145 research outputs found

    Multimodal Signal Processing for Diagnosis of Cardiorespiratory Disorders

    Get PDF
    This thesis addresses the use of multimodal signal processing to develop algorithms for the automated processing of two cardiorespiratory disorders. The aim of the first application of this thesis was to reduce false alarm rate in an intensive care unit. The goal was to detect five critical arrhythmias using processing of multimodal signals including photoplethysmography, arterial blood pressure, Lead II and augmented right arm electrocardiogram (ECG). A hierarchical approach was used to process the signals as well as a custom signal processing technique for each arrhythmia type. Sleep disorders are a prevalent health issue, currently costly and inconvenient to diagnose, as they normally require an overnight hospital stay by the patient. In the second application of this project, we designed automated signal processing algorithms for the diagnosis of sleep apnoea with a main focus on the ECG signal processing. We estimated the ECG-derived respiratory (EDR) signal using different methods: QRS-complex area, principal component analysis (PCA) and kernel PCA. We proposed two algorithms (segmented PCA and approximated PCA) for EDR estimation to enable applying the PCA method to overnight recordings and rectify the computational issues and memory requirement. We compared the EDR information against the chest respiratory effort signals. The performance was evaluated using three automated machine learning algorithms of linear discriminant analysis (LDA), extreme learning machine (ELM) and support vector machine (SVM) on two databases: the MIT PhysioNet database and the St. Vincent’s database. The results showed that the QRS area method for EDR estimation combined with the LDA classifier was the highest performing method and the EDR signals contain respiratory information useful for discriminating sleep apnoea. As a final step, heart rate variability (HRV) and cardiopulmonary coupling (CPC) features were extracted and combined with the EDR features and temporal optimisation techniques were applied. The cross-validation results of the minute-by-minute apnoea classification achieved an accuracy of 89%, a sensitivity of 90%, a specificity of 88%, and an AUC of 0.95 which is comparable to the best results reported in the literature

    Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography

    Get PDF
    The cardiac component of cardio-respiratory polysomnography is covered by ECG and heart rate recordings. However their evaluation is often underrepresented in summarizing reports. As complements to EEG, EOG, and EMG, these signals provide diagnostic information for autonomic nervous activity during sleep. This review presents major methodological developments in sleep research regarding heart rate, ECG and cardio-respiratory couplings in a chronological (historical) sequence. It presents physiological and pathophysiological insights related to sleep medicine obtained by new technical developments. Recorded nocturnal ECG facilitates conventional heart rate variability analysis, studies of cyclical variations of heart rate, and analysis of ECG waveform. In healthy adults, the autonomous nervous system is regulated in totally different ways during wakefulness, slow-wave sleep, and REM sleep. Analysis of beat-to-beat heart-rate variations with statistical methods enables us to estimate sleep stages based on the differences in autonomic nervous system regulation. Furthermore, up to some degree, it is possible to track transitions from wakefulness to sleep by analysis of heart-rate variations. ECG and heart rate analysis allow assessment of selected sleep disorders as well. Sleep disordered breathing can be detected reliably by studying cyclical variation of heart rate combined with respiration-modulated changes in ECG morphology (amplitude of R wave and T wave)

    A review of ECG-based diagnosis support systems for obstructive sleep apnea

    Get PDF
    Humans need sleep. It is important for physical and psychological recreation. During sleep our consciousness is suspended or least altered. Hence, our ability to avoid or react to disturbances is reduced. These disturbances can come from external sources or from disorders within the body. Obstructive Sleep Apnea (OSA) is such a disorder. It is caused by obstruction of the upper airways which causes periods where the breathing ceases. In many cases, periods of reduced breathing, known as hypopnea, precede OSA events. The medical background of OSA is well understood, but the traditional diagnosis is expensive, as it requires sophisticated measurements and human interpretation of potentially large amounts of physiological data. Electrocardiogram (ECG) measurements have the potential to reduce the cost of OSA diagnosis by simplifying the measurement process. On the down side, detecting OSA events based on ECG data is a complex task which requires highly skilled practitioners. Computer algorithms can help to detect the subtle signal changes which indicate the presence of a disorder. That approach has the following advantages: computers never tire, processing resources are economical and progress, in the form of better algorithms, can be easily disseminated as updates over the internet. Furthermore, Computer-Aided Diagnosis (CAD) reduces intra- and inter-observer variability. In this review, we adopt and support the position that computer based ECG signal interpretation is able to diagnose OSA with a high degree of accuracy

    The Different Facets of Heart Rate Variability in Obstructive Sleep Apnea

    Get PDF
    Obstructive sleep apnea (OSA), a heterogeneous and multifactorial sleep related breathing disorder with high prevalence, is a recognized risk factor for cardiovascular morbidity and mortality. Autonomic dysfunction leads to adverse cardiovascular outcomes in diverse pathways. Heart rate is a complex physiological process involving neurovisceral networks and relative regulatory mechanisms such as thermoregulation, renin-angiotensin-aldosterone mechanisms, and metabolic mechanisms. Heart rate variability (HRV) is considered as a reliable and non-invasive measure of autonomic modulation response and adaptation to endogenous and exogenous stimuli. HRV measures may add a new dimension to help understand the interplay between cardiac and nervous system involvement in OSA. The aim of this review is to introduce the various applications of HRV in different aspects of OSA to examine the impaired neuro-cardiac modulation. More specifically, the topics covered include: HRV time windows, sleep staging, arousal, sleepiness, hypoxia, mental illness, and mortality and morbidity. All of these aspects show pathways in the clinical implementation of HRV to screen, diagnose, classify, and predict patients as a reasonable and more convenient alternative to current measures.Peer Reviewe

    Cardiopulmonary coupling indices to assess weaning readiness from mechanical ventilation

    Get PDF
    The ideal moment to withdraw respiratory supply of patients under Mechanical Ventilation at Intensive Care Units (ICU), is not easy to be determined for clinicians. Although the Spontaneous Breathing Trial (SBT) provides a measure of the patients’ readiness, there is still around 15–20% of predictive failure rate. This work is a proof of concept focused on adding new value to the prediction of the weaning outcome. Heart Rate Variability (HRV) and Cardiopulmonary Coupling (CPC) methods are evaluated as new complementary estimates to assess weaning readiness. The CPC is related to how the mechanisms regulating respiration and cardiac pumping are working simultaneously, and it is defined from HRV in combination with respiratory information. Three different techniques are used to estimate the CPC, including Time-Frequency Coherence, Dynamic Mutual Information and Orthogonal Subspace Projections. The cohort study includes 22 patients in pressure support ventilation, ready to undergo the SBT, analysed in the 24 h previous to the SBT. Of these, 13 had a successful weaning and 9 failed the SBT or needed reintubation –being both considered as failed weaning. Results illustrate that traditional variables such as heart rate, respiratory frequency, and the parameters derived from HRV do not differ in patients with successful or failed weaning. Results revealed that HRV parameters can vary considerably depending on the time at which they are measured. This fact could be attributed to circadian rhythms, having a strong influence on HRV values. On the contrary, significant statistical differences are found in the proposed CPC parameters when comparing the values of the two groups, and throughout the whole recordings. In addition, differences are greater at night, probably because patients with failed weaning might be experiencing more respiratory episodes, e.g. apneas during the night, which is directly related to a reduced respiratory sinus arrhythmia. Therefore, results suggest that the traditional measures could be used in combination with the proposed CPC biomarkers to improve weaning readiness

    Cardiopulmonary coupling indices to assess weaning readiness from mechanical ventilation

    Get PDF
    The ideal moment to withdraw respiratory supply of patients under Mechanical Ventilation at Intensive Care Units (ICU), is not easy to be determined for clinicians. Although the Spontaneous Breathing Trial (SBT) provides a measure of the patients' readiness, there is still around 15-20% of predictive failure rate. This work is a proof of concept focused on adding new value to the prediction of the weaning outcome. Heart Rate Variability (HRV) and Cardiopulmonary Coupling (CPC) methods are evaluated as new complementary estimates to assess weaning readiness. The CPC is related to how the mechanisms regulating respiration and cardiac pumping are working simultaneously, and it is defined from HRV in combination with respiratory information. Three different techniques are used to estimate the CPC, including Time-Frequency Coherence, Dynamic Mutual Information and Orthogonal Subspace Projections. The cohort study includes 22 patients in pressure support ventilation, ready to undergo the SBT, analysed in the 24 h previous to the SBT. Of these, 13 had a successful weaning and 9 failed the SBT or needed reintubation -being both considered as failed weaning. Results illustrate that traditional variables such as heart rate, respiratory frequency, and the parameters derived from HRV do not differ in patients with successful or failed weaning. Results revealed that HRV parameters can vary considerably depending on the time at which they are measured. This fact could be attributed to circadian rhythms, having a strong influence on HRV values. On the contrary, significant statistical differences are found in the proposed CPC parameters when comparing the values of the two groups, and throughout the whole recordings. In addition, differences are greater at night, probably because patients with failed weaning might be experiencing more respiratory episodes, e.g. apneas during the night, which is directly related to a reduced respiratory sinus arrhythmia. Therefore, results suggest that the traditional measures could be used in combination with the proposed CPC biomarkers to improve weaning readiness

    A method for sleep quality analysis based on CNN ensemble with implementation in a portable wireless device

    Get PDF
    The quality of sleep can be affected by the occurrence of a sleep related disorder and, among these disorders, obstructive sleep apnea is commonly undiagnosed. Polysomnography is considered to be the gold standard for sleep analysis. However, it is an expensive and labor-intensive exam that is unavailable to a large group of the world population. To address these issues, the main goal of this work was to develop an automatic scoring algorithm to analyze the single-lead electrocardiogram signal, performing a minute-by-minute and an overall estimation of both quality of sleep and obstructive sleep apnea. The method employs a cross-spectral coherence technique which produces a spectrographic image that fed three one-dimensional convolutional neural networks for the classification ensemble. The predicted quality of sleep was based on the electroencephalogram cyclic alternating pattern rate, a sleep stability metric. Two methods were developed to indirectly evaluate this metric, creating two sleep quality predictions that were combined with the sleep apnea diagnosis to achieve the final global sleep quality estimation. It was verified that the quality of sleep of the nineteen tested subjects was correctly identified by the proposed model, advocating the significance of clinical analysis. The model was implemented in a non-invasive and simple to self-assemble device, producing a tool that can estimate the quality of sleep and diagnose the obstructive sleep apnea at the patient’s home without requiring the attendance of a specialized technician. Therefore, increasing the accessibility of the population to sleep analysis.info:eu-repo/semantics/publishedVersio

    Assessment of cardiac autonomic nervous system during sleep and sleep stability in patients affected by Amyotrofic Lateral Sclerosis

    Get PDF
    Objective: Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease, associated with an almost exclusive involvement of upper and lower motor neurons, although autonomic impairment has also been described. Often patients affected by ALS complain of disturbed sleep and sudden death during sleep has been reported. To date, few overnight polysomnographic studies have been performed and a complete evaluation of autonomic nervous system (ANS) during sleep has never been performed before in ALS subjects. The aim of our study was to assess macro- and microstructure of sleep, detect any sleep disorders and evaluate cardiac ANS in a cohort of ALS patients, in order to better characterize the disease and identify novel strategies to improve quality of life and possibly prolong life expectancy. Methods: 23 patients affected by ALS (16M/7 F, age 26-79, mean 61) were compared to 15 healthy controls matched for age and sex. Each subject underwent a full-night videopolysomnography. Sleep staging was performed according to AASM criteria, assessment of sleep stability was made by means of both CAP detection and CPC (cardiopulmonary coupling), evaluation of ANS was made with assessment of HRV. Results: Compared to controls, ALS patients showed a significant reduction of sleep efficiency and of total sleep time, longer sleep latency than controls, together with an increased number of WASO, increased N1 sleep and decreased N2, N3 and REM sleep. Moreover patients showed a significant reduction of CAP rate mainly due to a significant reduction in phase A1 and A2. Compared to controls, patients showed significant reductions in: total HRV power during non-REM (p=0.005), LF in non-REM (p=0.01) and REM (p=0.003) sleep, and wake after sleep onset (WASO) (p=0.06) and also in HF during non-REM (p=0.04) and REM (p=0.05) sleep and WASO (p=0.03). CPC analysis showed the patients with the most advanced pathology, i.e. those with ALS-FRS<30, had the most unstable sleep patterns, with high percentage of LFC and low percentage of HFC (<4%). Interpretation: Our results confirm that sleep structure and stability of ALS patients is altered, and that there is a subclinical alteration of cardiac autonomic control in both sleep and wakefulness, with an impairment of both vagal and sympathetic systems. Moreover reduction of CAP rate, analogously to the reduction of HRV, may reflect an alteration of cortical circuits wich underlie to the organization of sleep and autonomic functions, which are strongly interconnected, that in these patients seem to be characterized by a marked rigidity, with poor reactivity and reduced adaptability to external or internal stimuli. These findings suggest the potential importance of assessment of autonomic nervous system and sleep in ALS, in conjunction with standard motor system evaluations

    Unobtrusive Monitoring of Heart Rate and Respiration Rate during Sleep

    Get PDF
    Sleep deprivation has various adverse psychological and physiological effects. The effects range from decreased vigilance causing an increased risk of e.g. traffic accidents to a decreased immune response causing an increased risk of falling ill. Prevalence of the most common sleep disorder, insomnia can be, depending on the study, as high as 30 % in adult population. Physiological information measured unobtrusively during sleep can be used to assess the quantity and the quality of sleep by detecting sleeping patterns and possible sleep disorders. The parameters derived from the signals measured with unobtrusive sensors may include all or some of the following: heartbeat intervals, respiration cycle lengths, and movements. The information can be used in wellness applications that include self-monitoring of the sleep quality or it can also be used for the screening of sleep disorders and in following-up of the effect of a medical treatment. Unobtrusive sensors do not cause excessive discomfort or inconvenience to the user and are thus suitable for long-term monitoring. Even though the monitoring itself does not solve the sleeping problems, it can encourage the users to pay more attention on their sleep. While unobtrusive sensors are convenient to use, their common drawback is that the quality of the signals they produce is not as good as with conventional measurement methods. Movement artifacts, for example, can make the detection of the heartbeat intervals and respiration impossible. The accuracy and the availability of the physiological information extracted from the signals however depend on the measurement principle and the signal analysis methods used. Three different measurement systems were constructed in the studies included in the thesis and signal processing methods were developed for detecting heartbeat intervals and respiration cycle lengths from the measured signals. The performance of the measurement systems and the signal analysis methods were evaluated separately for each system with healthy young adult subjects. The detection of physiological information with the three systems was based on the measurement of ballistocardiographic and respiration movement signals with force sensors placed under the bedposts, the measurement of electrocardiographic (ECG) signal with textile electrodes attached to the bed sheet, and the measurement of the ECG signal with non-contact capacitive electrodes. Combining the information produced by different measurement methods for improving the detection performance was also tested. From the evaluated methods, the most accurate heartbeat interval information was obtained with contact electrodes attached to the bed sheet. The same method also provided the highest heart rate detection coverage. This monitoring method, however, has a limitation that it requires a naked upper body, which is not necessarily acceptable for everyone. For respiration cycle length detection, better results were achieved by using signals recorded with force sensors placed under a bedpost than when extracting the respiration information from the ECG signal recorded with textile bed sheet electrodes. From the data quality point of view, an ideal night-time physiological monitoring system would include a contact ECG measurement for the heart rate monitoring and force sensors for the respiration monitoring. The force sensor signals could also be used for movement detection
    • …
    corecore