21,172 research outputs found

    Integrated Natural Gas Powered SOFC Systems

    Get PDF
    The present invention discloses an integrated SOFC system powered by natural gas. Specifically, a SOFC-O cell is combined with a SOFC-H cell so as to take advantage of the high operating temperature and steam reforming capabilities of the SOFC-O cell as well as the higher fuel conversion efficiency of the SOFC-H cell.Philips 66 CompanyGeorgia Tech Research Corporatio

    Stability analysis of solid oxide fuel cell systems

    Get PDF
    Solid oxide fuel cells (SOFC), with entirely solid structure and high operating temperatures, have attracted research interest in recent years. Unlike other types of fuel cells, low electrode corrosion and low electrolyte looses are assumed due to its solid structure. Furthermore, the high operating temperatures enable SOFC to reach up to 50% to 65% efficiency with excellent impurity tolerance. However, there are several degradation mechanisms in SOFC, such as electrode delamination, electrolyte cracking, electrode poisoning, etc. Most of these degradations are related with the operation conditions, which can be optimized by appropriate control. Since most control algorithms are developed based on the mathematical models, it is important to obtain SOFC control-oriented models. Therefore, this paper aims to develop a SOFC control-oriented model, including the dynamics of inlet manifold, SOFC stack and outlet manifold. Moreover, equilibrium points are characterized and a stability around these equilibrium points analysis is performed. This information can provide guidelines for control strategies design.Postprint (published version

    Evaluation of solid oxide fuel cell systems for electricity generation

    Get PDF
    Air blown (low BTU) gasification with atmospheric pressure Solid Electrolyte Fuel Cells (SOFC) and Rankine bottoming cycle, oxygen blown (medium BTU) gasification with atmospheric pressure SOFC and Rankine bottoming cycle, air blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle, oxygen blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle were evaluated

    Comparison between 1-D and grey-box models of a SOFC

    Get PDF
    Solid Oxide Fuel Cells (SOFCs) have shown unique performance in terms of greater electrical efficiency and thermochemical integrity with the power systems compared to gas turbines and internal combustion engines. Nonetheless, simple and reliable models still must be defined. In this paper, a comparison between a grey-box model and a 1-D model of a SOFC is performed to understand the impact of the heat transfer inside the cell on the internal temperature distribution of the solid electrolyte. Hence, a significant internal temperature peak of the solid electrolyte is observed for a known difference between anode and cathode inlet temperatures. Indeed, it highlights the difference between the 1-D model and the grey-box model regarding the thermal conditioning of the SOFC. Therefore, the results of this study can be used to investigate the reliability of the thermal results of box models in system-level simulations

    Operating Point Optimization of a Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Steam Turbine (SOFC-ST) Plant

    Get PDF
    This paper presents a hydrogen powered hybrid solid oxide fuel cell-steam turbine (SOFC-ST) system and studies its optimal operating conditions. This type of installation can be very appropriate to complement the intermittent generation of renewable energies, such as wind generation. A dynamic model of an alternative hybrid SOFC-ST configuration that is especially suited to work with hydrogen is developed. The proposed system recuperates the waste heat of the high temperature fuel cell, to feed a bottoming cycle (BC) based on a steam turbine (ST). In order to optimize the behavior and performance of the system, a two-level control structure is proposed. Two controllers have been implemented for the stack temperature and fuel utilization factor. An upper supervisor generates optimal set-points in order to reach a maximal hydrogen efficiency. The simulation results obtained show that the proposed system allows one to reach high efficiencies at rated power levels.This work has been carried out in the Intelligent Systems and Energy research group of the University of the Basque Country (UPV/EHU) and has been supported by the UFI11/28 research grant of the UPV/EHU and by the IT677-13 research grant of the Basque Government (Spain) and by DPI2012-37363-CO2-01 research grant of the Spanish Ministry of Economy and Competitiveness

    Thermodynamic investigation of a shared cogeneration system with electrical cars for northern Europe climate

    Get PDF
    Transition to alternative energy systems is indicated by EU Commission as a suitable path to energy efficiency and energy saving in the next years. The aims are to decrease greenhouses gases emissions, relevance of fossil fuels in energy production and energy dependence on extra-EU countries. These goals can be achieved increasing renewable energy sources and/or efficiency on energy production processes. In this paper an innovative micro-cogeneration system for household application is presented: it covers heating, domestic hot water and electricity demands for a residential user. Solid oxide fuel cells, heat pump and Stirling engine are utilised as a system to achieve high energy conversion efficiency. A transition from traditional petrol cars to electric mobility is also considered and simulated here. Different types of fuel are considered to demonstrate the high versatility of the simulated cogeneration system by changing the pre-reformer of the fuel cell. Thermodynamic analysis is performed to prove high efficiency with the different fuels
    corecore