1,216 research outputs found

    A New Weighted Region-based Hough Transform Algorithm for Robust Line Detection in Poor Quality Images of 2D Lattices of Rectangular Objects

    Get PDF
    In this work we present a novel kernel-based Hough Transform method for robust line detection in poor quality images of 2D lattices of rectangular objects. Following a preprocessing stage that specifies the connected regions of the image, the proposed method uses a kernel to specify each region's voting strength based on the following shape descriptors: a) its rectangularity, b) the orientation of the major side of its minimum area bounding rectangle (MBR), and c) the MBR's geometrical center. Experimental and theoretical analysis on the uncertainties associated with the geometrical center as well as the polar parameters of the MBR's major axis line equation allows for automatic selection of the parameters used to specify the shape of the kernel's footstep on the accumulator array. Comparisons performed on images of building facades taken under impaired visual conditions or with low accuracy sensors (e.g. thermal images) between the proposed method and other Hough Transform algorithms, show an improved accuracy of our method in detecting lines and/or linear formations. Finally, the robustness of the proposed method is shown in two other application domains those of, façade image rectification and skew detection and correction in rotated scanned documents

    Optical Character Recognition of Printed Persian/Arabic Documents

    Get PDF
    Texts are an important representation of language. Due to the volume of texts generated and the historical value of some documents, it is imperative to use computers to read generated texts, and make them editable and searchable. This task, however, is not trivial. Recreating human perception capabilities in artificial systems like documents is one of the major goals of pattern recognition research. After decades of research and improvements in computing capabilities, humans\u27 ability to read typed or handwritten text is hardly matched by machine intelligence. Although, classical applications of Optical Character Recognition (OCR) like reading machine-printed addresses in a mail sorting machine is considered solved, more complex scripts or handwritten texts push the limits of the existing technology. Moreover, many of the existing OCR systems are language dependent. Therefore, improvements in OCR technologies have been uneven across different languages. Especially, for Persian, there has been limited research. Despite the need to process many Persian historical documents or use of OCR in variety of applications, few Persian OCR systems work with good recognition rate. Consequently, the task of automatically reading Persian typed documents with close-to-human performance is still an open problem and the main focus of this dissertation. In this dissertation, after a literature survey of the existing technology, we propose new techniques in the two important preprocessing steps in any OCR system: Skew detection and Page segmentation. Then, rather than the usual practice of character segmentation, we propose segmentation of Persian documents into sub-words. The choice of sub-word segmentation is to avoid the challenges of segmenting highly cursive Persian texts to isolated characters. For feature extraction, we will propose a hybrid scheme between three commonly used methods and finally use a nonparametric classification method. A large number of papers and patents advertise recognition rates near 100%. Such claims give the impression that automation problems seem to have been solved. Although OCR is widely used, its accuracy today is still far from a child\u27s reading skills. Failure of some real applications show that performance problems still exist on composite and degraded documents and that there is still room for progress

    Automatic License Plate Recognition (ALPR) for Bangladeshi Vehicles

    Get PDF
    This paper presents Automatic License Plate extraction character segmentation and recognition method for license plate of Bangladeshi vehicles with chain code and neural network In Bangladesh license plate models are not followed strictly Characters on plate are in Bangla and English languages and also are in one or two lines Due to dissimilarity in the model of license plates vehicle license plate extraction character segmentation and recognition are key issue Different types of algorithm already applied and the performance is examined for English license plate We describe the license plate extraction character segmentation and recognition work with Bangla characters License plate extraction is performed using Sobel filter connected component analysis and morphological operations Character segmentation is performed in different levels by using scanning the binary image horizontally and vertically and connected component analysis Character recognition is carried out using chain code generation and stored knowledge of the networ

    Document image restoration - For document images scanned from bound volumes -

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Leveraging Vision Reconstruction Pipelines for Satellite Imagery

    Full text link
    Reconstructing 3D geometry from satellite imagery is an important topic of research. However, disparities exist between how this 3D reconstruction problem is handled in the remote sensing context and how multi-view reconstruction pipelines have been developed in the computer vision community. In this paper, we explore whether state-of-the-art reconstruction pipelines from the vision community can be applied to the satellite imagery. Along the way, we address several challenges adapting vision-based structure from motion and multi-view stereo methods. We show that vision pipelines can offer competitive speed and accuracy in the satellite context.Comment: Project Page: https://kai-46.github.io/VisSat

    3D object reconstruction using computer vision : reconstruction and characterization applications for external human anatomical structures

    Get PDF
    Tese de doutoramento. Engenharia Informática. Faculdade de Engenharia. Universidade do Porto. 201
    corecore