8 research outputs found

    Graph Optimization Approach to Range-based Localization

    Full text link
    In this paper, we propose a general graph optimization based framework for localization, which can accommodate different types of measurements with varying measurement time intervals. Special emphasis will be on range-based localization. Range and trajectory smoothness constraints are constructed in a position graph, then the robot trajectory over a sliding window is estimated by a graph based optimization algorithm. Moreover, convergence analysis of the algorithm is provided, and the effects of the number of iterations and window size in the optimization on the localization accuracy are analyzed. Extensive experiments on quadcopter under a variety of scenarios verify the effectiveness of the proposed algorithm and demonstrate a much higher localization accuracy than the existing range-based localization methods, especially in the altitude direction

    Mobile device-based Bluetooth Low Energy Database for range estimation in indoor environments

    Get PDF
    The demand to enhance distance estimation and location accuracy in a variety of Non-Line-of-Sight (NLOS) indoor environments has boosted investigation into infrastructure-less ranging and collaborative positioning approaches. Unfortunately, capturing the required measurements to support such systems is tedious and time-consuming, as it requires simultaneous measurements using multiple mobile devices, and no such database are available in literature. This article presents a Bluetooth Low Energy (BLE) database, including Received-Signal-Strength (RSS) and Ground-Truth (GT) positions, for indoor positioning and ranging applications, using mobile devices as transmitters and receivers. The database is composed of three subsets: one devoted to the calibration in an indoor scenario; one for ranging and collaborative positioning under Non-Line-of-Sight conditions; and one for ranging and collaborative positioning in real office conditions. As a validation of the dataset, a baseline analysis for data visualization, data filtering and collaborative distance estimation applying a path-loss based on the Levenberg-Marquardt Least Squares Trilateration method are included

    Distributed and adaptive location identification system for mobile devices

    Full text link
    Indoor location identification and navigation need to be as simple, seamless, and ubiquitous as its outdoor GPS-based counterpart is. It would be of great convenience to the mobile user to be able to continue navigating seamlessly as he or she moves from a GPS-clear outdoor environment into an indoor environment or a GPS-obstructed outdoor environment such as a tunnel or forest. Existing infrastructure-based indoor localization systems lack such capability, on top of potentially facing several critical technical challenges such as increased cost of installation, centralization, lack of reliability, poor localization accuracy, poor adaptation to the dynamics of the surrounding environment, latency, system-level and computational complexities, repetitive labor-intensive parameter tuning, and user privacy. To this end, this paper presents a novel mechanism with the potential to overcome most (if not all) of the abovementioned challenges. The proposed mechanism is simple, distributed, adaptive, collaborative, and cost-effective. Based on the proposed algorithm, a mobile blind device can potentially utilize, as GPS-like reference nodes, either in-range location-aware compatible mobile devices or preinstalled low-cost infrastructure-less location-aware beacon nodes. The proposed approach is model-based and calibration-free that uses the received signal strength to periodically and collaboratively measure and update the radio frequency characteristics of the operating environment to estimate the distances to the reference nodes. Trilateration is then used by the blind device to identify its own location, similar to that used in the GPS-based system. Simulation and empirical testing ascertained that the proposed approach can potentially be the core of future indoor and GPS-obstructed environments

    A Review of pedestrian indoor positioning systems for mass market applications

    Get PDF
    In the last decade, the interest in Indoor Location Based Services (ILBS) has increased stimulating the development of Indoor Positioning Systems (IPS). In particular, ILBS look for positioning systems that can be applied anywhere in the world for millions of users, that is, there is a need for developing IPS for mass market applications. Those systems must provide accurate position estimations with minimum infrastructure cost and easy scalability to different environments. This survey overviews the current state of the art of IPSs and classifies them in terms of the infrastructure and methodology employed. Finally, each group is reviewed analysing its advantages and disadvantages and its applicability to mass market applications
    corecore