423 research outputs found

    Off-line evaluation of indoor positioning systems in different scenarios: the experiences from IPIN 2020 competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001

    Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements

    Entwicklung und Implementierung eines Peer-to-Peer Kalman Filters für Fußgänger- und Indoor-Navigation

    Get PDF
    Smartphones are an integral part of our society by now. They are used for messaging, searching the Internet, working on documents, and of course for navigation. Although smartphones are also used for car navigation their main area of application is pedestrian navigation. Almost all smartphones sold today comprise a GPS L1 receiver which provides position computation with accuracy between 1 and 10 m as long as the environment in beneficial, i.e. the line-of-sight to satellites is not obstructed by trees or high buildings. But this is often the case in areas where smartphones are used primarily for navigation. Users walk in narrow streets with high density, in city centers, enter, and leave buildings and the smartphone is not able to follow their movement because it loses satellite signals. The approach presented in this thesis addresses the problem to enable seamless navigation for the user independently of the current environment and based on cooperative positioning and inertial navigation. It is intended to realize location-based services in areas and buildings with limited or no access to satellite data and a large amount of users like e.g. shopping malls, city centers, airports, railway stations and similar environments. The idea of this concept was for a start based on cooperative positioning between users’ devices denoted here as peers moving within an area with only limited access to satellite signals at certain places (windows, doors) or no access at all. The devices are therefore not able to provide a position by means of satellite signals. Instead of deploying solutions based on infrastructure, surveying, and centralized computations like range measurements, individual signal strength, and similar approaches a decentralized concept was developed. This concept suggests that the smartphone automatically detects if no satellite signals are available and uses its already integrated inertial sensors like magnetic field sensor, accelerometer, and gyroscope for seamless navigation. Since the quality of those sensors is very low the accuracy of the position estimation decreases with each step of the user. To avoid a continuously growing bias between real position and estimated position an update has to be performed to stabilize the position estimate. This update is either provided by the computation of a position based on satellite signals or if signals are not available by the exchange of position data with another peer in the near vicinity using peer-to-peer ad-hoc networks. The received and the own position are processed in a Kalman Filter algorithm and the result is then used as new position estimate and new start position for further navigation based on inertial sensors. The here presented concept is therefore denoted as Peer-to-Peer Kalman Filter (P2PKF)

    Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001.Peer reviewe

    Heading drift mitigation for low-cost inertial pedestrian navigation

    Get PDF
    The concept of autonomous pedestrian navigation is often adopted for indoor pedestrian navigation. For outdoors, a Global Positioning System (GPS) is often used for navigation by utilizing GPS signals for position computation but indoors, its signals are often unavailable. Therefore, autonomous pedestrian navigation for indoors can be realized with the use of independent sensors, such as low-cost inertial sensors, and these sensors are often known as Inertial Measurement Unit (IMU) where they do not rely on the reception of external information such as GPS signals. Using these sensors, a relative positioning concept from initialized position and attitude is used for navigation. The sensors sense the change in velocity and after integration, it is added to the previous position to obtain the current position. Such low-cost systems, however, are prone to errors that can result in a large position drift. This problem can be minimized by mounting the sensors on the pedestrian’s foot. During walking, the foot is briefly stationary while it is on the ground, sometimes called the zero-velocity period. If a non-zero velocity is then measured by the inertial sensors during this period, it is considered as an error and thus can be corrected. These repeated corrections to the inertial sensor’s velocity measurements can, therefore, be used to control the error growth and minimize the position drift. Nonetheless, it is still inadequate, mainly due to the remaining errors on the inertial sensor’s heading when the velocity corrections are used alone. Apart from the initialization issue, therefore, the heading drift problem still remains in such low-cost systems. In this research, two novel methods are developed and investigated to mitigate the heading drift problem when used with the velocity updates. The first method is termed Cardinal Heading Aided Inertial Navigation (CHAIN), where an algorithm is developed to use building ‘heading’ to aid the heading measurement in the Kalman Filter. The second method is termed the Rotated IMU (RIMU), where the foot-mounted inertial sensor is rotated about a single axis to increase the observability of the sensor’s heading. For the CHAIN, the method proposed has been investigated with real field trials using the low-cost Microstrain 3DM-GX3-25 inertial sensor. It shows a clear improvement in mitigating the heading drift error. It offers significant improvement in navigation accuracy for a long period, allowing autonomous pedestrian navigation for as long as 40 minutes with below 5 meters position error between start and end position. It does not require any extra heading sensors, such as a magnetometer or visual sensors such as a camera nor an extensive position or map database, and thus offers a cost-effective solution. Furthermore, its simplicity makes it feasible for it to be implemented in real-time, as very little computing capability is needed. For the RIMU, the method was tested with Nottingham Geospatial Institute (NGI) inertial data simulation software. Field trials were also undertaken using the same low-cost inertial sensor, mounted on a rotated platform prototype. This method improves the observability of the inertial sensor’s errors, resulting also in a decrease in the heading drift error at the expense of requiring extra components

    MEMS Accelerometers

    Get PDF
    Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc

    Pushing the limits of inertial motion sensing

    Get PDF

    Heading drift mitigation for low-cost inertial pedestrian navigation

    Get PDF
    The concept of autonomous pedestrian navigation is often adopted for indoor pedestrian navigation. For outdoors, a Global Positioning System (GPS) is often used for navigation by utilizing GPS signals for position computation but indoors, its signals are often unavailable. Therefore, autonomous pedestrian navigation for indoors can be realized with the use of independent sensors, such as low-cost inertial sensors, and these sensors are often known as Inertial Measurement Unit (IMU) where they do not rely on the reception of external information such as GPS signals. Using these sensors, a relative positioning concept from initialized position and attitude is used for navigation. The sensors sense the change in velocity and after integration, it is added to the previous position to obtain the current position. Such low-cost systems, however, are prone to errors that can result in a large position drift. This problem can be minimized by mounting the sensors on the pedestrian’s foot. During walking, the foot is briefly stationary while it is on the ground, sometimes called the zero-velocity period. If a non-zero velocity is then measured by the inertial sensors during this period, it is considered as an error and thus can be corrected. These repeated corrections to the inertial sensor’s velocity measurements can, therefore, be used to control the error growth and minimize the position drift. Nonetheless, it is still inadequate, mainly due to the remaining errors on the inertial sensor’s heading when the velocity corrections are used alone. Apart from the initialization issue, therefore, the heading drift problem still remains in such low-cost systems. In this research, two novel methods are developed and investigated to mitigate the heading drift problem when used with the velocity updates. The first method is termed Cardinal Heading Aided Inertial Navigation (CHAIN), where an algorithm is developed to use building ‘heading’ to aid the heading measurement in the Kalman Filter. The second method is termed the Rotated IMU (RIMU), where the foot-mounted inertial sensor is rotated about a single axis to increase the observability of the sensor’s heading. For the CHAIN, the method proposed has been investigated with real field trials using the low-cost Microstrain 3DM-GX3-25 inertial sensor. It shows a clear improvement in mitigating the heading drift error. It offers significant improvement in navigation accuracy for a long period, allowing autonomous pedestrian navigation for as long as 40 minutes with below 5 meters position error between start and end position. It does not require any extra heading sensors, such as a magnetometer or visual sensors such as a camera nor an extensive position or map database, and thus offers a cost-effective solution. Furthermore, its simplicity makes it feasible for it to be implemented in real-time, as very little computing capability is needed. For the RIMU, the method was tested with Nottingham Geospatial Institute (NGI) inertial data simulation software. Field trials were also undertaken using the same low-cost inertial sensor, mounted on a rotated platform prototype. This method improves the observability of the inertial sensor’s errors, resulting also in a decrease in the heading drift error at the expense of requiring extra components
    corecore