Nowhere-zero 5-flows on cubic graphs with oddness 4

Giuseppe Mazzuoccolo, Eckhard Steffen ${ }^{\dagger}$

Abstract

Tutte's 5-Flow Conjecture from 1954 states that every bridgeless graph has a nowhere-zero 5 -flow. It sufficies to prove the conjecture for cyclically 6 -edge-connected cubic graphs. We prove that every cyclically 6 -edge-connected cubic graph with oddness at most 4 has a nowhere-zero 5 -flow. This implies that every minimum counterexample to the 5 -flow conjecture has oddness at least 6 .

1 Introduction

An integer nowhere-zero k-flow on a graph G is an assignment of a direction and a value of $\{1, \ldots,(k-1)\}$ to each edge of G such that the Kirchhoff's law is satisfied at every vertex of G. This is the most restrictive definition of a nowhere-zero k-flow. But it is equivalent to more flexible definitions, see e.g. [11]. One of the most famous conjectures in graph theory is Tutte's 5 -flow conjecture which is open for more than 60 years now.

Conjecture 1.1 ([13]) Every bridgeless graph has a nowhere-zero 5-flow.
Seymour [10] proved that every bridgeless graph has a nowhere-zero 6flow. So far this is the best approximation to the 5 -flow conjecture, which is equivalent to its restriction to cubic graphs.

[^0]Petersen [9] proved in 1891 that every bridgeless cubic graph has a 1factor, i.e. a spanning 1-regular subgraph. Therefore, such graphs have a 2 -factor as well. The oddness of a bridgeless cubic graph G is the minimum number of odd components of a 2 -factor G, and it is denoted by $\omega(G)$. The following three statements are equivalent: (i) $\omega(G)=0$; (ii) G is 3-edgecolorable; (iii) G has a nowhere-zero 4-flow. Bridgeless cubic graphs which are not 3-edge colorable are also called snarks. Hence, a possible counterexample to the 5 -flow-conjecture is a snark.

The oddness is a classical parameter to measure how far a cubic bridgeless graph is from being 3 -edge-colorable. Some of the main conjectures in graph theory are verified for oddness 2 and 4: for instance, the Cycle Double Cover Conjecture holds true for snarks of oddness 4 (see [5]) and the Fan-Raspaud Conjecture has been recently verified for snarks of oddness 2 (see [8]). Here, we produce an analogous result for the 5 -flow conjecture.

It is easy to see that snarks with oddness 2 have a nowhere-zero 5 -flow. In [12] it is shown that if the cyclic connectivity of a cubic graph G is at least $\frac{5}{2} \omega(G)-3$, then G has a nowhere-zero 5 -flow. This result implies that cyclically 7 -edge-connected cubic graphs with oddness at most 4 have a nowhere-zero 5 -flow. However, currently no cyclically 7 -edge-connected snark is known. It is even conjectured by Jaeger and Swart [4] that such snarks do not exist. However, there are infinitely many cyclically 6-edge-connected snarks, and by a result of Kochol [6], it suffices to prove the 5 -flow conjecture for cyclically 6 -edge-connected snarks.

The following is the main theorem of the paper.
Theorem 1.2 Let G be a cyclically 6 -edge-connected cubic graph. If $\omega(G) \leq$ 4, then G has a nowhere-zero 5-flow.

We summarize some structural properties of a possible minimum counterexample to the 5 -flow conjecture.

Corollary 1.3 If G is a possible minimum counterexample to the 5-flow conjecture, then

- G is a cubic graph [10].
- G is cyclically 6 -edge connected [6].
- the cyclic connectivity of G is at most $\frac{5}{2} \omega(G)-4$ [12].
- G has girth at least 11 [7].
- G has oddness at least 6 .

So far, no cubic graph is known that satisfies all items of Corollary 1.3.

2 Balanced valuations and flow partitions

In this section, we recall the concept of flow partitions, which was introduced by the second author in [12].

Let G be a graph and $S \subseteq V(G)$. The set of edges with precisely one end in S is denoted by $\partial_{G}(S)$.

An orientation D of G is an assignment of a direction to each edge. For $S \subseteq V(G), D^{-}(S)\left(D^{+}(S)\right)$ is the set of edges of $\partial_{G}(S)$ whose head (tail) is incident to a vertex of S. The oriented graph is denoted by $D(G)$, $d_{D(G)}^{-}(v)=\left|D^{-}(\{v\})\right|$ and $d_{D(G)}^{+}(v)=\left|D^{+}(\{v\})\right|$ denote the indegree and outdegree of vertex v in $D(G)$, respectively. The degree of a vertex v in the undirected graph G is $d_{D(G)}^{+}(v)+d_{D(G)}^{-}(v)$, and it is denoted by $d_{G}(v)$.

Let k be a positive integer, and φ a function from the edge set of the directed graph $D(G)$ into the set $\{0,1, \ldots, k-1\}$. For $S \subseteq V(G)$ let $\delta \varphi(S)=$ $\sum_{e \in D^{+}(S)} \varphi(e)-\sum_{e \in D^{-}(S)} \varphi(e)$. The function φ is a k-flow on G if $\delta \varphi(S)=0$ for every $S \subseteq V(G)$. The support of φ is the set $\{e \in E(G): \varphi(e) \neq 0\}$, and it is denoted by $\operatorname{supp}(\varphi)$. A k-flow φ is a nowhere-zero k-flow if $\operatorname{supp}(\varphi)=$ $E(G)$.

We will use balanced valuations of graphs, which were introduced by Bondy [1] and Jaeger [2]. A balanced valuation of a graph G is a function f from the vertex set $V(G)$ into the real numbers, such that $\left|\sum_{v \in X} f(v)\right| \leq$ $\left|\partial_{G}(X)\right|$ for all $X \subseteq V(G)$. Jaeger proved the following fundamental theorem.

Theorem 2.1 ([2]) Let G be a graph with orientation D and $k \geq 3$. Then G has a nowhere-zero k-flow if and only if $f(v)=\frac{k}{k-2}\left(2 d_{D(G)}^{+}(v)-d_{G}(v)\right)$, for all $v \in V(G)$, is a balanced valuation of G.

In particular, Theorem 2.1 says that a cubic graph G has a nowhere-zero 5 -flow if and only if there is a balanced valuation of G with values in $\left\{ \pm \frac{5}{3}\right\}$.

Let G be a bridgeless cubic graph, and \mathcal{F}_{2} be a 2 -factor of G with odd circuits $C_{1}, \ldots, C_{2 t}$, and even circuits $C_{2 t+1}, \ldots, C_{2 t+l}(t \geq 0, l \geq 0)$, and let \mathcal{F}_{1} be the complementary 1-factor.

A canonical 4-edge-coloring, denoted by c, of G with respect to \mathcal{F}_{2} colors the edges of \mathcal{F}_{1} with color 1 , the edges of the even circuits of \mathcal{F}_{2} with 2 and 3 , alternately, and the edges of the odd circuits of \mathcal{F}_{2} with colors 2 and 3 alternately, but one edge which is colored 0 . Then, there are precisely $2 t$ vertices $z_{1}, \ldots, z_{2 t}$ where color 2 is missing (that is, no edge which is incident to z_{i} has color 2).

The subgraph which is induced by the edges of colors 1 and 2 is union of even circuits and t paths P_{i} of odd length and with $z_{1}, \ldots, z_{2 t}$ as ends. Without loss of generality we can assume that P_{i} has ends $z_{2 i-1}$ and $z_{2 i}$, for $i \in\{1, \ldots, t\}$.

Let M_{G} be the graph obtained from G by adding two edges f_{i} and f_{i}^{\prime} between $z_{2 i-1}$ and $z_{2 i}$ for $i \in\{1, \ldots, t\}$. Extend the previous edge-coloring to a proper edge-coloring of M_{G} by coloring f_{i}^{\prime} with color 2 and f_{i} with color 4. Let $C_{1}^{\prime}, \ldots, C_{s}^{\prime}$ be the cycles of the 2 -factor of M_{G} induced by the edges of colors 1 and $2(s \geq t)$. In particular, C_{i}^{\prime} is the even circuit obtained by adding the edge f_{i}^{\prime} to the path P_{i}, for $i \in\{1, \ldots, t\}$. Finally, for $i \in\{1, \ldots, t\}$ let $C_{i}^{\prime \prime}$ be the 2 -circuit induced by the edges f_{i} and f_{i}^{\prime}. We construct a nowhere-zero 4-flow on M_{G} as follows:

- for $i \in\{1, \ldots, 2 t+l\}$ let $\left(D_{i}, \varphi_{i}\right)$ be a nowhere-zero flow on the directed circuit C_{i} with $\varphi_{i}(e)=2$ for all $e \in E\left(C_{i}\right)$;
- for $i \in\{1 \ldots, s\}$ let $\left(D_{i}^{\prime}, \varphi_{i}^{\prime}\right)$ be a nowhere-zero flow on the directed circuit C_{i}^{\prime} with $\varphi_{i}^{\prime}(e)=1$ for all $e \in E\left(C_{i}^{\prime}\right)$;
- for $i \in\{1, \ldots, t\}$ let $\left(D_{i}^{\prime \prime}, \varphi_{i}^{\prime \prime}\right)$ be a nowhere-zero flow on the directed circuit $C_{i}^{\prime \prime}$ (choose $D_{i}^{\prime \prime}$ such that f_{i}^{\prime} receives the same direction as in D_{i}^{\prime}) with $\varphi_{i}^{\prime \prime}(e)=1$ for all $e \in\left\{f_{i}, f_{i}^{\prime}\right\}$.

Then,

$$
(D, \varphi)=\sum_{i=1}^{2 t+l}\left(D_{i}, \varphi_{i}\right)+\sum_{i=1}^{s}\left(D_{i}^{\prime}, \varphi_{i}^{\prime}\right)+\sum_{i=1}^{t}\left(D_{i}^{\prime \prime}, \varphi_{i}^{\prime \prime}\right)
$$

is the desired nowhere-zero 4 -flow on M_{G}.
By Theorem 2.1, $w(v)=2\left(2 d_{D\left(M_{G}\right)}^{+}(v)-d_{M_{G}}(v)\right)$ is a balanced valuation of M_{G}. It holds that $\left|2 d_{D\left(M_{G}\right)}^{+}(v)-d_{M_{G}}(v)\right|=1$, and hence, $w(v) \in\{ \pm 2\}$ for all vertices v. The vertices of M_{G}, and therefore, of G as well, are partitioned into two classes $A=\{v \mid w(v)=-2\}$ and $B=\{v \mid w(v)=2\}$. We call the elements of $A(B)$ the white (black) vertices of G, respectively.

Definition 2.2 Let G be a bridgeless cubic graph and \mathcal{F}_{2} a 2-factor of G. A partition of $V(G)$ into two classes A and B constructed as above with a canonical 4-edge-coloring c, the 4-flow (D, φ) on M_{G} and the induced balanced valuation w of M_{G} is called a flow partition of G w.r.t. \mathcal{F}_{2}. The partition is denoted by $P_{G}(A, B)\left(=P_{G}\left(A, B, \mathcal{F}_{2}, c,(D, \varphi), w\right)\right)$.

Lemma 2.3 Let G be a bridgeless cubic graph and $P_{G}(A, B)$ be a flow partition of $V(G)$ which is induced by a canonical nowhere-zero 4-flow with respect to a canonical edge-coloring c. Let x, y be the two vertices of an edge e. If $e \in c^{-1}(1) \cup c^{-1}(2)$, then x and y belong to different classes, i.e. $x \in A$ if and only if $y \in B$.

From a flow partition $P_{G}(A, B)\left(=P_{G}\left(A, B, \mathcal{F}_{2}, c,(D, \varphi), w\right)\right)$ we easily obtain a flow partition $P_{G}\left(A^{\prime}, B^{\prime}\right)\left(=P_{G}\left(A^{\prime}, B^{\prime}, \mathcal{F}_{2}, c,\left(D^{\prime}, \varphi^{\prime}\right), w^{\prime}\right)\right)$ such that the colors on the vertices of P_{i} are switched. Let $\left(D^{\prime}, \varphi^{\prime}\right)$ be the nowherezero 4 -flow on M_{G} obtained by using the same 2 -factor \mathcal{F}_{2}, the same 4 -edge-coloring c of G and the same orientations for all circuits, but for one $i \in\{i, \ldots, t\}$ use opposite orientation of C_{i}^{\prime} and $C_{i}^{\prime \prime}$ with respect to the one selected in (D, φ).

Lemma 2.4 Let G be a bridgeless cubic graph and $P_{G}(A, B)$ be the flow partition which is induced by the nowhere-zero 4-flow (D, φ). If $P_{G}\left(A^{\prime}, B^{\prime}\right)$ is the flow partition induced by the nowhere-zero 4-flow $\left(D^{\prime}, \varphi^{\prime}\right)$, then $A \backslash$ $V\left(P_{i}\right)=A^{\prime} \backslash V\left(P_{i}\right), B \backslash V\left(P_{i}\right)=B^{\prime} \backslash V\left(P_{i}\right), A \cap V\left(P_{i}\right)=B^{\prime} \cap V\left(P_{i}\right)$ and $B \cap V\left(P_{i}\right)=A^{\prime} \cap V\left(P_{i}\right)$.

3 Proof of Theorem 1.2

Suppose to the contrary that the statement is not true. Then there is a cyclically 6 -edge-connected cubic graph G with oddness 4 , which has no nowhere-zero 5 -flow. Let \mathcal{F}_{2} be a 2 -factor of G with precisely four odd circuits C_{1}, \ldots, C_{4}. Let c be a canonical 4-edge coloring of G and $z_{1}, z_{2}, z_{3}, z_{4}$ be the four vertices where color 2 is missing. Let $Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$. Note, that in any flow partition which depends on \mathcal{F}_{2} and c, the vertices z_{1} and z_{2} (and z_{3} and z_{4} as well) belong to different color classes. By Lemma 2.4 there are flow partitions $P_{G}(A, B)$ and $P_{G}\left(A^{\prime}, B^{\prime}\right)$ of G such that $\left\{z_{1}, z_{3}\right\} \subseteq A$, and $\left\{z_{1}, z_{4}\right\} \subseteq A^{\prime}$. Hence, $\left\{z_{2}, z_{4}\right\} \subseteq B$ and $\left\{z_{2}, z_{3}\right\} \subseteq B^{\prime}$.

Let w be the function with $w(v)=-\frac{5}{3}$ if $v \in A$ and $w(v)=\frac{5}{3}$ if $v \in B$, and w^{\prime} be a function with $w^{\prime}(v)=-\frac{5}{3}$ if $v \in A^{\prime}$ and $w^{\prime}(v)=\frac{5}{3}$ if $v \in B^{\prime}$.

We will prove that w or w^{\prime} is a balanced valuation of G, and therefore, G has a nowhere-zero 5 -flow by Theorem 2.1. Hence, there is no counterexample and Theorem 1.2 is proved.

3.1 Z-separating edge-cuts

Since G has no nowhere-zero 5-flow, w and w^{\prime} are not balanced valuations of G. Then there are $S \subseteq V(G), S^{\prime} \subseteq V(G)$ with $\left|\sum_{v \in S} w(v)\right|>\left|\partial_{G}(S)\right|$, and $\left|\sum_{v \in S^{\prime}} w^{\prime}(v)\right|>\left|\partial_{G}\left(S^{\prime}\right)\right|$.

We will prove some properties of the edge-cuts $\partial_{G}(S)$ and $\partial_{G}\left(S^{\prime}\right)$. We deduce the results for S only. The results for $S^{\prime \prime}$ follow analogously. If $S=V(G)$, then $\left|\sum_{v \in S} w(v)\right|=0=\left|\partial_{G}(S)\right|$. Therefore, S, S^{\prime} are a proper subset of V. If $|S|=1$, then $\left|\sum_{v \in S} w(v)\right|=\frac{5}{3} \leq 3=\left|\partial_{G}(S)\right|$. Since G is cyclically 6 -edge-connected, it has no non-trivial 3-edge-cut and no 2-edgecut. Hence, we assume that $\left|\partial_{G}(S)\right| \geq 4$ in the following.

Let $k\left(k^{\prime}\right)$ be the absolute value of the difference between the number of black and white vertices in $S\left(S^{\prime}\right)$. Hence, $\frac{5}{3} k>\left|\partial_{G}(S)\right|$, and $\frac{5}{3} k^{\prime}>\left|\partial_{G}\left(S^{\prime}\right)\right|$.

For $i \in\{0,1,2,3\}$, let $c_{i}=\left|\partial_{G}(S) \cap c^{-1}(i)\right|$ and $c_{i}^{\prime}=\left|\partial_{G}\left(S^{\prime}\right) \cap c^{-1}(i)\right|$.
Claim 3.1 $\left|\partial_{G}(S)\right| \equiv k(\bmod 2),\left|\partial_{G}\left(S^{\prime}\right)\right| \equiv k^{\prime}(\bmod 2)$
Proof. If k is even, then $|S \cap A|$ and $|S \cap B|$ have the same parity, and if k is odd, then they have different parities. Since S is the disjoint union of $S \cap A$ and $S \cap B$ it follows that k and $|S|$ have the same parity. Since G is cubic it follows that $\left|\partial_{G}(S)\right| \equiv k(\bmod 2)$.

Let $q_{A}\left(q_{B}\right)$ be the number of white (black) vertices of S where color 2 is missing. Let $q=\left|q_{A}-q_{B}\right|$. Since Z has two black and two white vertices, it follows that $q \leq 2$.

Claim 3.2 $|S \cap Z|=2=q$, and $\left|S^{\prime} \cap Z\right|=2=q^{\prime}$.
Proof. Since $c^{-1}(1)$ is a 1 -factor of G, Lemma 2.3 implies that $k \leq c_{1}$. Hence,

$$
\begin{equation*}
c_{1}>\frac{3}{5}\left|\partial_{G}(S)\right| . \tag{1}
\end{equation*}
$$

Furthermore, Lemma 2.3 implies that $k \leq c_{2}+q$. Hence,

$$
\begin{equation*}
c_{2}+q>\frac{3}{5}\left|\partial_{G}(S)\right| . \tag{2}
\end{equation*}
$$

Suppose to the contrary, that $|S \cap Z| \neq 2$. Thus, $q \leq 1$ and $c_{2}+1 \geq k$. Hence, $\left|\partial_{G}(S)\right| \geq c_{1}+c_{2} \geq 2 k-1$. The relation $\frac{5}{3} k>\left|\partial_{G}(S)\right| \geq 2 k-1$ gives $k<3$ and then $\left|\partial_{G}(S)\right|<5$. If $\left|\partial_{G}(S)\right|=4$, then $k \leq 2$, and it follows that $\frac{5}{3} k \leq\left|\partial_{G}(S)\right|$, a contradiction. Thus, $|S \cap Z|=2$, and therefore, $q \in\{0,2\}$. If $q=0$, then $\left|\partial_{G}(S)\right| \geq c_{1}+c_{2} \geq 2 k$, a contradiction. Hence, $q=2$.

Claim 3.3 $\left|\partial_{G}(S)\right|=6, c_{1}=4$ and $c_{2}=2$, and $\left|\partial_{G}\left(S^{\prime}\right)\right|=6, c_{1}^{\prime}=4$ and $c_{2}^{\prime}=2$.

Proof. If $\left|\partial_{G}(S)\right|=4$, then $\left|\partial_{G}(S)\right|<\frac{5}{3} k$ implies $k \geq 3$. Hence, recalling that $c_{1} \geq k$ and $c_{2}+q \geq k$, we have $c_{1}=3$ and $c_{2}=1$. The edge of $\partial_{G}(S) \cap c^{-1}(2)$ is contained in a circuit of \mathcal{F}_{2} whose edges are not in $c^{-1}(1)$. Hence, $2 \geq c_{1} \geq k$, a contradiction. If $\left|\partial_{G}(S)\right|=5$, then $c_{1}+c_{2} \leq 5$ but (1) and (2) give $c_{1} \geq 4$ and $c_{2} \geq 2$, respectively, a contradiction.

Now suppose to the contrary that $\left|\partial_{G}(S)\right|>6$. Since $c_{1}>\frac{3}{5}\left|\partial_{G}(S)\right|$, $c_{2}>\frac{3}{5}\left|\partial_{G}(S)\right|-2$, and $c_{1}+c_{2} \leq\left|\partial_{G}(S)\right|$, it follows that $\left|\partial_{G}(S)\right|>\frac{6}{5}\left|\partial_{G}(S)\right|-$ 2. Therefore, $\left|\partial_{G}(S)\right|<10$. If $\left|\partial_{G}(S)\right|=7$, then $c_{1} \geq 5$ and $c_{2} \geq 3$, a contradiction. If $\left|\partial_{G}(S)\right|=8$, then $c_{1}=5$ and $c_{2}=3$, a contradiction to Claim 3.1 since $c_{1} \equiv k(\bmod 2)$. If $\left|\partial_{G}(S)\right|=9$, then $c_{1} \geq 6$ and $c_{2} \geq 4$, a contradiction. Hence, $\left|\partial_{G}(S)\right|=6$ and $c_{1} \geq 4$ and $c_{2} \geq 2$. That leaves the unique possibility $c_{1}=4$ and $c_{2}=2$.

Claim 3.4 $G[S]$ and $G\left[S^{\prime}\right]$ are connected.
Proof. If $G[S]$ is not connected, then there exists a partition of S in two subsets S_{1} and S_{2} such that there is no edge connecting S_{1} and S_{2}. It follows that $\partial_{G}(S)=\partial_{G}\left(S_{1}\right) \cup \partial_{G}\left(S_{2}\right)$. Since G does not have a 2 -edge-cut or a nontrivial 3-edge-cut, it follows that $\left|\partial_{G}\left(S_{1}\right)\right|=\left|\partial_{G}\left(S_{2}\right)\right|=3$ and $\left|S_{1}\right|=\left|S_{2}\right|=1$, that is $|S|=2$. Hence, $\frac{5}{3} k \leq \frac{10}{3}<\left|\partial_{G}(S)\right|=6$, a contradiction.

Definition 3.1 A-edge-cut E of G is bad with respect to a flow partition $P_{G}\left(A^{*}, B^{*}\right)$ if it satisfies the following two conditions:
i) $\left|E \cap c^{-1}(1)\right|=4$ and $\left|E \cap c^{-1}(2)\right|=2$,
ii) E partitions the vertices z_{1}, z_{2}, z_{3} and z_{4} into two sets $\left\{z_{i_{1}}, z_{i_{2}}\right\}$, $\left\{z_{i_{3}}, z_{i_{4}}\right\}$, which are in different components of $G-E$ and $\left\{z_{i_{1}}, z_{i_{2}}\right\} \subseteq A^{*}$ or $\left\{z_{i_{1}}, z_{i_{2}}\right\} \subseteq B^{*}$.

Note that $\left\{z_{i_{1}}, z_{i_{2}}\right\} \subseteq A^{*}$ if and only if $\left\{z_{i_{3}}, z_{i_{4}}\right\} \subseteq B^{*}$. Further, only condition $i i$) depends on the flow partition. Condition i) depends on the canonical 4-edge-coloring of G which is unchanged along the proof. From the previous results we deduce:

Claim 3.5 $\partial_{G}(S)$ is bad w.r.t. $P_{G}(A, B)$ and $\partial_{G}\left(S^{\prime}\right)$ is bad w.r.t. $P_{G}\left(A^{\prime}, B^{\prime}\right)$.
Bad 6-edges-cuts are the only obstacles in G for having a nowhere-zero 5 -flow. In order to deduce the desired contradiction we will show that all 6 -edge-cuts are not bad with respect to either $P_{G}(A, B)$ or $P_{G}\left(A^{\prime}, B^{\prime}\right)$.

Recall that, z_{1} and z_{3} receive the same color in $P_{G}(A, B)$, and that z_{1} and z_{4} receive the same color in $P_{G}\left(A^{\prime}, B^{\prime}\right)$. For $i \in\{2,3,4\}$, let $\mathcal{S}_{i}=\{V: V \subseteq$ $V(G)$ and $\left.\left\{z_{1}, z_{i}\right\} \subseteq V\right\}$ and $\mathcal{E}_{i}=\left\{E: E \subseteq E(G), V \in \mathcal{S}_{i}\right.$ and $\left.E=\partial_{G}(V)\right\}$ be the corresponding set of edge-cuts. Since z_{1} and z_{2} have different colors in both $P_{G}(A, B)$ and $P_{G}\left(A^{\prime}, B^{\prime}\right)$, all edge-cuts in \mathcal{E}_{2} are not bad with respect to $P_{G}(A, B)$ and with respect to $P_{G}\left(A^{\prime}, B^{\prime}\right)$.

For $i \in\{3,4\}$, by Claim 3.5 there is a 6 -edge-cut $E_{i} \in \mathcal{E}_{i}$ which is bad. By Claim 3.4, $G-E_{3}$ consists of two components with vertex sets X and Y, i.e. $X \cup Y=V(G)$. Analogously, $G-E_{4}$ consists of two components with vertex sets X^{\prime} and Y^{\prime}. Let $U_{1}=X \cap X^{\prime}, U_{2}=Y \cap Y^{\prime}, U_{3}=X \cap Y^{\prime}$ and $U_{4}=Y \cap X^{\prime}$. Thus, $z_{i} \in U_{i}$ for $i \in\{1, \ldots, 4\}$, see Figure 1.

Claim 3.6 $\left|\partial_{G}\left(U_{i}\right)\right| \geq 5$. In particular, $\left|\partial_{G}\left(U_{i}\right)\right|=5$ if and only if $G\left[U_{i}\right]$ is a path with two edges, one of color 0 and one of color 3 .

Proof. If $G\left[U_{i}\right]$ has a circuit, then $\left|\partial_{G}\left(U_{i}\right)\right| \geq 6$ since G is cyclically 6-edge-connected. If this is not the case, then $G\left[U_{i}\right]$ is a forest, say with n vertices. Hence, $\left|\partial_{G}\left(U_{i}\right)\right| \geq n+2$. Since $\partial_{G}\left(U_{i}\right) \subseteq E_{3} \cup E_{4}$, it follows that $\partial_{G}\left(U_{i}\right) \subseteq c^{-1}(1) \cup c^{-1}(2)$. Two edges $z_{i} x_{i}$ and $z_{i} y_{i}$ which are incident to z_{i} are colored with color 0 and 3 , respectively. Hence, $\left\{x_{i}, y_{i}\right\} \subseteq U_{i}, n \geq 3$, and $\left|\partial_{G}\left(U_{i}\right)\right| \geq 5$. If $\left|\partial_{G}\left(U_{i}\right)\right|=5$, then $\left|U_{i}\right|=3$, and $G\left[U_{i}\right]$ is a path with two edges, one of color 0 and one of color 3 .

Claim 3.7 $\left|\partial_{G}\left(U_{i}\right)\right|=5$ for at most two of the four subsets U_{i}. Furthermore, if there are i, j such that $i \neq j$ and $\left|\partial_{G}\left(U_{i}\right)\right|=\left|\partial_{G}\left(U_{j}\right)\right|=5$, then $\{i, j\} \in$ $\{\{1,2\},\{3,4\}\}$.

Proof. Since E_{3} and E_{4} are bad, each of them has exactly two edges of color 2 and four edges of color 1. Hence, each of them intersects with at most

Figure 1: Z-separating 6 -edge cuts
one circuit of \mathcal{F}_{2}. For each $i \in\{1, \ldots, 4\},\left|E\left(G\left[U_{i}\right]\right) \cap c^{-1}(0)\right|=1$, and hence, there are j_{1}, j_{2} such that $j_{1} \neq j_{2}$ and $U_{j_{1}}, U_{j_{2}}$ contain an odd circuit of \mathcal{F}_{2}. Since G is cyclically 6-edge-connected it follows that $\left|\partial_{G}\left(U_{j_{1}}\right)\right| \geq 6$ and $\left|\partial_{G}\left(U_{j_{2}}\right)\right| \geq 6$.

Let $i, j \in\{1, \ldots, 4\}$ such that $i \neq j$ and $\left|\partial_{G}\left(U_{i}\right)\right|=\left|\partial_{G}\left(U_{j}\right)\right|=5$. For symmetry, it suffices to prove that $\{i, j\} \neq\{1,3\}$. Suppose to the contrary that $\{i, j\}=\{1,3\}$. By Claim 3.6, $G\left[U_{1}\right]$ and $G\left[U_{3}\right]$ are paths of length two with edges colored 0 and 3 . Further, $\partial_{G}\left(U_{1}\right)$ consists of three edges of color 1 and two edges of color 2 , which belong to the odd circuit C_{1} of \mathcal{F}_{2}. Analogously, the two edges of color 2 of $\partial_{G}\left(U_{3}\right)$ belong to the odd circuit C_{3} of \mathcal{F}_{2}. Hence, both pairs of edges of color 2 in $\partial_{G}\left(U_{1}\right)$ and $\partial_{G}\left(U_{3}\right)$ belong to E_{3} and they are distinct, a contradiction since E_{3} has only two edges of color 2.

For $i \neq j$ let $\partial_{G}\left(U_{i}, U_{j}\right)$ be the set of edges with one vertex in U_{i} and the other one in U_{j}.

Claim 3.8 The following relations hold:

- $\left|\partial_{G}\left(U_{i}, U_{j}\right)\right|=0$, for $\{i, j\} \in\{\{1,2\},\{3,4\}\}$.
- $\left|\partial_{G}\left(U_{i}, U_{j}\right)\right|=3$, for $\{i, j\} \in\{\{1,3\},\{1,4\},\{2,3\},\{2,4\}\}$.

Proof. Recall that $\left|E_{3}\right|=\left|E_{4}\right|=6$. Hence, $\left|E_{3} \cup E_{4}\right| \leq 12$. Due to Claim 3.7, we can assume that $\left|\partial_{G}\left(U_{1}\right)\right| \geq 5,\left|\partial_{G}\left(U_{2}\right)\right| \geq 5,\left|\partial_{G}\left(U_{3}\right)\right| \geq 6$ and $\left|\partial_{G}\left(U_{4}\right)\right| \geq 6$. By adding up, we obtain $\sum_{i=1}^{4}\left|\partial_{G}\left(U_{i}\right)\right| \geq 22$, where each edge of E_{3} and E_{4} is counted exactly twice. Hence, $\left|E_{3} \cup E_{4}\right| \geq 11$. If $\left|E_{3} \cup E_{4}\right|=11$, then exactly one edge, say e, belongs to $E_{3} \cap E_{4}$. If $e \in \partial_{G}\left(U_{1}, U_{2}\right)$, then $\partial_{G}\left(U_{3}\right)$ and $\partial_{G}\left(U_{4}\right)$ are distinct sets of cardinality at least 6. Hence, $\left|E_{3} \cup E_{4}\right|>12$, a contradiction. If $e \in \partial_{G}\left(U_{3}, U_{4}\right)$, then $\partial_{G}\left(U_{1}, U_{4}\right)$ or $\partial_{G}\left(U_{2}, U_{3}\right)$ has cardinality at most 2 , say, without loss of generality, $\partial_{G}\left(U_{1}, U_{4}\right)$. For the same reason, $\partial_{G}\left(U_{1}, U_{3}\right)$ or $\partial_{G}\left(U_{2}, U_{4}\right)$ has cardinality at most 2 . If $\left|\partial_{G}\left(U_{1}, U_{3}\right)\right| \leq 2$, then $\left|\partial_{G}\left(U_{1}\right)\right| \leq 4$, and if $\left|\partial_{G}\left(U_{2}, U_{4}\right)\right| \leq 2$, then $\left|\partial_{G}\left(U_{4}\right)\right| \leq 5$, a contradiction (in both cases). Hence, $\left|E_{3} \cup E_{4}\right|=12$, and therefore, $\left|\partial_{G}\left(U_{i}, U_{j}\right)\right|=0$ for $\{i, j\} \in\{\{1,2\},\{3,4\}\}$.

Now, $\left|\partial_{G}\left(U_{i}, U_{j}\right)\right|=3$, for $\{i, j\} \in\{\{1,3\},\{1,4\},\{2,3\},\{2,4\}\}$ can be deduced easily.

Let $E_{3}^{\prime}=E_{3} \cap \partial\left(U_{1}\right), E_{3}^{\prime \prime}=E_{3} \cap \partial\left(U_{2}\right)$, and $E_{4}^{\prime}=E_{4} \cap \partial\left(U_{1}\right), E_{4}^{\prime \prime}=$ $E_{4} \cap \partial\left(U_{2}\right)$, see Figure 1.

Let $H=G\left[c^{-1}(1) \cup c^{-1}(2)\right]$. The components of H are even circuits and the two paths P_{1} and P_{2}, where P_{1} has the end vertices z_{1}, z_{2}, and P_{2} has the end vertices z_{3}, z_{4}. The paths P_{1} and P_{2} intersect both $E_{3}=E_{3}^{\prime} \cup E_{3}^{\prime \prime}$ and $E_{4}=E_{4}^{\prime} \cup E_{4}^{\prime \prime}$ an odd number of times, since both, E_{3} and E_{4}, separate their ends. For symmetry, we can assume that $P_{1} \cap E_{3}^{\prime}$ and $P_{1} \cap E_{4}^{\prime \prime}$ are even, and hence, $P_{1} \cap E_{3}^{\prime \prime}$ and $P_{1} \cap E_{4}^{\prime}$ are odd. Furthermore, we assume that $P_{2} \cap E_{3}^{\prime \prime}$ and $P_{2} \cap E_{4}^{\prime \prime}$ are even, and hence, $P_{2} \cap E_{3}^{\prime}$ and $P_{2} \cap E_{4}^{\prime}$ are odd. Note, that every other possible choice produces an analogous configuration. The 6-edge-cut $E_{3}^{\prime} \cup E_{4}^{\prime}$ contains an odd number of edges of $E\left(P_{1}\right) \cup E\left(P_{2}\right)$. Since $E_{3}^{\prime} \cup E_{4}^{\prime} \subseteq E(H)$, it follows that an odd number of edges of $E_{3}^{\prime} \cup E_{4}^{\prime}$ are not in $E\left(P_{1}\right) \cup E\left(P_{2}\right)$, a contradiction, since all other components of H are circuits, and they intersect every edge-cut an even number of times.

Hence, at least one of E_{3} and E_{4} is not bad, contradicting our assumption that both of them are bad.

References

[1] J.A. Bondy, Balanced Colourings and the four colour conjecture, Proc. Amer. Math. Soc. 33 (1972) 241-244
[2] F. Jaeger, Balanced valuations and flows in multigraphs, Proc. Amer. Math. Soc. 55 (1975) 237-242
[3] F. Jaeger, Nowhere-zero flow problems, in: L. W. Beineke, R. J. Wilson eds., Topics in Graph Theory 3, Academic Press, London (1988) 70-95
[4] F. Jaeger, T. Swart, Conjecture 2, in: M. Deza, I.G. Rosenberg (Eds.), Combinatorics 79, Annals of Discrete Mathematics, Vol. 9, North-Holland, Amsterdam, 1980, p. 305.
[5] R. Haggkvist, S. McGuinness, Double covers of cubic graphs with oddness 4, J. Combin. Theory, Ser. B 93 (2005) 251-277
[6] M. Kochol, Reduction of the 5-flow conjecture to cyclically 6-edgeconnected snarks, J. Combin. Theory, Ser. B 90 (2004) 139-145
[7] M. Kochol Smallest counterexample to the 5-flow conjecture has girth at least eleven, J. Combin. Theory Ser. B 100 (2010) 381-389
[8] E. Macajova, M. Skoviera Sparsely intersecting perfect matchings in cubic graphs, Combinatorica 34 (2014) 61-94
[9] J. Petersen, Die Theorie der regulären graphs, Acta Mathematica 15 (1891) 193-220
[10] P. D. Seymour, Nowhere-zero 6-flows, J. Combin. Theory, Ser. B 30 (1981) 130-135
[11] P. D. Seymour, Nowhere-zero flows, in Handbook of Combinatorics (Vol. 1), R. L. Graham, M. Grötschel, L. Lovász (eds.) Elsevier Science B.V. Amsterdam (1995) 289-299
[12] E. Steffen, Tutte's 5-flow conjecture for highly cyclically connected cubic graphs, Discrete Math. 310 (2010) 385-389
[13] W. T. Tutte, A contribution to the theory of chromatic polynomials, Canadian J. Math. 6 (1954) 80-91

[^0]: *Università degli Studi di Verona, Dipartimento di Informatica, Strada le Grazie 15, 37134 Verona, Italy; giuseppe.mazzuoccolo@univr.it
 ${ }^{\dagger}$ Paderborn Institute for Advanced Studies in Computer Science and Engineering, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany; es@upb.de

