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Abstract
In this work we study the relationship between size and treewidth of circuits computing variants
of the element distinctness function. First, we show that for each n, any circuit of treewidth
t computing the element distinctness function δn : {0, 1}n → {0, 1} must have size at least
Ω( n2

2O(t) logn ). This result provides a non-trivial generalization of a super-linear lower bound
for the size of Boolean formulas (treewidth 1) due to Nečiporuk. Subsequently, we turn our
attention to read-once circuits, which are circuits where each variable labels at most one input
vertex. For each n, we show that any read-once circuit of treewidth t and size s computing
a variant τn : {0, 1}n → {0, 1} of the element distinctness function must satisfy the inequality
t · log s ≥ Ω( n

logn ). Using this inequality in conjunction with known results in structural graph
theory, we show that for each fixed graph H, read-once circuits computing τn which exclude H
as a minor must have size at least Ω(n2/ log4 n). For certain well studied functions, such as the
triangle-freeness function, this last lower bound can be improved to Ω(n2/ log2 n).
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1 Introduction

The problem of explicitly defining a function in NP which requires super-linear circuit size
has proven to be notoriously hard. Currently, the best known lower bound for a function in
NP is of the order1 of 3n− o(1) for circuits with arbitrary fan-in-2 gates [4, 8], and of the
order of 5n− o(1) for circuits with gates from the binary De-Morgan basis [18, 21]. In the
particular case of boolean formulas, Nečiporuk proved an Ω(n2/ logn) lower bound for the
size of boolean formulas over the full binary basis computing the n-bit element distinctness
function [24]. Intuitively, the element distinctness function δn : {0, 1}n → {0, 1} takes as
input a sequence of m numbers s1, s2, . . . , sm ∈ {1, . . . ,m2} encoded as binary strings with
2 logm bits, and returns 1 if and only if all numbers in this sequence are distinct. Remarkably,
Nečiporuk’s lower bound has resisted improvements during the last four decades, and remains
the strongest known lower bound for the size of formulas over the full binary basis. In the
restricted setting of formulas over the De-Morgan basis, a size lower bound of n3−o(1) was
obtained by Håstad [15] using different techniques.

In this work, we consider the problem of proving circuit size lower bounds for circuits of low
treewidth. During the past decade a considerable amount of research has been devoted to the

∗ This work was supported by the European Research Council, grant number 339691, in the context of
the project Feasibility, Logic and Randomness (FEALORA).

1 Recently, this lower bound was improved to (3 + 1/86)n− o(n) [10].
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study of the computational power and the combinatorial properties of circuits parameterized
by treewidth [1, 2, 6, 11, 12, 16, 19]. In our first result we generalize Nečiporuk’s lower bound
to the context of circuits of low treewidth.

I Theorem 1. Let C be a circuit of treewidth t computing the element distinctness function
δn. Then C has size Ω( n2

2O(t) logn ).

Here the size of a circuit C is defined as its wire-complexity, i.e., the total number of edges
in C. Therefore, our lower bound holds for circuits containing unbounded fan-in AND and
OR gates, and more generally, unbounded fan-in associatively constructible gates, which we
will define in Section 2. Theorem 1 generalizes Nečiporuk’s non-linear lower bound, from the
context of Boolean formulas (that is to say, circuits of treewidth 1) to the context of circuits
of low treewidth. In particular, our result implies an Ω(n2/ logn) lower bound for the size of
circuits whose underlying undirected graph belongs to several interesting classes, such as
trees (treewidth at most 1), TTSP series-parallel graphs (treewidth at most 2), outer-planar
graphs (treewidth at most 2), Halin graphs (treewidth at most 3), k-outerplanar graphs for
fixed k (treewidth at most O(k)), etc. Additionally, Theorem 1 implies non-linear lower
bounds even for circuits of treewidth o(logn).

It is worth comparing our result with another prominent restricted family of circuits for
which no non-linear lower bound is known, namely, circuits whose underlying graph belongs
to the class of Valiant Series-Parallel graphs [31]. We refer to [7] for a clear definition of this
class. It can be shown that the class of Valiant-series-parallel graphs strictly contains the class
of TTSP-series-parallel graphs (which have treewidth 2). Nevertheless, Valiant-series-parallel
graphs are incomparable with graphs of treewidth k, for k ≥ 3. On the one hand, there
are Valiant-series-parallel graphs of treewidth at least k for every k ∈ N. For instance, the
k × k grid-graph is Valiant-series-parallel but has treewidth k. On the other hand, it is
easy to construct graphs of treewidth 3 which are not Valiant-series-parallel. Proving a
non-linear lower bound for Valiant-series-parallel circuits remains a major open problem in
circuit complexity [25, 28].

Next, we turn our attention to read-once circuits, which are circuits where each variable
labels at most one input vertex. These circuits have also been known in the VLSI literature
as semilective circuits [17]. Read-once circuits parameterized by treewidth have been studied
by the SAT-solving and proof-complexity communities. Part of the interest in these circuits is
due to the fact that the satisfiability problem for read-once circuits size s and treewidth t can
be solved in time 2O(t) · sO(1) [1, 2, 6, 12]. Questions related to the design of optimal VLSI
circuits have motivated the study of the complexity of planar read-once circuits computing
explicit functions (i.e. functions in NP). Within this line of research, quadratic lower bounds
have been obtained for the size of planar read-once circuits computing both multiple-output
functions [22] and single-output functions [29]. We contrast these quadratic lower bounds
with the fact that for multilective planar circuits, i.e., planar circuits in which variables can
label arbitrarily many input gates, the best known lower bounds are of the order of O(n logn)
for single-output functions and of the order of O(n3/2) for multiple-output functions [30].

In this work we introduce the symmetric non-deterministic state complexity (symmetric-
NSC) of a Boolean function, a complexity measure that is lower-bounded by the size of
the smallest read-once oblivious branching program computing the function in question.
We show that if C is a read-once circuit of size s and treewidth t computing a function
fn : {0, 1}n → {0, 1} of symmetric-NSC snsc(fn), then t · log s ≥ Ω(log snsc(fn)). Using this
tradeoff in conjunction with known results from structural graph theory, we show that for
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each fixed graph H, read-once H-minor-free2 circuits computing fn must have size at least
Ω
(

log2 snsc(fn)
log2 n

)
. Subsequently, we introduce a variant τn : {0, 1}n → {0, 1} of the element

distinctness function and show that its symmetric-NSC is lower bounded by 2Ω(n/ logn).
From these results we have that read-once H-minor-free circuits computing τn require size
Ω(n2/ log4 n). Near-quadratic lower bounds can also be obtained for the size of read-once
H-minor-free circuits computing certain well studied functions, such as the triangle-freeness
function ∆n, and the triangle-parity function

⊕
Clique3,n. A result from [9] implies that

the symmetric-NSC of these functions is lower-bounded by 2Ω(n). Therefore, read-once
H-minor-free circuits computing both ∆n and

⊕
Clique3,n require size Ω( n2

log2 n
).

2 Preliminaries

Let Σ be a finite set of symbols. A k-ary gate over Σ is a function g : Σk → Σ. For k ≥ 3,
we say that a k-ary gate g is associatively constructible if there exists an associative operation
⊕ : Σ ×Σ → Σ such that g(x1, . . . , xk) = x1 ⊕ . . .⊕ xk. Alternatively, we say that g is a ⊕-
gate of fan-in k. Unbounded fan-in AND and OR gates are clearly associatively constructible.
An unbounded fan-in MODr gate can be simulated by an associatively constructible gate g
that computes the sum of its inputs modulo r, together with a unary gate g′ : Σ → Σ that
returns 0 if this sum is congruent to 0 mod r, and which returns 1 otherwise.

An associatively constructible circuit with n inputs is a directed acyclic graph C = (V,E,g)
where V is a set of vertices, E is a set of directed edges, and g is a function that labels each
vertex v ∈ V with a symbol from Σ, a gate over Σ, or a variable from {x1, . . . , xn}. The
function g must satisfy the following conditions:
1. If the in-degree of v is 0, then g(v) is either an element of Σ or a variable in {x1, . . . , xn}.
2. If the in-degree of v is k, then g(v) is a k-ary gate over Σ. Additionally, if k ≥ 3, then

g(v) is associatively constructible.

Vertices of in-degree 0 are called inputs. An input is initialized if it is labeled with an
element of Σ, and uninitialized if it is labeled with a variable. A formula is a circuit whose
underlying graph is a tree. We say that a circuit C = (V,E,g) is read once if no two input
vertices are labeled with the same variable. Since our circuits may contain associatively
constructible gates of unbounded fan-in and unbounded fan-out, we define the size |C| of a
circuit C as the number of edges in C.

Below, we define the notion of rooted carving decomposition of a circuit, a variant of the
notion of carving decomposition defined in [27]. If T is a tree, we denote by nodes(T ) the set
of all nodes of T , and by leaves(T ) the set of all leaves of T . For each node u ∈ nodes(T ),
we let T [u] denote the subtree of T rooted at u.

I Definition 2 (Carving Decomposition). A rooted carving decomposition of a circuit C =
(V,E,g) is a pair (T, γ) where T is a binary tree and γ : leaves(T )→ V is a bijection mapping
each leaf u ∈ leaves(T ) to a single vertex γ(u) ∈ V .

Observe that the internal nodes of a carving decomposition T are unlabeled. Given a
node u ∈ nodes(T ), we let V (u) = γ(leaves(T [u])) = {γ(v) | v ∈ leaves(T [u])} be the image
of the leaves of T [u] under γ. For two distinct subsets V1, V2 of vertices of a circuit C we let

2 We say that a circuit C is H-minor-free if its underlying undirected graph excludes H as a minor.
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E(V1, V2) denote the set of edges in G with one endpoint in V1 and another endpoint in V2.
The width carw(T ) of the carving decomposition T is defined as

max{|E(V (u), V \V (u))| : u ∈ nodes(T )} .

The carving width carw(C) of a circuit C is the minimum width of a carving decomposition
of C. The following lemma, whose proof is based on a result from [23], relates carving width
and treewidth of a circuit.

I Lemma 3 (From Tree-Decompositions to Carving Decompositions). Let C = (V,E,g) be an
associatively constructible circuit of treewidth t. There is a circuit C′ of size |C′| ≤ 2 · |C|,
maximum degree 3, and carving width at most 3t+ 3 such that C and C′ compute the same
function.

3 Nečiporuk’s Method

In this section we briefly describe Nečiporuk’s method for proving non-linear lower bounds
on the size of Boolean formulas over the complete binary basis. For our purposes, it will be
convenient to divide this method into three steps. Our first main result (Theorem 1) follows
from a generalization of Step 1 given below. A complete proof of Nečiporuk’s theorem can
be found in [20].

Step 1: Let X = {x1, . . . , xn} be a set of variables, f : {0, 1}X → {0, 1} be a Boolean
function on X, and Y ⊆ X be a subset of variables of X. We denote by Nf (Y ) the number
of distinct functions that can be obtained by initializing all variables in X\Y with values
in {0, 1}. The first step in the proof of Nečiporuk’s theorem consists in providing an upper
bound for Nf (Y ). If f can be computed by a Boolean formula F , such upper bound can be
given in terms of the number of inputs of F labeled with variables in Y .

I Proposition 4. Let f : {0, 1}X → {0, 1} be a function computable by a boolean formula F .
Let Y ⊆ X be a subset of variables such that at most l inputs of F are labeled with variables
in Y . Then Nf (Y ) is at most 2O(l).

Note that if g : {0, 1}Y → {0, 1} is a function obtained from f by initializing all variables
in X\Y , then g can be represented by a boolean formula Fg with l uninitialized inputs which
is obtained from F by initializing all inputs labeled with variables in X\Y . The proof of
Proposition 4 follows by noting that the Boolean formula Fg can be simplified into a Boolean
formula F ′g also computing the function g, in such a way that F ′g has at most l inputs, all of
which are uninitialized, and in which all internal nodes have fan-in 2. This implies that F ′g
has at most l − 1 internal nodes. Since there are 16 possible Boolean functions of fan-in 2,
there are at most 16l−1 choices for g.

Step 2: The second step consists in exhibiting an explicit Boolean function with many
sub-functions. Intuitively, a function f : {0, 1}X → {0, 1} has many sub-functions if the
quantity Nf (Y ) is large for some subsets Y ⊆ X of suitable size. Let X = {x1, . . . , xn} be a
set of n = 2m logm distinct variables partitioned into m blocks Y1, Y2, . . . , Ym, where each
block Yi has 2 logm variables. The element distinctness function δn : {0, 1}X → {0, 1} is
defined as follows for each assignment s1, s2, . . . , sm of the blocks Y1, Y2, . . . , Ym respectively.

δn(s1, s2, . . . , sm) =
{

1 if si 6= sj for i 6= j,

0 otherwise. (1)
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The following lemma states that the element distinctness function defined in Equation 1
has many sub-functions.

I Lemma 5 (See [20], Section 6.5). Let δn : {0, 1}X → {0, 1} be the element distinctness
function defined in Equation 1, where |X| = n and X = Y1 ∪̇ Y2 ∪̇ . . . ∪̇ Ym with |Yi| =
2 logm. Then for each i ∈ {1, . . . ,m}, Nδn

(Yi) ≥ 2Ω(n).

Step 3: In the third step, we combine Proposition 4 with Lemma 5 to obtain a non-linear
lower bound for the size of Boolean formulas computing the element distinctness function
δn : {0, 1}X → {0, 1} defined in Equation 1. Let F be a Boolean formula computing δn. Let
li denote the number of inputs of F labeled with some variable in Yi. By Proposition 4, we
have that Nδn(Yi) ≤ 2O(li). On the other hand, by Lemma 5, Nδn(Yi) ≥ 2Ω(n). Combining
these two inequalities, we have that

2O(li) ≥ Nδn(Yi) ≥ 2Ω(n). (2)

This implies that li ≥ Ω(n). In other words, there are Ω(n) inputs of F labeled with
variables from Yi. Since there are m = Ω( n

logn ) blocks Yi, we have that the number of inputs
of F labeled with variables in X is at least Ω( n2

logn ). �

3.1 Generalizing Nečiporuk’s Theorem
In this section we will generalize Nečiporuk’s non-linear lower bound to the context of circuits
of low treewidth (Theorem 1). We call attention to the fact that this lower bound concerns
circuits in which each variable can label arbitrarily many input vertices. The following lemma,
which generalizes Proposition 4, is the main technical result towards the proof of Theorem 1.

I Lemma 6. Let f : {0, 1}X → {0, 1} be a function computable by a boolean circuit C of
treewidth t. Let Y ⊆ X be a subset of variables such that at most l inputs of C are labeled
with variables in Y . Then Nf (Y ) is at most 2l·2O(t) .

The next two subsections will be dedicated to the proof of Lemma 6. Before, we show
how Lemma 6 can be used to prove Theorem 1.

Proof of Theorem 1. Let |X| = n = 2m logm, and Y1, . . . , Ym be a partition of the variables
in X, where for each i, |Yi| = 2 logm. Let li be the number of inputs of C labeled with a
variable from Yi. By Lemma 5, Nδn

(Yi) ≥ 2Ω(n). On the other hand, by Lemma 6, Nδn
(Yi) ≤

2li·2O(t) . Therefore, by combining these two inequalities, we have 2li·2O(t) ≥ Nδn
(Yi) ≥ 2Ω(n).

This implies that li ≥ Ω(n/2O(t)). Since there are m = Ω( n
logn ) blocks of variables Yi, we

have that the number of inputs of C is at least n2

2O(t)·logn . J

3.2 Defining Relations via Constraint Satisfaction Problems
In this section we will introduce some terminology and basic results which will be used
in the proof of Lemma 6. Let X be a set of variables. An assignment of X is a function
a : X → {0, 1} that associates with each variable x ∈ X a value a(x) ∈ {0, 1}. We let {0, 1}X
denote the set of all assignments of X. A relation over X is any subset R ⊆ {0, 1}X . We
say that each variable x ∈ X is constrained by R. In some places we write var(R) to denote
the set of variables constrained by R. If a is an assignment of X, and Y ⊆ X, then we
let a|Y denote the restriction of a to Y . More precisely, for each x ∈ Y , a|Y (x) = a(x).
We say that an assignment a ∈ {0, 1}X satisfies a relation R over Y ⊆ X if a|Y ∈ R. If

STACS 2016
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R ⊆ {0, 1}X is a relation over X, and Y ⊆ X, then the restriction of R to Y is the relation
R|Y = {a|Y | a ∈ R}. The following immediate observation says the result of restricting a
relation R ⊆ {0, 1}X to a subset X ′ and subsequently to a subset Y ⊆ X ′ is equivalent to
restricting R directly to Y .

I Observation 1. Let R be a relation over X and let Y ⊆ X ′ ⊆ X. Then R|Y = (R|X′)|Y .

Below, we define the notion of constraint satisfaction problem over X.

I Definition 7. A constraint satisfaction problem (CSP) over a set of variables X is a set of
relations

K = {R1, R2, . . . , Rr} (3)

where for each i ∈ {1, . . . , r}, Ri is a relation over some subset Xi ⊆ X of variables.

We note that two relations Ri and Rj in K in which var(Ri) 6= var(Rj) are considered
to be different. A CSP K over a set of variables X can be used to define a relation R(K)
over X. Intuitively, the relation R(K) consists of all assignments over X that satisfy each
relation in K.

R(K) = {a ∈ {0, 1}X | a|Xi ∈ Ri for i ∈ {1, . . . , r}.} (4)

Let K be a CSP over a set of variables X and let S ⊆ K. We denote by c(S) the set
of variables that are simultaneously constrained by some relation in S and some relation
K\S. We say that c(S) is the cutset of S with respect to K. Given a CSP K over a set of
variables X, and a subset Y ⊆ X, we will deal with the problem of obtaining a CSP K ′ with
less relations than K, but with the property that R(K)|Y = R(K ′)|Y . The following simple
lemma will be crucial for this goal.

I Lemma 8. Let K = {R1, . . . , Rr} be a CSP over a set of variables X, let Y ⊆ X, and
S ⊆ K be such that var(S) ∩ Y ⊆ c(S). Consider the CSP

K ′ = (K\S) ∪ {R(S)|c(S)}.

Then R(K)|Y = R(K ′)|Y .

3.3 Circuits vs CSPs
In this section we prove Lemma 6. The idea behind the proof is the following. Let C be
a circuit of carving width w computing a function f : {0, 1}Y → {0, 1}. As a fist step, we
associate with C a CSP K(C) over a set of variables Y ∪ {xe | e ∈ E}. This CSP has the
property that R(K(C))|Y consists precisely of those assignments that cause C to evaluate to
1. In a second step, we use the fact that C has carving width w to obtain a new CSP K ′ such
that each relation in K ′ constrains at most w variables, and such that the number of relations
in K ′ is proportional to the number of uninitialized inputs of C. This new CSP K ′ has the
property that R(K ′)|Y = R(K(C))|Y . Finally, if we are given a function f : {0, 1}X → {0, 1}
and a subset Y ⊆ X of variables, then we will have that there are at most 22O(w) distinct
functions arising by restricting all variables in X\Y to values in {0, 1}.

I Definition 9 (CSP Derived from a Circuit). Let C = (V,E,g) be a circuit whose inputs are
labeled with variables from Y . We let K(C) = {Rv | v ∈ V } be the CSP over the variables
Y ∪ {xe | e ∈ E} which is defined as follows.
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1. If v is an input vertex labeled by g with a variable x, and v is the source of edges e1, . . . , ek,
then Rv is a relation over the variables Yv = {x, xe1 , . . . , xek

}, and an assignment
a : Yv → Σ is in Rv if and only if

a(x) = a(xe1) = . . . = a(xek
).

2. If v is an internal vertex labeled with a gate g(v), v is the target of edges e1, . . . ek,
and v is the source of edges e′1, . . . , e′k′ , then Rv is a relation over the variables Yv =
{xe1 , . . . , xek

, xe′
1
, . . . , xe′

k′
}, and an assignment a : Yv → Σ is in Rv if and only if

g(v)(a(xe1), . . . , a(xek
)) = a(xe′

1
) = . . . = a(xe′

k′
).

3. If v is the output vertex of C, and v is the target of edges e1, . . . , ek, then Rv is a relation
over the variables Yv = {xe1 , . . . , .xek

} and a : {xe1 , . . . , xek
} → Σ is in Rv if and only if

g(v)(xe1 , . . . , xek
) = 1.

Intuitively, the variables Y are input variables of the circuit C, while the variables
{xe | e ∈ E} are used to keep track of the evaluation of the circuit C when the variables in Y
are initialized. The relation R(K(C)) associated with the CSP K(C) contains all assignments
of Y ∪ {xe | e ∈ E} which encode an initialization of the input variables together with an
evaluation of the gates of the circuits which evaluate to 1. If we restrict the relation R(K(C))
to the variables in Y , then we recover precisely the set of assignments that cause C to evaluate
to 1.

I Observation 2. Let C be a circuit computing a function f : {0, 1}Y → {0, 1}. Let K(C) be
the CSP associated with C. Then R(K(C))|Y = {a ∈ {0, 1}Y | f(a) = 1}.

We note that the number of relations in R(K(C)) is precisely the number of gates of
C, and therefore there is no a priori correspondence between the number of relations in
R(K(C)) and the number of inputs of C labeled by variables in Y . The following theorem
says that if C is a circuit of carving width w then one can construct a CSP K whose size is
proportional to the number of inputs of C labeled with variables in Y , in such a way that
the number of variables constrained by each relation in K is proportional to w, and such
that R(K)|Y = R(K(C))|Y .

I Theorem 10 (CSP Reduction). Let C be a circuit of carving width w computing a function
f : {0, 1}Y → {0, 1}. Let l ≥ |Y | be the number of inputs of C labeled with variables in Y .
Then there exits a CSP K = {R1, . . . , Rk} with k ≤ 3 · l such that for each i ∈ {1, . . . , k}, Ri
constrains at most 2 · w variables and such that R(K)|Y = {a ∈ {0, 1}Y | f(a) = 1}.

It is worth noting that the CSP K in Theorem 10 is obtained from the CSP K(C) by
applying several non-trivial simplification steps. Before proving Theorem 10 we show how
this theorem can be used to prove Lemma 6.

Proof of Lemma 6. Let f : {0, 1}X → {0, 1} be a boolean function which is computable by
a circuit C of treewidth t. By Lemma 3, there exists a circuit C′ of size |C′| ≤ 2 · |C| such
that C′ of maximum degree 3 and carving width at most w = 3(t+ 1) such that C′ computes
f . Now let Y ⊆ X. Then each initialization of the variables in X\Y , gives rise to a circuit
C′′ in which all l uninitialized inputs are labeled with variables in Y . By Theorem 10, there
is a CSP K with at most 3 · l relations, such that each relation R in K constrains at most
2 · w = 6(t+ 1) variables, and such that R(K)|Y is precisely the set of assignments of the
variables in Y which cause the circuit C′′ to evaluate to 1. This implies that there are at most
226(t+1)·3·l possible distinct functions arising from the restrictions of variables not in Y . J
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In the remainder of this section, we prove Theorem 10. Let C = (V,E,g) be a circuit of
carving-width w computing a function f : ΣY → Σ. Let K = K(C) = {Rv | v ∈ V } be the
CSP associated with C. We note that Y ∪ {xe | e ∈ E} is the set of variables constrained by
relations in K. We say that a relation Rv is a Y -relation if Rv constrains some variable in
Y . Let (T, γ) be a carving decomposition of (V,E). For a node u of T we let leaves(T [u], Y )
denote the set of leaves u′ of T [u] such that the relation Rγ(u′) is a Y -relation. We say that
a node u ∈ nodes(T ) is a Y-node if u is either a leaf such that Rγ(u) is a Y -relation, or if u is
an internal node u ∈ nodes(T ) such that leaves(T [u.l], Y ) 6= ∅ and leaves(T [u.r], Y ) 6= ∅. If
u is a Y -node, then we say that a node u′ 6= u is the Y -parent of u if u′ is the ancestor of u
at minimal distance from u with the property that u′ is itself a Y -node. We let nodes(T, Y )
denote the set of all Y -nodes of T .

I Lemma 11. |nodes(T, Y )| = 2 · |leaves(T, Y )| − 1.

Intuitively, the idea of the proof of Lemma 11 consists in showing that the set of all
Y -nodes of T induces a binary tree. Since a binary tree with |leaves(T, Y )| leaves has
|leaves| − 1 internal nodes, the total number of Y -nodes is 2 · |leaves(T, Y )| − 1. Now
let T ′ = T\nodes(T, Y ) be the forest which is obtained by deleting from T all of its Y -
nodes. We note that the number of connected components in the forest T ′ is at most
|nodes(T, Y )| = 2|leaves(T, Y )|−1. We let T1, . . . , Tk, for k ≤ |nodes(T, Y )| be the connected
components of T ′. For each i ∈ {1, . . . , k}, let Si = {Rv | ∃u ∈ leaves(Ti), γ(u) = v} be the
sub-CSP of K(C) formed by the relations associated to vertices of C that label the leaves of
the connected component Ti. Let c(Si) = var(K(C)\Si) ∩ var(Si) be the cut-set of Si with
respect to K(C). In other words, c(Si) is the set of variables that are constrained by some
relation in Si, and another relation in K\Si. Note that c(Si) ∩ Y = ∅. The fact that (T, γ)
is a carving decomposition of C of width w implies that the number of variables in c(Si) is at
most 2 · w. Let Ri = R(Si)|c(Si). Then we define our CSP as follows.

K =
(
K(C)\

k⋃
i=1

Si

)
∪

k⋃
i=1
{Ri} (5)

Note that each subset of relations Si ⊆ K(C) corresponding to the connected component
Ti is replaced by a unique relation Ri. By Lemma 11 there are at most 2 · |leaves(T, Y )| − 1
connected components in T ′. Therefore, the number of relations in K is upper-bounded by
|leaves(T, Y )|+ 2|leaves(T, Y )| − 1 = 3|leaves(T, Y )|. We claim that R(K)|Y = R(K(C))|Y .
To prove this claim, let K0,K1, . . . ,Kk be a sequence of CSPs where K0 = K(C), and for
each i ∈ {1, . . . , k}, Ki = (Ki−1\Si) ∪ {Ri}. Then clearly we have that K = Kk. We claim
that for each j ∈ {0, . . . , k}, Kj |Y = K(C)|Y . In the base case, k = 0, and the claim follows
trivially. Now assume that Kj |Y = K(C)|Y . By Lemma 8, we have that Kj |Y = Kj+1|Y . �

4 Symmetric Non-deterministic State Complexity

Let Σ be a finite set of symbols. In this section we introduce the notion of symmetric
non-deterministic state complexity of functions of the form f : Σn → {0, 1} and of finite
languages included in Σn. We note that this notion is intimately related with the size of
the smallest non-deterministic oblivious, read-once branching program [26] computing f . A
non-deterministic finite automaton (NFA) over Σ is a 5-tuple A = (Q,Σ,R, Q0, F ) where
Q is a set of states, Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of final states and
R ⊆ Q×Σ ×Q is a transition relation. We write q a−→ q′ to denote that the triple (q, a, q′)
belongs to R. We say that a string w = w1w2 . . . wn ∈ Σn is accepted by A if there is a
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sequence q0
w1−→ q1

w2−→ . . .
wn−→ qn such that q0 ∈ Q0 and qn ∈ QF . We denote by L(A) the

set of all strings accepted by A.
Let L ⊆ Σn be a set of length-n strings over Σ. The non-deterministic state complexity

(NSC) of L, denoted nsc(L), is defined as the minimum number of states of a NFA accepting L.
Let f : Σn → {0, 1} be a function. We denote by L(f) the set of all strings w ∈ Σn for which
f(w) = 1. We define the non-deterministic state complexity of f as nsc(f) := nsc(L(f)).
For each positive integer n, we define [n] = {1, . . . , n}. We denote by Perm(n) the set of all
permutations of the set [n]. If π : [n]→ [n] is a permutation in Perm(n) and w ∈ Σn, then
we let π(w) be the string in Σn that is defined by setting π(w)π(j) = wj for each j ∈ [n].
Intuitively, the j-th position of w is mapped to the position π(j) of π(w). If L ⊆ Σn is a
set of length-n strings over Σ, then we denote by π(L) the language obtained from L by
permuting the coordinates of each string in L according to π. More precisely,

π(L) = {π(w) | w ∈ L}. (6)

The symmetric non-deterministic state complexity (symmetric-NSC) of a language L ⊆ Σn

is defined as the minimum non-deterministic state complexity of a permuted version of L.

I Definition 12 (Symmetric Nondeterministic State Complexity). Let L ⊆ Σn. The symmetric
non-deterministic state complexity of L is defined as

snsc(L) = min
π∈Perm(n)

nsc(π(L)). (7)

The symmetric-NSC of a function f : Σn → {0, 1} is defined as snsc(f) = snsc(L(f)).

We note that the symmetric-NSC of a function f : {0, 1}n → {0, 1} is lower-bounded by
the size of the smallest non-deterministic oblivious read-once |Σ|-way branching program
computing f . Therefore, functions requiring exponential size branching programs of this
particular form have exponential symmetric non-deterministic state complexity. Two examples
of such functions are the triangle-freeness function ∆n : {0, 1}n → {0, 1}, and the triangle-
parity function

⊕
Clique3,n : {0, 1}n → {0, 1}. Both functions take as input an array

x = (xij)1≤i<j≤m consisting of n =
(
m
2
)
Boolean variables representing an undirected graph

G(x) on m vertices {1, . . . ,m}. The graph G(x) has an edge connecting vertices i and j,
with i < j, if and only if xij = 1. The triangle-freeness function ∆n returns 1 on an input
x if and only if the graph G(x) does not contain a triangle. The triangle-parity function⊕

Clique3,n returns 1 if and only if the parity of the number of the triangles in G(x) is odd.
In [9] it was shown that read-once non-deterministic branching programs computing the
functions ∆n and

⊕
Clique3,n require size 2Ω(n). Therefore, the same lower bound holds for

the symmetric-NSC of these functions.

I Theorem 13 ([9]). snsc(∆n) ≥ 2Ω(n) and snsc(
⊕

Clique3,n) ≥ 2Ω(n).

4.1 On a Variant of the Element Distinctness Function
We say that a binary string w is even if w has an even number of ones. Analogously, we say
that w is odd if w has an odd number of ones. For each r ∈ N, we let even(r) denote the set
of all strings of even parity in the set {0, 1}r. Let Σ(m) = {1, . . . ,m}, and P(m) ⊆ Σ(m)m
be the set of all length-m strings over Σ(m) = {1, . . . ,m} whose entries are pairwise distinct.
Let n = (dlogme + 1) ·m and let b : {1, . . . ,m} → even(dlogme + 1) be an injection that
maps each number j ∈ {1, . . . ,m} to an even binary string b(j) of length dlogme+ 1. We let

B(n) = {b(w1)b(w2) . . . b(wm) ∈ {0, 1}n | w1w2 . . . wm ∈ P(m)}
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be the binary language that is obtained from P(m) by mapping each string in P(m) to its
binary representation. We define the even element distinctness function τn : {0, 1}n → {0, 1}
as the function that returns 1 on an input w ∈ {0, 1}n if and only if w ∈ B(n). Note that by
definition, the symmetric-NSC of τn is the symmetric-NSC of B(n).

I Theorem 14. The function τn : {0, 1}n → {0, 1} has symmetric-NSC 2Ω(n/ logn).

The proof of Theorem 14 will use the following result.

I Theorem 15 (Glaister-Shallit [13]). Let L ⊆ Σn be a set of length-n strings over Σ, and
suppose that there exists a set F = {(xi, wi) | 1 ≤ i ≤ k} of pairs of strings such that
1. xi · wi ∈ L for 1 ≤ i ≤ k
2. xi · wj /∈ L for 1 ≤ i, j ≤ k and i 6= j

Then any non-deterministic finite automaton accepting L has at least k states.

The set F in Theorem 15 is called a fooling set for L. We will prove Theorem 14 by
constructing, for each permutation π : [n] → [n], a fooling set Fπ of size 2Ω(n/ logn) for
the language π(B(n)). To construct Fπ it will be convenient to view strings as Boolean
functions over sets of positions. In other words, if S is a set of positive integers, then a
string over S is simply a Boolean function w : S → {0, 1}. We note that we allow S to
be any set of positive integers and not necessarily an interval of the form [n] = {1, . . . , n}.
The parity of w is defined as the parity of the number of positions in which w evaluates
to 1: par(w) = |{i ∈ S | w(i) = 1}| mod 2. The restriction of w to a subset T ⊆ S is
the string w|T : T → {0, 1} which is defined by setting w|T (i) = w(i) for every i ∈ T . If
S ⊆ [n], w : S → {0, 1} is a string, and π : [n]→ [n] is a permutation, then we let π(w) be
the string w′ : π(S)→ {0, 1} that is defined by setting w′(π(i)) = w(i) for each i ∈ S. We
let L = {1, . . . , bn/2c} and R = {bn/2c+ 1, . . . , n} be respectively the first and the second
halves of the set [n] = {1, . . . , n}. We say that a permutation π splits a subset S ⊆ [n] if
π(S)∩L 6= ∅ and π(S)∩R 6= ∅. In other words, π splits S if some elements of S are mapped
by π to the first half of [n] and some elements of S are mapped by π to the second half of [n].

If S and S′ are subsets of [n] such that S∩S′ = ∅, and w : S → {0, 1} and w′ : S′ → {0, 1}
are strings with domain S and S′ respectively, then the concatenation of w with w′ is simply
the function w · w′ : S ∪ S′ → {0, 1} which is equal to w when restricted to S and equal to
w′ when restricted to S′. Let S = {j1, j2, . . . , jk} ⊆ [n] where j1 < j2 < . . . < jk. We let
ordS(i) = ji denote the i-th element of S. Let S and S′ be subsets of [n] of same size. We say
that strings w : S → {0, 1} and w′ : S′ → {0, 1} are equivalent, which we denote by w ≡ w′,
if for each i ∈ {1, . . . , |S|}, w(ordS(i)) = w(ordS′(i)). Note that if S = S′ then w ≡ w′ if and
only if w = w′. Let n = (1 + dlogme) ·m. Let I1, . . . , Im be the sequence of subsets of [n]
such that for each i ∈ [m], Ii = {(i− 1) · (1 + dlogme), . . . , i · (1 + dlogme)}. In other words,
I1, . . . , Im is a partition of the set [n] into m consecutive intervals of equal size. We say that
I1, . . . , Im is the uniform interval partition of [n]. Let Ii1 , Ii2 , . . . , Iik be intervals which are
split by π. Let (ILj1

, IRj1
), . . . , (ILjl

, IRjl
) be pairs of intervals such that for each r ∈ {1, . . . , l},

π(ILjr
) ⊆ L and π(IRjr

) ⊆ R. Let a1, . . . , ak, b1, . . . , bk, c1, . . . , cl and d1, . . . , dl be 2k + 2l
distinct binary strings with domain {1, . . . , dlogme+ 1} such that the following conditions
are satisfied for each r ∈ {1, . . . , k}.
1. ar|π(Iir )∩L is even and ar|π(Iir )∩R is even.
2. br|π(Iir )∩L is odd and br|π(Iir )∩R is odd.

For each (k + l)-tuple of bits x1, . . . , xk, y1, . . . , yl, select a string w[x1, . . . , xk, y1, . . . , yl]
in {0, 1}n satisfying the following properties for each r ∈ {1, . . . , k} and s ∈ {1, . . . , l}.
1. If xr = 0 then w[x1, . . . , xk, y1, . . . , yl]|Iir

≡ ar
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2. If xr = 1 then w[x1, . . . , xk, y1, . . . , yl]|Iir
≡ br

3. If ys = 0 then w[x1 . . . , xk, y1, . . . , yl]|IL
js
≡ cs and w[x1, . . . , xk, y1, . . . , yl]|IR

js
≡ ds

4. If ys = 1 then w[x1 . . . , xk, y1, . . . , yl]|IL
js
≡ ds and w[x1, . . . , xk, y1, . . . , yl]|IR

js
≡ cs

We let F k,lπ be the set obtained by splitting each string w[x1, . . . , xk, y1, . . . , yl] into a left
part and a right part.

F k,lπ = { ( w[x1, . . . , xk, y1, . . . , yl]|L, w[x1, . . . , xk, y1, . . . , yl]|R ) | xr, ys ∈ {0, 1}} (8)

I Theorem 16. The set F k,lπ defined in Equation 8 is a fooling set for π(B(n)) of size 2k+l.

We note that for each permutation π, there exists an α ≤ m/4 such that the fooling set
Fπ = F

α,m/4−α
π is well defined. Therefore, by Theorem 16, we have that

|Fπ| ≥ 2m/4 = 2Ω(n/ logn).

5 Non-Linear Lower Bounds for Read-Once Circuits Excluding a
Minor

In this section we show that exponential lower bounds for the symmetric non-deterministic
complexity of a function fn : {0, 1}n → {0, 1} imply super-linear lower bounds for the size
of read-once circuits excluding a fixed graph H as a minor. We start by establishing a
connection between the symmetric-NSC of a circuit, and its pathwidth. More precisely, we
will show that any function that can be computed by a read-once circuit of pathwidth k has
symmetric-NSC at most 2k · |C|.

I Definition 17 (Path Decomposition). A path decomposition of a circuit C = (V,E,g)
is a sequence P = (B1, B2, . . . , Bm) of subsets of vertices of G satisfying the following
properties.
(i) V =

⋃n
i=1 Bi.

(ii) For each i, j, k ∈ N with i < j < k, Bi ∩Bk ⊂ Bj .
(iii) For each edge (u, v) ∈ E there is an j such that {u, v} ⊆ Bj .

The sets Bi are the bags of the decomposition. The path-width of P is defined as the size
of its largest bag minus one. In other words pw(G,P) = maxi{|Bi|}− 1. The pathwidth of a
graph G is defined as pw(G) = minP pw(G,P) where P ranges over all path decompositions
of G. Let C be a read-once circuit and P = (B1, B2, . . . , Bm) be a path decomposition of C.
If v is a vertex of C then we let first(v,P) denote the smallest i such that v ∈ Bi.

I Theorem 18. Let C be a read-once circuit and P = (B1, B2, . . . , Bm) be a path decom-
position of C of width w. Let x1x2 . . . xn be an ordering of the variables of C such that
first(xi,P) < first(xi+1,P) for each i ∈ {1, . . . , n − 1}. Then for each b ∈ Σ, one can
construct a NFA on |Σ|O(w) ·m states accepting the following language.

L(C, b) = {a1a2 . . . an ∈ Σn | C(a1a2 . . . an) = b}.

We note that any read-once circuit C of pathwidth k has a decomposition of width k with
O(|C|) bags3. Therefore, as a corollary of Theorem 18 and Theorem 14 we have a trade-off
between the size of a circuit and its pathwidth.

3 Any graph G of pathwidth w has a path decomposition of width w with |G| bags.
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I Theorem 19. Let fn : {0, 1}n → {0, 1} be a function of symmetric-NSC snsc(fn). Then
for any read-once circuit computing fn, the following inequality is satisfied.

pw(C) + log |C| ≥ log snsc(fn). (9)

It is well known that the pathwidth of any graph is greater than its treewidth by at most
a multiplicative logarithmic factor [5]. In other words, the following relation between the
pathwidth and treewidth of a circuit (graph) can be verified: pw(C) ≤ tw(C) · O(log |C|).
Therefore, stated in terms of treewidth, Equation 9 can be rewritten as follows.

tw(C) · log |C|+ log |C| ≥ Ω(log snsc(fn)). (10)

I Theorem 20 ([3],[14]). For any fixed graph H, every H-minor-free graph G with s vertices
has treewidth at most O(

√
s).

Therefore, combining Equation 10 with Theorem 20 we have the following theorem. We
say that a circuit C is H-minor-free if its underlying undirected graph is H-minor-free.

I Theorem 21. Let C be an H-minor-free, read-once circuit computing a Boolean function

f : {0, 1}n → {0, 1}. Then |C| ≥ Ω
((

log snsc(fn)
logn

)2
)
.

Finally, as a corollary of Theorem 21, Theorem 13 and Theorem 14 we have that the
triangle-freeness function ∆n, the triangle-parity function

⊕
Clique3,n and the even element

distinctness function τn require H-minor-free read-once circuits of near quadratic size.

I Corollary 22. Let C, C′ and C′′ be H-minor-free, read-once circuits computing the triangle-
freeness function ∆n, the triangle-parity function

⊕
Clique3,n and the even element distinct-

ness function τn respectively. Then |C| ≥ Ω( n2

log2 n
), |C′| ≥ Ω( n2

log2 n
), and |C′′| ≥ Ω( n2

log4 n
).
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