11,419 research outputs found

    Dynamic output feedback sliding-mode control using pole placement and linear functional observers

    Full text link
    This paper presents a methodological approach to design dynamic output feedback sliding-mode control for a class of uncertain dynamical systems. The control action consists of the equivalent control and robust control components. The design of the equivalent control and the sliding function are based on the pole-placement technique. Linear functional observers are developed to implement the sliding function and the equivalent control. Stability of the resulting system under the proposed control scheme is guaranteed. A numerical example is given to demonstrate its efficacy.<br /

    Sensor fault detection and isolation for a class of uncertain nonlinear system using sliding mode observers

    Get PDF
    Quick and timely fault detection is of great importance in control systems reliability. Undetected faulty sensors could result in irreparable damages. Although fault detection and isolation (FDI) methods in control systems have received much attention in the last decade, these techniques have not been applied for some classes of nonlinear systems yet. This paper deals with the issues of sensor fault detection and isolation for a class of Lipschitz uncertain nonlinear system. By introducing a coordinate transformation matrix for states and output, the original system is first divided into two subsystems. The first subsystem is affected by uncertainty and disturbance. The second subsystem just has sensor faults. The nonlinear term is separated to linear and pure nonlinear parts. For fault detection, two sliding mode observers (SMO) are designed for the two subsystems. The stability condition is obtained based on the Lyapunov approach. The necessary matrices and parameters are obtained by solving the linear matrix inequality (LMI) problem. Furthermore, two sliding mode observers are designed for fault isolation. Finally, the effectiveness of the proposed approach is illustrated by simulation examples

    Non-linear discrete-time observer design by sliding mode

    Get PDF
    Research into observer design for non-linear discrete-time systems has produced many design methods. There is no general design method however and that provides the motivation to search for a new simple and realizable design method. In this thesis, an observer for non-linear discrete-time systems is designed using the sliding mode technique. The equation of the observer error is split into two parts; the first part being a linearized model of the system and the second part an uncertain vector. The sliding mode technique is introduced to eliminate the uncertainty caused by the uncertain vector in the observer error equation. By choosing the sliding surface and the boundary layer, the observer error is attracted to the sliding surface and stays within the sliding manifold. Therefore, the observer error converges to zero. The proposed technique is applied to two cases of observers for nonlinear discrete-time systems. The second case is chosen to be a particular practical system, namely the non-linear discrete-time ball and beam system. The simulations show that the sliding mode technique guarantees the convergence of the observer error for both systems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Sliding mode adaptive state observation for time-delay uncertain nonlinear systems

    Get PDF
    In this paper a method to design robust adaptive sliding mode observers (ASMO) for a class of nonlinear time- delay systems with uncertainties, is proposed. The objective is to achieve insensitivity and robustness of the proposed sliding mode observer to matched disturbances. A novel systematic design method is synthesized to solve matching conditions and compute observer stabilizing gains. The Lyapunov-Krasovskii theorem is employed to prove the ultimate stability with arbitrary boundedness radius of the estimation error of the proposed filter. Finally, the ability of ASMO for fault reconstruction is studied

    Adaptive sliding mode observers in uncertain chaotic cryptosystems with a relaxed matching condition

    Get PDF
    We study the performance of adaptive sliding mode observers in chaotic synchronization and communication in the presence of uncertainties. The proposed robust adaptive observer-based synchronization is used for cryptography based on chaotic masking modulation (CM). Uncertainties are intentionally injected into the chaotic dynamical system to achieve higher security and we use robust sliding mode observer design methods for the uncertain nonlinear dynamics. In addition, a relaxed matching condition is introduced to realize the robust observer design. Finally, a Lorenz system is employed as an illustrative example to demonstrate the effectiveness and feasibility of the proposed cryptosyste

    H ∞  sliding mode observer design for a class of nonlinear discrete time-delay systems: A delay-fractioning approach

    Get PDF
    Copyright @ 2012 John Wiley & SonsIn this paper, the H ∞  sliding mode observer (SMO) design problem is investigated for a class of nonlinear discrete time-delay systems. The nonlinear descriptions quantify the maximum possible derivations from a linear model, and the system states are allowed to be immeasurable. Attention is focused on the design of a discrete-time SMO such that the asymptotic stability as well as the H ∞  performance requirement of the error dynamics can be guaranteed in the presence of nonlinearities, time delay and external disturbances. Firstly, a discrete-time discontinuous switched term is proposed to make sure that the reaching condition holds. Then, by constructing a new Lyapunov–Krasovskii functional based on the idea of ‘delay fractioning’ and by introducing some appropriate free-weighting matrices, a sufficient condition is established to guarantee the desired performance of the error dynamics in the specified sliding mode surface by solving a minimization problem. Finally, an illustrative example is given to show the effectiveness of the designed SMO design scheme
    corecore