106,471 research outputs found

    The global integrated world ocean assessment: linking observations to science and policy across multiple scales

    Get PDF
    In 2004, the United Nations (UN) General Assembly approved a Regular Process to report on the environmental, economic and social aspects of the world's ocean. The Regular Process for Global Reporting and Assessment of the State of the Marine Environment, including Socioeconomic Aspects produced the first global integrated assessment of the marine environment in December 2016 (known as the first World Ocean Assessment). The second assessment, to be delivered in December 2020, will build on the baselines included in the first assessment, with a focus on establishing trends in the marine environment with relevance to global reporting needs such as those associated with the UN Sustainable Development Goals. Central to the assessment process and its outputs are two components. First, is the utilization of ocean observation and monitoring outputs and research to temporally assess physical, chemical, biological, social, economic and cultural components of coastal and marine environments to establish their current state, impacts currently affecting coastal and marine environments, responses to those impacts and associated ongoing trends. Second, is the knowledge brokering of ocean observations and associated research to provide key information that can be utilized and applied to address management and policy needs at local, regional and global scales. Through identifying both knowledge gaps and capacity needs, the assessment process also provides direction to policy makers for the future development and deployment of sustained observation systems that are required for enhancing knowledge and supporting national aspirations associated with the sustainable development of coastal and marine ecosystems. Input from the ocean observation community, managers and policy makers is critical for ensuring that the vital information required for supporting the science policy interface objectives of the Regular Process is included in the assessment. This community white paper discusses developments in linking ocean observations and science with policy achieved as part of the assessment process, and those required for providing strategic linkages into the future.AgĂŞncia financiadora - United Nations Division for Ocean Affairs and the Law of the Seainfo:eu-repo/semantics/publishedVersio

    MarinEye - A tool for marine monitoring

    Get PDF
    This work presents an autonomous system for marine integrated physical-chemical and biological monitoring – the MarinEye system. It comprises a set of sensors providing diverse and relevant information for oceanic environment characterization and marine biology studies. It is constituted by a physicalchemical water properties sensor suite, a water filtration and sampling system for DNA collection, a plankton imaging system and biomass assessment acoustic system. The MarinEye system has onboard computational and logging capabilities allowing it either for autonomous operation or for integration in other marine observing systems (such as Observatories or robotic vehicles. It was designed in order to collect integrated multi-trophic monitoring data. The validation in operational environment on 3 marine observatories: RAIA, BerlengasWatch and Cascais on the coast of Portugal is also discussed.info:eu-repo/semantics/publishedVersio

    European Arctic Initiatives Compendium

    Get PDF
    Julkaistu versi

    Feasibility study on manganese nodules recovery in the Clarion-Clipperton Zone

    No full text
    The sea occupies three quarters of the area on the earth and provides various kinds of resources to mankind in the form of minerals, food, medicines and even energy. “Seabed exploitation” specifically deals with recovery of the resources that are found on the seabed, in the form of solids, liquids and gasses (methane hydrates, oil and natural gas). The resources are abundant; nevertheless the recovery process from the seabed, poses various challenges to mankind. This study starts with a review on three types of resources: polymetallic manganese nodules, polymetallic manganese crusts and massive sulphides deposits. Each of them are rich in minerals, such as manganese, cobalt, nickel, copper and some rare earth elements. They are found at many locations in the deep seas and are potentially a big source of minerals. No commercial seabed mining activity has been accomplished to date due to the great complexities in recovery. This book describes the various challenges associated with a potential underwater mineral recovery operation, reviews and analyses the existing recovery techniques, and provides an innovative engineering system. It further identifies the associated risks and a suitable business model.Chapter 1 presents a brief background about the past and present industrial trends of seabed mining. A description of the sea, seabed and the three types of seabed mineral resources are also included. A section on motivations for deep sea mining follows which also compares the latter with terrestrial mining.Chapter 2 deals with the decision making process, including a market analysis, for selecting manganese nodules as the resource of interest. This is followed by a case study specific to the location of interest: West COMRA in the Clarion-Clipperton Zone. Specific site location is determined in order to estimate commercial risk, environmental impact assessment and logistic challenge.Chapter 3 lists the existing techniques for nodule recovery operation. The study identifies the main components of a nodules recovery system, and organizes them into: collector, propulsion and vertical transport systems.Chapter 4 discusses various challenges posed by manganese nodules recovery, in terms of the engineering and environment. The geo-political and legal-social issues have also been considered. This chapter plays an important role in defining the proposed engineering system, as addressing the identified challenges will better shape the proposed solution.Chapter 5 proposes an engineering system, by considering the key components in greater details. An innovative component, the black box is introduced, which is intended to be an environmentally-friendly solution for manganese nodules recovery. Other auxiliary components, such as the mother ship and metallurgical processing, are briefly included. A brief power supply analysis is also provided.Chapter 6 assesses the associated risks, which are divided into sections namely commercial viability, logistic challenges, environmental impact assessment and safety assessment. The feasibility of the proposed solution is also dealt with.Chapter 7 provides a business model for the proposed engineering system. Potential customers are identified, value proposition is determined, costumer relation is also suggested. Public awareness is then discussed and finally a SWOT analysis is presented. This business model serves as an important bridge to reach both industry and research institutes.Finally, Chapter 8 provides some conclusions and recommendation for future work

    Strengthening Governance of Small-Scale Fisheries: An Initial Assessment of the Theory and Practice

    Get PDF
    Preferred citation for this report: Basurto, X., Virdin, J., Smith, H. and R. Juskus. 2017. Strengthening Governance of Small-Scale Fisheries: An Initial Assessment of Theory and Practice. Oak Foundation.Often hidden in national statistics, small-scale fisheries have been poorly measured at a global level, and in thepast often ignored in states' policy-making. Yet estimates suggest their aggregate global contribution tonutrition, food security and poverty eradication is massive. The most recent estimates available suggest thatsmall-scale fisheries account for over 90 percent of the world's commercial fishers, processors and otherpersons employed along the value chain, equivalent to over 108 million people. Roughly half areemployed in the ocean and the other half in inland fisheries—making small-scale fisheries far and awaythe ocean's largest employer (greater than oil and gas, shipping, tourism, etc.). This level of activitytranslates into a large portion of the global fish catch: an estimated 46 percent of the total, and 38 percentof the fish caught in the ocean. SSFs are also estimated to provide over half the animal protein intake inmany of the world's least developed countries, and over half of the fish for domestic consumption indeveloping countries more broadly. In sum, in many regions of the world SSFs provide both incomes tohelp reduce poverty and safety nets to help prevent it

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    mFish Alpha Pilot: Building a Roadmap for Effective Mobile Technology to Sustain Fisheries and Improve Fisher Livelihoods.

    Get PDF
    In June 2014 at the Our Ocean Conference in Washington, DC, United States Secretary of State John Kerry announced the ambitious goal of ending overfishing by 2020. To support that goal, the Secretary's Office of Global Partnerships launched mFish, a public-private partnership to harness the power of mobile technology to improve fisher livelihoods and increase the sustainability of fisheries around the world. The US Department of State provided a grant to 50in10 to create a pilot of mFish that would allow for the identification of behaviors and incentives that might drive more fishers to adopt novel technology. In May 2015 50in10 and Future of Fish designed a pilot to evaluate how to improve adoption of a new mobile technology platform aimed at improving fisheries data capture and fisher livelihoods. Full report
    • …
    corecore