charging a capacitor to 

a specific voltage level (e.g., voltage of the input port) and then boosting the output voltage 

(stepping-up the voltage) with the level of voltage of the charged capacitor [108]-[119]. When 

repeating this method with the insertion of other capacitors to form a re-lift, triple-lift, and 

quadruple-lift topologies, the level of the output voltage can be enhanced. A lot of boost dc–dc 

topologies have been proposed by Luo, and the voltage lift approach has been utilized in the 

literature in a large number of dc-dc converters, like Ćuk, SEPIC, and Zeta topologies. 

Figure 2.18: Unidirectional voltage Lift cell dc-dc converter 1. 
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    In order to enhance the voltage gain of the dc-dc converter, more the one lift circuits can be 

cascaded. Voltage Lift Switched Inductor dc-dc converters are presented in Figure 2-18, 

Figure 2-19, and Figure 2-20.  

Figure 2.19: Unidirectional voltage Lift cell dc-dc converter 2. 

Figure 2.20: Unidirectional voltage Lift cell dc-dc converter 3. 

    The basic switched-inductor dc-dc converter is shown in Figure 2-18. In switched-inductor 

dc-dc converter, the inductors are charged in parallel and discharged in series. Where the two

inductors have similar inductances and have the same conditions of operation, they can be 

coupled into one core in to diminish the size and reduce the weight of the dc-dc converter. 
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Figure 2.21: Unidirectional active-switched-inductor dc-dc converter 1. 

 Figure 2.22: Unidirectional active-switched-inductor dc-dc converter 2. 

Figure 2.23: Unidirectional active-switched-inductor dc-dc converter 3. 

    Implementing a voltage lift structure with elementary cell in a switched-inductor dc-dc 

converter results in a self-lift switched-inductor dc-dc converter, as shown in Figure 2-19. 

When an additional diode and capacitor are added to a self-lift switched-inductor dc-dc 
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converter, a double self-lift switched-inductor dc-dc converter is produced, as shown in Figure 

2-20. Other high order switched-inductor dc-dc converters that can achieve high step-up gain

have been discussed in literature. 

     As an alternative structure to that with three diodes, as in the basic voltage Lift cell dc-dc 

converter 1 in Figure 2-18, only two power switches are used in what so-called active 

switched-inductor network and there is no need for an additional power switch in the power 

converter circuit. A number of unidirectional active-switched-inductor dc-dc converters are 

shown in Figure 2-21, Figure 2-22, and Figure 2-23. 

2.2.5 Quadratic Unidirectional DC-DC Converters 

    Figure 2.24 depicts a cascaded unidirectional boost converter that consists of two 

consecutive boost converters. The voltage stress on the first boost dc-dc converter is 

relatively low, thus, its operating frequency can be high which can result in high 

power density. Nevertheless, the second boost dc-dc converter has to operate at low 

frequency in order to decrease the switching losses. The quadratic converter aims to reduce 

the number of power switches and reduce the complexity of the converter structure and the 

gate driving circuits [120]-[137]. Nevertheless, one major disadvantage of the quadratic 

boost dc-dc converters is that the duty cycles of the two boost converters can no longer be 

controlled independently, unlike the cascaded boost structure in Figure 2.24. The structure 

of a quadratic boost dc-dc converter is presented in Figure 2.25. Figure 2.26 depicts a three-

level quadratic boost dc–dc converter that was proposed for high step-up applications. Other 

basic quadratic boost dc-dc converter topologies are presented in Figure 2.27 to Figure 2.30. 

The quadratic boost dc-dc converters have wider ranges of voltage conversion ratios than the 

conventional PWM boost dc–dc converter.  
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Figure 2.24: Cascaded unidirectional boost dc-dc converters. 

Figure 2.25: The basic unidirectional quadratic boost dc-dc converter. 

Figure 2.26: Three-level unidirectional quadratic boost dc-dc converter. 

    For the applications where the voltage conversion ratio is limited, the quadratic boost dc-

dc converters can work with narrower changes in the values of duty cycle than that in the 

conventional boost dc–dc converters, which results in a simple design procedure and an 

improved performance. 
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Figure 2.27: A quadratic boost dc-dc converter with low capacitor voltage. 

Figure 2.28: Basic quadratic boost dc-dc converter 1. 

Figure 2.29: Basic quadratic boost dc-dc converter 2. 
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Figure 2.30: Basic quadratic boost dc-dc converter 3. 

    Added to that, the quadratic boost dc-dc converters have several advantages for low power 

applications as they avoid sophisticated magnetic designs. Figure 2.27 presents a quadratic 

boost dc-dc converter with low voltage stress on its capacitor. In Figure 2.28 and Figure 2.29, 

two topologies of quadratic boost dc-dc converters with similar components but only differ in 

terms of the placement of the buffer capacitor. A lot of modified versions of the quadratic 

boost dc-dc converter have been proposed and discussed in literature. Generally, cascaded 

and quadratic boost dc-dc converters, such as those in Figure 2.24 to Figure 2.30, usually 

have four semiconductor devices, with at least one of them is an active power switch. They 

usually also contain a one inductor and one capacitor for each stage of the dc-dc converter. 

2.3 Non-Isolated Bidirectional DC-DC Converters 

    Non-isolated bidirectional dc-dc converters process the power in both power flow 

directions (from the high voltage port to the low voltage port in the step-down mode, and from 

the low voltage port to the high voltage port in the step-up mode). It has many applications 

such as in energy storage systems, battery-powered electric vehicles, and uninterruptible 

power supplies. In this subsection, we cover the two-level bidirectional conventional dc-dc 

converter, the multilevel bidirectional dc-dc converters, switched-capacitor bidirectional dc-
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dc converters, switched inductor bidirectional dc-dc converters, and quadratic bidirectional 

dc-dc converters.

2.3.1 Two-Level Bidirectional Conventional DC-DC Converter 

    The topology of this converter is shown in Figure 2.31, as it is composed of two switches 

that work in a complementary fashion, two capacitors, and one inductor. This converter is 

very popular for bidirectional buck/boost applications due to its simple structure, having a 

common ground between its input and output ports, having a continuous current at the low 

voltage port, and simple gate driving. Nevertheless, this converter cannot be used for 

applications that require high voltage conversion ratios, due to the existence of parasitic 

components in its passive and active components. Additionally, at high voltage conversion 

ratios the efficiency of this converter deteriorates noticeably due to the high voltage and 

current stresses on its semiconductor devices. 

Figure 2.31: The two-level Bidirectional conventional dc-dc converter. 

2.3.2 Multilevel Bidirectional DC-DC Converters 

    The multilevel bidirectional dc-dc converter topologies aim to reduce the voltage stresses 

on the power switches of the dc-dc converter and reduce the size of the magnetic components. 

The bidirectional versions of the three-level bidirectional converter, the neutral point clamped 

converters are shown in Figure 2.32. 
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(a) (b) 

(c) 

Figure 2.32: The bidirectional versions of (a) The flying capacitor converter. (b) The 

neutral point clamped converter. (c) The three-level converter. 

2.3.3 Switched- Capacitor Bidirectional DC-DC Converters 

    The switched-capacitor bidirectional dc-dc converters have the same operational concepts 

as those unidirectional ones discussed in subsection 2.2.3. The bidirectional versions of these 

converters can be directly derived by replacing the diodes with power switches, as shown in 

Figure 2.33, in order to allow power flow in both directions. 

(a)
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(b) 

(c) 

(d) 

(e)
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(f) 

(g) 

(h) 

(i) 

Figure 2.33: The bidirectional versions of the switched-capacitor converters discussed in 

subsection 2.2.3. 

2.3.4 Switched- Inductor Bidirectional DC-DC Converters 

    The switched-inductor bidirectional dc-dc converters have the same operational concepts 

as those unidirectional ones discussed in subsection 2.2.4. The bidirectional versions of these 

converters can be directly derived by replacing the diodes with power switches, as shown in 

Figure 2.34, in order to allow power flow in both directions. 

(a) (b) 
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(c) (d) 

(e) (f) 

Figure 2.34: The bidirectional versions of the switched-inductor converters discussed in 

subsection 2.2.4. 

2.3.5 Quadratic Bidirectional DC-DC Converters 

    The quadratic bidirectional dc-dc converters have the same operational concepts as those 

unidirectional ones discussed in subsection 2.2.5. The bidirectional versions of these 

converters can be directly derived by replacing the diodes with power switches, as shown in 

Figure 2.35, in order to allow power flow in both directions. 

(a) (b) 
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(c) (d) 

(e) (f) 

(g) 

Figure 2.35: The bidirectional versions of the quadratic converters discussed in subsection 

2.2.5. 

2.4 Non-Isolated DC-AC Structures 

    The six-step buck VSI, shown in Figure 2.36, is the most commonly utilized three-phase 

inverter; it is composed of three legs in push-pull configuration. A common-mode voltage has 

to be added to the output of each leg. In this three-phase buck VSI, there are six switches 

operating at high frequency. 

    A boost stage can be added before the three-phase buck VSI to increase the voltage level 

of the dc supply (Vin). This boost converter can be unidirectional, as in Figure 2.36 (b), or 

bidirectional, as in Figure 2.36 (c). For systems shown in Figure 2.36 (b) and Figure 2.36 (c) 

there are at least seven switches operating at high frequency. 
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(a) (b) (c) 

Figure 2.36: Three-phase voltage source inverter, (a) for Buck operation only, (b) With a 

unidirectional boost converter. (c) With a bidirectional boost converter. 

    The Z-source inverter (ZSI) is a single-stage buck-boost inverter, where the dc supply 

voltage level can be pushed up without the need to a separate boost converter. The first 

versions of the ZSI are shown in Figure 2.37 (a) and Figure 2.37 (b), as Figure 2.37 (a) shows 

the unidirectional version and Figure 2.37 (b) shows the bidirectional version.  

(a) (b) 

(c) (d) 

Figure 2.37: (a) Unidirectional ZSI, (b) Bidirectional ZSI, (c) Unidirectional qZSI, (d) 

Bidirectional qZSI. 

    The quasi ZSI (qZSI) is the improved version of the ZSI as it has a smooth input current, 

making it suitable for renewable energy and energy storage systems. The unidirectional 

version of the qZSI is presented in Figure 2.37 (c) and the bidirectional version is shown in 
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Figure 2.37 (d). Both of ZSI and qZSI have six switches operating at high frequency. A lot of 

literature have covered different structures of the ZSI and qZSI [138]-[162].  

    The split-source inverter (SSI) is an alternative to the ZSI and qZSI [163]-[166], where the 

dc supply voltage can be stepped up without the need to a separate boost converter. The SSI 

has six switches operating at high frequency (note: the other three switches, in the bidirectional 

version, operate at low frequency). The unidirectional version of the SSI is depicted in Figure 

2.38 (a), and the bidirectional version of the SSI is depicted in Figure 2.38 (b). 

(a) (b) 

Figure 2.38: (a) Unidirectional SSI, (b) Bidirectional SSI. 

    The basic construction of the (differential-mode inverter) DMI is three bidirectional buck 

or buck-boost dc-dc converters connected in such a way that all of them have a common 

ground, as shown in Figure 2.39 (a) [167]-[175]. Each converter generates an “ac voltage 

component” with a dc offset, such that the sum is either in the positive or negative voltage 

plane. Many dc-dc converters can be used to synthesize the DMI, like: Sepic, Ćuk, buck-

boost, ….., etc. The least number of switches operating at high frequency for a three-phase 

DMI is six switches. 

    Two examples of the three-phase DMI are shown in Figure 2.39 (b) and Figure 2.39 (c). In 

Figure 2.39 (b), a DMI is synthesized with three bidirectional non-isolated Ćuk converters, 
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while Figure 2.39 (c) shows a DMI that is synthesized with three bidirectional isolated Ćuk 

converters. 

(a) (b) (c) 

Figure 2.39: (a) Generic DMI connection diagram, (b) Non-isolated Ćuk DMI, (c) Isolated 

Ćuk DMI. 

2.5 Isolated DC-AC Structures 

    The isolated dc-ac inverter systems have many applications such as in renewable energy 

systems where they step-up the voltage level of the renewable energy source (by means of the 

turns ratio of the magnetic coupling component), and they minimize the leakage currents. 

Added to that, the galvanic isolation between the dc-source and the ac load provides inherent 

protection to the renewable energy sources against faults in the power grid. 

Figure 2.40: The generic structure of an isolated dc-ac inverter. 
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    The differential-mode inverter that is shown in Figure 2.39 (c) is an example of isolated 

dc-ac structures. Nevertheless, the most common architecture of the isolated dc-ac structures 

is given in Figure 2.40 

    As depicted in Figure 2.40, this type of isolated dc-ac inverters is composed on a dc-ac 

stage to convert the input dc voltage to high frequency ac voltage to drive the high frequency 

transformer. An ac-ac power stage follows the high frequency transformer in order to convert 

the high frequency ac voltage from the transformer to an ac voltage with the low nominal 

frequency required by the ac load. Typically this kind of isolated inverters is categorized 

based on the structure of their ac-ac stage to either high frequency dc-link converters 

or high frequency ac-link converters. 

2.5.1 High-Frequency DC-Link Converter 

    The typical topology of this converter is shown in Figure 2.41, as it is composed of a single-

phase dc-ac inverter to convert the input dc voltage to high frequency ac voltage to drive the 

high frequency transformer, a single-phase rectifier to convert the high-frequency ac voltage 

from the transformer’s secondary to dc voltage, and finally an inverter to convert this dc 

voltage to ac voltage with the voltage magnitude and frequency required by the ac load. This 

converter has a simple circuit structure and simple control. Nevertheless, the dc-link capacitor 

following the ac-dc rectifier reduces the power density of the converter and affects its 

reliability. 
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Figure 2.41: The topology of the high-frequency dc-link dc-ac inverter. 

2.5.2 High-Frequency AC-Link Converter 

    The typical topology of this converter is shown in Figure 2.42, as it is composed of a 

single-phase dc-ac inverter to convert the input dc voltage to high frequency ac voltage to 

drive the high frequency transformer, a matrix converter to directly convert the high-

frequency ac voltage from the transformer’s secondary to ac voltage with the voltage 

magnitude and frequency required by the ac load. This converter eliminates the need for dc-

link capacitors, thus its power density and reliability are better compared to the high-

frequency dc-link converter. Nevertheless, the circuit structure and the required gate drivers 

are relatively more complex. 

Figure 2.42: The topology of the high-frequency dc-link dc-ac inverter. 
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2.6 Conclusion 

     This chapter  surveyed of the state of the art power electronic building blocks, as it 

reviewed the unidirectional and bidirectional dc-dc structures with integrated switched-

capacitor, switched-inductor, quadratic , and multilevel networks. In addition, it reviewed the 

popular non-isolated and isolated dc-ac inverters.  
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Chapter 3 Analysis and Design of a Three-Level Boost Converter with Wide Gain 

Range for Fuel Cell Automotive Applications 

3.1     Introduction 

In this chapter, a new three-level boost converter with continuous input current, common 

ground, reduced voltage stress on the power switches, and wide voltage gain range is 

proposed. The proposed converter is composed of a three-level flying capacitor switching cell 

and an integrated LC2D output network. The LC2D output network enhances the voltage gain 

of the converter and reduces the voltage stress on the power switches. The proposed converter 

is a good candidate to interface fuel-cells to the dc-link bus of the three-phase inverter of the 

electric vehicle (EV). Full steady-state analysis of the proposed converter in the continuous 

conduction mode (CCM), converter components design is given in this chapter. A 1.2 kW 

scaled-down laboratory setup was built using Gallium Nitride (GaN) transistors and Silicon 

Carbide (SiC) diodes to verify the feasibility of the proposed converter. 

3.2 Structure and Operating Principles of the Proposed Converter 

3.2.1 General Structure of the Proposed Converter 

The proposed converter is presented in Figure. 2, where it is composed of two active 

switches (Q1, Q2), three diodes (D1, D2, D3), two inductors (L1, L2), and four capacitors (C1, 

C2, C3, C4). The fuel cell is depicted as a dc voltage source (Vin). The network of (Q1, Q2, D1, 

D2, C2, C3) forms a three-level flying-capacitor switching cell. The LC2D output network 

enhances the voltage gain and reduces the voltage stress on the power switches. 
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Figure 3.1: The schematic of the proposed converter 

3.2.2 Operation Modes 

The proposed converter has two active switches, hence, it has four possible switching 

states for Q1 and Q2. These switching states are: S1 S2 = {00, 01, 10, and 11}, as S1 and S2 are 

the triggering signals of Q1 and Q2, respectively.  

(a) (b) (c) 

Figure 3.2: Current flow paths when D < 0.5. (a) S1S2 = 00. (b) S1S2 = 10. (c) S1S2 = 01. 

(a) (b) (c) 

Figure 3.3: Current flow paths when D > 0.5. (a) S1S2 = 11. (b) S1S2 = 10. (c) S1S2 = 01. 
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The triggering signals S1 and S2 are generated via comparing two phase-shifted 180○ 

carrier signals with a modulation signal (D). This means that there are three possible switching 

sequences, based on the value of D. When D > 0.5, the switching sequence of S1 S2 is {10, 11, 

01, 11, and 10}. When D < 0.5, the switching sequence of S1 S2 is {10, 00, 01, 00, and 10}. 

When D = 0.5, the switching sequence of S1 S2 is {10, 01, and 10}. The key waveforms of the 

proposed TLB converter are presented in Figure 3.4, and the current flow paths when D < 0.5 

and D > 0.5 are shown in Figure 3.2 and Figure 3.3, respectively. 

Figure 3.4: Key waveforms of the proposed converter (a) D < 0.5. (b) D > 0.5. 
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3.2.3 Analysis of Operating States 

   In this subsection, the proposed converter is analyzed during each of the four switching 

states, to be used after that in calculating the voltage gain and the voltage stress associated 

with each switching sequence.  

   When S1 S2 = 01, shown in Figure 3(c) and 4(c), by applying the Kirchhof’s Voltage Law 

(KVL) we get equations (1) and (2). 

VL1 = Vin – Vc2 (1) 

VL2 = VC1 + VC2 – VC3 (2) 

   When S1 S2 = 10, shown in Figure 3(b) and 4(b), by applying the KVL we get equations (3) 

and (4). 

VL1 = Vin + VC2 – VC3 (3) 

VL2 = VC1 - VC2 (4) 

   When S1 S2 = 11, shown in Figure 4(a), by applying the KVL we get equations (5) and (6). 

VL1 = Vin (5) 

VL2 = VC1 - VC3 (6) 

   When S1 S2 = 00, shown in Figure 3(a), by applying the KVL we get equations (7) and (8). 

VL1 = Vin – VC3 (7) 

VL2 = VC1   (8) 

3.2.4 Wide Voltage Gain 

In this subsection the voltage gain of the proposed converter is derived for D > 0.5 and D < 

0.5. To simplify the analysis, all inductors and capacitors are assumed to be ideal and very 

large to apply the small ripple approximation. When D > 0.5, as shown in Fig. 6(b), the 

switching sequence of S1 S2 is {10, 11, 01, 11, and 10}. In this switching sequence the time of 
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state {01}, T01, the time of state {10}, T10, and the time of state {11}, T11, are defined as shown 

in (9): 

{  

𝑇01 = (1 − 𝐷)𝑇   
𝑇10 = (1 − 𝐷)𝑇   

𝑇11 = (2𝐷 − 1)𝑇 
(9) 

As T is the periodic time of the carrier signals. 

    By applying the volt-second balance rule on L1 and L2, we get equations (10) and (11): 

VC3 = 
𝑉𝑖𝑛

1−𝐷
(10) 

VC1 = 
𝐷

1−𝐷
 Vin (11) 

The output voltage Vo can be defined as the biggest value of the sum of “VC3” and “VL2”. Thus, 

when D > 0.5, Vo can be calculated as following: 

Vo = VC3 + VC1 – VC2    (12) 

Since C2 and C3 are the two capacitors of a three-level flying capacitor network, thus, VC2 is 

half VC3, hence: 

Vo = 
𝑉𝐶3

2
+ VC1 (13) 

By substituting by (10) and (11) in (13), we get: 

Vo = 
0.5+𝐷

1−𝐷
Vin (14) 

Thus the voltage gain, M, is defined by (15): 

M  = 
𝑉𝑜

𝑉𝑖𝑛
= 
0.5+𝐷

1−𝐷
  (15) 

When D < 0.5, as shown in Fig. 6(a), the switching sequence of S1 S2 is {10, 00, 01, 00, and 

10}. In this switching sequence T01, T10, and the time of state {00}, T00, are defined as 

following: 
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{

𝑇01 = 𝐷𝑇 
𝑇10 = 𝐷𝑇       
𝑇00 = (1 − 2𝐷)𝑇

(16) 

By applying the volt-second balance rule on L1 and L2, we get equations (17) and (18): 

VC3 = 
𝑉𝑖𝑛

1−𝐷
(17) 

VC1 = 
𝐷

 Vin (18) 
1−𝐷

   In this switching sequence Vo can be defined as the biggest value of the sum of “VC3” 

and “–VL2”. Thus, when D < 0.5, Vo can be calculated as following: 

Vo = VC3 + VC1  

(19) By substituting by (17) and (18) in (19), we get: 

Vo = 
1+𝐷

1−𝐷
Vin (20) 

Thus the voltage gain, M, is defined by (21): 

M  = 
𝑉𝑜

𝑉𝑖𝑛
= 
1+𝐷

1−𝐷
(21) 

The equations derived for D > 0.5 case can be applied for D = 0.5. 

    When S1 S2 is {10, or 01}, the states of L1 and L2 depend on the value of D. From equations 

(1)-(4), the voltage across L1 and L2 can be defined as following: 

VL1 = 
0.5−𝐷

1−𝐷
𝑉𝑖𝑛 (22) 

VL2 = 
𝐷−0.5

1−𝐷
 Vin (23) 

    By means of equations (22), and (23), and the voltage polarities shown in Figures 3 and 4, 

both L1 and L2 are charging when D is less than 0.5, while they are discharging when D is 

greater than 0.5. 
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3.2.5 Voltage Stress Analysis 

The voltages across C4 equals (Vo – VC3). The voltages across C1, C2, and C3 are described 

by equations (24), and (25) 

VC2 = 
𝑉𝐶3

2
 = {

𝑉𝑜

2(1+𝐷)
 𝐷 <  0.5 

𝑉𝑜

1+2𝐷
 𝐷 ≥  0.5 

(24) 

VC1 = {

𝐷 𝑉𝑜

(1+𝐷)
 𝐷 <  0.5 

𝐷 𝑉𝑜

(0.5+𝐷)
 𝐷 ≥  0.5 

(25) 

  The voltage across Q1, Q2, D1, D2, and D3 can be expressed by (26). 

VQ1 = VQ2 = VD1 = VD2 = VD3 =  
𝑉𝐶3

2
 = {

𝑉𝑜

2(1+𝐷)
 𝐷 <  0.5 

𝑉𝑜

1+2𝐷
 𝐷 ≥  0.5 

(26) 

3.2.6 Current Stress Analysis 

    In this subsection the current stresses on both the semiconductor devices and inductors are 

derived. The analysis is divided into two parts, depending on the value of D. In the following 

equations, the output load current is Io, the average currents of inductors L1 and L2 are IL1 and 

IL2, respectively, the average charging currents of capacitors C1, C2, C3, and C4 are IC1_ch, 

IC2_ch, IC3_ch, and IC4_ch, respectively, and the average discharging currents of capacitors C1, 

C2, C3, and C4 are IC1_disch, IC2_disch, IC3_disch, and IC4_disch, respectively. 

(For D > 0.5) 

   The current stresses can be obtained as following: 

S1 S2 = 11: 

   In this switching state C3 discharges, C1 charges, C2 neither charges nor discharges, and C4 

discharges. Diode D3 is reverse biased. By applying Kirchhof’s Current Law (KCL), the 

relationships between the inductor and capacitor currents can be expressed as following: 
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IC3_disch = - IL2 (27) 

IC1_ch = - IL2 (28) 

IC4_disch = - IL2 = - Io (29) 

S1 S2 = 10: 

   In this switching state C3 charges, C1 discharges, C2 discharges, and C4 charges. Diode D3 

is forward biased. We get the following equations: 

IC3_ch = - IC2_disch - IL2 (30) 

IC4_ch = IC1_disch (31) 

IC1_disch = - IC2_disch + IL1 (32) 

S1 S2 = 01: 

   In this switching state C3 discharges, C1 discharges, C2 charges, and C4 charges. Diode D3 

is forward biased. We get the following equations: 

IC3_disch = - IL2 (33) 

IC4_ch = IC1_disch (34) 

IC1_disch = - IC2_ch + IL1 (35) 

   By using the capacitor charge-second balance rule on capacitors C1, C2, C3, and C4, the 

following relationships can be obtained: 

IC1_disch = 
2𝐷−1

2(1−𝐷)
 IL2 (36) 

IC2_ch = - IC2_disch =  IL1 - IC1_disch (37) 

IC3_ch =  - IC2_disch - IL2 (38) 

IC4_ch =  IL2 + IC1_disch – Io (39) 

IL2  = Io (40)
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Assuming a lossless operation, the relationship between Io and IL1 can be obtained as 

following: 

Vin IL1 = Vo Io (41) 

IL1 = 
(0.5+𝐷)𝐼𝑜

(1−𝐷)
(42) 

   When D > 0.5, diode D3 conducts only during S1 S2 = {10, and 10}, and the instantaneous 

current flowing through D3 during T01 and T10 is ID3. During S1 S2 = {11}, the instantaneous 

current flowing through Q1, and Q2 is IQ_11. During S1 S2 = {10}, the instantaneous currents 

flowing through Q1, Q2, D1, and D2 are IQ1_10, IQ2_10, ID1_10, and ID2_10 respectively. During S1

S2 = {01}, the instantaneous currents flowing through Q1, Q2, D1, and D2 are IQ1_01, IQ2_01, 

ID1_01, and ID2_01 respectively. 

ID3 = 
1

2(1−𝐷)
 IL2 (43) 

IQ_11 =  IL1 + IL2 (44) 

IQ1_10 =  IQ2_01 = ID2_10 =  ID1_01 = IC2_ch (45) 

IQ1_01 =  IQ2_10 = ID1_10 =  ID2_01 = 0 (46) 

The root-mean-square (rms) values of currents flowing through the components of the 

converter are essential for loss analysis. The rms values of IQ1, IQ2, ID1, ID2, ID3, IC1, IC2, IC3, 

and IC4 are IQ1_rms, IQ2_rms, ID1_rms, ID2_rms, ID3_rms, IC1_rms, IC2_rms, IC3_rms, and IC4_rms, respectively. 

Using equations (9), (27)-(46) we can obtain the following equations:  

IQ1_rms = IQ2_rms =  √(2𝐷 − 1) (𝐼𝐿1  +  𝐼𝐿2)2 + (1 − 𝐷) (𝐼𝐿1 − 𝐼𝐶1_𝑑𝑖𝑠𝑐ℎ)
2 (47) 

ID1_rms = ID2_rms =  √(1 − 𝐷) (𝐼𝐿1 − 𝐼𝐶1_𝑑𝑖𝑠𝑐ℎ)
2 (48) 

ID3_rms = IL2 = Io (49)
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IC1_rms =  √(2𝐷 − 1) (𝐼𝐿2)2 + 2(1 − 𝐷)(
2𝐷−1 

2(1−𝐷)
𝐼𝐿2)2 (50) 

IC2_rms =  √2(1 − 𝐷) (𝐼𝐿1 − 𝐼𝐶1_𝑑𝑖𝑠𝑐ℎ)
2 (51) 

IC3_rms =  √(𝐷) (𝐼𝐿2)2 + (1 − 𝐷) (𝐼𝐶2_𝑑𝑖𝑠𝑐ℎ − 𝐼𝐿2)
2 (52) 

IC4_rms =  √(2𝐷 − 1) (𝐼𝑜)2 + 2(1 − 𝐷) (𝐼𝐶1_𝑑𝑖𝑠𝑐ℎ)
2 (53) 

(For D < 0.5) 

   The current stresses can be obtained as following: 

S1 S2 = 00: 

   In this switching state C3 charges, C1 discharges, C2 neither charges nor discharges, and 

C4 charges. Diode D3 is forward biased. By applying the KCL rule, the relationships 

between the inductor and capacitor currents can be expressed as following: 

IC3_ch = IL1 – IC1_disch – IL2 (54) 

IC4_ch = IL2 + IC1_disch – Io (55) 

S1 S2 = 10: 

   In this switching state C3 charges, C1 charges, C2 discharges, and C4 discharges. Diode D3 

is reverse biased. We get the following equations: 

IC3_ch = - IC2_disch - IL2 =  IL1 (56) 

IC2_disch = - IL1 - IL2 (57) 

IC1_ch = - IL2 (58) 

S1 S2 = 01: 

In this switching state C3 discharges, C1 charges, C2 charges, and C4 discharges. Diode D3 

is reverse biased. We get the following equations: 
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IC3_disch = - IL2 (59) 

IC2_ch = IL1 + IL2 (60) 

IC1_ch = - IL2 (61) 

   By using the capacitor charge-second balance rule on capacitors C1, C2, C3, and C4, the 

following relationships can be obtained: 

IC1_disch = 
2𝐷

1−2𝐷
 IL2 (62) 

IC2_ch = - IC2_disch =  IL1 + IL2 (63) 

   Assuming a lossless operation and using equation (41), the relationship between Io and IL1 

can be obtained as following: 

IL1 = 
(1+𝐷)𝐼𝑜

(1−𝐷)
(64) 

   When D < 0.5, diode D3 conducts only during S1 S2 = {00}, and the instantaneous current 

flowing through D3 during T00 is ID3_00. During S1 S2 = {00}, the instantaneous current 

flowing through D3 ia ID3_00. The relationship between transistor, diode, and inductor 

currents can be obtained as following: 

ID3_00 = 
1

1−2𝐷
 IL2 (65) 

IQ1_10 =  IQ2_01 = ID2_10 =  ID1_01 = IL1 + IL2 (66) 

IQ1_01 =  IQ2_10 = ID1_10 =  ID2_01 = 0 (67) 

   Using equations (16), (52)-(66) the rms values of transistor, diode, and capacitor currents 

can be expressed as following: 

IQ1_rms = IQ2_rms =  √𝐷 (𝐼𝐿1  +  𝐼𝐿2)2 (68) 

ID1_rms = ID2_rms =  √𝐷 (𝐼𝐿1  +  𝐼𝐿2)2 + (1 − 2𝐷)( (𝐼𝐿1 − 𝐼𝐶1𝑑𝑖𝑠𝑐ℎ)
2

(69)
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ID3_rms = IL2 = Io (70) 

IC1_rms =  √(2𝐷) (𝐼𝐿2)2 + 2(1 − 𝐷)(
2𝐷

1−2𝐷
𝐼𝐿2)2 (71) 

IC2_rms =  √2𝐷 (𝐼𝐿1 + 𝐼𝐿2)2 (72) 

IC3_rms =  √(1 − 2𝐷) ( 𝐼𝐿2)2 + 𝐷 ( 𝐼𝐿1 − 𝐼𝐶1_𝑑𝑖𝑠𝑐ℎ − 𝐼𝐿2)
2
+ 𝐷 ( 𝐼𝐿1)2 (73) 

IC4_rms =  √(1 − 2𝐷) (𝐼𝐶1_𝑑𝑖𝑠𝑐ℎ)
2
+ 2𝐷 (𝐼𝐿2)2 (74) 

3.2.7 Comparative Study With Other Three-Level Boost Converters 

    Based on the derived equations (15), (21), and (26), that define the voltage gain and stress 

of the proposed converter, comparative analysis can be made between the proposed converter 

and other multilevel converters, as shown in TABLE 3.1. In this comparison, the proposed 

converter is compared with the conventional TLB converter, a three-level quasi-z-source (TL-

QZS) converter in [176], and an input-parallel-output-series (IPOS) converter in [177].   

   The conventional TLB converter has an ideal voltage gain of 1/(1-D). The voltage stress 

across the semiconductor devices of the conventional TLB converter is Vo /2. In [176], this 

converter has a voltage gain 2/(3-4D), and voltage stress across the semiconductor devices 

Vo /2. The duty cycle of this converter is limited between 50% to 75%, which makes the 

converter very sensitive to any change in duty. In [177], the converter discussed in this 

paper has a voltage gain 2/(1-D), and voltage stress across the power switches Vo/2. Table 3.1 

presents a peer-to-peer comparison between the proposed converter, the TL-QZS converter in 

[176], and the IPOS converter in [177].  
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Table 3.1: Comparisons Between Proposed and Other Step-Up Solutions Comparisons 

Between Proposed and Other Step-Up Solutions 

Conventional 

TLB 

Converter 

TL-QZS 

Converter in 

[12] 

IPOS Converter 

in [22] 

Proposed Converter 

Voltage 

Gain 

1

1−𝐷

2

3−4𝐷

( 0.5 ≤ D < 

0.75) 

2

1−𝐷

( 0 ≤ D < 1) 

1+𝐷

1−𝐷
 , (0 < D < 0.5) 

0.5+𝐷

1−𝐷
 , ( D ≥ 0.5) 

Voltage 

Stress 

𝑉𝑜
2

𝑉𝑜
2

𝑉𝑜
2

𝑉𝑜

2(1+𝐷)
 , (0 < D < 0.5) 

𝑉𝑜

1+2𝐷
 , ( D ≥ 0.5) 

Number of 

Transistors 
2 2 2 2 

Number of  

Diodes 
2 3 3 3 

Number of 

Inductors 
1 2 2 2 

Number of 

Capacitors 
2 4 3 4 

   Figure 3.5 (a) and Figure 3.5 (b) show a comparison of the voltage gain M versus duty cycle 

D, and the normalized voltage stress (Vs/Vo) versus D among the four converters, respectively. 

This comparison shows that the proposed converter has a higher voltage gain compared to the 

conventional TLB converter. The TL-QZS converter has a higher voltage gain compared to 

the proposed converter, but the main drawback for the TL-QZS converter is the limited 
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operational range (0.5 ≤ D < 0.75). The IPOS converter in [177] has the highest voltage gain, 

however, the proposed converter has the least voltage stress on the semiconductor devices, 

which means that it can be built using semiconductor devices with lower rated voltage, leading 

to higher efficiency, less cooling system requirement, hence, higher power density.  

   From equation (26), the stress voltage in the proposed converter depends on both VO and D, 

and the stress voltage swings between 50% of VO and 33.33% of VO.  

(a) (b) 

Figure 3.5: Comparison between the proposed converter and other step-up converters. (a) 

Gain vs. duty cycle. (b) Voltage stress vs. duty cycle. 

3.3 Component Parameters Design 

3.3.1 Selection of The Semiconductor Devices 

    From equations (15), (21), and (26) the voltage stress across the semiconductor devices 

depends on both the output voltage and the value of D, as depicted in Fig. 7(b). The peak 

current flowing through Q1, and Q2 when the proposed converter is operating at D < 0.5 and 

D > 0.5 is the sum of the input and output currents. The peak current flowing through D1, and 

D2 when the proposed converter is operating at D < 0.5 and D > 0.5 is described by (75). 

Equations (43) and (65) show the peak instantaneous current that flows through D3. 
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Id1_peak = Id2_peak = {
𝐼𝐿1 + 𝐼𝐿2        𝐷 <  0.5 

𝐼𝐿1 − 𝐼𝐿2
2𝐷−1 

2(1−𝐷)
 𝐷 ≥  0.5 

(75) 

With the growing advancements in the area of wide bandgap (WBG) semiconductor 

devices, utilizing these devices in the proposed converter enhances the efficiency of the 

converter, leading to reduction in the cooling system requirement, which in the end yields 

high power density and high specific power. For diodes D1, D2, and D3, Silicon Carbide (SiC) 

schottky diodes can be utilized since they have zero reverse recovery charges (Qrr = 0), which 

alleviates the problem of the reverse recovery current that causes EMI problems. For Q1, and 

Q2, there are three major technologies available in the market for transistors, namely: SiC 

metal oxide field effect transistor (SiC MOSFET), Gallium Nitride (GaN) enhancement high 

electron mobility transistor (E-HEMT), and GaN cascode HEMT. The lateral GaN HEMT is 

based on the piezoelectric effect between a layer of GaN and a layer of Aluminum Gallium 

Nitride (AlGaN), which results in a 2-D electron gas (2-DEG) electron gas layer between the 

drain (D) and source (S) of the GaN HEMT, which reduces the on resistance of the device. 

The GaN E-HEMT has the lowest on resistance (Ron) and the lowest gate charge (QGD) 

compared to SiC MOSFETs, and GaN cascode HEMTs. The driving of GaN E-HEMTS is 

very challenging since they are very sensitive to the parasitics of the printed circuit board 

(PCB). The GaN cascode HEMT is composed of a high voltage depletion GaN die and a low 

voltage enhancement Silicon (Si) MOSFET, and it does not have the driving circuits’ 

problems as in the GaN E-HEMT as the GaN cascode HEMT is driven like a typical Si 

MOSFET. The GaN cascode HEMT has a slightly higher Ron and QGD compared to the GaN 

E-HEMT, thus, if the power electronics designer can afford the time to optimize the PCB to 

minimize the power-loop and the gate-to-source-loop parasitic inductances, the utilization of 

the GaN E-HEMT is recommended.  In Table 3.2, a peer-to-peer comparison between three 
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WBG transistors available in the market. This shows that if the converter is built using GaN 

E-HEMTs, it will have lower conduction and switching losses.

Table 3.2: COMPARISON BETWEEN WBG TRANSISTORS AVAILABLE IN THE 

MARKET 

SCT2120AF TPH3212PS GS66508T 

Manufacturer ROHM Transphorm 
GaN 

Systems 

Semiconductor 

Material 
SiC GaN GaN 

Transistor Technology MOSFET 
Cascode 

HEMT 

Enhancement 

HEMT 

ID Continuous 29 A 27 A 30 A 

Device Package TO220AB TO-220 GaNPX-4 

Switch Dimensions - 15X10 mm2 7X4.5 mm2 

Ron 120 mΩ 72 mΩ 55 mΩ 

QGD 17 nC 14 nC 1.8 nC 

Qrr 53 nC 90 nC 0 

Junction to Case 

Thermal Resistance 
0.86 °C/W 1.2 °C/W 0.5 °C/W 

Figure of Merit (QGD X 

Ron) 
2040 1008 99 

3.3.2 Design of The Inductors 

If the maximum allowed current ripples allowed for L1, and L2 are ∆ IL1 and ∆ IL2, 

respectively, both inductors can be designed as following: The inductances can be calculated 

in the charging state:  

L1 = 
∆T

∆𝐼𝐿1
 VL1 (76) 

L2 = 
∆T

∆𝐼𝐿2
 VL2 (77) 

Where ∆T is the charging time, which is T11 (when D > 0.5), and is T10 or T01 (when D < 0.5). 

The values of L1, and L2 can be determined using (78). 
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L1 or L2 = 

{
 

𝐷(0.5−𝐷)

∆𝐼𝐿 𝑓𝑠 (1−𝐷)
 𝑉𝑖𝑛  𝐷 < 0.5

(2𝐷−1)(𝐷−0.5)

∆𝐼𝐿 𝑓𝑠 (1−𝐷)
 𝑉𝑖𝑛  𝐷 > 0.5 (78) 

Where fs is the switching frequency, and ∆ IL can be ∆ IL1 or ∆ IL2. 

3.3.3 Design of Capacitors 

Assuming that the maximum allowed voltage ripples allowed for C1, C2, C3, and C4 are ∆ 

C1, ∆ C2, ∆ C3 and ∆ C4, respectively, the capacitances of these four capacitors can be 

calculated as following where ∆T can be the charging time or the discharging time. The 

following relationships define the correlation between the capacitors’ ripple voltages and their 

capacitances. 

{

𝐶1 =
∆𝑇

∆𝑉𝐶1
𝐼𝐶1

𝐶2 =
∆𝑇

∆𝑉𝐶2
𝐼𝐶2

𝐶3 =
∆𝑇

∆𝑉𝐶3
𝐼𝐶3

𝐶4 =
∆𝑇

∆𝑉𝐶4
𝐼𝐶4

(79) 

 C1 = 

{

𝐷 𝐼𝑜

∆𝑉𝐶1 𝑓𝑠 
 𝐷 < 0.5

(2𝐷−1) 𝐼𝑜

∆𝑉𝐶1 𝑓𝑠 
 𝐷 > 0.5

(80) 

C2 = 

{

𝐷 (𝐼𝐿1+𝐼𝑜)

∆𝑉𝐶2 𝑓𝑠 
 𝐷 < 0.5

(𝐼𝐿1 −
2𝐷−1

2(1−𝐷)
𝐼𝑜)(

1−𝐷

∆𝑉𝐶2 𝑓𝑠
)  𝐷 > 0.5

(81)
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C3 = 

{

𝐷 𝐼𝑜

∆𝑉𝐶3 𝑓𝑠 
 𝐷 < 0.5

 
(1−𝐷) 𝐼𝑜

∆𝑉𝐶3 𝑓𝑠 
 𝐷 > 0.5

(82) 

C4 = 

{

𝐷 𝐼𝑜

∆𝑉𝐶𝑜 𝑓𝑠 
 𝐷 < 0.5

 
(2𝐷−1) 𝐼𝑜

∆𝑉𝐶4 𝑓𝑠 
 𝐷 > 0.5

(83) 

3.4 Loss Analysis 

    The losses in the proposed converter can be divided into five major contributors, namely: 

conduction and switching losses of the transistors Q1, and Q2, losses of the diodes D1, D2, and 

D3, losses of the inductors (L1, and L2), and losses of the capacitors (C1, C2, C3, and C4). 

3.4.1 Conduction Loss of Transistors 

    Since the rms currents flowing through Q1, and Q2 are the same, as shown in equations (47), 

and (68), and assuming that both transistors have the same on resistance, Ron, hence, the total 

conduction loss of both Q1, and Q2 can be calculated by (84).   

Ptr_cond = 2 𝐼𝑄1_𝑟𝑚𝑠
2  Ron (84) 

3.4.2 Switching Loss of Transistors 

    In a typical transistor, there are four major contributors to the switching loss, namely: 1) 

The overlap of the transistor current and voltage at the instant of turning on and off, 2) Gate 

charge losses, and this power loss component is caused by the charge stored in the gate 

capacitance. 3) The loss caused by the parasitic capacitance of the transistor, this loss 

component is caused by the energy stored in COSS when the transistor is off, 4) The loss caused 

by the reverse recovery charge of the body diode of the transistor (since the experimental work 

was implemented with GaN E-HEMTs, which do not have a body diode and have zero reverse 
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recover charge, this loss component can be neglected). Equation (85) describes the total 

switching loss of the two transistors of the proposed converter, where fs is the switching 

frequency, tr, and tf are the rise and fall times of the transistor, QT is the gate charge, and VG 

is the gate driver voltage. The drain-to-source voltage of the E-HEMTs equals half VC3, thus, 

depicted as VC2.  

Ptr_sw = 2 fs (0.5 VC2 IQ1 (tr + tf) + 0.5 𝑉𝐶2
2  COSS + QT VG) (85) 

3.4.3 Diode’s Losses 

    Since the experimental setup is implemented using SiC schottky diodes, the reverse 

recovery switching loss of the diodes is neglected, however, the loss caused by the capacitive 

charge (QC) of the Schottky diodes is considered. The conduction loss of these diodes 

depends on the forward voltage and the rms currents flowing through the diodes. 

Equation (86) calculates the total losses of the three diodes of the proposed converter: 

Pd = 𝑉𝑓𝑑 (2 ID1_avg + ID3_avg) + QC VC2 fs (86) Where Vfd, and QC are the forward 

voltage, and the total capacitive charge of the SiC diode, respectively. 

3.4.4 Inductor’s Losses 

    The inductors have two main loss components, namely: the conduction loss, and the core 

loss. The conduction loss is caused by the dc current component flowing in the inductors’ 

windings, while the core loss is caused by the inductors’ ripple currents. The core loss equation 

should be provided by the core manufacturer. The inductors’ total conduction loss, PL_cond, 

can be calculated using (87), the inductors’ core loss, PL_core, can be calculated using (88), and 

the total losses in the inductors, PL_tot, using (89).  
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PL_cond = 𝐼𝐿1
2  RL1 +  𝐼𝐿2

2  RL2 (87) 

Where RL1 and RL2 are the series parasitic resistances of L1 and L2, respectively. 

PL_core = 
𝑓

𝑎

𝐵3
+

𝑏

𝐵2.3
+

𝑐

𝐵1.65

+ (df2B2) (88) 

   Equation (88) is provided by “Micrometals” (the manufacturer of the inductor cores used in 

the experimental prototype), where the equation’s parameters can be derived from the 

datasheet of each specific core size and dimensions: 

PL_tot = PL_core + PL_cond (89) 

3.4.5  Capacitor’s Losses 

   The losses of the capacitors in the proposed converter are calculated as the conduction loss 

of these capacitors caused by their equivalent series resistance, ESR. The power loss of the 

four capacitors of the proposed converter, PC is expressed by (90), where ESRC1, ESRC2, 

ESRC3, and ESRC4 are the equivalent series resistances of the four capacitors. 

PC = 𝐼𝐶1_𝑟𝑚𝑠
2 ESRC1 + 𝐼𝐶2_𝑟𝑚𝑠

2 ESRC2 + 𝐼𝐶3_𝑟𝑚𝑠
2 ESRC3 + 𝐼𝐶4_𝑟𝑚𝑠

2  ESRC4 (90) 

3.5 Experimental Results and Analysis 

     A scaled-down experimental prototype was built, as shown in Figure 3.6, in order to 

validate the proposed converter topology and its theoretical analysis. In this experimental 

work, the fuel cell is depicted by a dc-voltage source. The converter is controlled by a 

TMS320f28377s microcontroller, and the currents are sensed by a hall-effect current 

transducer ACS730KLCTR-40AB-T. The power circuit is constructed using GS66508T E-

HEMTs (rated voltage is 650 V, and rated current is 30 A), and C3D10065E SiC Schottky 

diodes (rated voltage is 650 V, and rated current is 32 A). The switching frequency, fs, is 100 

kHz, and the values of the two inductors L1, and L2 are 350µH and 250µH, respectively. The 
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capacitors C1, C2, C3, and C4 have the same value (capacitance = 80µF, and rated dc-voltage 

= 700 V). The load is represented by a 120 Ω resistance, RL.  

Figure 3.6: Experimental setup. 

Table 3.3: MAIN EXPERIMENTAL PARAMETERS OF THE PROPOSED CONVERTER 

Components and parameters Values 

Output power (Pout) 1.15 kW, 1.3 kW 

Input dc-voltage (Vin) 200 V, 100 V 

Switching frequency (fs) 100 kHz 

Inductor (L1) 350 µH 

Inductor (L2) 250 µH 

Capacitors (C1, C2, C3, C4) 80 µF, 700 V 

E-HEMTs (Q1, Q2)
GS66508T (from GaN 

Systems) 

Diodes (D1, D2, D3) C3D10065E (from Cree) 

Load (RL) 120 Ω 
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    The main experimental parameters of the proposed converter prototype are shown in table 

3.3.  

In this experimental work, two case studies are investigated: 

1) Case study I: Vin = 200 V, D = 0.3, RL = 120Ω.

2) Case study II: Vin = 100 V, D = 0.7, RL = 120Ω.

The experimental results of case study I are intended to verify the theoretical analysis of the

converter when D < 0.5, and are presented in Figure 3.7, while the experimental results of 

case study II are intended to verify the theoretical analysis of the converter when D > 0.5, and 

are presented in Figure 3.8. 

(Case Study I (D = 0.3, Vin = 200V, RL = 120 Ω)) 

    When D is less than 0.5, equations (18), (20), and (24) describe the four capacitors’ 

voltages, and hence, they can be calculated as following: VC1 = 85.7 V, VC2 = 142.9 V, VC3 = 

285.7 V, and Vo = 371.4 V. Figure 3.7(a) validates these findings. The two inductor currents, 

IL1, and IL2 are shown in Figure 3.7(b), the frequency of the ripple currents is 200 kHz, which 

is double the switching frequency. The currents flowing through the two inductors IL1, and IL2 

are close to 5.5 A, and 3 A, respectively, which comply with the theoretical equations (64), 

and (70). The voltage stresses across the E-HEMTs (Q1 and Q2), and the diodes (D1, D2, and 

D3), are shown in Figure 3.7(c), and Figure 3.7(d), respectively, where the voltage stresses 

swing between 0 V, and 140 V ( = VC2), which comply with equation (26). Figure 3.7(e), and 

Figure 3.7(f) show the currents flowing through the E-HEMTs, and the diodes, where the 

currents of (Q1, Q2, D1, and D2) swing between 0 A, and 9 A, which comply with equations 

(66), and (67). Also, Figure 3.7(e) shows ID3, where D3 conducts only when both Q1 and Q2 

are off, and the magnitude of ID3 during conduction is close to 7.5 A which complies with 
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equation (65). It is worth noting that the semiconductor devices should be selected with 

higher rated voltage and current to assure operating in the safe operation area (SOA) of these 

devices and account for the voltage spikes (caused by the parasitic inductance of the PCB), 

and current spikes (caused by the parasitic capacitance of the SiC Shottky diodes).      

(Case Study II (D = 0.7, Vin = 100V, RL = 120 Ω)) 

   From equations (11), (15), and (24), the voltage across the four capacitors can be 

calculated as following: VC1 = 233.33 V, VC2 = 166 V, VC3 = 333 V, and Vo = 400 V. These 

findings are verified by Figure 3.8(a). Figure 3.8(b) shows the currents flowing through the 

two inductors. IL1, and IL2 which have ripple currents with frequency equals double the 

switching frequency of the converter (the periodic time of the ripple currents = 5µS, and the 

periodic time of the switching = 10µS). From Figure 3.8(b), IL2 is close to 3.3 A, and IL1 is 

close to 13 A, which verify equations (40), and (42). Figure 3.8(c), and Figure 3.8(d) show 

the voltage stress across the E-HEMTs and the diodes (D1, D2, and D3), respectively, where 

the voltage stress swings between 0 V, and 166 V, namely: between 0 V, and half the 

voltage across C3, which verifies equation (26). The currents of the E-HEMTs (Q1, and Q2) 

are shown in Figure 3.8(e), each current swings between three levels, 0 A (the E-HEMT is 

off, and the other one is on), 11 A (the E-HEMT is on, and the other one is off), and 16 A 

(both of the E-HEMTs are on), which verify equations (37), (44) and (45).  

   Figure 3.8(e) and Figure 3.8(f) show the currents flowing through the diodes (D1, D2, and 

D3). From equations (45), and (46), diode D1 conducts only when S1S2 = {01}, while diode 

D2 conducts only when S1S2 = {10}, and the magnitude of the current flowing during 

conduction = IL1 – ((2D – 1) IL2 / (2D – 2)) = 11 A, which is verified by Figure 3.8(f).  
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(a) (b) (c) 

(d) (e) (f) 

Figure 3.7: Experimental results when Vin = 200 V, D = 0.3, RL = 120Ω, Pout = 1.15 kW. 

(a) (b) (c) 

(d) (e) (f) 

Figure 3.8: Experimental results when Vin = 100 V, D = 0.7, RL = 120Ω, Pout = 1.3 kW. 

Figure 3.8(e) shows that D3 conducts only when either of the E-HEMTs is off, and the 

current flowing during conduction is close to 6 A which verifies equation (43). Using 

equations (84)-(90) the losses of the proposed converter can be calculated for any value of Vin, 

D, and RL. The converter losses for case studies I and III are investigated and analyzed. Figure 
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3.9 shows the loss distributions for the proposed converter for both case of study I and case 

of study II. 

(a) 

(b) 

Figure 3.9: Calculated loss distributions for the experiment (a) When Vin = 200V, D = 

0.3, and RL = 120Ω. (b) When Vin = 100V, D = 0.7, and RL = 120Ω. 

 Figure 3.9(a) shows the loss distributions when D = 0.3, Vin = 200 V, and RL = 120 Ω, Pout 

= 1.15 kW. The total losses of the converter in this case of study equals 27.16 W, and the 

efficiency of the converter equals 97.6 %. The main contributor of losses in this case is 

the 

diodes (85.3% of total losses), because of their relatively high forward voltage (Vfd) = 1.8 V. 

The total losses of the E-HEMTs are 19 % of the total losses, and this is because of their 

low 

on resistance and zero reverse recovery charges. The losses of the inductors and 

capacitors 

account for 4.3 % and 2.8 % of the total losses of the proposed converter, respectively. 

   Figure 3.9(b) shows the loss distributions when D = 0.7, Vin = 100 V, and RL = 120 Ω, Pout 

= 1.333 kW. The total losses of the converter in this case of study equals 55.21 W, and 

the 
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efficiency of the converter equals 95.86 %. The main contributor of losses in this case is also 

the diodes (50.5% of total losses).   

    The total losses of the E-HEMTs are 38 % of the total losses. The losses of the inductors 

and capacitors account for 10 % and 1.37 % of the total losses of the proposed converter, 

respectively. 

Figure 3.10: Efficiency curves of the proposed converter (Vin = 100V, RL = 120Ω) (a) 

When D < 0.5. (b) When D ≥ 0.5. 

Figure 3.11: Calculated efficiency curves in the GOA (Vin = 100V, RL = 120Ω). 



75 

The efficiency curves of the proposed converter that depict the efficiency at different 

power levels are shown in Figure 3.9, and they were obtained from the experimental setup 

(Vin = 100 V, fs = 100 kHz, RL = 120 Ω). The efficiency is depicted by two curves, one for 

operation when D < 0.5, and the other one for operation when D ≥ 0.5. 

In the GOA, the same voltage gain (M) can be achieved by two different values of D, one 

of them is less than 0.5, and the other one is greater than 0.5. Figure 3.10 shows the 

calculated efficiency of the proposed converter in the GOA, when Vin = 100V, and RL = 

120Ω, one curve presents the efficiency versus M when D is less than 0.5, while the other 

curve shows the efficiency versus M when D is greater than 0.5. From Figure 3.11, it is 

obvious that if the desired M is in the GOA (2 < M < 3), the efficiency of the proposed 

converter is higher when D is selected to be higher than 0.5.  

3.6 Conclusion 

    A new three-level boost (TLB) converter was introduced and presented. It can be used as 

an interface between the fuel cells and the dc-link bus of the three-phase inverter in the EV 

powertrain. It has several advantages of continuous input current, extended voltage 

gain, lower voltage stress on the semiconductor devices, common ground between the 

input and output ports, and wide voltage gain range. The steady state analysis of the 

proposed converter under the continuous conduction mode (CCM) was investigated. The 

voltage gain, the voltage stress on the semiconductor devices, and the number of the 

semiconductor devices and passive components of the proposed converter were compared 

with other three-level step-up solutions, and the importance of the proposed converter was 

verified experimentally. The proposed converter was built using GaN E-HEMTs and 

SiC Shottky diodes, and the experimental results validated the theoretical analysis. 
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Chapter 4 A Single-Switch Transformerless DC-DC Converter with Universal 

Input Voltage for Fuel Cell Vehicles: Analysis and Design 

4.1     Introduction 

A new single-switch high step-up dc-dc converter is proposed in this chapter for fuel cell 

vehicles. The proposed topology utilizes a L2C3D2 network to obtain high voltage gain 

and reduce the voltage stress on the power switch. Additionally, the proposed converter 

has a universal input voltage in order to suit the soft output characteristics of the 

fuel cell. Comprehensive analyses of the steady-state operation in continuous conduction 

mode (CCM) and discontinuous conduction mode (DCM), and design considerations 

of the proposed converter are given. Finally, a 400 V/1.6 kW scaled-down prototype is 

developed to validate the effectiveness and feasibility of the proposed converter.    

4.2 Structure and Operating Principles of the Proposed Converter 

4.2.1 Configuration of the Proposed Converter 

    The topology of the proposed converter is shown in Figure 4.1 It is composed of one 

power switch (Q), three diodes (D1, D2, and D3), three inductors (L1, L2, and L3), five 

capacitors (C1, C2, C3, C4, and Co), and R represents a resistive load.  

    A conventional boost switching network is formed by (L1, Q, D1, and C3), and an L2C3D2 

network formed by (L2, L3, C1, C2, C4, D2, and D3) is integrated between the 

conventional boost switching network and the output capacitor Co. The L2C3D2 network 

enhances the voltage gain of the proposed converter and reduces the voltage stress on the 

power switch.     
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Figure 4.1: The schematic of the proposed converter. 

4.2.2 Switching States Analysis 

   According to the conduction states of the semiconductor devices, the operation of 

the proposed converter can be divided into three switching states, as shown in Table 4.1. In 

this analysis, the following abbreviations are used: Vin, Vo, VC1, VC2, VC3, VC4, VL1, VL2, VL3, 

IL1, IL2, IL3 and Io, to refer to the input voltage, the output voltage, the instantaneous voltages 

across L1, L2, and L3, the dc currents flowing through L1, L2, and L3, and the output 

current, respectively.  

Table 4.1: SWITCHING STATES OF THE SEMICONDUCTOR DEVICES 

Switching state Q D1 D2 D3

I (CCM & DCM) ON OFF OFF OFF 

II (CCM & DCM) OFF ON ON ON 

III (DCM) OFF OFF OFF OFF 

    Additionally, iC1_ch, iC1_dis, iC2_ch, iC2_dis, iC3_ch, iC3_dis, iC4_ch, iC4_dis, iCo_ch, and iCo_dis, refer to 

the charging and discharging currents of the five capacitors. For convenience of analysis, the 

following assumptions are made: 
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- The power switch and diodes are ideal.

- The equivalent series resistances of the inductors and capacitors equal zero.

- The capacitors and inductors are large enough, so, the small ripple principle can be

applied.

1) Switching State I:

This switching state is for CCM and DCM operations and it takes place when the gate

voltage Vgs of the power switch is high, and Q is turned on. In this switching state, the three 

diodes are reverse-biased, the three inductors are charging, C3 and C4 are discharging, C1 

and C2 are charging, and Co is discharging. Figure 4.3(a) shows the current flow paths 

for this switching state. By applying Kirchhof’s Voltage Law (KVL), and Kirchhof’s 

Current Law (KCL) on the equivalent circuit depicted in Figure 4.3(a), we can extract 

the following relationships:   

{

𝑉𝐿1 = 𝑉𝑖𝑛       
𝑉𝐿2 = 𝑉𝐶3 − 𝑉𝐶1       
𝑉𝐿3 = 𝑉𝐶3 + 𝑉𝐶4 − 𝑉𝐶2 − 𝑉𝐶1

(1) 

{

𝑖𝐶1_𝑐ℎ = 𝐼𝐿2 + 𝐼𝐿3  

𝑖𝐶2𝑐ℎ = 𝐼𝐿3
𝑖𝐶3_𝑑𝑖𝑠 = 𝐼𝐿2 + 𝐼𝐿3 

𝑖𝐶4_𝑑𝑖𝑠 = 𝐼𝐿3       

𝑖𝐶𝑜_𝑑𝑖𝑠 = 𝐼𝑜 

(2) 

2) Switching State II:

This switching state is for CCM and DCM operations and it takes place when Vgs is low,

and Q is turned off. . In this switching state, the three diodes are forward-biased, the three 

inductors are discharging, C3 and C4 are charging, C1 and C2 are discharging, and Co is 

charging.  
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    Figure 4.3(b) shows the current flow paths for this switching state. By applying KVL and 

KCL laws on the equivalent circuit depicted in Figure 4.3(b), we can extract the following 

relationships:  

{

𝑉𝐿1 = 𝑉𝑖𝑛 − 𝑉𝐶3       
𝑉𝐿2 = −𝑉𝐶1 = −𝑉𝐶4 
𝑉𝐿3 = −𝑉𝐶2       

(3) 

{

𝑖𝐶1_𝑑𝑖𝑠 = 𝑖𝐶2_𝑑𝑖𝑠 + 𝐼𝐿3 + 𝑖𝐶4_𝑐ℎ − 𝐼𝐿2 

𝑖𝐶3_𝑐ℎ = 𝐼𝐿1 − 𝑖𝐶1_𝑑𝑖𝑠 − 𝐼𝐿2 + 𝑖𝐶4_𝑐ℎ   

 𝑖𝐶𝑜_𝑐ℎ = 𝑖𝐶2_𝑑𝑖𝑠 + 𝐼𝐿3 − 𝐼𝑜 
(4) 

3) Switching State III:

This switching state is for DCM operation and it takes place when Vgs is low, Q is turned

off, and all the diodes are reverse-biased. 

(a) (b) 

Figure 4.2: Key waveforms of the proposed converter. (a) CCM operation. (b) DCM operation. 
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Since all the semiconductor devices do not conduct in this switching state, a positive constant 

current IL1_min flows through L1, and negative constant currents IL2_min, IL3_min flow through L2 

and L3, as shown in Figure 4.3(c). The summation of the inductor currents is zero, and the 

voltages across the inductors in this switching state are null, as depicted in (5) and (6).     

𝐼𝐿1_𝑚𝑖𝑛 + 𝐼𝐿2_𝑚𝑖𝑛 + 𝐼𝐿3_𝑚𝑖𝑛 = 0 (5) 

{
𝑉𝐿1 = 0 
𝑉𝐿2 = 0 
𝑉𝐿3 = 0 

(6) 

(a) (b) (c) 

Figure 4.3: Equivalent circuits of the proposed converter. (a) Switching state I. (b) Switching 

state II. (c) Switching state III. 

4.3 Steady-State Analysis of the Proposed Converter 

4.3.1 CCM Operation 

   The key waveforms for this operation is presented in Figure 4.2(a). In this subsection, the 

voltage gain, the voltage stresses, the current stresses, and the efficiency analysis of the 

proposed converter operating in CCM are extracted. The operation in CCM is composed of 

switching state I (period = dT) and switching state II (period = (1-d) T), where d and T are the 

duty cycle and the periodic switching time, respectively. 
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1) Voltage Gain:

By applying the voltage second principle on the inductors L1, L2, and L3 and using equations

(1) and (3), we can obtain (7)-(9):

𝑉𝐶1 = 𝑉𝐶2 = 𝑉𝐶4 =
𝑑

1 − 𝑑
 𝑉𝑖𝑛 (7) 

𝑉𝐶3 =
1

1 − 𝑑
 𝑉𝑖𝑛 (8) 

𝑉𝑜 =
1 + 2𝑑

1 − 𝑑
 𝑉𝑖𝑛 (9) 

Thus, the voltage gain MCCM can be calculated by (10): 

𝑀𝐶𝐶𝑀 =
𝑉𝑜
𝑉𝑖𝑛

=
1 + 2𝑑

1 − 𝑑
(10) 

2) Analysis of Voltage Stress

The stress across the five capacitors is delivered by (7)-(9). As shown in Figure 4.2(a), the

voltage across the semiconductor devices swings between 0V and VC3, hence the voltage stress 

across the power switch VQ and the voltage stress across the diodes VD can be obtained by 

(11): 

𝑉𝑄 = VD = VC3 = 
1

1−𝑑
 𝑉𝑖𝑛 (11) 

 Additionally, using (10), and (11) the voltage stress across the power switch and diodes can 

be represented as a function of MCCM, as in (12):     

𝑉𝑄 = 𝑉𝐷 = 
2+𝑀𝐶𝐶𝑀

3𝑀𝐶𝐶𝑀
𝑉𝑜 (12) 

3) Analysis of Current Stress

Assuming the input power equals the output power of the converter (i.e. Vin  IL1 = Vo  Io),

hence, the currents IL2, IL3, and IL1 can be calculated as in (13) and (14): 
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IL2 = IL3 = 𝐼𝑜 (13) 

IL1 = 
1+2𝑑

1−𝑑
 𝐼𝑜 = 𝑀𝐶𝐶𝑀 𝐼𝑜 (14) 

    By applying the charge-second balance principle on the five capacitors to calculate the 

charging and discharging currents of them, we can get (15)-(19): 

{

𝑖𝐶1_𝑐ℎ = 2𝐼𝑜  

𝑖𝐶1_𝑑𝑖𝑠 = 2𝐼𝑜  
𝑑

(1 − 𝑑)
= 2𝐼𝑜 (

𝑀𝐶𝐶𝑀 − 1

3
)

(15) 

{

𝑖𝐶2_𝑐ℎ = 𝐼𝑜 

𝑖𝐶2_𝑑𝑖𝑠 = 𝐼𝑜  
𝑑

(1 − 𝑑)
= 𝐼𝑜 (

𝑀𝐶𝐶𝑀 − 1

3
)

(16) 

{
𝑖𝐶3_𝑐ℎ = 2𝐼𝑜  

𝑑

(1 − 𝑑)
= 2𝐼𝑜 (

𝑀𝐶𝐶𝑀 − 1

3
)

𝑖𝐶3_𝑑𝑖𝑠 = 2𝐼𝑜 

(17) 

{
𝑖𝐶4_𝑐ℎ = 𝐼𝑜  

𝑑

(1 − 𝑑)
= 𝐼𝑜 (

𝑀𝐶𝐶𝑀 − 1

3
)

𝑖𝐶4_𝑑𝑖𝑠 = 𝐼𝑜 

(18) 

{
𝑖𝐶𝑜_𝑐ℎ = 𝐼𝑜

𝑑

(1 − 𝑑)
= 𝐼𝑜 (

𝑀𝐶𝐶𝑀 − 1

3
)

𝑖𝐶𝑜_𝑑𝑖𝑠 = 𝐼𝑜       

(19) 

   By means of (13)-(19), Figure 4.3(a), and Figure 4.3(b), the currents flowing through Q, D1, 

D2, and D3 can be described as following: 

𝑖𝑄 = 𝐼𝐿1 + 𝐼𝐿2 + 𝐼𝐿3 =
3

1 − 𝑑
 𝐼𝑜 (20) 

𝑖𝐷1 = 𝐼𝐿1 − 𝑖𝐶1_𝑑𝑖𝑠 =
1

1 − 𝑑
 𝐼𝑜 (21) 

𝑖𝐷2 = 𝐼𝐿2 + 𝑖𝐶1_𝑑𝑖𝑠 − 𝐼𝐶2_𝑑𝑖𝑠 =
1

1 − 𝑑
 𝐼𝑜 (22)
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𝑖𝐷3 = 𝑖𝐶2_𝑑𝑖𝑠 + 𝐼𝑜 =
1

1 − 𝑑
 𝐼𝑜 (23) 

   Using (10), equations (20)-(23) can be depicted as functions of MCCM, as following: 

𝑖𝑄 = (𝑀𝐶𝐶𝑀 + 2) 𝐼𝑜 (24) 

𝑖𝐷1 = 𝑖𝐷2 = 𝑖𝐷3 = (
𝑀𝐶𝐶𝑀 + 2

3
) 𝐼𝑜 (25) 

   The root-mean-square (rms) values of the currents flowing through the power switch, 

diodes, and capacitors are important in the efficiency analysis, and they can be extracted as 

following:  

𝑖𝑄_𝑟𝑚𝑠 = √(𝑀𝐶𝐶𝑀 + 2)(𝑀𝐶𝐶𝑀 − 1) 𝐼𝑜 (26) 

𝑖𝐷1_𝑟𝑚𝑠 = 𝑖𝐷2_𝑟𝑚𝑠 = 𝑖𝐷3_𝑟𝑚𝑠 = √
𝑀𝐶𝐶𝑀 + 2

3
 𝐼𝑜 (27) 

𝑖𝐶1_𝑟𝑚𝑠 = 𝑖𝐶3_𝑟𝑚𝑠 = 2√
𝑀𝐶𝐶𝑀 − 1

3
 𝐼𝑜 (28) 

𝑖𝐶2_𝑟𝑚𝑠 = 𝑖𝐶4_𝑟𝑚𝑠 = 𝑖𝐶𝑜_𝑟𝑚𝑠 = √
𝑀𝐶𝐶𝑀 − 1

3
 𝐼𝑜 (29) 

4) Effect of Parasitic Elements on the Voltage Gain

In order to evaluate the effect of the parasitic elements of the passive and active components

of the proposed converter on its voltage gain, some of these parasitic parameters were modeled 

in the proposed converter circuit, shown in Figure 4.4. In the non-ideal model of the converter, 

the following parameters are included: the resistances of the windings of inductors (rL1 = rL2 

= rL), the equivalent-series-resistances of capacitors (rC1 = rC2 = rC3 = rC4 = rCo= rC), the on-
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resistance of the power switch (rS), the forward voltages of the diodes (VF1 = VF2 = VF3 = VF), 

and their respective on-resistances (rD1 = rD2 = rD3 = rD4 = rD).  

Figure 4.4: Equivalent circuit of the proposed converter with the parasitic elements. 

    After accounting for these parasitic parameters, the voltage gain of the proposed converter 

in its non-ideal model (𝑀 �̀�𝐶𝑀) is depicted by equation (30). Figure 4.5 shows the graphical 

comparison between the voltage gain curves using the ideal and non-ideal models of the 

proposed converter, where the parasitic and operating parameters are considered   as 

following: Vin = 50V, R = 100Ω, rL = 30mΩ, rC = 15mΩ, rS = 20mΩ, VF = 1V, and rD = 

70mΩ. It shows that the voltage gain of the non-ideal model of the converter is close to that 

of the ideal model when d is between 0 and 0.8 (where 𝑀 �̀�𝐶𝑀 ≈ 13) which indicates the high 

step-up capability of the proposed converter. 

𝑀𝐶𝐶𝑀
̀ =

𝑅(1 − 𝑑)(𝑉𝑖𝑛 − 3𝑉𝐹 + 3𝑑 𝑉𝐹 + 2𝑑 𝑉𝑖𝑛)

𝑉𝑖𝑛[𝑅 + 3𝑟𝐷 + 3𝑟𝐿 + 𝑑(6𝑟𝐶 − 2𝑅 − 3𝑟𝐷 + 3𝑟𝑆 + 𝑑(𝑅 − 6𝑟𝐶 + 6𝑟𝐿 − 12𝑟𝑆))]
(30)
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Figure 4.5: Voltage gain curves of the proposed converter. 

4.3.2 DCM Operation 

   The key waveforms for this operation is shown in Figure 4.2(b). In this subsection, the 

voltage gain in DCM, boundary operating condition between CCM and DCM, and current 

stresses in DCM are given.  

   The operation in DCM is composed of Switching State I (period = dT), Switching State II 

(period = dxT), and Switching State III (period = 1 − (𝑑 + 𝑑𝑥)𝑇).

5) Voltage Gain

From (7)-(9), the capacitors’ voltages can be rewritten as:

𝑉𝑜 = 𝑉𝐶3 + 2𝑉𝐶2 (31) 

𝑉𝐶3 = 𝑉𝑖𝑛 + 𝑉𝐶2 =
𝑉𝑜 + 2𝑉𝑖𝑛

3
(32) 

𝑉𝐶1 = 𝑉𝐶2 = 𝑉𝐶4 =
𝑉𝑜 − 𝑉𝑖𝑛

3
(33) 

   By means of (1), (3), (6), (31)-(33), and applying the voltage second principle on L1, we get 

the following:  
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1

𝑇
(∫ 𝑉𝑖𝑛𝑑𝑡

𝑑𝑇

0

− ∫
𝑉𝑜 − 𝑉𝑖𝑛

3
 𝑑𝑡

𝑑𝑥𝑇

0

) = 0 (34) 

   To solve (34) in order to extract the voltage gain in DCM, 𝑑𝑥 should be determined. 

   As shown in Figure 4.6, and using equations (20)-(23), iQ equals the summation of the three 

inductors’ currents, and the current flowing in any of the three diodes equals one third iQ. 

Thus, the peak diode current 𝑖𝐷(𝑃𝑒𝑎𝑘) can be calculated as following: 

𝑖𝐷(𝑃𝑒𝑎𝑘) =
1

3
(∆𝑖𝐿1 + ∆𝑖𝐿2 + ∆𝑖𝐿3) (35) 

The three inductors’ currents in DCM can be calculated as: 

{

∆𝑖𝐿1 =
𝑑𝑉𝑖𝑛
𝑓𝑠𝐿1

∆𝑖𝐿2 =
𝑑𝑉𝑖𝑛
𝑓𝑠𝐿2

∆𝑖𝐿3 =
𝑑𝑉𝑖𝑛
𝑓𝑠𝐿3

(36) 

By substituting (36) into (35), we get (37): 

𝑖𝐷(𝑃𝑒𝑎𝑘) =
𝑑𝑉𝑖𝑛
3𝑓𝑠𝐿𝑒𝑞

(37) 

Where, 

𝐿𝑒𝑞 = (
1

𝐿1
+
1

𝐿2
+
1

𝐿3
)
−1

(38) 

The average current flowing through any of the three diodes equals Io, hence, we get the 

following: 

1

2
𝑑𝑥𝑖𝐷(𝑃𝑒𝑎𝑘) =

𝑉𝑜
𝑅

(39) 

 By substituting (37) into (39), we can get 𝑑𝑥 as following: 
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𝑑𝑥 =
6𝑉𝑜
𝑑𝑉𝑖𝑛

Ʈ (40) 

Where Ʈ is the normalized inductor time constant, defined as: 

Ʈ = 
𝐿𝑒𝑞 𝑓𝑠

𝑅
(41) 

By substituting (40) into (34), we get the following: 

𝑉𝑖𝑛 + (𝑉𝑖𝑛 − 𝑉𝑜)
𝑉𝑜
𝑑𝑉𝑖𝑛

Ʈ = 0 (42) 

By solving this quadratic equation (42), the voltage gain in DCM 𝑀𝐷𝐶𝑀 can be extracted as 

in (43): 

𝑀𝐷𝐶𝑀 =
1

2
(1 + √1 +

2𝑑2

Ʈ
) (43) 

6) Boundary Operating Conduction

In boundary conduction mode (BCM) operation, MCCM equals MDCM, and accordingly, from

(10) and (43), the boundary normalized inductor time constant Ʈ𝑏 can be obtained, as in (44).

Figure 4.6: Power switch and diodes currents in DCM. 

Ʈ𝑏 =
𝑑(1 − 𝑑)

12𝑑 + 6
(44) 

   The relationship between Ʈ𝑏 and d is presented in Figure 4.7. If Ʈ >  Ʈ𝑏, then the proposed 

converter is working in CCM. 
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7) Voltage Stress Analysis

    As shown in Figure 4.2(b), the voltage stress across Q during Switching State I 𝑉𝑄(𝐼) is 

null, while during Switching State II 𝑉𝑄(𝐼𝐼) and Switching State III 𝑉𝑄(𝐼𝐼𝐼) are expressed in 

(45): 

{
𝑉𝑄(𝐼𝐼) = 𝑉𝐶3 =

𝑀𝐷𝐶𝑀 + 2

3
𝑉𝑖𝑛

𝑉𝑄(𝐼𝐼𝐼) = 𝑉𝑖𝑛 
(45) 

   The voltage stress across any of the three diodes during Switching State II 𝑉𝐷(𝐼𝐼) is null, 

while during Switching State I 𝑉𝐷(𝐼) and Switching State III 𝑉𝐷(𝐼𝐼𝐼) are shown in (46): 

{
𝑉𝐷(𝐼) = 𝑉𝐶3 =

𝑀𝐷𝐶𝑀 + 2

3
𝑉𝑖𝑛 

𝑉𝐷(𝐼𝐼𝐼) = 𝑉𝐶2 =
𝑀𝐷𝐶𝑀 − 1

3
𝑉𝑖𝑛 

(46) 

8) Current Stress Analysis

    Figure 4.6 depict the currents flowing through the semiconductor devices of the proposed 

converter in DCM. The peak currents flowing through Q, and the diodes, iQ(Peak), and iD(Peak), 

respectively, are expressed as shown in (47): 

{

𝑖𝑄(𝑃𝑒𝑎𝑘) = ∆𝑖𝐿1 + ∆𝑖𝐿2 + ∆𝑖𝐿3 = 
𝑑𝑉𝑖𝑛
𝑓𝑠𝐿𝑒𝑞

𝑖𝐷(𝑃𝑒𝑎𝑘) =
1

3
(∆𝑖𝐿1 + ∆𝑖𝐿2 + ∆𝑖𝐿3)  =  

𝑑𝑉𝑖𝑛
3𝑓𝑠𝐿𝑒𝑞

(47) 

The rms currents of the power switch and diodes are expressed in (48): 

{

𝑖𝑄(𝑟𝑚𝑠) = 
𝑑𝑉𝑖𝑛
𝑓𝑠𝐿𝑒𝑞

√
𝑑

3

𝑖𝐷(𝑟𝑚𝑠) =
𝑑𝑉𝑖𝑛
3𝑓𝑠𝐿𝑒𝑞

√
𝑑𝑥
3

(48)
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Figure 4.7: Boundary condition of the proposed converter. 

4.4 Comparative Study with Other Step-Up Converters 

   In this section, the proposed converter is compared with other non-isolated step-up 

converters. The static voltage gain, the normalized voltage stress across the semiconductor 

devices, components counts, and the voltage gain range of these converters are summarized 

in Table 4.2. Figure4.8 shows MCCM versus d for the compared converters, while Figure 4.9 

and Figure 4.10 show the maximum normalized voltage stress across the power switches and 

diodes, respectively, among the compared converters.  

      In order to properly compare the added weight and size of the capacitors and inductors 

used in each topology of the compared converters, the energy stored in inductors (EL) and the 

energy stored in capacitors (EC) are calculated for each converter in Table 4.2 at the same 

output power, switching frequency, output voltage, voltage gain, and specific percentage of 

ripple current in inductors and ripple voltage in capacitors.  
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(a) (b) 

Figure 4.8: Comparison of voltage gain M_CCM versus duty cycle d. (a) Between the 

proposed converter, conventional boost converter, converters in [179], [180], and [178]. (b) 

Between the proposed converter, converters in [181], [182], [33], and [110]. 

Figure 4.9: Normalized maximum voltage stress across the power switches in the compared 

converters 
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Figure 4.10: Normalized maximum voltage stress across the diodes in the compared converters 

Figure 4.11: Stored energy in the inductors of the compared converters at different voltage 

gain values. 

Figure 4.12: Stored energy in the capacitors of the compared converters at different voltage 

gains. 
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Figure 4.13: Semiconductor utilization factor of the compared converters at different voltage 

gain values.  

    The stored energy in the inductors of a converter can be calculated by (49), where dM is the 

value of duty cycle at the specific voltage gain, ∆𝐿% is the percentage of ripple current, VLi is 

the voltage across inductor Li when the main switch is on, and ILi is the dc current flowing in 

inductor Li. 

𝐸𝐿 =∑
𝐿𝑖  𝐼𝐿𝑖

2

2
=∑

𝐼𝐿𝑖
2
(
𝑑𝑀 𝑉𝐿𝑖
 ∆𝐿%  𝑓𝑠

) (49) 

     The stored energy in the capacitors of a converter can be calculated by (50), where ∆𝐶% is 

the percentage of ripple voltage, iCi is the current of capacitor Ci when the main switch is on, 

and VCi is the dc voltage of capacitor Ci. 

𝐸𝐶 =∑
𝐶𝑖  𝑉𝐶𝑖

2

2
=∑

𝑉𝐶𝑖
2
(
𝑑𝑀 𝑖𝐶𝑖
 ∆𝐶%  𝑓𝑠

) (50) 

     In order to compare the estimated cost of the semiconductor devices used in the converters 

in Table 4.2, the utilization factor of these semiconductor devices (US) is used, and it is defined 

as given in (51): 
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𝑈𝑆 =
𝑃𝑜

∑𝑉𝐾𝑖 𝐼𝐾𝑖 (𝑟𝑚𝑠)
(51) 

Table 4.2: COMPARISON BETWEEN THE PROPOSED AND OTHER STEP-UP DC-DC 

CONVERTERS 

Topology 

Voltage gain 

(M) 
VQ / Vo VD / Vo 

Semiconductor  

devices 

Inductors & 

Capacitors 

Input 

current  

Common 

ground 

Voltage gain 

range 

d : 0 →0.9 

CBC  
1

1 − 𝑑
1 1 

1 Switches 

1 Diodes 

1 Inductor 

1 Capacitors 

Continuous No 1→10 

In [178] 
1

𝑑(1 − 𝑑)
1

2
+√

1

4
−

1

𝑀𝐶𝐶𝑀
 , 1 

1

2
+√

1

4
−

1

𝑀𝐶𝐶𝑀
 , 

3

2
+√

1

4
−

1

𝑀𝐶𝐶𝑀

2 Switches 

3 Diodes 

2 Inductors 

2 Capacitors 
Continuous No -- →11 

In [179] 
1 + 𝑑

1 − 𝑑

1+𝑀𝐶𝐶𝑀

2𝑀𝐶𝐶𝑀

1+𝑀𝐶𝐶𝑀

2𝑀𝐶𝐶𝑀

1 Switch 

3 Diodes 

2 Inductors 

3 Capacitors 

Pulsating Yes 1→19 

In [180] 
1

(1 − 𝑑)2
1 

1, √1−
𝑀𝐶𝐶𝑀−1

𝑀𝐶𝐶𝑀
,  

1-√1−
𝑀𝐶𝐶𝑀−1

𝑀𝐶𝐶𝑀

1 Switch 

3 Diodes 

2 Inductors 

2 Capacitors 

Pulsating Yes 1→100 

In [181] 
2

1 − 𝑑

1

2

1

2
 , 1 

2 Switches 

2 Diodes 

2 Inductors 

2 Capacitors 
Pulsating No 2→20 

In [182] 
2

1 − 𝑑

1

2

1

2

1 Switch 

3 Diodes 

1 Inductor 

3 Capacitors 
Continuous Yes 2→20 

In [183] 
3 − 𝑑

1 − 𝑑

𝑀𝐶𝐶𝑀 − 1

2𝑀𝐶𝐶𝑀

𝑀𝐶𝐶𝑀 − 1

2𝑀𝐶𝐶𝑀

1 Switch 

4 Diodes 

1 Inductor 

4 Capacitors 

Pulsating No 3→21 

In [110] 
1 + 3𝑑

1 − 𝑑

3 +𝑀𝐶𝐶𝑀

4𝑀𝐶𝐶𝑀

3 +𝑀𝐶𝐶𝑀

2𝑀𝐶𝐶𝑀

2 Switches 

2 Diodes 

3 Inductors 

3 Capacitors 

Pulsating No 1→37 

Proposed 
1 + 2𝑑

1 − 𝑑

2 +𝑀𝐶𝐶𝑀

3𝑀𝐶𝐶𝑀

2 +𝑀𝐶𝐶𝑀

3𝑀𝐶𝐶𝑀

1 Switch 

3 Diodes 

3 Inductors 

5 Capacitors 

Continuous Yes 1→28 

    Where VKi is the voltage stress on a semiconductor device Ki, and IKi (rms) is the rms value 

of the current stress on semiconductor device Ki. Figure 4.11, Figure 4.12, and Figure 4.13 

show the energy stored in inductors and capacitors and the semiconductor utilization factor 



94 

for the compared converters in Table 4.2, respectively, when Vo = 400V, Po = 1.6kW, fs = 

100kHz,  ∆𝐿% = 25%,  ∆𝐶% = 10% (for the output capacitors) and 20% (for the middle 

capacitors), and MCCM = 4 → 8. 

     Comparing the proposed converter with the conventional boost converter (CBC), on one 

hand, the CBC has lower number of diodes and passive components, on the other hand, the 

proposed converter has higher voltage gain, lower voltage stress on the 

semiconductor devices, and wider voltage gain range. The converter in [178], is composed 

of less number of inductors and capacitors, however, it utilizes an extra power switch 

compared to the proposed converter, does not have a common ground and has a high voltage 

stress on the output diode. Additionally, the converter in [178] has a narrower voltage gain 

range and its voltage gain is less compared to the proposed converter for d > 0.5. In [179], 

the voltage lift-based converter has the same number of semiconductor devices, and utilizes 

less capacitors and less inductors compared to the proposed converter. Nevertheless, the 

converter in [179] has high input current ripple, narrower voltage gain range, less voltage 

gain, and higher voltage stress on its power switch and diodes compared to the proposed 

converter. The quadratic converter presented in [180], on one hand has higher voltage 

gain and less number of inductors and capacitors compared to the proposed converter, and 

on the other hand it has high input current ripple and higher voltage stress on the power 

switch. In [181], converter II, on one side has double the voltage gain of the conventional 

boost converter and utilizes less number of diodes, inductors, and capacitors compared to 

the proposed converter, but on the other side, it utilizes an extra power switch compared to 

the proposed converter, has a pulsating input current, does not have a common ground, and 

the voltage stress on its output diode is high. The voltage gain of the proposed 

converter is higher for d > 0.5, and the voltage stress on the 
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semiconductor devices of the proposed converter is less for d > 0.5, compared to the 

converter II in [181]. The boost converter that utilizes diode-capacitor voltage multipliers in 

[182] has less inductors compared to the proposed converter, however, to increase its voltage 

gain, the number of diodes of the voltage multipliers duplicates, leading to increased 

conduction losses and decreased efficiency. Additionally, as the number of voltage 

multipliers increases, the minimum boosting gain increases, rendering it not sufficient 

for applications with wide voltage fluctuations such as fuel cells. Comparing the hybrid 

boost converter in [183] with the proposed converter, the number of inductors and capacitors 

in the converter in [183] is less, while it utilizes an extra diode. The input current ripple of 

the converter in [183] is high which can affect the life time of the fuel cell. Additionally, the 

proposed converter has higher voltage gain for d > 0.65, and less voltage stress on the 

semiconductor devices for MCCM > 7 compared to the converter in [183]. The converter 

presented in [110] has less capacitors, less diodes, and an extra power switch compared to 

the proposed converter. Also, it has a wider voltage gain range, and less voltage stress on 

the semiconductor devices. The main drawbacks of this converter are the higher number 

of power switches, the pulsating input current and the lack of common ground between its 

input and output ports, as the potential difference between the two grounds is high 

frequency PWM voltage which can increase the EMI and requires more maintenance.    

    Based on Figure 4.11, the energy stored in the inductors of the proposed converter is the 

same as the CBC, while it is lower than that of the converters in [178]-[180], and is higher 

than that of the converters in [181], [110], [183], and [182]. This means that the estimated 

weight and size of inductors for the proposed converter is close to that of the CBC while it is 

lower than that of the converters in [178]-[180], and is higher than that of the converters in 
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[181]-[183], and [110]. Similarly, based on Figure 4.12, the energy stored in the capacitors 

of the proposed converter is lower than that of the converters in [179], [181], [183] and 

[178] (when MCCM < 6.5), while it is higher than that of the CBC and the converters in [180], 

[182], and [110]. This means that the estimated weight and size of capacitors for the 

proposed converter is lower than that of the converters in [179], [181], [183], and [178] 

(when MCCM < 6.5), and is higher than that of the converters in [180], [182], and [110]. 

Figure 4.13 shows that the proposed converter has the highest utilization factor compared to 

all the converters in Table 4.2, which means that the estimated cost of the semiconductor 

devices of the proposed converter is lower than that of the other compared converters. 

   From the above comparisons, it is evident that the proposed converter integrates many 

advantages such as: high conversion ratio, wide voltage gain range, low voltage stress on the 

semiconductor devices, common ground between its input and output ports, low input 

current ripple, and utilizes a single power switch. This makes it an excellent candidate for 

fuel cell vehicles application. 

4.5 Design Considerations and Components Selection 

4.5.1 Semiconductor Devices Selection 

    By knowing the maximum value of MCCM (max) needed by the converter, and the maximum 

output load current, the peak currents flowing through the power switch and diodes can be 

calculated using (24) and (25), respectively. From (12), the maximum voltage stress on the 

power switch and diodes can be calculated when MCCM (max) is known. These maximum 

voltage and current stresses should be within the safe operating area (SOA) of the selected 

power switch and diodes. 
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4.5.2 Inductors Design 

  By knowing the maximum output load current and by means of (13) and (14), the currents 

flowing through the three inductors can be calculated. Assuming the maximum ripple currents 

∆𝑖𝐿1, ∆𝑖𝐿2, and ∆𝑖𝐿3 are known. The minimum required inductances can be determined using 

(52). 

{

𝐿1 ≥
𝑑𝑉𝑖𝑛 

𝑓𝑠∆𝑖𝐿1

𝐿2 ≥
𝑑𝑉𝑖𝑛 

𝑓𝑠∆𝑖𝐿2

𝐿3 ≥
𝑑𝑉𝑖𝑛 

𝑓𝑠∆𝑖𝐿3

(52) 

4.5.3 Capacitors Design 

 By means of (7)-(9), the voltages across the five capacitors can be calculated. Assuming 

the maximum ripple voltages ∆𝑉𝐶1, ∆𝑉𝐶2, ∆𝑉𝐶3, ∆𝑉𝐶4 and ∆𝑉𝐶𝑜 are known. The minimum 

required capacitances can be determined using (53). 

{

𝐶1 ≥
2𝐼𝑜𝑑 

𝑓𝑠∆𝑉𝐶1

𝐶2 ≥
𝐼𝑜𝑑 

𝑓𝑠∆𝑉𝐶2

𝐶3 ≥
2𝐼𝑜𝑑 

𝑓𝑠∆𝑉𝐶3

, 

{

𝐶4 ≥
𝐼𝑜𝑑 

𝑓𝑠∆𝑉𝐶4

𝐶𝑜 ≥
𝐼𝑜𝑑 

𝑓𝑠∆𝑉𝐶𝑜

(53) 

4.6 Experimental Results and Analysis 

In order to validate the theoretical analysis of the proposed converter, a scaled-down 1.6kW 

laboratory prototype was built, presented in Figure 4.14. The input voltage to the converter is 

depicted by an adjustable dc power supply, and the converter is controlled by a microcontroller 

TMS320f28377s. 
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Figure 4.14: Experimental prototype. 

Table 4.3: EXPERIMENT PARAMETERS 

Parameters and 

Components 
Values 

Rated power Po 1.6 kW 

Output voltage Vo 400V 

Power MOSFET Q IXFP72N30X3M 

Power Diodes D1, D2, D3 MBRF40250TG 

Inductors L1, L2, L3 250 µH 

Capacitors C1, C2 40 µF 

Capacitors C3, C4 220 µF 

Capacitor Co 240 µF 

Switching frequency fs 100 KHz 

Load R 100Ω 

Microcontroller TMS320f28377s 

 The power circuit is built using (IXFP72N30X3M) power MOSFET and 

(MBRF40250TG) Schottky diodes. The values of inductors and capacitors used in the 

developed prototype are as following: L1 = L2 = L3 = 250 µH, C1 = C2 = 40 µF, C3 = C4 = 220 
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µF, and Co = 240 µF. In addition, the load R = 100Ω, and switching frequency fs = 100 

KHz. The case study investigated in this section is Vin = 50V, and the duty cycle d = 0.7. 

According to equations (7)-(9), the voltages across the five capacitors can be 

calculated as following: VC1 = VC2 = VC4 ≈ 116.7V, VC3 ≈ 166.7V, and Vo ≈ 400V, which 

closely agree with the experimental results in Figure 4.15(c) and Figure 4.15(d).  

The output current can be theoretically calculated as: Io =
𝑉𝑜⁄𝑅 = 4A, which agrees with 

the experimental result shown in Figure 4.15(d).   Accordingly, the currents of the three 

inductors can be calculated using (13) and (14), as following: IL2 = IL3 = Io = 4A, and IL1 = 

32A, which closely agree with the experimental results shown in Figure 4.15(a) and Figure 

4.15(b). Additionally, the ripple currents of the three inductors can be calculated using (52), 

as following: ∆𝑖𝐿1 = ∆𝑖𝐿2 = ∆𝑖𝐿3 = 1.4A, which comply with the experimental results 

presented in Figure 4.15(a) and Figure 4.15(b). 

The voltage stresses across the power switch and the three diodes can be calculated 

using equation (11), as following: VQ = VD1 = VD2 = VD3 ≈ 166.7V, which closely comply 

with the experimental results given in Figure 4.15(a) and Figure 4.15(e). The current 

stresses on the power switch and the three diodes can be derived via equations (20) and 

(21), as following: iQ = 40A, and iD1 = iD2 = iD3 ≈ 13.3A, which closely agree with the 

experimental results shown in Figure 4.15(f) and Figure 4.15(g).   

     In order to test the wide-input feature of the proposed converter, Figure 

4.15(h) shows the input voltage of proposed converter changed from 40V to 120V, while 

the output voltage is fixed at 400V. In this test, the converter is controlled by a closed-loop 

proportional-integral (PI) voltage controller. Figure 4.15(i) shows the effect of the 

change in the input voltage from 40V to 120V on the input current (current flowing in L1) 

and it shows that IL1 = 
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40A when Vin = 40V, while IL1 ≈ 13.3A when Vin = 120V, as IL1 is directly proportional to the 

voltage gain of the converter (when the output current is constant). 

Figure 4.15: Experimental results. (a) Current of L1, and voltage stress across Q, (b) 

Currents of L2 and L3, (c) Voltages across C1, C2, C3, and C4, (d) Output voltage and 

output current, (e) Voltage stresses across D1, D2, and D3, (f) Current stresses of Q and D1 

( a
)

( b
)

( c
)

( d
)

( e
)

(f)

( g
)

( h
)
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(a) ( b
)

(c)

Figu re 4.16: (a) Inductor currents during start-up, (b) Voltages across C1, C2, and C4 during 
start-up, (c) Voltages across C3 and Co during stat- up.

     The results given in Figure 4.15(h) and Figure 4.15(i) show evidently that the proposed 

converter has an acceptable dynamic performance under wide changes in its input voltage.      

     In order to build the initial voltages across the capacitors of the proposed converter 

without having high inrush currents that may damage the semiconductor devices, a soft-

starting algorithm is adopted. This soft-starting algorithm gradually increases the value of 

duty cycle from zero to the desired value during the starting instant. Figure 4.16 shows the 

currents of the three inductors and the voltages of the five capacitors during the soft start and 

during steady state. Based on these results, the converter appears to not have high inrush 

inductor currents during the start instant, and the capacitor voltages increase gradually 

without having high voltage overshoots during the start instant. The calculated loss 

distributions for the investigated case study of the experiment is presented in Figure 4.17. The 

total losses of this case study𝑃𝐿𝑜𝑠𝑠 = 73.88W, and it is distributed as following: The 

conduction losses of D1, D2, and D3 are 14.4W and they account for 19% of the total losses of 

the converter, the conduction loss of Q is 21.28W and it accounts for 29% of the total 

converter losses, the switching loss of Q is 13.11W and it accounts for 18% of the total 

converter losses, the conduction losses of L1, L2, and L3 are 16.88W and they account for 23% 

of the total converter 
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losses, and finally, the conduction losses of C1, C2, C3, C4, and Co are 8.21W and they account 

for 11% of the total converter losses. 

Figure 4.17: Calculated power loss distributions for the experiment (Vin = 50V, Vo = 400V, and R = 100Ω). 

Figure 4.18: Efficiency curves of the proposed converter (Vo=400V, Vin=40→120V, output 

power=800W, 1200W, and 1600W).

    The conduction and switching losses of Q are low due to the utilization of low voltage 

power MOSFET with low RDS and low COSS. The efficiency curves of the laboratory prototype 

at different values of Vin (Vin = 40 → 120), and different output powers (Po = 800W, 1200W, 

and 1600W), while keeping Vo fixed at 400V, are shown in Figure 4.18. The measured 

efficiency curves are obtained using a power analyzer (Tektronix PA3000). The maximum 

recorded efficiency is 97.8%, when Po = 800W and Vin = 120V, while the minimum recorded 

efficiency is 92.5%, when Po = 1600W and Vin = 40V.   
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4.7 Conclusion 

 In this chapter, a new single-switch dc-dc converter with an integrated L2C3D2 network is 

presented. The proposed converter has many merits such as: high voltage gain without 

magnetic coupling, low voltage stress on the semiconductor devices, common ground, and 

universal input voltage. These features make it an excellent candidate for fuel cell vehicles. 

Steady-state analyses in CCM and DCM operations of the proposed converter were 

discussed. The proposed converter is compared with other step-up converters in literature 

regarding the voltage gain, the voltage stress on the semiconductor devices, the number of 

components, and other specifications, and the privilege of the proposed topology is justified. 

Finally, a 1.6 kW 400V prototype for the proposed topology was built, and the theoretical 

analysis was verified by the experimental results.   
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Chapter 5 A New Single-Switch Structure of a DC-DC Converter with Wide 

Conversion Ratio for Fuel Cell Vehicles: Analysis and Development 

5.1     Introduction 

In this chapter a new single-switch transformerless boost dc-dc converter is proposed for fuel 

cell vehicles. The developed topology utilizes a switched-capacitor multiplier and an integrated 

LC2D output network in order to enhance the voltage gain of the converter and reduce the voltage 

stress on the power switch. In addition, the proposed converter has a wide voltage gain range to 

suit the wide voltage swings of the fuel cell. The operating principles and the steady-state analyses 

of the proposed converter when it operates in continuous conduction mode (CCM) and 

discontinuous conduction mode (DCM) are illustrated in this paper. Additionally, the dynamic 

modeling and the compensator design for the developed converter are discussed. A scaled-down 

800 V, 1.3 kW experimental prototype was built using a Gallium Nitride (GaN) transistor and 

Silicon Carbide (SiC) diodes to validate the theoretical analyses of the proposed converter.

5.2 Structure and Steady-State Analysis of the Proposed Converter 

5.2.1 The Proposed Topology  

The schematic of the proposed converter is shown in Figure 5.1, where it is composed of one 

switch (Q), four diodes (D1, D2, D3, and D4), two inductors (L1, and L2), five capacitors (C1, C2, 

C3, C4, and C5), and the load is represented by a resistance (R). The proposed topology is based on 

a two-level boost switching network, an integrated switched capacitor multiplier, and an integrated 

LC2D output network. The integrated switched capacitor multiplier and the LC2D output network 

enhance the voltage gain of the converter and reduce the voltage stress on the switch, hence, a 
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switch with lower rated voltage (= lower on resistance, lower total charge, and higher efficiency) 

can be used.  

Figure 5.1: The proposed step-up converter. 

5.2.2 Operating States Analysis 

   Based on the conduction state of the switch and the four diodes, the operation of the proposed 

converter can be classified into three operating states, presented in Table 5.1. The analyses of the 

converter during the three switching states refer to the currents of the five capacitors (C1 → C5) 

during charging as: iC1_ch, iC2_ch, iC3_ch, iC4_ch, and iC5_ch, and during discharging as: iC1_dis, iC2_dis, 

iC3_dis, iC4_dis, and iC5_dis. Also, in these analyses the currents of inductors (L1 and L2) are referred to 

as IL1 and IL2, the voltages of the five capacitors are referred to as VC1, VC2, VC3, VC4, and VC5, and 

the input and output voltages and the output current are referred to as Vin, Vo, and Io, respectively.  

In order to simplify the analysis, the following assumptions were made: 1) The ripple currents 

of inductors (L1 and L2) equal zero. 2) The ripple voltages of the five capacitors (C1 → C5) equal 

zero. 3) The inductors and capacitors are ideal with no equivalent series resistances. 4) The switch 

and diodes are ideal. 
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Table 5.1: OPERATING STATES OF THE SEMICONDUCTOR DEVICES 

Operating State Q D1 D2 D3 

I (CCM & DCM) ON OFF OFF OFF 

II (CCM & DCM) OFF ON ON ON 

III (DCM) OFF OFF OFF OFF 

(a) (b) (c) 

Figure 5.2: Current flow paths during the three operating states. (a) Operating state I. (b) 

Operating state II. (c) Operating state III.  

9) Operating State I:

In this mode, the switch is on, D1 → D3 are reverse biased, and D4 is forward biased. This

operating state is for the converter when it operates in CCM and DCM, and the period of this 

state is dT, where d is the duty cycle and T is the periodic switching time. Figure 5.3 shows the 

important waveforms of the proposed converter when it operates in CCM and DCM, and the 

converter is in operating state I when t0 < t < t1.  

    During this state, both inductors charge, capacitors (C3 and C5) charge, and capacitors (C1, C2, 

and C4) discharge. The current flow paths during this operating state are shown in Figure 5.2(a).  

By means of Kirchhof’s Current Law (KCL), and Kirchhof’s Voltage Law (KVL) on 

the equivalent circuit shown in Figure 5.2(a), we can deduce (1) and (2): 
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{
𝑉𝐿1 = 𝑉𝑖𝑛       
𝑉𝐿2 = 𝑉𝐶1 − 𝑉𝐶3

(1) 

{

𝐼𝐶1_𝑑𝑖𝑠 = 2𝐼𝐿2 

𝐼𝐶2_𝑑𝑖𝑠 =
𝑉𝑜
𝑅

𝐼𝐶3_𝑐ℎ = 𝐼𝐿2 

𝐼𝐶5_𝑐ℎ = 𝐼𝐶4_𝑑𝑖𝑠 −
𝑉𝑜
𝑅

(2) 

10) Operating State II:

   In this mode, the switch is off, D1 → D3 are forward biased, and D4 is reverse biased. This 

operating state is for the converter when it operates in CCM and DCM, and the period of this 

state is (1-d)T (in CCM) or deT (in DCM). These time internals are shown in Figure 5.3, and the 

converter is in operating state II when t1 < t < t2.  

    During this state, both inductors discharge, capacitors (C3 and C5) discharge, and capacitors 

(C1, C2, and C4) charge. The current flow paths during this operating state are shown in Figure 

5.2(b).  By means KCL and KVL laws on the equivalent circuit shown in Figure 5.2(b), we can 

deduce (3) and (4): 

 {
𝑉𝐿1 = 𝑉𝑖𝑛 − 𝑉𝐶4 = 𝑉𝑖𝑛 − 𝑉𝐶1 
𝑉𝐿2 = −𝑉𝐶3 = −𝑉𝐶2    

(3) 

{

𝐼𝐿1 = 𝐼𝐶4_𝑐ℎ + 𝐼𝐶3_𝑐ℎ + 𝐼𝐿2 + 𝐼𝐶1_𝑐ℎ − 𝐼𝐶2_𝑐ℎ 

𝐼𝐶5_𝑑𝑖𝑠 =
𝑉𝑜
𝑅
 

(4) 

11) Operating State III:

   In this mode the switch is off, and D1 → D4 are reverse biased. This operating state is for the 

converter when it operates only in DCM, and the period of this state is (1 − 𝑑 − 𝑑𝑒)𝑇. The

converter is in operating state III when t2 < t < t3. In this operating state, the voltages across L1 and 
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L2 equal zero, a positive constant current IL1_III flows through L1, and a negative constant current 

IL2_III flows through L2. The relationship between IL1_III and IL2_III is presented in (6) where their 

summation equals null.   

 {
𝑉𝐿1 = 0 
𝑉𝐿2 = 0 

(5) 

 𝐼𝐿1_𝐼𝐼𝐼 + 𝐼𝐿2_𝐼𝐼𝐼 = 0 (6) 

5.3 Steady-State Analysis for CCM Operation 

In CCM operation, the converter has two states of operation, namely: operating state I and 

operating state II, and the important waveforms of this operation is presented in Figure 5.3(a). The 

voltage gain, the voltage and current stresses on the semiconductor devices, and the efficiency 

analysis of the proposed converter are deduced in this subsection. 

5.3.1 Voltage Gain 

    By using the voltage second balance on L1 and L2 we can extract the output voltage, and the 

voltages of the five capacitors, as following: 

1

𝑇
(∫ 𝑉𝑖𝑛𝑑𝑡

𝑑𝑇

0

+ ∫(𝑉𝑖𝑛 − 𝑉𝐶1)𝑑𝑡

𝑇

𝑑𝑇

) = 0 
(7) 

1

𝑇
(∫ 𝑉𝑖𝑛𝑑𝑡

𝑑𝑇

0

+ ∫(𝑉𝑖𝑛 − 𝑉𝐶4)𝑑𝑡

𝑇

𝑑𝑇

) = 0 (8) 

1

𝑇
(∫ (𝑉𝐶1 − 𝑉𝐶3)𝑑𝑡

𝑑𝑇

0

− ∫𝑉𝐶2𝑑𝑡

𝑇

𝑑𝑇

) = 0 (9)
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1

𝑇
(∫ (𝑉𝐶1 − 𝑉𝐶3)𝑑𝑡

𝑑𝑇

0

− ∫𝑉𝐶3𝑑𝑡

𝑇

𝑑𝑇

) = 0 (10) 

    By solving equations (7)-(10), we can deduce the following relationships: 

{
 

𝑉𝐶1 = 𝑉𝐶4 = 𝑉𝐶5 =
𝑉𝑖𝑛

(1−𝑑)

𝑉𝐶2 = 𝑉𝐶3 =
𝑑 𝑉𝑖𝑛

(1−𝑑)

𝑉𝑜 =
2+𝑑

1−𝑑
 𝑉𝑖𝑛

(11) 

Hence, the voltage gain M can be calculated as following: 

 𝑀 =
2 + 𝑑

1 − 𝑑
(12) 

5.3.2 Voltage Stresses on Semiconductor Devices 

    The voltage stresses on the switch (VQ) and all the diodes (VD1, VD2, VD3, and VD4) equal VC1 and 

are depicted by (13): 

 𝑉𝑄 = 𝑉𝐷1 = 𝑉𝐷2 = 𝑉𝐷3 = 𝑉𝐷4 = 𝑉𝐶1 =
𝑉𝑖𝑛

(1 − 𝑑)
     (13) 

By using (12) and (13), these voltage stresses can be presented in a normalized form as a function 

of VO and M as shown in (14): 

      𝑉𝑄 = 𝑉𝐷1 = 𝑉𝐷2 = 𝑉𝐷3 = 𝑉𝐷4 = 𝑉𝐶1 =
1 + 𝑀

3𝑀
 𝑉𝑜 (14) 

5.3.3 Current Stresses on Semiconductor Devices 

    Assuming a lossless operation where the input power equals the output power (i.e. Vin  IL1 = Vo 

 Io), hence, IL1 and IL2 can be calculated as in (15) and (16): 

𝐼𝐿2 = 𝐼𝑜 =
𝑉𝑜
𝑅

(15) 

𝐼𝐿1 = 𝑀𝐼𝐿2 =
(2 + 𝑑)𝑉𝑜
(1 − 𝑑)𝑅

= (
2 + 𝑑

1 − 𝑑
)
2 𝑉𝑖𝑛
𝑅

(16)
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(a) (b) 

Figure 5.3: Key waveforms of the proposed converter. (a) CCM operation. (b) DCM operation. 

   By using the charge-second balance rule on C1 → C5 to extract their charging and discharging 

currents, as shown in (17)-(22): 
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{

𝑖𝐶1_𝑑𝑖𝑠 𝑑𝑇 =  𝑖𝐶1_𝑐ℎ (1 − 𝑑)𝑇

𝑖𝐶2_𝑑𝑖𝑠 𝑑𝑇 =  𝑖𝐶2_𝑐ℎ (1 − 𝑑)𝑇

𝑖𝐶3_𝑐ℎ 𝑑𝑇 =  𝑖𝐶3_𝑑𝑖𝑠 (1 − 𝑑)𝑇

𝑖𝐶4_𝑑𝑖𝑠 𝑑𝑇 =  𝑖𝐶4_𝑐ℎ (1 − 𝑑)𝑇

𝑖𝐶5_𝑐ℎ 𝑑𝑇 =  𝑖𝐶5_𝑑𝑖𝑠 (1 − 𝑑)𝑇

 (17) 

{
𝑖𝐶1_𝑐ℎ = 2𝐼𝑜

𝑑

(1 − 𝑑)
𝑖𝐶1_𝑑𝑖𝑠 = 2𝐼𝑜 

 (18) 

{
𝑖𝐶2_𝑐ℎ = 𝐼𝑜

𝑑

(1 − 𝑑)
𝑖𝐶2_𝑑𝑖𝑠 = 𝐼𝑜       

 (19) 

{

𝑖𝐶3_𝑐ℎ = 𝐼𝑜 

𝑖𝐶3_𝑑𝑖𝑠 = 𝐼𝑜
𝑑

(1 − 𝑑)

(20) 

{

𝑖𝐶4_𝑐ℎ =
𝐼𝑜

(1 − 𝑑)

𝑖𝐶4_𝑑𝑖𝑠 =
𝐼𝑜
𝑑

(21) 

{
𝑖𝐶5_𝑐ℎ = 𝐼𝑜

(1 − 𝑑)

𝑑
𝑖𝐶5_𝑑𝑖𝑠 = 𝐼𝑜 

(22) 

    By using equations (15)-(22) and the current flow paths shown in Figure 5.2, the current stress 

on the switch iQ and the current stresses on the four diodes (iD1 → iD4) can be extracted as shown 

in (23)-(27): 

𝑖𝑄 = 𝐼𝐿1 + 𝐼𝐿2 + 𝑖𝐶4_𝑑𝑖𝑠 =
1 + 2𝑑

𝑑(1 − 𝑑)
𝐼𝑜 (23) 

𝑖𝐷1 = 𝐼𝐿1 − 𝑖𝐶4_𝑐ℎ − 𝑖𝐶3_𝑑𝑖𝑠 =
𝐼𝑜

(1 − 𝑑)
(24) 

𝑖𝐷2 = 𝐼𝐿2 + 𝑖𝐶3_𝑑𝑖𝑠 =
𝐼𝑜

(1 − 𝑑)
(25) 

𝑖𝐷3 = 𝑖𝐶4_𝑐ℎ =
𝐼𝑜

(1 − 𝑑)
(26) 

𝑖𝐷4 = 𝑖𝐶4_𝑑𝑖𝑠 =
𝐼𝑜
𝑑

 (27)

    By means of (23)-(27), and the current flow paths shown in Figure 5.2, the root-mean-square 

(rms) values of the currents of the switch and diodes can be calculated as following: 
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𝑖𝑄_𝑟𝑚𝑠 =
1 + 2𝑑

√𝑑(1 − 𝑑)
𝐼𝑜 (28) 

𝑖𝐷1_𝑟𝑚𝑠 = 𝑖𝐷2_𝑟𝑚𝑠 = 𝑖𝐷3_𝑟𝑚𝑠 =
𝐼𝑜

√1 − 𝑑
(29) 

𝑖𝐷4_𝑟𝑚𝑠 =
𝐼𝑜

√𝑑
 (30) 

    Similarly, the rms values of the five capacitors’ currents can be extracted using (18)-(22), as 

following: 

𝑖𝐶1_𝑟𝑚𝑠 = 2𝐼𝑜√
𝑑

1 − 𝑑
(31) 

𝑖𝐶2_𝑟𝑚𝑠 = 𝑖𝐶3_𝑟𝑚𝑠 = 𝐼𝑜√
𝑑

1 − 𝑑
(32) 

𝑖𝐶4_𝑟𝑚𝑠 = 𝐼𝑜√
1

𝑑(1 − 𝑑)
(33) 

𝑖𝐶5_𝑟𝑚𝑠 = 𝐼𝑜√
1 − 𝑑

𝑑
(34) 

5.3.4 Efficiency Analysis 

    In order to properly select the components and design an adequate cooling system, the power 

dissipated from the various components should be calculated. Equation (35) calculates the 

total power loss PLoss of the proposed converter, where PL_cond, PL_core, PC, PD, PQ_sw, and PQ_cond 

are the inductors’ conduction losses, the inductors’ core losses, the capacitors’ conduction 

losses, the diodes’ conduction losses, the switching losses of the switch, and the conduction loss 

of the switch, respectively. 

𝑃𝐿𝑜𝑠𝑠 = 𝑃𝐿_𝑐𝑜𝑛𝑑 + 𝑃𝐿_𝑐𝑜𝑟𝑒 + 𝑃𝐶 + 𝑃𝐷 + 𝑃𝑄_𝑠𝑤 + 𝑃𝑄_𝑐𝑜𝑛𝑑 (35) 

   The core losses and conduction losses of L1 and L2 can be calculated using (36) and (37), 

respectively, where RL1, RL2, fs, lc1, lc2, Ac1, Ac2, ∆B1, and ∆B2 are the equivalent series resistances 



113 

of L1 and L2, the switching frequency, the magnetic flux path lengths of the two inductors’ cores, 

the cross sectional areas of the two inductors’ cores, and ac magnetic flux density of L1 and L2. 

𝑃𝐿_𝑐𝑜𝑟𝑒 = 𝑙𝑐1 𝐴𝑐1 (𝑎 ∆𝐵1
𝑏 𝑓𝑠

𝐶) + 𝑙𝑐2 𝐴𝑐2 (𝑎 ∆𝐵2
𝑏 𝑓𝑠

𝐶) (36) 

𝑃𝐿_𝑐𝑜𝑛𝑑 = 𝐼𝐿1
2 𝑅𝐿1 + 𝐼𝐿2

2 𝑅𝐿2 (37) 

   Equation (36) is the Steinmetz equation and it is an empirical formula to calculate the core loss 

of an inductor where a, b, and c are fitting parameters and can be found in the datasheet of the 

core. 

    The conduction losses of the five capacitors can be calculated using (38), where ESR1→ESR5 

are the equivalent series resistances of the five capacitors C1 → C5. 

𝑃𝐶 = 𝐼𝐶1_𝑟𝑚𝑠
2 𝐸𝑆𝑅1 + 𝐼𝐶2_𝑟𝑚𝑠

2 𝐸𝑆𝑅2 + 𝐼𝐶3_𝑟𝑚𝑠
2 𝐸𝑆𝑅3 + 𝐼𝐶4_𝑟𝑚𝑠

2 𝐸𝑆𝑅4

+ 𝐼𝐶5_𝑟𝑚𝑠
2 𝐸𝑆𝑅5 

(38) 

    The conduction and switching losses of the four diodes can be calculated by (39), where 𝑉𝑓1 → 

𝑉𝑓4 and 𝑄𝐶1 → 𝑄𝐶4 are the forward voltages and capacitive charges of the Schottky diodes 𝐷1 →

𝐷4, respectively.  

𝑃𝐷 = [(1 − 𝑑)(𝑖𝐷1𝑉𝑓1 + 𝑖𝐷2𝑉𝑓2 + 𝑖𝐷3𝑉𝑓3) + 𝑑 𝑖𝐷4𝑉𝑓4]

+ 𝑓𝑠 (
𝑉𝑖𝑛
1 − 𝑑

) [𝑄𝐶1 + 𝑄𝐶2 +𝑄𝐶3 + 𝑄𝐶4]
(39) 

    The conduction and the switching losses of Q can be calculated using (40) and (41), respectively, 

where Ron, COSS, 𝑡𝑟, and 𝑡𝑓, are the on resistance, the parasitic output capacitance, the rise and fall 

times of the switch.  

 𝑃𝑄_𝑐𝑜𝑛𝑑 = 𝐼𝑄_𝑟𝑚𝑠
2 𝑅𝑜𝑛 

(40) 

𝑃𝑄_𝑠𝑤 = 0.5𝑓𝑠(𝑉𝑄𝑖𝑄(𝑡𝑟 + 𝑡𝑓) + 𝐶𝑂𝑆𝑆𝑉𝑄
2)

(41) 

The efficiency Ƞ can be calculated as following 

Ƞ =
𝑉𝑜𝐼𝐿2

𝑉𝑜𝐼𝐿2 + 𝑃𝐿𝑜𝑠𝑠 (42)
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5.4 Steady-State Analysis of DCM 

    When the proposed converter operates in DCM, it has three operating states, namely: operating 

state I, operating state II, and operating state III. Figure 5.3(b) shows the important waveforms of 

the proposed converter during DCM operation, where the period of the operating state I is dT, the 

period of the operating state II is deT, and the period of operating state III is (1 − (𝑑 + 𝑑𝑒)) 𝑇.

The first two operating states are the same as in CCM, while the additional third operating state is 

only for DCM operation. The voltage gain of the proposed converter, the boundary operating 

condition between DCM and CCM, the voltage and current stresses on the semiconductor devices 

are deduced in this subsection. 

5.4.1 Voltage Gain 

    During DCM, the ripple currents of the two inductors (∆iL1 and ∆iL2) can be calculated as 

following:  

{

∆𝑖𝐿1 =
𝑑 𝑉𝑖𝑛
𝑓𝑠𝐿1

∆𝑖𝐿2 =
𝑑 𝑉𝑖𝑛
𝑓𝑠𝐿2

(43) 

Based on (15), (16), (24)-(26), and (43), the peak current of D1, D2, or D3 can be calculated as 

following: 

𝑖𝐷1(𝑝𝑒𝑎𝑘) = 𝑖𝐷2(𝑝𝑒𝑎𝑘) = 𝑖𝐷3(𝑝𝑒𝑎𝑘) =
∆𝑖𝐿1 + ∆𝑖𝐿2

3
=

𝑑 𝑉𝑖𝑛
3𝑓𝑠  𝐿𝑒𝑞

(44) 

𝐿𝑒𝑞 = [
1

𝐿1
+
1

𝐿2
]
−1

(45) 

The fraction of the periodic switching time associated with operating state II (de) can be deduced 

by equating the average current of D1, D2, or D3 to the output current, as following: 

〈𝑖𝐷1〉 =
1

𝑇
(
𝑑𝑒 𝑇

2

𝑑 𝑉𝑖𝑛
3𝑓𝑠 𝐿𝑒𝑞

) =
𝑉𝑜
𝑅

Hence, 𝑑𝑒 can be extracted as shown in (46): 
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𝑑𝑒 =
6 𝑓𝑠  𝐿𝑒𝑞  𝑉𝑜

𝑑 𝑉𝑖𝑛 𝑅
=
6 𝑉𝑜
𝑑 𝑉𝑖𝑛

𝐾 (46) 

Where K is a dimensionless parameter and is defined by (47). 

𝐾 =
𝑓𝑠 𝐿𝑒𝑞

𝑅
(47) 

By means of equation (11), the five capacitors’ voltages can be formulated as following: 

 {
𝑉𝐶1 = 𝑉𝐶4 = 𝑉𝐶5 =

𝑉𝑖𝑛+ 𝑉𝑜

3

𝑉𝐶2 = 𝑉𝐶3 =
𝑉𝑜 −2𝑉𝑖𝑛

3

(48) 

Based on Figure 5.3, the average inductor voltage can be calculated and equated to zero to calculate 

the voltage gain of the proposed converter during DCM (MDCM) operation, as following: 

1

𝑇
(∫ 𝑉𝑖𝑛𝑑𝑡

𝑑𝑇

0

− ∫ 𝑉𝐶2𝑑𝑡

𝑑𝑒𝑇

0

) = 0 (49) 

𝑉𝑖𝑛𝑑 + (
2𝑉𝑖𝑛 − 𝑉𝑜

3
)𝑑𝑒 = 0 (50) 

By solving (50), the voltage gain during DCM (MDCM) can be calculated as shown in (51): 

𝑀𝐷𝐶𝑀 = 1 + √1 + (
𝑑2

2𝐾
) (51) 

5.4.2 Boundary Operating Condition 

During the boundary conduction mode (BCM) the voltage gain of the proposed converter during 

the CCM and DCM operations is the same, thus, the critical value of K (𝐾𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) can be deduced 

by equating (12) and (51) as following: 

𝐾𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
𝑑(1 − 𝑑)2

6(𝑑 + 2)
 (52)

   Figure 5.4 shows a plot of 𝐾𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 versus d. When K < 𝐾𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 the converter operates in DCM, 

otherwise, in CCM. 
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Figure 5.4: Boundary condition between DCM and CCM operations for the proposed 

converter. 

5.4.3 Voltage Stresses on the Semiconductor Devices 

    During operating state I, the voltage stresses across Q and D4 equal zero, while the voltage 

stresses across D1 → D3 equal VC1. During operating state II, the voltage stresses across Q and D4 

equal VC1, while the voltage stresses across D1 → D3 equal zero. During operating state III, the 

voltage stresses across Q and D4 equal Vin, while the voltage stresses across D1 → D3 equal VC2.     

Accordingly and by means of (48), the voltage stresses on the switch and diodes during the three 

operating states can be formulated as in (53): 

{

𝑉𝑄(𝐼) = 𝑉𝐷4(𝐼) = 𝑉𝐷1(𝐼𝐼)  = 𝑉𝐷2(𝐼𝐼)   = 𝑉𝐷3(𝐼𝐼) = 0       

𝑉𝑄(𝐼𝐼) = 𝑉𝐷4(𝐼𝐼) = 𝑉𝐷1(𝐼)  = 𝑉𝐷2(𝐼)   = 𝑉𝐷3(𝐼) = 𝑉𝐶1 = 𝑉𝑖𝑛 (
𝑀𝐷𝐶𝑀+1

3
 ) 

𝑉𝑄(𝐼𝐼𝐼) = 𝑉𝐷4(𝐼𝐼𝐼) =  𝑉𝑖𝑛       

𝑉𝐷1(𝐼𝐼𝐼)  = 𝑉𝐷2(𝐼𝐼𝐼)   = 𝑉𝐷3(𝐼𝐼𝐼) = 𝑉𝐶2 = 𝑉𝑖𝑛 (
𝑀𝐷𝐶𝑀−2

3
)

(53) 

5.4.4 Current Stresses on the Semiconductor Devices 

    As shown in Figure 5.3(b), the currents of the four diodes have a triangular shape, the peak 

values for iD1, iD2, iD3, and iD4 are calculated by (44) and (54). 

𝑖𝐷4(𝑝𝑒𝑎𝑘) =
2𝐼𝑜
𝑑
=
2𝑉𝑜
𝑑 𝑅

=
2 𝑀𝐷𝐶𝑀 𝑉𝑖𝑛

𝑑 𝑅
(54)



    The current of Q has a trapezoidal shape, the two heights of it are iD4(peak) and iQ(peak) as shown 

in Figure 5.3(b), and the value of iQ(peak) can be calculated by (55). 

𝑖𝑄(𝑝𝑒𝑎𝑘) = ∆𝑖𝐿1 + ∆𝑖𝐿2 =
𝑑 𝑉𝑖𝑛
𝑓𝑠 𝐿𝑒𝑞

(55) 

    The rms values of the diode currents and the switch currents can be obtained by (56). 

{

𝑖𝐷1(𝑟𝑚𝑠) = 𝑖𝐷2(𝑟𝑚𝑠) = 𝑖𝐷3(𝑟𝑚𝑠) =
𝑑 𝑉𝑖𝑛
3𝑓𝑠 𝐿𝑒𝑞

√
𝑑𝑒
3

𝑖𝐷4(𝑟𝑚𝑠) =
2𝑀𝐷𝐶𝑀 𝑉𝑖𝑛

𝑅 √3𝑑

𝑖𝑄(𝑟𝑚𝑠) = √
𝑑

3
(𝑖𝑄(𝑝𝑒𝑎𝑘)
2 + 𝑖𝐷4(𝑝𝑒𝑎𝑘)

2 + 𝑖𝑄(𝑝𝑒𝑎𝑘) 𝑖𝐷4(𝑝𝑒𝑎𝑘))

(56) 

5.5 Comparative Study with other Step-Up Solutions 

This subsection compares the proposed converter with twelve other step-up converters that 

do not utilize any magnetic coupling components. The converters are compared based on the 

voltage gain, the number of active and passive components, the normalized voltage stresses 

on the power switches and diodes, the amount of input current ripple, the potential difference 

between the grounds of the input and output terminals (𝑉𝐺𝑟𝑜𝑢𝑛𝑑𝑠), and the voltage gain range.  

Table 5.2 summarizes the components and the features for each of the compared converters. 

The plots of the voltage gain versus the duty cycle for the compared converters are shown in 

Figure 5.5. The maximum normalized voltage stresses on the power switches and diodes 

versus the voltage gain are shown in Figure 5.6 and Figure 5.7, respectively. 

Comparing the conventional three-level boost (TLB) converter with the proposed converter, 

on one hand, the proposed converter has one inductor, three capacitors, and two diodes more, 

and one power switch less compared to the conventional TLB converter. On the other hand, 

the proposed converter has higher voltage gain, lower voltage stresses on the semiconductor 

devices, and wider voltage gain range compared to the conventional TLB converter. 

Additionally, VGrounds for the 117 
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conventional TLB converter is HF PWM voltage, which causes more EMI noise and increases the 

periodic maintenance costs, on the contrary with the proposed converter which has VGrounds equals 

a constant voltage. The voltage quadrupler boost converter in [184] has higher voltage gain and 

lower voltage stress on its switches compared to the proposed converter. 

Table 5.2: COMPARISON BETWEEN THE PROPOSED AND OTHER STEP-UP DC-DC CONVERTERS 

Reference 
Voltage 

gain (M) 

Active 

components 

counts 

Passive 

components 

counts 

Voltage stress on 

transistors 

(VQ / Vo) 

Voltage stress on 

diodes 

(VD / Vo) 

Continuous 

input 

current 

VGrounds 

Voltage 

gain range 

(d=0 

→0.9) 

TLB 
𝟏

𝟏 − 𝒅

2 Switches 

2 Diodes 

1 Inductor 

2 Capacitors 

𝟏

𝟐

𝟏

𝟐
Yes 

HF 

PWM 

voltage 

1→10 

In [184] 
𝟒

𝟏 − 𝒅

2 Switches 

4 Diodes 

2 Inductors 

4 Capacitors 

𝟏

𝟒

𝟏

𝟐
 ,
𝟏

𝟒
Yes 

HF 

PWM 

voltage 

8→40 

(minimum 

d = 0.5) 

In [185] 
𝟑 + 𝒅

𝟐(𝟏 − 𝒅)

1 Switches 

4 Diodes 

2 Inductors 

4 Capacitors 

𝟏

𝟐
+

𝟏

𝟒𝑴

𝟏

𝟐
+

𝟏

𝟒𝑴
Yes 0 V 1.5→19.5 

In [180] 
𝟏

(𝟏 − 𝒅)𝟐
1 Switch 

3 Diodes 

2 Inductors 

2 Capacitors 
1 

1, √𝟏−
𝑴−𝟏

𝑴
, 

1-√𝟏−
𝑴−𝟏

𝑴

No 0 V 1→100 

In [178] 
𝟏

𝒅(𝟏 − 𝒅)

2 Switches 

3 Diodes 

2 Inductors 

2 Capacitors 

𝟏

𝟐
+ √

𝟏

𝟒
−
𝟏

𝑴
 , 𝟏 

𝟏

𝟐
+ √

𝟏

𝟒
−
𝟏

𝑴
 , 

𝟑

𝟐
+ √

𝟏

𝟒
−
𝟏

𝑴

Yes 

HF 

PWM 

voltage 

-- →11 

In [181] 
𝟐

𝟏 − 𝒅

2 Switches 

2 Diodes 

2 Inductors 

2 Capacitors 

𝟏

𝟐

𝟏

𝟐
 , 𝟏 Yes 

HF 

PWM 
2→20 

In [186] 
𝟐 + 𝒅

(𝟏 − 𝒅)𝟐
2 Switches 

5 Diodes 

3 Inductors 

6 Capacitors 

√𝟏 + 𝟏𝟐𝑴− 𝟏

𝟏 + 𝟔𝑴− √𝟏+ 𝟏𝟐𝑴
 , 

𝟐𝑴

𝟏 + 𝟔𝑴− √𝟏+ 𝟏𝟐𝑴

√𝟏 + 𝟏𝟐𝑴− 𝟏

𝟏 + 𝟔𝑴− √𝟏+ 𝟏𝟐𝑴
 , 

𝟐𝑴

𝟏 + 𝟔𝑴− √𝟏+ 𝟏𝟐𝑴

No 
HF 

PWM 
2→290 

In [183] 
𝟑 − 𝒅

𝟏 − 𝒅

1 Switch 

4 Diodes 

1 Inductor 

4 Capacitors 

𝑴− 𝟏

𝟐𝑴

𝑴− 𝟏

𝟐𝑴
No 

Constant 

voltage 
3→21 

In [187] 
𝟐

𝟏 − 𝒅

1 Switch 

3 Diodes 

2 Inductors 

4 Capacitors 

𝟏

𝟐

𝟏

𝟐
Yes 

Constant 

voltage 
2→20 

In [179] 
𝟏 + 𝒅

𝟏 − 𝒅

1 Switch 

3 Diodes 

2 Inductors 

3 Capacitors 

𝟏 +𝑴

𝟐𝑴

𝟏+𝑴

𝟐𝑴
No 0 V 1→19 

In [110] 
𝟏 + 𝟑𝒅

𝟏 − 𝒅

2 Switches 

2 Diodes 

3 Inductors 

3 Capacitors 

𝟑 +𝑴

𝟒𝑴

𝟑+𝑴

𝟐𝑴
Yes 

HF 

PWM 

voltage 

1→37 

In [182] 
𝟐

𝟏 − 𝒅

1 Switch 

3 Diodes 

1 Inductor 

3 Capacitors 

𝟏

𝟐

𝟏

𝟐
Yes 0 V 2→20 

Proposed 
𝟐 + 𝒅

𝟏 − 𝒅

1 Switch 

4 Diodes 

2 Inductors 

5 Capacitors 

𝟏 +𝑴

𝟑𝑴

𝟏+𝑴

𝟑𝑴
Yes 

Constant 

voltage 
2→29 

It also has one capacitor less and one power switch more compared to the proposed converter. 

This converter has two main drawbacks, first, its VGrounds is HF PWM voltage, on the contrary with 
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the proposed converter where its VGrounds is a constant voltage, second, the maximum normalized 

voltage stress on its diodes is higher compared to that of the proposed converter. The recently 

proposed single-switch converter in [185] has one less capacitor and the same number of switches, 

diodes and inductors compared to the proposed converter.  The voltage gain of the proposed 

(a) (b) 

(c) 

Figure 5.5: Comparison of voltage gain M versus duty cycle d. (a) Between the proposed 

converter, the TLB converter, converters in [184], [185], and [180]. (b) Between the proposed 

converter, converters in [178], [181], [186], and [183]. (c) Between the proposed converter and the 

converters in [187], [179], [110], and [182] 
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converter is higher and the voltage stresses on the switch and diodes of the proposed converter 

are lower compared to the converter in [185]. Comparing the proposed converter with the 

quadratic boost converter in [180], on one hand, the converter in [180] has one diode and 

three capacitors less than the proposed converter, on the other hand, this converter has lower 

voltage gain (for d < 0.6) and higher voltage stresses on its switch and diodes compared to 

the proposed converter. Additionally, the input current ripple of the converter in [180] is 

high, which can reduce the lifetime of the fuel cell. The extendable step-up dc-dc converter 

in [178] has one diode and three capacitors less than the proposed converter, while the 

proposed converter has one power switch less. The proposed converter has higher voltage 

gain (for d > 0.4) and lower voltage stresses on the power switches and diodes compared to 

the converter in [178]. Comparing the proposed converter with converter II in [181], on one 

hand, it has two diodes and three capacitors less than the proposed converter, while the 

proposed converter has one power switch less. The voltage gain of the proposed converter is 

higher and the voltage stress on its semiconductor devices is less than that in converter II in 

[181]. In addition, the VGrounds of the converter in [181] is HF PWM voltage which may add a 

lot of EMI noise. The converter in [186] has one power switch, one diode, one inductor, and 

one capacitor more than the proposed converter. The proposed converter has lower voltage 

gain compared to the converter in [186], nevertheless, the maximum normalized voltage 

stresses on the semiconductor devices of the 
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Figure 5.6: Maximum normalized voltage stress on the power switches in the compared 

converters. 

Figure 5.7: Maximum normalized voltage stress on the diodes in the compared converters. 

proposed converter are less. The converter in [186] also suffers from high input current ripple and 

its VGrounds is HF PWM voltage, which render this converter not suitable for fuel cell EV 

application. The hybrid converter presented in [183] has one less inductor, one less capacitor and 

the same number of semiconductor devices compared to the proposed converter. The converter in 

[183] has lower voltage gain (when d > 0.5), and higher voltage stresses on the semiconductor

devices (when M > 5) compared to the proposed converter. Added to that, the converter in [183] 
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has a high input current ripple. Comparing the proposed converter with the single-switch 

hybrid boost converter in [187], on one hand, this converter has one diode and one capacitor 

less compared to the proposed converter. On the other hand, the proposed converter has 

higher voltage gain, less voltage stresses on the semiconductor devices, and wider voltage 

gain compared to the converter in [187]. The voltage-lift based boost converter in [179] has 

one less diode and two less capacitors compared to the proposed converter. The proposed 

converter has a wider voltage gain, less voltage stresses on the power switch and diodes, 

and higher voltage gain compared to the converter in [179]. In addition, the input current 

ripple of the converter in [179] is high. The converter in [110] integrates active switched-

inductor and passive switched-capacitor networks to enhance the voltage gain and 

reduce the voltage stress on the semiconductor devices. The converter in [110] has lower 

voltage gain (when d < 0.5), higher voltage stress on its power switches (when M < 5), and 

higher voltage stress on its diodes compared to the proposed converter. Regarding the 

number of components, the converter in [110] has two less diodes, two less capacitors, one 

more power switch and one more inductor compared to the proposed converter. The 

converter in [110] also suffers from additional EMI noise because its VGrounds is HF PWM 

voltage. The multilevel boost converter in [182], on one hand, has one less diode, one less 

inductor, and two less capacitors compared to the proposed converter. This converter has 

low input current ripple and a common ground between its input and out terminals. 

Nevertheless, the proposed converter has higher voltage gain, lower voltage stress on its 

semiconductor devices, and a wider voltage gain range compared to the converter in [182]. 

    Based on the comparisons above, it is clear that the proposed converter combines many 

merits such as:  low number of power switches, high step-up voltage conversion ratio, wide 

voltage gain range, low input current ripple, and low voltage stresses on its semiconductor 

devices. All these 
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features make the proposed converter a good choice as a power electronic interface between the 

fuel cell and the high voltage dc-link bus of the EV.     

5.6 Design of Components 

5.6.1 Selection of Semiconductor Devices 

    Equation (14) calculates the voltage stress on the power switch and diodes, hence, by knowing 

the maximum values of Vo and M, the maximum voltage stress on the semiconductor devices can 

be calculated. Similarly, equations (23)-(27) calculate the current stresses on the power switch and 

diodes in CCM operation, while (44), (54) and (55) calculate the current stresses on the 

semiconductor devices in DCM operation. Accordingly, by knowing the maximum voltage stress 

and current stress on each semiconductor device, the ratings of the power switch and diodes can 

be determined such that the maximum voltage and current stresses should be within the safe 

operating area (SOA) of the selected diodes and power switch. 

5.6.2 Design of Inductors 

    By means of (15) and (16), the inductor currents can be calculated, hence, the saturation currents 

of L1 and L2 should be higher than the maximum currents flowing through L1 and L2, respectively. 

When the maximum ripple currents ∆𝑖𝐿1, and ∆𝑖𝐿2 are known, the minimum values of inductances 

can be obtained by (57). 

{

𝐿1 ≥ 
𝑑 𝑉𝑖𝑛 

𝑓𝑠 ∆𝑖𝐿1

𝐿2 ≥ 
𝑑 𝑉𝑖𝑛 

𝑓𝑠  ∆𝑖𝐿2

(57)
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5.6.3 Design of Capacitors 

    Equation (11) calculates the voltages across the five capacitors, accordingly the selected 

capacitors should be able to withstand these voltage levels.  

When the maximum ripple voltages ∆𝑉𝐶1, ∆𝑉𝐶2, ∆𝑉𝐶3, ∆𝑉𝐶4 and ∆𝑉𝐶5 are known, the minimum 

values of capacitances can be obtained by (58). 

{

𝐶1 ≥ 
2𝐼𝑜𝑑 

𝑓𝑠 ∆𝑉𝐶1

𝐶2 ≥ 
𝐼𝑜𝑑 

𝑓𝑠 ∆𝑉𝐶2

𝐶3 ≥ 
𝐼𝑜𝑑 

𝑓𝑠 ∆𝑉𝐶3

𝐶4 ≥ 
𝐼𝑜 

𝑓𝑠 ∆𝑉𝐶4

𝐶5 ≥ 
𝐼𝑜(1 − 𝑑) 

𝑓𝑠 ∆𝑉𝐶5

(58) 

5.7 Dynamic Modeling and Voltage Loop Controller Design 

5.7.1 Small-Signal Modeling 

    In this analysis, the equivalent series resistances of the inductors and capacitors are omitted, the 

power switch and diodes are assumed to be ideal. Fig. 3(b) shows that there is mutual coupling 

between the capacitors (C1 → C5) of the proposed converter, accordingly, to remove this coupling, 

small resistances (𝑟𝐶2 = 0.1𝛺 and 𝑟𝐶4 = 0.1𝛺) are considered in series with C2 and C4, 

respectively. In this subsection, the state-space average and small-signal models of the proposed 

converter are derived for the converter when it operates in CCM, thus, the converter has only two 

operating states (I and II). By applying the averaging method on the inductors’ voltages and 
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capacitors’ currents during operating states I and II, calculated by (1)-(4), the state-space average 

model of the proposed converter can be obtained as shown in (59).   

    In order to derive the small-signal model of the proposed converter, all the state variables, output 

variable, input variable, and control variable should be replaced by their dc quiescent values and 

ac perturbation signals, as in (60).   

{

𝑣𝑖𝑛(𝑡) = 𝑉𝑖𝑛 + 𝑣𝑖𝑛

𝑣𝐶1(𝑡) = 𝑉𝐶1 + 𝑣𝐶1 

𝑣𝐶2(𝑡) = 𝑉𝐶2 + 𝑣𝐶2 

𝑣𝐶3(𝑡) = 𝑉𝐶3 + 𝑣𝐶3 

𝑣𝐶4(𝑡) = 𝑉𝐶4 + 𝑣𝐶4 

𝑣𝐶5(𝑡) = 𝑉𝐶5 + 𝑣𝐶5 

𝑖𝐿1(𝑡) = 𝐼𝐿1 + 𝑖̂𝐿1    

𝑖𝐿2(𝑡) = 𝐼𝐿2 + 𝑖̂𝐿2    

𝑣𝑜(𝑡) = 𝑉𝑜 + �̂�𝑜       

𝑑(𝑡) = 𝑑 + �̂�   

with 

{

|𝑣𝑖𝑛| ≪ |𝑉𝑖𝑛|  

|𝑣𝐶1| ≪ |𝑉𝐶1| 

|𝑣𝐶2| ≪ |𝑉𝐶2| 

|𝑣𝐶3| ≪ |𝑉𝐶3| 

|𝑣𝐶4| ≪ |𝑉𝐶4| 

|𝑣𝐶5| ≪ |𝑉𝐶5|  

|𝑖̂𝐿1| ≪ |𝐼𝐿1|   

|𝑖̂𝐿2| ≪ |𝐼𝐿2|   

|𝑣𝑜| ≪ |𝑉𝑜|     

|�̂�| ≪ |𝑑| 

(60) 

    Where 𝑉𝑖𝑛, 𝑉𝐶1, 𝑉𝐶2, 𝑉𝐶3, 𝑉𝐶4, 𝑉𝐶5, 𝑉𝑜, 𝐼𝐿1, 𝐼𝐿2, d are the dc quiescent values of the input variable, 

state variables, output variable, and the control variable, and 𝑣𝑖𝑛, 𝑣𝐶1, 𝑣𝐶2, 𝑣𝐶3, 𝑣𝐶4, 𝑣𝐶5, 𝑖�̂�1, 

𝑖�̂�2, 𝑣𝑜, and �̂� are the corresponding small ac perturbation signals. The small-signal model of the 

proposed converter is given in (61).   
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{

[

𝑑𝑖𝐿1(𝑡)

𝑑𝑡
𝑑𝑖𝐿2(𝑡)

𝑑𝑡
𝑑𝑣𝐶1(𝑡)

𝑑𝑡
𝑑𝑣𝐶2(𝑡)

𝑑𝑡
𝑑𝑣𝐶3(𝑡)

𝑑𝑡
𝑑𝑣𝐶4(𝑡)

𝑑𝑡
𝑑𝑣𝐶5(𝑡)

𝑑𝑡 ]

=

[

0 0
𝑑(𝑡) − 1

𝐿1
0 0 0 0

0 0
𝑑(𝑡)

𝐿2
0

−1

𝐿2
0 0

1 − 𝑑(𝑡)

𝐶1

−𝑑(𝑡)

𝐶1

−1

𝑅𝐶1
+
𝑑(𝑡) − 1

𝐶1𝑟𝐶4

−1

𝑅𝐶1
0

1 − 𝑑(𝑡)

𝐶1𝑟𝐶4

−1

𝑅𝐶1

0 0
−𝑑(𝑡)

𝑅𝐶2

−𝑑(𝑡)

𝑅𝐶2
+
𝑑(𝑡) − 1

𝐶2𝑟𝐶2

1 − 𝑑(𝑡)

𝐶2𝑟𝐶2
0 −

𝑑(𝑡)

𝑅𝐶2

0
1

𝐶3

𝑑(𝑡) − 1

𝑅𝐶3
(
1

𝑟𝐶2
−
1

𝑅
)(
1 − 𝑑(𝑡)

𝐶3
)

𝑑(𝑡) − 1

𝐶3𝑟𝐶2
0

𝑑(𝑡) − 1

𝑅𝐶3

0 0
1 − 𝑑(𝑡)

𝐶4𝑟𝐶4
0 0

−1

𝐶4𝑟𝐶4

𝑑(𝑡)

𝐶4𝑟𝐶4

0 0
−1

𝑅𝐶5

−1

𝑅𝐶5
0

𝑑(𝑡)

𝐶5𝑟𝐶4

−𝑑(𝑡)

𝑟𝐶4𝐶5
−

1

𝑅𝐶5]

  

[

𝑖𝐿1(𝑡)

𝑖𝐿2(𝑡)

𝑣𝐶1(𝑡)

𝑣𝐶2(𝑡)

𝑣𝐶3(𝑡)

𝑣𝐶4(𝑡)

𝑣𝐶5(𝑡)]

+ [
1

𝐿1
0 0 0 0 0 0]

𝑇

𝑣𝑖𝑛(𝑡)  (59)

𝑣𝑜(𝑡) = [0 0 1 1 0 0 1] [𝑖𝐿1(𝑡) 𝑖𝐿2(𝑡) 𝑣𝐶1(𝑡) 𝑣𝐶2(𝑡) 𝑣𝐶3(𝑡) 𝑣𝐶4(𝑡) 𝑣𝐶5(𝑡)]
𝑇

{

𝑣𝑖𝑛(𝑡) = 𝑉𝑖𝑛 + 𝑣𝑖𝑛  

𝑣𝐶1(𝑡) = 𝑉𝐶1 + 𝑣𝐶1 

𝑣𝐶2(𝑡) = 𝑉𝐶2 + 𝑣𝐶2 

𝑣𝐶3(𝑡) = 𝑉𝐶3 + 𝑣𝐶3 

𝑣𝐶4(𝑡) = 𝑉𝐶4 + 𝑣𝐶4 

𝑣𝐶5(𝑡) = 𝑉𝐶5 + 𝑣𝐶5 

𝑖𝐿1(𝑡) = 𝐼𝐿1 + 𝑖̂𝐿1    

𝑖𝐿2(𝑡) = 𝐼𝐿2 + 𝑖̂𝐿2    

𝑣𝑜(𝑡) = 𝑉𝑜 + �̂�𝑜       

𝑑(𝑡) = 𝑑 + �̂� 

with 

{

|𝑣𝑖𝑛| ≪ |𝑉𝑖𝑛|  

|𝑣𝐶1| ≪ |𝑉𝐶1| 

|𝑣𝐶2| ≪ |𝑉𝐶2| 

|𝑣𝐶3| ≪ |𝑉𝐶3| 

|𝑣𝐶4| ≪ |𝑉𝐶4| 

|𝑣𝐶5| ≪ |𝑉𝐶5| 

|𝑖̂𝐿1| ≪ |𝐼𝐿1|   

|𝑖̂𝐿2| ≪ |𝐼𝐿2|   

|𝑣𝑜| ≪ |𝑉𝑜|     

|�̂�| ≪ |𝑑| 

(60)
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{

[

𝑑𝑖�̂�1(𝑡)

𝑑𝑡
𝑑𝑖�̂�2(𝑡)

𝑑𝑡
𝑑�̂�𝐶1(𝑡)

𝑑𝑡
𝑑�̂�𝐶2(𝑡)

𝑑𝑡
𝑑�̂�𝐶3(𝑡)

𝑑𝑡
𝑑�̂�𝐶4(𝑡)

𝑑𝑡
𝑑�̂�𝐶5(𝑡)

𝑑𝑡 ]

=

[

0 0
𝑑 − 1

𝐿1
0 0 0 0

0 0
𝑑

𝐿2
0

−1

𝐿2
0 0

1 − 𝑑

𝐶1

−𝑑

𝐶1
−(

1

𝑅𝐶1
+
1 − 𝑑

𝐶1𝑟𝐶4
)

−1

𝑅𝐶1
0

1 − 𝑑

𝐶1𝑟𝐶4

−1

𝑅𝐶1

0 0
−𝑑

𝑅𝐶2
−(

𝑑

𝑅𝐶2
+
1 − 𝑑

𝐶2𝑟𝐶2
)

1 − 𝑑

𝐶2𝑟𝐶2
0 −

𝑑

𝑅𝐶2

0
1

𝐶3

𝑑 − 1

𝑅𝐶3
(
1

𝑟𝐶2
−
1

𝑅
) (
1 − 𝑑

𝐶3
)

𝑑 − 1

𝐶3𝑟𝐶2
0

𝑑 − 1

𝑅𝐶3

0 0
1 − 𝑑

𝐶4𝑟𝐶4
0 0

−1

𝐶4𝑟𝐶4

𝑑

𝐶4𝑟𝐶4

0 0
−1

𝑅𝐶5

−1

𝑅𝐶5
0

𝑑

𝐶5𝑟𝐶4
−(

𝑑

𝑟𝐶4𝐶5
+

1

𝑅𝐶5
)
]

[

𝑖�̂�1(𝑡)

𝑖�̂�2(𝑡)

�̂�𝐶1(𝑡)

�̂�𝐶2(𝑡)

�̂�𝐶3(𝑡)

�̂�𝐶4(𝑡)

�̂�𝐶5(𝑡)]

+

[

1

𝐿1
0
0
0
0
0
0 ]

�̂�𝑖𝑛(𝑡) +

[

0 0
1

𝐿1
0 0 0 0

0 0
1

𝐿2
0 0 0 0

−1

𝐶1

−1

𝐶1

1

𝐶1𝑟𝐶4
0 0

−1

𝐶1𝑟𝐶4
0

0 0
−1

𝑅𝐶2

−1

𝑅𝐶2
+

1

𝐶2𝑟𝐶2

−1

𝐶2𝑟𝐶2
0 0

0 0
1

𝑅𝐶3

1

𝑅𝐶3
−

1

𝐶3𝑟𝐶2

1

𝐶3𝑟𝐶2
0

1

𝑅𝐶3

0 0
−1

𝐶4𝑟𝐶4
0 0 0

−1

𝐶4𝑟𝐶4

0 0 0 0 0
1

𝐶4𝑟𝐶4

−1

𝐶4𝑟𝐶4]

[

𝐼𝐿1
𝐼𝐿2
𝑉𝐶1
𝑉𝐶2
𝑉𝐶3
𝑉𝐶4
𝑉𝐶5]

�̂�(𝑡)

�̂�𝑜(𝑡) = [0 0 1 1 0 0 1] [𝑖�̂�1(𝑡) 𝑖�̂�2(𝑡) �̂�𝐶1(𝑡) �̂�𝐶2(𝑡) �̂�𝐶3(𝑡) �̂�𝐶4(𝑡) �̂�𝐶5(𝑡)]
𝑇

(61) 

𝐺𝑣𝑜𝑑(S) =
�̂�𝑜

�̂�
=

𝑆6 + 𝑎5𝑆
5 + 𝑎4𝑆

4 + 𝑎3𝑆
3 + 𝑎2𝑆

2 + 𝑎1𝑆 + 𝑎0
𝑏7𝑆

7 + 𝑏6𝑆
6 + 𝑏5𝑆

5 + 𝑏4𝑆
4 + 𝑏3𝑆

3 + 𝑏2𝑆
2 + 𝑏1𝑆 + 𝑏0

(62) (�̂�𝑖𝑛 = 0)

Where a6 = -5.299e22, a5 = -1.276e32, a4 = -6.333e37, a3 = -7.675e42, a2 = -1.157e45, a1 = -9.863e49, a0 = -2.191e50, 

b7 = 8.503e17, b6 = 1.094e24, b5 = 3.775e29, b4 = 3.839e34, b3 = 8.207e36, b2 = 5.137e41, b1 = 1.192e43, b0 = 2.192e47. 

𝐺𝐶 = (𝐾𝑃 +
𝐾𝐼
𝑆
)  𝐺𝑣𝑜𝑑(S)

=
𝑒7𝑆

7 + 𝑒6𝑆
6 + 𝑒5𝑆

5 + 𝑒4𝑆
4 + 𝑒3𝑆

3 + 𝑒2𝑆
2 + 𝑒1𝑆 + 𝑒0

𝑓8𝑆
8 + 𝑓7𝑆

7 + 𝑓6𝑆
6 + 𝑓5𝑆

5 + 𝑓4𝑆
4 + 𝑓3𝑆

3 + 𝑓2𝑆
2 + 𝑓1𝑆

(63) 

Where e7 = -1.59e19, e6 = - 3.828e28, e5 = - 1.9e34, e4 = - 2.303e39, e3 = - 3.495e41, e2 = - 2.959e46, e1 = - 9.829e46, 

e0 = - 7.232e46, f8 = 8.5e17, f7 = 1.094e24, f6 = 3.775e29, f5 = 3.839e34, f4 = 8.207e36, f3 = 5.137e41, f2 = 1.192e43, f1 

= 2.192e47. 
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    By means of Laplace transform on (61), and the parameters of the experimental setup in Table 

III, the control-to-output transfer function 𝐺𝑣𝑜𝑑(S) can be obtained in the frequency domain from

the time domain as in (62). 

5.8 Closed-Loop Voltage Controller 

    In the developed experiment, a proportional integral (PI) controller is utilized to regulate the 

output voltage of the proposed converter. The structure of the closed-loop voltage controller is 

shown in Figure.5.8 and the parameters of the adopted PI controller are KP =0. .0003 and KI = 

0.00033. The compensated transfer function of the proposed converter is given in (63). The Bode 

plots of the compensated transfer function of the proposed converter are shown in Figure 5.9. 

These bode plots show that the proposed converter with the adopted PI voltage controller has 

positive gain and phase margins, which indicates a stable operation. 

Figure 5.8: Closed-loop PI voltage controller of the proposed converter. 
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Figure 5.9:  Bode plot of the compensated transfer function of the proposed converter. 

5.9 Experimental Results and Analysis 

    To verify the theoretical analyses of the proposed converter, a scaled-down experimental 

prototype was built, as shown in Figure 5.10. The developed prototype has a rated output power 

of 1.3kW, and its power circuit is built with (GS66516T) GaN HEMT and (IDH20G65C6) SiC 

diodes. The currents and voltages are measured via sense resistors, and the converter operation is 

controlled by a (TMS320f28377s) microcontroller. The values of the used inductors and capacitors 

used in the developed prototype are enlisted in Table 5.3. The voltage profile of  “CH40020F-S” 

fuel cell from “Zahn Electronics INC.” is depicted by a programmable power supply. 
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Figure 5.10: Experimental setup. 

Table 5.3: EXPERIMENT PARAMETERS 

Parameters and Components Values 

Rated power Po 1.3 kW 

Output voltage Vo 800V 

Power switch Q GS66516T 

Power Diodes D1, D2, D3, D4 IDH20G65C6 

Inductors L1, L2 250 µH 

Capacitors C1, C2, C3, C4, C5 220 µF 

Switching frequency fs 100 KHz 

Load R (Case study I) 650 Ω 

Load R (Case study II) 2000 Ω 

Microcontroller TMS320f28377s 

Two case studies are investigated in this section, namely: 1) Case study I: aims to verify 

the theoretical analysis of the proposed converter when it operates in CCM. 2) Case study II: aims 

to validate the important relationships in the theoretical analysis of the proposed converter when 

it operates in DCM. 

    The values of inductors and capacitors are enlisted in Table 5.3. In case study I, the input voltage 

Vin is 90V, the load resistor R is 650 Ω, and d = 0.7. In case study II, Vin is 150V, the load resistor 

R is 2000 Ω, and d = 0.4. 
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Case study I investigates the operation of the proposed converter during CCM. The values of 

inductors, capacitors, load resistance, input voltage, and duty cycle are as following: L1 = L2 = 250 

µH, C1 → C5 = 220 µF, R = 650 Ω, and d = 0.7. The experimental results for this case study are 

shown in Figure 5.11. The dimensionless parameter K is defined by (47), thus, it can be calculated 

for case study I as following: 

𝐾 =
𝑓𝑠 𝐿𝑒𝑞

𝑅
=
10512510−6

650
= 0.019 (64) 

The critical value of K can be calculated by (52), as shown in (65): 

𝐾𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
𝑑(1 − 𝑑)2

6(𝑑 + 2)
=
0.7(0.3)2

6(2.7)
= 3.8910−3 (65) 

Since K is greater than Kcritical, the converter operates in CCM during case study I. The voltage on 

the five capacitors and the output voltage can be calculated using (11) as following: 

{

𝑉𝐶1 = 𝑉𝐶4 = 𝑉𝐶5 =
𝑉𝑖𝑛

(1−𝑑)
=

90

0.3
= 300 V

𝑉𝐶2 = 𝑉𝐶3 =
𝑑 𝑉𝑖𝑛

(1−𝑑)
=

0.790

0.3
= 210 𝑉 

𝑉𝑜 =
2+𝑑

1−𝑑
 𝑉𝑖𝑛 =

2.7

0.3
90 = 810 V 

(66) 

Which closely agree with the experimental results in Figure 5.11(b), (c), and (d). Also, the inductor 

currents and the load current can be calculated by (15) and (16), additionally, the ripple currents 

can be calculated using (57). 

 {
𝐼𝐿2 = 𝐼𝑜 =

𝑉𝑜

𝑅
=

(2+𝑑) 𝑉𝑖𝑛

𝑅(1−𝑑)
=

2.790

6500.3
≈ 1.25 A 

𝐼𝐿1 = 𝑀𝐼𝐿2 =
(2+𝑑)𝑉𝑜

(1−𝑑)𝑅
= (

2+𝑑

1−𝑑
)
2 𝑉𝑖𝑛

𝑅
= (

2.7

0.3
)
2 90

650
= 11.2 𝐴

(67) 

{

∆𝑖𝐿1 = 
𝑑 𝑉𝑖𝑛 

𝑓𝑠 𝐿1
=

0.790

10525010−6
= 2.5 A

∆𝑖𝐿2 = 
𝑑 𝑉𝑖𝑛 

𝑓𝑠  𝐿2
=

0.790

10525010−6
= 2.5 A

(68)
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Which closely agree with the experimental results in Figure 5.11(a). The voltage stresses on the 

power switch and diodes can be obtained by (13), as following: 

 𝑉𝑄 = 𝑉𝐷1 = 𝑉𝐷2 = 𝑉𝐷3 = 𝑉𝐷4 =
𝑉𝑖𝑛

(1 − 𝑑)
=
90

0.3
= 300 V (69) 

These voltage stresses calculated by (69) are close to the experimental results in Figure 5.11(e) 

and (f). The current stresses on the power switch and diodes can be calculated using (23)-(27). 

{

𝑖𝑄 =
1+2𝑑

𝑑(1−𝑑)
𝐼𝑜 =

(1+1.4)

0.70.3
1.26 = 14.4 A

𝑖𝐷1 = 𝑖𝐷2 = 𝑖𝐷3 =
𝐼𝑜

(1−𝑑)
=

1.26

0.3
= 4.2 A

𝑖𝐷4 =
𝐼𝑜

𝑑
=

1.26

0.7
= 1.8 A 

(70) 

The current stresses calculated in (70) are verified by the experimental results in Figure 5.11(h) 

and (g). 

       In order to evaluate the dynamic performance of the proposed converter and the adopted PI 

voltage controller, the input voltage is changed gradually from 320 V to 80 V while keeping the 

reference output voltage fixed at 800 V. Figure 5.11(i) shows the output voltage and the current of 

L1 when the input voltage gradually goes down from 320 V to 80 V, and it is clear that the 

proposed converter with the adopted PI controller is capable of holding the output voltage fixed 

during the wide fluctuation in the input voltage. Based on equation (12), IL1 can be calculated when 

Vin = 320 V and when Vin = 80 V, as IL1 ≈ 3 A and IL1 ≈ 12.3 A, respectively, which closely agree 

with the measured current of L1 shown in Figure 5.11(i).   

     Figure 5.13 shows the calculated power loss distributions for the experiment in case study I. 

The capacitors’ conduction losses are dominant with 20.14 W which account for 31% of the total 

power loss in this case study. The reason for the high capacitors’ losses is the utilization of 

electrolytic capacitors in the experimental prototype, if film capacitors were used, the capacitors’ 

conduction losses would have been lower. The switching loss of the power switch comes next with 
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15.8 W which accounts for 25% of the total power loss. The losses of the diodes equal 13.5 W 

which account for 21% of the total power loss. The conduction losses of the two inductors equal 

8.6W and account for 13% of the total power loss, and the conduction loss of the power switch 

equal 6 W which accounts for 9% of the total power loss. The low switching and conduction 

losses of the power switch is due to the utilization of a GaN HEMT as a power switch, which has 

lower on resistance, lower total charge, and lower output capacitance compared to its silicon 

(Si) and SiC power counterparts. 

    The plots between the measured efficiency and the input voltage of the proposed converter are 

shown in Figure 5.14 (a), as they were measured using a power analyzer (Tektronix PA3000). 

Two measured efficiency curves are given in Figure 5.14 to depict the efficiency of the 

proposed converter when the output power equals 1 kW and 1.3 kW, the output voltage is fixed 

at 800 V, and the input voltage varies from 90 V up to 300 V. When Po equals 1.3 kW, the 

minimum efficiency is 94.6% when the input voltage is 90 V, and the maximum efficiency is 

97.3% when the input voltage is 220 V. When Po is 1 kW, the minimum efficiency is 95.5% 

when the input voltage is 90 V, and the maximum efficiency is 97.6% when the input voltage is 

220 V. For the efficiency curves in Figure 5.14(a), the efficiency is low when input voltage is 

low and this is because of the high conduction losses in the input inductor, capacitors, diodes, 

and switch (since the converter is operating at relatively high values of duty cycle), and the 

efficiency keeps improving as the input voltage increases. After a certain input voltage value, 

the efficiency starts dropping due to the increased switching loss of the power switch. The 

calculated efficiency curves of the proposed converter when the output power equals 1 kW and 

1.3 kW, the output voltage is fixed at 800 V, and the input voltage varies from 90 V up to 300 V 

are presented in Figure 5.14(a). The small deviations between the measured and calculated 

efficiency curves is due to the 
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assumptions used in loss calculation. The measured efficiency curves when the output voltage is 

fixed at 800 V and the output power is changed from 500 W to 1.3 kW when the input voltage is 

100 V and 200 V are shown in Figure 5.14(b). Based on Figure 5.14(b), the maximum efficiency 

is 97.8% when the input voltage is 200 V and the output power is 500 W, while the maximum 

efficiency is 97% when the input voltage is 100 V and the output power is 500 W.   

    Case study II investigates the operation of the proposed converter in DCM. The load is 

represented by a 2000Ω resistance, and the input voltage is set at 150 V. In this case study, the 

closed-loop voltage controller is deactivated, and the converter operates with duty cycle of 0.4. 

The dimensionless parameter K is defined by (47), hence, it can be calculated for case study II as 

following: 

𝐾 =
𝑓𝑠 𝐿𝑒𝑞

𝑅
=
10512510−6

2000
= 6.2510−3 (71) 

The critical value of K can be calculated by (52), as shown in (72): 

𝐾𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
𝑑(1 − 𝑑)2

6(𝑑 + 2)
=
0.4(0.6)2

6(2.4)
= 0.01 (72) 

Since Kcritical is greater than K, the converter operates in DCM during case study II. 

    The current ripples of the two inductors can be obtained by means of (43), as following: 

{

∆𝑖𝐿1 =
𝑑 𝑉𝑖𝑛
𝑓𝑠𝐿1

=
0.4150

10525010−6
= 2.4 A

∆𝑖𝐿2 =
𝑑 𝑉𝑖𝑛
𝑓𝑠𝐿2

=
0.4150

10525010−6
= 2.4 A

(73)
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 5.11: Experimental results of case study I 

Figure 5.12: Breakdown of losses in Case I 
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(a) (b) 

Figure 5.13: Measured efficiency curves. 

Which closely agree with the experimental results in Figure 5.15(a). The voltages on the five 

capacitors and the output voltage can be calculated using (48) and (51). 

𝑉𝑜 = 𝑀𝐷𝐶𝑀𝑉𝑖𝑛 = (1 + √1 + (
𝑑2

2𝐾
))  𝑉𝑖𝑛 = (1 + √1 + (

0.42

26.2510−3
)) 150

≈ 707 V 

(74) 

{
𝑉𝐶1 = 𝑉𝐶4 = 𝑉𝐶5 =

𝑉𝑖𝑛+ 𝑉𝑜

3
=

150+707

3
=  285.7 V 

𝑉𝐶2 = 𝑉𝐶3 =
𝑉𝑜 −2𝑉𝑖𝑛

3
=

707−2150

3
= 135.7 V      

(75)



137 

(a) (b) (c) 

(d) (e) (f) 

Figure 5.14: Experimental results for case study II. 

The experimental results in Figure 5.15(b) and (c) closely agree with the calculated values in (74) 

and (75). The peak switch and diodes currents can be obtained by means of (44), (54), and (55), 

as shown in (76). 

    The experimental results in Figure 5.15(e) and (f) are close to the values calculated by (76). The 

spikes in the switch and diode currents are mainly caused by the capacitive charges of the SiC 

Schottky diodes. 
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{

𝑖𝐷1(𝑝𝑒𝑎𝑘) = 𝑖𝐷2(𝑝𝑒𝑎𝑘) = 𝑖𝐷3(𝑝𝑒𝑎𝑘) =
𝑑 𝑉𝑖𝑛
3𝑓𝑠 𝐿𝑒𝑞

 =
0.4150

310512510−6
= 1.6 A

𝑖𝑑4(𝑝𝑒𝑎𝑘) =
2𝑉𝑜
𝑑 𝑅

=
2707

0.42000
≈ 1.8 A 

𝑖𝑄(𝑝𝑒𝑎𝑘) =
𝑑 𝑉𝑖𝑛
𝑓𝑠 𝐿𝑒𝑞

=
0.4150

10512510−6
= 4.8 A 

(76) 

5.10 Conclusion 

A new single-switch step-up dc-dc converter that utilizes a switched-capacitor multiplier and 

an integrated LC2D output network was proposed for fuel cell vehicles in this chapter. The 

proposed converter has a wide voltage gain range to suit the wide voltage swings of the fuel cell. 

The voltage stress on the semiconductor devices of the proposed converter is less than half 

of the output voltage, which enables the utilization of a power switch with lower rated voltage. 

In addition, the input current ripple is low and the potential difference between the grounds of its 

input and output terminals is a constant voltage, which prolongs the lifetime of the fuel cell and 

reduces the radiated EMI. A 1.3 kW 800 V prototype was built using a GaN transistor and 

SiC diodes, and the experimental measurements verified the theoretical analysis. 
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Chapter 6 A New SEPIC-Based Step-Up DC-DC Converter with Wide Conversion 

Ratio for Fuel Cell Vehicles: Analysis and Design 

6.1     Introduction 

In this chapter, a new SEPIC-based step-up dc-dc converter which integrates 

discontinuous-current quasi-Z-source (qZS) and switched-capacitor networks is proposed. 

The proposed converter has a low input current ripple, wide voltage gain range, low 

voltage stress on the semiconductor devices, and a constant potential difference between the 

grounds of its input and output ports. These features make the proposed converter an excellent 

interface between the fuel cell and the dc-link bus inside the electric vehicle. The analysis of 

the proposed converter for steady-state operations in continuous conduction mode (CCM) 

and discontinuous conduction mode (DCM) are given.  Finally, a 3-kW/800-V scaled-down 

prototype was built using a Gallium Nitride (GaN) power switch and Silicon Carbide (SiC) 

diodes to validate the feasibility of the proposed converter and its theoretical analysis.    

6.2 Structure and Operating Principles of the Proposed Converter 

6.2.1 Configuration of the Proposed Converter 

    The proposed step-up dc-dc converter topology is shown in Figure 6.1, and it is composed of 

one power switch (Q), five diodes (D1 → D5), seven capacitors (C1 → C7), and three inductors (L1 

→ L3). The fuel cell is represented by a voltage source (Vin), and the load is represented by a

resistance (R). The proposed converter is based on the conventional SEPIC converter, as Q is the 

main switch, L1 is the input inductor, D1 is the output diode, and C6 is the energy transfer capacitor 

of the conventional SEPIC. The second inductor of the conventional SEPIC is replaced by a 

discontinuous-current qZS network (L2, L3, D2, C2, C7). In addition, a switched-capacitor network 

(D3 → D5, C3 → C5) is utilized. The capacitors of the qZS and the switched-capacitor networks 
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are stacked in-series with the output capacitor of the conventional SEPIC to enhance the voltage 

gain of the proposed converter, and reduce the voltage stresses on the semiconductor devices and 

capacitors. 

Figure 6.1: The schematic of the proposed converter. 

6.2.2 Switching States Analysis 

        The proposed converter has two switching states, namely: State 0, and State 1. In State 1, Q 

is on, D1→D4 are off, and D5 is on. In this switching state, C1, C2, C3, and C5 discharge, while C4, 

C6, and C7 charge. Figure 6.3(a) shows the current flow paths during switching state 1. By means 

of Kirchhof’s Voltage Law (KVL), and the equivalent circuit shown in Figure 6.3(a), we can 

deduce the following relationships:  

{

𝑉𝐿1 = 𝑉𝑖𝑛       
𝑉𝐿2 = 𝑉𝐶3 − 𝑉𝐶6 
𝑉𝐿3 = 𝑉𝐶2 + 𝑉𝐶3 − 𝑉𝐶6 − 𝑉𝐶7
𝑉𝐶4 = 𝑉𝐶5       

(1) 

    In State 0, Q is off, D1→D4 are on, and D5 is off. In this switching state, C1, C2, C3, and C5 

charge, while C4, C6, and C7 discharge. Figure 6.3(b) shows the current flow paths during switching 
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state 0. By applying the KVL rule on the equivalent circuit shown in Figure 6.3(b), we get the 

following relationships:   

{

𝑉𝐿1 = 𝑉𝑖𝑛 − 𝑉𝐶3 = 𝑉𝑖𝑛 − 𝑉𝐶5 
𝑉𝐿2 = −𝑉𝐶2 = −𝑉𝐶6       
𝑉𝐿3 = −𝑉𝐶1 = −𝑉𝐶7       

(2) 

(a) (b) 

Figure 6.2: Figure 6.2: Key waveforms of the proposed converter. (a) CCM operation. 

(b) DCM operation.
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(a) (b) 

Figure 6.3: Equivalent circuits of the proposed converter (a) During State 1. (b) During State 

0. 

6.2.3 Analysis of Voltage Gain and Voltage Stress 

    By means of equations (1) and (2), and by applying the voltage second balance rule on the three 

inductors, where the period of State 1 is dT and the period of State 0 is (1-d)T, as shown in Figure 

6.2(a), where T is the switching periodic time, and d is the duty cycle, we get the following 

relationships: 

{

𝑉𝐶1 = 𝑉𝐶2 = 𝑉𝐶6 = 𝑉𝐶7 = 
𝑑𝑉𝑖𝑛
1 − 𝑑

𝑉𝐶3 = 𝑉𝐶4 = 𝑉𝐶5 = 
𝑉𝑖𝑛
1 − 𝑑

𝑉𝑜 = 𝑉𝐶1 + 𝑉𝐶2 + 𝑉𝐶3 + 𝑉𝐶4 = (
2 + 2𝑑

1 − 𝑑
)𝑉𝑖𝑛

𝑀 =
𝑉𝑜
𝑉𝑖𝑛

=
2 + 2𝑑

1 − 𝑑

(3) 

    Where M is the voltage gain of the converter, Vin and Vo are the input and output voltages, VC1

→VC7 are the voltages across the capacitors C1 → C7. By means of Figure 6.3, the voltage stress

across the semiconductor devices can be deduced, as following: 

𝑉𝑄 = 𝑉𝐷1 = 𝑉𝐷2 = 𝑉𝐷3 = 𝑉𝐷4 = 𝑉𝐷5 =
𝑉𝑖𝑛
1 − 𝑑

(4)
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    Using (3) and (4), the voltage stress on the semiconductor devices can be expressed as a function 

on Vo and M, as follows: 

𝑉𝑄 = 𝑉𝐷1 = 𝑉𝐷2 = 𝑉𝐷3 = 𝑉𝐷4 = 𝑉𝐷5 = (
2 +𝑀

4𝑀
)𝑉𝑜 (5) 

6.2.4 Analysis of Current Stress 

    Assuming a lossless operation of the converter (i.e. Vin  IL1 = Vo  Io), thus, the currents IL2, IL3, 

and IL1 can be calculated as in (6) and (7), where 𝐼𝑜 is the output current:

𝐼𝐿2 = 𝐼𝐿3 = 𝐼𝑜 = 
𝑉𝑜

𝑅
  (6)

IL1 = (
2+2𝑑

1−𝑑
) 𝐼𝑜 = (

2+2𝑑

1−𝑑
) 
𝑉𝑜

𝑅
(7) 

    By applying the Kirchhof’s Current Law (KCL) on the equivalent circuits of the proposed 

converter, shown in Figure 6.3, the current stresses on the power switch and diodes can be deduced 

as follows: 

𝑖𝑄 = (
1 + 3𝑑

𝑑(1 − 𝑑)
) 𝐼𝑜 = (

(𝑀 − 1)(𝑀 + 2)

𝑀 − 2
) 𝐼𝑜 (8) 

𝑖𝐷1 = 𝑖𝐷2 = 𝑖𝐷3 = 𝑖𝐷4 =
𝐼𝑜

1 − 𝑑
= (

𝑀 + 2

4
) 𝐼𝑜 (9) 

𝑖𝐷5 =
𝐼𝑜
𝑑
= (

𝑀 + 2

𝑀 − 2
) 𝐼𝑜 (10) 

6.2.5 Influence of the Parasitic Elements on Voltage Gain    

    In order to investigate the effect of the parasitic elements of the passive and active components 

on the voltage gain of the proposed converter, some of these elements were taken into account in 

the model of the converter. The circuit of the proposed converter with the included parasitic 

elements is shown in Figure 6.4. In this non-ideal converter model, the following parasitic elements 

were included: the series resistances of the inductors (𝑟𝐿1 = 𝑟𝐿2 = 𝑟𝐿3 ≈ 𝑟𝐿), the equivalent series

resistances of the capacitors (𝑟𝐶1 = 𝑟𝐶2 = 𝑟𝐶3 = 𝑟𝐶4 = 𝑟𝐶5 = 𝑟𝐶6 = 𝑟𝐶7 ≈ 𝑟𝐶), the on resistance of
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the power switch(𝑟𝑆), the forward resistances of the diodes (𝑟𝐷1 = 𝑟𝐷2 = 𝑟𝐷3 = 𝑟𝐷4 = 𝑟𝐷5 ≈ 𝑟𝐷),

and their respective forward voltages (𝑉𝐹1 = 𝑉𝐹2 = 𝑉𝐹3 = 𝑉𝐹4 = 𝑉𝐹5 ≈ 𝑉𝐹). The values for the

operating and assumed parasitic parameters are as follows: 𝑉𝑖𝑛 = 100,  𝑟𝐿 = 35 mΩ, 𝑟𝐶 =

200 mΩ,  𝑟𝐷 = 80 mΩ,  𝑟𝑆 = 25 mΩ,  𝑉𝐹 = 1.3 V, 𝑅 = 300 Ω. When these parasitic elements are 

taken into account, a new equation can be deduced to describe the static voltage gain of the 

proposed converter (𝑀`), as shown in (11).

Figure 6.4: The proposed converter with the parasitic elements. 

Figure 6.5: Static voltage gain curves for the ideal/non-ideal models of the proposed 

converter.
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   Figure 6.5 shows the voltage gain curves of the proposed converter described by the ideal and 

non-ideal models of the converter. It is noticed that the ideal and non-ideal models of the proposed 

converter are close to each other for 𝑑 = 0 → 0.75, as 𝑀` ≈ 13 at 𝑑 = 0.75, which shows the

capability of the proposed converter to achieve high step-up voltage gains.  

𝑀` =
𝑅(1 − 𝑑)(𝑉𝑖𝑛 − 3𝑉𝐹 + 3𝑑 𝑉𝐹 + 2𝑑 𝑉𝑖𝑛)

𝑉𝑖𝑛[𝑅 + 4𝑟𝐷(1 − 𝑑) + 4𝑟𝑆 + 6𝑟𝐿 + 2𝑑(6𝑟𝐶 + 2𝑟𝐿 + 6𝑟𝑆 − 𝑅) + 𝑑
2(𝑅 + 6𝑟𝐿 − 2𝑟𝐶 − 10𝑟𝐶𝑑)]

(11) 

6.2.6 Efficiency Analysis 

   Calculating the different power losses in the components of the converter is essential to properly 

select the cooling system. The total power loss PLoss of the proposed converter can be calculated 

by (12), where 𝑃𝑄_𝑠𝑤, 𝑃𝑄_𝑐𝑜𝑛𝑑, 𝑃𝐷, 𝑃𝐿_𝑐𝑜𝑛𝑑, 𝑃𝐿_𝑐𝑜𝑟𝑒, and 𝑃𝐶 are the switching and conduction losses 

of the power switch, the conduction loss of the diodes, the conduction and core losses of the 

inductors, and the conduction loss of the capacitors.    

Ploss = 𝑃𝑄_𝑠𝑤 ,+ 𝑃𝑄_𝑐𝑜𝑛𝑑+ 𝑃𝐷 + 𝑃𝐿_𝑐𝑜𝑛𝑑+ 𝑃𝐿_𝑐𝑜𝑟𝑒+ 𝑃𝐶 (12) 

   The losses of the power switch Q can be calculated as follows: 

𝑃𝑄_𝑠𝑤 = 𝑓𝑠(0.5𝑉𝑄𝑖𝑄(𝑡𝑟 + 𝑡𝑓) + 0.5𝑉𝑠
2𝐶𝑂𝑆𝑆) (13) 

𝑃𝑄_𝑐𝑜𝑛𝑑 = ((
1+3𝑑

√𝑑(1−𝑑)
) 𝐼𝑜)

2

 𝑅𝐷𝑆 (14) 

    Where fs, RDS, tr, tf, and COSS, are the switching frequency, on resistance, rise time, fall time, and 

the parasitic output capacitance of Q, respectively.  
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    The losses of the inductors can be derived using (15), and (16), where RL1, RL2, RL3, lc1, lc2, lc3, 

Ac1, Ac2, Ac3, ∆B1, ∆B2, and ∆B3 are the equivalent series resistances of the three inductors, the 

magnetic flux path lengths of the cores of the three inductors, the cross sectional areas of the cores 

of the three inductors, and the three inductor’s ac magnetic flux density. 

𝑃𝐿_𝑐𝑜𝑛𝑑 = ∑𝐼𝐿𝑛
2  𝑅𝐿𝑛

𝑛=3

𝑛=1

(15) 

𝑃𝐿_𝑐𝑜𝑟𝑒 =∑ 𝑙𝑐𝑛 𝐴𝑐𝑛 (𝑎 ∆𝐵𝑛
𝑏 𝑓𝑛

𝐶)

𝑛=3

𝑛=1

(16) 

    Equation (16), is the Steinmetz equation and it is an empirical formula, where a, b, and c are 

fitting parameters and can be gotten from the core manufacturer datasheet.   

   The conduction losses of the five diodes can be calculated by means of (17), as follows: 

𝑃𝐷 = 5 𝑉𝑓𝑑 𝐼𝑜 (17) 

    Where 𝑉𝑓𝑑 is the forward voltage of each diode. The conduction loss of the capacitors can be 

extracted as following: 

𝑃𝐶 = ∑𝐼𝐶𝑛_𝑟𝑚𝑠
2  𝐸𝑆𝑅𝐶𝑛

𝑛=7

𝑛=1

(18) 

    Where ESRC1→ESRC7 and iC1_rms→iC7_rms, are the equivalent series resistances and the rms 

currents of the seven capacitors, respectively. The rms currents of the seven capacitors can be 

calculated by (19)-(23).  
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𝒊𝑪𝟏_𝒓𝒎𝒔 = 𝒊𝑪𝟕_𝒓𝒎𝒔 = 𝑰𝒐√
𝒅

𝟏 − 𝒅

(19) 

𝒊𝑪𝟐_𝒓𝒎𝒔 = 𝒊𝑪𝟔_𝒓𝒎𝒔 = 𝟐𝑰𝒐√
𝒅

𝟏 − 𝒅
(20) 

𝒊𝑪𝟑_𝒓𝒎𝒔 = 𝟑𝑰𝒐√
𝒅

𝟏 − 𝒅
(21) 

𝒊𝑪𝟒_𝒓𝒎𝒔 = 𝑰𝒐√
𝟏 − 𝒅

𝒅
(22) 

𝒊𝑪𝟓_𝒓𝒎𝒔 = 𝑰𝒐√
𝟏

𝒅(𝟏 − 𝒅)
(23) 

   Finally, the converter’s efficiency Ƞ can be calculated using (24): 

Ƞ=
𝑀𝑉𝑖𝑛 𝐼𝑜

𝑀𝑉𝑖𝑛 𝐼𝑜+𝑃𝐿𝑜𝑠𝑠
(24) 

6.2.7 DCM Operation Steady-State Analysis 

    In DCM operation, the off state of the transistor is split into two states, the first state has a time 

period of dzT, where dz is a fraction of the periodic switching time T, and this state is similar to 

State 0 in CCM operation where D1 → D4 conduct when Q is off. The second state during the off 

state of Q takes place when the voltages across the inductors drop to zero and all the diodes are 

reverse-biased, as shown in Figure 6.6. During this state, positive constant current flows in L1 

while negative constant currents flow in L2 and L3. All the important theoretical waveforms of the 

proposed converter during the DCM operation are shown in Figure 6.2(b).  
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    Since the average current of each of the five diodes equals the output current, thus, dz can be 

derived as following: 

1

2𝑇
𝑑𝑧𝑇𝑖𝐷(𝑝𝑒𝑎𝑘) =

𝑉𝑜
𝑅

(25) 

    Where iD(peak) is the peak current of any diode of D1, D2, D3, and D4, and it can be calculated by 

(26). 

𝑖𝐷(𝑝𝑒𝑎𝑘) =
𝑑𝑉𝑖𝑛
4𝑓𝑠𝐿𝑒𝑞

(26) 

As Leq is defined by (27). 

𝐿𝑒𝑞 = ⌈
1

𝐿1
+
1

𝐿2
+
1

𝐿3
⌉
−1

(27) 

Accordingly, dz can be deduced as given in (28). 

𝑑𝑧 =
8𝑉𝑜
𝑑𝑉𝑖𝑛

𝑓𝑠𝐿𝑒𝑞

𝑅
=
8𝑉𝑜
𝑑𝑉𝑖𝑛

𝐾 (28) 

Where K is a dimensionless parameter and it is defined by (29). 

𝐾 =
𝑓𝑠𝐿𝑒𝑞

𝑅
(29) 

    By means of Figure 6.2(b), and applying the voltage second rule on any of the three inductors 

we get (30)-(31), where MDCM is the voltage gain of the proposed converter in DCM operation. 

1

𝑇
[∫ 𝑉𝑖𝑛

𝑑𝑇

0

𝑑𝑡 −∫ 𝑉𝐶1

𝑑𝑧𝑇

0

𝑑𝑡] = 0 (30) 

𝑉𝑖𝑛𝑑 + (
2𝑉𝑖𝑛 − 𝑉𝑜

4
)𝑑𝑧 (31) 

𝑀𝐷𝐶𝑀
2 − 2𝑀𝐷𝐶𝑀 −

𝑑2

2𝐾
= 0 (32) 

By solving the quadratic equation (32), MDCM can be extracted. 
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𝑀𝐷𝐶𝑀 =
𝑉𝑜
𝑉𝑖𝑛

= 1 + √1 +
𝑑2

2𝐾
(33) 

    In order to get the boundary condion between the DCM and CCM operations, MCCM equals 

MDCM. Hence, the critical value of K (Kcritical) is defined by (34), and plotted versus d in Figure 6.7,

as the converter operates in DCM when K < Kcritical, and in CCM otherwise. 

𝐾𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
𝑑(1 − 𝑑)2

8(𝑑 + 2)
(34) 

Figure 6.6: Current flow paths during the third switching state (in DCM). 

Figure 6.7: Boundary condition between CCM and DCM operations for the proposed 

topology.
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6.3 Component Parameters Design 

6.3.1 Design of the Semiconductor Devices   

    The selected power switch should tolerate the maximum voltage and current stresses applied to 

it. Equations (5) and (8) describe the current and voltage stresses on the switch, hence, by knowing 

the output voltage and current and the maximum voltage gain, the maximum current and voltage 

stresses can be determined. These maximum stress values should be within the safe operating area 

(SOA) of the selected power switch. Similarly, the maximum voltage and current stresses on the 

diodes can be calculated via (5) and (9), and accordingly the ratings of the selected diodes can be 

determined. 

6.3.2 Design of Inductors 

   Using equations (6) and (7), the three inductors’ currents can be deduced. By knowing the 

maximum ripple currents ∆𝑖𝐿1, ∆𝑖𝐿2, and ∆𝑖𝐿3, the minimum required inductances can be 

determined using (35), where d is the duty cycle, and 𝑓𝑠 is the switching frequency.

{

𝐿1 ≥
𝑑𝑉𝑖𝑛 

𝑓𝑠∆𝑖𝐿1

𝐿2 ≥
𝑑𝑉𝑖𝑛 

𝑓𝑠∆𝑖𝐿2

𝐿3 ≥
𝑑𝑉𝑖𝑛 

𝑓𝑠∆𝑖𝐿3

(35) 

6.3.3 Design of Capacitors 

   Using equation (3), the voltages of the seven capacitors can be determined. By knowing the 

maximum ripple voltages ∆𝑉𝐶1, ∆𝑉𝐶2, ∆𝑉𝐶3, ∆𝑉𝐶4, ∆𝑉𝐶5, ∆𝑉𝐶6 and ∆𝑉𝐶7, the minimum required 

capacitances can be determined using (36). 
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{

𝐶1 ≥
𝐼𝑜𝑑 

𝑓𝑠∆𝑉𝐶1

𝐶2 ≥
2𝐼𝑜𝑑 

𝑓𝑠∆𝑉𝐶2

𝐶3 ≥
3𝐼𝑜𝑑 

𝑓𝑠∆𝑉𝐶3

𝐶4 ≥
𝐼𝑜(1 − 𝑑) 

𝑓𝑠∆𝑉𝐶4

, 

{

𝐶5 ≥
𝐼𝑜 

𝑓𝑠∆𝑉𝐶5

𝐶6 ≥
2𝐼𝑜𝑑 

𝑓𝑠∆𝑉𝐶6

𝐶7 ≥
𝐼𝑜𝑑 

𝑓𝑠∆𝑉𝐶7

(36) 

6.4 Comparative Study 

    In this section, the proposed converter is compared with seven other step-up dc-dc 

converter architectures. These other dc-dc topologies are: the 3LB converter, and the 

converters in [110], [177], [178], [180], [188], and [189]. Table 6.1 summarizes the number 

of passive and active components, the voltage gain, and the maximum normalized voltage 

stresses across the switches and diodes of each converter. Also, it shows whether the converter 

has low input current ripple or not, and the potential difference between the grounds of the 

input and output ports of each converter. The voltage gain of the compared converters is 

plotted versus the duty cycle in Figure 6.8, while the maximum normalized voltage stress on 

the switches and diodes of the compared converters are graphed in Figure 6.9 and Figure 6.10, 

respectively. 

    The 3LB converter, the converters in [110], [178], and [189] have HF PWM potential 

difference between the input and output grounds, which may increase the radiated EMI noise 

and the leakage currents of the converters, and accordingly an extra periodic maintenance may 

be required. The converters in [110], [180], and [189] have a pulsating input current which can 

affect the lifetime of the fuel cell. 
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Figure 6.8: Voltage gain curves of the compared converters. 

Figure 6.9: Maximum normalized voltage stress on the switches of the compared converters. 

Figure 6.10: Maximum normalized voltage stress on the diodes of the compared converters. 

    Figure 6.8 shows that the proposed converter has a higher voltage gain compared to the 3LB 

converter and the converters in [110], [188], [177], [178] (for d >0.35), [189] (for d <0.35), and 

[180] (for d <0.7). Regarding the voltage stress on the power switches and diodes of the compared
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converters, Figure 6.9 and Figure 6.10 show that the proposed converter has the least maximum 

voltage stress on its switch and diodes compared to the converters in Table 6.1. In order to properly 

compare the estimated cost of the power switches and diodes of each converter, the utilization 

factor of the switches (US) and the utilization factor of the diodes are calculated by (37) and (38), 

respectively. 

𝑈𝑆 =
𝑃𝑜

∑𝑉𝑄𝑖 𝑖𝑄𝑖 (𝑟𝑚𝑠)
(37) 

𝑈𝐷 =
𝑃𝑜

∑𝑉𝐷𝑗 𝑖𝐷𝑗 (𝑟𝑚𝑠)
(38) 

(a) (b) 

Figure 6.10: (a) Utilization factor of power switches. (b) Utilization factor of diodes. 

Where Po is the output power of the converter, 𝑉𝑄𝑖, 𝑖𝑄𝑖(𝑟𝑚𝑠) are the voltage and the root-mean-

square (rms) current stresses on switch i, 𝑉𝐷𝑖, 𝑖𝐷𝑖(𝑟𝑚𝑠) are the voltage and the rms current stresses 

on diode j. The utilization factors for the power switches and diodes of the converters in Table 6.1 

are graphically presented versus the voltage gain in Figure 6.11 when Po is 3kW and Vo is 800V. 

It is clear from Figure 6.11(a) that the proposed converter has the highest switch utilization factor. 

Figure 6.11(b) shows that the proposed converter has higher diode utilization factor compared to 

the converters in [110], [188], [178], [180], and [189], while it has higher diode utilization factor 

compared to the 3LB converter and the converter in [177] for M > 5.  



154 

    The comparisons above show that the proposed converter integrates a number of features 

such as: high voltage conversion ratio, wide input voltage range, low voltage stress 

on the semiconductor devices, low input current ripple, constant voltage difference between its 

input and output ports’ grounds, and high utilization of the semiconductor devices. These 

features make the proposed topology an excellent interface between the fuel cell and the dc-link 

bus of the inverter of the EV.   

Table 6.1: COMPARISON BETWEEN THE PROPOSED AND OTHER STEP-UP DC-DC SOLUTIONS 

Topology 
Voltage gain 

(M) 

Maximum 

voltage stress 

across switches 

Maximum 

voltage stress 

across diodes 

Number of 

semiconductor  

devices 

Number of 

inductors & 

capacitors 

Input 

current 

ripple 

Grounds’ 

potential 

difference 

Voltage 

gain range 

d : 0 →0.9 

3LB 
1

1 − 𝑑

1

2

1

2

2 Switches 

2 Diodes 

1 Inductor 

2 Capacitors 

Low 
HF PWM 

voltage 

1→10 

In [110] 
1 + 3𝑑

1 − 𝑑

3 +𝑀

4𝑀

3 +𝑀

2𝑀

2 Switches 

2 Diodes 

3 Inductors 

3 Capacitors 

High 

HF PWM 

voltage 

1→37 

In [188] 
3𝑑

1 − 𝑑

3 +𝑀

3𝑀

3 +𝑀

3𝑀

1 Switch 

3 Diodes 

4 Inductor 

6 Capacitors 

Low 0 V 0→27 

In [178] 
1

𝑑(1 − 𝑑)
1 

3

2
+√

1

4
−

1

𝑀

2 Switches 

3 Diodes 

2 Inductors 

2 Capacitors 
Low 

HF PWM 

voltage 
-- →11 

In [180] 
1

(1 − 𝑑)2
1 1 

1 Switch 

3 Diodes 

2 Inductors 

2 Capacitors 
High 0 V 1→100 

In [189] 

(n=1) 

1 + 5𝑑

1 − 𝑑

1 + 2𝑀

3𝑀

1 +𝑀

𝑀

3 Switches 

12 Diodes 

6 Inductor 

1 Capacitors 

High 
HF PWM 

voltage 

1→55 

In [177] 
2

1 − 𝑑

1

2

1

2

2 Switches 

3 Diodes 

2 Inductors 

3 Capacitors 

Low 
Constant 

voltage 

2→20 

Proposed 
2 + 2𝑑

1 − 𝑑

2 +𝑀

4𝑀

2 +𝑀

4𝑀

1 Switch 

5 Diodes 

3 Inductors 

7 Capacitors 

Low 

Constant 

voltage 

2→38 

6.5 Experimental Results and Analysis 

    A scaled-down 3-kW/800-V experimental prototype was built to verify the feasibility of the 

proposed topology and the correctness of its theoretical analysis, as shown in Figure 6.12. The 
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power circuit of the prototype was built using a GaN power switch (GS66516T-E02-MR) and SiC 

Schottky diodes (IDDD10G65C6XTMA1), and controlled by a TMS320f28335 microcontroller. 

The currents of the inductors, diodes, and power switch are measured via current sense resistors. 

The operating frequency is 100 kHz, and the selected values of the three inductors and seven 

capacitors are enlisted in Table 6.2.  

Table 6.2: MAIN EXPERIMENTAL PARAMETERS OF THE PROPOSED 

CONVERTER 

Parameters and Components Values 

Rated power Po 3-kW

Output voltage Vo 800-V

Power switch Q 

GS66516T-E02-MR 

(2-in-parallel) 

Diodes D1 → D5 IDDD10G65C6XTMA1 

Inductor L1 250 µH 

Inductors L2, L3 330 µH 

Capacitors C1, C2, C6, C7 180 µF 

Capacitors C3, C4, C5 150 µF 

Load resistor 215 Ω 

Switching frequency fs 100 KHz 

Microcontroller TMS320f28335 
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Figure 6.11: Experimental prototype. 

The operating parameters are as following: Vin = 100V, R = 215Ω, d = 0.6. The experimental 

test results are presented in Figure 6.13. 

    The voltage gain and the output voltage of the developed converter can be calculated 

using equation (3), as following: M = 8, Vo = 800V, which closely agrees with the 

experimental results in Figure 6.13(d). Similarly, the voltages across the seven capacitors can 

be calculated by (3) as: VC1 = VC2 = VC6 = VC7 = 150V, and VC3 = VC4 = VC5 = 250V, which 

closely agree with the results shown in Figure 6.13(b) and Figure 6.13(c).  

    The inductor currents and their respective ripple currents can be calculated by (6), (7), and 

(35), as follows: IL1 ≈ 29.77A, IL2 = IL3 ≈ 3.72A, ∆𝑖𝐿1= 2.4A, ∆𝑖𝐿2 ≈ 1.8A, ∆𝑖𝐿3 ≈ 1.8A, which 

is close to the experimental results shown in Figure 6.13(a). The voltage stress across the 

power switch and the five diodes can be calculated by equation (4), as follows: 𝑉𝑄 = 𝑉𝐷1 = 

𝑉𝐷2 = 𝑉𝐷3 = 𝑉𝐷4 = 𝑉𝐷5 = 250V, which comply with the experimental results shown in Figure 

6.13(e) and Figure 6.13(f). 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 6.12: Experimental results. 
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Figure 6.13: Distributions of the calculated power loss for the experiment 

    The current stress of the power switch Q can be calculated via equation (8), as: 𝑖𝑄 ≈ 43.4A, 

which closely agrees with the experimental results presented in Figure 6.13(g). Similarly, the 

current stresses of the five diodes can be calculated by equations (9) and (10), as: 𝑖𝐷1 = 𝑖𝐷2 = 

𝑖𝐷3 = 𝑖𝐷4 ≈ 9.3A, and 𝑖𝐷5 ≈ 6.2A, which comply with the experimental results in Figure 6.13(g) 

and Figure 6.13(h). 

    To evaluate the wide input voltage capability of the proposed converter, the input voltage of 

the converter is changed gradually from 300V to 100V, while a closed-loop Type III voltage 

controller is utilized to set the output voltage of the converter at 800V. Figure 6.13(i) shows the 

result of this test where the output voltage is fixed at 800V while the input voltage changed 

from 300V to 100V. This result shows that proposed converter has an acceptable dynamic 

performance with wide changes in the input voltage.  

    The calculated losses of the active and passive components of the proposed converter for the 

case study investigated in this section (Vin = 100V, Vo = 800V, d = 0.6, fs = 100kHz, R = 215Ω), 

is shown in Figure 6.14. The total calculated losses Ploss equal 197.37W. The conduction losses 

of the capacitors account for 35% of the total converter losses (replacing the electrolytic 

capacitors used in the experimental prototype with film or ceramic capacitors can reduce this 

loss segment).    
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    The switching and conduction losses of the power switch account for 18% and 7%, respectively, 

of the total losses. The conduction losses of the diodes account for 12% of the converter losses. 

Figure 6.14: Measured efficiency curves of the proposed converter versus Vin 

Figure 6.15: Measured efficiency curves of the proposed converter versus Po 

     Finally, the conduction losses of the three inductors account for 27% of the total losses of the 

converter. Figure 6.15 shows the measured efficiency curves of the proposed converter versus the 

input voltage (Vin = 100 →300V), for Po equals 1kW, 2kW, and 3kW. For Po = 1kW curve, the 

minimum efficiency is 96% at Vin = 100V, and the maximum efficiency is 97.4% at Vin = 240V. 

For Po = 2kW curve, the minimum efficiency is 94.4% at Vin = 100V, and the maximum efficiency 

is 97.1% at Vin = 240V. For Po = 3kW curve, the minimum efficiency is 92.1% at Vin = 100V, and 
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the maximum efficiency is 96.5% at Vin = 260V. Figure 6.16 shows the measured efficiency curve 

of the developed prototype versus the output power. In this efficiency test, Vin = 100V and 200V, 

Vo = 800V, Po = 600W → 3kW. In this test, when Vin = 100V, the maximum efficiency is 96% at 

Po = 1kW, and the minimum efficiency is 92.1% at Po = 3kW, while when Vin = 200V, the 

maximum efficiency is 97.3% at Po = 1kW, and the minimum efficiency is 95.8% at Po = 3kW. 

6.6 Conclusion 

     A new SEPIC-based step-up dc-dc converter with embedded discontinuous-current quasi-Z-

source and switched capacitor networks was proposed in this paper. The proposed topology has 

the advantages of continuous input current, high step-up voltage gain, wide-input-voltage range, 

constant potential difference between the grounds of the input and output ports, and low voltage 

stress on the semiconductor devices. These features make the proposed converter a suitable power 

electronic interface between the fuel cell and the dc-link of the inverter in the EV. Finally, a 3-

kW/800-V prototype for the proposed topology was developed, and the theoretical analysis was 

validated by the experimental results.   
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Chapter 7 Design and Implementation of a New Transformerless Bidirectional DC-DC 

Converter with Wide Conversion Ratios 

7.1     Introduction 

A new transformerless bidirectional buck-boost converter is proposed in this chapter. The 

proposed converter has a simple circuit structure, low component count, low voltage stress on the 

power transistors, and a wide voltage gain range. This makes it applicable in the energy storage 

charge/discharge systems, such as the electric vehicles (EV), microgrids and nanogrids with 

energy storage units, and uninterruptible power supplies. In addition, synchronous rectification 

between the complementary transistors is employed to improve the converter efficiency. A 

comprehensive analysis of the steady-state operation, small-signal model, component parameters 

design, and efficiency analysis of the proposed converter operating in a continuous conduction 

mode (CCM) is given. Finally, a 1.6 kW scaled-down prototype was built using Silicon Carbide 

(SiC) MOSFETs to validate the effectiveness and feasibility of the proposed converter.    

7.2 Structure and Operating Principle of the Proposed Converter 

7.2.1 Configuration of the Proposed Converter 

    The configuration of the proposed BBB dc-dc converter is shown in Figure 7.1. It can be seen 

that the proposed converter is composed of three switches (Q1, Q2, and Q3), two inductors (L1, and 

L2), four capacitors (C1, C2, C3, and C4), and two ports (port A, and port B). The converter can 

manage the power flow either from port A to port B, or from port B to port A. The signals G1, G2, 

and G3 are the triggering signals of switches Q1, Q2, and Q3, respectively. Synchronous 

rectification is employed, where G2, and G3 are identical and they are complementary to G1. To 

simplify the analysis, the following assumptions are made: (a) All the components are ideal, thus, 

the on-resistance of the switches, and the equivalent series resistances of the inductors and 
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capacitors are ignored. (b) All the capacitors and inductors are large enough to apply the small 

ripple approximation. 

Figure 7.1: The schematic of the proposed converter. 

7.2.2  A-to-B Operation of the Proposed Converter 

In this operation, power flows from port A to port B. The equivalent circuit of this 

operation is shown in Figure 7.2, where a voltage source VA is connected at port A, and a 

resistive load R1 is connected at port B. The key waveforms for this operation are shown in 

Figure 7.4(a), as it has two switching states, namely: State 0, and State 1. In this operation, Q1 

is the main transistor and Q2, and Q3 are synchronous rectifiers. 

    There is a dead time between the rising edge of G2, and G3, and the falling edge of G1. 

Another dead time is present between the falling edge of G2, and G3, and the rising edge of G1. 

During these dead times, the current flows in the antiparallel diodes of Q2, and Q3, hence, the 

voltage across the drain and source of these transistors is close to zero. This provides zero-

voltage-switching (ZVS) during turn-on and turn-off for Q2, and Q3, which enhances the 

converter efficiency. 
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1) State 0

    In this switching state, Q1 is turned on, and Q2 and Q3 are turned off. The period of this state is 

d1T, where T is the periodic switching time, and d1 is the duty cycle of Q1. Figure 7.2(a) shows the 

current flow paths during this switching state, and according to it, the following equations can be 

derived: 

{
𝑉𝐿1 = 𝑉𝐴       
𝑉𝐿2 = 𝑉𝐶1 − 𝑉𝐵 + 𝑉𝐶3

(1) 

{

𝑖𝑐1 = 𝑖𝑐3 = −𝐼𝐿2 

𝑖𝐶4 = 𝐼𝐿2 −
𝑉𝐵
𝑅1

(2) 

2) State 1

In this switching state, Q1 is turned off, and Q2 and Q3 conduct current in the reverse

direction. The period of this state is d2T = d3T= (1-d1)T, where d2 and d3 are the duty cycle 

values of Q2, and Q3, respectively. Figure 7.2(b) shows the current flow paths during this 

switching state, and according to it, the following equations can be derived: 

{
𝑉𝐿1 = −𝑉𝐶3 = 𝑉𝐴 − 𝑉𝐶1 
𝑉𝐿2 = −𝑉𝐵 + 𝑉𝐶3       

(3) 

{
𝑖𝑐1 = 𝑖𝐶3 =

𝐼𝐿1 − 𝐼𝐿2
2

𝑖𝐶4 = 𝑖𝐿2 −
𝑉𝐵
𝑅1

(4) 

(a) (b) 

Figure 7.2: Current-flow paths of the proposed converter in the A-to-B operation. (a) 

State 0: G1 G2 G3 = 100. (b) State 1: G1 G2 G3 = 011. 
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(a) (b) 

Figure 7.3: Current-flow paths of the proposed converter in the B-to-A operation. (a) 

State 0: G1 G2 G3 = 100. (b) State 1: G1 G2 G3 = 011. 

3) Capacitor Voltages and Inductor Currents

   From (1), and (3), and using the volt-second balance rule on inductors L1, and L2, the 

capacitor voltages, and the voltage gain for A-to-B operation MAB can be derived as shown in 

(5), and (6), respectively: 

{

𝑉𝑐1 =
𝑉𝐴

1 − 𝑑1

𝑉𝑐3 =
𝑑1

1 − 𝑑1
𝑉𝐴 

𝑉𝐵 =
2𝑑1
1 − 𝑑1

𝑉𝐴 

(5) 

𝑀𝐴𝐵 =
𝑉𝐵
𝑉𝐴
 =

2𝑑1
1 − 𝑑1

(6) 

   From (2), and (4), and using the charge-second balance rule on capacitors C1, C3 and C4, the 

inductor currents can be derived as shown in (7): 
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{

𝐼𝐿1 =
1 + 𝑑1
1 − 𝑑1

 𝐼𝐿2 

𝐼𝐿2 =
𝑉𝐵
𝑅1
 =

2𝑑1
(1 − 𝑑1)𝑅1

𝑉𝐴 

(7) 

7.2.3 B-to-A Operation of the Proposed Converter 

In this operation, power flows from port B to port A. The equivalent circuit of this operation is 

shown in Figure 7.3, where a voltage source VB is connected at port B, and a resistive load R2 is 

connected at port A. In this operation, Q2, and Q3 are the main power switches and Q1 is a 

synchronous rectifier. Dead time is employed between the main switches and the synchronous 

rectifier, as shown in Figure 7.4(b), to provide ZVS during turn-on and turn-off for Q1. The 

capacitor voltages, inductor current, and voltage gain MBA for this operation can be derived from 

(5), (6), and (7), by replacing d1 by (1-d2), as following: 

𝑀𝐵𝐴 =
𝑉𝐴
𝑉𝐵
 =

𝑑2
2(1 − 𝑑2)

(8) 

{

𝑉𝑐1 =
𝑉𝐵

2(1 − 𝑑2)

𝑉𝑐3 =
𝑉𝐵
2

𝑉𝐴 =
𝑑2

2(1 − 𝑑2)
𝑉𝐵

(9) 

{

𝐼𝐿1 =
2 − 𝑑2
𝑑2

 𝐼𝐿2 

𝐼𝐿2 =
𝑉𝐴
𝑅2
𝑀𝐵𝐴  = (

𝑑2
2(1 − 𝑑2)

)
2 𝑉𝐵
𝑅2

(10)
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Figure 7.4: Typical waveforms of the proposed converter. (a) A-to-B operation. (b) B-to-A operation. 

7.2.4 Switches, Capacitors, and Inductors design 

1) Switches Selection:

 Equations (11)-(13) describe the voltage and current stresses on Q1, Q2, and Q3, respectively.  

 VQ1 = VQ2 = VQ3 =
VB
2d1

(11) 

IQ1 = IL1 + IL2 (12) 

IQ2 = IQ3 = 
IL1+IL2

2
(13)
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The selected transistors should tolerate these voltage and current stresses. 

12) Capacitors Selection:

Equations (5), and (9) describe the voltage stress across C1, C2, C3, and C4. The relationship

between the capacitance of these capacitors and the associated ripple voltages is depicted in (14): 

{

C1 =
2d1

2

∆VC1fs(1 − d1)R1
VA = 

d2
2

4∆VC1fs(1 − d2)R2
VB 

C2 =
d2

3VB
4fsR2∆VC4(1 − d2)2

C3 =
2d1

2

∆VC3fs(1 − d1)R1
VA = 

d2
2

4∆VC3fs(1 − d2)R2
VB 

C4 =
∆iL2

8fs∆VC4

(14) 

 By knowing the switching frequency fs, and the desired capacitor voltage ripples ∆VC1, ∆VC2, 

∆VC3, and ∆VC4, the capacitance of C1, C2, C3, and C4 can be determined.

13) Inductors Selection:

    Equations (7), and (10) calculate the currents the currents flowing in inductors L1, and L2. The 

relationship between the inductance of these inductors and the associated ripple currents is 

depicted in (15). These equations can be used to determine the inductance of L1, and L2, when the 

desired inductor current ripples ∆iL1, and ∆iL2 are known.    

{

L1 =
VAd1
fs∆iL1

=
VBd2
2fs∆iL1

L2 =
VAd1
fs∆iL2

=
VBd2
2fs∆iL1

(15) 

7.2.5 Comparison with Other Bidirectional Buck-Boost Converters 

    In this section, the proposed converter is compared with six other BBB converters. In this 

comparative study, the proposed converter is compared with the conventional BBB converter, the 

converter, the bidirectional version of the KY-based converter in [190], the CBB-IIM converter, 
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the CBB-CIM converter, and the bidirectional version of the quadratic buck-boost converter in 

[191]. The circuit diagrams of these converters are shown in Figure 7.5. Table 7.1 shows the static 

voltage gain for A-to-B and B-to-A operations, the normalized voltage stress of the power switches, 

and the number of components of the proposed converter and the other BBB converters in this 

comparative study. 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 7.5: Other BBB converters. (a) Conventional BBB converter. (b) Converter in [192]. (c) 

Bidirectional version of the KY-based converter in [190]. (d) CBB-IIM. (e) CBB-CIM. (f) 

Bidirectional version of the quadratic converter in [191]. 

    Figure 7.6(a) and Figure 7.6(b) show the voltage gain of the compared converters versus the 

duty cycle for A-to-B and B-to-A operations, respectively. In this comparison, the normalized 

voltage stress on the power switches is depicted as a function of VB and MAB. 
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(a) 

(b) 

Figure 7.6: Comparison of voltage gain between the proposed converter and other BBB converters. 

(a) A-to-B operation. (b) B-to-A operation.

Figure 7.7: Normalized voltage stress on the switches of the compared converters. 

    The graphical representation of the normalized voltage stress on the power switches of the 

compared converters is shown in Figure 7.7. 

  Comparing the proposed converter with the conventional BBB converter, on one hand, the 
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conventional BBB converter has lower number of switches and passive components, on the other 

hand, the voltage gain of the proposed converter is higher in A-to-B operation and lower in B-to-A 

operation. This makes the proposed converter better for the applications that require buck and 

boost operations in both power flow directions, but with boost operation dominant in one power 

flow direction and buck operation dominant in the other power flow direction (i.e. energy storage 

systems with large voltage swings). Additionally, the voltage stress in the proposed converter is 

lower, which enables the utilization of power switches with lower rated voltage. The converter 

presented in [192] has the same voltage gain in the A-to-B and B-to-A operations, and the same 

voltage stress as in the proposed converter. Nevertheless, the proposed converter has one less 

inductor and one less capacitor. 

Table 7.1: COMPARISON BETWEEN THE PROPOSED AND OTHER BBB CONVERTERS 

Topology Components Voltage stress (VS) 
Voltage gain 

A-to-B operation B-to-A operation 

Conventional BBB 

converter 

2 Switches 

1 Inductor 

2 Capacitors 

Q1,2 (
𝑀𝐴𝐵 + 1

𝑀𝐴𝐵
)𝑉𝐵 𝑀𝐴𝐵=

𝑑1

1−𝑑1
𝑀𝐵𝐴=

𝑑2

1−𝑑2

KY-based 

Converter [190] 

3 Switches 

2 Inductors 

4 Capacitors 

Q1,2,3 
𝑉𝐵
𝑀𝐴𝐵

𝑀𝐴𝐵 = 2𝑑1 𝑀𝐵𝐴=
1

2(1−𝑑2)

Quadratic 

Converter [191] 

4 Switches 

2 Inductors 

3 Capacitors 

Q1,2 (
1 + √𝑀𝐴𝐵
𝑀𝐴𝐵

)𝑉𝐵 

𝑀𝐴𝐵=
𝑑1
2

(1−𝑑1)
2 𝑀𝐵𝐴=

𝑑2
2

(1−𝑑2)
2

Q3,4 (
1 + √𝑀𝐴𝐵

√𝑀𝐴𝐵
)𝑉𝐵 

CBB-IIM 

converter 

4 Switches 

1 Inductor 

2 Capacitors 

Q1,2 
𝑉𝐵
𝑀𝐴𝐵 𝑀𝐴𝐵 ={

𝑑1
1

1−𝑑1

(Buck) 

(Boost) 

𝑀𝐵𝐴 ={
𝑑2
1

1−𝑑2

(Buck) 

(Boost) Q3,4 𝑉𝐵

CBB-CIM 

converter 

4 Switches 

2 Inductor 

3 Capacitors 

Q1,2,3,4 {

𝑉𝐵
𝑀𝐴𝐵
𝑉𝐵

𝑀𝐴𝐵 ≤ 1 

𝑀𝐴𝐵 > 1 

𝑀𝐴𝐵 ={
𝑑1    (Buck)
1

1−𝑑1
 (Boost)

 𝑀𝐵𝐴 ={
𝑑2
1

1−𝑑2

Buck) 

(Boost) 

Converter [192] 

3 Switches 

3 Inductors 

5 Capacitors 

Q1,2,3 (
𝑀𝐴𝐵 + 2

2𝑀𝐴𝐵
)𝑉𝐵 𝑀𝐴𝐵= 

2𝑑1

1−𝑑1
𝑀𝐵𝐴=

𝑑2

2(1−𝑑2)

Proposed 

3 Switches 

2 Inductors 

4 Capacitors 

Q1,2,3 (
𝑀𝐴𝐵 + 2

2𝑀𝐴𝐵
)𝑉𝐵 𝑀𝐴𝐵= 

2𝑑1

1−𝑑1
𝑀𝐵𝐴=

𝑑2

2(1−𝑑2)
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    The KY-based BBB converter has the least voltage stress on its power switches, however, 

its voltage gain range is limited, and hence, it is not suitable for applications that require wide 

voltage gain range operation. Comparing the proposed converter with the bidirectional 

version of the quadratic buck-boost converter in [191], the proposed converter has higher 

voltage gain in A-to-B operation for d1 < 0.66, and lower voltage gain in B-to-A operation for 

0.33 < d2 < 0.66. In the quadratic BBB converter, the voltage stress on two of its switches (Q3 

and Q4) is higher compared to the voltage stress on any switch of the proposed converter.  

    Additionally, the proposed converter has one less power switch and continuous current at 

port B, on the contrary with the quadratic BBB converter which has discontinuous currents at 

both of its ports. The CBB-IIM converter, on one hand, has one less inductor and two less 

capacitors, but on the other hand, it has an extra power switch compared to the proposed 

converter. The currents at port A and port B of the CBB-IIM converter are discontinuous. 

Additionally, the voltage stress on two of switches (Q3 and Q4) of the CBB-IIM converter is 

higher compared to the voltage stress on any switch of the proposed converter. The CBB-CIM 

converter has one less capacitor and an extra power switch compared to the proposed converter. 

This converter has continuous currents at port A and port B. The voltage stress on the power 

switches of the CBB-CIM converter is higher compared to the proposed converter. The 

proposed converter has higher voltage gain in A-to-B operation for d1 > 0.5 compared to the 

CBB-IIM and CBB-CIM converters (in boost mode), and lower voltage gain in B-to-A 

operation for d2 < 0.5 compared to the CBB-IIM and CBB-CIM converters (in buck mode). 
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7.2.6 Efficiency Analysis 

    The power losses of the proposed converter are calculated by (16), where Ploss, PQ_cond, PQ_sw, 

PL, and PC are the total power loss, the conduction loss of the transistors, the switching loss of the 

transistors, the loss of inductors, and the loss of the capacitors. The switching loss of the transistors 

is for Q1 (in A-to-B operation), and for Q2 and Q3 (in B-to-A operation). 

Ploss = PQ_cond,+ PQ_sw + PL + PC (16) 

    The terms of (16) are calculated by (17)-(21), where RDS1, RDS2, RDS3, RL1, RL2, ESR1, ESR2, 

ESR3, and ESR4 are the on resistances of Q1, Q2, and Q3, the series resistances of L1, and L2, and 

the equivalent series resistances of C1, C2, C3, and C4, respectively. 

    The switching loss of any of the three transistors can be calculated by (19), where i can be 1, 2, 

or 3, referring to Q1, Q2, or Q3, respectively. In (19), tri, tfi, and COSSi are the rise time, fall time, 

and the parasitic output capacitance of Qi, respectively. 

PQ_cond = 𝑑1𝐼𝑄1
2
RDS1  + 𝑑2(𝐼𝑄2

2RDS2 + 𝐼𝑄3
2RDS3) (17) 

PQ_sw = {

𝑃𝑄1𝑠𝑤         

𝑃𝑄2_𝑠𝑤 + 𝑃𝑄3_𝑠𝑤

(A-to-B operation) 

(18) 

(B-to-A operation) 

PQi_sw = 𝑓𝑠(0.5𝑉𝑄𝑖𝐼𝑄𝑖(𝑡𝑟𝑖 + 𝑡𝑓𝑖) + 0.5𝑉𝑄𝑖
2𝐶𝑂𝑆𝑆𝑖) (19) 

PL = 𝐼𝐿1
2RL1  + 𝐼𝐿2

2RL2

(20) 

PC = 𝐼𝐶1
2ESR1  + 𝐼𝐶2

2ESR2  +𝐼𝐶3
2ESR3  +𝐼𝐶4

2ESR4 (21)
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The inductor currents can be calculated by (7), and (10). The current and voltage stresses on the 

transistors can be calculated by (11)-(13). The root-mean-square (rms) values of the capacitor 

currents IC1, IC2, IC3, and IC4, can be calculated by (22). 

{

𝐼𝐶1 = 𝐼𝐶3 = √𝑑1𝐼𝐿2
2 + (1 − 𝑑1) (

𝐼𝐿1 − 𝐼𝐿2
2

)
2

𝐼𝐶2 = √𝑑1(𝐼𝐿1 −𝑀𝐴𝐵𝐼𝐿2)
2 + (1 − 𝑑1)(𝐼𝐿1 − (1 +𝑀𝐴𝐵)𝐼𝐿2)2 

𝐼𝐶4 =
∆𝑖𝐿2

2√3

(22) 

The efficiency Ƞ can be calculated by (23) 

Ƞ = 

{

𝑉𝐴𝐼𝐿2𝑀𝐴𝐵 − 𝑃𝐿𝑜𝑠𝑠

𝑉𝐴𝐼𝐿2𝑀𝐴𝐵

𝑉𝐵𝐼𝐿2 − 𝑃𝐿𝑜𝑠𝑠

𝑉𝐵𝐼𝐿2

(A-to-B operation) 

(23) 

(B-to-A operation) 

7.3 Dynamic Modeling and Controller Design 

7.3.1 Small-Signal Modeling 

The small-signal modeling is used to derive the open-loop transfer functions that can be used in 

designing the controller, and analyzing the dynamic behavior of the proposed converter. For both 

A-to-B and B-to-A operations, the small-signal modeling is done using (1)-(4), by replacing each

state variable and input by its dc quiescent value plus a small ac perturbation. 
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       In A-to-B operation, the small-signal model is presented in (24), where IL1, IL2, VC1, and d1 

are the dc values of the inductor currents, the voltage across C1, and the duty cycle of Q1, and 𝑖̂𝐿1, 

𝑖�̂�2, 𝑣𝑐1, 𝑣𝐶3, �̂�1,and 𝑣𝐵 are small perturbations in inductor currents, capacitor voltages, duty cycle, 

and port B voltage. 

{

𝐿1
𝑑𝑖̂𝐿1
𝑑𝑡

= −𝑑1𝑣𝐶1 + 𝑉𝐶1�̂�1 

𝐿2
𝑑𝑖̂𝐿2
𝑑𝑡

= 𝑉𝐶1�̂�1 + (𝑑1 +
𝐶1
𝐶3
) 𝑣𝐶1 − 𝑣𝐵 

2𝐶1
𝑑𝑣𝐶1
𝑑𝑡

= 𝑑1𝑖̂𝐿1 − (𝐼𝐿1 + 𝐼𝐿2)�̂�1 − (1 + 𝑑1)𝑖̂𝐿2

𝐶4
𝑑𝑣𝐵
𝑑𝑡

= 𝑖̂𝐿2 −
𝑣𝐵
𝑅1

𝑣𝐶3 =
𝐶1
𝐶3
𝑣𝐶1 

(24) 

     By using Laplace transform on (24), the control-to-output transfer function can be given, as 

shown in (25). 

𝐺𝑉𝐵𝑑1(s) =
�̂�𝐵(𝑠)

�̂�1(𝑠)
 = 

𝑎0𝑠
2+𝑎1𝑠+𝑎2

𝑏0𝑠
4+𝑏1𝑠

3+𝑏2𝑠
2+𝑏3𝑠+𝑏4

(25) 

Where 
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{

𝑎0 = 2𝐶1𝑉𝐶1𝐿1𝐿2 

𝑎1 = −𝐿1𝐿2(𝐼𝐿1 + 𝐼𝐿2) (𝑑1 +
𝐶1
𝐶3
) 

𝑎2 = (𝐿1(1 + 𝑑1) + 𝐿2𝑑1 − (1 + 𝑑1)𝐿1)𝑉𝐶1 (𝑑1 +
𝐶1
𝐶3
)

+𝐿2𝑑1
2𝑉𝐶1

𝑏0 = 2𝐶1𝐶4𝐿1𝐿2
2

𝑏1 =
2𝐶1𝐿1𝐿2

2

𝑅1

𝑏2 = (1 + 𝑑1) (𝑑1 +
𝐶1
𝐶3
) 𝐶4𝐿1𝐿2 + 𝑑1

2𝐿2
2𝐶4

+2𝐶1𝐿1𝐿2

𝑏3 =
1

𝑅1
(𝐿1𝐿2(1 + 𝑑1) (𝑑1 +

𝐶1
𝐶3
) + 𝑑1

2𝐿2
2)

𝑏4 = 𝐿1(1 + 𝑑1) ((𝑑1 +
𝐶1
𝐶3
) − 1) + 𝐿2𝑑1

2

    In B-to-A operation, the small-signal model is presented in (26), where d2 (= d3) is the duty cycle 

of Q2, and Q3. Also,�̂�2 and 𝑣𝐴 are small perturbations in duty cycle, and port A voltage, 

respectively.   By using Laplace transform on (26), the control-to-output transfer function can be 

given, as shown in (27). 

{

𝐿1
𝑑𝑖̂𝐿1
𝑑𝑡

= 𝑣𝐴 − 𝑉𝐶1�̂�2 − 𝑑2𝑣𝐶1 

𝐿2
𝑑𝑖̂𝐿2
𝑑𝑡

= −𝑉𝐶1�̂�2 + (
𝐶1
𝐶3
+ (1 − 𝑑2)) 𝑣𝐶1

2𝐶1
𝑑𝑣𝐶1
𝑑𝑡

= (2 − 𝑑2)𝑖̂𝐿2 − (𝐼𝐿1 + 𝐼𝐿2)�̂�2 − 𝑑2𝑖̂𝐿1 

𝐶2
𝑑𝑣𝐴
𝑑𝑡

= (1 −
𝑑2
2
) 𝑖̂𝐿1 −

𝑑2
2
𝑖̂𝐿2 − (𝐼𝐿1 + 𝐼𝐿2)�̂�2 −

�̂�𝐴
𝑅1

𝑣𝐶3 =
𝐶1
𝐶3
𝑣𝐶1

(26) 

𝐺𝑉𝐴𝑑2(s) =
�̂�𝐴(𝑠)

�̂�2(𝑠)
 = 

𝑒0𝑠
3+𝑒1𝑠

2+𝑒2𝑠+𝑒3

𝑓0𝑠
4+𝑓1𝑠

3+𝑓2𝑠
2+𝑓3𝑠+𝑓4

(27)



176 

Where 

{

𝑒0 = −2𝐶1𝐿1
2𝐿2

2𝐼𝐿2 
𝑒1 = 2𝐶1𝐿1𝐿2𝑉𝐶1(−𝐿2 + 𝑑1𝐿1)       

𝑒2 = (𝐿2𝑑2
2 + 𝐿1(2 − 𝑑2)(1 − 𝑑2)) (𝐿1𝐿2𝐼𝐿2) +

(𝐿2𝑑2 + 𝐿1𝑑2 (1 − 𝑑2 +
𝐶1
𝐶3
)) (𝐼𝐿1 + 𝐼𝐿2)𝐿1𝐿2

𝑒3 = (𝐿1𝑑2
2 + 𝐿1(2 − 𝑑2)(1 − 𝑑2)) (𝐿2 − 𝑑1𝐿1)𝑉𝐶1

+(𝐿2𝑑2 + 𝐿1𝑑2 (1 − 𝑑2 +
𝐶1
𝐶3
)) (

(2 − 𝑑2)𝐿1𝑉𝐶1
−𝑑2𝑉𝐶1𝐿2

)

𝑓0 = −2𝐶1𝐶2𝐿2
2𝐿1

2

𝑓1 =
2

𝑅2
𝐶1𝐿1

2𝐿2
2

𝑓2 = −2𝐶1𝐿1𝐿2
2 + (

𝐿2𝑑2
2 +

𝐿1(2 − 𝑑2)(1 − 𝑑2)
) (𝐿1𝐿2𝐶2) 

𝑓3 = −(𝐿2𝑑2
2 + 𝐿1(2 − 𝑑2)(1 − 𝑑2)) (

𝐿1𝐿2
𝑅2

) 

𝑓4 = 𝐿2
2𝑑2

2 + 𝐿1𝐿2(2 − 𝑑2)(1 − 𝑑2)

−𝑑2𝐿2 (𝐿2𝑑2 + 𝐿1𝑑2 (1 − 𝑑2 +
𝐶1
𝐶3
)) 

7.3.2 Controller Design 

    In the developed experiment, two proportional integral (PI) controllers are adopted to regulate 

the voltage of port A and port B, in the B-to-A and A-to-B operations, respectively. The parameters 

of the closed-loop PI voltage controller in the A-to-B operation are: KP1 = 0.000025, and KI1 = 

0.00025. The parameters of the closed-loop PI voltage controller in the B-to-A operation are: KP2 

= 0.001, and KI2 = .0001. The structure of the closed-loop voltage controllers in the B-to-A and A-

to-B operations is shown in Figure 7.8. By means of (25), (27), and the parameters of the 

experiment in Table 7.2, compensated transfer functions (𝐺𝐶_𝐴𝐵(s) and 𝐺𝐶_𝐵𝐴(s)) of the proposed

converter in A-to-B and B-to-A operations are given in (28) and (29), respectively.  
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𝐺𝐶_𝐴𝐵(s) = (𝐾𝑃1 +
𝐾𝐼1

𝑠
). 𝐺𝑉𝐵𝑑1(s) =

𝑥0𝑠
3+𝑥1𝑠

2+𝑥2𝑠+𝑥3

𝑥4𝑠
5+𝑥5𝑠

4+𝑥6𝑠
3+𝑥7𝑠

2+𝑥8𝑠
(28) 

𝐺𝐶_𝐵𝐴(s) = (𝐾𝑃2 +
𝐾𝐼2

𝑠
). 𝐺𝑉𝐴𝑑2(s) =

𝑦0𝑆
4+𝑦1𝑠

3+𝑦2𝑠
2+𝑦3𝑠+𝑦4

𝑦5𝑠
5+𝑦6𝑠

4+𝑦7𝑠
3+𝑦8𝑠

2+𝑦9𝑠
(29) 

      Where x0 = 3.18e6, x1 = - 3.16e9, x2 = 1.12e13, x3 = 1.1e12, x4 = 27, x5 = 1125, x6 = 2e9, x7 = 

6.89e10, x8 = 3.83e14, y0 = -6.8, y1 = -7.97e5, y2 = -7.1e9, y3 = 5.53e13, y4 = 6.5e14, y5 = 1, y6 = 

1.4e5, y7 = 2.8e9, y8 = 1.4e11, y9 = 6.23e14. 

    Hence, the Bode plots of the compensated transfer functions of the converter with PI voltage 

controllers in A-to-B and B-to-A operations are given in Figure 7.9(a) and Figure 7.9(b), 

respectively. These Bode diagrams show that the compensated transfer functions of the proposed 

converter in both operations have positive gain and phase margins, which indicate a stable 

operation of the proposed converter with the adopted PI voltage controllers.     

(a) 

(b) 

Figure 7.8: Closed-loop voltage controller. (a) A-to-B operation. (b) B-to-A operation. 
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(a) 

(b) 

Figure 7.9: Bode plots of the compensated transfer functions with PI controllers. (a) A-to-B 

operation. (b) B-to¬-A operation. 

7.4 Experimental Results and Analysis 

    In order to validate the effectiveness of the proposed converter, a scaled-down prototype is 

developed, as shown in Figure 7.10. The parameters of the experimental setup are given in Table 

7.2.  

     The laboratory setup is built using SiC MOSFETs, to have better efficiency at high frequency 

operation.  In this section, two case studies are investigated, namely: case study I, and case study 

II. Case study I investigates the A-to-B operation, while case study II investigates the B-to-A

operation. 
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Table 7.2: Experiment Parameters 

Parameters and Components Values 

Rated power Po 1.6 kW 

Power MOSFET Q1 C2M0025120D 

Power MOSFETs Q2, Q3 SCT3030KL 

Inductors L1, L2 300 µH 

Capacitors C2, C4 2X120 µF 

Capacitors C1, C3 2X20, 3X20 µF 

Switching frequency fs 100 KHz 

Microcontroller TMS32028f377s 

Figure 7.10: Experimental prototype.

7.4.1 Experimental Results in Case Study I 

This case study investigates the A-to-B operation of the proposed converter. In this case, port A 

is connected to a voltage source VA=85V, port B is connected to a resistive load R1=100Ω, and the 

duty cycle d1=0.7. 

The experimental results for case study I are shown in Figure 7.11. According to (7), and (15), 

the average current values of L1, and L2 and their ripple currents can be calculated as following: 
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IL1=22.48A, IL2=3.97A, ∆𝑖𝐿1=∆𝑖𝐿2=1.98A (both L1 and L2 have the same inductance in the 

experiment), which closely agree with the experimental results in Figure 7.11(a). According to 

(5) and (6), the average capacitor voltages can be calculated as following: VC1=283.3V, 

VC3=198.3V, and VB=396V, which closely agree with the experimental results in Figure 7.11(b). 

According to (11), the voltage stress on the transistors can be calculated as following: VQ1= VQ2= 

VQ3=283.3V, which closely agree with the experimental results in Figure 7.11(c). According to 

(12), and (13), the current stress on the transistors can be calculated as following: IQ1=26.4A, 

IQ2= IQ3=13.2A, which closely agree with the experimental results in Figure 7.11(d).  

The voltage waveforms of the synchronous rectifiers of the proposed converter in this case (A-

to-B operation) are shown in Figure 7.13(a). It is clear, that both Q2, and Q3 realize ZVS during 

turn-on and turn-off transitions.  

(a) (b) (c) (d) 

Figure 7.11: Experimental results for case study I. 

(a) (b) (c) (d) 

Figure 7.12: Figure 7.11: Experimental results for case study II. 
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(a) (b) 

Figure 7.13:  Gate signals and the voltage stress across the synchronous rectification 

transistors. (a) Case study I. (b) Case study II. 

(a) (b) 

Figure 7.14: Dynamic behavior of the proposed converter due to step-change in load. (a) 

In A-to-B operation. (b) In B-to-A operation. 

Figure 7.14(a) shows good dynamic behavior of VB which is kept at 400V using the closed-

loop voltage controller while the output power has step-changed from 800W to 1.6 kW, then from 

1.6 kW to 800W.  

7.4.2 Experimental Results in Case Study II 

    This case study investigates the B-to-A operation of the proposed converter. In this case, port B 

is connected to a voltage source VB=400V, port A is connected to a resistive load R2=12Ω, and the 

duty cycle d2=0.4. 

The experimental results for case study II are shown in Figure 7.12. According to (10), and 

(15), the average current values of L1, and L2 and their ripple currents can be calculated as 

following: IL1=14.8A, IL2=3.7A, ∆𝑖𝐿1=∆𝑖𝐿2=2.7A, which closely agree with the experimental 

results in Figure 7.12(a). According to (8) and (9), the average capacitor voltages can be calculated 

as following: VC1=333.3V, VC3=200V, and VA=133.3V, which closely agree with the experimental 
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results in Figure 7.12(b). According to (11), the voltage stress on the transistors can be calculated 

as following: VQ1= VQ2= VQ3=333.3V, which closely agree with the experimental results in 

Figure 7.12(c). According to (12), and (13), the current stress on the transistors can be 

calculated as following: IQ1=18.5A, IQ2= IQ3=9.3A, which closely agree with the experimental 

results in Figure 7.12(d). 

The voltage waveforms of the synchronous rectifiers of the proposed converter in this 

case (B-to-A operation) are shown in Figure 7.13(b). It is clear, that Q1 realizes ZVS during turn-

on and turn-off transitions. 

      Figure 7.14(b) shows acceptable dynamic behavior of VA which is kept at 133V using 

the closed-loop voltage controller while the output power has step-changed from 1.47 kW to 

737W, then from 737W to 1.47 kW.  

7.4.3 Efficiency Analysis of the Proposed Converter 

    The calculated loss distributions for the experiment in case study I and case study II are 

shown in Figure 7.15. In case study I, the total losses of the converter are 55.63W, and the loss 

distribution is shown in Figure 7.15(a). The switching loss in this case is caused by only Q1 

(Q2 and Q3 are soft-switched), and it accounts for 42% of the total losses. The conduction loss of 

Q1, Q2 and Q3 account for 28% of the total losses. The losses of the capacitors and inductors in 

case I account for 2%, and 28% of the total losses, respectively. In case study II, the total losses 

of the converter are 41.27W, and the loss distribution is shown in Figure 7.15(b). The 

switching loss in this case is caused by only Q2 and Q3 (Q1 is soft-switched), and it accounts 

for 55% of the total losses. The conduction loss of Q1, Q2 and Q3 account for 23% of the total 

losses. The losses of the capacitors and inductors case II account for 5%, and 23% of the total 

losses, respectively. The measured efficiency curves for both A-to-B and B-to-A operations with 

output power equals 1kW and 1.5kW 
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are presented in Figure 7.16. The measured efficiency curves were obtained using a 

Power Analyzer (Tektronix PA3000).  

    In the A-to-B operation, the voltage at port B is kept constant at 400V, the output power (from 

port B) equals 1kW and 1.5kW, and the voltage at port A, VA changes from 50V to 500V, 

the efficiency of the converter is tracked for each value of VA. The converter operates in boost 

mode when VA is less than 400V, and in buck mode otherwise. In the B-to-A operation, the 

voltage at port B is kept constant at 400V, the output power (from port A) equals 1kW and 

1.5kW, and the voltage at port A changes from 50V to 500V, the efficiency of In the A-to-B 

operation, the voltage at port B is kept constant at 400V, the output power (from port B) equals 

1kW and 1.5kW, and the voltage at port A, VA changes from 50V to 500V, the efficiency of the 

converter is tracked for each value of VA. The converter operates in boost mode when VA is less 

than 400V, and in buck mode otherwise. In the B-to-A operation, the voltage at port B is kept 

constant at 400V, the output power (from port A) equals 1kW and 1.5kW, and the voltage at 

port A changes from 50V to 500V, the efficiency of VA=300V) in A-to-B operation, and from 

91% (at VA=50) to 97.3% (at VA=300V) in B-to-A operation.

(a) (b) 

Figure 7.15: Calculated power loss distributions for the experiment. (a) In case study I. (b) 

In case study II. 

    It is noticed that the efficiency increases gradually as VA increases for the same output power, 

this is due to the reduction in losses caused by the decreased input current. For high values of VA, 

the switching losses become dominant, and the total efficiency drops, as shown in Figure 7.16. 
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Figure 7.16: Measured efficiency curves of the proposed converter in A-to-B and B¬-to-A 

operations (VB=400V, VA=50→500V). 

7.4.4 Bidirectional Transition Performance 

    In order to evaluate the bidirectional transient performance of the proposed converter, the 

circuit shown in Figure 7.17 was constructed. Two power supplies (i.e. PS1=100V and 

PS2=400V) are connected to port A and port B of the prototype. The power supplies are connected 

via dc solid-state relays (i.e. SSR1 and SSR2) and two series diodes. Two local loads are connected 

to the two ports (i.e. RA=15 Ω and RB=100 Ω). To test the performance of the converter when it 

switches from B-to-A operation to A-to-B operation, the test starts by making SSR1: OFF and 

SSR2: ON, in this case the converter is working in B-to-A operation. When the states of the two 

solid-state relays are inverted SSR1: ON and SSR2: OFF, the converter works in A-to-B operation 

and the A-to-B voltage controller sets VB at 400V. Figure 7.18(a) shows that the converter 

successfully holds the voltage at port B at 400V after the transition with an acceptable dynamic 

response. In Figure 7.18(a), VB before the transition is the voltage of PS2, while after the 

transition, VB is the processed voltage by the converter.    

    To test the performance of the converter when it switches from A-to-B operation to B-to-A 

operation, the test starts by making SSR1: ON and SSR2: OFF, in this case the converter is 

working in A-to-B operation. When the states of the two solid-state relays are inverted SSR1: OFF 

and SSR2: 
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ON, the converter works in B-to-A operation and the B-to-A voltage controller sets VA at 100V. 

Figure 7.18(b) shows that the converter successfully holds the voltage at port A at 100V after the 

transition with an acceptable dynamic response.    In Figure 7.18(b), VA before the transition is the 

voltage of PS1, while after the transition, VA is the processed voltage by the converter. In both 

tests, the polarity of iL1 and iL2 flips after the transitions, referred to the reference inductor currents 

direction shown in Figure 7.17. 

The oscillations in current that are shown in Figure 7.18 when the converter changed its mode of 

operation is because the converter changed its mode of operation abruptly. In a realistic scenario, the 

switching between A-to-B and B-to-A operations should be done softly where the reference voltage 

ramps up to the desired level. 

Figure 7.17: Bidirectional power flow transition test circuit. 

(a) (b) 

Figure 7.18: Dynamic behavior of the proposed converter due to step-change in load. (a) 

In A-to-B operation. (b) In B-to-A operation. 

7.5 Conclusion 

In this chapter, a new bidirectional dc-dc converter that can perform buck and boost operations 

in both power flow directions has been introduced. The proposed converter has a simple circuit 
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structure, low component counts, low voltage stress on the transistors, and wide voltage gain range. 

Synchronous rectification has been employed to improve the efficiency of the converter since the 

synchronous rectifiers turn on and turn off with ZVS. The proposed converter has good steady-state and 

dynamic performance. These features make it a good candidate for applications that require bidirectional 

power flow with wide conversion ratios, such as energy storage systems with large voltage swings. 

Chapter 8 Analysis and Design of A New Bidirectional DC-DC Converter with Broad 

Voltage Gain Range for Energy Storage Applications 

8.1     Introduction 

A new bidirectional dc-dc converter for energy storage systems with large voltage 

fluctuations is presented in this chapter. The proposed topology has a wide range of 

voltage regulation, a common ground between its ports, continuous current at the low voltage 

port, high semiconductor utilization factor, and a low voltage stress on the power switches. 

The principles of operation, the current and voltage stresses on the power switches, and the 

design of components are discussed in this chapter.  Finally, a 2-kW/800-V scaled-down 

prototype was developed using Silicon Carbide (SiC) MOSFETs to validate the feasibility of 

the proposed converter and the correctness of its theoretical analysis.    
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8.2 Structure and Operating Principles of the Proposed Converter 

8.2.1 Circuit Structure of the Proposed Topology 

    The proposed converter is composed of four switches (Q1 → Q4), three inductors (L1 → L3), 

and six capacitors (C1 → C6). The proposed topology is shown in Figure 8.1, as it has a low voltage 

side, where the ESS is connected, and a high voltage side, where the dc bus of the load is connected. 

Figure 8.1: The structure of the proposed step-up dc-dc converter. 

8.2.2 Operation in Step-Up Mode 

    In this mode, the power flow is from the low voltage (LV) side to the high voltage (HV) side. 

The current flow paths and the key waveforms for this mode are shown in Figure 8.2 and Figure 

8.4(a), respectively. In this mode, Q1 acts as the main switch, while Q2 → Q4 act as synchronous 

rectifiers. The triggering pulses of Q1 → Q4 are G1 → G4. The duty cycle of Q1 is d1 while the 

duty cycle of Q2 → Q4 is d2 (= 1-d1). A delay is applied between the falling edge of G2 → G4 and 

the rising edge of G1, and another delay is applied between the falling edge of G1 and the rising 

edge of G2 → G4, as shown in Figure 8.4(a). During the delay time, currents flow through the 

body diodes of the synchronous rectifiers, thus, the drain-to-source voltages of the synchronous 

rectifiers drop to the forward voltage level of the body diodes, accordingly, ZVS can be realized 

by Q2 → Q4 during the turn-on and turn-off transitions. 
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(a) 

(b) 

Figure 8.2: Current flow paths for step-up mode. (a) State 1. (b) State 0. 

(a) 

(b) 

Figure 8.3: Current flow paths for step-down mode. (a) State 1. (b) State 0. 

     The proposed converter has two switching states, namely: State1 and State 0. In the following 

analysis: 𝑖𝐶1_𝑐ℎ → 𝑖𝐶6_𝑐ℎ, and 𝑖𝐶1_𝑑𝑖𝑠 → 𝑖𝐶6_𝑑𝑖𝑠 are the charging and discharging currents of C1 → 

C6. The inductor currents and the instantaneous voltages across the inductors are referred to as 

𝐼𝐿1 → 𝐼𝐿3 and 𝑉𝐿1 → 𝑉𝐿3, respectively. VH, VL, IH, IL, and 𝑉𝐶2 → 𝑉𝐶5 are the voltages of the high 
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voltage and low voltage sides, the currents of the high voltage and low voltage sides, and the 

voltages across C2 → C5. 

    In State 1, Q1 is turned on, Q1 → Q4 are turned off, C2 and C3 charge, and C4 → C6 discharge, 

as shown in Figure 8.2(a). By applying Kirchhoff’s Voltage Law (KVL) and Kirchhoff’s Current 

Law (KCL) on the equivalent circuit in Figure 8.2(a), we can extract the following relationships: 

{
𝑉𝐿1 = 𝑉𝐿       
𝑉𝐿2 = 𝑉𝐶4 − 𝑉𝐶2       
𝑉𝐿3 = 𝑉𝐶4 + 𝑉𝐶5 − 𝑉𝐶3 − 𝑉𝐶2

(1) 

{

𝑖𝐶2_𝑐ℎ = 𝐼𝐿2 + 𝐼𝐿3  

𝑖𝐶3_𝑐ℎ = 𝐼𝐿3       

𝑖𝐶4_𝑑𝑖𝑠 = 𝐼𝐿2 + 𝐼𝐿3 

𝑖𝐶5_𝑑𝑖𝑠 = 𝐼𝐿3       

𝑖𝐶6_𝑑𝑖𝑠 = 𝐼𝐻 

(2) 

    In State 0, Q1 is turned off, Q1 → Q4 are turned on, C2 and C3 discharge, and C4 → C6 charge, 

as shown in Figure 8.2(b). By applying the KVL and KCL rules on the equivalent circuit in Figure 

8.2(b), we can extract the following relationships: 

{

𝑉𝐿1 = 𝑉𝐿 − 𝑉𝐶4       
𝑉𝐿2 = −𝑉𝐶2 = −𝑉𝐶5 
𝑉𝐿3 = −𝑉𝐶3       

(3) 

{

𝑖𝐶2_𝑑𝑖𝑠 = 𝑖𝐶3_𝑑𝑖𝑠 + 𝐼𝐿3 + 𝑖𝐶5_𝑐ℎ − 𝐼𝐿2 

𝑖𝐶4_𝑐ℎ = 𝐼𝐿1 − 𝑖𝐶2_𝑑𝑖𝑠 − 𝐼𝐿2 + 𝑖𝐶5_𝑐ℎ 

𝑖𝐶6_𝑐ℎ = 𝑖𝐶3_𝑑𝑖𝑠 + 𝐼𝐿3 − 𝐼𝐻 
(4) 

    By applying the volt-second rule on (1) and (3), the capacitor voltages can be calculated, as 

follows: 
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{

𝑉𝐶2 = 𝑉𝐶3 = 𝑉𝐶5 =
𝑑1

1 − 𝑑1
 𝑉𝐿 

𝑉𝐶4 =
1

1 − 𝑑1
 𝑉𝐿 

(5) 

𝑉𝐻 = 𝑉𝐶3 + 𝑉𝐶4 + 𝑉𝐶5 =
1 + 2𝑑1
1 − 𝑑1

 𝑉𝐿 (6) 

Accordingly, the voltage gain in step-up mode 𝑀𝐵𝑜𝑜𝑠𝑡 can be extracted, as follows: 

𝑀𝐵𝑜𝑜𝑠𝑡 =
𝑉𝐻
𝑉𝐿
=
1 + 2𝑑1
1 − 𝑑1

(7) 

(a) (b) 

Figure 8.4: Key waveforms of the proposed converter. (a) Step-up mode. (b) Step-down 

mode. 

8.2.3 Operation in Step-Down Mode 

    In this mode, the power flow is from the HV side to the LV side. The current flow paths and the 

key waveforms for this mode are shown in Figure 8.3 and Figure 8.4(b), respectively. In this mode, 
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Q2 → Q4 act as the main switches, while Q1 acts as a synchronous rectifier. The duty cycle of Q2 

→ Q4 is d2 while the duty cycle of Q1 is d1 (= 1-d2). A delay is applied between the falling edge of

G1 and the rising edge of G2 → G4, and another delay is applied between the falling edge of G2 → 

G4 and the rising edge of G1, as shown in Figure 8.4(b). The delay between the triggering pulses 

allows Q1 to realize ZVS during the turn-on and turn-off transitions. 

    Since Q1 and Q2 → Q4 work in a complementary fashion, the voltage of the capacitors and the 

voltage gain in the step-down mode 𝑀𝐵𝑢𝑐𝑘 can be directly derived from (5), (6), and (7), by 

replacing d1 by (1-d2), as follows: 

{

𝑉𝐶2 = 𝑉𝐶3 = 𝑉𝐶5 =
1 − 𝑑2
3 − 2𝑑2

 𝑉𝐻 

𝑉𝐶4 =
1

3 − 2𝑑2
 𝑉𝐻 

(8) 

 𝑉𝐿 =
𝑑2

3 − 2𝑑2
 𝑉𝐻 (9) 

 𝑀𝐵𝑢𝑐𝑘 =
𝑉𝐿
𝑉𝐻

=
𝑑2

3 − 2𝑑2
(10) 

8.2.4 Voltage and Current Stresses on the Switches 

    By applying KVL rule on the equivalent circuits of the proposed converter, depicted in Figure 

8.2 and Figure 8.3, the voltage stress on the switches of the proposed converter VQ can be expressed 

as shown in (11):  

𝑉𝑄 =
𝑉𝐿

1 − 𝑑1
=

𝑉𝐻
3 − 2𝑑2

= (
𝑀𝐵𝑜𝑜𝑠𝑡 + 2

3𝑀𝐵𝑜𝑜𝑠𝑡
)𝑉𝐻 (11) 

    Assuming a loss-free operation (i.e. 𝑉𝐿𝐼𝐿 = 𝑉𝐻𝐼𝐻), the currents of the three inductors of the 

proposed converter can be derived, as follows: 
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IL2 = IL3 = 𝐼𝐻 = 𝑀𝐵𝑢𝑐𝑘 𝐼𝐿 =
𝑑2

3−2𝑑2
 𝐼𝐿 (12) 

IL1 =  𝐼𝐿 = 𝑀𝐵𝑜𝑜𝑠𝑡 𝐼𝐻 =
1

1−𝑑1
 𝐼𝐻 (13) 

    By means of the current flow paths shown on the equivalent circuits of the proposed converter 

in Figure 8.2 and Figure 8.3, the current stresses on the switches can be expressed, as following:  

𝑖𝑄1 =
3 𝐼𝐻
1 − 𝑑1

=
3 𝐼𝐿

3 − 2𝑑2
= (𝑀𝐵𝑜𝑜𝑠𝑡 + 2)𝐼𝐻 (14) 

𝑖𝑄2 = 𝑖𝑄3 = 𝑖𝑄4 =
 𝐼𝐻

1 − 𝑑1
=

 𝐼𝐿
3 − 2𝑑2

=
𝑀𝐵𝑜𝑜𝑠𝑡 + 2

3
𝐼𝐻 (15) 

    Equations (14) and (15) calculate the magnitude of the current stresses on the switches, the 

polarity of the current depends on whether the switch is operating as a main switch or as a rectifier. 

8.3 Components Selection and Efficiency Analysis 

8.3.1 Selection of Switches 

    By means of (11), (14), and (15), the voltage and current stresses on the four switches can be 

calculated. When the voltage gain range of operation, the voltage of the HV side, and the load 

profile are known, the peak voltage and current stresses of the four switches of the proposed 

converter can be calculated. Accordingly, these peak electrical stresses should be within the safe 

operating area (SOA) of the selected switches.  

8.3.2 Design of Inductors 

    The magnitude of the currents flowing through the three inductors of the proposed converter 

can be calculated via (12) and (13), hence, the selected inductors should tolerate these current 

levels. When the operating voltages at the HV and LV sides, the range of voltage gain, the allowed 

ripple currents (∆𝑖𝐿1 → ∆𝑖𝐿3), and the switching frequency fs of the proposed converter are known, 

the proper inductance values can be calculated by means of (16). 
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{

𝐿1 ≥
(𝑀𝐵𝑜𝑜𝑠𝑡 − 1)𝑉𝐿 

(𝑀𝐵𝑜𝑜𝑠𝑡 + 2)𝑓𝑠∆𝑖𝐿1
=
(1 −𝑀𝐵𝑢𝑐𝑘)𝑀𝐵𝑢𝑐𝑘𝑉𝐻 

(1 + 2𝑀𝐵𝑢𝑐𝑘)𝑓𝑠∆𝑖𝐿1

𝐿2 ≥
(𝑀𝐵𝑜𝑜𝑠𝑡 − 1)𝑉𝐿 

(𝑀𝐵𝑜𝑜𝑠𝑡 + 2)𝑓𝑠∆𝑖𝐿2
=
(1 −𝑀𝐵𝑢𝑐𝑘)𝑀𝐵𝑢𝑐𝑘𝑉𝐻 

(1 + 2𝑀𝐵𝑢𝑐𝑘)𝑓𝑠∆𝑖𝐿2

𝐿3 ≥
(𝑀𝐵𝑜𝑜𝑠𝑡 − 1)𝑉𝐿 

(𝑀𝐵𝑜𝑜𝑠𝑡 + 2)𝑓𝑠∆𝑖𝐿3
=
(1 −𝑀𝐵𝑢𝑐𝑘)𝑀𝐵𝑢𝑐𝑘𝑉𝐻 

(1 + 2𝑀𝐵𝑢𝑐𝑘)𝑓𝑠∆𝑖𝐿3

(16) 

8.3.3 Design of Capacitors 

    The voltage across the six capacitors can be calculated using (5), (6), (8), and (9), thus, the 

selected capacitors should tolerate these voltage levels. When the load profile at the HV and LV 

sides, the range of voltage gain, the allowed ripple voltages (∆𝑉𝐶1 → ∆𝑉𝐶6), the allowed ripple 

current in L1, and fs of the proposed converter are known, the proper capacitance values can be 

derived by means of (17). 

{

𝐶1 ≥
∆𝑖𝐿1 

8𝑓𝑠∆𝑉𝐶1

𝐶2 ≥
2(𝑀𝐵𝑜𝑜𝑠𝑡 − 1)𝑖𝐻 

(𝑀𝐵𝑜𝑜𝑠𝑡 + 2)𝑓𝑠∆𝑉𝐶2
=
2(1 −𝑀𝐵𝑢𝑐𝑘)𝑀𝐵𝑢𝑐𝑘𝑖𝐿 

(1 + 2𝑀𝐵𝑢𝑐𝑘)𝑓𝑠∆𝑉𝐶2

𝐶3 ≥
(𝑀𝐵𝑜𝑜𝑠𝑡 − 1)𝑖𝐻 

(𝑀𝐵𝑜𝑜𝑠𝑡 + 2)𝑓𝑠∆𝑉𝐶3
=
(1 −𝑀𝐵𝑢𝑐𝑘)𝑀𝐵𝑢𝑐𝑘𝑖𝐿 

(1 + 2𝑀𝐵𝑢𝑐𝑘)𝑓𝑠∆𝑉𝐶3

𝐶4 ≥
2(𝑀𝐵𝑜𝑜𝑠𝑡 − 1)𝑖𝐻 

(𝑀𝐵𝑜𝑜𝑠𝑡 + 2)𝑓𝑠∆𝑉𝐶4
=
2(1 −𝑀𝐵𝑢𝑐𝑘)𝑀𝐵𝑢𝑐𝑘𝑖𝐿 

(1 + 2𝑀𝐵𝑢𝑐𝑘)𝑓𝑠∆𝑉𝐶4

𝐶5 ≥
(𝑀𝐵𝑜𝑜𝑠𝑡 − 1)𝑖𝐻 

(𝑀𝐵𝑜𝑜𝑠𝑡 + 2)𝑓𝑠∆𝑉𝐶5
=
(1 −𝑀𝐵𝑢𝑐𝑘)𝑀𝐵𝑢𝑐𝑘𝑖𝐿 

(1 + 2𝑀𝐵𝑢𝑐𝑘)𝑓𝑠∆𝑉𝐶5

𝐶6 ≥
(𝑀𝐵𝑜𝑜𝑠𝑡 − 1)𝑖𝐻 

(𝑀𝐵𝑜𝑜𝑠𝑡 + 2)𝑓𝑠∆𝑉𝐶6
=
(1 −𝑀𝐵𝑢𝑐𝑘)𝑀𝐵𝑢𝑐𝑘𝑖𝐿 

(1 + 2𝑀𝐵𝑢𝑐𝑘)𝑓𝑠∆𝑉𝐶6

(17) 

8.3.4 Efficiency Analysis 

    Efficiency calculation is essential to properly select and design the cooling system, in addition, 

it gives an insight about the operating points where the proposed converter has the highest/lowest 
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efficiency. The total power loss 𝑃𝐿𝑜𝑠𝑠 can be calculated by (18), where 𝑃𝐿_𝑐𝑜𝑛𝑑, 𝑃𝐿_𝑐𝑜𝑟𝑒, 𝑃𝐶_𝑐𝑜𝑛𝑑,

𝑃𝑄_𝑐𝑜𝑛𝑑, and 𝑃𝑄_𝑠𝑤 are the conduction and core losses of the three inductors, the conduction losses 

of the six capacitors, the conduction and switching losses of the switches. 

Ploss = 𝑃𝐿_𝑐𝑜𝑛𝑑+ 𝑃𝐿_𝑐𝑜𝑟𝑒+ 𝑃𝐶_𝑐𝑜𝑛𝑑 + 𝑃𝑄_𝑐𝑜𝑛𝑑+ 𝑃𝑄_𝑠𝑤 (18) 

    The conduction and core losses of the three inductors can be calculated using (19) and (20), 

where RL1, RL2, RL3, lc1, lc2, lc3, Ac1, Ac2, Ac3, ∆B1, ∆B2, and ∆B3 are the equivalent series resistances 

of the three inductors, the magnetic flux path lengths of the three inductors’ cores, the cross 

sectional areas of the three inductors’ cores, and ac magnetic flux density of the three inductors. 

𝑃𝐿_𝑐𝑜𝑛𝑑 =∑𝐼𝐿𝑖
2  𝑅𝐿𝑖

𝑖=3

𝑖=1

(19) 

𝑃𝐿_𝑐𝑜𝑟𝑒 =∑𝑙𝑐𝑖 𝐴𝑐𝑖  (𝑎 ∆𝐵𝑖
𝑏 𝑓𝑠

𝐶)

𝑖=3

𝑖=1

(20) 

    Equation (19), is the empirical Steinmetz equation, and a, b, and c are fitting values and can be 

extracted from the core manufacturer datasheet. The conduction loss of the capacitors can be 

extracted via (20), where RC1 → RC6 are the equivalent series resistances of the six capacitors. 

𝑃𝐶 =
∆𝑖𝐿1
2

12
𝑅𝐶1 +

𝑑1
1 − 𝑑1

𝐼𝐻
2(4𝑅𝐶2 + 𝑅𝐶3 + 4𝑅𝐶4 + 𝑅𝐶5 + 𝑅𝐶6) (21) 

    The conduction losses of the switches can be derived using (21), where RS1 → RS4 are the on 

resistances of the switches. The switching loss of the switches can be calculated by (22) and (23), 

noting that the switching loss is only considered for the main switches for the considered mode of 

operation and discarded for the synchronous rectifiers (because they realize ZVS during turn-on 

and turn-off transitions). Equation (23) is used to calculate the switching loss for any of the four 
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switches, where 𝑡𝑟𝑖, 𝑡𝑓𝑖, and 𝐶𝑂𝑆𝑆𝑖 are the rising and falling times, and the parasitic output

capacitance of switch Qi. 

PQ_cond =𝐼𝐻
2 ((

3√𝑑1

1−𝑑1
)
2

𝑅𝑆1 + (
𝑅𝑆2+𝑅𝑆3+𝑅𝑆4

1−𝑑1
)) (21) 

PQ_sw = {
𝑃𝑄1_𝑠𝑤       

𝑃𝑄2_𝑠𝑤 + 𝑃𝑄3_𝑠𝑤 + 𝑃𝑄3_𝑠𝑤

(Step-up mode) 
(22) 

(Step-down mode) 

PQi_sw = 𝑓𝑠(0.5𝑉𝑄𝑖𝑖𝑄𝑖(𝑡𝑟𝑖 + 𝑡𝑓𝑖) + 0.5𝑉𝑄𝑖
2𝐶𝑂𝑆𝑆𝑖) (23) 

  Finally, the efficiency ƞ can be calculated using (24): 

Ƞ = {

𝑉𝐿 𝐼𝐿

𝑉𝐿 𝐼𝐿+𝑃𝐿𝑜𝑠𝑠
𝑉𝐻 𝐼𝐻

𝑉𝐻 𝐼𝐻+𝑃𝐿𝑜𝑠𝑠

(Step-up mode) 

(Step-down mode) 

(24) 

8.4 Comparative Study 

    In this section, the proposed topology is compared with five other BDC topologies. 

These topologies are the B3LC, the switched-capacitor converter (SCC) in [195], the 

bidirectional version of the quadratic converter in [194], and the converters in [193] and 

[196]. Table 8.1 gives a summary of the number of passive and active components of 

the compared topologies. Additionally, it shows the maximum normalized voltage stress 

on the switches and the voltage gain in the step-up and step-down operations of the 

compared topologies. The voltage gain relationships with duty cycle of the compared 

converters are given in Figure 8.5 and Figure 8.6. The maximum normalized voltage stress on 

the switches of the converters is plotted versus MBoost, as depicted in Figure 8.7. 
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Figure 8.5: Voltage gain of the compared converters in the step-up mode versus the duty cycle. 

Figure 8.6: Voltage gain of the compared converters in the step-down mode versus the 

duty cycle. 

    The B3LC, and the converters in [193] and [196] do not have a common ground between the 

LV and the HV ports, which may increase the leakage currents and require additional filtering. In 

the step-up mode, the proposed converter has a higher voltage gain compared to the B3LC, the 
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converter in [196], the quadratic converter (for d1 < 0.5), the SCC (for d1 > 0.5), and the converter 

in [193] (for d1 > 0.5), as shown in Figure 8.5. 

Figure 8.7: Maximum normalized voltage stress on the switches of the compared converters versus 

the voltage gain. 

Figure 8.8: Switch utilization factor for the compared converters. 

    In step-down mode, the proposed converter has a lower voltage gain compared to the B3LC, the 

converter in [196], the quadratic converter (for d2 > 0.5), the SCC (for d2 < 0.5), and the converter 

in [193] (for d2 < 0.5), as shown in Figure 8.6. Figure 8.7 shows that the proposed converter has 

less voltage stress on its power switches in comparison to the quadratic converter, the one in [196], 

the B3LC (for MBoost > 4), the SCC (for MBoost > 4), and the converter in [193] (for MBoost > 4).  
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Table 8.1: Comparison Between the Proposed and Other BDC Topologies 

Topology Components 
Maximum voltage 

stress (VQ) 

Common 

ground 

Voltage gain 

Step-up mode Step-down mode 

B3LC 

4 Switches 

1 Inductor 

2 Capacitors 

𝑉𝐻
2

No 𝑀𝐵𝑜𝑜𝑠𝑡 =
1

1 − 𝑑1
𝑀𝐵𝑢𝑐𝑘 = 𝑑2 

In [193] 

4 Switches 

2 Inductors 

3 Capacitors 

𝑉𝐻
2

No 𝑀𝐵𝑜𝑜𝑠𝑡 =
2

1 − 𝑑1
𝑀𝐵𝑢𝑐𝑘 =

𝑑2
2

Quadratic in 

[194] 

4 Switches 

2 Inductor 

3 Capacitors 

(1 + √
1

𝑀𝐵𝑜𝑜𝑠𝑡
)𝑉𝐻 Yes 𝑀𝐵𝑜𝑜𝑠𝑡 = (

1

1 − 𝑑1
)
2

𝑀𝐵𝑢𝑐𝑘 = (𝑑2)
2

SCC in [195] 

5 Switches 

2 Inductor 

4 Capacitors 

𝑉𝐻
2

No 𝑀𝐵𝑜𝑜𝑠𝑡 =
2

1 − 𝑑1
𝑀𝐵𝑢𝑐𝑘 =

𝑑2
2

In [196] 

3 Switches 

2 Inductors 

4 Capacitors 

(
𝑀𝐵𝑜𝑜𝑠𝑡 + 1

2𝑀𝐵𝑜𝑜𝑠𝑡
)𝑉𝐻 No 𝑀𝐵𝑜𝑜𝑠𝑡 =

1 + 𝑑1
1 − 𝑑1

𝑀𝐵𝑢𝑐𝑘 =
𝑑2

2 − 𝑑2

Proposed 

4 Switches 

3 Inductors 

6 Capacitors 

(
𝑀𝐵𝑜𝑜𝑠𝑡 + 2

3𝑀𝐵𝑜𝑜𝑠𝑡
)𝑉𝐻 Yes 𝑀𝐵𝑜𝑜𝑠𝑡 =

1 + 2𝑑1
1 − 𝑑1

𝑀𝐵𝑢𝑐𝑘 =
𝑑2

3 − 2𝑑2

𝑈𝐹 =
𝑃𝑜𝑢𝑡

∑𝑉𝑄𝑖  𝑖𝑄𝑖 (𝑟𝑚𝑠)
(25) 

    In order to assess the comparative cost of the semiconductor devices of the compared converters, 

the switch utilization factor (UF) is used, as it is the ratio between the output power of the converter 

and the total processed power by the switches, as shown in (25).  
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Where Pout is the output power of the converter, 𝑉𝑄𝑖 and 𝑖𝑄𝑖(𝑟𝑚𝑠) are the voltage stress and the

root-mean-square (rms) of the current stress on switch Qi. Figure 8.8 shows the utilization factor 

of the compared converters versus MBoost when Pout =2kW and VH = 800V. It is clear that the 

proposed converter has the highest utilization factor compared to the other five BDC topologies, 

which indicates that the cost of the semiconductor devices is relatively lower compared to the other 

converters. 

8.5 Experimental Results and Analysis 

    To validate the feasibility of the proposed BDC topology and the correctness of its theoretical 

analysis, a scaled-down 2-kW/800-V laboratory prototype was developed, presented in Figure 8.9. 

The power circuit of the prototype was built using SiC MOSFETs, (UJ3C065030K3S) for Q1 and 

(UJ3C065080K3S) for Q2→Q4, and controlled by a TMS320f28335 microcontroller.  

Table 8.2: Main Experimental Parameters of The Proposed Converter 

Parameters and 

Components 
Values 

Rated power Pout 2-kW

HV side voltage VH 800V 

LV side voltage VL 80V→200V 

Switch Q1 UJ3C065030K3S 

Switches Q2 → Q4 UJ3C065080K3S 

Inductor L1 250 µH 

Inductors L2, L3 330 µH 

Capacitors C1 → C3 150 µF 

Capacitors C4, C5 180 µF 

Capacitor C6 50 µF 

Switching frequency fs 100 KHz 

Microcontroller TMS320f28335 
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Figure 8.9: Experimental prototype.

   Current sense resistors are used to measure the currents of the inductors and the switches. The 

switching frequency is 100 kHz, and the values of the inductors and capacitors are given in Table 

8.2. Two case studies are investigated in this section. In case study I, the converter works in step-

up mode, while in case study II, the converter works in step-down mode. 

8.5.1 Case Study I 

    This case study investigates the performance of the proposed converter when it operates in 

step-up mode. The operating parameters of this case study are as follows: VL = 100V, d1 = 0.7, 

and R1 = 320Ω, where R1 is the resistive load connected to the HV side. The experimental results 

for this case study are shown in Figure 8.10. Based on (5)-(7), the voltage across C2 → C6 and the 

voltage gain MBoost can be calculated, as follows: VC2 = VC3 = VC5 ≈ 233.3V, VC4 ≈ 333.3V, VH = 

800V, and MBoost = 8, which closely agree with the experimental results in Figure 8.10(b) and 

Figure 8.10(c). The currents and ripple currents of the three inductors can be calculated using 

(12), (13), and (16), as follows: IL1 = 20A, IL2 = IL3 = 2.5A, ∆𝑖𝐿1= 2.8A, ∆𝑖𝐿2 ≈ 2.12A, ∆𝑖𝐿3 ≈ 

2.12A, which closely comply with the experimental results in Figure 8.10(a). The voltage stress 

on the four switches can be derived via (11), as following: 𝑉𝑄1 = 𝑉𝑄2 = 𝑉𝑄3 = 𝑉𝑄4 ≈ 333.3V, 

which closely agree with the results shown in Figure 8.10(d) and Figure 8.10(e). It is also clear 

from Figure 8.10(d) and Figure 8.10(e) that the synchronous rectifiers (i.e. Q2 → Q4) realize 

ZVS during turn-on and turn-off transitions. The current stresses on the switches can be 

calculated using (14) and 
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(15), as: iQ1 = 25A, 𝑖𝑄2 = 𝑖𝑄3 = 𝑖𝑄4 ≈ 8.3A, which closely comply with the results in Figure

8.10(f).  

8.5.2 Case Study II 

    This case study investigates the performance of the proposed converter when it operates in 

step-down mode. The operating parameters of this case study are as follows: VH = 800V, d2 = 0.5, 

and R2 = 20Ω, where R2 is the resistive load connected to the LV side. The experimental results 

for this case study are shown in Figure 8.11. The voltage across C1 → C5 can be calculated using 

(8)-(10), as following: VC2 = VC3 = VC5 = 200V, VC4 = 400V, VL = 200V, and MBuck = 0.25, which 

is close to the experimental results in Figure 8.11(b) and Figure 8.11(c). By means of (12), (13), 

and (16), the currents and the ripple currents of the inductors can be calculated using (12), (13), 

and (16), as follows: IL1 = 10A, IL2 = IL3 = 2.5A, ∆𝑖𝐿1= 4A, ∆𝑖𝐿2 ≈ 3A, ∆𝑖𝐿3 ≈ 3A, which closely 

complies with the experimental results in Figure 8.11(a). The voltage stress on the switches can 

be calculated using (11), as follows: 𝑉𝑄1 = 𝑉𝑄2 = 𝑉𝑄3 = 𝑉𝑄4 ≈ 400V, which closely agree with the 

results shown in Figure 8.11(d) and Figure 8.11(e). In addition, Figure 8.11(d) shows that the 

synchronous rectifier (i.e. Q1) realizes ZVS during turn-on and turn-off transitions. Using (14) 

and (15), the current stresses on the switches can be derived as: iQ1 = 15A, 𝑖𝑄2 = 𝑖𝑄3 = 𝑖𝑄4 = 5A, 

which closely agree with the results in Figure 8.11(f).     

8.5.3 Performance under Wide-Voltage-Gain Operation 

    In order to assess the wide-voltage-gain range capability of the proposed converter in step-up 

and step-down modes, two tests were performed. In the first test, the converter operates in step-up 

mode with VL =80V →200V, and a closed-loop voltage controller (i.e. proportional integral 

derivative (PID) controller) is used to set VH at 800V. Figure 8.12(a) shows the results of this test, 

and it is clear that the converter with the adopted controller is capable of holding VH constant at 
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800V with VL changing widely, (MBoost : 10→4). In the second test, the converter operates in the 

step-down mode with VH = 800V and a closed-loop PID voltage controller is used to vary VL from 

200V to 80V. Figure 8.12(b) shows the results of this test, and it is clear that the converter with 

the adopted controller is capable of controlling VL and varying it from 200V to 80V over six 

hundred milliseconds while VH is constant at 800V, (MBuck : 0.25→0.1). Both tests show that the 

converter has an acceptable dynamic performance under wide range of voltage gain. 

8.5.1 Efficiency Analysis 

    The calculated power loss distributions in case study I and case study II are shown in 

Figure 8.13. Figure 8.13(a) shows that the efficiency of the converter in case study I is 95.29% 

with total losses of 98.7W, while Figure 8.13(b) shows that the efficiency of the converter in 

case study II is 98% with total losses of 39.3W.    The loss distributions of both case 

studies show that the conduction losses of the capacitors are dominant, due to the utilization of 

electrolytic capacitors. These losses can be reduced by using film or ceramic capacitors 

with low equivalent series resistances. 

    Figure 8.14. Shows the measured efficiency curves (using Tektronix PA3000 Power 

Analyzer) when the converter operates in step-up and step-down modes, versus VL when it is 

changed from 80V to 200V while keeping VH fixed at 800V at output power levels of 1kW and 

2kW. In step-up mode, when Pout is 1kW, the converter has a peak efficiency of 97.8% at 200V 

and a minimum efficiency of 94.8% at 80V, and when Pout is 2kW, the converter has a peak 

efficiency of 97.2% at 200V and a minimum efficiency of 92.2% at 80V. In step-down mode, 

when Pout is 1kW, the converter has a highest efficiency of 98% at 200V and a minimum 

efficiency of 95.3% at 80V, and when Pout is 2kW, the converter has a maximum efficiency of 

97.5% at 200V and a minimum efficiency of 92.7% at 80V. 
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(a) (b) (c) 

(d) (e) (f) 

Figure 8.10: Experimental results of case study I. 

(a) (b) (i) 

(d) (e) (f) 

Figure 8.11: Experimental results of case study II. 



204 

(a) (b) 

Figure 8.12: Dynamic performance under wide-range of voltage gain (VH = 800V, VL = 

80V → 200V, and Po = 2kW). (a) Step-up mode. (b) Step-down mode. 

It is plain that the proposed converter has acceptable efficiency throughout the broad range of 

its voltage gains. The reason for this is that the voltage stress on the switches of the proposed 

topology is inversely proportional with the voltage gain, as described by (11) and shown in Figure 

8.7, which alleviates the switching losses of the switches at high voltage conversion ratios, hence, 

enhances the efficiency of the converter. 

(a) (b) 

Figure 8.13: Calculated power loss distributions for the experiment. (a) In case study I. (b) 

In case study II. 
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Figure 8.14: Measured efficiency curves of the proposed converter (VH = 800V, VL= 

80V→200V, Po = 1kW, and 2kW). 

8.6 Conclusion 

    A new topology of a bidirectional dc-dc converter has been proposed. The proposed converter has wide 

voltage conversion ratios, low voltage stress on the switches, common ground between the LV and HV 

sides, low current ripple, and high semiconductor utilization factor. at the LV side. Additionally, the 

adopted synchronous rectification reduces the conduction losses of the synchronous rectifiers. These 

features make the proposed topology an adequate interface for the energy storage systems with large voltage 

swings. A scaled-down 2-kW/800-V prototype has been built using SiC MOSFETs to verify the theoretical 

analysis, and the experimental results show that the converter has an acceptable steady-state and dynamic 

performance.  
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Chapter 9 A New Hybrid Structure of a Bidirectional DC-DC Converter with High 

Conversion Ratios for Electric Vehicles 

9.1     Introduction 

In this chapter, a new bidirectional dc-dc conv erter that is based on the quadratic and 

switched-capacitor structures is proposed for Electric Vehicle applications. The proposed 

converter has high voltage conversion ratios, low voltage stress on the semiconductor devices, 

constant potential difference between the grounds of its low voltage and high voltage ports, and 

continuous current at its low voltage port. Synchronous rectification is utilized to enhance the 

efficiency of the converter. In addition, an extended version of the proposed converter is 

discussed in this chapter. Finally, the experimental results obtained from a 2-kW/800-V 

scaled-down prototype validate the feasibility of the proposed topology and the correctness of 

its theoretical analysis. 

9.2 Circuit Structure and Operating Principles of the Proposed Converter 

9.2.1 Circuit of the Proposed Topology 

    The proposed converter has six switches (Q1 → Q6), two inductors (L1 and L2), and five 

capacitors (C1 → C5). The proposed topology is presented in Figure 9.1, as it is composed of a 

quadratic converter (Q1, Q2, Q4, Q5, L1, L2, C1, C3, and C4) with an integrated switched capacitor 

network (Q3, Q6, C2, and C5). It has two ports, namely: the low voltage (LV) port, where the ESU 

is connected, and the high voltage (HV) port, where the dc bus of the load is connected. 

9.2.2 Analysis and Operation in Step-Up Mode 

    In this mode, the power flows from the LV side to the HV side. The operation is divided into 

two switching states, namely: State 0 and State 1. In state 0, Q1 → Q3 are off, Q4 → Q6 are on, L1 

and L2 discharge, C2 → C4 charge, and C5 discharges. In state 1, Q1 → Q3 are on, Q4 → Q6 are off, 
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L1 and L2 charge, C2 → C4 discharge, and C5 charges. In this mode of operation Q1 and Q2 act as 

main switches while Q3 → Q6 act as synchronous rectifiers. The current flow paths in the step-up 

operation during State 0 and State 1 are shown in Figure 9.2. 

Figure 9.1: The structure of the proposed bidirectional dc-dc converter. 

    In the mathematical analysis of the converter, the voltages and currents at the LV and HV 

ports are referred to as VL, VH, IL, and IH, respectively. The voltages across C1 → C5 are 

referred to as VC1 → VC5, the dc currents of L1 and L2 are IL1 and IL2, and the instantaneous 

voltages across L1 and L2 are VL1 and VL2, respectively. The charging currents of C1 → C5 are 

iC1_ch → iC5_ch, while the discharging currents of C1 → C5 are iC1_dis → iC5_dis. The duty cycle 

of Q1 → Q3 is d1, while the duty cycle of Q4 → Q6 is d2 (= 1-d1). The key waveforms of the 

proposed converter in the step-up mode are shown in Figure 9.4(a), where G1 → G6 are the 

gate triggering signals of Q1 → Q6, and T is the periodic switching time.  

    The converter in State 0 can be analyzed by applying Kirchhoff’s Voltage Law (KVL) 

and Kirchhof’s Current Law (KCL) on the equivalent circuit in Figure 9.2(b), we can 

derive the following relationships: 
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{

𝑉𝐿1 = 𝑉𝐿 − 𝑉𝐶3 
𝑉𝐿2 = 𝑉𝐿 − 𝑉𝐶4 
𝑉𝐶2 = 𝑉𝐶4       

(1) 

{

𝑖𝐶2_𝑐ℎ = 𝐼𝐿2 − 𝐼𝐻 − 𝑖𝐶4_𝑐ℎ 

𝑖𝐶3_𝑐ℎ = 𝐼𝐿1 

𝑖𝐶5_𝑑𝑖𝑠 = 𝐼𝐻 
(2) 

(a) 

(b) 

Figure 9.2: Current flow paths in step-up mode. (a) State 1. (b) State 0. 

    The converter in State 1 can be analyzed by applying KVL and KCL rules on the equivalent 

circuit in Figure 9.2(a), we can derive the following relationships: 

{
𝑉𝐿1 = 𝑉𝐿       
𝑉𝐿2 = 𝑉𝐿 + 𝑉𝐶3 

(3) 

{

𝑖𝐶2_𝑑𝑖𝑠 = 𝐼𝐻 + 𝑖𝐶5_𝑐ℎ 

𝑖𝐶3_𝑑𝑖𝑠 = 𝐼𝐿2 + 𝑖𝐶5_𝑐ℎ 

𝑖𝐶4_𝑑𝑖𝑠 = 𝐼𝐻 
(4)
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(a) 

(b) 

Figure 9.3: Current flow paths in step-down mode. (a) State 1. (b) State 0. 

        In State 1, Q1 and Q2 are turned on by G1 and G2, respectively. In this switching states, Q3 

acts as a synchronous rectifier, hence, to provide zero voltage switching (ZVS) for Q3 during the 

turn on and turn off instants a time delay is applied between the rising edge of G3 and the rising 

edge of G1 and another time delay is applied between the falling edge of G3 and the falling edge 

of G1. During these delay times, current flows through the body diode of Q3, thus, the voltage 

across between its drain and source drops to the forward voltage of the body diode (≈ 0V), which 

allows the ZVS realization. In State 0, Q4, Q5, and Q6 conduct and act as synchronous rectifiers. 

In order to provide ZVS to them, a time delay should be applied between the rising edge of G4 → 

G6 and the falling edge of G1, and another time delay should be applied between the falling edge 

of G4 → G6 and the ring edge of G1, as shown in Figure 9.4(a). 
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    By applying the volt-second balance rule on the three inductors, the voltages across the 

capacitors and the voltage gain in step-mode (MBoost) can be extracted, as follows:  

𝑉𝐶2 = 𝑉𝐶4 = 𝑉𝐿 (
1

1 − 𝑑1
)
2

(5) 

𝑉𝐶3 = 𝑉𝐿
1

1 − 𝑑1
(6) 

𝑉𝐶5 = 𝑉𝐿
2 − 𝑑1
(1 − 𝑑1)2

(7) 

𝑉𝐻 = 𝑉𝐶4 + 𝑉𝐶5 = 𝑉𝐿
3 − 𝑑1
(1 − 𝑑1)2

(8) 

𝑀𝐵𝑜𝑜𝑠𝑡 =
𝑉𝐻
𝑉𝐿
=

3 − 𝑑1
(1 − 𝑑1)2

(9) 

9.2.3 Analysis and Operation in Step-Down Mode 

    In this mode, the power flows from the HV side to the LV side. Similarly, the operation has two 

switching states, namely: State 0 and State 1. In state 0, Q1 → Q3 are off, Q4 → Q6 are on, L1 and 

L2 charge, C2 → C4 discharge, and C5 charges. In state 1, Q1 → Q3 are on, Q4 → Q6 are off, L1 and 

L2 discharge, C2 → C4 charge, and C5 discharges. In this mode of operation Q3 → Q6 act as main 

switches while Q1 and Q2 act as synchronous rectifiers. The current flow paths in the step-down 

operation during State 0 and State 1 are presented in Figure 9.3. In this mode, G3 is complementary 

to G4 → G6, a time delay is applied between the falling edge of G1 and the rising edges of G4 → 

G6, and another time delay is applied between the rising edge of G1 and the falling edges of G4 → 

G6 to provide ZVS to Q1 and Q2 during the turn on and turn off instants, as depicted in Figure 

9.4(b). 
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(a) (b) 

Figure 9.4: Important waveforms of the proposed converter. (a) Step-up mode. (b) Step-

down mode. 

    Since Q1 → Q3 are complementary to Q4 → Q6, hence, the voltages across the capacitors and 

the voltage gain in step-down operation (MBuck) can be directly extracted from (5)-(9) by replacing 

d1 by (1-d2), as follows: 

𝑉𝐶2 = 𝑉𝐶4 = 𝑉𝐻
1

2 + 𝑑2
(10)
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𝑉𝐶3 = 𝑉𝐻
𝑑2

2 + 𝑑2
(11) 

𝑉𝐶5 = 𝑉𝐻
1 + 𝑑2
2 + 𝑑2

(12) 

𝑉𝐿 = 𝑉𝐻
𝑑2

2

2 + 𝑑2
(13) 

𝑀𝐵𝑢𝑐𝑘 =
𝑉𝐿
𝑉𝐻

=
𝑑2

2

2 + 𝑑2
(14) 

9.2.4 Voltage and Current Stresses on the Switches 

    The voltage stresses across the six switches can be deduced by applying the KVL rule on the 

equivalent circuits of the proposed converter in Figure 9.2 and Figure 9.3, as follows: 

𝑉𝑄1 = 𝑉𝑄5 = 𝑉𝐿
1

1 − 𝑑1
= 𝑉𝐻

𝑑2
2 + 𝑑2

(15) 

𝑉𝑄2 = 𝑉𝐿 (
1

1 − 𝑑1
)
2

= 𝑉𝐻
1

2 + 𝑑2
(16) 

𝑉𝑄3 = 𝑉𝑄4 = 𝑉𝑄6 = 𝑉𝐿
2 − 𝑑1
(1 − 𝑑1)2

= 𝑉𝐻
1 + 𝑑2
2 + 𝑑2

(17) 

    By means of (9), the voltage stresses described by (15)-(17) can be expressed as functions in 

MBoost, as follows: 

𝑉𝑄1 = 𝑉𝑄5 = 𝑉𝐻
√1 + 8𝑀𝐵𝑜𝑜𝑠𝑡 − 1

4𝑀𝐵𝑜𝑜𝑠𝑡

(18)
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𝑉𝑄2 = 𝑉𝐻
4𝑀𝐵𝑜𝑜𝑠𝑡 −√1 + 8𝑀𝐵𝑜𝑜𝑠𝑡 + 1

8𝑀𝐵𝑜𝑜𝑠𝑡

(19) 

𝑉𝑄3 = 𝑉𝑄4 = 𝑉𝑄6 = 𝑉𝐻
4𝑀𝐵𝑜𝑜𝑠𝑡 +√1 + 8𝑀𝐵𝑜𝑜𝑠𝑡 − 1

8𝑀𝐵𝑜𝑜𝑠𝑡

(20) 

    The normalized voltage stresses on the six switches of the proposed converter are plotted in 

Figure 9.5. The current stresses on the power switches and inductors can be deduced by applying 

the charge-second balance on (2) and (4), as follows: 

𝐼𝐿1 = 𝐼𝐻
1 + 𝑑1
(1 − 𝑑1)2

= 𝐼𝐿
2 − 𝑑2
2 + 𝑑2

(21) 

𝐼𝐿2 = 𝐼𝐻
2

1 − 𝑑1
= 𝐼𝐿

2𝑑2
2 + 𝑑2

(22) 

𝑖𝑄1 = 𝐼𝐻
1 + 𝑑1

𝑑1(1 − 𝑑1)2
= 𝐼𝐿

2 − 𝑑2
(2 + 𝑑2)(1 − 𝑑2)

(23) 

𝑖𝑄2 = 𝐼𝐻
1 + 𝑑1

𝑑1(1 − 𝑑1)
= 𝐼𝐿

𝑑2(2 − 𝑑2)

(2 + 𝑑2)(1 − 𝑑2)
(24) 

𝑖𝑄3 = 𝐼𝐻
1

𝑑1
= 𝐼𝐿

𝑑2
2

(2 + 𝑑2)(1 − 𝑑2)
(25) 

𝑖𝑄4 = 𝑖𝑄6 = 𝐼𝐻
1

1 − 𝑑1
= 𝐼𝐿

𝑑2
(2 + 𝑑2)

(26)
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𝑖𝑄5 = 𝐼𝐻
1 + 𝑑1
(1 − 𝑑1)2

= 𝐼𝐿
2 − 𝑑2
(2 + 𝑑2)

(27) 

9.3 Design of Components and Efficiency Analysis of the Proposed Converter 

9.3.1 Power Switches Selection 

    Equations (15)-(17) and (23)-(27) describe the voltage and current stresses on the six switches, 

respectively. Accordingly, when the range of voltage gain and load are known, the peak stresses 

can be calculated. The calculated current and voltage stresses should be within the safe-operating-

area (SOA) of the selected power switches. 

9.3.2 Design of Inductors 

    When the ranges of the operating voltage gain and load are known, the allowed maximum 

current ripples of the inductors (i.e. ∆𝑖𝐿1 and ∆𝑖𝐿2) and the switching frequency fs are determined, 

the minimum required inductance can be calculated as follows:     

{

𝐿1 ≥
𝑑1𝑉𝐿 

𝑓𝑠∆𝑖𝐿1

𝐿2 ≥
𝑑1𝑉𝐿 

𝑓𝑠∆𝑖𝐿2
(
2 − 𝑑1
1 − 𝑑1

)

(28) 

    Additionally, the peak current stresses of the two inductors can be deduced by means of (21) 

and (22), hence, the designed inductors should tolerate these currents. 

9.3.3 Design of Capacitors 

    The voltages across the capacitors can be calculated using (5)-(8) and (10)-(13). The 

relationships between the capacitances of the five capacitors and their corresponding ripple voltage 

are described by (29). Hence, when the operating voltage gain and loading ranges are knows, the 

required capacitance and voltage rating of the five capacitors can be deduced. 
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{

𝐶1 ≥
𝑑1𝑉𝐿 

8𝑓𝑠
2∆𝑉𝐶1

(
1

𝐿1
+

1

𝐿2(1 − 𝑑1)
)

𝐶2 ≥
𝐼𝐻 

𝑓𝑠∆𝑉𝐶2

𝐶3 ≥
(1 + 𝑑1)𝐼𝐻 

𝑓𝑠(1 − 𝑑1)∆𝑉𝐶3

𝐶4 ≥
𝑑1𝐼𝐻 

𝑓𝑠∆𝑉𝐶4

𝐶5 ≥
(1 − 𝑑1)𝐼𝐻 

𝑓𝑠∆𝑉𝐶5

(29) 

9.3.4 Efficiency Analysis 

    Calculating the efficiency of the power converter is very important to adequately design the 

cooling system, additionally, it gives an idea about the operating conditions where the proposed 

topology has the maximum/minimum efficiency. The power loss of the converter PLoss is described 

by (30), where 𝑃𝑄(𝑐𝑜𝑛𝑑), 𝑃𝑄(𝑠𝑤), 𝑃𝐿(𝑐𝑜𝑛𝑑), 𝑃𝐿(𝑐𝑜𝑟𝑒), and 𝑃𝐶(𝑐𝑜𝑛𝑑) are the conduction and switching 

losses of the six switches, the conduction and core losses of the two inductors, and the conduction 

loss of the five capacitors.       

Ploss = 𝑃𝑄(𝑐𝑜𝑛𝑑)+ 𝑃𝑄(𝑠𝑤)+𝑃𝐿(𝑐𝑜𝑛𝑑)+ 𝑃𝐿(𝑐𝑜𝑟𝑒)+ 𝑃𝐶(𝑐𝑜𝑛𝑑) (30) 

    These losses can be calculated using (31)-(36), as follows: 

PQ(cond) =∑ 𝑖𝑄𝑗(𝑟𝑚𝑠)
2 𝑟𝑑𝑠𝑗

𝑗=6
𝑗=1  (31) 

PQ(sw) = {
𝑃𝑄1(𝑠𝑤) + 𝑃𝑄2(𝑠𝑤) 

∑ 𝑃𝑄𝑗(𝑠𝑤)
𝑗=6
𝑗=3  

(Step-up mode) 

(32) 

(Step-down mode) 

PQj(sw) = 𝑓𝑠(0.5𝑉𝑄𝑗𝑖𝑄𝑗(𝑡𝑟𝑗 + 𝑡𝑓𝑗) + 0.5𝑉𝑄𝑗
2𝐶𝑂𝑆𝑆𝑗) (33) 

Where rds1 → rds6, tr1 → tr6, tf1 → tf6, COSS1 → COSS6 are the on resistances, the rising times, the 

falling times, and the parasitic output capacitances of the six switches. The switching loss of the 
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proposed converter, described by (32), depends on the mode of operation, as in step-up mode Q3 

→ Q6 are soft-switched, while in step-down mode Q1 and Q2 are soft-switched. The root-mean-

square (rms) currents of the six switches can be calculated as in (34). 

{

𝑖𝑄1(𝑟𝑚𝑠) = 𝐼𝐻 (
1 + 𝑑1

√𝑑1(1 − 𝑑1)2
) 

𝑖𝑄2(𝑟𝑚𝑠) = 𝐼𝐻 (
1 + 𝑑1

√𝑑1(1 − 𝑑1)
) 

𝑖𝑄3(𝑟𝑚𝑠) = 𝐼𝐻 (
1

√𝑑1
) 

𝑖𝑄4(𝑟𝑚𝑠) = 𝑖𝑄6(𝑟𝑚𝑠) = 𝐼𝐻 (
1

√1 − 𝑑1
)

𝑖𝑄5(𝑟𝑚𝑠) = 𝐼𝐻 (
1 + 𝑑1

√(1 − 𝑑1)3
) 

(34) 

     The conduction and core losses of the two inductors are described by (35) and (36), where rL1, 

rL2, lc1, lc2, Ac1, Ac2, ∆B1, and ∆B2 are the series resistances of the two inductors, the lengths of the 

magnetic flux path of the cores of the two inductors, the cross sectional areas of the cores of the 

two inductors, and ac magnetic flux density of the two inductors. 

𝑃𝐿(𝑐𝑜𝑛𝑑) = 𝐼𝐿1
2𝑟𝐿1 + 𝐼𝐿2

2𝑟𝐿2 (35) 

𝑃𝐿(𝑐𝑜𝑟𝑒) = 𝑙𝑐1 𝐴𝑐1 (𝑎 ∆𝐵1
𝑏 𝑓𝑠

𝐶) + 𝑙𝑐2 𝐴𝑐2 (𝑎 ∆𝐵2
𝑏 𝑓𝑠

𝐶) (36) 

    As a, b, and c are fitting parameters that can be derived from the datasheet of the cores. The 

conduction losses of the five capacitors can be calculated using (37), where rC1 → rC5 are the 

equivalent series resistances of the five capacitors. The rms values of the capacitors’ currents are 

described by (38). 
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PC(cond) =∑ 𝑖𝐶𝑗(𝑟𝑚𝑠)
2 𝑟𝐶𝑗

𝑗=5
𝑗=1  (37) 

{

𝑖𝐶1(𝑟𝑚𝑠) =
𝑑1𝑉𝐿

2√3𝑓𝑠
(
1

𝐿1
+

1

𝐿2(1 − 𝑑1)
)

𝑖𝐶2(𝑟𝑚𝑠) = 𝐼𝐻√
3𝑑1

2 − 3𝑑1 + 1

𝑑1
2(1 − 𝑑1)2

𝑖𝐶3(𝑟𝑚𝑠) = 𝐼𝐻√
(1 + 𝑑1)2

𝑑1(1 − 𝑑1)
3

𝑖𝐶4(𝑟𝑚𝑠) = 𝐼𝐻√
3𝑑1

2 − 3𝑑1 + 1

(1 − 𝑑1)2

𝑖𝐶5(𝑟𝑚𝑠) = 𝐼𝐻√
1 − 𝑑1
𝑑1

(38) 

Finally, the efficiency ƞ is depicted by (39): 

Ƞ = {

𝑉𝐿 𝐼𝐿

𝑃𝐿𝑜𝑠𝑠+𝑉𝐿 𝐼𝐿
𝑉𝐻 𝐼𝐻

𝑃𝐿𝑜𝑠𝑠+𝑉𝐻 𝐼𝐻

(Step-up mode) 

(Step-down mode) 

(39) 

9.4 Comparative Study 

    The proposed converter is compared with seven other BDC topologies in this section. The BDC 

architectures in this comparative study are a four-level flying capacitor (FLFC) converter, the 

quadratic BDC in [194], the switched-capacitor BDC in [195] with two multiplier cells, the new 

three-level BDC in [193], the hybrid BDC with switched-capacitor cell in [196], the hybrid 

converter with a quasi-Z-source and a switched-capacitor networks in [95], and the conventional 

cascaded bidirectional converter (CCBC). Table 9.1 concludes the features of each BDC topology 

including the number of active and passive components, the voltage gain in step-up and step-down 
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modes, and the potential difference between the grounds of the LV and HV ports (VGrounds). The 

voltage gain curves of the compared converters versus the duty cycle in step-up and step-down 

modes are shown in Figure 9.6. The proposed converter has the highest voltage gain in the step-

up mode and the lowest voltage gain in the step-down mode in comparison to the other converters 

in this study. The converters in [193] and [196] have HF PWM potential difference between the 

grounds of their ports which limits their applications. 

(a)

(b) 

Figure 9.5: Comparison of voltage gain between the proposed converter and other BDC 

solutions. (a) In step-up mode. (b) In step-down mode. 
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    In order to compare the relative total cost of the power switches used in each topology, the 

semiconductor utilization factor (UF) is utilizes, and it is defined by (40), where Po is the output 

power of the converter, VQj and iQj (rms) are the voltage stress and the rms current stress on switch 

Qj. 

𝑈𝐹 =
𝑃𝑜

∑𝑉𝑄𝑗 𝑖𝑄𝑗 (𝑟𝑚𝑠)
(40) 

Table 9.1: COMPARISON BETWEEN THE PROPOSED AND OTHER BDC SOLUTIONS 

Topology Components VGrounds 

Voltage gain 

Step-up mode Step-down mode 

FLFC 

6 Switches 

1 Inductor 

4 Capacitors 

0V 𝑀𝐵𝑜𝑜𝑠𝑡 =
1

1 − 𝑑1
𝑀𝐵𝑢𝑐𝑘 = 𝑑2 

Converter in [193] 

4 Switches 

2 Inductors 

3 Capacitors 

HF PWM 

voltage 
𝑀𝐵𝑜𝑜𝑠𝑡 =

2

1 − 𝑑1
𝑀𝐵𝑢𝑐𝑘 =

𝑑2
2

Quadratic in [194] 

4 Switches 

2 Inductor 

3 Capacitors 

0V 𝑀𝐵𝑜𝑜𝑠𝑡 = (
1

1 − 𝑑1
)
2

𝑀𝐵𝑢𝑐𝑘 = 𝑑2
2

Converter in [195] 

(n=2) 

6 Switches 

1 Inductor 

6 Capacitors 

0V 𝑀𝐵𝑜𝑜𝑠𝑡 =
3

1 − 𝑑1
𝑀𝐵𝑢𝑐𝑘 =

𝑑2
3

Converter in [196] 

3 Switches 

2 Inductors 

4 Capacitors 

HF PWM 

voltage 
𝑀𝐵𝑜𝑜𝑠𝑡 =

1 + 𝑑1
1 − 𝑑1

𝑀𝐵𝑢𝑐𝑘 =
𝑑2

2 − 𝑑2

Converter in [95] 

5 Switches 

2 Inductors 

6 Capacitors 

Constant 

voltage 
𝑀𝐵𝑜𝑜𝑠𝑡 =

2 + 𝑑1
1 − 𝑑1

𝑀𝐵𝑢𝑐𝑘 =
𝑑2

3 − 𝑑2

CCBC 

4 Switches 

2 Inductor 

3 Capacitors 

0V 𝑀𝐵𝑜𝑜𝑠𝑡 = (
1

1 − 𝑑1
)
2

𝑀𝐵𝑢𝑐𝑘 = 𝑑2
2

Proposed 

6 Switches 

2 Inductors 

5 Capacitors 

Constant 

voltage 
𝑀𝐵𝑜𝑜𝑠𝑡 =

3 − 𝑑1
(1 − 𝑑1)

2 𝑀𝐵𝑢𝑐𝑘 =
𝑑2

2

2 + 𝑑2
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Figure 9.6: Semiconductor utilization factor for the compared BDC solutions. 

    The ratio between the output power of a dc-dc converter and the total power processed by the 

power switches of that converter should be as high as possible to reduce the cost of the 

semiconductor devices. Figure 9.7 shows the semiconductor utilization factor curves of the 

compared converters versus MBoost when Po = 2kW and VH = 800V. It is clear that the proposed 

converter has the highest semiconductor utilization factor compared to the other converters.    

    The comparative study shows that the proposed BDC topology combines a number of features such 

as high voltage conversion ratios, high semiconductor utilization factor, and constant potential 

difference between the grounds of its LV and HV ports, which make it an excellent interface for 

the ESUs.

9.5 Extended Structure of the Proposed Converter 

    Since the proposed converter encompasses a switched-capacitor network, hence, this network 

can have more than one switched-capacitor cell in order to extend the voltage gain range and 

reduce the voltage stress on the individual power switches. 
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Figure 9.7: The extended structure of the proposed converter with n switched-capacitor 

cells. 

    Figure 9.8 shows the extended structure of the proposed converter with n switched-capacitor 

cells. The extended structure with n switched-capacitor cells is composed of 4+2n power switches, 

3+2n capacitors, and two inductors. The switches Q31 → Q3n and Q61 → Q6n have the same 

switching states as Q3 and Q6, respectively, discussed in Section II, as Q31 → Q3n only conduct in 

state 1, while Q61 → Q6n only conduct in state 0. Similarly, C21 → C2n and C51 → C5n have the 

same charge/discharge states as C2 and C5, respectively, illustrated in Section II, where C21 → C2n 

charge in state 0 and discharge in state 1, while C51 → C5n discharge in state 0 and charge in state 

1.     

    The voltage across the capacitors of the extended structure are described by (41), while the 

voltage at the HV port is defined by (42). 
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{

𝑉𝐶21 = 𝑉𝐶4 =
𝑉𝐿

(1 − 𝑑1)2
=

𝑉𝐻
1 + 𝑛 + 𝑛𝑑2

𝑉𝐶22 → 𝑉𝐶2𝑛 =
(2 − 𝑑1)𝑉𝐿
(1 − 𝑑1)2

=
(1 + 𝑑2)𝑉𝐻
1 + 𝑛 + 𝑛𝑑2

𝑉𝐶3 =
𝑉𝐿

1 − 𝑑1
=

𝑑2𝑉𝐻
1 + 𝑛 + 𝑛𝑑2

𝑉𝐶51 → 𝑉𝐶5𝑛 =
(2 − 𝑑1)𝑉𝐿
(1 − 𝑑1)2

=
(1 + 𝑑2)𝑉𝐻
1 + 𝑛 + 𝑛𝑑2                       

(41) 

𝑉𝐻 = 𝑉𝐶4 +∑𝑉𝐶5𝑗

𝑗=𝑛

𝑗=1

= 𝑉𝐿
1 + 𝑛(2 − 𝑑1)

(1 − 𝑑1)2
(42) 

    Accordingly, the voltage gains in step-up mode (�̀�𝐵𝑜𝑜𝑠𝑡) and step-down mode (�̀�𝐵𝑢𝑐𝑘) can be 

defined as in (43) and (44). 

�̀�𝐵𝑜𝑜𝑠𝑡 =
𝑉𝐻
𝑉𝐿
=
1 + 𝑛(2 − 𝑑1)

(1 − 𝑑1)2
(43) 

�̀�𝐵𝑢𝑐𝑘 =
𝑉𝐿
𝑉𝐻

=
𝑑2

2

1 + 𝑛(1 + 𝑑2)
(44) 

    Figure 9.9 shows the voltage gain curves of the extended structure in step-up and step-down 

modes. The voltage stresses across the power switches of the extended structure are described by 

(45)-(48). 

𝑉𝑄1 = 𝑉𝑄5 =
𝑉𝐿

1 − 𝑑1
=

𝑑2𝑉𝐻
1 + 𝑛 + 𝑛𝑑2

(45) 

𝑉𝑄2 = (
𝑉𝐿

1 − 𝑑1
)
2

=
𝑉𝐻

1 + 𝑛 + 𝑛𝑑2
(46)
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𝑉𝑄31 → 𝑉𝑄3𝑛 = 𝑉𝑄4 =
(2 − 𝑑1)𝑉𝐿
(1 − 𝑑1)2

=
(1 + 𝑑2)𝑉𝐻
1 + 𝑛 + 𝑛𝑑2

(47) 

𝑉𝑄61 → 𝑉𝑄6𝑛 =
(2 − 𝑑1)𝑉𝐿
(1 − 𝑑1)2

=
(1 + 𝑑2)𝑉𝐻
1 + 𝑛 + 𝑛𝑑2

(48) 

   By means of (43), equations (45-(48) can be defined as functions in the voltage gain, as 

following: 

(a) 

(b) 

Figure 9.8: Voltage gain of the proposed extended structure with different number of switched-

capacitor cells. (a) In step-up mode. (b) In step-down mode. 
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Figure 9.9: Semiconductor utilization factor of the proposed extended structure with 

different number of switched-capacitor cells. 

𝑉𝑄1 = 𝑉𝑄5 = 𝑉𝐻 (
√𝑛2 + 4�̀�𝐵𝑜𝑜𝑠𝑡(1 + 𝑛) − 𝑛

2�̀�𝐵𝑜𝑜𝑠𝑡(1 + 𝑛)
) (49) 

𝑉𝑄2 = 𝑉𝐻 (
2�̀�𝐵𝑜𝑜𝑠𝑡(1 + 𝑛) − 𝑛√𝑛2 + 4�̀�𝐵𝑜𝑜𝑠𝑡(1 + 𝑛) + 𝑛

2

2�̀�𝐵𝑜𝑜𝑠𝑡(1 + 𝑛)
) (50) 

𝑉𝑄31 → 𝑉𝑄3𝑛 = 𝑉𝑄4 = 𝑉𝑄61 → 𝑉𝑄6𝑛

= 𝑉𝐻 (
2�̀�𝐵𝑜𝑜𝑠𝑡(1 + 𝑛) + √𝑛2 + 4�̀�𝐵𝑜𝑜𝑠𝑡(1 + 𝑛) − 𝑛

2�̀�𝐵𝑜𝑜𝑠𝑡(1 + 𝑛)
) 

(51) 

    The currents of the two inductors can be calculated using (52) and (53), while the current stresses 

of the power switches are described by (54)-(58). 

𝐼𝐿1 = 𝐼𝐻
𝑛 + 𝑑1
(1 − 𝑑1)2

= 𝐼𝐿
1 + 𝑛 − 𝑑2
1 + 𝑛 + 𝑛𝑑2

(52) 

𝐼𝐿2 = 𝐼𝐻
𝑛 + 1

1 − 𝑑1
= 𝐼𝐿

𝑑2(1 + 𝑛)

1 + 𝑛 + 𝑛𝑑2
(53)
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𝑖𝑄1 = 𝐼𝐻
𝑛 + 𝑑1

𝑑1(1 − 𝑑1)2
= 𝐼𝐿

1 + 𝑛 − 𝑑2
(1 − 𝑑2)(1 + 𝑛 + 𝑛𝑑2)

(54) 

𝑖𝑄2 = 𝐼𝐻
𝑛 + 𝑑1

𝑑1(1 − 𝑑1)
= 𝐼𝐿

𝑑2(1 + 𝑛 − 𝑑2)

(1 − 𝑑2)(1 + 𝑛 + 𝑛𝑑2)
(55) 

𝑖𝑄31 → 𝑖𝑄3𝑛 = 𝐼𝐻
1

𝑑1
= 𝐼𝐿

𝑑2
2

(1 − 𝑑2)(1 + 𝑛 + 𝑛𝑑2)
(56) 

𝑖𝑄4 = 𝑖𝑄61 → 𝑖𝑄6𝑛 = 𝐼𝐻
1

(1 − 𝑑1)
= 𝐼𝐿

𝑑2
(1 + 𝑛 + 𝑛𝑑2)

(57) 

𝑖𝑄5 = 𝐼𝐻
𝑛 + 𝑑1
(1 − 𝑑1)2

= 𝐼𝐿
1 + 𝑛 − 𝑑2
1 + 𝑛 + 𝑛𝑑2

(58) 

The rms currents of the power switches can be calculated via (59), as follows: 

{

𝑖𝑄1(𝑟𝑚𝑠) = 𝐼𝐻 (
𝑛 + 𝑑1

√𝑑1(1 − 𝑑1)
2
) 

𝑖𝑄2(𝑟𝑚𝑠) = 𝐼𝐻 (
𝑛 + 𝑑1

√𝑑1(1 − 𝑑1)
) 

𝑖𝑄31 → 𝑖𝑄3𝑛 = 𝐼𝐻 (
1

√𝑑1
) 

𝑖𝑄4(𝑟𝑚𝑠) = 𝑖𝑄61(𝑟𝑚𝑠) → 𝑖𝑄6𝑛(𝑟𝑚𝑠) = 𝐼𝐻 (
1

√1 − 𝑑1
)

𝑖𝑄5(𝑟𝑚𝑠) = 𝐼𝐻 (
𝑛 + 𝑑1

√(1 − 𝑑1)3
) 

(59) 

   Figure 9.10 shows the semiconductor utilization factor of the extended structure of the proposed 

converter with different number of switched-capacitor cells. It shows that as the number of the 

switched-capacitor cells increases, the semiconductor utilization factor of the converter gets 

enhanced. 
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9.6  Experimental Results and Analysis 

   In order to validate the proposed topology and assess the correctness of its theoretical analysis, an 

experimental setup was developed, shown in Figure 9.11. The power rating of the prototype is 2 

kW, the voltage of the HV side is 800V, and the voltage of the LV port is allowed to swing 

between 80V and 160V (with output power of 2 kW). The power circuit of the developed setup is 

composed of Silicon Carbide (SiC) MOSFETs. The controller used is a TMS320f28335 

microcontroller from Texas Instruments, and the switching frequency is 100 kHz. The values of the 

used inductors and capacitors, and the part numbers of the power switches are enlisted in Table 9.2. 

The built prototype has one switched-capacitor network (n = 1). Two case studies are 

discussed in this section, namely: case study I and case study II. In case study I, the operation of the 

proposed converter is investigated in step-up mode, while in case study II, the operation of the 

proposed converter is evaluated in step-down mode. The experimental results of case study I and 

case study II are shown in Figure 9.12 and Figure 9.13, respectively.  

Table 9.2: Main Experimental Parameters of The Proposed Converter 

Parameters and Components Values 

Rated power Po 2-kW

HV side voltage VH 800-V

LV side voltage VL 80-V→160-V

Switch Q1, Q2  UF3C065040K3S 

Switches Q3, Q4, Q6 E3M0120090D 

Switch Q5 UJ3C065080K3S 

Inductors L2, L3 250 µH 

Capacitors C1, C2, C3 150 µF 

Capacitors C4, C5 180 µF 

Switching frequency fs 100 kHz 

Microcontroller TMS320f28335 
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Figure 9.10: Experimental prototype.

9.6.1 Case Study I 

    In this case study, the operation of the proposed converter is evaluated in step-up mode. The 

parameters of operation are as following: VL = 80V, d1 = 0.5, and the load connected to the HV 

port is represented by a resistor of 320Ω. The voltage across the capacitors of the converter can be 

calculated using (5)-(7), the voltage at the HV port of the converter and the step-up voltage gain in 

this case study can be deduced via (8) and (9), respectively, as following: VC2 = VC4 = 320V, VC3 = 

160V, VC5 = 480V, VH = 800V, and MBoost = 10, which closely agree with the experimental results 

in Figure 9.12(b) and Figure 9.12(c). The currents and the ripple currents of L1 and L2 can be 

calculated using (21), (22), and (28), as follows: IL1 = 15A, IL2 = 10A, ∆iL1 = 1.6A, and ∆iL2 = 4.8A. 

These values are in close agreement with the results in Figure 9.12(a). The voltage stress across the 

six switches can be calculated by means of (15)-(17), as follows: VQ1 = VQ5 = 160V, VQ2 = 320V, 

VQ3 = VQ4 = VQ6 = 480V. The experimental results in Figure 9.12(d), Figure 9.12(e), and Figure 

9.12(f) confirm the correctness of the calculated values. The current stresses of the six switches can 

be calculated by (23)-(27), as: iQ1 = 30A, iQ2 = 15A, iQ3 = 5A, iQ4 = iQ6 = 5A, and iQ5 = 15A, which 

closely agree with the results in Figure 9.12(g), Figure 9.12(h), and Figure 9.12(i). 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 9.11: Experimental results of case study I. 

   In this case study, Q3 →Q6 act as synchronous rectifiers, thus, when a delay is applied to their 

gate pulses, ZVS can be achieved at the turn on and turn off instants, which is confirmed by Figure 

9.12(e) and Figure 9.12(f).   
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9.6.2 Case Study II 

    In this case study, the operation of the proposed converter is evaluated in step-down mode. The 

parameters of operation are as following: VH = 800V, d2 = 0.7, and the load connected to the LV 

port is represented by a resistor of 10.5Ω. 

    The voltage across the capacitors of the converter can be deduced using (10)-(12), the voltage 

at the LV port of the converter and the step-down voltage gain in this case study can be calculated 

using (13) and (14), respectively, as following: VC2 = VC4 ≈ 296.3V, VC3 ≈ 207.4V, VC5 ≈ 503.7V, 

VL ≈ 145.19V, and MBuck ≈ 0.18, which closely agree with the experimental results in Figure 

9.13(b) and Figure 9.13(c).  

    The currents and the ripple currents of L1 and L2 can be calculated using (21), (22), and (28), as 

follows: IL1 ≈ 6.6A, IL2 ≈ 7.14A, ∆iL1 ≈ 1.74A, and ∆iL2 ≈ 4.23A. These values are in close 

agreement with the results in Figure 9.13(a). The voltage stress across the six switches can be 

calculated by means of (15)-(17), as follows: VQ1 = VQ5 ≈ 207.4V, VQ2 ≈ 296.3V, VQ3 = VQ4 = VQ6 

≈ 503.7V. 

    The experimental results in Figure 9.13(d), Figure 9.13(e), and Figure 9.13(f) confirm the 

correctness of the calculated values. The current stresses of the six switches can be calculated by 

(23)-(27), as: iQ1 ≈ 22.1A, iQ2 ≈ 15.48A, iQ3 ≈ 8.33A, iQ4 = iQ6 ≈ 3.57A, and iQ5 ≈ 6.63A, which 

closely agree with the results in Figure 9.13(g), Figure 9.13(h), and Figure 9.13(i).  

    In this case study, Q1 and Q2 act as synchronous rectifiers, hence, when a time delay is applied 

to their gate pulses, ZVS can be realized at the turn on and turn off transitions, which is confirmed 

by Figure 9.13(d). 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 9.12: Experimental results of case study II 



231 

9.6.3 Dynamic Performance with Wide-Voltage-Gain Operation 

   To evaluate the capability of the proposed converter to operate successfully with wide voltage gain, 

two tests have been conducted. The first test is for the step-up operation, while the second test is for 

the step-down operation. Two closed-loop Type-III voltage controllers are utilized to control the 

voltage at the LV and HV ports during the step-down and step-up operations, respectively. In 

the first test, the load is connected to the HV port, and a programmable dc power supply is connected 

to the LV port, as VL is changed gradually from 160V down to 80V and the closed-loop voltage 

controller holds VH constant at 800V, as shown in Figure 9.14(a). In the second test, the load is 

connected to the LV port, and a dc power supply is connected to the HV port, as VH is fixed at 800V 

and the closed-loop voltage controller gradually changes VL from 80V up to 160V, as shown in 

Figure 9.14(b). The results of these two tests confirm the acceptable performance of the 

proposed converter to operate stably under wide voltage gain range. 

     Figure 9.15 shows the dynamic performance of the proposed converter under sudden changes in 

the load. In the first test, the LV port is connected to an 80V power supply and the closed-loop 

voltage controller holds the voltage of the HV port at 800V while the load connected to the HV port 

has step-changed from 640Ω to 320Ω, as shown in Figure 9.15(a). In the second test, the HV port is 

connected to an 800V power supply and the closed-loop voltage controller holds the voltage of the 

LV port at 80V while the load connected to the LV port has step-changed from 3.5Ω to 7Ω, as shown 

in Figure 9.15(b). The results of both tests prove that the converter with the utilized closed-loop 

voltage controllers has a good dynamic performance under sudden load changes. 

    In order to gradually build up the voltage on the capacitors of the converter and avoid high 

inrush currents during the starting instant, a soft-starting algorithm has been adopted. This 
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algorithm is based on gradually increasing the value of the duty cycle from zero to the desired 

reference value during the starting transition. 

(a) (b) 

Figure 9.13: Performance of the proposed converter under wide-range of voltage gain 

(VH = 800V, VL = 80V→160V, and Po = 2kW). (a) Step-up mode. (b) Step-down mode. 

(a) (b) 

Figure 9.14: Dynamic performance of the proposed converter under abrupt change in 

load. (a) Step-up mode. (b) Step-down mode. 

9.7 Efficiency Analysis 

    Figure 9.16 shows the calculated loss distributions for case study I and case study II. In case 

study I, the calculated efficiency of the converter is 95.6% with total losses of 91.1W. The 

conduction and switching losses of the transistors, and the conduction losses of the inductors and 

capacitors account for 51%, 27%, 14%, and 8%, respectively, of the total losses of the converter, 
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as shown in Figure 9.16(a). In case study II, the calculated efficiency of the converter is 97.7% 

with total losses of 46.4W. 

(a) (b) 

Figure 9.15: Calculated power loss distributions for the experiment (a) Case study I. (b) 

Case study II. 

Figure 9.16: Measured efficiency curves of the proposed converter in step-up and step-

down modes (VH =800V, Po =1kW, 2kW, and VL =80V→160V). 

     The conduction and switching losses of the transistors, and the conduction losses of the 

inductors and capacitors account for 37%, %, 28%, 8%, and 26%, respectively, of the total losses 

of the converter, as shown in Figure 9.16(b).   
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    The measured and calculated efficiency curves in step-up and step-down modes when VH = 

800V, VL = 80V→160V, and Po = 1kW and 2kW, are shown in Figure 9.17. In the step-up mode, 

when Po = 1kW, the minimum measured efficiency is 95.7% at VL = 80V, and the maximum 

efficiency is 96.8% at VL = 140V, while when Po =2kW, the minimum efficiency is 95.1% at VL 

= 80V, and the maximum efficiency is 96.6% at VL = 140V. In the step-down mode, when Po = 

1kW, the minimum efficiency is 96.5% at VL = 80V, and the maximum efficiency is 97.4% at VL 

= 140V, while when Po =2kW, the minimum efficiency is 95.7% at VL = 80V, and the maximum 

efficiency is 97.2% at VL = 140V. The high efficiency of the converter even with high voltage 

conversion ratios is due to the low voltage stress on the semiconductor devices, the high voltage 

gain of the converter, hence, high voltage conversion ratios can be obtained at moderate values 

of duty cycle, and the utilization of SiC MOSFETs in the prototype. 

9.8 Conclusion 

    A new bidirectional dc-dc converter based on a hybrid structure of the quadratic converter 

with an integrated switched capacitor network has been proposed and analyzed in this 

chapter. The proposed topology has high voltage conversion ratios, high semiconductor 

utilization factor, and constant potential difference between the grounds of its ports. These 

features allow the converter to operate efficiently at high voltage gains without the need to 

operate at extreme values of duty cycle values, which make the presented topology an 

excellent interface for electric vehicles’ energy storage units and the dc-link of the inverter. 

In addition, an extended version of the proposed converter has been discussed in order to 

enhance further the voltage gain of converter and reduce the voltage stress on its individual 

switches.  
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Chapter 10 Cascaded High Frequency AC-Link Systems with Reduced Switch Count for 

Large-Scale PV-Assisted EV Fast Charging Stations    

10.1 Introduction 

    Electric vehicles are emerged as an alternative to conventional gas engine vehicles. 

Developing high-power fast charging stations is a promising solution to the problems of long 

charging time and limited range per charge [197]-[199]. In the literature, there are basically two 

main architectures for fast charging stations:  

1) In the first architecture, there is a common LV ac-bus, where each EV charger in the fast 

charging station has its own dedicated ac-dc conversion stage to interface it to the ac grid 

[200], [201].

2) In the second architecture, the fast charging station has a common LV dc bus, where all the 

EV chargers are comprised of dc-dc converters, and connected to a common LV dc bus, then 

a central dc-ac conversion stage is utilized to interface the LV dc bus system to the ac grid 

[202]-[204].

The main advantage of the second architecture is the simple power electronic interface 

required to interface the EV chargers, renewable energy sources, or energy storage units to the 

LV dc bus of the charging station. 

For a large-scale system, with a multi Megawatt power rating, the fast charging station 

needs to be directly connected to the MV ac power network. Considering the second fast 

charging station architecture, the topology of the central dc-ac power conversion stage can be 

without transformers, or using a transformer. For the topologies without transformers, the 

cascaded z-source inverter and the cascaded quasi z-source inverter are taking a lot of interest in 

the recent literature [205]-[207]. They can provide a high boosting gain and by connecting them 

in series they can reach the voltage 
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level of the MV grid without the need for a transformer. On the other hand, both the cascaded z-

source inverter and cascaded quasi z-source inverter do not provide galvanic isolation between the 

input port, where all the EV chargers and the renewable sources are connected, and the output port 

where the MV ac grid is connected, moreover, they require bulky dc-link capacitors and dc-link 

inductors which can increase the size and decrease the reliability of the system with large number of 

cascaded inverters. For the transformer-based topologies, the CHF-link system is gaining a lot of 

interest [208]-[214] due to the development of high voltage wide-bandgap semiconductor 

devices that can switch efficiently at high frequencies [215], [216] and the new magnetic core 

materials like Nanocrystalline that have high maximum flux density and low core losses at high 

frequencies [217], [218]. 

Figure 10.1:Generic Block Diagram of a CHF-link System. 
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    The CHF-link system is a power electronic interface that interconnects a LV dc bus system with the 

MV ac grid and provides galvanic isolation via a MF/HF transformer. The generic block diagram 

of the CHF-link system is shown in Figure 10.1, where it is composed of a single phase inverter (can 

be multiple of parallel single phase inverters to handle more power), a HF/MF transformer with a 

multi-winding secondary, and cascaded HF-link  cells. The single phase inverter is used to convert the 

LV dc input to a HF/MF voltage waveform required for the HF/MF transformer. 

The transformer acts as a HF/MF magnetic link. The cell is an AC/AC power converter, and when 

the cells are connected in series, they convert the HF/MF voltage from the transformer secondary 

windings to a sinusoidal voltage with the nominal grid frequency. Different cell topologies have 

been proposed in literature. In [208]-[212], the authors proposed a topology for the cell that is 

composed of a rectifier bridge to rectify the HF voltage of the transformer, a dc-link capacitor to 

smooth the rectified voltage, and a single phase inverter to convert the rectified voltage to a low-

frequency voltage component. This cell is a HF dc-link cell. The number of active switches in this 

cell topology is four switches per cell. The CHF-link system with this cell topology is called CHF dc-

link system. The main disadvantage of this cell topology is the utilization of dc-link capacitors which 

are sizable, and with the large number of cells, the size of this system will be large, and the reliability of 

the system will drop down, added to this, this cell does not provide bidirectional power flow capability. 

In [213] and [214], a new topology is proposed for the cell based on a matrix converter to 

eliminate the dc-link capacitors, and provide bidirectional power flow capability. This cell is a HF ac-

link cell. The CHF-link system with this cell topology is a CHF ac-link system. The number of active 

switches in this cell topology is eight switches per cell which is double that needed for the 
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HF dc-link cell. The increased number of switches with their associated driving circuits and heat sinks 

increases the cost, size and weight of the CHF ac-link system.  

In this chapter, two new HF ac-link cell topologies are proposed. Both of the proposed cell 

topologies get rid of the dc-link capacitors, provide bidirectional power flow capability, and 

require less number of active switches compared to the HF ac-link cell proposed in [213] and [214]. 

The topologies of the proposed HF ac-link cell 1 and the proposed HF ac-link cell 2 are presented and 

compared with the previously proposed cell architectures in literature in Table 10.1. 

    The proposed HF ac-link cell 1 is composed of a center-tapped transformer secondary winding 

connected to a two-arm half-bridge matrix converter, each arm is composed of anti-series 

connected IGBTs. This cell is comprised of four active switches and can only work in a bipolar 

operation, hence, can realize two voltage levels, either a positive voltage or a negative voltage. The 

proposed HF ac-link cell 2 is comprised of six switches and has the same topology of the proposed 

HF ac-link cell 1 with an extra third arm that connects between the output terminals of the half-bridge 

matrix converter. This third arm has two main advantages:  

1) Provides a zero state, thus, each cell is able to work in both bipolar and unipolar operation, which 

results in three voltage levels that can be realized by each cell. 

2) Provides a bypass across the cell in case of an open-circuit fault takes place in either the upper or 

lower arms of the half-bridge matrix converter, which helps to isolate the faulted cells and achieve 

fault tolerant operation easily.  

     A novel multilevel HCC is proposed to directly generate the switching signals from the 

reference current without the burden of closed-loop controllers used with the conventional voltage-

controlled switching strategies [219]. The proposed multilevel HCC provides a simple and 

powerful switching strategy that utilizes the slope of the error between the reference current and 
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the actual phase current to select the adequate voltage level to be realized in order to reduce the 

magnitude of this error. Moreover, the proposed multilevel HCC provides natural commutation, 

which eliminates the need for clamping circuits usually used with matrix converters like in [214]. The 

PV-assisted fast charging station presented in this chapter utilizes a bidirectional power flow controller 

that injects the excess in the generated power from the PV system to the grid, and withdraws 

power from the grid to the LV-dc bus system inside the station when the demand of the EV chargers 

exceeds the generated PV power. The changing power flow levels between the fast charging station 

and the MV ac grid can cause severe voltage fluctuations at the point of common coupling (PCC), 

considering a realistic weak grid. In literature, there are commonly two approaches to damp 

and eliminate these voltage fluctuations. The first approach utilizes energy storage systems (ESSs) 

like the batteries, ultra-capacitors and flywheels to smoothen the transitions between different 

power flow levels [220]-[222]. This approach utilizes the ESSs to manipulate the active power 

injected to/from the PCC in order to smooth out the abrupt changes in the power flow levels. The 

second approach manipulates the reactive power injected to the grid to damp any voltage fluctuations at 

the PCC [226]. The second approach is superior over the first one for large-scale applications, with 

multi-Megawatt rating, since it eliminates the need for large ESSs. The second approach is adopted in 

the control scheme of the proposed PV-assisted fast charging station to hold the voltage at the PCC, 

VPCC, constant.  

With the increasing penetration of distributed generators into the power grids, the grid codes 

require these sources to remain grid-connected during grid disturbances to ride-through the faults by 

supplying the grid with active/reactive power to assist the voltage recovery and enhance the grid 

stability [223]-[228]. This Low-Voltage Ride-Though (LVRT) capability is adopted in the control 

scheme of the proposed PV-assisted fast charging station to support the grid with the 
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necessary reactive power in order to meet the grid code requirements during voltage sags. 

10.2 Proposed Architecture of the PV-Assisted Fast Charging Station 

10.2.1 Basic Block Diagram of the Proposed CHF ac-link Systems 

    Figures 10.2(a) and 10.2(b) show the architecture of the PV-assisted fast charging station with the 

proposed HF ac-link cell 1 and the proposed HF ac-link cell 2, respectively. The fast charging station 

has a LV dc bus where both the EV chargers and the PV system are connected to. A single phase 

inverter is used to convert the dc voltage of the LV dc bus system to the HF/MF voltage required by 

the HF/MF transformer. Multiple single phase inverters can be connected in parallel to handle high 

power levels. The transformer acts as a HF/MF magnetic link that steps-up the voltage level of the 

LV dc bus system, which has a voltage of VDC, and provides a galvanic isolation between the LV 

dc bus of the fast charging station and the MV ac grid. The secondary windings of the transformer are 

connected to the AC/AC power conversion stages, in the form of cells connected in series to realize high 

voltage levels with the voltage stress on the switches held at an acceptable level. Table 10.1 shows the 

architectures of the cells that have been proposed in literature and compares their features and 

operational modes with the proposed HF ac-link cells 1 and 2. Both of the proposed cell topologies get 

rid of the dc-link capacitors, hence, the CHF-link system that utilizes any of them can be considered as 

a CHF ac-link system. The number of the transformer secondary windings is 2n for n cells. Each half-

bridge matrix converter is connected to two transformer secondary windings as depicted in figures 

10.2(a) and 10.2(b). The transformer turns ratio between the primary winding and one of the secondary 

windings is 1: m.  
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Figure 10.2: (a) The proposed PV-assisted fast charging station with the CHF ac-link cell 1. 

(b) The proposed PV-assisted fast charging station with the CHF ac-link cell 2.

The reference value for VDC is held constant via the bidirectional power flow controller, 

as discussed in the next subsections. When the single phase inverter works with a duty cycle of 

50%, the voltage at the transformer primary side will be -VDC for 50% of the periodic time and 

VDC for the rest of the periodic time. The voltage at one of the transformer secondary windings is 

(-m.VDC) for half of the periodic time and (m.VDC) for the rest of the periodic time.  

    For the CHF-link system with the proposed HF ac-link cell 1, each cell works only in a bipolar 

operation, thus each cell can output either (m.VDC) or (–m.VDC).  On the other hand, the CHF-link 

system with the proposed HF ac-link cell 2, each cell can work in a unipolar operation, hence, 

each cell can realize three voltage levels, (m.VDC), (–m.VDC), or 0. By controlling the time of 

realization of these voltage levels, as discussed in the next subsections, the cell can convert the 

HF/MF voltage to a low-frequency voltage component.   



242 

Table 10.1: CHF-LINK SYSTEM CELLS, THEIR FEATURES AND OPERATIONAL MODES 

Cell Type 
HF dc-link Cell in [208]-[212] HF ac-link Cell in [213], [214] Proposed HF ac-link Cell 1 Proposed HF ac-link Cell 2 

Schematic 

Diagram 

Number of 

levels/cell 
3 3 2 3 

Number of active 

switches/cell 
4 8 4 6 

Number of 

levels/phase (for n 

cells/phase) 

2n+1 2n+1 n+1 2n+1 

Unipolar Operation Yes Yes No Yes 

Bipolar Operation Yes Yes Yes Yes 

DC Link  

Capacitor(s) 
Yes No No No 

Bidirectional power 

flow capability 
No Yes Yes Yes 

10.2.2 Analysis of the CHF-Link System with the Proposed HF ac-link Cell 1 

As discussed earlier, each cell can convert the transformer secondary winding voltage to either 

(m.VDC) or (–m.VDC). The output voltage of a cellij, where j and i are the cell number and the phase, 

respectively, can be represented as  

 Vij = Kij . (Q.m.VDC)                                                                   (1) 

Or    Vij = Hij.m.VDC  (2)   

Where Vij is the output voltage of cellij, Kij is the switching state of the cell which is either 1 or -

1, Q is the switching state of the single phase inverter connected to the transformer primary 

winding and it can be either 1 or -1. Here, Hij is equal to Kij.Q, which represents the desired output 

state from cellij. 
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From (1), phase i voltage can be described as: 

Vi = ∑ 𝑉𝑖𝑗
𝑛
𝑗=1  (3) 

Where n is the total number of cells per phase. 

The number of cells of phase i with Hij equal to 1 is Pi, and Ni is the number of cells of phase i with 

Hij equal to -1, where 

Pi + Ni = n  (4) 

Substituting (3) in (4), 

Vi = (Pi – Ni).m.VDC                                                               (5) 

From (5), by changing Pi and Ni, the realized phase voltage can be controlled, and thus, for 

n cells/phase, the number of phase voltage levels are n + 1. 

10.2.3 Analysis of the CHF-Link System with the Proposed HF ac-link Cell 2 

    The proposed HF ac-link cell 2 can realize three voltage levels, (m.VDC), (– m.VDC), or 0. The 

output voltage of cellij, Vij, can be described by equations (1) and (2), where Kij, and Hij, can be 1, 

-1, or 0. The total phase voltage for leg i can be described by (3) and (5). As long as each cell can 

realize three voltage levels, the total number of cells per phase can be depicted by (6) 

  Pi + Ni + Zi = n   (6) 

Where Zi is the number of cells of phase i with Hij equals to 0. By adequately adjusting Pi, Zi, and 

Ni, the realized phase voltage can be controlled, hence, for n cells/phase, the number of phase 

voltage levels that can be realized is 2n + 1. 
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10.3 The Proposed Control Strategy and LVRT Capability of the System 

10.3.1 A Simplified Multilevel Hysteresis Current Controller 

𝑎
∗

   The proposed simplified multilevel HCC is composed of three stages, namely: level selector, 

cell selector, and switching logic, as shown in Figure 10.3. The proposed multilevel HCC 

switching strategy starts by calculating the error, e, between the reference current 𝑖  and the 

actual current, 𝑖𝑎, (phase a is taken as an example). An error sample at instant k, e(k), and a 

delayed error sample, e(k-1), are fed to the level selector which selects the adequate voltage level 

that should be realized to minimize e(k). After the level selector determines the reference voltage 

level, the cell selector determines the desired output state from each cell, Ha1, Ha2, …, Han, to 

realize the desired voltage level. Each of these states takes a value of 1, -1, or 0, in case of the 

proposed HF ac-link cell 2, while for the proposed HF ac-link cell 1, each state can be 1, or -1. 

The desired output states of the cells are then fed to the switching logic block. In addition, the 

polarity of 𝑖𝑎, ra, and the switching state of the single phase inverter connected to the HF 

transformer primary winding, Q, are fed to the switching logic block. The switching logic 

generates the switching signals for the switches of each cell. Similar multilevel HCC to that 

shown in Figure 10.3 for phase a are used for phases b and c. The sampling time of the error, Ts, 

determines the maximum switching frequency as shown in (7). 

  Maximum frequency =   
1

2  X 𝑇𝑠
 (7) 

      Figure 10.4 illustrates the algorithm of the level selector. It starts by calculating the positive 

band level, PB, the negative band level, NB, and the slope of the error, de(k) as in (8), (9) and (10). 

PB =   error tolerance            (8) 

 NB = - error tolerance    (9) 

de(k) = e(k) – e(k-1)                                                                                  (10) 
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When e(k) is less than NB and slope of the error is negative, this means the actual current has to 

be reduced and the present voltage level is not adequate to achieve that, so, the voltage level 

reference is decremented. When e(k) is greater than PB and the slope of the error is positive, this 

means the actual current has to be increased by increasing the voltage level reference. Otherwise, 

the voltage level reference is kept the same without any change.  

      For the proposed HF ac-link cell2, the switching logic block is fed by the desired output states 

for each cell, the current polarity and the single-phase inverter switching state to generate the 

switching signals of the switches of each cell. The Q signal is used to determine whether the 

voltage at the transformer secondary winding is (m.VDC) or (–m.VDC). The desired output state, Hij, 

is used to determine whether the cell needs to output (m.VDC), (–m.VDC), or 0. The current polarity 

signal of phase i, ri, is used to determine whether the cell is working in a current conduction mode 

or in current natural commutation mode. 

Figure 10.3: The proposed multilevel HCC for phase a.

Figure 10.4: The flowchart of the level selector algorithm. 
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Figure 10.5: Design example of CHF ac-link system with two cells per phase.

     Figure 10.5 shows a design example of CHF ac-link system (with the proposed HF ac-

link cell 2), where each cell can produce either (m.VDC), (-m.VDC) or 0. The table shown 

in Figure 10.5 shows the different voltage levels that can be realized by this system, where 

five voltage levels can be realized between the terminals of the system (VAN = Va1 + Va2). 

Adjusting the desired output states of the two cells (Ha1 and Ha2) is used to realize a certain 

voltage level, as shown by equations (2) and (3). As an example, voltage level 2 (VAN = -

m.VDC) can be realized by ( Ha1 = -1  and Ha2 = 0) or by ( Ha1 = 0 and Ha2 = -1). 

     In Figure 10.7, ten modes of operation for the proposed HF ac-link cell 2 are shown. 

The value of Q is reflected on the polarity of the voltage at the transformer secondary 

winding, where (m.VDC) appears when Q = 1, as depicted in modes 1-4, and (–m.VDC) 

appears when Q = 0, as in modes 5-8. Modes 9 and 10 are dedicated for the zero state of 

the cell, where the value of Q is neglected and the phase current polarity, ra, is used to 

determine which switch of the middle arm to turn on. 

     The investigated cell in Figure 10.7 has three arms, each arm is composed of two anti-

series IGBTs to provide four-quadrant-operation, the middle arm is dedicated to provide 

the zero state of the cell, while the other two arms are used to realize either (m.VDC) or (–

m.VDC). The middle arm has switches S5a, and S6a, the upper arm has switches S1a, and 

S2a, and the lower arm has switches S3a, and S4a.   
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Table 10.2: THE SWITCHING MODES FOR CELL J IN PHASE A FOR THE 

PROPOSED HF AC-LINK CELL 2 

Mode Q Haj ra 

Switching signals 

S1a S2a S3a S4a S5a S6a 

1 1  1 1 1 0 0 0 0 0 

2 1  1 0 0 1 0 0 0 0 

3 1 -1 1 0 0 1 0 0 0 

4 1 -1 0 0 0 0 1 0 0 

5 0  1 1 0 0 1 0 0 0 

6 0  1 0 0 0 0 1 0 0 

7 0 -1 1 1 0 0 0 0 0 

8 0 -1 0 0 1 0 0 0 0 

9 x  0 1 0 0 0 0 1 0 

10 x  0 0 0 0 0 0 0 1 

    The switching logic is depicted in Table 10.2, as it shows the switching modes for cell j in 

phase a of a CHF ac-link system with the proposed HF ac-link cell 2, where ra = 1 when ia>0 and 

ra = 0 otherwise. The shaded rows in Table 10.2 are the modes dedicated to provide natural 

commutation for the matrix converter, where a path is provided to the phase current to sink to the 

positive power rail of the transformer secondary winding. This natural current commutation 

technique eliminates the need for clamp circuits, usually used with matrix converters [214].    

     For the proposed HF ac-link cell1, the switching logic is the same except it has eight modes of 

operation, modes 1-8. Modes 9 and 10 are excluded as the middle arm is absent.  

10.3.2 Operation under Normal Conditions 

     As shown in Figure 10.6, the proposed fast charging station has a dc bus, where all the EV 

chargers and the PV system are connected to. The EV chargers withdraw their need of power, from 
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the dc bus system. A large PV system is connected to the dc bus system to supply the Megawatt 

fast charging station with power, in order to decrease the dependency on the main power grid. The 

power processing unit of the PV system has a Maximum Power Point Tracker (MPPT) which 

determines the optimal operating points on the PV system characteristic curves in order to extract 

the maximum power from the PV arrays. Figure 10.6 shows a single line diagram of the proposed 

PV-assisted fast charging station, where PEV is the withdrawn power from the dc bus system by 

the EV chargers, and PPV is the injected PV power to the dc bus system. A bidirectional power 

flow controller is needed to inject the generated power from the PV system that exceeds the 

demand of the EV chargers to the grid, and withdraw power from the grid to the dc bus system 

when the EV chargers demand exceeds the generated PV power. By applying a closed-loop 

controller to set the voltage across the dc-bus capacitor, Cdc, VDC, at a reference level, VDC
∗ . This is 

achieved by a Proportional Integral (PI) controller, which compares VDC
∗ with VDC. The 

manipulated variable of this PI controller is the reference direct current component, id
∗ . According

to (11), when the direct current component of the three phase currents flowing between the fast 

charging station and the grid, id, is positive, the station injects power to the MV ac grid, and when 

id is negative, the station withdraws power from the grid. 

PPCC = 
3

2
 VPCC X id     (11) 

    Where VPCC is the voltage at the PCC, and PPCC is the active power flowing through the PCC, 

and it equals the difference between PPV, PEV, and losses in the fast charging station converters and 

feeders.  
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Figure 10.6: Single line diagram of the proposed PV-assisted EV charging station and its 

control scheme in normal operation and during grid faults. 

     With the changing levels of PPCC between the fast charging station and the grid, and considering 

a week grid, with high grid equivalent impedance, noticeable fluctuations will appear in VPCC, 

which can harm any loads connected at the PCC. Figure 10.8(a) shows a phasor diagram of the 

system presented in Figure 10.6 at two different power levels. Both I1 and I2 represent the RMS 

phase current flowing through the PCC at two power flow levels, and the operation in both cases is 

done at unity power factor, where the phase current is aligned with VPCC. 

    For the first case in Figure 10.8(a), I1 is flowing through the PCC, the component (I1rg) 

represents the voltage drop through the resistive part of the grid equivalent impedance, rg,, and it is 

parallel to I1 in the phasor diagram. The component (I1xg) represents the voltage across the 

reactive component of the grid equivalent impedance, xg, and it is perpendicular on the I1 vector. 

The voltage at the PCC in the first case, VPCC1, equals the vector sum of the grid voltage, Vg, I1rg, 

and I1xg. For the second case, with the same vector calculations, VPCC2 equals the vector sum of 
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the grid voltage, Vg, I2rg, and I2xg. From these two cases shown in Figure 10.8(a), as the injected 

current to the grid increases, VPCC decreases, which means, with different PPCC levels, the system 

will suffer from noticeable fluctuations in VPCC.  

𝑞
∗

𝑑
∗

𝑞
∗

Figure 10.7: Operational modes of the proposed HF ac-link cell 2. 

    In Figure 10.8(b), the two cases shown in Figure 10.8(a) are reinvestigated, where the first case 

with I1 flowing through the PCC is the same, aligned with VPCC1, but in the second case, I2 is 

phase-shifted from VPCC2, this phase shift can be controlled and adjusted to set VPCC at a reference 

level, 𝑉𝑅
∗
𝑀𝑆. This can be achieved by a PI controller that is fed by the error between VPCC and the 

reference RMS voltage at the PCC, 𝑉𝑅
∗
𝑀𝑆, the manipulated variable of this PI controller is the 

reference quadrature current component of the three phase currents flowing between the fast 

charging station and the grid, 𝑖 . Figure 10.6 shows the complete control scheme of the proposed 

PV-assisted fast charging station, where PI controller 1 is the closed-loop regulator dedicated for 

managing the bidirectional power flow between the grid and the fast charging station, and PI 

controller 2 is assigned for regulating VPCC. After setting 𝑖  and 𝑖 , inverse Park and inverse Clark 

transformations are utilized to calculate the reference three phase currents, 𝑖∗𝑎𝑏𝑐.  The three phase
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reference currents are then fed to the multilevel HCC to generate the switching signals for the 

switches inside the cells. The signal processing unit is used to calculate the magnitude of VPCC and 

the instantaneous angle of VPCC, θ. 

Figure 10.8: (a) Phasor diagram of the system without applying the VPCC regulator, (b) 

phasor diagram of the system with the VPCC regulator applied. 

10.3.3 The LVRT Capability of the Proposed Fast Charging Station 

     The capability of the system to ride-through grid faults and disturbances is very important, 

and there are many grid codes that put strict requirements for grid-connected converters in order to 

support the grid with active and reactive power during faults. One of the popular grid codes for 

LVRT requirement is the E. ON code which is a German grid code and widely adopted in many 

literature [226]-[228]. Figure 10.9 shows the relationship between the voltage dip and the ratio 

between the reactive component of the injected current to the grid, and the rated current of the 

grid-connected converter system, according to the E. ON code. When voltage sag is detected, the 

LVRT controller is enabled and PI controller 2 is aborted. The LVRT controller calculates, 𝑖∗𝑑𝑙𝑣 , 

and 𝑖𝑞
∗
𝑙𝑣, which are the reference direct component and the the reference quadrature component of 

the grid currents, respectively during the voltage sag. From Figure 10.9, the E. ON curve divides 



252 

the operation into three regions, region I is for VPCC less than or equal 50% of the nominal grid 

voltage, and in this region the converter injects only reactive current, while in region III, VPCC is 

close to or equal the nominal grid voltage, and in this region the LVRT controller is disabled and 

PI controller 1 and PI controller 2 are enabled to calculate the reference grid current components. 

In region II, there is a linear relationship between 𝑖𝑞𝑙𝑣
∗  and the percentage of VPCC to the nominal

grid voltage, VPCC%, and this relationship is depicted in (12). 

𝑖𝑞𝑙𝑣
∗  = 2(1 – VPCC %)                                                                      (12)

𝑖𝑑𝑙𝑣
∗  can be calculated using (13)

𝑖𝑑𝑙𝑣
∗ = √𝑖𝑟𝑎𝑡𝑒𝑑

2 − 𝑖𝑞𝑙𝑣
∗2   (13)   

Where 𝑖𝑟𝑎𝑡𝑒𝑑 is the rated current of the CHF ac-link system. In a voltage sag case, PI controller 1 

sets the limit for 𝑖𝑑𝑙𝑣
∗  of the LVRT controller at 𝑖𝑑

∗ , as this is the maximum direct current component

the system can supply. During deep voltage sag case, when 𝑖𝑑𝑙𝑣
∗  is less than 𝑖𝑑

∗ , PI controller 1 is

aborted, and in this case the MPPT inside the power processing units of the PV system is disabled 

to avoid overvoltage scenarios on the LV dc bus system. 

Figure 10.9: Reactive current requirement during grid fault, according to the E.ON code. 

10.4 Simulation Results 

    Two simulation models have been built in Matlab/Simulink in order to validate the proposed 
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architectures of a PV-assisted fast charging station with a power rating of 6-MW, with model 

parameters shown in Table 10.3. The single line diagram of the simulated systems is shown in 

Figure 10.6, where the PV system and the EV chargers are depicted as current sources, pushing 

power towards the LV dc bus where Cdc is connected, in case of the PV system, and withdrawing 

power from the LV dc bus, in case of the EV chargers. The PV-assisted fast charging station is 

connected to a 13.2-KV grid. 

Table 10.3: SIMULATION MODEL PARAMETERS 

System rating 6- MW

Medium voltage grid 13.2 -KV, 60 Hz 

HF transformer 2 KHz 

Error Sampling frequency 30KHZ 

Turns ratio (m) 3.2 

Grid inductance (lg) 40 mH 

Feeder inductance (lf) 50 mH 

Feeder resistance (rf) 2 Ω 

Simulation Sampling Time 1𝜇𝑠 

PI CONTROLLER 1 COEFFICIENTS 

Proportional coefficient (KP1) -10

Integral coefficient (KI1) -200

PI CONTROLLER 2 COEFFICIENTS 

Proportional coefficient, (KP2) -0.002

Integral coefficient (KI2) -2
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10.4.1 Effect of Number of Cells per Phase on the Power Quality and the Total 

System Cost 

     In this subsection, eight simulation cases are carried out. Figure 10.10 shows the three phase 

voltages produced by a CHF ac-link system with the proposed HF ac-link cell 1 comprising 

eight, six, four, and two cells per phase, and the associated total harmonic distortion, THD%, for 

each case is shown above its plot. The same four cases are carried out with the proposed HF ac-

link cell 2 as shown in Figure 10.11. The total number of phase voltage levels that can be 

realized is n+1 in case of the proposed HF ac-link cell 1, where n is the number of cells per 

phase, and 2n+1 in case of the proposed HF ac-link cell 2. The total number of switches of 

the cascaded cells connected to the transformer secondary windings of a three phase CHF ac-

link system is 3.n.4, in case of the proposed HF ac-link cell 1 is used, and 3.n.6, in case of the 

proposed HF ac-link cell 2 is used.  Figure 10.12(a) shows the THD% for the four cases for both 

of the proposed HF ac-link cells. The total number of switches of the cascaded cells connected to 

the transformer secondary windings for the four cases with the proposed HF ac-link cells are 

shown in Figure 10.12(b). Figure 10.12 shows that as the number of cells per phase increases, 

the difference in THD% for the proposed two architectures is diminished, while the 

difference in total number of switches increases. This means for a CHF ac-link system with 

large number of cells, the proposed HF ac-link cell 1 is a better choice from the cost point of 

view. 
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Figure 10.10: Phase voltages of the CHF-link system with the proposed HF ac-link cell 1 

with (a) 8 cells, (b) 6 cells, (c) 4 cells, and (d) 2 cells per phase. 

Figure 10.11: Phase voltages of the CHF-link system with the proposed HF ac-link cell 2 

with (a) 8 cells, (b) 6 cells, (c) 4 cells, and (d) 2 cells per phase. 

 Figure 10.12: (a) THD% for different number of cells/phase with both of the proposed 

cells, (b) Total number of switches of the secondary side converters with different number 

of cells/phase with both of the proposed cells. 
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10.4.2 Evaluation of the bidirectional power flow controller and the PCC voltage 

regulator performance 

     The simulations in this subsection and the next subsection are carried out with a CHF ac-link 

system with eight cells per phase, and the proposed HF ac-link cell 1 is used. 

      In Figure 10.13, the dynamic performance of the bidirectional power flow controller is 

evaluated, as three power flow scenarios are shown. From t = 0.5 s to t = 1 s, the EV chargers 

withdraw 0.55 MW from the dc bus system, while the PV system injects 3.3 MW towards the dc bus 

system. PI controller 1 manipulates the value of id to hold VDC at the reference level, which is set at 

550V. In this case id = 165A, and the active power injected to the grid through the PCC, PPCC, is 

2.65 MW. From t = 1 s to t = 2 s, the EV chargers withdraw 3.3 MW from the dc bus system, 

while the PV system injects 1.65 MW towards the dc bus system, id  = -104A, PPCC = -1.69MW. The 

negative sign of PPCC means that the grid is supplying the fast charging station with active power. 

From t = 2 s to t = 3 s, the EV chargers withdraw 4.126 MW from the dc bus system, while the PV 

system injects 0.55 MW towards the dc bus system, id  = -232A, PPCC = -3.75MW. Which proves the 

effectiveness of the bidirectional power flow controller in following up with the changing 

consumption of the EV chargers, and generation of the PV system. The voltage of the dc bus system 

is held constant with transitional overshoots less than 6%. Figure 10.15 shows the effectiveness 

of the VPCC regulator, with the same three power flow scenarios investigated in Figure 10.13(c). 

Figures 10.15(c), 10.15(d), and 10.15(e) show the system response at the three power flow 

scenarios when PI controller 2 is disabled, while Figures 10.15(f), 10.15(g), and 10.15(h) show 

the system response at the three power flow scenarios when PI controller 2 is enabled. When PI 

controller 2 is aborted, the system is working at unity power factor, and Figures 15(a) and 15(e) 

show noticeable fluctuations in VPCC in response to the changes in PPCC, at t = 1 s, VPCC goes from 

7.58-KV to 7.39-KV, and at t = 2 s, VPCC goes from 7.39-KV to 6.81-KV. When PI controller 2 is 
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enabled, the system starts injecting reactive power to the grid, as the closed-loop controller adjusts 

the value of iq in order to hold the VPCC at a constant level, and in this system the reference value 

of VPCC equals 13.2kV/√3.     

     Figure 10.14 is an extension to the simulation case presented in Figures 10.15(f), 10.15(g), and 

10.15(h), where both PI controller 1 and 2 are enabled, and it shows the response of the phase 

current and voltage at the PCC to the change in PPCC at t = 1 s. For t < 1, PPCC = 2.65 MW, and 

QPCC = 0.12 MVAR, thus the power factor = 0.37. For t > 1, PPCC = -1.69MW, and QPCC = 0.32 

MVAR, thus the power factor = -0.57. The change in the phase shift between the phase current 

and voltage at PCC before and after t = 1 s is shown in Figure 10.14(b).      

10.4.3 Evaluation of the LVRT Capability of the System 

𝑞
∗

   This subsection is dedicated to test the LVRT capability of the proposed CHF ac-link system. 

The test scenario is composed of two faults, each fault lasts for 0.8 second, as shown in Figure 

10.16. At t = 0.8s, the first fault takes place, where the grid undergoes a voltage-sag where the 

grid voltage, Vg, drops to 70% of its nominal value. At t = 1.6s, the second fault takes place, 

where the grid exhibits a voltage-sag of 50% of its nominal value. When a voltage-sag is 

detected, 𝑖𝑞
∗
𝑙𝑣, and 𝑖∗𝑑𝑙𝑣 are obtained from the E. ON code graph, shown in Figure 10.9 and (13), 

respectively, where 𝑖𝑟𝑎𝑡𝑒𝑑 of the CHF ac-link system is set at 350A for this application.  

In the first fault, the voltage sag is 70% and therefore, from Figure 10.9, 𝑖𝑞
∗
𝑙𝑣 is set to 60% of 

iratedwhich is equal to -210A. The negative sign indicates reactive power injection to the grid. 

Consequently,  𝑖∗𝑑𝑙𝑣 is limited to 280A, according to (13). When the second fault takes place, the 

voltage-sag is 50%, and according to the E. ON code, 𝑖𝑞
∗
𝑙𝑣 = 𝑖𝑟𝑎𝑡𝑒𝑑 = 350A, and 𝑖∗𝑑𝑙𝑣 = 0A, 

respectively. As shown in Figure 10.16, when Vg drops from 7.62 KV to 5.33KV, 𝑖  is boosted to 

-210A, and as a result, VPCC is alleviated at 7.14KV which is close to the reference value. At t = 

1.6
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s, when the second fault takes place and Vg dips to 3.81KV, 𝑖𝑞
∗  is increased to celling level of the 

CHF ac-link system, as a result, VPCC alleviated to 7.48KV. These results prove explicitly the 

capability of the LVRT controller to effectively support the voltage at the PCC during voltage sags. 

Figure 10.13: Dynamic performance of the bidirectional power flow controller. 

Figure 10.14: System response at two power flow levels (a) Power flow through the PCC, 

(b) Phase a voltage at PCC, and phase a current.
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Figure 10.15: Dynamic performance of the PCC voltage regulator. 
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Figure 10.16: Evaluation of the LVRT capability of the proposed CHF ac-link system.

10.5 Conclusion 

    This chapter presented two new isolated power electronic architectures for a large-scale EV fast 

charging station assisted by a PV system. The proposed systems require less switches compared 

to other systems presented in the recent literature. A novel simplified current controller for the 

system was presented, which eliminates the need for the clamping circuits usually used with matrix 

converters. A bidirectional power flow controller was used to maximize the extracted power from 

the PV system without using energy storage systems. Moreover, the developed controller utilizes 

reactive power to compensate for the fluctuations in the voltage at PCC under changing power 

flow levels between the grid and the fast charging station. A LVRT controller was adopted to inject 
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the adequate active and/or reactive power levels to the grid, to keep the charging station grid-

connected during faults to support the grid voltage. An example of a 6-MW system model showed 

the superior features of the developed system in controlling the power flow between the fast 

charging station and the medium-voltage ac grid. This was accomplished with high power quality 

during normal operation in addition to supporting the grid voltage during grid faults and 

disturbances by utilizing the reactive power. This which eliminates the need for large energy 

storage systems, commonly used to alleviate voltage sags. 
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Chapter 11 An Integrated PEBB using e-GaN FETs and Nanocrystalline Inductors for 

Multiple DC-DC, AC-DC and DC-AC Applications 

11.1 Introduction 

The concept of the power electronic building block (PEBB) has been proposed before [229]-

[235], where a number of generic power electronic modules can be used to synthesize large number 

of power topologies. This concept is very important for marine and aerospace power systems as it 

minimizes the number of spare parts required for the power electronic equipment onboard the 

ship/aero plane.    The PEBB has been proposed with different topologies, for instance: a push-

pull configuration [229], and an anti-series topology [235]. All the proposed PEBBs were 

implemented either using Silicon (Si) MOSFETs/IGBTs or Silicon Carbide (SiC) 

MOSFETs/IGBTs. 

Figure 11.1: Generic structure of the lateral eGaN-FET HEMT. 

    The advent of enhancement Gallium Nitride (eGaN) High Electron Mobility Transistor 

(HEMT), with its groundbreaking features compared to its Si and SiC counterparts [236], [237], 

makes it an excellent candidate for the PEBB concept. The features of GaN, SiC, and Si materials 

are compared in Table 11.1. As shown in Figure 11.1, the generic structure of the lateral GaN 
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HEMT is based on the piezoelectric effect between a layer of GaN and a layer of Aluminum 

Gallium Nitride (AlGaN), which results in a 2-D electron gas (2-DEG) layer between the drain 

(D) and source (S) of the GaN HEMT, which reduces the on-resistance of the device [236]. In 

Table 11.2, a comparison between a number of commercial SiC, and GaN FETs with rated voltage 

of 600V/650V is presented. From this comparison, the eGaN HEMT from GaN Systems 

(GS66508T) has less on-resistance, input and output capacitances, reverse recovery charge, and 

total gate charge, which makes it a FET with lower switching and conduction losses compared to 

other devices.   

In this chapter, an eGaN-FET based PEBB that is constituted by a half-bridge topology is 

presented. The PEBB has input and output filter capacitors, and a Nanorystalline filter inductor. 

Nanocrocytalline material is chosen because it has a high saturation flux density level, and high 

permeability in a broad frequency range [238]. These characteristics provide the possibility that 

the designed inductor could be small and compact.  The rest of this chapter is organized as 

follows; section II presents the developed non-isolated eGaN PEBB, section III explains the 

possible topologies that can be synthesized with the developed PEBB. The results are presented in 

section IV and section V concludes this chapter. 

Table 11.1: Material Properties of GaN, SiC, and Si 

Parameter GaN SiC Si 

Bandgap (eV) 3.2 3.4 1.12 

Breakdown Field (MV/cm) 3.3 3.5 0.3 

Electron Mobility (cm2/V.S) 2000 650 1500 
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Table 11.2: COMPARISON BETWEEN COMMERCIAL WBG DEVICES 

SiC GaN 

ROHM 

Semiconductor 

SiC-MOSFET 

SCT2120AF 

Transphorm 

Cascode-

GaN 

TPH3205WS 

GaN 

Systems 

eGaN-

HEMT 

GS66508T 

VDS 650V 600V 650V 

Continuous ID (25 ᵒC) 29 A 36 A 30 A 

RDS(ON) (TJ = 25 ᵒC) 120 mΩ 52 mΩ 50 mΩ 

Input Capacitance CISS 1200pF 2150pF 260pF 

Output Capacitance COSS 90pF 119pF 65pF 

Reverse Recovery Charge (Qrr) 53nC 136nC 0nC 

Total Gate Charge (QG(TOT)) 61nC 27nC 6.5nC 

Gate Charge (QGD) 21nC 6nC 1.8nC 

11.2 The Developed Non-Isolated eGaN FET-Based PEBB 

    The schematic of the developed non-isolated eGaN PEBB is presented in Figure 11.2, and the 

layout of the PEBB PCB is shown in Figure 11.3. All the parameters of the eGaN PEBB are 

enlisted in Table 11.3. 

    The eGaN PEBB is based on a half-bridge topology with integrated filter inductor, input and 

output capacitances, which renders it as an integrated compact solution to synthesize most of the 
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power electronic topologies (as discussed in section III) without the need to any extra components. 

Both gate drivers have isolated power supplies, which provide the gate driver of the upper switch 

independent on the lower switch status, this feature is critical in the cases where the upper switch 

stays “on” for a long period (ex. bus-clamping PWM). An isolated dc/dc converter provides an 

isolated supply for each gate driver, followed by a linear voltage regulator to provide 6.5V for the 

driver opto-coupler. The turn-on resistance (𝑟𝑜𝑛), and the turn-off resistance (𝑟𝑜𝑓𝑓) control the 

rising and falling times of the HEMT, which need to be adjusted in order to avoid voltage spikes 

(due to high 𝑑𝑣/𝑑𝑡) and on the other hand not compromise the switching speed. According to 

[239], 𝑟𝑜𝑛 needs to be five to ten times 𝑟𝑜𝑓𝑓. The ferrite bead (FB) at the gate pin damps the 

oscillations at the gate, which reduces the possibility of false turn-on. 

Table 11.3: eGaN PEBB Parameters 

Parameter Value 

Switches (S1, S2) GS66508T 

Filter Cap. (Cf) 440 µF 

Isolated DC/DC converter (5V to 9V) PDS1-S5-S9-M-TR 

Driver SI8261BAC-C-IS 

ron 50 Ω 

roff 10 Ω 

Pull-down resistor 10 kΩ 

Ferrite Bead (FB) 74279268 

Zener Diode MMSZ5235BS-7-F 

Microcontroller TMS320f28377s 
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A zener diode with reverse breakdown voltage of 6.8V to clip any voltage spikes. The banana 

jacks (J1, J2, J3, J4, J5, J6) are used to connect the supplies, loads, and/or an external customized 

filter inductor,     

11.3 Possible Topologies Using the eGaN PEBB 

    In this section, the possible dc/dc, dc/ac (single-phase), and dc/ac (three-phase) are discussed. 

The possible configurations are shown in Figure 11.4, and two examples of dc/ac systems 

modulation are explained in Figure 11.5 and Figure 11.6.  

Figure 11.2: eGaN FET PEBB schematic: power stage, driver, voltage regulation, filter 

stage and control.
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(a) 

(b) 

Figure 11.3: eGaN FET PEBB (a) top side, (b) bottom side. 

11.3.1 DC-DC Topologies 

    The developed PEBB can be directly used as a bi-directional buck converter or bi-directional 

boost converter (depends on the location of source and load) as shown in Figure 11.4(a). The 

connection of the source and load can be changed as depicted in Figure 11.4(b) to synthesize an 

inverting bi-directional buck-boost converter. In Figure 11.4(c), a non-inverting buck-boost 

converter is synthesized using two PEBBs. 



11.3.2 Single-Phase DC-AC Topologies 

    Generating an ac output using dc/dc converters can be achieved using differential mode 

configuration, which is based on using two bi-directional dc/dc converters to synthesize a single-

phase inverter [240].  

    Adding a dc offset is necessary in such a way that the output of each converter is either positive 

(non-inverting converters) or negative (inverting converters). An example of a single-phase buck-

boost inverter is shown in Figure 11.5(a). The output of each converter is depicted by (1), and (2), 

and the differential output is depicted in (3). 

𝑉𝑎
∗ = 𝑉𝐷𝐶 +

𝑉𝑎𝑏𝑚
∗ sin(𝜔𝑡)

2
(1) 

𝑉𝑏
∗ = 𝑉𝐷𝐶 +

𝑉𝑎𝑏𝑚
∗ sin(𝜔𝑡+𝜋)

2
(2) 

𝑉𝑎𝑏
∗ = 𝑉𝑎𝑏𝑚

∗ sin(𝜔𝑡)     (3) 

Where (𝑉𝑎
∗
𝑏𝑚) is the magnitude of the reference differential output voltage (𝑉∗𝑎𝑏), and (VDC) is 

the dc offset value. If the converters used are non-inverting, thus the output from each converter 

should be in the positive domain, as in Figure 11.5(b), while if the converters used are inverting, 

thus the output from each converter should be in the negative domain, as in Figure 11.5(c).  

    The concept of differential-mode connection can be used with bidirectional buck converters to 

build a 1-ph buck inverter, as shown in Figure 11.4(d), bidirectional boost converters to build a 

1-ph boost inverter, as shown in Figure 11.4(e), inverting bidirectional buck-boost converters 

to build a 1-ph buck-boost inverter, as shown in Figure 11.4(f), or bidirectional non-inverting 

buck-boost converters to build a 1-ph buck-boost inverter, as shown in Figure 11.4(g). 

268 
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(a) (b) (c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 

Figure 11.4: Possible configurations with the eGaN PEBB. 
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(a) 

(b) 

(c) 

Figure 11.5: (a) Differential-mode 1-ph buck-boost inverter, (b) modulation (in case of 

non-inverting converters), (c) modulation (in case of inverting converters). 

11.3.1 Three-Phase DC-AC Topologies 

The idea of differential-mode connection can be extended to synthesize three-phase 

inverters using dc/dc converters [241], [242]. An example of a three-phase buck-boost inverter is 

shown in Figure 11.6(a).  
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(a) 

(b) 

(c) 

(d) 

Figure 11.6: (a) Differential-mode 3-ph buck-boost inverter, (b) modulation (in case of non-

inverting converters), (c) modulation (in case of inverting converters), (d) 3-ph line-line 

voltages. 



The output of each converter is depicted in Figure 11.6 (b) (non-inverting converters), and Figure 

11.6(c) (inverting converters). A third harmonic component can be added to reduce the voltage 

stress on the switches. The three-phase line-line voltages are the differential voltages between the 

three dc/dc converters, as the dc offset and the third harmonic components cancel out and three 

phase sinusoidal line-line voltages appear at the load terminals, as shown in Figure 11.6(d). This 

concept can be extended to synthesize a three phase buck inverter, as in Figure 11.4(h), or three 

phase buck-boost inverters, as in Figure 11.4(i), and Figure 11.4(j).    

11.4 Experimental Results 

    A single-phase differential-mode buck-boost inverter (based on non-inverting buck-boost 

converters, as in Figure 11.4(g)), is investigated experimentally in this section. The circuit 

schematic is shown in Figure 11.7(a), as it is composed of four half bridges, two inductors, and 

input and output filter capacitors.  

    This system can be synthesized using four PEBBs. The connection diagram of the system is 

presented in in Figure 11.7(b), while the complete experimental setup is depicted in Figure 

11.7(c). The setup is managed by the TMS320F28377S digital signal controller, generating PWM 

with switching frequency of 100 kHz, and the load is a 10 Ω resistor. The eGaN HEMTs used are 

GS66508T with rated current of 30A, rated drain-to-source voltage of 650V, on-resistance of 50 

mΩ.   

       In the Table 11.3, the parameters for the experimental setup are shown. The inverter is 

operating in the buck mode, as the input voltage (𝑉𝑖𝑛) from the power supply is equal to 189 V, the 

generated differential output is shown in Figure 11.8(a), with a positive peak voltage of 108 V, 
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a negative peak voltage of -108 V, and a frequency of 18.66 Hz. Figure 11.8(b) shows the output 

voltage of each converter (𝑉𝑎 and 𝑉𝑏). 

Table 11.4: Parameters For the Experimental Results 

Parameters Values 

𝑉𝑠𝑜𝑢𝑟𝑐𝑒 189 Vpk 

𝑓𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 186 Hz 

𝐿𝑜𝑎𝑑 10 Ω 

𝑓𝑠 100 kHz 

(a) 

(b) (c) 

Figure 11.7: (a) Differential-mode 1-ph buck-boost inverter circuit, (b) Connection 

diagram, (c) Experimental setup. 
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(a) 

(b) 

Figure 11.8: (a) Differential-mode output voltage of the inverter. (b) Output voltage of 

each converter. 

11.5 Conclusion 

    This chapter presents a non-isolated PEBB built with eGaN HEMT devices and Nanocrystalline 

inductor. The eGaN HEMTs have lower on-resistance and lower device capacitances compared to 

Si and SiC counterparts which make these devices have less conduction and switching losses, this 

results in less cooling system requirement, hence, a more compact PEBB. The utilization of the 

GaN HEMTs enables operation at high frequencies (≥100kHz), which yields smaller magnetics 

and passive components. This enables the integration of a complete system (switches, magnetics, 

and passive components) on a single board. One of the key challenges in designing power 
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converters with GaN HEMTs is the low gate capacitance, which makes the switch vulnerable to 

oscillations at the gate (because of stray PCB inductance), which can lead to false turn-on since 

the threshold voltage of the eGaN HEMT is only 1.45V. This problem can be minimized by 

optimally designing the PCB and minimizing the stray inductances. The clean experimental results 

verify the proper operation of the system. 



Chapter 12 Power Electronic Building Blocks Using Series-Stacked GaN eHEMT 

Modules 

12.1 Introduction 

   The Power Electronic Building Block (PEBB) is a generic power electronic converter circuit that 

can be configured in different ways to synthesize popular power electronic architectures (DC-DC, 

DC-AC, AC-DC, and AC-AC converters). This can reduce the number of spare parts needed 

onboard a ship, plane, … etc., also the PEBB can reduce the manufacturing cost of the power 

electronic systems since the mass production of one generic power electronic architecture is more 

economical than producing application-specific power electronic architectures. Many literature 

have discussed different possible architectures for the PEBB, however, all of them are either 

implemented using Silicon (Si), or Silicon Carbide (SiC) Metal Oxide Field Effect Transistors 

(MOSFETs) or Insulated Gate Bipolar Junction Transistors (IGBTs), which suffer from high 

conduction and switching losses. A PEBB is built with Gallium Nitride (GaN) High Electron 

Mobility Transistors (HEMTs) to reduce the conduction and switching losses of the transistors, 

since the GaN HEMTs have lower on resistance (Ron) and less device total charge. The major 

problem with GaN HEMTs is that their break down voltage is relatively lower compared to Si and 

SiC MOSFETs or IGBTs, which limits the utilization of GaN HEMTs to the low voltage 

applications. Multilevel half-bridge configurations can enable the utilization of GaN HEMTs in 

high voltage applications. These multilevel half-bridge configurations can possibly be based on a 

flying capacitor (FC) leg (as shown in Figure 12.1(a)) or a neutral point clamped (NPC) leg (as 

276 



277 

shown in Figure 12.1(b)). The major problem of multilevel configurations is that they require a 

complex control scheme and more switches (as in the NPC) or more high voltage capacitors (as in 

the FC). In this patent application, a two level half-bridge-based PEBB is built with series-stacked 

GaN HEMTs. A Series-Switch-Driver (SSD) is utilized to balance out the voltage sharing between 

the series-stacked GaN HEMTs during transitions (turn on and turn off) and during steady state. 

The presented GaN-based PEBB has the capability to work at high voltages with high efficiency 

and require a simple control scheme.   

GaN HEMT symbol 

(a) (b) 

Figure 12.1: Possible multilevel half-bridge-based PEBBs. 

12.2 Examples of the Existing Half-Bridge PEBBs 

12.2.1 Two Level Half-Bridge-Based PEBBs Using Si/SiC MOSFETs/IGBTs 

    The two level half-bridge-based PEBB is composed of two transistors, these transistors can be 

either Si or SiC MOSFETs (shown in Figure 12.2(a)) or IGBTs (shown in Figure 12.2(b)). 

    This PEBB architecture is limited by the rated voltage of the transistors and suffers from high 

switching and conduction losses. 
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Si/SiC MOSFET 

symbol 

Si/SiC IGBT 

symbol (a) (b) 

Figure 12.2: Two level half-bridge-based PEBB. 

12.2.2 Two Level Half-Bridge-Based PEBB Using GaN HEMTs. 

    A two level half-bridge-based PEBB is built with GaN HEMTs to reduce the switching and 

conduction losses. The major problem of this PEBB is that the rated voltage is limited by the rated 

voltage of the GaN HEMTs utilized in the circuit. 

GaN HEMT symbol 

Figure 12.3: Two level half-bridge-based PEBB Using GaN HEMTs. 

12.2.3 Multilevel NPC-Based PEBBs Using Si/SiC MOSFETs/IGBTs 

As a solution to extend the operating voltage of the PEBB beyond the rated voltage of the single 

transistors, a multilevel NPC half-bridge can be a PEBB.  

    The rated voltage of this PEBB = (number of levels – 1)  rated voltage of each transistor. 

   A NPC half-bridge-based PEBB built with SiC MOSFETs is presented. This NPC can be built 

with Si/SiC MOSFETs (as shown in Figure 12.4(a)), Si/SiC IGBTs (as shown in Figure 12.4(b)), 

or GaN HEMTs (as shown in Figure 12.1(b)). The major disadvantages of this PEBB architecture: 

- Requires high number of semiconductor devices.
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- Requires a complex control scheme.

(a) (b) 

Figure 12.4: NPC-based PEBB, (a) Using Si/SiC MOSFETs. (b) Using Si/SiC IGBTs. 

12.2.4 Multilevel FC-Based PEBB Using Si/SiC MOSFETs/IGBTs 

Another architecture that can be used to extend the rated voltage of the PEBB beyond the rated 

voltage of the single transistors is a FC half-bridge-based PEBB, where a FC half-bridge is used 

as a PEBB. 

(a) (b) 

Figure 12.5: FC-based PEBB, (a) Using Si/SiC MOSFETs. (b) Using Si/SiC IGBTs. 
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    The rated voltage of this PEBB = (number of levels – 1) X rated voltage of each transistor. This 

NPC can be built with Si/SiC MOSFETs (as shown in Figure 12.5(a)), Si/SiC IGBTs (as shown in 

Figure 12.5(b)), or GaN HEMTs (as shown in Figure 12.1(a)). The major disadvantages of this 

PEBB architecture: 

- Requires high number of high-voltage capacitors, which increases the weight and size.

- Requires a complex control scheme.

12.3 The proposed PEBB Using Series-Stacked GaN HEMTs 

    The proposed PEBB is presented in figure 12.6. Series-stacked GaN HEMTs with an SSD form 

a GaN module that is driven via only one gate pin (more details about the structure of the GaN 

module and its SSD are presented in section 12.4). The proposed PEBB is based on a half-bridge 

where it is composed of two GaN modules (upper module and lower module), two high voltage 

capacitors, a power inductor, and power terminals. Possible power electronic architectures that can 

be synthesized with the proposed PEBB are shown in section 12.5. 

Figure 12.6: The proposed PEBB using series-stacked GaN modules. 



12.4 The Series-Switch-Driver (SSD) 

    The SSD structure is developed to drive series-connected GaN HEMTs (constructing one 

GaN module). This SSD needs a single gate power supply and one Pulse Width Modulation 

(PWM) pin is required to drive the GaN module. The operation of the SSD can be explained 

in two major ways. Firstly, it gives gate charge of the HEMTs during turn-on with a minimum 

propagation delay between the gate-source potentials of the HEMTs. Secondly, the developed 

SSD assures balanced voltage sharing between the switches during switching transients and in 

the off state. Figure 12.7 shows the structure of a two-series-stacked-GaN-switch module and 

the embedded SSD. Each component of the SSD makes a specific task. The resistors Rs1 and 

Rs2 which are parallel connected with the switches ensures similar voltage sharing between the 

HEMTs during the off state. The voltage deviation of the HEMTs in this period is 

associated with the difference between the HEMTs leakage current and also unbalanced 

voltage at the end of the turn-off period. The capacitor Cd1 provides the turn-on gate charge 

of the upper HEMT. This capacitor along with the capacitor Cd2 are the tools to regulate the 

variation speed of the HEMTs drain-source voltage (dVds/dt) to end up with balanced voltage 

sharing during switching transitions. The Zener diodes Zd1 and Zd2 are used to clamp the gate-

source voltage at a specified voltage, and the Ferrite Beads FB1 and FB2 and the resistor r damp 

the ringing in the gate-source voltage. The location and value of the resistor r and the FB 

specifications depend on the ringing of the gate-source voltage which itself is caused by the 

parasitic inductance of the gate loop. The FB1 is used in the turn-off loop of the upper HEMT 

since in this configuration, the gate voltage ringing occurred just in the turn-off transition. If the 

ringing is also observed in the turn-on transition, the FB2 will be connected in series with 

resistor r. The ferrite beads FB1 and FB2 are specified by their impedance at 100MHz 
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and the appropriate FBs are selected based on the amplitude and the frequency of the gate voltage 

ringing.  

Figure 12.7: A GaN module of two HEMTs and the SSD. 

To ensure the proper turning-on process of the upper HEMT, a minimum value of Cd2 is required 

which depends on the required gate charge of the HEMT. As Cd2 increases, the variation slope 

of the drain-source voltage (Vds) of the lower HEMT during switching transitions decreases 

which in turn results in longer switching period and higher switching loss. The variation slope 

of Vds1 and Vds2 during the turn-on transition can be calculated using the following equations.  

𝑑𝑣𝑑𝑠2(𝑡)

𝑑𝑡
=

(𝑉𝐺 − 𝑉𝑔𝑠,𝑝)

𝑄𝐺𝐷
𝑉𝐷𝑆

(𝑅𝐺 + 𝑅𝑔,𝑜𝑛1) + 𝑅𝐺𝐶𝑑2
(1)
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𝑑𝑣𝑑𝑠1(𝑡)

𝑑𝑡
=

𝐶𝑑2

(𝐶𝑑1 +
𝑄𝐺𝐷
𝑉𝐷𝑆

)

(𝑉𝐺 − 𝑉𝑔𝑠,𝑝)

(
𝑄𝐺𝐷
𝑉𝐷𝑆

) (𝑅𝐺 + 𝑅𝑔,𝑜𝑛1) + 𝑅𝐺𝐶𝑑2
(2) 

Where 𝑉𝑔𝑠,𝑝, 𝑄𝐺𝐷 and 𝑅𝐺  represent the Miller plateau voltage, the total gate-drain charge of the 

HEMT and the internal resistor of the gate driver, respectively. 

Figure 12.8: A GaN module of more than two HEMTs and the SSD. 



    Based on (5) and (6), one can conclude that the higher values of the resistors 𝑅𝐺 , and 𝑅𝑔,𝑜𝑛1 

result in lower 
𝑑𝑣𝑑𝑠

𝑑𝑡
. Moreover, bigger 𝐶𝑑1, and 𝐶𝑑2 also cause lower 

𝑑𝑣𝑑𝑠1

𝑑𝑡
and 

𝑑𝑣𝑑𝑠2

𝑑𝑡
, respectively. 

The described idea for sharing the voltage between two HEMT s can be extended for multiple 

HEMTs. In this procedure, the main concern is to provide enough gate charge for the upper 

HEMTs to reach a sufficient gate voltage so that the HEMT is fully turned on. This is required 

to ensure that the HEMT is operating in the resistive (linear) region with a very low Ron and 

consequently low on-state power loss. As the number of HEMTs in the stack exceeds two, this 

task becomes more challenging. An additional circuit can be used to provide gate charge for the 

upper HEMTs. In this circuit, a boost capacitor feeds additional charge to the upper HEMTs 

after the turn-on transition so that a sufficient gate voltage is achieved. 

A series-stacked GaN module with more than two GaN HEMTs is presented in Figure 12.8. In 

this circuit, the gate charge of the third HEMT is provided through Cd2 which is connected 

between the gate of the third HEMT and the source of the second HEMT. Similarly, the capacitor 

Cd(i-1) is responsible for the turn-on gate charge of the ith HEMT. The stored charge of the 

capacitor Cd(i-1) itself is fed from the load current during the turn-off transition. On the other 

hand, this capacitor controls the variation rate of the drain-source voltage of the (i-1)th HEMT 

during the switching transitions.  

Another challenge in the extension of the series-stacked HEMTs in the GaN module is to ensure 

voltage balance between the HEMTs specifically the upper HEMTs. There is a slight delay 

between the gate-source voltages of two adjacent HEMTs, so the delay between the first and the 

last HEMT would be the summation of all of the adjacent HEMT delays. This delay between 

the gate voltages of the HEMTs, causes a delay between the times at which the drain-source 
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voltages of the HEMTs starts to increase in the turn-off period. The first HEMT waveforms lead 

those of the last HEMT. In order to compensate for this delay, the dVds/dt of the first HEMT 

should be slowed down so that the Vds of the both HEMTs reaches their final values at the same 

time and consequently balanced voltage across the HEMTs at the end of the turn-off period and 

during the off state of the HEMTs will be guaranteed. To achieve this goal, higher value of Cd1 

(and similarly Cd(i)) is needed which in turn prolongs the switching transition. Thus, when using 

large number of HEMTs in series, to ensure balanced voltage across all of the HEMTs, longer 

switching transitions will be resulted. Consequently, there is a tradeoff between the number of 

series-stacked HEMTs and the switching loss and the switching frequency. 

12.5 Possible PEBB Systems 

    In this section examples of possible power electronic architectures synthesized with the 

proposed PEBB are illustrated. For each example the connection diagram is presented along 

with the circuit (for better illustration).  

(a) (b) 

Figure 12.9: A synchronous buck DC-DC converter (a) Connection diagram. (b) Circuit. 
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12.5.1 Synchronous Buck DC-DC Converter 

    A synchronous buck converter can be synthesized with one PEBB, where a source is connected 

as V2 and a load is connected as V1 (buck mode), or a source is connected as V1 and a load is 

connected as V2 (boost mode). Figure 12.9(b) shows the circuit diagram of a synchronous buck 

converter, and Figure8 (a) shows the connection diagram of a synchronous buck converter.    

12.5.2 Bidirectional Inverting Buck-Boost DC-DC Converter 

    A bidirectional inverting buck-boost converter can be synthesized with one PEBB, where a 

source is connected as V2 or V1, and the load is connected as V1 or V2, respectively.  

(a) (b) 

Figure 12.10: A bidirectional inverting buck-boost DC-DC converter (a) Connection diagram. 

(b) Circuit.

12.5.3 Bidirectional Non-Inverting Buck-Boost DC-DC Converter 

    A bidirectional non-inverting buck-boost converter can be synthesized with two PEBBs, where 

a source is connected as V2 or V1, and the load is connected as V1 or V2, respectively. Figure 
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12.11(b) shows the circuit diagram of a bidirectional non-inverting buck-boost converter, and 

Figure 12.11(a) shows the connection diagram of a bidirectional non-inverting buck-boost 

converter. 

(a) (b) 

Figure 12.11: A bidirectional non-inverting buck-boost DC-DC converter (a) Connection 

diagram. (b) Circuit. 

12.5.4 Single-Phase Buck DC-AC Inverter 

   A single-phase buck inverter can be synthesized with two PEBBs, where a dc source is connected 

as V1, and the ac load is connected as V2. Figure 12.12(b) shows the circuit diagram of a single-

phase buck inverter, and Figure 12.12(a) shows the connection diagram of a single-phase buck 

inverter. 
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(a) (b) 

Figure 12.12: A single-phase buck DC-AC inverter (a) Connection diagram. (b) Circuit. 

12.5.5 Single-Phase Boost DC-AC Inverter 

    A single-phase boost inverter can be synthesized with two PEBBs, where a dc source is 

connected as V1, and the ac load is connected as V2. Figure 12.13(b) shows the circuit diagram of 

a single-phase boost inverter, and Figure 12(a) shows the connection diagram of a single-phase 

boost inverter.  
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(a) (b) 

Figure 12.13: A single-phase boost DC-AC inverter (a) Connection diagram. (b) Circuit. 

12.5.6 Single-Phase Buck-Boost DC-AC 

    A single-phase buck-boost inverter can be synthesized with two PEBBs, where a dc source is 

connected as V1, and the ac load is connected as V2. Figure 12.14(b) shows the circuit diagram of 

a single-phase buck-boost inverter, and Figure 12.14(a) shows the connection diagram of a single-

phase buck-boost inverter.  
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12.5.7 Three-Phase Buck DC-AC Inverter 

    A three-phase buck inverter can be synthesized with three PEBBs, where a dc source is 

connected as V1, and the three ac loads are connected as Va, Vb, and Vc. Figure 12.15(b) shows the 

circuit diagram of a three-phase buck inverter, and Figure 12.15(a) shows the connection diagram 

of a three-phase buck inverter.  

(a) 
(b) 

Figure 12.14: A single-phase buck-boost DC-AC inverter (a) Connection diagram. (b) Circuit. 
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12.5.8 Three-Phase Buck-Boost DC-AC Inverter 

    A three-phase buck-boost inverter can be synthesized with three PEBBs, where a dc source is 

connected as V1, and the three ac loads are connected as Va, Vb, and Vc. 

(a) (b) 

Figure 12.15: A three-phase buck DC-AC inverter (a) Connection diagram. (b) Circuit. 
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    Figure 12.16(b) shows the circuit diagram of a three-phase buck-boost inverter, and Figure 

12.16(a) shows the connection diagram of a three-phase buck-boost inverter.  

(a) (b) 

Figure 12.16: A three-phase buck-boost DC-AC inverter (a) Connection diagram. (b) Circuit. 
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12.6 Conclusion 

    In this chapter a new power electronic building block with series-stacked GaN modules using a 

series-switch driver. The developed structure has high efficiency, reduced system cooling 

requirement, high power density, high specific power, simple control since it is driven as a simple 

two-level push-pull leg, each GaN module requires only one gate driving signal, and the rated 

voltage of the PEBB can be extended systematically by increasing the number of series GaN 

HEMTs in the GaN Module. 



Chapter 13 Conclusions and Future Work 

13.1 Conclusions 

    The dissertation provided different cost-effective solutions to allow the wide-bandgap devices 

(i.e. Gallium Nitride and Silicon Carbide devices) to be utilized in high power applications such as 

microgrids, electrified means of transportation, and renewable energy systems. These solutions are 

based on developing new power converter topologies and high voltage series-stacked wide-

bandgap switching modules. 

    Firstly, the technique of series stacking of the active switches extends the breakdown voltage of 

the power switch, thus, can be directly utilized for high voltage applications. Typically, series-

stacking of the power switches is either done via an active gate driver or passive snubber circuits. 

The active gate driver requires an additional control circuit to control the adequate charges injected 

into the gate of each switch in the series array. This solution is complicated and increases the cost 

of the switching module. The passive snubber solution utilizes a passive branch that is composed 

of a capacitor and a resistor in order to balance out the voltage stress across the series-connected 

switches. This approach has a simple circuit structure, nevertheless, it increases the conduction 

losses of the switching module. In addition, it slows down the turn-on and turn-off transitions, 

hence, it increases the switching losses of the module. The solution discussed in this dissertation is 

based on a quasi-active driving circuit that is based on a number of low voltage capacitors, 

resistors, and diodes in order to inject adequate charges into the gate of each switch in the series 

array. The proposed circuit has a relatively less complex circuit structure compared to the active 

gate driver solution, and lower conduction and switching losses compared to the passive snubber 

solution. The simulation and experimental results showed that the proposed series connected 
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switching module has equally shared voltage stresses across the single switches in the series-

connected array. 

    Secondly, the topology of the power converter plays a very important and critical role in 

enabling the utilization of wide-bandgap devices in high power applications. The topology can 

reduce the voltage stresses on the semiconductor devices which allows devices with low rated 

voltage to be used in high voltage systems. Additionally, the converter topology can reduce the 

common mode noise of the converter by providing either a common ground or a constant potential 

difference between the ports of the converter, accordingly, the converter will require a more 

compact EMC filter. 

    In this dissertation, novel power converter topologies are proposed and analyzed. These 

converters are categorized into isolated and non-isolated topologies. The isolated topologies utilize a 

high frequency power transformer to provide galvanic isolation between the power sources and the 

load, distribute the voltage stress on the semiconductor devices, and provide high voltage 

conversion ratio. In this dissertation, two new isolated high-frequency ac (HFAC) link dc-ac 

converters are presented and analyzed. They have reduced number of switch count compared to the 

state-of-the-art isolated converters in literature. Additionally, the proposed isolated converter can 

support the voltage and frequency of the power grid during contingences. A new hysteresis current 

controller is proposed for the developed HFAC link converters. This current controller is simple and 

enhances the dynamic performance of the system. 

    The non-isolated converter topologies do not require a magnetic coupling component to achieve 

high voltage conversion ratios, thus, they are more cost effective compared to the isolated ones. 

Additionally, the elimination of the magnetic coupling components allows the power converter to 

operate at relatively higher switching frequencies. In this dissertation, six new transformerless dc-
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dc converter topologies are proposed, discusses and compared with the state-of-the-art topologies 

in literature. Three of these new topologies are unidirectional power converters, while the other 

three are bidirectional.  

    The unidirectional converters have universal input voltage range and can be utilized for 

applications like photovoltaic and fuel cell systems. In the photovoltaic system application, the 

wide input range of the unidirectional power converter extends the allowed range of the 

maximum point power tracing (MPPT) which enhances the efficiency of the system. The 

universal input voltage of the unidirectional dc-dc converter is an important feature for fuel cells, 

as they have soft output characteristics where the output voltage drops drastically as the output 

current increases.    

    In this dissertation, three new unidirectional step-up dc-dc converters are proposed and 

discussed. The first one is based on the SEPIC converter with an integrated switched-capacitor 

cell and a discontinuous current quasi-Z-source network. This converter has a wide voltage 

gain, reduced voltage stress on the semiconductor devices a common ground between the 

input and output ports, and a continuous input current. The second converter also based on the 

SEPIC with an integrated dual-switched capacitor multiplier network. This converter has a higher 

voltage gain and lower voltage stress on its switches compared to the first converter. It also 

has a constant potential difference between the grounds of its ports which reduces the radiated 

EMI noise. The third converter utilizes the two multiplier networks used in the first two 

converters, as it integrates a dual-switched-capacitor multiplier and a discontinuous current 

quasi-Z-source network, and it has a high voltage gain and lower voltage stress on its 

semiconductor devices compared to the first two converters. In addition it has a continuous input 

current which prolongs the lifetime of the fuel cell and enhances the efficiency of the photovoltaic 

system. 
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    Additionally, three novel bidirectional dc-dc converters with wide voltage conversion ratios and 

reduced voltage stresses on the semiconductor devices are presented and discussed in this 

dissertation. These converters are excellent candidates for the applications that utilize energy 

storage systems with wide voltage swings, where the wide voltage conversion ratios of the dc-dc 

converter either increases the energy exchange from/to the energy storage system for the same 

capacitance, or reduces the required capacitance of the energy storage system to have the same 

energy exchange rate. The first converter is based on the bidirectional versions of the inverting 

buck-boost and Ćuk converters. This converter can perform buck and boost voltage conversion 

operations in both power flow directions. The second converter is based on the bidirectional version 

of the SEPIC converter with an integrated switched-capacitor network and an active discontinuous 

current quasi-Z-source network. It can perform buck operation in one power flow direction and 

boost operation in the other power flow direction. In addition, it has a common ground between the 

ports of the converter. This makes it an excellent candidate for microgrid and nanogrids 

applications. The third converter is based on a quadratic bidirectional converter structure with an 

integrated switched capacitor multiplier. It can achieve very high voltage conversion ratios which 

makes it suitable for applications like low voltage energy storage systems. In addition, it can be 

extended by integrating more than one switched-capacitor multiplier, in order to further extended 

the voltage conversion ratios of the converter and reduce the voltage stresses of the individual 

switches. 

    Finally, a high voltage series-stacked GaN switching module is proposed, thoroughly discussed, 

and experimentally validated in this dissertation. The switching module utilize a quasi-active gate 

driver in order to inject adequate charges into the gate of each GaN switch in the series-stacked 

array to make sure the voltage stress is equally shared among the switches. This technique has a 
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simple circuit structure and does not need an extra controller, on the contrary with the series-

stacked module with active gate drivers. In addition, the quasi-active gate driver does not affect 

the efficiency of the module, on the contrary with the series-stacked modules with passive snubber 

circuits. The proposed technique of series-stacking extends the breakdown voltage of the 

commercial GaN devices which make them suitable candidates to high voltage applications such 

as electric vehicles and microgrid applications. 

13.2 Recommendations for Future Work

    This dissertation covered several aspects related to the extension of the operating voltage of the 

wide-bandgap devices via proposing new dc-dc converter topologies and synthesizing a high 

voltage series-stacked switching module using GaN transistors. Despite the proposed solutions in 

this dissertation and the influx of research activities on the topic of using wide-bandgap devices in 

high voltage dc-dc systems in recent years, a number of interesting questions are yet to be 

addressed properly and comprehensively.  

    Most of the works either ignored, or only partly addressed, the reliability of the high voltage 

power electronic systems built with wide-bandgap devices. The thermal performance of these 

systems especially in harsh working environments is a critical aspect of research and development 

that needs to be addressed properly.  

    Another pressing issue is the development of reliable high power ac-dc and dc-ac systems that 

can be used for traction applications. The utilization of wide-bandgap devices can have huge 

impact on the efficiency and performance of these systems since they have lower on resistance and 

lower device charges compared to their Silicon counterparts which result in lower conduction and 

switching losses. 
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   The series-stacked GaN switching module proposed in this dissertation is based on the GaN 

enhancement high electron mobility transistor. This devices have low on resistance and low device 

charges, nevertheless, they have low threshold voltage which make them susceptible to false turn-

on cases. The cascade GaN transistor solves this problem by integrating a low voltage Silicon 

MOSFET in series with a high voltage GaN depletion mode transistor as the Silicon MOSFET 

controls the turn-on and turn-off operations of the cascode switch, hence, the threshold voltage of 

the cascode GaN switch is higher compared to the enhancement GaN transistor. A high voltage 

series-stacked module with cascade GaN transistor should be investigated as it can be a better for 

high power applications in harsh environments. 
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