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Abstract. The Berge-Fulkerson conjecture, originally formulated in the lan-

guage of mathematical programming, asserts that the edges of every bridgeless
cubic (3-valent) graph can be covered with six perfect matchings in such a

way that every edge is in exactly two of them. As with several other classi-

cal conjectures in graph theory, every counterexample to the Berge-Fulkerson
conjecture must be a non 3-edge-colorable cubic graph. In contrast to Tutte’s

5-flow conjecture and the cycle double conjecture, no nontrivial reduction is

known for the Berge-Fulkerson conjecture. In the present paper, we prove
that a possible minimum counterexample to the conjecture must be cyclically

5-edge-connected.

1. Introduction

A well known result of Petersen [16], proven as early as in 1891, states that
every bridgeless cubic graph has a perfect matching. Somewhat later, Schönberger
[17] proved that any prescribed edge of a bridgeless cubic graph lies in a perfect
matching. These are only two of many results about perfect matchings in cubic
graphs, but several important problems are still open, and the Berge-Fulkerson
conjecture is related to many of them. We can safely say that the Berge-Fulkerson
Conjecture belongs to one of the most prominent open problems in entire Graph
Theory. The conjecture appeared in a paper of Fulkerson [5] and is also attributed
to Berge (see [18]). It suggests the following.

Conjecture 1.1 (Berge-Fulkerson conjecture). Every bridgeless cubic graphs con-
tains a family of six perfect matchings covering each edge exactly twice.

This conjecture belongs to a group of conjectures on cubic graphs with various
implication among them. For example, it is a consequence of the Petersen colouring
conjecture of Jaeger [9], while it implies the Fan-Raspaud conjecture [3].

It follows from the aforementioned Petersen theorem that every bridgeless cubic
graph can be coloured with either with three or four colours. The Berge-Fulkerson
conjecture trivially holds for the subclass of 3-edge-colorable cubic graphs – one
can obtain six perfect matchings by doubling the three colour classes. Similarly to
other conjectures, snarks, that is bridgeless cubic graphs that need four colours to
be coloured, form the class of cubic graphs for which the problem is really hard to
prove.
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Although the fame of the Berge-Fulkerson conjecture may partially be due to
the simplicity of the statement, its importance is mainly due to its numerous con-
nections to other problems in graph theory as well as to its relations with other
geometric structures. Among others, it admits equivalent formulations in math-
ematical programming and in terms of configurations of points and lines in the
context of algebraic and finite geometry.

More precisely, for any given graph G with edge-set E, we can consider the real
vector space RE . Edmonds’ Perfect Matching Polytope Theorem (see [2]) charac-
terizes all vectors in RE that can be written as convex combinations of character-
istic vectors of perfect matchings of G. In particular, it turns out that, for every
bridgeless cubic graph, the constant vector with entries 1

3 is always a point of the
polytope having characteristic vectors of perfect matchings of G as vertices. The
Berge-Fulkerson conjecture is equivalent to saying that such a point can always be
obtained as a convex combination of very few, indeed at most six, vertices of the
polytope.

Another important link can be established with a remarkable geometric con-
figurations of 15 points and 15 lines in the real projective space known as the
Cremona-Richmond configuration. This configuration was discovered in 19th cen-
tury in algebraic geometry, in the study of families of lines on cubic surfaces (see
[1]). It also appears in finite geometry, for example in the study of generalized
quadrangles (see [15]). In [13], it is proved in detail how the Cremona-Richmond
configuration arises in connection with the Berge-Fulkerson conjecture.

Although the Berge-Fulkerson conjecture is almost half century old, only partial
results has been achieved – it has been verified for some explicitly defined classes
of cubic graphs, see for example [4, 7, 6, 10, 14].

In 1980, Jaeger and Swart conjectured that there is no snark with cyclic connec-
tivity greater than six. Moreover, cyclic connectivity bounds the girth of a graph
from above. For many other long-standing conjectures, reductions to cubic graphs
with no small cycles and no small cycle separating cuts have been established. For
instance, it is known that a potential minimum counterexample to the 5-flow con-
jecture of Tutte (see [21]) must be a cyclically 6-edge-connected snark [11] with
girth at least 11 [12]. For the cycle double conjecture [20, 19] a similar reduction to
snarks of girth 12 has been achieved [8]. On the other hand, no non-trivial result
reducing the Berge-Fulkerson conjecture to cubic graphs of higher girth or cyclic
connectivity has been derived so far. The main result of this paper is the first
non-trivial reduction for this conjecture and reads as follows.

Theorem 1.2. A minimum counterexample to the Berge-Fulkerson conjecture must
be a cyclically 5-edge-connected snark.

If Jaeger’s and Swart’s conjecture is true, Theorem 1.2 implies that a potential
counterexample to the Berge-Fulkerson conjecture must have cyclic connectivity 5
or 6.

2. Preliminaries

In this section we introduce notation and auxiliary results that we will use in
the following section in order to prove our main result.

A multipole (V,E) consists of a set of vertices V and a set of edges E. Each
edge has two ends, each of which can, but need not, be incident with a vertex. If
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an edge has both ends incident with a vertex, it is called a proper edge. If one of
the ends of an edge is incident with a vertex and the other end is not, the edge
is called a dangling edge. If none of the ends of an edge is incident with a vertex,
the edge in question is called an isolated edge. An end of an edge which is not
incident with a vertex is called a semiedge. A k-pole is a multipole with exactly k
semiedges. An ordered k-pole is a k-pole with a linear order on its semiedges. Note
that, throughout the paper, we always consider multipoles with vertices of degree
3 and then, according to our definition, a 0-pole is nothing but a cubic graph.

Along the entire paper, we consider colorings of the edges of a k-pole: for sem-
plicity, it is always implicitly assumed that if we assign a color to a given edge,
then the same color is also assigned to all (possible) semiedges of that edge and
viceversa. Then, from now on, we indifferently say that a color is assigned either
to an edge or to a semiedge.

Definition 2.1. Let H = (V,E) be a multipole. A Berge-Fulkerson coloring of
H, BF -coloring for short, is a function ϕ which assigns to every element in E a
2-subset of the set of colors {1, 2, 3, 4, 5, 6}, in such a way that the subsets assigned
to any two adjacent edges are disjoint.

It is straightforward that a BF -coloring of a cubic graph G is equivalent to the
existence of six perfect matchings of G covering each edge of G twice. Moreover,
each of the six color classes induces a perfect matching of G.

Let us recall that a graph G is cyclically k-edge-connected if it does not contain
an edge-cut |S| such that |S| < k and G − S contains at least two components
containing cycles. The cyclic connectivity of a graph G is the greatest k such that
G is cyclically k-edge-connected.

We now observe that there is no small cycle-separating cut in a smallest potential
counterexample to the Berge-Fulkerson conjecture.

Proposition 2.2. Let G be a possible minimum counterexample to the Berge-
Fulkerson conjecture. Then G is cyclically 4-edge-connected.

Proof. Suppose that G is a possible minimum counterexample to the Berge-Fulkerson
conjecture. As the conjecture is stated for bridgeless graph, G does not contain cy-
cle separating cuts of size 1. Let S be a cycle separating edge-cut in G of size 2.
Create two smaller graphs from G in the usual way: remove the edges of S and in
each of the resulting components join two 2-valent vertices with an edge, thereby
producing two graphs G1 and G2, both smaller than G. As G is bridgeless, so is Gi

for i ∈ {1, 2}. Therefore each Gi admits a BF -coloring. By permuting colors in one
of these colorings, we can obtain a BF -coloring of G. Therefore G does not con-
tain cycle-separating 2-edge-cuts. Similarly, if G would contain a cycle-separating
3-edge-cut, one could create two smaller bridgeless cubic graphs by the removal of
the edges from S and joining by an edge the three 2-valent vertices with a new
vertex in each of the components. Clearly, the two cubic graphs are smaller that
G, therefore they admit a BF -coloring. Again, by a permutation of colors in one
of the components, we can obtain a BF -coloring of G. The result follows. �

Since the main result of this paper involves 4-edge-cuts, we now analyze the
behavior of a BF -coloring on the four semiedges of a 4-pole in more detail. Let H
be an ordered 4-pole. First observe that, since H is cubic, each of the six colors
occurs an even number of times on the semiedges of H, more precisely, each color
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occurs 0, 2, or 4 times. Now we show that in every BF -coloring of H, the pairs
of colors in the semiedges can be expressed as a composition of two colorings of
the semiedges, each of which uses at most two colors and each color appears in at
most one of these two colorings. Let us introduce the notation used to describe
such colorings. An edge-coloring of the semiedges of an ordered 4-pole where ALL
semiedges receive the same color is said to be of type A. In all other cases, for
i = 2, 3, 4, an edge-coloring of the semiedges of an ordered 4-pole such that the
first semiedge has the same color as the i-th one is said to be of type Ti (see also
Figure 1).
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Figure 1. Possible types of edge-colorings for the semiedges of an
ordered 4-pole.

Let ϕ be a BF -coloring of an ordered 4-pole H. Recall this means that every
edge receives a pair of distinct colors. If all the four semiedges have the same pair
of colors in ϕ, H is said to be of type AA. If only one color appears in all semiedges,
then ϕ is of type ATi for some i ∈ {2, 3, 4}. Finally, since every color occurs on
an even number of edges, the only remaining cases to consider are the cases when
four colors are present in ϕ on the four semiedges and each of them appears on
exactly two semiedges. It can be easily checked that in each of these BF -colorings,
we can partition the four colors in two subsets such that the two colors in the first
subset give a coloring of type Ti and the other two colors a coloring of type Tj .
Such BF -coloring will be denoted as of type TiTj , for some i, j ∈ {2, 3, 4}. Hence,
we have proved the following proposition.

Proposition 2.3. Each BF -coloring of the semiedges of an ordered 4-pole is of
type XY where X,Y ∈ {A, T2, T3, T4}.

For our purposes, we do not distinguish a BF -coloring from another by the
specific set of colors used for the semiedges, but only by the type of colorings.
Moreover, note that a BF -coloring of type XY and a BF -coloring of type Y X
for X,Y ∈ {A, T2, T3, T4} are always considered of the same type. Hence, we
have exactly ten types of BF -colorings of an ordered 4-pole, namely AA, ATi for
i ∈ {2, 3, 4}, and TiTj for i, j ∈ {2, 3, 4}, i < j (see Figure 2).

We denote by C the set of these 10 types of BF -colorings, and we denote by
C(H) the set of admissible types of colorings for a given ordered 4-pole H. A priori
C(H) is one of the 210 elements of the power set of C. Nevertheless, we will show
that this is not the case, i.e. the number of possible choices for C(H) is significantly
smaller than 210. This can be seen by employing Kempe switches using whose we
can prove that the existence of one type of BF -colorings guarantees the existence
of some other BF -colorings. Kempe switches are a common tool when working
with the usual edge-colorings of graphs but they can be used in more general form
for BF -colorings too. We describe it now in more detail.
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2.1. Kempe chains. Let ϕ be a BF -coloring of a 4-pole H. Let s be a semiedge
of H and denote by c1 one of the two colors in ϕ(s) and by c2 one of the four
colors not in ϕ(s). Consider the subgraph of H induced by all edges e such that
ϕ(e)∩{c1, c2} is not empty. Let K be the connected component of such a subgraph
which contains the semiedge s. Clearly, K contains exactly two semiedges, let s′

denote the one different from s. Moreover, in ϕ, every edge of K receives exactly
one of the two colors c1 and c2 and these colors alternate along the edges of K.
The component K will be called a Kempe chain. Starting from ϕ, we can obtain
a new BF -coloring of H by performing a Kempe switch, that is an interchange of
the two colors c1 and c2 for all edges of K.

For example, consider a BF -coloring of type AA of an ordered 4-pole H which
assigns colors 1 and 2 to all semiedges, like in the top left of Figure 2. Consider the
Kempe chain containing the first semiedge and with colors 1 and 3. Such a Kempe
chain must contain exactly one of the other three semiedges: assume it contains the
i-th one, for i ∈ {2, 3, 4}. Then, by a Kempe switch, we obtain a BF -coloring of H
of type ATi. Therefore if AA belongs to C(H), then at least one of AT2, AT3 and
AT4 also belongs to C(H). All other cases work in the same way and a complete
list of all these possible implications is shown in Figure 2.
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Figure 2. The 10 possible combinations of colorings for the
semiedges of an ordered 4-pole in a BF -coloring. Below each one
of them, we indicate all possible types of BF -colorings that could
be obtained by performing a Kempe switch.

Throughout the paper, we will sometimes say that we glue together two ordered
4-poles G1 and G2. We mean that we consider the cubic graph obtained by the
identification of the pair of dangling (or isolated) edges in the same position in the
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linear orderings of the two 4-poles. By a slight abuse of terminology we will also say
that we glue together a BF -coloring of G1 and a BF -coloring of G2, by meaning
that we consider the BF -coloring of the graph G whose restrictions to G1 and G2

coincide with the original BF -colorings of G1 and G2, respectively.

2.2. The auxiliary graph M and its admissable subgraphs. In order to make
the presentation more transparent, instead of working directly with C(H), we prefer
to construct an auxiliary graph M and to identify C(H) with a suitable subgraph
of M .

The vertices of M are A, T2, T3 and T4 – they correspond to the four possible
types of edge-colorings of the semiedges of a 4-pole such that each color occurs an
even number of times, while, in the natural way, each of the ten edges corresponds to
a different type of BF -coloring, more precisely, the one obtained by the composition
of the two edge-colorings of its semiedges. See Figure 3. (Here the loops are also
considered to be edges.)

T4 T2

A

T3

T3T4

AT3

AT4 AT2

T2T2

T4T4 T2T2

AA

T2T4

T3T3

Figure 3. The graph M . Every edge stands for a different element
of C.

Hence, for any given ordered 4-pole H, the set C(H) corresponds to a set of edges
in M : we will denote by H∗ the subgraph of M induced by such set of edges.

The following lemma gives necessary conditions for a subgraph of M in order to
be admissible.

Lemma 2.4. Let H be an ordered 4-pole. Then, the subgraph H∗ of M has no
vertex of degree 1 and no vertex whose only incident edge is a loop.

Proof. Let X,Y be two arbitrary elements, possibly the same, of the set {A, T2, T3, T4}.
Consider the vertex of M corresponding to the element X and assume, by contra-
diction, that XY is the unique edge of M in H∗ (note that XY could be a loop
of M). Consider a BF -coloring ϕ of H of type XY . Without loss of generality we
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can assume that ϕ assigns to the four semiedges of the ordered 4-pole H the same
pair of colours as shown in Figure 2 for type XY . Note that color 5 is unused in
all cases. Consider a Kempe chain in H starting from the first semiedge, ending in
another semiedge and colored alternately 1 and 5. By a Kempe switch we obtain
a BF -coloring of type XZ, where Z is different from Y . Hence, XY and XZ are
two distinct edges of H∗ incident X, that is X is not a vertex of degree 1 in H∗

and it is not incident uniquely to the loop XX. �

2.3. Acyclic 4-poles. The main aim of the present paper is proving that a possible
minimum counterexample G to the Berge-Fulkerson conjecture would be cyclically
5-edge-connected. Therefore, we need to exclude the presence of cyclic 4-edge-cuts
in G.

An (ordered) 4-pole with no cycle is said to be acyclic. In this section, we study
all possible subgraphs H∗, where H is an acyclic ordered 4-pole.

It is not hard to check that there are only two different acyclic 4-poles: the one
consisting of two isolated edges and the one having two adjacent vertices of degree
3 (see Figure 4). Indeed, if a 4-pole has at least 4-vertices then it has a cycle.
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Figure 4. Some admissable colorings for two of the possible
acyclic ordered 4-poles.

Each of the two acyclic 4-poles gives rise to three different acyclic ordered 4-poles,
according to the order of its semiedges. Then, we have exactly six acyclic ordered
4-poles. An easy direct computation shows that for each of them the corresponding
subgraph of M is a dumbbell graph (i.e. the graph illustrated in Figure 5).

Figure 5. The dumbbell graph.

More precisely, every acyclic ordered 4-pole H corresponds to one of the induced
dumbbell subgraphs H∗ of M :
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• if H is an acyclic 4-pole with two isolated edges, then H∗ is the dumbbell
subgraph of M induced, according to the order of semiedges, by one of the
following three subsets {A, T2} (see the first line in Figure 4), {A, T3} or
{A, T4} and
• if H is an acyclic 4-pole with two adjacent vertices of degree 3, then H∗ is

the dumbbell subgraph of M induced, according to the order of semiedges,
by one of the following three subsets {T3, T4} (see the second line in Figure
4), {T2, T3} or {T2, T4}.

We can summarize all previous considerations in the following lemma by noting
that M has exactly six dumbbell graphs.

Lemma 2.5. Let D be a dumbbell subgraph of M . Then, there exists an acyclic
ordered 4-pole H such that D = H∗.

3. Main Result

Now we are in position to prove our main result.

Proof. Assume there exists a counterexample to the Berge-Fulkerson conjecture,
and let G be one of minimum order. By Proposition 2.2, G has no cycle-separating
2- and 3-edge-cuts. By contradiction, assume that G is not cyclically 5-edge-
connected, that is G has a 4-edge-cut C such that both the two 4-poles separated
by C, say G1 and G2, contain a cycle. In particular, note that both G1 and G2

have order at least four.
Consider the two subgraphs G∗1 and G∗2 of M . First observe that for i ∈ {1, 2},

G∗i has at least one edge. Indeed, if G∗i contains no edge, this implies that Gi does
not admit a BF -coloring. By glueing together Gi and an arbitrary acyclic ordered
4-pole, we obtain a bridgeless cubic graph smaller than G which does not admit a
BF -coloring, a contradiction by minimality of G.

Furthermore, since G is a counterexample to the Berge-Fulkerson conjecture,
then G∗1 and G∗2 must be edge-disjoint. Otherwise, G1 and G2 admit a BF -colorings
of the same type and, up to permutation of colors, we can glue such BF -colorings
together to obtain a BF -coloring of G.

Now, we prove that G∗1 and G∗2 cannot be vertex-disjoint. Assume this is the
case, then at least one of them, say G∗1, has at most two vertices since M has order
four. By Lemma 2.4, G∗1 cannot have just one vertex and then, it has two vertices
and it is a dumbbell subgraph of M . By Lemma 2.5 there exists an acyclic ordered
4-pole H such that H∗ = G∗1. The graph obtained by glueing together the acyclic
ordered 4-pole H and the ordered 4-pole G2, is longer a counterexample and it is
smaller than G, a contradiction.

It follows that there exists a vertex, say X, of M belonging both to G∗1 and G∗2.
The vertex X is incident to four edges in M (one of them is a loop). By Lemma
2.4 exactly two of these edges belong to G∗1 and the remaining two to G∗2. Without
loss of generality, we can assume that XX and XY are edges of G∗1, that is G1

admits a BF -coloring of type XX and a BF -coloring of type XY .
Consider a BF -coloring ϕ of G1 of type XX. It is obtained by composition of

two edge-colorings of the four semiedges, say ϕ1 and ϕ2, of type X. Without loss of
generality, we can assume that the first semiedge, say s, receives colors 1 and 3 in ϕ,
in particular we can assume ϕ1(s) = 1 and ϕ2(s) = 3. Moreover, if X 6= A, let 2 and
4 be the other colors assigned to semiedges by ϕ1 and ϕ2, respectively. Consider
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a Kempe chain starting from s and with colors 1 and 2, and another Kempe chain
starting from s and with colors 3 and 4. Both the corresponding Kempe switches
change the BF -coloring ϕ of type XX to a BF -coloring of type XY : indeed the
new BF -coloring cannot be of the same type of ϕ and we assumed that XY is the
only other edge incident to X in G∗1. In particular, the two Kempe switches change
both ϕ1 and ϕ2 in two edge-colorings of type Y . Since the two Kempe chains are
color-independent, by performing the two Kempe switches at the same time, we
obtain a BF -coloring of G1 of type Y Y . This proves that the dumbbell subgraph
induced by XX, XY and Y Y is a subgraph of G∗1. It follows, again by Lemma 2.5,
that there exists an acyclic ordered 4-pole H such that H∗ is a subgraph of G∗1.
The graph obtained by glueing together G2 and H is a counterexample smaller than
G, a contradiction. Hence G cannot admit a 4-edge-cut like C and the assertion
follows. �
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et al., Projective, affine, and abelian colorings of cubic graphs, European Journal of Combi-

natorics 30 (2009), no. 1, 53–69.
14. Giuseppe Mazzuoccolo, The equivalence of two conjectures of berge and fulkerson, Journal of

Graph Theory 68 (2011), no. 2, 125–128.

15. Stanley E Payne and Joseph Adolf Thas, Finite generalized quadrangles, vol. 9, European
Mathematical Society, 2009.
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