239 research outputs found

    Automated analysis of feature models: Quo vadis?

    Get PDF
    Feature models have been used since the 90's to describe software product lines as a way of reusing common parts in a family of software systems. In 2010, a systematic literature review was published summarizing the advances and settling the basis of the area of Automated Analysis of Feature Models (AAFM). From then on, different studies have applied the AAFM in different domains. In this paper, we provide an overview of the evolution of this field since 2010 by performing a systematic mapping study considering 423 primary sources. We found six different variability facets where the AAFM is being applied that define the tendencies: product configuration and derivation; testing and evolution; reverse engineering; multi-model variability-analysis; variability modelling and variability-intensive systems. We also confirmed that there is a lack of industrial evidence in most of the cases. Finally, we present where and when the papers have been published and who are the authors and institutions that are contributing to the field. We observed that the maturity is proven by the increment in the number of journals published along the years as well as the diversity of conferences and workshops where papers are published. We also suggest some synergies with other areas such as cloud or mobile computing among others that can motivate further research in the future.Ministerio de Economía y Competitividad TIN2015-70560-RJunta de Andalucía TIC-186

    Clafer: Lightweight Modeling of Structure, Behaviour, and Variability

    Get PDF
    Embedded software is growing fast in size and complexity, leading to intimate mixture of complex architectures and complex control. Consequently, software specification requires modeling both structures and behaviour of systems. Unfortunately, existing languages do not integrate these aspects well, usually prioritizing one of them. It is common to develop a separate language for each of these facets. In this paper, we contribute Clafer: a small language that attempts to tackle this challenge. It combines rich structural modeling with state of the art behavioural formalisms. We are not aware of any other modeling language that seamlessly combines these facets common to system and software modeling. We show how Clafer, in a single unified syntax and semantics, allows capturing feature models (variability), component models, discrete control models (automata) and variability encompassing all these aspects. The language is built on top of first order logic with quantifiers over basic entities (for modeling structures) combined with linear temporal logic (for modeling behaviour). On top of this semantic foundation we build a simple but expressive syntax, enriched with carefully selected syntactic expansions that cover hierarchical modeling, associations, automata, scenarios, and Dwyer's property patterns. We evaluate Clafer using a power window case study, and comparing it against other notations that substantially overlap with its scope (SysML, AADL, Temporal OCL and Live Sequence Charts), discussing benefits and perils of using a single notation for the purpose

    The evolution of model editors: browser- and cloud-based solutions

    Full text link

    A design method for modular energy-aware software

    Get PDF
    Nowadays achieving green software by reducing the overall energy consumption of the software is becoming more and more important. A well-known solution is to make the software energy-aware by extending its functionality with energy optimizers, which monitor the energy consumption of software and adapt it accordingly. Modular design of energy-aware software is necessary to make the extensions manageable and to cope with the complexity of the software. To this aim, we require suitable methods that guide designers through the necessary design activities and the models that must be prepared during each activity. Despite its importance, such a method is not investigated in the literature. This paper proposes a dedicated design method for energy-aware software, discusses a concrete realization of this method, and—by means of a concrete example—illustrates the suitability of this method in achieving modularity

    Service-Oriented Design: The jABC Approach

    Get PDF
    Reviewing our 10 years of experience in service engineering for telecommunication systems from the point of view of Service-Oriented Design then and now, we observe that much is common to the two communities. We aim in our current research at establishing a link to the notions used by the service-oriented programming (SO) community. We are convinced that combined approaches, that blend the flexibility of the current SO-scenario with the rigour and semantic standardization culture of the telecommunication community will dramatically increase the productivity of the development of a large class of software systems. Incremental formalization and automatic verification techniques may be again the key to achieving confidence and reliability for services that interact and interoperate on a large distributed scale

    Development of service-oriented architectures using model-driven development : a mapping study

    Get PDF
    Context: Model-Driven Development (MDD) and Service-Oriented Architecture (SOA) are two challenging research areas in software engineering. MDD is about improving software development whilst SOA is a service-based conceptual development style, therefore investigating the available proposals in the literature to use MDD when developing SOA may be insightful. However, no studies have been found with this purpose. Objective: This work aims at assessing the state of the art in MDD for SOA systems. It mainly focuses on: what are the characteristics of MDD approaches that support SOA; what types of SOA are supported; how do they handle non-functional requirements. Method: We conducted a mapping study following a rigorous protocol. We identified the representative set of venues that should be included in the study. We applied a search string over the set of selected venues. As result, 129 papers were selected and analysed (both frequency analysis and correlation analysis) with respect to the defined classification criteria derived from the research questions. Threats to validity were identified and mitigated whenever possible. Results: The analysis allows us to answer the research questions. We highlight: (1) predominance of papers from Europe and written by researchers only; (2) predominance of top-down transformation in software development activities; (3) inexistence of consolidated methods; (4) significant percentage of works without tool support; (5) SOA systems and service compositions more targeted than single services and SOA enterprise systems; (6) limited use of metamodels; (7) very limited use of NFRs; and (8) limited application in real cases. Conclusion: This mapping study does not just provide the state of the art in the topic, but also identifies several issues that deserve investigation in the future, for instance the need of methods for activities other than software development (e.g., migration) or the need of conducting more real case studies.Peer ReviewedPostprint (author's final draft

    Generic Model Refactorings

    Get PDF
    Many modeling languages share some common concepts and principles. For example, Java, MOF, and UML share some aspects of the concepts\ud of classes, methods, attributes, and inheritance. However, model\ud transformations such as refactorings specified for a given language\ud cannot be readily reused for another language because their related\ud metamodels may be structurally different. Our aim is to enable a\ud flexible reuse of model transformations across various metamodels.\ud Thus, in this paper, we present an approach allowing the specification\ud of generic model transformations, in particular refactorings, so\ud that they can be applied to different metamodels. Our approach relies\ud on two mechanisms: (1) an adaptation based mainly on the weaving\ud of aspects; (2) the notion of model typing, an extension of object\ud typing in the model-oriented context. We validated our approach by\ud performing some experiments that consisted of specifying three well\ud known refactorings (Encapsulate Field, Move Method, and Pull Up Method)\ud and applying each of them onto three different metamodels (Java,\ud MOF, and UML)
    corecore