14 research outputs found

    INTELLIGENTE TRANSPORT SYSTEMEN ITS EN VERKEERSVEILIGHEID

    Get PDF
    This report discusses Intelligent Transport Systems (ITS). This generic term is used for a broad range of information-, control- and electronic technology that can be integrated in the road infrastructure and the vehicles themselves, saving lives, time and money bymonitoring and managing traffic flows, reducing conges-tion, avoiding accidents, etc. Because this report was written in the scope of the Policy Research Centre Mobility & Public Works, track Traffic Safety, it focuses on ITS systems from the traffic safety point of view. Within the whole range of ITS systems, two categories can be distinguished: autonomous and cooperative systems. Autonomous systems are all forms of ITS which operate by itself, and do not depend on the cooperation with other vehicles or supporting infrastructure. Example applications are blind spot detection using radar, electronic stability control, dynamic traffic management using variable road signs, emergency call, etc. Cooperative systems are ITS systems based on communication and cooperation, both between vehicles as between vehicles and infrastructure. Example applications are alerting vehicles approaching a traffic jam, exchanging data regarding hazardous road conditions, extended electronic brake light, etc. In some cases, autonomous systems can evolve to autonomous cooperative systems. ISA (Intelligent Speed Adaptation) is an example of this: the dynamic aspect as well as communication with infrastructure (eg Traffic lights, Variable Message Sign (VMS)...) can provide additional road safety. This is the clear link between the two parts of this report. The many ITS applications are an indicator of the high expectations from the government, the academic world and the industry regarding the possibilities made possible by both categories of ITS systems. Therefore, the comprehensive discussion of both of them is the core of this report. The first part of the report covering the autonomous systems treats two aspects: 1. Overview of European projects related to mobility and in particular to road safety 2. Overview for guidelines for the evaluation of ITS projects. Out of the wide range of diverse (autonomous) ITS applications a selection is made; this selection is focused on E Safety Forum and PreVENT. Especially the PreVent research project is interesting because ITS-applications have led to a number of concrete demonstration vehicles that showed - in protected and unprotected surroundings- that these ITS-applications are already technically useful or could be developed into useful products. The component “guidelines for the evaluation of ITS projects” outlines that the government has to have specific evaluation tools if the government has the ambition of using ITS-applications for road safety. Two projects -guidelines for the evaluation of ITS projects- are examined; a third evaluation method is only mentioned because this description shows that a specific targeting of the government can be desirable : 1. TRACE describes the guidelines for the evaluation of ITS projects which are useful for the evaluation of specific ITS-applications. 2. FITS contains Finnish guidelines for the evaluation of ITS project; FIS is an adaptation of methods used for evaluation of transport projects. 3. The third evaluation method for the evaluation of ITS projects is developed in an ongoing European research project, eImpact. eImpact is important because, a specific consultation of stake holders shows that the social importance of some techniques is underestimated. These preliminary results show that an appropriate guiding role for the government could be important. In the second part of this document the cooperative systems are discussed in depth. These systems enable a large number of applications with an important social relevance, both on the level of the environment, mobility and traffic safety. Cooperative systems make it possible to warn drivers in time to avoid collisions (e.g. when approaching the tail of a traffic jam, or when a ghost driver is detected). Hazardous road conditions can be automatically communicated to other drivers (e.g. after the detection of black ice or an oil trail by the ESP). Navigation systems can receive detailed real-time up-dates about the current traffic situation and can take this into account when calculating their routes. When a traffic distortion occurs, traffic centers can immediately take action and can actively influence the way that the traffic will be diverted. Drivers can be notified well in advance about approaching emergency vehicles, and can be directed to yield way in a uniform manner. This is just a small selection from the large number of applications that are made possible because of cooperative ITS systems, but it is very obvious that these systems can make a significant positive contribution to traffic safety. In literature it is estimated that the decrease of accidents with injuries of fatalities will be between 20% and 50% . It is not suprising that ITS systems receive a lot of attention for the moment. On an international level, a number of standards are being established regarding this topic. The International Telecommunications Uniont (ITU), Institute for Electrical and Electronics Engineers (IEEE), International Organization for Standardization (ISO), Association of Radio Industries and Business (ARIB) and European committee for standardization (CEN) are currently defining standards that describe different aspects of ITS systems. One of the names that is mostly mentioned in literature is the ISO TC204/WG16 Communications Architecture for Land Mobile environment (CALM) standard. It describes a framework that enables transparent (both for the application and the user) continuous communication through different communication media. Besides the innumerable standardization activities, there is a great number of active research projects. On European level, the most important are the i2010 Intelligent Car Initiative, the eSafety Forum, and the COMeSafety, the CVIS, the SAFESPOT, the COOPERS and the SEVECOM project. The i2010 Intelligent Car Initiative is an European initiative with the goal to halve the number of traffic casualties by 2010. The eSafety Forum is an initiative of the European Commission, industry and other stakeholders and targets the acceleration of development and deployment of safety-related ITS systems. The COMeSafety project supports the eSafety Forum on the field of vehicle-to-vehicle and vehicle-to-infrastructure communication. In the CVIS project, attention is given to both technical and non-technical issues, with the main goal to develop the first free and open reference implementation of the CALM architecture. The SAFEST project investigates which data is important for safety applications, and with which algorithmsthis data can be extracted from vehicles and infrastructure. The COOPERS project mainly targets communication between vehicles and dedicated roadside infrastructure. Finally, the SEVECOM project researches security and privacy issues. Besides the European projects, research is also conducted in the United States of America (CICAS and VII projects) and in Japan (AHSRA, VICS, Smartway, internetITS). Besides standardization bodies and governmental organizations, also the industry has a considerable interest in ITS systems. In the scope of their ITS activities, a number of companies are united in national and international organizations. On an international level, the best known names are the Car 2 Car Communication Consortium, and Ertico. The C2C CC unites the large European car manufacturers, and focuses on the development of an open standard for vehicle-to-vehicle and vehicle-to-infrastructure communications based on the already well established IEEE 802.11 WLAN standard. Ertico is an European multi-sector, public/private partnership with the intended purpose of the development and introduction of ITS systems. On a national level, FlandersDrive and The Telematics Cluster / ITS Belgium are the best known organizations. Despite the worldwide activities regarding (cooperative) ITS systems, there still is no consensus about the wireless technology to be used in such systems. This can be put down to the fact that a large number of suitable technologies exist or are under development. Each technology has its specific advantages and disadvantages, but no single technology is the ideal solution for every ITS application. However, the different candidates can be classified in three distinct categories. The first group contains solutions for Dedicated Short Range Communication (DSRC), such as the WAVE technology. The second group is made up of several cellular communication networks providing coverage over wide areas. Examples are GPRS (data communication using the GSM network), UMTS (faster then GPRS), WiMAX (even faster then UMTS) and MBWA (similar to WiMAX). The third group consists of digital data broadcast technologies such as RDS (via the current FM radio transmissions, slow), DAB and DMB (via current digital radio transmissions, quicker) and DVB-H (via future digital television transmissions for mobiledevices, quickest). The previous makes it clear that ITS systems are a hot topic right now, and they receive a lot of attention from the academic world, the standardization bodies and the industry. Therefore, it seems like that it is just a matter of time before ITS systems will find their way into the daily live. Due to the large number of suitable technologies for the implementation of cooperative ITS systems, it is very hard to define which role the government has to play in these developments, and which are the next steps to take. These issues were addressed in reports produced by the i2010 Intelligent Car Initiative and the CVIS project. Their state of the art overview revealed that until now, no country has successfully deployed a fully operational ITS system yet. Seven EU countries are the furthest and are already in the deployment phase: Sweden, Germany, the Netherlands, the United Kingdom, Finland, Spain and France. These countries are trailed by eight countries which are in the promotion phase: Denmark, Greece, Italy, Austria, Belgium,Norway, the Czech Republic and Poland. Finally, the last ten countries find themselves in the start-up phase: Estonia, Lithuania, Latvia, Slovenia, Slovakia, Hungary, Portugal, Switzerland, Ireland and Luxembourg. These European reports produced by the i2010 Intelligent Car Initiative and the CVIS project have defined a few policy recommendations which are very relevant for the Belgian and Flemish government. The most important recommendations for the Flemish government are: • Support awareness: research revealed that civilians consider ITS applications useful, but they are not really willing to pay for this technology. Therefore, it is important to convince the general public of the usefulness and the importance of ITS systems. • Fill the gaps: Belgium is situated in the promotion phase. This means that it should focus at identifying the missing stakeholders, and coordinating national and regional ITS activities. Here it is important that the research activities are coordinated in a national and international context to allow transfer of knowledge from one study to the next, as well as the results to be comparable. • Develop a vision: in the scope of ITS systems policies have to be defined regarding a large number of issues. For instance there is the question if ITS users should be educated, meaning that the use of ITS systems should be the subject of the drivers license exam. How will the regulations be for the technical inspection of vehicles equipped with ITS technology? Will ITS systems be deployed on a voluntary base, or will they e.g. be obliged in every new car? Will the services be offered by private companies, by the public authorities, or by a combination of them? Which technology will be used to implement ITS systems? These are just a few of the many questions where the government will have to develop a point of view for. • Policy coordination: ITS systems are a policy subject on an international, national and regional level. It is very important that these policy organizations can collaborate in a coordinated manner. • Iterative approach to policy development: developing policies for this complex matter is not a simple task. This asks for an iterative approach, where policy decisions are continuously refined and adjusted

    MULTI SENSOR DATA FUSION FOR AUTONOMOUS VEHICLES

    Get PDF
    Multi sensor Data Fusion for Advanced Driver Assistance Systems (ADAS) in Automotive industry has gained a lot of attention lately with the advent of self-driving vehicles and road traffic safety applications. In order to achieve an efficient ADAS, accurate scene object perception in the vicinity of sensor field-of-view (FOV) is vital. It is not only important to know where the objects are, but also the necessity is to predict the object’s behavior in future time space for avoiding the fatalities on the road. The major challenges in multi sensor data fusion (MSDF) arise due to sensor errors, multiple occluding targets and changing weather conditions. Thus, In this thesis to address some of the challenges a novel cooperative fusion architecture is proposed for road obstacle detection. Also, an architecture for multi target tracking is designed with robust track management. In order to evaluate the proposed tracker’s performance with different fusion paradigms, a discrete event simulation model is proposed. Experiments and evaluation of the above mentioned methods in real time and simulated data proves the robustness of the techniques considered for data fusion

    FESTA. Handbook version 2

    Get PDF
    In Japan and in the United States Field Operational Tests (FOTs) have been introduced as an evaluation method for driver support systems and other functions several years ago with the aim of proving that such systems can deliver real‐world benefits. In Europe too, FOTs have been conducted at a national or regional level, particularly on speed support systems and lane departure warning systems. These FOTs have proven to be highly valuable. Recently FOTs have been identified as an important means of verifying the real‐world impacts of new systems at a European level and in particular to verify that European R&D has the potential to deliver identifiable benefits. This Handbook is the result of a joint effort of several research institutes, OEMs and other stakeholders from across Europe to prepare a common methodology for European FOTs. It is also highly relevant, and it is hoped useful, for FOTs conducted at a regional or national level within Europe as well as outside Europe

    Mapping innovation in the European transport sector : An assessment of R&D efforts and priorities, institutional capacities, drivers and barriers to innovation

    Get PDF
    The present document provides an overview of the innovation capacity of the European transport sectors. The analysis addresses transport-related innovation from three different angles. It identifies the drivers and barriers to innovation for the main transport sub-sectors; it assesses quantitative indicators through the detailed analysis of the main industrial R&D investors and public R&D priorities in transport; and it identifies the key actors for transport research and knowledge flows between them in order to detect shortcomings in the current institutional set-up of transport innovation. The analysis finds that despite the significant on-going research efforts in transport, largely driven by the automotive industry, the potential for systemic innovations that go beyond modal boundaries and leave the currently pre-dominant design are under-exploited due to prominent lock-in effects caused by infrastructure and the institutional set-up of the innovation systemsJRC.J.1-Economics of Climate Change, Energy and Transpor

    Fourth ERCIM workshop on e-mobility

    Get PDF

    Diseño de una ciudad inteligente para redes vehiculares

    Get PDF
    English: road safety has become a main issue for governments and car manufacturers in the last twenty years. The development of new vehicular technologies has favored companies, researchers and institutions to focus their efforts on improving road safety. During the last decades, the evolution of wireless technologies has allowed researchers to design communication systems where vehicles participate in the communication networks. Thus, the concept of Intelligent Transportation Systems (ITS) appeared. This concept is used when talking about communication technologies between vehicles and infrastructure that improve transport safety, its management, environmental performance, etc. Due to the high economic cost of real-life tests and experimentation, the use of simulators becomes really useful when developing ITS. Nonetheless, simulators not always include all the capabilities needed to simulate these kinds of networks. Thus, in this project the NCTUns simulator is modified in order to add new capabilities that allow users simulate ITS. Furthermore, smart city scenarios are simulated in order to evaluate how the use of these networks allows real-time statistic collection and calculation, and how modifications made in NCTUns work.Castellano: la seguridad en la carretera se ha convertido en un problema principal para gobiernos y fabricantes de automóviles en los últimos años. El desarrollo de nuevas tecnologías vehiculares ha permitido a compañías, investigadores e instituciones a centrar sus esfuerzos para mejorar la seguridad vial. Durante las últimas décadas, la evolución de la tecnología de comunicación inalámbrica ha permitido a investigadores el diseño de sistemas de comunicación en los cuales los vehículos forman parte de la red de comunicación. De esta forma, se creó el concepto de Sistema de Transporte Inteligente (STI), concepto utilizado al hablar sobre las tecnologías de comunicación entre vehículos e infraestructura, que mejoran la seguridad vial en el transporte, su mejor gestión, eficiencia medioambiental, etc. Debido al alto coste económico de probar STI en situaciones reales, el uso de simuladores es realmente útil a la hora de desarrollar este tipo de sistemas. Así, en este proyecto el simulador NCTUns ha sido modificado con el objetivo de añadir nuevas posibilidades al simulador que ayuden a diseñar STI. Además, un escenario de una ciudad inteligente ha sido simulado con el objetivo de evaluar como el uso de estas redes permite la recolección y el cálculo de estadísticas en tiempo real, además de comprobar cómo funcionan los cambios realizados en el simulador.Català: la seguretat a la carretera ha esdevingut un problema principal pels governs i pels fabricants d'automòbils en els últims anys. El desenvolupament de noves tecnologies de vehicles ha afavorit a les empreses, els investigadors i les institucions que centrin els seus esforços a millorar la seguretat viària. Durant les últimes dècades, l'evolució de les tecnologies sense fils ha permès als investigadors a dissenyar sistemes de comunicació on els vehicles poden participar en les xarxes de comunicació. D'aquesta manera, es crea el concepte de Sistema de Transport Intel·ligent (STI), concepte utilitzat en parlar sobre les tecnologies de comunicació entre vehicles i infraestructura que milloren la seguretat vial en el transport, la seva millor gestió, l'eficiència mediambiental, etc. A causa de l'alt cost econòmic de provar STI en situacions reals, l'ús de simuladors és realment útil a l'hora de desenvolupar STI. Així, en aquest projecte el simulador NCTUns ha estat modificat amb l'objectiu d'afegir noves possibilitats al simulador que ajudin a dissenyar STI a futurs usuaris. A més, un escenari d'una ciutat intel·ligent ha estat simulat amb l'objectiu d'avaluar com l'ús de la xarxa permet la recol·lecció i el càlcul d'estadístiques en temps real, a més de comprovar com funcionen els canvis realitzats en el simulador

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate
    corecore