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Abstract 

Research into observer design for non-linear discrete-time systems 

has produced many design methods. There is no general design 

method however and that provides the motivation to search for a new 

simple and realizable design method. 

In this thesis, an observer for non-linear discrete-time systems is 

designed using the sliding mode technique. The equation of the 

observer error is split into two parts; the first part being a linearized 

model of the system and the second part an uncertain vector. 

The sliding mode technique is introduced to eliminate the uncertainty 

caused by the uncertain vector in the observer error equation. By 

choosing the sliding surface and the boundary layer, the observer 

error is attracted to the sliding surface and stays within the sliding 

manifold. Therefore, the observer error converges to zero. 

The proposed technique is applied to two cases of observers for non- 
linear discrete-time systems. The second case is chosen to be a 

particular practical system, namely the non-linear discrete-time ball 

and beam system. The simulations show that the sliding mode 

technique guarantees the convergence of the observer error for both 

systems. 
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Chapter 1 

Introduction 

1.1 Motivation 

The study of control systems is an old subject, even before the 

eighteen century when James Watt invented the centrifugal governor 
for the speed control of a steam engine [1], [2]. In the late 1950's, 

various techniques in modern control theory were developed using 

state variables [1], [3], [4]. When the state variable technique is used 

to design a control system, state variable feedback of the state vector, 

which either is known or can be measured, is fedback to control the 

process. 

In the operation of real control systems, knowledge of the values of 

the state variables of the system is usually a prerequisite for feedback 

control. In practice, direct measurements of all states required for 

state feedback are not available. Therefore, it is necessary to estimate 

the system states from the available measurements of the system 

output. 

Estimation of the state of a dynamical system can be done using an 

estimator or an observer. The design of state observers is a 

fundamental problem in modern systems theory. State observers can 

be designed for both continuous-time and discrete-time systems. In 

addition, they can be designed for linear and non-linear systems. 
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Due to the extensive use of digital computers in control systems, 

research into controllers and observers for non-linear discrete-time 

systems is increasing. 

A discrete-time observer utilizes sequences of both the input and 

output of a system to produce an estimate of the state vector of the 

system in a finite number of sampling periods. 

The development of theory for state observer design for non-linear 
discrete-time systems has been a subject of intense research [9], [15], 

[32], [33], [35], [38], [39], [40], [44]. Even so, there is no general design 

method, and this provides the motivation to search for a new simple 

and realisable design method for an observer for non-linear discrete- 

time plants. 

In control system theory, a method of designing a practical observer 
for a non-linear discrete-time system must achieve: 

1. Consistency. Convergence of the observer error must be 

guaranteed. 

2. Robustness. The observer must be stable in the presence of 

bounded uncertainties. 

Computational complexity. The computational procedures 

should be simple and the number of computations should not be 

excessiVely large. 
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1.2 Review of Non-linear Systems 

The subject of non-linear control deals with the analysis and design of 

control systems for non-linear systems. A non-linear system is a 

system containing at least one non-linear component [5]. In state 

space, a non-linear continuous-time system can be described by a 
first-order vector differential equation of the form, 

0 
f (X (t), u (t» (1.1) 

termed the state equation, where f () is a continuously differentiable 

function, X E-= 9q n is the state vector, and u E=- 93' is the input vector, and 

a non-linear algebraic equation of the form, 

h (x(t), u (t)) (1.2) 

termed the output equation where yE=- 93P is the output vector of the 

system. 

A non-linear continuous-time observer can be described by an 

equation of the form, 

0 

g (Z (t), u (t), y (t» 
, 

A non-linear system in discrete-time can be described by a first order 

vector difference equation of the form, 

x (k+l) =f (x(k), u(k)) 

and a non-linear algebraic equation of the form, 

y(k)=h(x(k), u(k)) 

(1.4) 

(1.5) 
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A very large part of the systems literature of theory is concerned with 

the study of linear systems. For a linear system, the equations (1.1) 

and (1.2) take the special form, 

0 

x Ax (t) + Bu (t) 

Cx (t) + Du (t) 

where A is an (n x n) real matrix, B is an (n x m) real matrix, C is a 
(p x n) real matrix, and D is a (p x m) real matrix. 

Robustness is one of the essential concepts in control theory. Robust 

control is a design method that focuses on the reliability (robustness) 

of the control algorithm [5]. Robustness is usually defined as the 

minimum requirement a control system has to satisfy to be useful in a 

practical environment. Once the controller is designed, its parameters 
do not change and control performance is guaranteed. The design of a 

robust control system is typically based on the worst case scenario, so 

that the system usually does not work at optimal status in sense of 

control performance under normal circumstances [69]. Robust control 

methods are well suited in applications where the control system 

stability and reliability are the top priorities, process dynamics are 
known, and variation ranges for uncertainties can be estimated [70]. 

Aircraft and spacecraft controls are some examples of these systems. 

In the control engineering literature, many methods such as feedback 

linearization and sliding mode control etc. have been developed to 

deal with the non-linearity in non-linear systems. Some of these 

methods will be discussed briefly in sections 1.3 and 1.4. The design of 

controllers and observers for non-linear continuous-time and discrete- 

time systems are briefly reviewed in this chapter. Robots [6], [7], [8], 

Underwater vehicle [9], hydraulic servosystems, induction motors 
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[11], [12], and satellite attitude control [13] are examples of non- 
linear systems. 

1.3 Control of Non-linear Systems 

The control of continuous-time non-linear systems has been well 

studied [5], [14]. There are many techniques which have been 

developed to design the controllers for non-linear systems such as 
linearization, adaptive control and sliding mode control etc. Most of 
these techniques involve manipulating the non-linear system to be 

similar to a linear system because of the powerful analysis tools which 
have been developed for linear systems [5], [14]. 

Some of these techniques are briefly discussed as follows: 

1.3.1 The linearization method 
1.3.1.1 The linearization method is a formalization of the argument 

that a non-linear system should behave similar to a linear 

system (i. e. the linearized approximation) for a region about 

the operating point [5]. The linearized approximation can then 

be used to analyse and learn about the behaviour of the non- 
linear system [5], [14]. 

Consider the non-linear system given in equation (1.1) which 

can be written as, 
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af (x(t), 

af (X(t), 

+f h. o. 

U(O) 
-(X=X(O), U=U(O)) 

u(t)) 
-(X=X(O), U=U(O)) 

x 

u 

(1.8) 

where fh. 
o. t. 

denote the higher order terms in x and u, and 

(x(O), u(O)) is the equilibrium point. 

Let) 

Of (X(t)' 

ax 

af 
ai, 

u(t)) 
- (X=X(O), U=U(O)) 

u(t)) 
-( X=X(O), U=U(O)) 

(1.9) 

(1.10) 

Then, the linearized model of the original non-linear system 
1) is, 

0 

x Ax (t) + Bu (1.11) 

so, the stable design of the linear system guarantees the local 

stability of the original non-linear system [5]. 

The linearization method has some limitations, which are, 

1. Linearization is an approximation in the neighbourhood of 

the operating point. Therefore, it only predicts the local 

6 



behaviour of the non-linear system in the vicinity of the 

operating point [14]. 

2. The dynamics of the non-linear system are much richer than 

the dynamics of the linear system. In other words, there are 

some phenomena that can take place only in the presence of 

non-linearity and that can not be described or predicted by 

the linear system. Such phenomena include finite escape 
time, limit cycles, etc. [14], [15]. 

These limitations of the linearization method may mean it 
is not adequate for the study of certain non-linear systems. 
Hence, other methods have been developed for the analysis 

of non-linear systems. 

1.3.1.2 The extended linearization method. It is used when the 

control system must be controlled over a wide range of 

operating points. Even though the extended linearization 

method can produce satisfactory system behaviour, it does not 

guarantee any global stability [15]. 

1.3.1.3 Pseudolinearization. It was introduced by Reboulet et al 
[16] which is an approximation of a non-linear system using 

Taylor series expansion. State feedback and state coordinate 

are derived which enable the resulting closed-loop state 

equation in the new coordinate to have a family of Jacobian 

linearizations that is independent of operating point. The 

application of the extended linearization and 

Pseudolinearization methods are limited to simple non-linear 

systems because they require exact knowledge of the system 

dynamics heavy computation for implementation. 
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1.3.1.4 The feedback linearization method. It is an approach to 

non-linear system design based on the idea of using state 

feedback to transform a non-linear system into a linear one. 
This transformation is achieved by exact state transformation 

and feedback which is different than the conventional 
linearization that is achieved by linear approximations of the 
dynamics [5]. 

Full (complete) linearization is achieved by input-state feedback 

linearization; on the other hand, partial linearization is 

achieved by input-output feedback linearization [5]. 

The feedback linearization method also has some limitations [5]: 

1. The full state has to be measured. 
2. It can not be used for all non-linear systems. 

The robustness is not guaranteed in the presence of 

uncertainty or unmodeled dynamics. 

1.3.2 Adaptive control 
In early 1950s there was extensive research on adaptive control in 

connection with the design of the autopilot for high performance 

airplane but after correct proofs of stability of adaptive systems in 

early 1980s, investigation of the necessity of these assumptions has 

sparked interesting research into the robustness of adaptive control 

and also when microprocessor enabled cost-effective 
implementations. 
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An adaptive control system can be defined as a feedback control 

system intelligent enough to adjust its characteristics in a changing 

environment so as to operate in an optimal manner according to some 

specified criteria. 

An adaptive controller differs from an ordinary controller in that the 

controller parameters are variable, and there is a mechanism for 

adjusting these parameters online based on signals in the system [5], 

[17]. On other words, it is assumed in adaptive system that the 

parameters are adjusted all the times [17]. 

There are many approaches to design adaptive controllers such as 
Model-reference adaptive control (MRAQ, self-tuning controllers 
(STC), and gain scheduling [17]. 

The Model-reference adaptive control, which is shown in figure (1.1), 

is one of the major approaches in adaptive control. The desired 

performance is expressed as a reference model, which gives the 

wished response to an input signal. The adjustment mechanism 

changes the parameters of the regulator by minimizing the error 

between the system output and the reference model. If the error is 

equal to zero, then the perfect model following is achieved [18]. 

The self-tuning controllers proceeds in two stages: The parameters of 

the system are estimated first in real time from the input to the 

output of the system. Then a control signal is generated based on the 

parameter estimation and control algorithm [19]. 
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Reference Model 
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Regulator P'. ant 
0111plit 

(Real System 

Figure 1.1: Block diagram of the Model-reference adaptive control 
(MRAQ [18] 

Gain scheduling is an open-loop compensation. On other word, it is a 

system with feedback control in which the feedback gain is adjusted 
by feedforward compensation [17]. Gain scheduling is a very useful 

technique. It has the drawback that it may require a considerable 

effort to obtain a schedule by performing control design for many 

different operating conditions. But auto-tuning can conveniently be 

used to generate gain schedules semi- automatically by repeating 

automatic tuning at several operating conditions that cover the full 

operating range. Industrial experience has shown that substantial 

improvements for simple control loops can be obtained with schedules 

that only have a few entries [20], [21]. 

A great number of researches in control systems applications are in 

adaptive control such as aerospace [22], process control, ship steering 

[23], [24], robotics [25] and other industrial control systems. 

Some adaptive controllers suffer from several problems such as: [18] 

1. They do not track time-varying parameters very well. 

2. Typically only asymptotic results are proved may be poor. 
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3. The control signal can get quite large in comparison to what 

the control signal would be if the plant parameters and state 

were known and the ideal LTI compensator was applied. 

The adaptive control can be very useful and give good closed loop 

performance. However, that does not mean that adaptive control is 
the universal tool that should always be used [17]. also, it should be 

pointed out that the use of adaptive controller will not replace good knowledge, 

which is still needed to the specification, the structure of the controller, and the 
design method [ 17]. 

1.4 Review of Observers 
The observers are indispensable tools for engineering. Their main 
function is extracting otherwise unmeasurable variables for a vast 

range of applications such as feedback control [87] and system health 

monitoring [88]. In engineering practice, an observer is used for a 

number of purposes, such as removing phase lag in feedback, reducing 

the use of costly sensors [88] and estimating disturbances [89]. There 

are many techniques which have been developed to design an observer 
for linear and non-linear continuous-time and discrete-time systems. 

These techniques can be classified into three categories, linear 

observers, non-linear observers and disturbance observer. The first 

two classes are concerned with state estimation based on a 

mathematical plant model; the other is concerned with disturbance 

estimation based on input output data. For the first two classes, 

sophistication of observer design gradually grew. Initially, it was 

found that a better estimate could be obtained if more accurate 

information was incorporated into the observer. This includes 

knowledge of noise and disturbances characterized by deterministic, 

differential [90], polynomial [91], bounded [73], and stochastic [30] 

descriptions. Consequently, many of these enhancements were 



proposed at the cost of detailed model information. In practice, it has 

been recognized that one can not rely entirely on mathematical 

models [28]. This leads to the third class of observers developed for 

practical disturbances [91], [92], [93]. This class of observers 

compliments the first two classes in practical control problems with 

significant nonlinearity and uncertainty. They are primarily 

motivated by the need for effective disturbance rejection in control of 

mechanical systems. 

1.4.1 Linear Observer 

1.4.1.1 Input Based Observer. If the output measurements for the 

system are not available, the input based observer is used to 

estimate the system states. If the input u, the initial 

conditions are available and the system model in the observer 

is accurate, then the system states can be determined using 

only inputs. 

i- Az + Bu (1.12) 

1.4.1.2 Output Based Observer. The system states can be estimated 

using the output measurements 

i= Az +L (y-Cz) (1.13) 

where L is the observer gain and it is chosen such that the 

observer error is converge to zero by making the eigenvalues 

of (A-LC) to have negative real part. The low pass noise 

filter and approximate differentiator are types of the output 

based observer. 
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1.4.1.3 Luenberger Observer. Also known as closed loop observer. 

It is a combination of the input based observer and the output 

based observer method [26]. Since the initial conditions are 

not always available, the Luenberger observer uses the 

feedback of the estimated states and the measured data to 

eliminate the need of the initial conditions. 

i= Az + Bu + L(y-Cz) (1.14) 

where L is the observer gain. The main advantage of this 

method is the ability of using the inputs, the output 

measurements and the system modal to reduce the noise and 

phase lag without knowledge of the initial conditions. Today, 

most of observers are based on the structure established by 

Luenberger observer with difference in methods of choosing 

the observer gain L. 

1.4.1.4 Proportional Integral Observer. It was developed by Beale 

et al [27] for linear system which is a modification of 
Luenberger observer by adding an integral gain L to 

Luenberger observer equation (2.14) to become, 

i= Az + Bu + L(y-Cz) +LIf (Y-CZ) 

The main idea of using the extra integral gain is to enhance the 

correction term by accumulating observer error by time. 

1.4.2 Non-linear Observer 

1.4.2.1 Non-linear Luenberger observer. it is a modification of the 

linear Luenberger observer. It will estimate the state x(t) 

using the input and measured output data and feedback the 

estimated state along with the measured data. The 

Luenberger observer established the structure the structure of 
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most observers are based with a difference of choosing the 

observer feedback gain L. The Luenberger observer is limited 

by the requirement that non-linear system knowledge is 
known and it is not explicitly designed to handle disturbances 

[28]. 

1.4.2.2 Kalman Filter. It was one of the first observers to include the 

formulation of disturbances [29], [30]. Some assumptions have 

to be made about the unknown disturbance, so the Kalman 

filter will minimizes the 2-norm of the observer error. The 

Kalman filter has not been widely applied to industrial 

applications, probably, due to the complexity of the 

implementation [28], [31]. 

1.4.2.3 Extended Kalman Filter. It was the first major effort to 

adapt the Kalman filter for non-linear systems. The 

linearization technique is used at each time step to get A(t) 

and C(t) to then be used in the standard Kalman filter. Also it 

involves introducing arbitrary diagonal matrices to take the 

approximation error into account [28], [32], [33]. 

1.4.2.4 Extended linearization method. Just as for control of non- 

linear system design, the extended linearization method [15] 

can be used to obtain linear error dynamics for the observer. 

The non-linear observer is constructed such that the 

eigenvalues of the linearized error equation are placed at 

specified values which are locally invariant with respect to any 

fixed operating point. 
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1.4.2.5 An extended Luenberger-type observer. This type of 

observer for single input single output (SISO) non-linear 

systems was developed by Gauthier et al. [35]. Under a 

certain assumption that the non-linear function is globally 
Lipschitz with respect to any norm, i. e. if 

f (x) -f (ZA: ýg y llx-zlý (1.16) 

is satisfied for any x and z where y >0, then an exponential 

observer can be designed. Since this observer is a high gain 

observer , it is very sensitive to measurement noise [36]. De 

Leon-Morales et. al [37] modified this high gain observer by 

reducing the high gain characteristic to become more robust 

with respect to measurements noise and disturbances. 

In Gauthier et. al. [71], a constant gain observer has been 

proposed for general single output systems that are uniformly 
infinitesimally observable under some regularity assumptions 

on the vector fields. However, the main shortcoming of the 

proposed observer is that its practical construction is difficult 

to realize because the computation of the observer gain is not 

direct and constructive [72]. 

1.4.2.. 6 Metric observer. It was developed by Lohmiller et al. in [9], 

[38], and [39]. These observers are described by Euler 

coordinates. This method enables a non-linear observer to be 

considered at a given point in the state space rather than 

individual trajectories. The dynamics of the observer can be 

shaped by changing the coordinate representation of the 

system. 

15 



1.4.2.7 H,. Observer: it is another type of observer which optimizes a 

cost function based on an assumption about the disturbance. 

This formulation is significant because it uses a unique 

characterization of the disturbance. Kalman minimizes the 

minimum squared error because it is a mathematically 

manageable optimization problem. Using infinity norms, the 
Hoo observer is able to minimize the maximum or worst case 
disturbance [73], [74], [75]. The observer is guaranteed to be 

optimal under a user defined upper bound y. 

1.4.2.8 Sliding mode observer. It was developed by Slotine et al. , 
[35], [40], [41], [42]. Sliding mode observers differ from 

Luenberger and other observers in that there is a non-linear 
discontinuous term injected into the observer depending on the 

observer error. The sliding mode observers are more robust as 
the discontinuous term enables the observer to reject 
disturbances, and also a class of mismatch between the system 

and observer. The discontinuous term is designed to drive the 

trajectories of the observer so that the state estimation error 

vector is forced onto and subsequently remains on sliding 

surface. In most cases, the sliding surface is set to be the 

difference between the observer and system output which is 

therefore forced to zero. When a sliding mode is achieved the 

system will experience a reduced order motion which is 
insensitive to a class of system mismatch. On other words, It is 
based on the attractive manifold that will attract the observer 

error to slide to zero once the error trajectories reach the 

sliding surface regardless of any uncertainties or disturbances 

[1], [2], [41], [42]. This method will be discussed in detail in 

chapters 3 and 4. 
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1.4.3 Disturbance Observers 

Since the introduction of the disturbance observer as an 

unknown input state space observer by Johnson, it has been 

widely used to deal with the disturbance on the systems [28], 

[55]. The mean idea of disturbance observer is to augment the 

system with a fictitious dynamical system which generates the 

disturbances, and then an observer is designed to estimate the 

states of both the system and the disturbance generator. By 

using the reconstructed disturbance state for feedback, 

disturbance rejection is accomplished. 

As the feedback signal is only an estimate of the actual 
disturbance acting on the system, the disturbance observer 
does not control the plant which means that a normal 
feedback controller is still needed to achieve performance. The 

benefit of the disturbance observer is that it adds disturbance 

rejection to the nominal feedback controller without affecting 

the system performance. 

1.4.3.1 Disturbance observer. It was studied by [28], [55] to 

estimate the disturbance. It is different from state observer 
because it estimates external disturbances and observer modal 
discrepancies that effectively appear at the system input. By 

feedback the estimated disturbance, the system disturbance 

rejection is accomplished. The Disturbance Observer is usually 

written in transfer function instead of state space form [28]. 

Figure (1.2) shows block diagram of a control system with a 

disturbance observer. 
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1.4.3.2 Unknown input observer. It was developed by Hostetter et. 

al. [43] to use the disturbance observer's concept in state 

space representation. By using state space equations, the 

Unknown input observer defines assumptions about the rate 

of disturbance changes. The disturbance input is made to 

satisfy a differential equation. The ability to estimate states 

and disturbances simultaneously is a practical advantage of 

the unknown input observer over the disturbance observers. 

Controllc- ...... ..... 
.......... 

Disturbance 
observcr 

.......... .............. 

Figure 1.2: Control system with a disturbance observer 

1.4.3.3 Perturbation observers. It estimates the unmodeled system 

variation in addition to external disturbances. The Lipschitz 

non-linear observer is type of the perturbation observers 

which was studied by Rajamani [44] for a class of non-linear 

systems represented by a linear time-invariant (LTI) system 

with a perturbation which is a Lipschitz non-linearity i. e. 

w (X, u) -9 (Z, u)ýý, : 2ý, y ýýx - zýI (1.16) 
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where ýp is a Lipschitz non-linearity with a Lipschitz 

constant y>O. A sufficient condition for stability in terms of 

the eigenvalues and the eigenvectors is obtained from the 

linear stability matrix. An algorithm is presented for 

obtaining the observer gain matrix in order to achieve 

asymptotic stability. 

1.4.3.4 Extended State Observer: Most observers are made to 

handle slight perturbations for a modelled system; however 

the extended state observer was designed to remove the 

requirement of a modelled system by rejecting un-modelled 
dynamics [28]. The extended state observer uses a simple 

canonical form so the un-modelled dynamics appear at the 

disturbance estimation portion. This decisively captures the 

subtle but important design methodology shift between 

modern estimators and disturbance estimators. It 

encompasses realistic disturbances and un-modelled plant 

variations while remaining simple. 

After a half century of continuous research and development, 

observers have become an integral part of control theory and practice. 

Starting from linear observer to non-linear and disturbance observers 

proceeded with two distinct schools of thought: One, linear and non- 

linear estimation relies on a detailed mathematical model of the 

system and seeks optimal solutions. The other, disturbance 

estimation, acknowledges the limit of available partial system 

dynamic information, and seeks to estimate the disturbance, i. e. the 

discrepancy between the model and the real system. In some cases, 

the disturbance observers provide both the state and disturbance 

estimation. The model-based methods provide rigorous and, in many 
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cases, optimal solutions. The disturbance estimation strategy is less 

known but addresses the uncertain nature of physical processes; and 

it seems to offer a more practical design framework to deal with real 

world control problems. 

1.5 Research Aim and Objectives 

The aim of the thesis is to present the design of an observer for non- 
linear discrete-time systems using sliding mode. 

The main objectives are as follows: 

1.5.1 To present a theoretical framework for the sliding mode 
technique for non-linear discrete-time systems. 

1.5.2 To use the framework to design a sliding mode observer. 

1.5.. 3 To illustrate the design technique on two non-linear discrete- 

time systems. 

1.6 Organization of the Thesis 

In chapter 2, the problem is formulated for a non-linear discrete-time 

system for which an observer is designed. The observer design method 
is applied to two case studies of controllers and observers for discrete- 

time non-linear systems and as expected the design method fails to 

guarantee the convergence of the observer error. is shown to diverge. 

In chapter 3, the sliding mode technique is introduced and discussed 

as a way of solv ing the particular problem found in chapter 3. A 

literature review of the sliding mode technique for linear and non- 

linear systems is presented. As an introduction to the sliding mode 

technique, it is applied to a case of linear control system. The 
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advantages and disadvantages of using the idea of sliding mode 

control are presented. 

Chapter 4 is the main focus of the thesis where the sliding mode 

technique is applied to the design of an observer for non-linear 
discrete-time systems. The design is applied to the two case studies 

investigated in chapter 2. 

Finally, in chapter 5, conclusions are given with a summary of the 

findings of the thesis and suggestions for future research. 
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Chapter 2 

Problem Formulation 

2.1 Introduction 

The previous chapter discussed the control of non-linear systems and 
the associated problem of observers for non-linear systems. The main 

objective of any design method for an observer is to guarantee the 

convergence of the observer error to zero. 

In order to analyze any observer design method, a system has to be 

set up to which the method is applied. In this chapter, observers for 

two cases of non-linear systems are studied to investigate the 

convergence of the observer error. 

2.2 Non-linear Discrete-time Observer Design 

Consider a non-linear discrete-time state space system as, 

x(k+1) =f 
(x (k), u(k» 

Cx (k) (2.2) 

where f (. ) is continuously differential, x EE 9P is the state vector, 

is the input, yE=- 93P is the output of the system. 
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Assume that the system described by equations (2-1) and (2.2) is a 

single input and single output (SISO) system with a linear input u, 

x(k+1)= f (x (k»+Bu(k) (2.3) 

Cx (k) (2.4) 

where B is the input matrix and C is the output matrix. Assume that 

the pair (Ax)B)are controllable and the pair (4x, C)are observable 

where A_, is the Jacobian matrix of &) around the equilibrium point 

(XO I UO) - 

The system described by equations (2.3) and (2.4) has a linear 

combination of the input added to the states and the output is a linear 

combination of the states. This means that the states are used to 

model the non-linearities inherent in the dynamics of the system. 

An observer can be designed to produce an estimate of the state 

vector, z(k) , in the same form as the original system (2.3) with an 

additional input depending on the difference between the measured 

values and the estimated values of the output vector. 

z(k+1)=f 
(z(k))+Bu(k) 

1 (k) (y (k) 
- Cz (k)) (2.5) 

where 1(k) is the vector of observer feedback gains. The dependence on 

k is due to the non-linearity of the system i. e. the observer feedback 

gain 1 changes over time and needs to be calculated at each time step, 

k. 
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A block diagram of the whole system is shown in fig. 2.1. Note that so 
far this follows the design of an observer for a linear system apart 
from the dependence of 1 on the time step, k. 

Figure 2.1: Block diagram for Non-linear Discrete-time Observer. 

Let us define an observer error vector, e(k), as the difference between 

the true state, x(k), and the state estimate, z(k). 

e (k) =x (k) 
-z 

(k) (2.6) 
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then, 

e(k+1) = x(k+1)-z(k+1) (2.7) 

From equations (2.3) and (2.5), the observer error can be written, 

e(k + 1) =f 
(x (k» 

-f 
(z (k» 

-1 
(k) Ce (k) (2.8) 

Definition 2.1: 

Let us define a comp act set R such that x (h), z (h) c IK and assume 

that f (): IK (-- 93n -> 93" has continuous partial derivatives of second 

order over 11-C, where f(O)=O and IK contains the origin. 

By using Taylor series expansion [18], let f (x(k)) be expanded 

aboutz(k), 

f (x (k)) =f 
(z (k)) + A_ (k) (k) 

(2.9) 
+ Rk (e (k), z (k)) 

where Rk (e(k), z(k)) is the Taylor residual and 

(k) = 
df (k) df (k) 

(2.10) 
dx dz 

x=x(k) z=z(k) 
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Since the continuous function is bounded when it is evaluated over a 

compact set and from definition (2.1), the function f(-) is bounded 

whenever x(k), z(k) E=- IK. Therefore the Taylor residual Rk is bounded 

which means that there exists a positive constant, 8 such that 

JjRk 11 
ýý 8 ýýe (k)ýý 

Substitute equation (2.9) into equation (2.8), to yield, 

(k + 1) = 
[Az (k) -1 (k) C] e (k) + R. (e (k), z (k)) 

(2.12) 

Therefore, from equation (2.12) the observer error consists of two 

parts, the first part is [A. (k) 
-1 

(k) C] e (k) and the second part is the 

Taylor's residual Rh (e (k), z(k)), which is an uncertain vector. In the 

case of a linear time invariant system, the observer error equation is, 

e(k+l)=[A-lC]e(k) (2.13) 

where the observer feedback gain 1 can be calculated using the pole 

placement method provided the pair (AC) is observable. Therefore, 

the non-linear observer equation (2-13) consists of 
[Az(k)-1(k)C]e(k), a linearized part, which is similar to the linear 

case and the observer feedback gain, 1(k), can be calculated using 

pole placement method at assigned observer closed-loop poles at each 

time step (k). The Taylor's residual Rk(e(k), z(k)), which is the 
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second part of the observer error equation (2.12), is an uncertain 

vector that may cause the divergence of the observer error. 

2.3 Case Studies 

In this section, the designs of two non-linear discrete-time observers 

are presented. They are studied to investigate the convergence of the 

observer error of these systems. 

2.3.1 Case 1 

Consider a non-linear discrete-time system as, 

x(k+1)=f (x (k»+Bu(k) (2.14) 

Cx (k) (2.15) 

where, 

(x (k» = 
0.85x, (k) + 0.5X2 (k) 

(2.16) 
0. lx 2 (k) + 0.3 (k) 

1 
X2 

Given the input vector, 

(2.17) ---: 
l, ] 

and measurement vector, 

[0.5 - 2.2], (2.18) 
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Let the observer for the non-linear system described by equations 

(2.14) and (2.15) be described as 

z(k+1)=f 
(z(k))+Bu(k) 

(2.19) 
+1 (k) (y (k) 

- Cz (k)) 

where x (k) E=- 7-C ,z 
(k) E=- S and K (-- S (-- 93' is a compact set and l(k) 

is the vector of observer feedback gains. 

Then the observer error can be described as 

e(k) =x (k) 
-z (k) (2.20) 

and from equation (2.13), 

e(k +1) =[A, (k)-1(k)C]e(k) 
(2.21) 

+Rk(e (k), z (k)) 

The Jacobian matrix Az(k) is obtained as follows: 

Az (k) _ 
df (z) 

(2.22) 
dz 

Z=Z(k) 

Az (k) 0.85 0.5 
(2.23) 

_0.2z, 
(k) 0.3_ 

The state trajectory of this system is shown in figure (2.2) with a 

system input, 

0.05, k> 0) 

i. e. a step input of size 0.05 

(2.24) 
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and initial conditions selected as: 

X(O) = 
0.9 (2.25) 

_0.7_ 

An observer can be implemented using the pole placement method. 
The observer initial conditions are selected as, 

Z(O) = 
[5] 

(2.26) 
4 

and the closed-loop poles of the observer are chosen to be, 

A= [-0.3751 -0.6592] (2.27) 

Simulation code has been written using Matlab to simulate the 

observer of the non-linear discrete-time system (2.19). The observer 

feedback gain 1(k) is calculated using Ackermann's formula for pole 

placement with the "Acker" function in Matlab. The assigned observer 

closed-loop poles in equation (2.27) are kept constant and the observer 

gains are calculated at each time step (k). 

Figure (2.2) shows that the non-linear discrete-time system (2.14) is 

stable for the system used. It should be noted that if a larger step 

input is used, the system is unstable. The observer trajectory is 

shown in figure (2.3). The observer error of the non-linear discrete- 

time observer (2.19) is shown in figure (2.4) where divergence of the 

observer error can be seen. 
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2.3.2 Case 2: Ball and Beam System 

In order to study further the observer design method for non-linear 
discrete-time systems, a practical non-linear system is needed. A ball 

and beam non-linear system is chosen for this further investigation. A 

formulation of the non-linear discrete-time ball and beam system is 
described in Appendix B. 

The state equation for the non-linear discrete-time ball and beam 

system can be shown to be of the form of equation (2.3) (Appendix B) 

i. e. 

1.4 

1.2 

1 

Cý- o 0.8 

0.6 

0.4 

0.2 

(1 

Case 1 

................... . ...... .... ....... ... .................... 

........... ... ........ .................... 

..................... .. 

v 0 10 20 30 40 50 60 70 80 90 100 
Time index 

Figure 2.2: State trajectory for non-linear discrete-time system: case I 
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-0 1.5 

1 

0.5- ....... ..... ... ..... .... ..... 

0- ........... ......... ...... ........ 

-0.5 0 10 20 30 40 50 60 70 
Time index 

Figure 2.3: Observer trajectory for case 1 

where 

x (k+1) =f 
(x (k»+Bu(k) (2.29) 

xl(k)+ Tx, (k) 

hTxl (k) x2 (k) + (k) 
- gh T (k) 

(x (k» 4 X2 X3 

X3(k) + TX4 (k) 

X4(k) 

(2.30) 
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and h is a parameter of the system given by: 

(2.31) 

R 

u(k) is the system input which is the torque applied to the centre of 

the beam, T is the sampling time, m is the ball's mass, R is the ball's 

pole placement x lo" 
0.5 

0- 

-0.5- 

2- 

2.5- 

-3- 

-3.5- 

-4- 

A 11; 
0 10 20 30 40 50 60 70 

Time index 

Figure 2.4: Observer error trajectory for case 1. 

32 



radius, J is the ball's moment of inertia and g is the acceleration due 

gravity, see table (B. 1). 

The input vector is, 

0 

(2.32) 
0 

_T_ 

and the measurement vector is, 

10 0 0], (2.33) 

The vector of state feedback gains, M(k), for this system can be 

designed by using the pole placement method for assigned closed-loop 

poles. The dependence on k is due to the non-linearity of the system 
i. e. the state feedback gain M changes over time and needs to be 

calculated at each time step, k. 

(k + 1) = 
[A_, (x (k)) 

- BM (k)] x (k) + Br (k) (2.34) 

where, 

Ax (k) : -- 
df (x) 

(2.35) 
dx 

x=x(k) 

and r(k) is the reference input. 
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So, the non-linear discrete-time control system (2.34) can be rewritten 

as, 

(k+1) =f 
(x (k»+Br(k) (2.36) 

Cx (k) (2.37) 

The block diagram of the ball and beam control system (equations 

2.36 and 2.37) is shown in figure (2.5). 

The discrete-time ball and beam control system in equation (2.36) can 
be simulated using Matlab as before. The initial state vector is 

selected as, 

0 

x(0) -0 (2.38) 
0 

-0 

and the closed-loop poles are chosen as, 

As= [0.9 0.95 0.95-JO. 1 0.95+jO. l] (2.39) 

Again by using the pole placement method, the state feedback gain, 
M(k), is calculated using the "Acker" function in Matlab. Figure (2.6) 

shows the state trajectories of the non-linear discrete-time ball and 

beam system (2.33) when a step input r(k) is applied. The trajectories 

show that the state feedback has stabilized the system with states 

x, (k) , X3 (k) andX4(k) settling at zero. This is to be expected as X2(k) 
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and x, (k) are the velocities of the ball and beam respectively which 

should go to zero, and X3 (k) is the beam angle which if non-zero 

would keep the ball moving i. e. X2(k): # 0 and xi(k) would be changing. 

The ball position, xi(k) settles at a non-zero value determined by the 

reference input, r(k). 

Let the observer for the closed-loop non-linear system (2.36) be 

described as 

z(k+1) f (z(k))+Br(k) 
(2.40) 

+1 (k) (y (k) 
- Cz (k)) 

where l(k) is the vector of observer feedback gains. 

Figure 2.5: Block diagram for the non-linear discrete-time ball and 
beam control system. 
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The observer error is defined as before, 

e(k) = x(k)-z(k) 

and 

e(k+1) = 
[Az (k)-1(k)C]e(k)+Rh(e (k), z (k)) 

(2.42) 

0.2 

0.15 
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Figure 2.6: State trajectory for non-linear discrete-time Ball & beam 

control system. 



The Jacobian matrix A_, (k) is obtained as, 

Az (k) _ 
df (z) 

dz 
z=z(k) 

hT2 
A_, (k) z4 (k) 

0 
0 

T00 

1 -gh T 2h Tz, (k) Z4 (k) 

01T 
00T 

(2.43) 

(2.44) 

By using the pole placement method, an observer for the non-linear 

discrete-time ball and beam (equation 2.34) is simulated using Matlab with 

the observer initial conditions selected as, 

z(O)= [0.03 00 0]]T, (2.45) 

and the fixed poles of the observer are chosen to be: 

Ao= [0.8 0.9 0.910.2 0.9+jO. 2] (2.46) 

The observer errors should converge to zero but from figure (2.8), a 
divergence of the observer error can be seen. 

The first part of the observer error equation (2.41) is of the form of a 
linear system. So, the Ackermann's formula can be used to calculate 

the vector of the observer feedback gains, l(k). Since the system is 

non-linear, this calculation must be done at each time step (k) as the 

Jacobian matrix, Az(k), is changing. The second part of equation (2.41) 

is the Taylor's residual, Rk(e(k), z(k)), which is an uncertain vector 

and which causes the divergence of the observer error. 
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The results of the simulations for both cases (1) and (2) show that the 

control systems are stables, figures (2.2) and (2.6) and the observer 

errors, figures (2.4) and (2.8) , are diverging. Since the observer error 

equation (2.13) consist of two p arts, a linearized part, 
[A, (k)-1(k)C]e(k), where the pole placement method is used to 

calculate the observer feedback gain 1(k). The second part is an 

uncertain vector Rh(e(k), z(k)), the Taylor's residual, which is 

causing the observer error to diverge. 

So, the pole placement method has failed in the design of a non-linear 
discrete-time observer. Therefore, another method has to be found to 

guarantee the convergence of the observer error i. e. it should force the 

uncertain part of the observer error Rh(e(k), z(k)) to converge to 

zero. If this is achieved the observer error will necessarily converge to 

zero. 

2.4 Summary 

Two cases of controllers and observers for discrete-time non-linear 

systems have been designed and simulated. The pole placement 

method has been used as a design method in these two cases and it 
falls to guarantee the convergence of the observer error. The 

uncertain vectorý Rk(e(k), z(k)), causes the divergence of the 

observer error. Therefore, another method or technique needs to be 
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found to force the uncertain vector 

the observer error will converge. 

R, (e (k), z (k)) to go to zero so that 
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Chapter 3 

Sliding Mode Control 

3.1 Introduction 

In the early 1960's, the Russian scientists Enl'yanove and Barbashin 

came up with the idea of variable structure control systems (VSCS). 

These ideas did not appear outside Russia however until U. Utkis 

published a book in 1976 called Control Systems of Variable Structure 

[45], and V. Utkin published a survey paper in 1977 [46]. 

Variable structure control systems are a class of systems where the 

control law is changing during the control process according to some 

defined rules that depend on the state of the system. In other words, a 

variable structure control systems is characterized by a suite of 

feedback control laws and a switching function. The switching 

function has as its input some measure of the current system 

behaviour and produces as output a particular feedback controller 

which should be used at that instant in time. The result is a variable 

structure system, which may be considered as a combination of 

subsystems where each subsystem has a fixed control structure and is 

valid for regions of system behaviour [47]. 

Sliding mode control (SMC) is a type of variable structure control 

('\TSC). In sliding mode control, variable structure control systems are 

designed to drive and then keep the system state to lie within a 

neighbourhood of the switching function. 

Most of the variable structure control and sliding mode control 

literature consider systems that are both in continuous-time and 
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linear, for example [5], [11], [48], [50], [54], [56], and [57]. Some of the 

literature does also consider non-linear systems in continuous-time 
[111, [12], [24], [25], [40], [54], [57], as well as discrete-time linear 

systems [51], [54]. 

Most of the design techniques for sliding-mode control assume that all 
the system states are accessible to the control law. In practice, all of 
these states are not physically available for feedback. In this case, a 
full state feedback sliding mode controller cannot be implemented 

unless an observer is used to estimate the unmeasured states, or the 
design methods must be modified such that only a subset of the states 

are required to implement the control law. The output feedback 

Sliding mode control has been paid many attentions in recent years, 
Zak et al. [58] developed a geometric condition to guarantee the 

existence of the sliding surface and the stability of the sliding mode. 
Edwards et al. [56] provided a canonical form on which the design 

problem of sliding mode output feedback control is converted to a 

static output feedback control problem. 

Aitken et. al. [76] presented a discrete-time sliding mode observer for 

discrete-time linear time-invariant systems. They showed that the 

discontinuous compensation signal in the discrete-time observer 

causes a limit cycle around the sliding surface. To prevent such a 

phenomenon, they proposed the use of a nonswitching compensation 

signal using the concept of the discrete-time equivalent control. 

Jiang et. al. [77] design a non-linear adaptive controller for single- 

input single-output feedback linearisable nonlinear systems. A 

fictitious state is introduced to represent the system perturbation 

which includes the combined effect of system nonlinearities, 

uncertainties and external disturbances. A sliding-mode state and 

perturbation observer is designed to estimate the system states and 
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the fictitious state. The non-linear adaptive controller has a simple 

structure as only one output is required to implement it and its design 

does not require the detailed information of system model but it is 

able to adapt itself to the system variation and external disturbances. 

Sliding mode state and perturbation observer can be regarded as an 

extended-order conventional sliding-mode state observer proposed in 
[40] However, the accuracy of state estimation in sliding mode state 

and perturbation observer depends on the estimation error of the 

perturbation, rather than the upper bounds of the perturbation 

required in sliding mode state and perturbation observer. 

Veluvolu et. al. [66] proposed a design method for a discrete-time 

sliding mode (DSM) nonlinear observer for a class of nonlinear 

uncertain systems. A strategy is employed to avoid switching across 

the sliding manifold and the sliding trajectory is confined to a 
boundary layer once it converges to the sliding manifold. the selection 

of the sliding mode gain and the boundary layer is based on 
disturbance bounds. 

Choi [59] developed a method for designing sliding mode controllers 
by presenting a sufficient and necessary condition in terms of linear 

matrix inequality (LMI) with a matrix equation constraint. Ji et al. 
[60] proposed sufficient and necessary condition for the existence 

problem is developed by two matrix inequalities, one of which is 

bilinear matrix inequality. Then an iterative linear matrix inequality 
(ILMI) approach is presented to solve such kind of matrix inequalities. 

Davila et. al. [67] proposed a sufficient condition for robust asymptotic 

stability of the sliding mode dynamics and a sufficient condition is 

given for the existence of such a sliding mode observer in terms of 
LML The proposed control scheme guarantees the asymptotic stability 
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of the closed-loop system containing observer dynamic and observer 

error dynamic. 

Veluvolu et. al. [68] proposed a design method for Sliding mode 

observer for a class of nonlinear uncertain systems. The original 

system is divided into three interconnected subsystems, and then 

multiple sliding modes are then introduced to compensate for multiple 
disturbance terms in the subsystems by appending them to constant 

gain observer. 

Although sliding mode control can be thought of as a particular 

approach to robust controller design, its methodology is quite different 

from other conventional robust control methodologies such as H2 and 
H. approaches, where the control law is constructed by minimizing 

various norms associated with the transfer functions of interest [78]. 

Traditionally, in sliding mode control the design of a switching surface 

relies on various methods such as pole placement, eigenstructure 

assignment, quadratic minimization and so on[78]. 

As an introduction to the sliding mode control, a linear control system 

will be discussed in this chapter whilst in chapter (4), the sliding 

mode technique for non-linear control systems will be discussed. 

3.2 Applications of the Sliding Mode Control 

Applications that use the theory of variable structure control and the 

theory of sliding mode control have increased since these theories 

were published outside Russia. 

3.2.1. Motor Control 

Control of electrical motors has been a Popular application of sliding 

mode control. The technique has been applied to the control of dc 
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motors, synchronous motors, and induction motors. The following are 
just a few of many references in the literature [12], [48], [49]. 

3.2-2. Aircraft Control 

Variable structure control has been applied to the a variety of flight 

problems such as a realization of asymptotically decoupled control of 

roll angle, angle of attack, and sideslip in the presence of rapid 

maneuvering [79], and flight control [80], [81] 

3.2.3. Spacecraft Control 

The sliding mode control has been applied to spacecraft rotation 
damping [82]] and orientation control [83]. 

3.2.4. Flexible space Structure Control 

Studies have been made on the use of sliding mode control for 

stabilization, regulation, and maneuvering of large flexible space 

structures [52], [84]. 

3.2.5. Other Applications 

hydraulic servosystems [50], furnace temperature control [42], [51], 

helicopter flight regulation [42], robots [7], [8], power system 

stabilizer [42], [53], chemical process regulation [42] and satellite 

attitude control [13] are examples of the applications that use variable 

structure control and sliding mode control theories. Undoubtedly, 

quite other published works of great interest have been missed. 

3.3 Theory of Sliding Mode Control 

Sliding mode control can be defined as a control law that switches 

rapidly between two values of gains with the objective of bringing the 

system's state trajectory onto a specified surface. In other words, the 

45 



sliding mode control consists of a control law that switches with 

infinite speed to drive the system onto a specified state trajectory, 

which is called the sliding surface, and is then capable of keeping the 

state on this surface [61]. Figure (3.1) shows the sliding mode in a 

continuous-time linear system and figure (3.2) shows the oscillation in 

vicinity of sliding surface in continuous -time. 

SW =o 

Figure 3.1: Sliding mode in a continuous-time linear system [37]. 

To explain the sliding mode control method, consider the linear 

discrete-time control system [54], 

x(k +1) = Ax(k)+ Bu(k)+Dr(k) 
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=0 

Figure 3.2: Oscillation in vicinity of sliding surface in continuous-time 

[54]. 

where xE 93" is the state vector, u cz 93"' is the input, and r is the 

reference input which is unknown. The matrices A and D are real 

valued unknown matrices with appropriate dimensions and the pair 

(A, B) is assumed to be controllable. 

The objective is to design a controller for the system in equation (3.1). 

The sliding mode dynamics do not depend on the control input 

u(k) but depend on the switching (sliding) surface equations. 

Therefore, the design procedure should consist of two stages. First, 

the equation of the sliding surface is selected to design the desired 

dynamics of this motion in accordance with some performance 

criterion. Then, the discontinuous control should be found such that 

the state would reach the sliding manifold and such that the sliding 

mode exists in this manifold. So, the sliding mode design is decoupled 

into two sub problems of lower dimension and after a finite interval 

preceding the sliding motion, the system will possess the desired 

dynamic behaviour [54]. 
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Definition 3.1: 

The sliding surface is defined as 

S(k+l)=C., x(k+l) 

. ginixn where C. 
_ 

(3.2) 

The reason for using a sliding surface, sometimes called a switching 
function, is clear since the function given in equation (3.2) is used to 

decide which control law is in use at any point. 

Definition 3.2: 

The sliding manifold where the sliding mode exists is defined as 

ý2 = 
ýx(k)ýS(k +1) = 01 

Definition 3.3: 

(3.3) 

The dynamics of a discrete-time system are giVen by the state 

equation [61], 

x(k+1)=f (x(k), u(k)) 

y (k) =g (x (k), u (k)) 

(3.4) 

where xe 93', u E=- 93"', y E=- 93P, and m:!! ý n. The reference [61] considers 

a linear system so in fact f(. ) and g(. ) are linear functions of x(k) 

and u(k). Discrete-time sliding mode takes place on a subset I of the 

manifold Q=jx(k)ýS(x(k))=Oj, Se9i"', if there exists an open 

48 



neighbourhood N of this subset such that for each x(k) (=- N it follows 

that S (f (x (k + 1))) 

According to definition (3.3), the sliding mode existence condition is of 
the form 

S(k +1) = Cx(k+1) (3.5) 

for any x (k) E=- N. 

From equations (3.1) and (3.2) 

S (k + 1) = CAx (k) + CDr (k) + CBu (k) (3.6) 

the control u (k) is designed by setting equation (3.6) equal to zero. 

S(k +1) = CAx(k)+CDr(k)+CBu(k) =0 (3.7) 

(k) =- (CB)-' (CAx (k) + CDr (k)) (3.8) 

In according to definitions (3.2) and definitions (3.3) with equation 

(3.5), the sliding mode exists if the matrix (CB) has an inverse, 

otherwise the control u(k) will not be able hold the sliding mode inside 

the silding manifold. 

The control law, which will yield motion in the manifold S(k + 1) = 0, 

will be called equivalent control Ueq(k) and it can be represented as a 

sum of two linear functions, 

Ueq(k) = -(CB)-l S(k) - (CB)-l ((CA - Qx(k) 

Cn +D r(k)) 
(3.9) 
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and 

S (k + 1) = (S (k) - Cx (k)) + CAx(k) + CDr(k) + CBu(k) 

S (k + 1) =S (k) + (CA - C) x (k) + CDr(k) + CBu(k) 

Definition 3.4: 

The control can vary within 

Jýu (k)ýý:! ý cp 

where qp is the boundary layer thickness. 

Assumption 3.1: 

The available control resources are such that 

(3.10) 

(3.11) 

(3.12) 

ýý(CB)-' ýý 
- 
ýJ(CA 

- C) x (k) + CDr (k)ýý < (p (3.13) 

otherwise, the control resources are insufficient to stabilize the 

system. 
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Then the control u(k), 
I 

Ueq(k) 

Ueq(k) 

JýUeq(k)ýj 

for JýUeq(k)[! ý (p 

for ýjUeq (k)ýý > cp 

Equation (3.14) represents the control law of the sliding mode. 

(3.14) 

Equation (3.14) shows that u(k)= Ueq(k) for IýUeq (k)[!! ý ýp yields motion 

in the sliding manifold Q. But for the case when JýUeq(k)ýý >, rp i. e. 

outside the sliding manifold, substitute equation (3.14) into equation 

(3.11)ý 

S(k +1) = S(k)+ (CA -C)x(k)+CDr(k) 

+ CB 9 
Ueq(k) 

for 0 JýUeq(k)jý Ueq(k)ýj >v 

(3.15) 

Substitute equation (3.9) in equation (3.15), 

S(k +1) = S(k)+ (CA -C)x(k)+CDr(k) 

Q9 

(S (k) + ((CA 
- C) x (k) + CD r (k))) 
ýýUeq(k)ýj 

fo r JýUeq(k)ýý > ýp 

(3.16) 
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S(k+l)=(S(k)+(CA-C)x(k)+CDr(k)) 1- 90 
JýUeq(k)jj 

fo r 
IlUeq(k)ll 

> ýp 

(3.17) 

If the norm of both sides of equation (3.17) is taken, 

ýS(k+l)ý1=1ýS(k)+(CA-C)x(k)+CDr(k)lý 1- 90 
ýjUeq(k)ýý 

(3.18) 

S(k+l)ýý = ýJS(k)+ (CA -C)x(k)+CDr(k) 

irp 
(ýJS (k) + (CA - Qx (k) + CDr (k)jý) 

ýjUeq(k)jý 

(3.19) 

By substituting once again equation (3.9) into equation (3.19) yields, 

S (k + 1)ýý = JýS (k) + (CA - Qx (k) + CDr (k)jý - 

(3.20) 

ýS (k + 1)ýJ:! ý ýýS (k)ýý + ýý(CA 
- C)x (k) + CDr (k)II 90 

ýý(CB)-'ýý 

(3.21) 
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from equation (3.13), 

(CA-Qx(k)+CDr(k)ýý< ýo 
ýý(CB)-' ýý 

Then, 

S(k + 1)11 < JIS(k) 

(3.22) 

(3.23) 

Therefore, ýýS(k)ýý will be decreasing and after a finite number of steps 

Ueq (k)ýý < (p is achieved and the sliding mode will take place after 

k>k,,, [6 1]. The state trajectory for this system with respect to time 

is shown in figure (3.3). 

4r 
r 

-"--" 

'r-- --- 

--- ----- ------ 

Figure 3.3: Sliding mode control for linear discrete-time system [20]. 

Equations (3.15) - (3.23) show that under assumption (3.1) and by 

using the control u(k), equation (3.14), the sliding surface will be 

attractive and once the system reaches the sliding manifold it will 

53 



keep the motion inside it regardless of the unknown parameters or 

uncertainties such as the reference input r(k). 

To summarize the operation of the sliding mode control, 

1. After finite time, the system will reach the sliding manifold Q. 

Once the system reaches the sliding mode for all k> ksr, its 

trajectory motion is confined to the sliding manifold Q and the 

order of the closed-loop system dynamics is less than the order 

of the uncontrolled system. 

3.4 Chattering 
The chattering phenomenon is generally perceived as the high 

frequency switching between the two different controls at the vicinity 

of the sliding manifold will take place as the system trajectories 

repeatedly cross the sliding surface possibly exciting unmodeled 

dynamics in the closed loop. There are two possible mechanisms 

which cause such a motion. First, in the absence of switching non- 

idealities such as delays, the presence of parasitic dynamics in series 

with the system causes a small amplitude high-frequency oscillation 

to appear in the neighborhood of the sliding manifold [54]. These 

parasitic dynamics represent the fast actuator and sensor dynamics 

which, according to control engineering practice, are often neglected 

in the open-loop model used for control design if the associated poles 

are well damped, and outside the desired bandwidth of the feedback 

control system [54]. Generally, the motion of the real system is close 

to that of an ideal system in which the parasitic dynamics are 

neglected, and the difference between the ideal and the real motion, 

which is on the order of the neglected time constants, decays rapidly. 

The interactions between the parasitic dynamics and VSC generate a 
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non-decaying oscillatory component of finite amplitude and frequency, 

and this is generically referred to as chattering. 

Second, the switching non-idealities alone can cause such high- 

frequency oscillations. Since the cause of the resulting chattering 

phenomenon is due to time delays, discrete-time control design 

techniques, such as the design of an extrapolator can be applied to 

mitigate the switching delays [85]. Since it is necessary to compensate 
for the switching delays by using a discrete-time control design 

approach, a practical sliding mode control design may have to be 

unavoidably approached in discrete time. 

The piecewise linear approximation of the switching element in a 
boundary layer of the sliding manifold is an approach to reduce the 

effects of chattering [86]. Inside the boundary layer, the switching 
function is approximated by a linear feedback gain. In order for the 

system behavior to be close to that of the ideal sliding mode, 

particularly when an unknown disturbance is to be rejected, 

sufficiently high gain is needed. This proposed method has wide 

acceptance by many sliding mode researchers, but unfortunately it 
does not resolve the core problem of the robustness of sliding mode as 

exhibited in chattering [86]. Most of them used a straightforward 

approach to avoid chattering: the sign function of the discontinuous 

control is approximated by the saturation function. 
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3.5 Advantages and disadvantages of sliding mode 

control. 

3.5.1 Advantages 

1. The main feature of sliding mode control is to keep the system 

insensitive to internal parameter variation such as uncertainties 

and external disturbance. 

2. In sliding mode control systems, the controller structure is changed 

to obtain the desired behaviour by using a high speed switching 
feedback control. The sliding mode control system drives the 

trajectory of the closed-loop system onto a specified surface, which 

is called the sliding surface, and ensures the trajectory of the 

closed-loop system stays on this sliding surface there after. 

3. One of the most intriguing aspects of sliding mode control is the 

discontinuous nature of the control action whose primary function 

is to switch between two distinctively different systems. 

3.5.2 Disadvantages 

1. After the sliding mode has been achieved at ksm, the system 

trajectory cannot be backtracked beyond the manifold 

Q=jx(k)ýS(k+1)=Oj unlike in a system without sliding mode 

control. In other words, at any point k ý! ksm it is not possible to 

determine the time ksm or to reverse calculate the trajectory for k< 

ksn, based on information of the systems state at k= ko [27]. 
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2. Chattering is a major problem in continuous-time sliding mode 

control design [21], [27] and without proper treatment; the 

chattering may be a major obstacle to the implementation of sliding 
in a wide range of applications. 

3.6 Summary 

Sliding mode control for linear discrete-time systems has been 

discussed. It shows that by designing the sliding surface and the 

control Uk , the state trajectory is forced to the sliding manifold, i. e. 

the desired trajectory. In addition, after the state trajectory reaches 

this manifold , it will stay there. The non-linear discrete-time sliding 

mode will be discussed in chapter (4). 
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Chapter 4 

Non-linear Discrete-time Observer 

Design by Sliding Mode 

4.1 Introduction 

In chapter 2, observers for non-linear discrete-time systems are 
designed using a pole placement method. The observer errors for 

these systems do not converge to zero. In addition, a linearization 

method has been used to try to force the observer error to converge 
but it does not work. Therefore, there is a need to find another method 

to guarantee the observer errors converge to zero. The previous 

chapter described the sliding mode technique for linear discrete-time 

controller. It appeared to be a method that could be used successfully 

to force the observer error to converge. So, this method with some 

modification will be applied in this chapter to the non-linear discrete- 

time observers in order to force the observer error to converge. 

4.2 Using Sliding Mode in Non-linear Discrete-time 

Observer Design 

Similar to section 2.2, consider the single input single output (SISO) 

non-linear discrete-time state space system as before, 

x(k+1) =f 
(x(k))+Bu(k) 

Cx (k) (4.2) 
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where the pair (Ax) B) are controllable, the pair (Ax, C) are observable 

and Ax is the Jacobian matrix of f(x) around the equilibrium point 

( X0 I UO) - 

The non-linear discrete-time observer of the system (4.1-2) will be 

designed to estimate the states of the system. This non-linear 

observer will be in the form, 

z(k+1) =f (z(k))+Bu(k)+1(k)(y(k)-Cz(k)) (4.3) 

where z(k) is the estimated state vector and l(k) is the observer 

feedback gain. 

The observer error is defined as, 

e (k) = x(k) - z(k) 

and 

(4.4) 

e(k +1) =[A_, (k)-1(k)C]e(k) +Rk(e (k), z (k)) (4.5) 

where Rk(e (k), z (k)) is an uncertain vector. 

From chapter 3, the design of non-linear discrete-time observers using 

the pole placement method or linearizing method does not guarantee 

the convergence of the observer errors. From section 3.3, this 

divergence is seen to be caused by the uncertain vector 

Rk (e(k), z(k)). To solve this problem, another technique has to be 

used to guarantee the convergence of the observer errors. This chapter 
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investigates the use of the sliding mode technique to solve the 

problem. Figure (4.1) shows the block diagram for the suggested non- 
linear discrete-time sliding mode observer. 

Let the observer equation (4.3) be modified by adding an auxiliary 

observer control u(k) to the observer, 

z (k+1) =f (z (k» + Bu (k) +1 (k) (y (k) - Cz (k» + Du (k) 

(4.6) 

where u(k) is a scalar and D (-= 93"' is the auxiliary vector. 

Figure 4.1: Block diagram for the non-linear discrete-time sliding 

mode observer. 
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Figure (4.1) shows the block diagram of for the non-linear discrete- 

time sliding mode observer presented in this research. The error 
difference between the output of the control system and observer is 
fed back to the observer and also it been used to calculate the 

auxiliary control v(k) which is fed back to the observer. 

Then the observer error, 

e(k +1) =[A,, (k)-1(k)C]e(k)+Rk(e (k), z (k)) -Dv (k) 

(4.7) 

To perform the sliding mode design, a sliding surface and a sliding 

manifold where the sliding mode will occur have to be defined. 

Definition 4.1: 

The sliding surface is defined as, 

S(k +1) = -C,, e(k +1) (4.8) 

where C. c 93 mxn 
)m =1. 

Let C. = C, then, 

S (k) = _C. e (k) 

= -C (x (k) -z (k» (4.9) 

=- (y (k) - Cz (k» 

Definition 4.2: 

The sliding manifold is defined as, 

Q= le (k)ý S (k + 1) = 01 
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Then, 

S(k+1) = -Ce(k+1) =0 (4.11) 

Substituting equation (4.7) into equation (4.11) yields, 

S(k +1) = -CI[A,, (k)-1(k)C]e(k)+Rk- Du(k)l =0 

= -C 
[A, (k) -1 (k) C] e (k) - CRk+ CD v (k) =0 (4.12) 

where Rk=Rk(e (k), z (k)) 

In according to definitions (4.1) and definitions (4.2) with equation 

(4.7), the sliding mode exists if the matrix (CD) has an inverse, 

otherwise the control u(k) will not be able hold the sliding mode inside 

the sliding manifold. 

Let 

A., (k) - [A_, (k) -1 (k) C] (4.13) 

The control law, which will yield motion in the manifold S(k + 1) - 0, 

will be called equivalent control Veq(k) and it can be represented as a 

sum of two functions. 

Then, 

Veq(k) = (CD)-'CA, (k) e (k) + (CD)-' CRk (4.14) 

where Veq (k) is the equivalent auxiliary observer control and CD # 0. 
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At this stage, e (k) is unknown because the system states, X(k), are 

unknown. e(k) will not be used in the simulations nor in practice to 

calculate v(k) but it is only used here to develop the theoretical part 

of the design. 

Rewriting equations (4.12) and (4.14) to become a sum of two 

functions, i. e. by adding 

(CD)-' S (k) - (CD)-' S (k) =0 (4.15) 

to the right hand sides of both equations. 

Veq(k) = (CD)-' S (k) - (CD)-' S (k) + (CD)-' A,, (k) e (k) 

+ (CD)-l CRk 

from equation (4.9), S (k) = -C, e (k). Then, 

(4.16) 

Veq(k) = (CD)-' S (k) + (CD)-' C [A, (k) + I] e (k) 

+ (CD)-l CRk 
(4.17) 

The reason of derivingVeq(k) is to find out the limitation of v(k). 

and similar to equation (4.12), 

S(k+l) = -S(k)-C[A,, (k)+I]e(k)-CRk+ CDv (k) 

Definition 4.3: (Boundary layer) 

The auxiliary observer control can vary within, 

v(k): 5 v 

(4.18) 

(4.19) 
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Since the non-linear observer error equation (4.5) consists of 
[Az (k) 

-1 
(k) C] e (k), a linearized part, which is similar to the linear 

case and the observer feedback gain, 1(k), can be calculated using 

pole placement method at assigned observer closed- loop poles at each 

time step (k). The Taylor's residual R., which is the second part of the 

observer error equation (4.5), is an uncertain vector that may cause 

the divergence of the observer error. 

From definition (2.1) and since the continuous function is bounded 

when it is evaluated over a compact set, then the function f () is 

bounded whenever x(k), z(k) E=-]K. Therefore the Taylor residual Rk 
, 

which cause divergence of the observer error, is bounded 

Assumption 4.1: 

For bounded uncertain vector Rk, the available observer resources are 

such that 

(CD)-'Jý - 
ýJC [A, (k) + I] e (k) + CRkIl < 99 (4.20) 

otherwise, the observer resources are insufficient to stabilize the 

system. 

Definition 4.4: 

The Lyapunov function is 

JýS (k)l (4.21) 
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Theorem 4.1: 
For the non-linear discrete-time observer (4.6), the auxiliary control 

v(k) under assumption (4.1) guarantees the achievement of a stable 

discrete sliding motion on the sliding manifold S (k + 1) = 0, and hence 

of the convergence of the observer error if v(k) is chosen as: 

(CD)-'S(k) 

v(k) (CD)-' S (k) 
ýý(CD)-' S (k)ýý 

Proof: 

ýý(CD)-'S (k)ýý:! ý cp 

ýý(CD)-' S (k)ýý > cp 

From definition (4.4), the sliding manifold Q is attractive if 

V(k+l)<V(k) 

=: > JIS (k + 1)ýý < ýýS (k)II Vk>0 

Substitute equation (4.21) into equation (4.18), 

(4.22) 

(4.23) 

(4.24) 

S (k + 1) = -S (k) -C 
[A, (k) + I] e (k) - CRk + (P 

S(k) 

Fý(C D) -1S 

fo r II(CD)-l S (h)II >v 

(4.25) 
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S(k +1) = S(k) (P 
-1 -C[A,, (k)+I]e(k)-CRk 

" 

ýý(CD)-' S (k)ýý 
, 

for jj(CD)-'S(k)ýj>(p 

(4.26) 

If the norm of both sides of equation (4.26) is taken 

+ ýýC [Aý, (k) + I] e (k) + CRkIl 
'S(k)ýý, 

I 
(4.27) 

S (k+l)[!! ý JIS (k)jý -w 
ýJS (k)II 

+ ýýC [A, (k) + I] e (k) + CRk ýý(CD)-'S(k)ýý 

(4.28) 

S (k+1)II:: ý JIS (k)11 - 
(P + IIC [A, (k) + I] e (k) +CRk ýý(CD)-1ýý 

(4.29) 

Under assumption (4.1) 

11C [A, (k) + I] e (k) +CRk (4.30) 

then, 

S (k + 1)1ý < JIS (k) (4.31) 
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Equation (4.31) satisfies the Lyapunov function In definition (4.4). 

Therefore JIS(k)II decreases monotonically and after a number of steps 

the observer error will converge to zero. L) 

Theorem (4.1) shows that under the assumption (4.1) and by choosing 

the right boundary layer ýp, the sliding manifold will attract the 

observer error to the sliding surface and keep it inside the sliding 

manifold which will force the observer error to converge to zero. 

Therefore, regardless of uncertainties such as Rk (e (k), z (k)) or 

disturbances to the system, Theorem (4.1) guarantees the convergence 

of the observer error. 

W 

Figure 4.2: Block diagram of the non-linear discrete-time sliding mode 

observer. 
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Figure (4.2) shows the block diagram of the designed non-linear 
discrete-time sliding mode observer. The auxiliary control v(k) is 

chosen according to theorem (4.1) and equation (4.9) to be, 

v(k) 
(CD)-' (y (k) - Cz (k)) 

Isgn (- (CD)-' (y (k) - Cz (k))) 

(CD)-' (y (k) - Cz (k))ýý:! ý W 

ý(CD)-' (y (k) - Cz (k))ýý > cp 

(4.32) 

4.3 Cases studies 
In chapter 3, two cases of non-linear discrete-time observers are 

studied. Both of these observers have divergent observer errors. In 

this section, the sliding mode method presented in section 4.2 will be 

applied to these observers to test this method of forcing the observer 

error to converge. 

4.3.1 Case I 

Consider a non-linear discrete-time system (2.3) and (2.4), 

(k+1) =f 
(x (k»+Bu(k) (4.33) 

Cx (k) (4.34) 

where (as before), 

(x (k» = 
0.85x, (k) + 0.5X2 (k) 

(4.35) 
0. lx 2 (k) + 0.3 (k) 

1 
X2 

(4.36) 
= 
101 
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and 

0.5 -2.2 ] (4.37) 

Let the sliding mode observer of the system in equation (4.33) be 

described as 

z(k+1) =f (z(k»+Bu(k)+l(k)(y(k)-Cz(k»+ Du (k) 

(4.38) 

where DE=-93"' is the auxiliary matrix and v(k) is the auxiliary 

control. 

Az (k) = 
0.85 0.5 

- 
0.2z, 1 

(k) 0.3_ 
(4.39) 

The non-linear discrete-time sliding mode observer (equation 4.35) is 

simulated using Matlab with an input control selected as, 

u(k) = 0.05 for k> 0) (4.40) 

The auxiliary vector and the boundary layer are chosen using trial 

and error method to be, 

-0.7 
] 

(4.41) 
0.275 

and, 

(P=10 (4.42) 
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The initial conditions are selected as, 

--' 
0.91, 

(4.43) (0) 
--': 

10.7 

and 

[5] 
(4.44) 

4 

Figure (4.3) shows the sliding mode observer trajectory while the 

sliding mode observer error is shown in figure (4.4). This figure shows 
that the observer error is converging even though it is not converging 
to zero. The auxiliary control for the sliding mode observer is shown in 
figure (4.5). 
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CasE 1 (Sliding Mode ) 
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Time index 

Figure 4.3: Case I observer trajectories. 
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Case 1 (Sliding Mode ) 
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Figure 4A Case I sliding mode observer error. 
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Figure 4.5: Case I auxiliary observer control. 
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which it shows that this sliding mode is free of chattering after a 

number of samples. 

4.3.2 Case 2 

Consider the non-linear discrete-time ball and beam system described 

by equations (2.29) and (2.30), 

x(k+1)=f (x(k))+Bu(k) 

Cx (k) 

where 

xl(k)+ TX2(k) 

h Tx (k) X2 (k) + (k) 
- gh TX3 (k) (x (k» 14 

X2 

x3 (k)+ TX4(k) 

x4 (k) 

and, 

im 
R2 

+m 

Similar to case 1, let the sliding mode observer of the system be, 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

z (k + 1) =f (z (k)) + Bu (k) +1 (k) (y (k) - Cz (k)) + Dv (k) 

(4.49) 
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where DE=- 93"' is the auxiliary matrix) m=1, and v(k) is the 

auxiliary control. 

1 

hT2 (k) Z4 

0 
0 

T0 0 
1 

-ghT 2hTz, (k) Z4 (k) 

01T 
00T 

(4.50) 

The non-linear discrete-time sliding mode observer (equation 4.49) is 

simulated using Matlab with, 

[10 0 0]) 

and the sampling time, 

0.01 

(4.51) 

(4.52) 

Similar to case 1, the auxiliary vector and the boundary layer are 

chosen using trial and error method to be, 

-0.0005 

D=0.72 4.53) 
1.23 

. 
36 

ýp = 0.0245, (4.54) 

Figure (4.6) shows the sliding mode observer trajectories while figure 

(4.7) shows the sliding mode observer error. It can be seen that the 

observer error is converging but it does not converge to zero. The 

observer error is oscillating and after number of samples it reaches 

the sliding manifold and then stays within it which shows the 

convergence of the observer error. The non-zero convergence may be 

due to the choice of the boundary layer (p or the auxiliary matrix D. 
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Figure 4.6: The sliding mode observer trajectory for the ball and beam 

system. 
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system. 
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system. 

The auxiliary observer control for this system is shown in Figure (4.8). 

This shows that the sliding mode is free of chattering after a number 

of samples. 

4.4 Advantages of using sliding mode in designing 

non-linear discrete-time observer. 
1. One of the main obstacles for continuous-time sliding mode is the 

chattering caused by the discontinuous control on the continuous-time 

system. On the other hand, the discrete-time sliding mode control is 

free of chattering for the discrete-time system. 

75 



2. The sliding mode is less sensitive to the uncertainty or to the 

disturbance of the non-linear system because once the trajectory is in 
the sliding manifold it will remain inside and will neglect the 

uncertainties and disturbances. 

3. Theorem 4.1 guarantees that the observer error will converge 

regardless of the uncertainty of Rk (e(k), z(k)) for the non-linear 

observer. 

4. The chattering problem in the continuous-time control systems can 
be avoided by replacing the sign function of the discontinuous 

auxiliary control by saturation function [62]. While the chattering can 
be neglected in the non-linear observer designs because this 

chattering will occur during the calculation in computer and will not 

affect the control system. 

4.5 Summary 

The problem of divergence of the non-linear observer error, which is 

raised in chapter 2 due to the uncertainty of the Taylor remainder, 

Rk(e(k), z(k)) is solved by using the discrete-time sliding mode 

technique. By choosing the boundary layer, the sliding surface is 

attractive and once the observer trajectory enters this boundary layer, 

it will remain within it. Therefore, the non-linear discrete-time 

observer error will converge. Theorem 4.1 guarantees that the 

observer error will converge to zero regardless of the uncertainty of 

Rk(e (k), z (k)) for the non-linear observer. 
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In summary, using the sliding mode method guarantees the 

convergence of the observer error regardless of any uncertainties or 
disturbances to the observer of non-linear discrete-time systems. 
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Chapter 5 

Conclusions 

5.1 Sununary of Findings 

In this thesis, the design of an observer for a non-linear discrete-time 

system is presented. The design method splits the observer error 

equation into two parts. The first part is the observer error for the 

linearized system and the second part is an uncertain vector, which is 
the Taylor's residual. 

The pole placement method is used in this general design which is 
then applied to two non-linear discrete-time systems; one of them is a 

practical system, which is the non-linear discrete-time ball and beam 

system. The observer errors for both systems are diverging. The 

second part of the observer error equation, which is the Taylor's 

residual , is causing the divergence of the observer error, since the first 

part of the observer error can be calculated using a pole placement 

method at assigned closed-loop poles. 

The sliding mode technique is introduced in the design of the observer 
for a general non-linear discrete-time system to force the uncertain 

vector to converge. Sliding mode is a control law that switches at 

infinite speed to drive the system on the specified trajectory. The 

sliding mode dynamics do not depend on the system or the observer 

feedback gains but rather depends on the switching surface. An 

auxiliary control is added to the observer state-space equation to force 
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the observer error onto the sliding surface and then to keep the 

observer error on this surface. 

By defining the Lyapunov function as in equation (4.21) and under 

assumption (4.1), theorem (4.1) shows that JIS(k)ll is decreasing 

monotonically, therefore Ile(k)II is decreasing. So, theorem (4.1) 

guarantees the convergence of the observer error if the auxiliary 

observer control, equation (4.22), has been chosen. So, by choosing the 

right boundary layer (p, the sliding manifold will attract the observer 

error to the sliding surface and keep it inside the sliding manifold. 
Therefore, the observer error will converge. 

Simulations are presented for the observers for two non-linear 
discrete-time systems used as case studies mentioned above, after 
introducing the sliding mode technique. These simulations show the 

convergence of the observer error. 

5.2 Contribution of the Thesis 

Since there is no general design method for observers for non-linear 
discrete-time systems which will guarantee all the characteristics 

stated in chapter 1, the sliding mode design method, which is 

developed in this thesis, addresses some of them, 

1. Consistency. Theorem (4.1) proves that the sliding mode 

technique guarantees the convergence the observer error. 

2. Robustness. The observer error is attractive to the sliding surface 

and once it reaches the sliding manifold it will stay in the 

manifold regardless of the uncertainties. Therefore, by using the 
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sliding mode technique, the stability of the observer in the 

presence of bounded uncertainties is guaranteed. 

Computational complexity. The sliding mode technique does not 

require complex computational procedures and the number of 

computations in this technique is not excessively large. 

5.3 Future Work 

Some of the issues presented in this research thesis may become the 

subject of further research. 

5.3.1 The boundary layer V, where the auxiliary observer control v(k) 

can vary, is one of the key issues in the sliding mode design 

method. Research for a methodology procedure is needed to 

design the value of the boundary layer cp for the non-linear 

sliding mode observer for non-linear discrete-time systems. 

5.3.2 The auxiliary vector D is also one of the key issues in the 

sliding mode design method. Research for a methodology 

procedure is needed to design the value of the auxiliary 

vector 

5.3.3 The sliding mode technique used in this thesis has been applied 

to single-input, single-output (SISO) non-linear discrete-time 

systems. Therefore, an investigation to extend this technique to 

multi-input, multi-output (MIMO) non-linear discrete-time 

systems could be undertaken. 
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Appendix A 

Discretization of Continuous-Time 

Systems 

A. 1 Introduction 

The operation that transforms a continuous-time signal into a 
discrete-time signal is called discretization. The sample and hold 

circuit and analog to digital converter convert the continuous-time 

signal into a sequence of numerically binary words. Such an analog to 

digital (A/D) conversion process is called coding or encoding [87]. 

In this thesis, a solution method to design an observer for a non-linear 

discrete-time system is implemented in chapters (2) and (4). So, a 

practical system is needed to which the solution method is applied. A 

ball and beam non-linear continuous-time system has been chosen. 

Therefore, the discretization methods for transforming a continuous- 

time state-space system to a discrete-time state-space system will be 

discussed in this Appendix. 

A. 2 Discretization of Continuous-Time Linear 

Systems 

In the design of a digital controller for a continuous-time system, the 

conversion of the continuous-time state-space equations into discrete- 

time state-space equations is needed. This conversion can be done by 

introducing imaginary samplers and imaginary hold devices into the 

continuous-time system. The error introduced by discretization may 
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be made negligible by using a very small sampling period compared 

with a significant time constant of the system [87]. Some of the basics 

of the discretization method, which is well published, will be reviewed 

in this section [63], [87]. 

Given a linear continuous-time state space system: 

x(t) = Ax(t) + Bu(t) (A. 1) 

Y(t) = Cx(t) (A. 2) 

where xE=- 9q' is the state vector, yE=-93Pls the output vector and 

u cz 93' is the input vector. A is an nxn state matrix, B is an nxm 

input matrix and C is an pxn output matrix. The pair (A, B) is 

assumed controllable. 

The solution of the state space system (A. 1) is 

x(t) =e At x (0) + le'(t-)Bu (r) dr (A. 3) 
0 

if the initial time is taken as to , then 

t 

x e'(t-to)x(to )+fe A(t-i-)Bu (r) dr (A. 4) 
to 

Let u (r) =u (t(, ) fixed for to :! ý r<t and if A is non-singular, then 

f A(t-T)Bdr= 
e 

A(t-r) A-lB t 
e )]to 

to 
= 

A(t-to) 
-I](A-'B) 

and this is dependent only on the time difference (t -to). 

(A. 5) 
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Let (t - to) =T where T is the sampling time, i. e. by solving the 

continuous-time state-space equation over I sample. 

Let 

F=e AT (A. 6) 
t 
f e'(t-')Bdi- (A. 7) 
to 

From equations (A. 4 - A. 7): 

x(T) = Fx(O) + Gu(O) (A. 8) 

x(2T) = Fx(T) + Gu(T) (A. 9) 

x(3T) = Fx(2T) + Gu(2T) (A. 10) 

Therefore, the general description of state space system in discrete- 

time is, 

x((k +I)T) = Fx(kT)+ Gu(kT) (A. 11) 

To simplify equation (A. 11), assume that kT=k and(k+I)T=k+l, 

then, equation (A. 11) can be written as, 

x(k +1) = Fx(k)+ Gu(k) 

Also, 

Cx (k) 

where u (k) = constant for tk :! ý t< tk+I with initial condition x (0). 

(A. 12) 

(A. 13) 

Equations (A. 12) and (A. 13) comprise the discrete-time state-space 

model of the continuous-time state space system (A. 1) and (A. 2). 
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A-3 Discretization Method by Approximation 

In the preceding sections, the discretization method has been 

discussed which solves the continuous-time state space system at a 

sampling time T= (t - t,, ). In this section, an approximation of the 

continuous-time state space system can be used. 

Given a linear continuous-time state space system (A. 1): 

(k 

7' 

Figure A. 1: Finite difference. 

From calculus, the derivative, x(t) is defined by, 

x (t +At) -x (t) X(t) = lim At-). o At 

( 

(A. 15) 

Let At =T and t=U and since x (t) is the slope of the x (t) curve at 

figure (A. 1). 

x((k+l)T)-x(kT) 
x I'm (A. 16) 

T-+O T 
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If T is small, 

x((k+l)T)-x(kT) 
X(t) -- T 

Therefore, as the sampling time T becomes very small the 

approximation (A-17) will be exact. This approximation is called the 
first difference approximation. 

Equation (A. 17) can be rewritten as, for T is small, 

x((k+I)T)-x(kT) 
(A. 18) X(t) =T 

x(kT)-x((k-l)T) 
X(t) =T (A. 19) 

x((k+l)T)-x((k-l)T) 
X(t) = 2T 

(A. 20) 

Equation (A. 18) is called first forward difference approximation, 

equation (A. 19) is called first backward difference approximation and 

equation (A. 20) is called first central difference approximation. If 

x (k + 1) is available, the first central difference approximation will be 

the best approximation [63]. 

The second difference approximation of x(t) can be derived as the 

(A. 17) 

first difference approximation at t=U, 

X(t) 
x((k + 2)T) - 2x((k +1)T) + x(kT) (A. 21) 

T2 

x(kT) - 2x((k -1)T) + x((k - 2)T) 
X(t) =T2 (A. 22) 

99 



x((k +1)T) - 2x(kT)+ x((k -1)T) 
X(t) =T2 (A. 23) 

Equation (A. 21) is called second forward difference approximation, 

equation (A. 22) is called second backward difference approximation 

and equation (A. 23) is called second central difference approximation 

[63]. 

A. 4 Discretization of Continuous-Time Non-linear 

Systems 

Control theory and practice have been very successful in dealing with 

continuous-time linear control systems and have been implemented in 

linear discrete-time system. On the other hand, the situation is 

radically different for non-linear continuous-time systems. Although 

several methods for discretizing non-linear continuous-time systems 
have emerged, none of them can be sufficient to encompass all non- 

linear continuous-time systems. 

Consider the non-linear continuous-time state space system: 

x(t) f (x(t)) + Bu(t) 

Y(t) - Cx(t) 

(A. 24) 

(A. 25) 

One of the methods of discretizing a non-linear continuous-time 

system described by equation (A. 24) is by linearizing and then 

discretizing it by using any of the methods described in sections (A. 2) 

and (A. 3). 
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Another method is to use the approximation method explained in 

section (A. 3) directly to approximate the non-linear continuous-time 

system using, 

X(t) 
x((k+l)T)-x(kT) (A. 26) 

T 

given the assumption that the sampling time T is very small. 

This method is implemented in appendix (B) to discretize the non- 
linear continuous-time system. 
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Appendix B 

The Ball and Beam System 

B. 1 Problem Setup 

A practical application is useful to illustrate the discretizing method 
by approximation for non-linear continuous-time systems. A ball and 
beam system [34] is chosen as the problem. 

L 
r 

-Beam 

Arm 

Figure B. I: Ball and Beam system [34]. 
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A ball is placed on a beam, see figure (B. 1), where it is allowed to roll 

with one degree of freedom along the length of the beam. A lever arm 

is attached to the beam at one end and the other end of the lever arm 
is attached to the servo gear. As the servo gear turns by an angle 
theta (0), the lever changes the angle of the beam by alpha (a). When 

the beam angle alpha is changed from the horizontal position, gravity 

causes the ball to roll along the beam. A controller will be designed for 

this system so that the ball's position (r) can be manipulated. 

For this problem, it is assumed that the ball rolls without slipping and 
the friction between the ball and beam is negligible. The constants 

and variables for this problem are defined as table (B. 1). 

Mass of the ball 0.11 kg 

Radius of the ball 0.015 m 

Lever arm offset 0.03 ni 

Gravitational acceleration 9.8M/S2 

Length of the beam 1.0 M 

I Ball's moment of inertia 
19.99XJO-6kgM2 

Table B. 1 

The Lagrangian equations of motion for the ball are [34], 

i+ý 
(t) 

- mr (t) (d (t))2 
+ mg sin (a (t)) 0 (B. 1) 

R2M 
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mr 
(c? (t))2 

mg sin (a (t)) 

R2 

(k+M (i 
+M 

The equation which relates the beam angle to the angle of the gear 

can be approximated by the equation, 

d 
L 

(B. 3) 

If it is assumed that the gear and lever arm are not to be used, but 

instead a motor at the centre of the beam applies torque to the beam, 

in order to control the position, and assuming the beam angle (a) is 

small, then, 

sin (a (t)) -- a (t) 

(B. 2) 

(B. 4) 

Then, 

mr 
(t) (Cý (t))2 

i 

R2+m 

mga(t). 
i 

2 
+M 

(B. 5) 

ä (t) = -r (B. 6) 

The system input is torque (r) and the output to be controlled is ball 

position (r). 
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B. 2 Discretization Method by Approximation 

The approximation technique discussed in Appendix A can now be 

used to discretize the non-linear continuous-time system (B. 1-2). 

Using the state variable approach, let, 

(B. 7) 

X2 (t) 
--": 

ý (t) (B. 8) 

X3 (t) 
-":: a (t) (B. 9) 

X4 (t) 
--": t'ý 

(t) B. 10) 

Then, 

'I (t) 
= X2 

(t) 

)ý2 
MX1 

(t) (X4 (t))2 
MgX3 (t) 

(B. 12) 
i+i 

R2MR2+M 

(B. 13) 3ý3 X4 
(t) 

3ý4 
(t) 

:-U 
(t) (B. 14) 

where, u(t) is the system input. 

105 



Let 

im 
2 +M 

Then the state space model becomes, 

0ý1 (t) --": X2 (t) 

2 
'2 (t)= hxl (t) (X4 (t)) 

- ghX3 

0ý3 (t) --: X4 (t) 

i4 (t) 
: --:: U (t) 

(B. 15) 

(B. 16) 

B. 17) 

(B. 18) 

The differential equations (B. 15-18) can be approximated by using 

the first forward difference approximation equation [63], 

xi «k + 1)T) -x' (kT) 
,t 

(t) =- T 
(B. 19) 

for t= kT ,i=1,2,... 4. Tis the sampling time and k=1,2,3 

By substituting equation (B. 19) into equations (B. 15-18), 

x, «k + 1) T) - x, (kT) 
= X2(kT) (B. 20) 

T 

x, «k + 1)T) = x, (kT) + TX2 (kT) (B. 21) 
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X2((k + 1) T)- X2(kT) 
= hx, (kT)(X4(kT))2 

T 
-ghX3(kT) 

(B. 22) 

X2((k + 1) T) '::: X2(kT) - ghT X3(kT) 

+hTxl (kT)(X4(kT))2 

(B. 23) 

X3((k + 1) T)- X3(kT) 
=X 4(kT) (B. 24) 

T 

X4(kT) (B. 25) X3((k + 1) T) X3(kT) +T 

X4((k + 1) T)- X4(kT) 
= u(kT) (B. 26) 

T 

X4((k + 1) T) -": X4(kT)+Tu(kT) (B. 27) 

So, the continuous-time system (B. 15-18) can be approximated by 

using equations (B. 21), (B. 23), (B. 25) and (B. 27). 

Therefore, the discrete-time ball and beam can be written as: 

x, «k +1)T) =x, (kT)+TX2 (kT) B. 28) 

- ghT X2 ((k + 1) T) ::::::::: X2(kT) X3(kT) 
(B. 29) 

+hTxl (kT)(X4 (kT))2 
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X3((k + 1) T) --': X3(kT) + TX4(kT) 

X4«k + 1) T)= X4(k T) + Tu (k T) 

(B. 30) 

(B. 31) 

Since the sampling time T is constant, the discrete-time can be 

represented as: 

kT=k 

(k +1)T = 

Let us rewrite x, ((k+1)T) (equations (B. 28-31)) in the form, 

(k + 1) = (x (k)) + Bu(k) 

where 

xl(k)+ Tx, (k) 

h Txl (k) X2 (k) +X2(k) - ghT (x (k» =4 
X3(k) 

X3(k) + TX4 (k) 

X4(k) 

0 

B=° 
0 
T 

(B. 32) 

(B. 33) 

(B. 34) 

(B. 35) 

and u(k) is the system input which is the torque applied to the centre 

of the beam. 
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The feedback controller M(k) for this system (B. 34) can be designed 

by using Ackermann's formula for assigned closed-loop poles figure 

(B. 2). 

(k + 1) = 
[A (x (k» - BM (k)] x (k) + By�f (k) 

where A (x (k)) is the linear approximation to f (x (k)) 

A (x (k» af (x) 

- 
ax 

- x=x(k) 

and y,, f (k) is the reference (desired) value of the output, y(k). 

(B. 36) 

So the closed-loop non-linear discrete-time control system (B. 35) can 
be written as, 

x(k +1) = f'(x(k))+ Byref(k) (B. 37) 

(k) = Cx (k) (B. 38) 

where f'(x(k)) is a new non-linear function incorporating the state 

feedback gain matrix M(k) i. e. 

f'(x (k» =A (x (k» - BM (k) (B. 39) 

The closed-loop non-linear discrete-time control system (B. 37) and 
(B. 38) will be used in chapters 2 and 4. 
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Yref (k) 
++ x(k+l) 

unit B delay 

A (x (k» 

M (k) 

x(k) 
C 

y(k) 

Figure B. 2: Block diagram for the non-linear discrete-time ball and 

beam control system 

Let, 

Yref (k) (B. 40) 

and 

f (x (k» =f '(x (k» =A (x (k» - BM (k) (B. 41) 

So the closed-loop non-linear discrete-time control system (B. 37) and 

(B. 38) can be written as, 

(k +l) = (x (k» + Br (k) 

Cx (k) 

(B. 42) 

(B. 43) 
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Appendix C 

Matlab Codes 

ill 



%Cl 

program obstestcasel. m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

" This program test the observer of case 1 by using pole % 
" placement method for a particular set of A, zo, C and % 
" observer poles p. Ackermann's formula is used (function % 
" <acker> in matlab). % 

" Plots of state-, observer and observer error trajectories are % 
" generated at the end. % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear 
clf 
k=lnput('number of iterations= 
p=inp ut('de sired observer poles') 
xO=inp ut ('Initial state vector is 
x(l,: )=xO; 

C=input('measurement vector is ') 
zO=inp ut ('Initial observer state vector is 
z(l,: )=zO; 

AzO=[0.85 0.5; 0.2*zO(l) 0.3]; 
L(1,: )=acker(AzO', C', p) 

e= 0; 
e(l,: )=xO-zO; 

for i=2: k 
y=C*x(l-l,: )'; 
z(l, 1)=0.85*z(i-1,1)+0.5*z(i-1,2)+L(1-1,1)*(y-C*z(i-1,: )'); 

z(i, 2)=0.1*z(i-1,1)A2+0.3*z(l- 1,2)+L(i- 1,2)*(y-C*z(i- 1,: )')+0.05; 

x(i, 1)=0.85*x(i- 1,1)+0.5*x(l- 1,2); 
x(1,2)=O. 1*x(i- 1,1)112+0.3*x(l- 1,2)+0.05; 
e(i,: )=x(i,: )-z(l,: ); 

Az=[0.85 0.5; 0.2*z(1,1) 0.3]; 
L(i,: )=acker(Az', C', p); 
Acl=Az-L(i,: )'*C 

end 
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figure(l) 
clf 
plot(x); grid 
title('pole placement method') 
xlabel('Time index'), 
ylabel('State trajectory') 

figure(2) 
clf 
plot(z); grid; 
title(pole placement method') 
xlabel('Time index'), 
ylabel('Ob server trajectory') 

figure(3) 
clf 
plot(e); grid; 
title('pole placement method') 
xlabel('Time index'), 
ylabel('Ob server error trajectory') 
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%C2 

Program statetestcase2. m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

" This program test the controller of case 2, Non-linear % 
" Discrete-time Ball and beam system, by using pole % 
" placement method for a particular set of A, poles p. % 
" Ackermann's formula is used (function <acker> in Matlab). % 

% Plots of state trajectories is generated at the end. % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear 
clf 
k= input ('number of iterations 
A= input ('Initial state vector is 
x(l,: ) = xO; 
p= input(State's closed-loop poles 

r= input('reference input 
T= input('sampling time T 

m=0.111; 
Js=9.99e-6 
g=-9.8; 
R=0.015; 
Ks=450; 

F=m*T/«Js/(R'\2»+m); 
H=m*g*T/«Js/(RA2»+m); 

[0; 0; 0; T]; 

" Mass of the ball kg 
" ball's moment of inertia kgmA2 
" gravitational acceleration m/sA2 
" radius of the ball m 
" Scaling factor 

AxO=[l T00; F*x(1,4)A2 I -H 2*F*x(1,1)*x(1,4); 001T; 0001 
M(I,: )=acker(AxO, b, p); 
Aclx=(AxO-b*M(1,: )); 

for 1=2: k 
x(i, l)=x(i-1,1)+T*x(1-1,2)-b(l)*M(i-l,: )*x(i-l,: )'; 

x(1,2)=F*x(l- 1,1)*x(i- 1,4)A2+x(i-1,2)-H*x(i-1,3)-b(2)*M(i-l,: )*x(1-1,: )' 

x(1,3)=x(1-1,3)+T*x(1-1,4)-b(3)*M(1-1,: )*x(1-1,: )' 

x(i, 4)=x(1-1,4)-b(4)*M(1-1,: )*x(1-1,: )'+b(4)*Ks*r; 
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Ax=[l T00; F*x(i, 4)A 21 -H 2*F*x(i, l)*x(i, 4); 001T; 0001 
M(1,: )=acker(Ax, b, p); 
Aclx=Ax-b*M(1,: ); 

end 

subplot (2,2,1), plot(x(:, 1)); grid 
xlabel('Time index') 
ylabel('xl trajectory') 

subplot (2,2,2), plot(x(:, 2)); grid 
xlabel('Time index') 
ylabel('x2 trajectory') 

subplot(2,2,3), plot(x(:, 3)); grid 
xlabel('Time index'), 
ylabel('x3 trajectory') 

subplot (2,2,4), plot (x (:, 4)); grid 
xlabel('Time index') 
ylabel('x4 trajectory) 
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%C3 
% program obstestcase2. m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

" This program test the observer of case 2, Non-linear % 
" Discrete-time Ball and beam system, by using pole % 
" placement method for a particular set of xO, zO, C and % 
" observer poles p. Ackermann's formula is used (function % 
" <acker> in matlab). % 

" Plots of state-, observer, and observer error trajectories are % 
" generated at the end. % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear 
clf 
k= input ('number of iterations 
xO = input ('Initial state vector is 
x(l,: ) = xO; 
px = input('State's closed-loop poles 

C input(measurement vector is ') 

zO input(Initial observer state vector is 

z(l,: ) = zo; 
po = input('desired observer poles') 

r= input('reference input 
T= input('sampling time T 

m=0.111; 
Js=9.99e-6 
g=-9.8; 
R=0.015; 
Ks=450; 

F=m*T/«Js/(R"2»+m); 
H=m*g*T/«Js/(RA2»+m); 
b= [0; 0; 0; T]; 

" Mass of the ball kg 
" ball's moment of inertia kgmA2 
" gravitational acceleration m/sA2 
" radius of the ball m 
" Scaling factor 

AzO= [1 T00; F*z(1,4)A2 I -H 2*F*z(l, 1)*z(l, 4) ;001T; 0001 

L(1,: )=acker(AzO', C', po); 
Aclz=AzO-L(I,: )'*C; 
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AxO=[l T00; F*x(1,4)A2 1 -H 2*F*x(1,1)*x(1,4); 001T; 0001 
M(1,: )=acker(AxO, b, px); 
Aclx=(AxO-b*M(I,: )); 

e=o; 
e(l,: )=xO-zO; 

for 1=2: k 
Y=C*X(i-l,: )'; 
x(l, 1)=x(l- 1,1)+T*x(l- 1,2)-b(l)*M(l- 1,: )*x(i- 1,: )'; 
x(i, 2)=F*x(i- 1,1)*x(i- 1,4)A2+x(l- 1,2)-H*x(l- 1,3)-b(2)*M(I- 1,: )*x(l- 1,: )' 

x(i, 3)=x(i-1,3)+T*x(i-1,4)-b(3)*M(i-l,: )*x(1-1,: )' 
x(i, 4)=x(i-1,4)-b(4)*M(i-l,: )*x(i-l,: )'+b(4)*Ks*r; 

z(1,1)=z(1-1,1)+T*z(i-1,2)+L(i-1,1)*(y- C*z(1-1,: )'); 
z(i, 2)=F*z(l- 1,1)*z(l- 1,4)A2+z(i-1,2)-H*z(1-1,3)+L(I-1,2)*(y- C*z(i- 

1): )'); 
z(i, 3)=z(i-1,3)+T*z(i-1,4)+L(i-1,3)*(y - C*z(1-1,: )'); 
z(1,4)=z(i-1,4)+L(i-1,4)*(y - C*z(i-l,: )')+b(4)*Ks*r; 

e(i,: )--x(l,: )-z(i,: ); 
Az=[l T00; F*z(1,4)A2 
L(1,: )=acker(Az', C', po); 

Aclz=Az-L(i,: )'*C; 

1 -H 2*F*z(i, 1)*z(1,4); 001T; 0001]; 

Ax=[l T00; F*x(1,4)A2 I -H 2*F*x(1,1)*x(i, 4); 001T; 0001 
M(1,: )=acker(Ax, b, px); 
Aclx=Ax-b*M(I,: ); 

end 

figure(l) 
clf 
subplot(2,2, l), plot(x(:, l)); grid 
xlabel('Time index') 

ylabel('xl trajectory') 

subplot (2,2,2), plot (x(:, 2)); grid 
xlabel('Time index) 

ylabel('x2 trajectory') 

subplot(2,2,3), plot(x(:, 3)); grid 
xlabel('Time index'), 
ylabel('x3 trajectory') 

subplot (2,2,4), plot (x (:, 4)); grid 
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xlabel('Time index') 
ylabel('x4 trajectory') 

figure(2) 
clf 
subplot(2,2, I), plot(z(:, l)); grid 
xlabel('Time index') 
ylabel('zi trajectory') 

subplot (2,2,2), plot (z (:, 2)); grid 
xlabel('Time index') 
ylabel('z2 trajectory') 

subplot(2,2,3), plot(z(:, 3)); grid 
xlabel('Time index'), 
ylabel('z3 trajectory') 

subplot (2,2,4), plot (z(:, 4)); grid 
xlabel('Time index') 
ylabel('z4 trajectory') 

figure 
clf 
subplot(2,2, I), plot(e(:, l)); grid 
xlabel('Time index') 
ylabel('el trajectory') 

subplot (2,2,2), plot (e (:, 2)); grid 
xlabel('Time index') 
ylabel('e2 trajectory') 

subplot(2,2,3), plot(e(:, 3)); grid 
xlabel('Time index'), 
ylabel('e3 trajectory') 

subplot (2,2,4), plot (e (:, 4)); grid 
xlabel('Time index') 
ylabel('e4 trajectory') 
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%C4 

program obslidlcasel-m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This program test the observer of case 1 by using Sliding % 
% Mode for a particular set of xO, zO, C, observer poles p, Cs, % 
% auxiliary vector D, and boundary layer (phi). % 

% Plots of state-I observer, observer error trajectories, and % 
% auxiliary control are generated at the end. % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear 
clf 
k=input Number of iterations 
xO=lnp ut ('Initial state vector is 
x (1,: )=xO; 

C= input ('measurement vector is ') 
zO= input('Initial observer state vector is 
z(l,: )=zO; 
p= input('desired observer poles') 

D=input ('auxiliary vector is') 

phi=lnput ('boundary layer is 

u=0.05; 

AzO= [0.85 0.5; 0.2*zO(l) 0.3]; 
L (1,: )=acker(AzO', C"P); 
e= 
V= 
e (1,: )=x(l,: )-z(l,: ); 

for i=2: k 
Y(i-l)=C*x 
s (1-1) =-(Y(1-1)-C*Z(1-1,: ) I ); 
if norm (inv(C*D')*s(1-1))<=phi 

v(i-l)=Inv(C*D')*s(1-1); 
else 

v(1-1)=phi*lnv(C*D')*s(i-l)/norm(inv(C*D')*s(1-1)); 
end 
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x(i, 1)=0.85*x(l- 1,1)+0.5*x(i- 1,2); 
x(i, 2)=0.1*x(i-1,1)A2+0.3*x(i-1,2)+u; 

z(i, 1)=0.85*z(i- 1,1)+0.5*z(l- 1,2)+L(l- 1,1)*(y-C*z(i- 1,: )')+D(1)*v(l- 1); 
z(i, 2)=O. 1*z(l- 1,1)" 2+0.3*z(i- 1,2)+L(1-1,2)*(y-C*z(i- 1,: )')+D(2)*v(l- 
1)+u; 

e(l,: )=x(i,: )-z(l,: ); 

Az=[0.85 0.5; 0.2*z(i, l) 0.3]; 
L(I,: )=acker(Az', C', p); 
Acl=Az-L(i,: )'*C; 

end 

figure 
elf 
plot (x); grid 
title ('Case 1 (Sliding Mode)') 
x1abel ('Time index'), 
ylabel ('State trajectory') 

figure 
clf 
plot (z); grid; 
title ('Case 1 (Sliding Mode)') 
x1abel ('Time index'), 
ylabel ('Observer trajectory') 

figure (3) 
clf 
plot (e); grid 
title ('Case 1 (Sliding Mode 

x1abel ('Time index'), 

ylabel ('Observer error trajectory') 

figure (4) 
plot (v); grid 
title ('Case I (Sliding Mode 

x1abel ('Time index'), 
ylabel ('Auxiliary control') 
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%C5 
%program case2slid. m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

" This program test the observer of case 2, Non-linear % 
" Ball and beam system, by using Sliding Mode for a% 
" particular set of xO, zO, C, observer poles p, auxiliary % 
" vector D, and boundary layer (phi). % 

" Plots of state-, observer, observer error trajectories, and % 
" auxiliary control are generated at the end. % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear 
clf 
k= input ('number of iterations 
A= input ('Initial state vector is 
x(l,: ) xO; 
px = input('State's closed-loop poles 

C input('measurement vector is ') 
zO input('Initial observer state vector is 

z(l,: ) = zo; 
po = input('desired observer poles') 

r= input('reference input 
T= input('sampling time T 

D= input(' auxiliary vector is 

phi = input(' boundary layer is 

m=0.111; 
Js=9.99e-6 
g=-9.8; 
R=0.015; 
Ks=450; 

F=m*T/«Js/(RA2»+M); 
H=m*g*T/«Js/(RA2»+m); 
b= [0,0; 0; T]; 

" Mass of the ball kg 
" ball's moment of inertia kgmA2 
" gravitational acceleration m/sA2 
" radius of the ball ni 
" Scaling factor 

AzO= [1 T00; F*z(1,4)A 21 -H 2*F*z(l, 1)*z(l. 4) ;001T; 000 11: 
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L(1,: )=acker(AzO', C', po); 
Aclz=AzO-L(1,: )'*C; 

AxO=[l T00; F*x(1,4)^2 I -H 2*F*x(1,1)*x(1,4); 001T; 0001 
M(1,: )=acker(AxO, b, px); 
Aclx=(AxO-b*M(1,: )); 

e=o; 
e(l,: )=xO-zO; 
V= U; 

for i=2: k 
Y=C*X(i-l,: )'; 
S(I- 1)=-Cs*(X(i- 1,: )-Z(i- 1,: ))'; 
if norm (inv (Cs *D') *s (i- 1))<=p hi 

v(1- 1)=inv(Cs*D)*s(i- 1); 
else 

v(i-l)=phi*lnv(Cs*D')*s(i-l)/norm(inv(Cs*D')*s(1-1)); 
end 

x(l, 1)=x(i-1,1)+T*x(i-1,2)-b(l)*M(i- 1,: )*x(i-l,: )'; 
x(i, 2)=F*x(i- 1,1)*x(i- 1,4)A2+x(i- 1,2)-H*x(i- 1,3)-b(2)*M(l- 1,: )*x(l- 1,: )'; 
x(1,3)=x(i-1,3)+T*x(I-1,4)-b(3)*M(1-1,: )*x(i-l,: )' 
x(i, 4)=x(i-1,4)-b(4)*M(i-l,: )*x(1-1,: )'+b(4)*Ks*r; 

z(i, l)=z(1-1,1)+T*z(1-1,2)+L(1-1,1)*(y- C*z(i-l,: )') +D(I)*v(1-1); 
z(1,2)=F*z(1-1,1)*z(i-1,4)"\2+z(i-1,2)-H*z(1-1,3)+L(i-1,2)*(y- C*z(1-1,: ) 

')+D(2)*v(i-1); 
z(i, 3)=z(i-1,3)+T*z(1-1,4)+L(1-1,3)*(y- C*z(1-1,: )')+D(3)*v(i-1); 

z(1,4)=z(1-1,4)+L(i-1,4)*(y- C*z(1-1,: )')+b(4)*Ks*r+D(4)*v(i-1); 

e(l,: )=x(i,: )-z(l,: ); 

Az=[l T00; F*z(i, 4)A 21 -H 2*F*z(i, 1)*z(i, 4) ;001T; 0001 
L(i,: )=acker(Az', C', po); 
Aclz=Az-L(i,: )'*C; 

Ax=[l T00; F*x(i, 4)A2 I -H 2*F*x(1,1)*x(1,4); 001T; 0001 
M(i,: )=acker(Ax, b, px); 
Aclx=Ax-b*M(i,: ); 

end 

figure 
elf 
subplot(2,2,1), plot(x(:, 1)), grid 
xlabel('Time index') 
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ylabel('xl trajectory') 

subplot (2,2,2), plot(x(:, 2)); grid 
xlabel('Time index) 
ylabel('x2 trajectory) 

subplot(2,2,3), plot(x(:, 3)); grid 
xlabel('Time index'), 
ylabel('x3 trajectory) 

subplot (2,2,4), plot (x (:, 4)); grid 
xlabel('Time index') 
ylabel('x4 trajectory') 

figure(2) 
clf 
subplot (2,2,1), plot (z(:, 1)); grid 
xlabel('Time index) 
ylabel('zl trajectory') 

subplot (2,2,2), plot (z (:, 2)); grid 
xlabel('Time index') 
ylabel('z2 trajectory') 

subplot(2,2,3), plot(z(:, 3)); grid 
xlabel('Time index'), 
ylabel('z3 trajectory') 

subplot (2,2,4), plot (z(:, 4)); grid 
xlabel('Time index') 
ylabel('z4 trajectory') 

figure(3) 
clf 
subplot (2,2,1), plot (e (:, 1)); grid 
xlabel('Time index') 
ylabel('el trajectory') 

subplot (2,2,2), plot (e (:, 2)); grid 
xlabel('Time index') 

ylabel('e2 trajectory') 

subplot(2,2,3), plot(e(:, 3)); grid 
xlabel('Time index'), 
ylabel('e3 trajectory') 
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subplot (2,2,4), plot (e (:, 4)); grid 
xlabel('Time index') 
ylabel('e4 trajectory') 

figure(4) 
elf 
plot(v); grid 
xlabel('Time index') 
ylabel('v trajectory') 
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