5,074 research outputs found

    Time-efficient fault detection and diagnosis system for analog circuits

    Get PDF
    Time-efficient fault analysis and diagnosis of analog circuits are the most important prerequisites to achieve online health monitoring of electronic equipments, which are involving continuing challenges of ultra-large-scale integration, component tolerance, limited test points but multiple faults. This work reports an FPGA (field programmable gate array)-based analog fault diagnostic system by applying two-dimensional information fusion, two-port network analysis and interval math theory. The proposed system has three advantages over traditional ones. First, it possesses high processing speed and smart circuit size as the embedded algorithms execute parallel on FPGA. Second, the hardware structure has a good compatibility with other diagnostic algorithms. Third, the equipped Ethernet interface enhances its flexibility for remote monitoring and controlling. The experimental results obtained from two realistic example circuits indicate that the proposed methodology had yielded competitive performance in both diagnosis accuracy and time-effectiveness, with about 96% accuracy while within 60 ms computational time.Peer reviewedFinal Published versio

    Real-Time Fault Detection and Diagnosis System for Analog and Mixed-Signal Circuits of Acousto-Magnetic EAS Devices

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The paper discusses fault diagnosis of the electronic circuit board, part of acousto-magnetic electronic article surveillance detection devices. The aim is that the end-user can run the fault diagnosis in real time using a portable FPGA-based platform so as to gain insight into the failures that have occurred.Peer reviewe

    MISSED: an environment for mixed-signal microsystem testing and diagnosis

    Get PDF
    A tight link between design and test data is proposed for speeding up test-pattern generation and diagnosis during mixed-signal prototype verification. Test requirements are already incorporated at the behavioral level and specified with increased detail at lower hierarchical levels. A strict distinction between generic routines and implementation data makes reuse of software possible. A testability-analysis tool and test and DFT libraries support the designer to guarantee testability. Hierarchical backtrace procedures in combination with an expert system and fault libraries assist the designer during mixed-signal chip debuggin

    Automatic programming methodologies for electronic hardware fault monitoring

    Get PDF
    This paper presents three variants of Genetic Programming (GP) approaches for intelligent online performance monitoring of electronic circuits and systems. Reliability modeling of electronic circuits can be best performed by the Stressor - susceptibility interaction model. A circuit or a system is considered to be failed once the stressor has exceeded the susceptibility limits. For on-line prediction, validated stressor vectors may be obtained by direct measurements or sensors, which after pre-processing and standardization are fed into the GP models. Empirical results are compared with artificial neural networks trained using backpropagation algorithm and classification and regression trees. The performance of the proposed method is evaluated by comparing the experiment results with the actual failure model values. The developed model reveals that GP could play an important role for future fault monitoring systems.This research was supported by the International Joint Research Grant of the IITA (Institute of Information Technology Assessment) foreign professor invitation program of the MIC (Ministry of Information and Communication), Korea

    Oscillation-Based Test Structure and Method for OTA-C Filters

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”This paper describes a design for testability technique for operational transconductance amplifier and capacitor filters using an oscillation-based test topology. The oscillation-based test structure is a vectorless output test strategy easily extendable to built-in self-test. The proposed methodology converts filter under test into a quadrature oscillator using very simple techniques and measures the output frequency. The oscillation frequency may be considered as a digital signal and it can be evaluated using digital circuitry therefore the test time is very small. These characteristics imply that the proposed method is very suitable for catastrophic and parametric faults testing and also effective in detecting single and multiple faults. The validity of the proposed method has been verified using comparison between faulty and fault-free simulation results of two integrator loop and Tow-Thomas filters. Simulation results in 0.25 mum CMOS technology show that the proposed oscillation-based test strategy for OTA-C filters has 87% fault coverage and with a minimum number of extra components, requires a negligible area overhead

    A Low-Cost FPGA-Based Test and Diagnosis Architecture for SRAMs

    Get PDF
    The continues improvement of manufacturing technologies allows the realization of integrated circuits containing an ever increasing number of transistors. A major part of these devices is devoted to realize SRAM blocks. Test and diagnosis of SRAM circuits are therefore an important challenge for improving quality of next generation integrated circuits. This paper proposes a flexible platform for testing and diagnosis of SRAM circuits. The architecture is based on the use of a low cost FPGA based board allowing high diagnosability while keeping costs at a very low leve

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    A verification technique for multiple soft fault diagnosis of linear analog circuits

    Get PDF
    The paper deals with multiple soft fault diagnosis of linear analog circuits. A fault verification method is developed that allows estimating the values of a set of the parameters considered as potentially faulty. The method exploits the transmittance of the circuit and is based on a diagnostic test leading to output signal in discrete form. Applying Z-transform a diagnostic equation is written which is next reproduced. The obtained system of equations consisting of larger number of equations than the number of the parameters is solved using appropriate numerical approach. The method is adapted to real circumstances taking into account scattering of the fault–free parameters within their tolerance ranges and some errors produced by the method. In consequence, the results provided by the method have the form of ranges including the values of the tested parameters. To illustrate the method two examples of real electronic circuits are given

    New Aspects of Fault Diagnosis of Nonlinear Analog Circuits

    Get PDF
    The paper is focused on nonlinear analog circuits, with the special attention paid to circuits comprising bipolar and MOS transistors manufactured in micrometer and submicrometer technology. The problem of fault diagnosis of this class of circuits is discussed, including locating faulty elements and evaluating their parameters. The paper deals with multiple parametric fault diagnosis using the simulation after test approach as well as detection and location of single catastrophic faults, using the simulation before test approach. The discussed methods are based on diagnostic test, leading to a system of nonlinear algebraic type equations, which are not given in explicit analytical form. An important and new aspect of the fault diagnosis is finding multiple solutions of the test equation, i.e. several sets of the parameters values that meet the test. Another new problems in this area are global fault diagnosis of technological parameters in CMOS circuits fabricated in submicrometer technology and testing the circuits  having multiple DC operating points. To solve these problems several methods have been recently developed, which employ  different concepts and mathematical tools of nonlinear analysis. In this paper they are sketched and illustrated.  All the discussed methods are based on the homotopy (continuation) idea. It is shown that various versions of homotopy and combinations  of the homotopy with some other mathematical algorithms lead to very powerful tools for fault diagnosis of nonlinear analog circuits.  To trace the homotopy path which allows finding multiple solutions, the simplicial method, the restart method, the theory of linear complementarity problem and Lemke's algorithm are employed. For illustration four numerical examples are given
    • 

    corecore