19 research outputs found

    REDUCTION OF THE BERGE-FULKERSON CONJECTURE TO CYCLICALLY 5-EDGE-CONNECTED SNARKS

    Get PDF
    The Berge-Fulkerson conjecture, originally formulated in the language of mathematical programming, asserts that the edges of every bridgeless cubic (3-valent) graph can be covered with six perfect matchings in such a way that every edge is in exactly two of them. As with several other classical conjectures in graph theory, every counterexample to the Berge-Fulkerson conjecture must be a non-3-edge-colorable cubic graph. In contrast to Tutte's 5-flow conjecture and the cycle double conjecture, no nontrivial reduction is known for the Berge-Fulkerson conjecture. In the present paper, we prove that a possible minimum counterexample to the conjecture must be cyclically 5-edge-connected

    Flows on the join of two graphs

    Get PDF
    summary:The join of two graphs GG and HH is a graph formed from disjoint copies of GG and HH by connecting each vertex of GG to each vertex of HH. We determine the flow number of the resulting graph. More precisely, we prove that the join of two graphs admits a nowhere-zero 33-flow except for a few classes of graphs: a single vertex joined with a graph containing an isolated vertex or an odd circuit tree component, a single edge joined with a graph containing only isolated edges, a single edge plus an isolated vertex joined with a graph containing only isolated vertices, and two isolated vertices joined with exactly one isolated vertex plus some number of isolated edges

    Nowhere-Zero 5-Flows On Cubic Graphs with Oddness 4

    Get PDF
    Tutte’s 5-flow conjecture from 1954 states that every bridge- less graph has a nowhere-zero 5-flow. It suffices to prove the conjecture for cyclically 6-edge-connected cubic graphs. We prove that every cyclically 6-edge-connected cubic graph with oddness at most 4 has a nowhere-zero 5-flow. This implies that every minimum counterexample to the 5-flow conjecture has oddness at least 6

    Desenvolvimentos da Conjetura de Fulkerson

    Get PDF
    Orientador: Christiane Neme CamposDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Em 1971, Fulkerson propôs a seguinte conjetura: todo grafo cúbico sem arestas de corte admite seis emparelhamentos perfeitos tais que cada aresta do grafo pertence a exatamente dois destes emparelhamentos. A Conjetura de Fulkerson tem desafiado pesquisadores desde sua publicação. Esta conjetura é facilmente verificada para grafos cúbicos 3-aresta-coloráveis. Portanto, a dificuldade do problema reside em estabelecer a conjetura para grafos cúbicos sem arestas de corte que não possuem 3-coloração de arestas. Estes grafos são chamados snarks. Nesta dissertação, a Conjetura de Fulkerson e os snarks são introduzidos com ¿ênfase em sua história e resultados mais relevantes. Alguns resultados relacionados à Conjetura de Fulkerson são apresentados, enfatizando suas conexões com outras conjeturas. Um breve histórico do Problema das Quatro Cores e suas relações com snarks também são apresentados. Na segunda parte deste trabalho, a Conjetura de Fulkerson é verificada para algumas famílias infinitas de snarks construídas com o método de Loupekine, utilizando subgrafos do Grafo de Petersen. Primeiramente, mostramos que a família dos LP0-snarks satisfaz a Conjetura de Fulkerson. Em seguida, generalizamos este resultado para a família mais abrangente dos LP1-snarks. Além disto, estendemos estes resultados para Snarks de Loupekine construídos com subgrafos de snarks diferentes do Grafo de PetersenAbstract: In 1971, Fulkerson proposed a conjecture that states that every bridgeless cubic graph has six perfect matchings such that each edge of the graph belongs to precisely two of these matchings. Fulkerson's Conjecture has been challenging researchers since its publication. It is easily verified for 3-edge-colourable cubic graphs. Therefore, the difficult task is to settle the conjecture for non-3-edge-colourable bridgeless cubic graphs, called snarks. In this dissertation, Fulkerson's Conjecture and snarks are presented with emphasis in their history and remarkable results. We selected some results related to Fulkerson's Conjecture, emphasizing their reach and connections with other conjectures. It is also presented a brief history of the Four-Colour Problem and its connections with snarks. In the second part of this work, we verify Fulkerson's Conjecture for some infinite families of snarks constructed with Loupekine's method using subgraphs of the Petersen Graph. More specifically, we first show that the family of LP0-snarks satisfies Fulkerson's Conjecture. Then, we generalise this result by proving that Fulkerson's Conjecture holds for the broader family of LP1-snarks. We also extend these results to even more general Loupekine Snarks constructed with subgraphs of snarks other than the Petersen GraphMestradoCiência da ComputaçãoMestre em Ciência da Computaçã

    On Binary And Regular Matroids Without Small Minors

    Get PDF
    The results of this dissertation consist of excluded-minor results for Binary Matroids and excluded-minor results for Regular Matroids. Structural theorems on the relationship between minors and k-sums of matroids are developed here in order to provide some of these characterizations. Chapter 2 of the dissertation contains excluded-minor results for Binary Matroids. The first main result of this dissertation is a characterization of the internally 4-connected binary matroids with no minor that is isomorphic to the cycle matroid of the prism+e graph. This characterization generalizes results of Mayhew and Royle [18] for binary matroids and results of Dirac [8] and Lovász [15] for graphs. The results of this chapter are then extended from the class of internally 4-connected matroids to the class of 3-connected matroids. Chapter 3 of the dissertation contains the second main result, a decomposition theorem for regular matroids without certain minors. This decomposition theorem is used to obtain excluded-minor results for Regular Matroids. Wagner, Lovász, Oxley, Ding, Liu, and others have characterized many classes of graphs that are H-free for graphs H with at most twelve edges (see [7]). We extend several of these excluded-minor characterizations to regular matroids in Chapter 3. We also provide characterizations of regular matroids excluding several graphic matroids such as the octahedron, cube, and the Möbius Ladder on eight vertices. Both theoretical and computer-aided proofs of the results of Chapters 2 and 3 are provided in this dissertation

    Ahlfors circle maps and total reality: from Riemann to Rohlin

    Full text link
    This is a prejudiced survey on the Ahlfors (extremal) function and the weaker {\it circle maps} (Garabedian-Schiffer's translation of "Kreisabbildung"), i.e. those (branched) maps effecting the conformal representation upon the disc of a {\it compact bordered Riemann surface}. The theory in question has some well-known intersection with real algebraic geometry, especially Klein's ortho-symmetric curves via the paradigm of {\it total reality}. This leads to a gallery of pictures quite pleasant to visit of which we have attempted to trace the simplest representatives. This drifted us toward some electrodynamic motions along real circuits of dividing curves perhaps reminiscent of Kepler's planetary motions along ellipses. The ultimate origin of circle maps is of course to be traced back to Riemann's Thesis 1851 as well as his 1857 Nachlass. Apart from an abrupt claim by Teichm\"uller 1941 that everything is to be found in Klein (what we failed to assess on printed evidence), the pivotal contribution belongs to Ahlfors 1950 supplying an existence-proof of circle maps, as well as an analysis of an allied function-theoretic extremal problem. Works by Yamada 1978--2001, Gouma 1998 and Coppens 2011 suggest sharper degree controls than available in Ahlfors' era. Accordingly, our partisan belief is that much remains to be clarified regarding the foundation and optimal control of Ahlfors circle maps. The game of sharp estimation may look narrow-minded "Absch\"atzungsmathematik" alike, yet the philosophical outcome is as usual to contemplate how conformal and algebraic geometry are fighting together for the soul of Riemann surfaces. A second part explores the connection with Hilbert's 16th as envisioned by Rohlin 1978.Comment: 675 pages, 199 figures; extended version of the former text (v.1) by including now Rohlin's theory (v.2

    A Study of Prospective Secondary Mathematics Teachers’ Evolving Understanding of Reasoning-and-Proving

    Get PDF
    Proof is a foundational mathematical activity that has been underrepresented in school mathematics. The recently adopted Common Core State Standards in Mathematics includes eight process standards, several of which promote the inclusion of reasoning and proof across all grades, courses, and students. If students are to reach the expectations recommended by mathematics researchers and explicitly identified in the Common Core State Standards, then students will need opportunities to construct and validate proof arguments. However, secondary students find it challenging to validate arguments and produce proofs and do not know what a mathematical proof is. Furthermore, those preparing to be secondary mathematics teachers in undergraduate mathematics courses are unable to construct proofs on a consistent basis, and practicing secondary teachers possess a limited conception of proof. A six-week graduate-level course was taught with the purpose of increasing practicing mathematics teachers’ knowledge, expanding their conceptions of reasoning and proof, and preparing them to create similar experiences for their students. Research was conducted on the course to study the participants’ evolving understanding of reasoning-and-proving. The results suggest that: 1) the course was successful at expanding the participants conception of proof; 2) the prospective teachers encountered five challenges when asked to write proofs that are at the secondary mathematics level; 3) specific types of arguments were challenging for participants to classify as proofs or non-proofs; and 4) even though the participants were skillful in selecting high-level tasks that they could modify to include reasoning-and-proving opportunities, more work is needed to integrate such task across any secondary curricula

    Discrete Geometry and Convexity in Honour of Imre Bárány

    Get PDF
    This special volume is contributed by the speakers of the Discrete Geometry and Convexity conference, held in Budapest, June 19–23, 2017. The aim of the conference is to celebrate the 70th birthday and the scientific achievements of professor Imre Bárány, a pioneering researcher of discrete and convex geometry, topological methods, and combinatorics. The extended abstracts presented here are written by prominent mathematicians whose work has special connections to that of professor Bárány. Topics that are covered include: discrete and combinatorial geometry, convex geometry and general convexity, topological and combinatorial methods. The research papers are presented here in two sections. After this preface and a short overview of Imre Bárány’s works, the main part consists of 20 short but very high level surveys and/or original results (at least an extended abstract of them) by the invited speakers. Then in the second part there are 13 short summaries of further contributed talks. We would like to dedicate this volume to Imre, our great teacher, inspiring colleague, and warm-hearted friend

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum
    corecore