16 research outputs found

    Size-Treewidth Tradeoffs for Circuits Computing the Element Distinctness Function

    Get PDF
    In this work we study the relationship between size and treewidth of circuits computing variants of the element distinctness function. First, we show that for each n, any circuit of treewidth t computing the element distinctness function delta_n:{0,1}^n -> {0,1} must have size at least Omega((n^2)/(2^{O(t)}*log(n))). This result provides a non-trivial generalization of a super-linear lower bound for the size of Boolean formulas (treewidth 1) due to Neciporuk. Subsequently, we turn our attention to read-once circuits, which are circuits where each variable labels at most one input vertex. For each n, we show that any read-once circuit of treewidth t and size s computing a variant tau_n:{0,1}^n -> {0,1} of the element distinctness function must satisfy the inequality t * log(s) >= Omega(n/log(n)). Using this inequality in conjunction with known results in structural graph theory, we show that for each fixed graph H, read-once circuits computing tau_n which exclude H as a minor must have size at least Omega(n^2/log^{4}(n)). For certain well studied functions, such as the triangle-freeness function, this last lower bound can be improved to Omega(n^2/log^2(n))

    Unitary Branching Programs: Learnability and Lower Bounds

    Get PDF
    Bounded width branching programs are a formalism that can be used to capture the notion of non-uniform constant-space computation. In this work, we study a generalized version of bounded width branching programs where instructions are defined by unitary matrices of bounded dimension. We introduce a new learning framework for these branching programs that leverages on a combination of local search techniques with gradient descent over Riemannian manifolds. We also show that gapped, read-once branching programs of bounded dimension can be learned with a polynomial number of queries in the presence of a teacher. Finally, we provide explicit near-quadratic size lower-bounds for bounded-dimension unitary branching programs, and exponential size lower-bounds for bounded-dimension read-once gapped unitary branching programs. The first lower bound is proven using a combination of Neciporuk’s lower bound technique with classic results from algebraic geometry. The second lower bound is proven within the framework of communication complexity theory.publishedVersio

    IST Austria Thesis

    Get PDF
    Many security definitions come in two flavors: a stronger “adaptive” flavor, where the adversary can arbitrarily make various choices during the course of the attack, and a weaker “selective” flavor where the adversary must commit to some or all of their choices a-priori. For example, in the context of identity-based encryption, selective security requires the adversary to decide on the identity of the attacked party at the very beginning of the game whereas adaptive security allows the attacker to first see the master public key and some secret keys before making this choice. Often, it appears to be much easier to achieve selective security than it is to achieve adaptive security. A series of several recent works shows how to cleverly achieve adaptive security in several such scenarios including generalized selective decryption [Pan07][FJP15], constrained PRFs [FKPR14], and Yao’s garbled circuits [JW16]. Although the above works expressed vague intuition that they share a common technique, the connection was never made precise. In this work we present a new framework (published at Crypto ’17 [JKK+17a]) that connects all of these works and allows us to present them in a unified and simplified fashion. Having the framework in place, we show how to achieve adaptive security for proxy re-encryption schemes (published at PKC ’19 [FKKP19]) and provide the first adaptive security proofs for continuous group key agreement protocols (published at S&P ’21 [KPW+21]). Questioning optimality of our framework, we then show that currently used proof techniques cannot lead to significantly better security guarantees for "graph-building" games (published at TCC ’21 [KKPW21a]). These games cover generalized selective decryption, as well as the security of prominent constructions for constrained PRFs, continuous group key agreement, and proxy re-encryption. Finally, we revisit the adaptive security of Yao’s garbled circuits and extend the analysis of Jafargholi and Wichs in two directions: While they prove adaptive security only for a modified construction with increased online complexity, we provide the first positive results for the original construction by Yao (published at TCC ’21 [KKP21a]). On the negative side, we prove that the results of Jafargholi and Wichs are essentially optimal by showing that no black-box reduction can provide a significantly better security bound (published at Crypto ’21 [KKPW21c])

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum
    corecore