
30th International Symposium
on Theoretical Aspects of
Computer Science

STACS’13, February 27th to March 2nd, 2013, Kiel, Germany

Edited by

Natacha Portier
Thomas Wilke

LIPIcs – Vo l . 20 – STACS’13 www.dagstuh l .de/ l ip i c s

Editors
Natacha Portier Thomas Wilke
École Normale Supérieure de Lyon Christian-Albrechts-Universität zu Kiel
Lyon Kiel
natacha.portier@ens-lyon.fr wilke@ti.informatik.uni-kiel.de

ACM Classification 1998
F.1.1 Models of Computation, F.2.2 Nonnumerical Algorithms and Problems, F.4.1 Mathematical Logic,
F.4.3 Formal Languages, G.2.1 Combinatorics, G.2.2 Graph Theory

ISBN 978-3-939897-50-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-50-7.

Publication date
February, 2013

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported license (CC-BY-
ND 3.0): http://creativecommons.org/licenses/by-nd/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.
No derivation: It is not allowed to alter or transform this work.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.STACS.2013.i

ISBN 978-3-939897-50-7 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-939897-50-7
http://www.dagstuhl.de/dagpub/978-3-939897-43-9
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.i
http://www.dagstuhl.de/dagpub/978-3-939897-50-7
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (Humboldt University Berlin)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Wolfgang Thomas (RWTH Aachen)
Vinay V. (Chennai Mathematical Institute)
Pascal Weil (Chair, University Bordeaux)
Reinhard Wilhelm (Saarland University, Schloss Dagstuhl)

ISSN 1868-8969

www.dagstuhl.de/lipics

STACS’13

http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

Foreword

The Symposium on Theoretical Aspects of Computer Science (STACS) is an international
forum for original and unpublished research on theoretical aspects of computer science.
Typical areas are (cited from the call for papers for this year’s conference):

algorithms and data structures, including: parallel, distributed, approximation, and
randomized algorithms, computational geometry, cryptography, algorithmic learning
theory, analysis of algorithms;
automata and formal languages, games;
computational complexity, randomness in computation;
logic in computer science, including: semantics, specification and verification, rewriting
and deduction;
current challenges, for example: natural computing, quantum computing, mobile and net
computing.

STACS has taken place each year since 1984, alternately in Germany and France. The
conference in Kiel from February 27 through March 2, 2013, is the 30th in this series: Paris
(1984), Saarbrücken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989),
Rouen (1990), Hamburg (1991), Cachan (1992), Würzburg (1993), Caen (1994), München
(1995), Grenoble (1996), Lübeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden
(2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006),
Aachen (2007), Bordeaux (2008), Freiburg (2009), Nancy (2010), Dortmund (2011), Paris
(2012), and Kiel (2013).

The interest in STACS has remained at a high level over the past years; STACS 2013
received 254 submissions from 41 countries. (Authors were asked to submit an extended
abstract of at most 12 pages; missing proofs had to be put into an appendix.) In the selection
process, 54 submissions were selected for presentation and publication, which implies an
acceptance rate of about 21%. The selection of the contributions was carried out in a
two-phase process in autumn 2012: over a period of eight weeks, every paper was reviewed
by three members of the program committee, who, at their discretion, involved external
reviewers; over a period of four weeks, intensive discussions within the program committee,
structured in five rounds, led to the selection of the papers published in this volume. The
overall very high quality of the submissions made the selection a difficult task.

As co-chairs of the program committee, we would like to sincerely thank our colleagues
for having submitted to STACS such a great number of excellent papers, our co-members
of the program committee (see list on page vii) and the many external reviewers (see list
on page ix) for their valuable work in assessing the merits of each individual submission.
We would like to express our thanks to the three invited speakers, Kousha Etessami, Kurt
Mehlhorn, and Stéphan Thomassé, and to Dániel Marx, the invited tutorial speaker. Special
thanks go to Andrei Voronkov for providing EasyChair, the software used for processing and
screening submissions to the conference.

We would like to warmly thank Henning Schnoor and Björn Kinscher for preparing these
conference proceedings, and Michael Wagner and Marc Herbstritt from the Dagstuhl/LIPIcs
team for assisting us in the publication process and the final production of the proceedings.

These proceedings contain extended abstracts of the accepted contributions and abstracts
of the invited talks and the tutorial. The authors have retained their rights and make
their work available under a Creative Commons license. The proceedings are published
electronically by Schloss Dagstuhl – Leibniz-Center for Informatics within their LIPIcs series;
30th Internatioanl Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

vi Foreword

they are accessible through several portals, in particular, DROPS and HAL. Both, DROPS
and HAL, guarantee perennial and easy electronic access as well as indexing in DBLP and
Google Scholar.

Lyon and Kiel, February 2013 Natacha Portier and Thomas Wilke

http://drops.dagstuhl.de
http://hal.archives-ouvertes.fr
http://drops.dagstuhl.de
http://hal.archives-ouvertes.fr

Program Committee

Eric Allender Rutgers University
Pablo Barceló Universidad de Chile
Frédérique Bassino Université Paris 13
Artur Czumaj University of Warwick
Hervé Fournier Université Paris Diderot
Edward A. Hirsch Steklov Institute, St. Petersburg
Iordanis Kerenidis Université Paris Diderot
Michal Koucký Czech Academy of Sciences
Dieter Kratsch Université de Lorraine
Andrei Krokhin University of Durham
Antonín Kučera Masaryk University
Markus Lohrey University of Leipzig
Katarzyna Paluch University of Wrocław
Natacha Portier École Normale Supérieure de Lyon (co-chair)
Kirk Pruhs University of Pittsburgh
Peter Rossmanith RWTH Aachen
Günter Rote Freie Universität Berlin
Thomas Sauerwald MPI Saarbrücken
Sandeep Sen IIT Delhi
Subhash Suri UC Santa Barbara
Jacobo Toran Universität Ulm
Jouko Väänänen University of Helsinki and University of Amsterdam
Thomas Wilke Christian-Albrechts-Universität zu Kiel (co-chair)
Carsten Witt Technical University of Denmark
Gerhard J. Woeginger TU Eindhoven
Marc Zeitoun Université de Bordeaux I

30th Internatioanl Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

External Reviewers

Anna Adamaszek
Isolde Adler
Pankaj Agarwal
Hee-Kap Ahn
Kook Jin Ahn
Alex Andoni
Spyridon Antonakopoulos
Antonios Antoniadis
Marcelo Arenas
Pablo Arrighi
Samalam Arun-Kumar
Dror Atariah
Peter Auer
David Auger
Per Austrin
Pranjal Awasthi
Jossi Azar
Haris Aziz
Martin Babka
Sang Won Bae
Nikhil Bansal
David Mix Barrington
Libor Barto
Surender Baswana
Cristina Bazgan
Marie-Pierre Béal
Chris Beck
Florent Becker
Jason Bell
Shai Ben-David
Petra Berenbrink
Thierry Berger
Christoph Berkholz
Christoper Berlind
Dietmar Berwanger
Olaf Beyersdorff
Peter Biró
Henrik Bjrklund
Ivan Bliznets
Achim Blumensath
Hans L. Bodlaender
Benedikt Bollig
Paul Bonsma
Andreas Brandstadt
Tomas Brazdil
Romain Brenguier

Karl Bringmann
Christopher Broadbent
Joshua Brody
Hajo Broersma
Nicolas Broutin
Yuriy Brun
Maike Buchin
Peter Buergisser
Jan Bulanek
Jarosław Byrka
Sergio Cabello
Jin-Yi Cai
Alan Cain
Olivier Carton
David Cash
Julien Cassaigne
Katarína Cechlárová
Eranda Cela
Amit Chakrabarti
Deeparnab Chakrabarty
Jérémie Chalopin
Shiri Chechik
Ho-Lin Chen
Hubie Chen
Yann Chevaleyre
Marek Chrobak
Lorenzo Clemente
Albert Cohen
Amin Coja-Oghlan
Thomas Colcombet
Daniel Cole
Seshadhri Comandur
Hubert Comon
Anne Condon
Joshua Cooper
Graham Cormode
Erzsébet Csuhaj-Varjú
Peter Damaschke
Carsten Damm
Stefan Dantchev
Samir Datta
Laure Daviaud
Anuj Dawar
Vladimir Deineko
Holger Dell
Evgeny Demenkov

Hans de Nivelle
Nicolas de Rugy-Altherre
Ronald de Wolf
Michael Dinitz
Emilie Diot
Benjamin Doerr
David Doty
Philippe Duchon
Arnaud Durand
Christoph Durr
Sebastian Eggert
Khaled Elbassioni
Michael Elberfeld
Edith Elkind
Robert Elsaesser
Matthias Englert
David Eppstein
Leah Epstein
Jeff Erickson
Kousha Etessami
Oriol Farras
John Fearnley
Tomas Feder
Sandor Fekete
Mike Fellows
Shiguang Feng
Henning Fernau
Esteban Feuerstein
Arnaud Fietzke
Diego Figueira
Jeremy Fineman
Johannes Fischer
Fedor Fomin
Vojtech Forejt
Anna Frid
Tom Friedetzky
Tobias Friedrich
Matteo Frigo
Eric Fusy
Sajith G.
Travis Gagie
Martin Gairing
Robert Ganian
Naveen Garg
Luisa Gargano
William Gasarch

30th Internatioanl Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

x External Reviewers

Serge Gaspers
Paul Gastin
Pawel Gawrychowski
Antoine Genitrini
Shayan Gharan
Amelie Gheerbrant
George Giakkoupis
Panos Giannopoulos
Matt Gibson
Alexander Gilbers
Hugo Gimbert
Marc Glisse
Marc Goerigk
Leslie Ann Goldberg
Stefan Göller
Petr Golovach
Alexander Golovnev
Eric Goubault
Olga Goussevskaia
Navin Goyal
Erich Grädel
Fabrizio Grandoni
Gianluigi Greco
Guiseppe Greco
Bruno Grenet
Martin Grohe
Romain Grunert
Sudipto Guha
Jiong Guo
Venkatesan Guruswami
Carsten Gutwenger
Christoph Haase
Peter Habermehl
Guillaume Hanrot
Tero Harju
Prahladh Harsha
Meng He
Brent Heeringa
Pinar Heggernes
Lauri Hella
Matthias Henze
Frédéric Herbreteau
Volker Heun
Thomas Hildebrandt
Hiroshi Hirai
Petr Hlineny
Jack H. Lutz
Martin Hoefer
Frank Hoffmann
Michael Hoffmann

Hendrik Jan Hoogeboom
Florian Horn
Peter Høyer
Wen-Lian Hsu
Bert Huang
Chien-Chung Huang
Falk Hüffner
Yumei Huo
Sungjin Im
Shunsuke Inenaga
R. Inkulu
Dmitry Itsykson
Ragesh Jaiswal
Wojtek Jamroga
Petr Jancar
Svante Janson
Jesper Jansson
Matti Järvisalo
Rafel Jaume
Emmanuel Jeandel
Stacey Jeffery
Artur Jeż
Łukasz Jeż
Colin Jia Zheng
Matthew Johnson
Peter Jonsson
Allan Jørgensen
Hossein Jowhari
Eun Jung Kim
Tomasz Jurdzinski
Marcin Kaminski
Iyad Kanj
Sampath Kannan
Mamadou Moustapha Kante
Haim Kaplan
George Karakostas
Juhani Karhumäki
Lila Kari
Alexander Kartzow
Petteri Kaski
Michael Kaufmann
Viv Kendon
Balázs Keszegh
Emanuel Kieronski
Daniel Kirsten
Ralf Klasing
Marek Klonowski
Christian Knauer
Alexander Knop
Yasuaki Kobayashi

Pascal Koiran
Mikko Koivisto
Christian Komusiewicz
Ranganath Kondapally
Arnd Christian König
Christian Konrad
Guy Kortsarz
Adrian Kosowski
Arie Koster
Ilias Kotsireas
Timo Kötzing
Ioannis Koutis
Lukasz Kowalik
Dariusz Kowalski
Stefan Kratsch
Jan Kretinsky
Stephan Kreutzer
Klaus Kriegel
Adrian Kügel
Alexander Kulikov
Oliver Kullmann
Amit Kumar
Michal Kunc
Robin Künzler
Stuart Kurtz
Dietrich Kuske
Eduardo Laber
Jakub Łącki
Alexander Langer
Sophie Laplante
Kasper Green Larsen
Silvio Lattanzi
Van Bang Le
Per Kristian Lehre
Thierry Lecroq
Troy Lee
Virginie Lerays
Jérôme Leroux
Fei Li
Yingyu Liang
Mathieu Liedloff
Nutan Limaye
Andrzej Lingas
Simone Linz
Kamal Lodaya
Christof Löding
Daniel Lokshtanov
Sylvain Lombardy
Krzysztof Loryś
Kerkko Luosto

External Reviewers xi

Frederic Magniez
Meena Mahajan
Konstantin Makarychev
Guillaume Malod
Florin Manea
Sebastian Maneth
David Manlove
Yishay Mansour
Jan Manuch
Jerzy Marcinkowski
Jakub Marecek
Nicolas Markey
Conrado Martínez
Dániel Marx
Maarten Marx
Jannik Matuschke
Alexander May
Elvira Mayordomo
Julian McAuley
Catherine McCartin
Guy McCusker
Andrew McGregor
Pierre McKenzie
Daniel Meister
Stefan Mengel
George Mertzios
Julian Mestre
Dimitrios Michail
Filippo Mignosi
Tillmann Miltzow
Pradipta Mitra
Rajat Mittal
Matthias Mnich
Tobias Moemke
Ankur Moitra
Debajyoti Mondal
Herve Moulin
Shay Mozes
Marcin Mucha
Markus Mueller
Mike Müller
Wolfgang Mulzer
Viswanath Nagarajan
Satyadev Nandakumar
Ashwin Nayak
Blaine Nelson
Alantha Newman
Cyril Nicaud
André Nichterlein
Rolf Niedermeier

Andre Nies
Harumichi Nishimura
Petr Novotný
Dirk Nowotka
Jan Obdrzalek
Alexander Okhotin
Vsevolod Oparin
Martin Otto
Joel Ouaknine
Sang-Il Oum
Ozgur Ozkan
David Pal
Konstantinos Panagiotou
Dana Pardubska
Francesco Pasquale
Boaz Patt-Shamir
Christophe Paul
Daniel Paulusma
Sylvain Perifel
Giovanni Pighizzini
Marcin Pilipczuk
Jean-Eric Pin
Marek Piotrów
Thomas Place
Wojciech Plandowski
James Plank
Libor Polak
Amaury Pouly
Ali Pourmiri
Sanjiva Prasad
Sebastian Preugschat
Pavel Pudlak
Gabriele Puppis
Karin Quaas
Harald Räcke
Prasad Raghavendra
Sanguthevar Rajasekaran
Rajeev Raman
Michael Rao
Igor Razgon
Vojtech Rehak
Felix Reidl
Klaus Reinhardt
Gwenaël Richomme
Inbal Rika
Oliver Riordan
Liam Roditty
Andrei Romashchenko
Adi Rosen
Dominique Rossin

Jörg Rothe
Sambuddha Roy
Sasha Rubin
Luis M. S. Russo
Bartosz Rybicki
Aleksi Saarela
Kalle Saari
Yogish Sabharwal
Mathieu Sablik
Ben Sach
Amit Sahai
Kai Salomaa
Rahul Santhanam
Palash Sarkar
Saket Saurabh
Dmytro Savchuk
Nicolas Schabanel
Ludmila Scharf
Ingo Schiermeyer
Lena Schlipf
Ildi Schlotter
Sylvain Schmitz
Henning Schnoor
Uwe Schöning
Luc Segoufin
Shinnosuke Seki
Géraud Sénizergues
Jiří Sgall
Jeffrey Shallit
Asaf Shapira
Alexander Shen
Yaoyun Shi
Somnath Sikdar
Jamie Sikora
D Sivakumar
Daniel Sleator
Michiel Smid
Christian Sohler
Dmitry Sokolov
Troels Bjerre Sørensen
Manuel Sorge
Michèle Soria
Frits Spieksma
Andrea Sportiello
Jiri Srba
Piyush Srivastava
Grzegorz Stachowiak
Tatiana Starikovskaya
Ulrike Stege
Howard Straubing

STACS’13

xii External Reviewers

Ileana Streinu
Jan Strejcek
Yann Strozecki
Ondrej Suchy
Mario Szegedy
Tony Tan
Bangsheng Tang
Sébastien Tavenas
Jan Arne Telle
Sebastiaan Terwijn
Olivier Teytaud
Guillaume Theyssier
Thomas Thierauf
Dimitrios Thilikos
Ioan Todinca
Théophile Trunck
Madhur Tulsiani
Christos Tzamos
Salil Vadhan
Rene van Bevern
Jan Van Den Bussche

Rob van Stee
Anke van Zuylen
Kasturi Varadarajan
Moshe Vardi
Santosh Vempala
Stéphane Vialette
Antoine Vigneron
Fernando Sanchez Villaamil
Mikhail Volkov
Jan Vondrak
Pedro V. Silva
Mikhail Vyalyi
Kira Vyatkina
Magnus Wahlström
Pascal Weil
Oren Weimann
Matthias Westermann
Chris Whidden
Bryan T. Wilkinson
Anthony Widjaja Lin
Andreas Wiese

Ryan Williams
Philipp Woelfel
Christian Wulff-Nilsen
David Xiao
Tomoyuki Yamakami
Li Yan
Yitong Yin
Jia Yuan Yu
Henry Yuen
Filip Zagorski
Faried Abu Zaid
Hans Zantema
Thomas Zeugmann
Thomas Zeume
Lisa Zhang
Qin Zhang
Yair Zick
Rosalba Zizza

Table of Contents

Foreword v

Program Committee vii

External Reviewers ix

Invited Talks

The complexity of analyzing infinite-state Markov chains, Markov decision processes, and
stochastic games

Kousha Etessami . 1

Graph coloring, communication complexity, and the stubborn problem
Nicolas Bousquet, Aurélie Lagoutte, and Stéphan Thomassé . 3

Physarum Computations
Kurt Mehlhorn . 5

Tutorial

Algorithmic Graph Structure Theory
Dániel Marx . 7

Session 1A: Parametrized Complexity

Searching for better fill-in
Fedor V. Fomin and Yngve Villanger . 8

Probably Optimal Graph Motifs
Andreas Björklund, Petteri Kaski, and Łukasz Kowalik . 20

Tight bounds for Parameterized Complexity of Cluster Editing
Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Yngve
Villanger . 32

Session 1B: Complexity and Logic

Bounded-width QBF is PSPACE-complete
Albert Atserias and Sergi Oliva . 44

Model Counting for CNF Formulas of Bounded Modular Treewidth
Daniel Paulusma, Friedrich Slivovsky, and Stefan Szeider . 55

Backdoors to q-Horn
Serge Gaspers, Sebastian Ordyniak, M. S. Ramanujan, Saket Saurabh, and Stefan
Szeider . 67

30th Internatioanl Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

xiv Table of Contents

Session 2A: Kernels

On Polynomial Kernels for Sparse Integer Linear Programs
Stefan Kratsch . 80

Linear kernels for (connected) dominating set on graphs with excluded topological
subgraphs

Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos . . 92

Session 2B: Complexity and the Reals

The PCP theorem for NP over the reals
Martijn Baartse and Klaus Meer . 104

Mutual Dimension
Adam Case and Jack H. Lutz . 116

Session 3A: Constraint Satisfaction

Exact and Approximation Algorithms for the Maximum Constraint Satisfaction Problem
over the Point Algebra

Yoichi Iwata and Yuichi Yoshida . 127

Local Search is Better than Random Assignment for Bounded Occurrence Ordering k-CSPs
Konstantin Makarychev . 139

The complexity of approximating
conservative counting CSPs

Xi Chen, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum, Pinyan Lu, Colin McQuillan,
and David Richerby . 148

Session 3B: Cryptography, Biology, Learning

Lossy Chains and Fractional Secret Sharing
Yuval Ishai, Eyal Kushilevitz, and Omer Strulovich . 160

Two Hands Are Better Than One (up to constant factors): Self-Assembly In The 2HAM
vs. aTAM

Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J.
Patitz, Robert T. Schweller, Scott M. Summers, and Andrew Winslow 172

Unlabeled Data Does Provably Help
Malte Darnstädt, Hans Ulrich Simon, and Balázs Szörényi . 185

Session 4A: Graph Algorithms and Theory

Computing cutwidth and pathwidth of semi-complete digraphs via degree orderings
Michał Pilipczuk . 197

On Pairwise Spanners
Marek Cygan, Fabrizio Grandoni, and Telikepalli Kavitha . 209

Table of Contents xv

Excluded vertex-minors for graphs of linear rank-width at most k

Jisu Jeong, O-joung Kwon, and Sang-il Oum . 221

Session 4B: Words

Recompression: a simple and powerful technique for word equations
Artur Jeż . 233

Fast Algorithms for Abelian Periods in Words and Greatest Common Divisor Queries
Tomasz Kociumaka, Jakub Radoszewski, and Wojciech Rytter . 245

Finding Pseudo-repetitions
Paweł Gawrychowski, Florin Manea, Robert Mercaş, Dirk Nowotka, and Cătălin
Tiseanu . 257

Session 5A: Computational Geometry

Algorithms for Designing Pop-Up Cards
Zachary Abel, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Anna Lubiw,
André Schulz, Diane L. Souvaine, Giovanni Viglietta, and Andrew Winslow 269

Space-Time Trade-offs for Stack-Based Algorithms
Luis Barba, Matias Korman, Stefan Langerman, Rodrigo I. Silveira, and Kunihiko
Sadakane . 281

L1 Shortest Path Queries among Polygonal Obstacles in the Plane
Danny Z. Chen and Haitao Wang . 293

Session 5B: Two-Variable Logics

Quantifier Alternation in Two-Variable First-Order Logic with Successor Is Decidable
Manfred Kufleitner and Alexander Lauser . 305

FO2 with one transitive relation is decidable
Wiesław Szwast and Lidia Tendera . 317

Two-variable first order logic with modular predicates over words
Luc Dartois and Charles Paperman . 329

Session 6A: Parametrized Algorithms

Abusing the Tutte Matrix: An Algebraic Instance Compression for the K-set-cycle Problem
Magnus Wahlström . 341

Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs
Marcin Pilipczuk, Michał Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen . 353

STACS’13

xvi Table of Contents

Session 6B: Complexity

The arithmetic complexity of tensor contractions
Florent Capelli, Arnaud Durand, and Stefan Mengel . 365

Search versus Decision for Election Manipulation Problems
Edith Hemaspaandra, Lane A. Hemaspaandra, and Curtis Menton 377

Session 7A: Matching

Improved Bounds for Online Preemptive Matching
Leah Epstein, Asaf Levin, Danny Segev, and Oren Weimann . 389

Parameterized Matching in the Streaming Model
Markus Jalsenius, Benny Porat, and Benjamin Sach . 400

Popular Matchings: Structure and Cheating Strategies
Meghana Nasre . 412

Session 7B: Quantum Computing

Fooling One-Sided Quantum Protocols
Hartmut Klauck and Ronald de Wolf . 424

Explicit relation between all lower bound techniques for quantum query complexity
Loïck Magnin and Jérémie Roland . 434

Optimal quantum query bounds for almost all Boolean functions
Andris Ambainis, Arturs Bačkurs, Juris Smotrovs, and Ronald de Wolf 446

Session 8A: Algorithms for Concrete Problems

Streaming Complexity of Checking Priority Queues
Nathanaël François and Frédéric Magniez . 454

Deterministic algorithms for skewed matrix products
Konstantin Kutzkov . 466

The Simulated Greedy Algorithm for Several Submodular Matroid Secretary Problems
Tengyu Ma, Bo Tang, and Yajun Wang . 478

Session 8B: (Un-)decidability

Hardness of Conjugacy, Embedding and Factorization of multidimensional Subshifts of
Finite Type

Emmanuel Jeandel and Pascal Vanier . 490

The finiteness of a group generated by a 2-letter invertible-reversible Mealy automaton is
decidable

Ines Klimann . 502

Table of Contents xvii

Mortality of Iterated Piecewise Affine Functions over the Integers: Decidability and
Complexity

Amir M. Ben-Amram . 514

Session 9A: Algorithms and Algorithm Analysis

On the practically interesting instances of MAXCUT
Yonatan Bilu, Amit Daniely, Nati Linial, and Michael Saks . 526

First Fit bin packing: A tight analysis
György Dósa and Jiří Sgall . 538

Constrained Binary Identification Problem
Amin Karbasi and Morteza Zadimoghaddam . 550

Session 9B: Automata and Languages

Regular languages of thin trees
Mikołaj Bojańczyk, Tomasz Idziaszek, and Michał Skrzypczak . 562

Approximate comparison of distance automata
Thomas Colcombet and Laure Daviaud . 574

The Rank of Tree-Automatic Linear Orderings
Martin Huschenbett . 586

Session 10A: Algorithms and Information Theory

A general framework for the realistic analysis of sorting and searching algorithms.
Application to some popular algorithms

Julien Clément, Thu Hien Nguyen Thi, and Brigitte Vallée . 598

Search using queries on indistinguishable items
Mark Braverman and Gal Oshri . 610

Session 10B: Lower Bounds

Pebbling, Entropy and Branching Program Size Lower Bounds
Balagopal Komarath and Jayalal Sarma M N . 622

Advice Lower Bounds for the Dense Model Theorem
Thomas Watson . 634

Index of Authors 646

STACS’13

The complexity of analyzing infinite-state Markov
chains, Markov decision processes, and stochastic
games

Kousha Etessami

School of Informatics, University of Edinburgh, UK
kousha@inf.ed.ac.uk

Abstract

In recent years, a considerable amount of research has been devoted to understanding the com-
putational complexity of basic analysis problems, and model checking problems, for finitely-
presented countable infinite-state probabilistic systems. In particular, we have studied recursive
Markov chains (RMCs), recursive Markov decision processes (RMDPs) and recursive stochastic
games (RSGs). These arise by adding a natural recursion feature to finite-state Markov chains,
MDPs, and stochastic games. RMCs and RMDPs provide natural abstract models of probab-
ilistic procedural programs with recursion, and they are expressively equivalent to probabilistic
and MDP extensions of pushdown automata. Moreover, a number of well-studied stochastic
processes, including multi-type branching processes, (discrete-time) quasi-birth-death processes,
and stochastic context-free grammars, can be suitably captured by subclasses of RMCs.

A central computational problem for analyzing various classes of recursive probabilistic sys-
tems is the computation of their (optimal) termination probabilities. These form a key ingredient
for many other analyses, including model checking. For RMCs, and for important subclasses of
RMDPs and RSGs, computing their termination values is equivalent to computing the least fixed
point (LFP) solution of a corresponding monotone system of polynomial (min/max) equations.
The complexity of computing the LFP solution for such equation systems is a intriguing problem,
with connections to several areas of research. The LFP solution may in general be irrational.
So, one possible aim is to compute it to within a desired additive error ε > 0. For general
RMCs, approximating their termination probability within any non-trivial constant additive er-
ror < 1/2, is at least as hard as long-standing open problems in the complexity of numerical
computation which are not even known to be in NP. For several key subclasses of RMCs and
RMDPs, computing their termination values turns out to be much more tractable.

In this talk I will survey algorithms for, and discuss the computational complexity of, key
analysis problems for classes of infinite-state recursive MCs, MDPs, and stochastic games. In
particular, I will discuss recent joint work with Alistair Stewart and Mihalis Yannakakis (in
papers that appeared at STOC’12 and ICALP’12), in which we have obtained polynomial time
algorithms for computing, to within arbitrary desired precision, the LFP solution of probabilistic
polynomial (min/max) systems of equations. Using this, we obtained the first P-time algorithms
for computing (within desired precision) the extinction probabilities of multi-type branching
processes, the probability that an arbitrary given stochastic context-free grammar generates a
given string, and the optimum (maximum or minimum) extinction probabilities for branching
MDPs and context-free MDPs. For branching MDPs, their corresponding equations amount to
Bellman optimality equations for minimizing/maximizing their termination probabilities. Our
algorithms combine variations and generalizations of Newton’s method with other techniques,
including linear programming. The algorithms are fairly easy to implement, but analyzing their
worst-case running time is mathematically quite involved.

© Kousha Etessami;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 1–2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Analyzing infinite-state MCs, MDPs, and Stochastic Games

1998 ACM Subject Classification F.2.1 Theory of Computing, G.3 Probability and Statistics,
G.1.5 Mathematics of Computing

Keywords and phrases recursive Markov chains, Markov decision processes, stochastic games,
monotone systems of nonlinear equations, least fixed points, Newton’s method, computational
complexity, multi-type branching processes, stochastic context-free grammars

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.1

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.1

Graph coloring, communication complexity, and
the stubborn problem
Nicolas Bousquet1, Aurélie Lagoutte2, and Stéphan Thomassé3

1 AlGCo project-team, CNRS, LIRMM, Montpellier, France.
nicolas.bousquet@lirmm.fr

2,3 LIP, UMR 5668 ENS Lyon - CNRS - UCBL - INRIA, Université de Lyon,
France.
{aurelie.lagoutte, stephan.thomasse}@ens-lyon.fr

Abstract
We discuss three equivalent forms of the same problem arising in communication complexity,
constraint satisfaction problems, and graph coloring. Some partial results are discussed.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases stubborn problem, graph coloring, Clique-Stable set separation, Alon-
Saks-Seymour conjecture, bipartite packing

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.3

1 The equivalent forms

A classical result of Graham and Pollak [5] asserts that the edge set of the complete graph
on n vertices cannot be partitioned into less than n− 1 complete bipartite graphs. A natural
question is then to ask for some properties of graphs G` which are edge-disjoint unions of `

complete bipartite graphs. An attempt in this direction was proposed by Alon, Saks and
Seymour, asking if the chromatic number of G` is at most ` + 1. This wild generalization
of Graham and Pollak’s theorem was however disproved by Huang and Sudakov [6] who
provided graphs with chromatic number Ω(`6/5). The O(`log `) upper-bound being routine
to prove, this leaves as open question the polynomial Alon-Saks-Seymour conjecture asking if
an O(`c) coloring exists for some fixed c.

A communication complexity problem introduced by Yannakakis[8] involves a graph G of
size n and the usual suspects Alice and Bob. Alice plays on the stable sets of G and Bob
plays on the cliques. Their goal is to exchange the minimum amount of information to decide
if Alice’s stable set S intersect Bob’s clique K. In the nondeterministic version, one asks
for the minimum size of a certificate one should give to Alice and Bob to decide whether
S intersects K. If indeed S intersects K, the certificate consists in the vertex x = S ∩K,
hence one just has to describe x, which costs log n. The problem becomes much harder if
one want to certify that S ∩K = ∅ and this is the core of this problem. A natural question
is to ask for a O(log n) upper bound. Yannakakis observed that this would be equivalent to
the following polynomial clique-stable separation conjecture: There exists a c such that for
any graph G on n vertices, there exists O(nc) vertex bipartitions of G such that for every
disjoint stable set S and clique K, one of the bipartitions separates S from K.

A variant of Feder and Vardi celebrated dichotomy conjecture for Constraint Satisfaction
Problems, the List Matrix Partition (LMP) problem, see [3], asks whether all (0, 1, ∗) CSP
instances are NP–complete or polytime solvable. The LMP was investigated for small
matrices, and was completely solved in dimension 4, save for a unique case, known as the

© Nicolas Bousquet, Aurélie Lagoutte and Stéphan Thomassé;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 3–4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.3
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4

stubborn problem [1]: Given a complete graph G which edges are labelled by 1,2, or 3, the
question is to partition the vertices into three classes V1, V2, V3 so that Vi does not span an
edge labelled i. An easy branching majority algorithm computes O(nlog n) 2-list-assignments
of the vertices such that every solution of the stubborn problem is covered by at least one of
these 2-list-assignments. The stubborn problem hence reduces into O(nlog n) 2-SAT instances,
yielding a pseudo polynomial algorithm. A polynomial algorithm was recently discovered
by Cygan et al.[2], but whether the original branching algorithm could be turned into a
polynomial algorithm is still open. Precisely one can ask the polynomial stubborn 2-list cover
conjecture asking if the set of solutions of any instance of the stubborn problem can be
covered by O(nc) instances consisting of lists of size 2.

We show that these three problems are indeed equivalent. One direction was already
proved by Alon and Haviv.

We further discuss the polynomial clique-stable separation conjecture by restricting
ourselves to some classes of graphs. An open problem of Lovász, see for instance [7], asks for
an extending formulation of the stable set polytope of perfect graphs. This does not exist for
all graphs, as Fiorini [4] et al. have recently proved, but special classes enjoy this property,
like for instance comparability graphs. Furthermore, the existence of extended formulations
for perfect graphs would give a polynomial clique-stable set separation for this class, which is
still open. It is unlikely that the polynomial clique-stable separation holds for the class of all
graphs, hence we propose a milder version of it: for every graph H , the class of H-free graphs
(in the induced sense) has the polynomial clique-stable set separation. This question is wide
open for the cycle of length 5, this would imply the result for perfect graphs. However, we
can show that if H is a split graph, i.e. the union of a clique and a stable set, then there
exists a c depending on H such that the clique-stable set separation can be achieved with nc

cuts in the class of H-free graphs. Observe that H can be wild since the edges between the
clique and the stable set are not specified, hence no structural description of H-free graphs
can be used here. The key tools for finding these nc cuts is VC-dimension.

References
1 K. Cameron, E. M. Eschen, C. T. Hoàng, and R. Sritharan. The complexity of the list

partition problem for graphs. SIAM J. Discrete Math., 21(4):900–929, 2007.
2 M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. The stubborn problem is

stubborn no more (a polynomial algorithm for 3-compatible colouring and the stubborn
list partition problem). In Dana Randall, editor, SODA, pages 1666–1674. SIAM, 2011.

3 T. Feder, P. Hell, S. Klein, and R. Motwani. List partitions. SIAM J. Discrete Math.,
16(3):449–478, 2003.

4 S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and R. de Wolf. Linear vs. semidefinite
extended formulations: exponential separation and strong lower bounds. In STOC, pages
95–106, 2012.

5 R. L. Graham and H. O. Pollak. On embedding graphs in squashed cubes. Graph theory
and applications, 303:99–110, 1972.

6 H. Huang and B. Sudakov. A counterexample to the Alon-Saks-Seymour conjecture and
related problems. Combinatorica, 32:205–219, 2012.

7 L. Lovász. Stable sets and polynomials. Discrete Mathematics, 124(1-3):137–153, 1994.
8 M. Yannakakis. Expressing combinatorial optimization problems by linear programs. J.

Comput. Syst. Sci., 43(3):441–466, 1991.

Physarum Computations
Kurt Mehlhorn1

1 Max Planck Institute for Informatics

Abstract
Physarum is a slime mold. It was observed over the past 10 years that the mold is able to
solve shortest path problems and to construct good Steiner networks [9, 11, 8]. In a nutshell,
the shortest path experiment is as follows: A maze is covered with mold and food is then
provided at two positions s and t and the evolution of the slime is observed. Over time, the
slime retracts to the shortest s-t-path. A video showing the wet-lab experiment can be found at
http://www.youtube.com/watch?v=tLO2n3YMcXw&t=4m43s. We strongly recommend to watch
this video.

A mathematical model of the slime’s dynamic behavior was proposed in 2007 [10]. Extensive
computer simulations of the mathematical model confirm the wet-lab findings. For the edges on
the shortest path, the diameter converges to one, and for the edges off the shortest path, the
diameter converges to zero.

We review the wet-lab and the computer experiments and provide a proof for these exper-
imental findings. The proof was developed over a sequence of papers [6, 7, 4, 2, 1, 3]. We
recommend the last two papers for first reading.

An interesting connection between Physarum and ant computations is made in [5].

1998 ACM Subject Classification G.2.2 Graph Theory (Path and circuit problems)

Keywords and phrases Biological computation, shortest path problems

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.5

References
1 Vincenzo Bonifaci. Physarum can compute shortest paths: A short proof. Inf. Process.

Lett., 113(1-2):4–7, 2013.
2 Vincenzo Bonifaci, Kurt Mehlhorn, and Girish Varma. Physarum can compute shortest

paths. In SODA, pages 233–240, 2012. full version to appear in Journal of Theoretical
Biology.

3 Michael Dirnberger and Kurt Mehlhorn. A convergence proof for nonuniform directed
Physarum. January 2013.

4 Kentaro Ito, Anders Johansson, Toshiyuki Nakagaki, and Atsushi Tero. Convergence prop-
erties for the physarum solver. arXiv:1101.5249v1, January 2011.

5 Qi Ma, Anders Johansson, Atsushi Tero, Toshiyuki Nakagaki, and David J. T. Sumpter.
Current reinforced random walks for biological problem solving. 2012.

6 T. Miyaji and Isamu Ohnishi. Mathematical analysis to an adaptive network of the plas-
modium system. Hokkaido Mathematical Journal, 36:445–465, 2007.

7 T. Miyaji and Isamu Ohnishi. Physarum can solve the shortest path problem on riemannian
surface mathematically rigourously. International Journal of Pure and Applied Mathemat-
ics, 47:353–369, 2008.

8 T. Nakagaki, M. Iima, T. Ueda, Y. Nishiura, T. Saigusa, A. Tero, R. Kobayashi, and
K. Showalter. Minimum-risk path finding by an adaptive amoebal network. Physical
Review Letters (PRL), 99(068104):4, 2007.

© Kurt Mehlhorn;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 5–6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.youtube.com/watch?v=tLO2n3YMcXw&t=4m43s
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.5
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6 Physarum Computations

9 T. Nakagaki, H. Yamada, and Á. Tóth. Maze-solving by an amoeboid organism. Nature,
407:470, 2000.

10 A. Tero, R. Kobayashi, and T. Nakagaki. A mathematical model for adaptive transport
network in path finding by true slime mold. Journal of Theoretical Biology, pages 553–564,
2007.

11 A. Tero, S. Takagi, T. Saigusa, K. Ito, D. Bebber, M. Fricker, K. Yumiki, R. Kobayashi, and
T. Nakagaki. Rules for biologically inspired adaptive network design. Science, 327:439–442,
2010.

Algorithmic Graph Structure Theory
Dániel Marx

Computer and Automation Research Institute,
Hungarian Academy of Sciences (MTA SZTAKI),
Budapest, Hungary dmarx@cs.bme.hu

Abstract
The Graph Minors project of Robertson and Seymour uncovered a very deep structural theory

of graphs. This theory had several important consequences, among others, the proof of Wagner’s
Conjecture. While the whole theory, presented in a series of 23 very dense papers, is notoriously
difficult to understand, it has to be emphasized that these papers introduced several element-
ary concepts and tools that had strong impact on algorithms, complexity, and combinatorics.
Moreover, even some of the very deep results can be stated in a compact and useful way, and
it is possible to build upon these results without a complete understanding of the underlying
machinery.

In the first part of the lecture, I will introduce the concept of treewidth, which can be thought
of as an elementary entry point to graph minors theory. I will overview its graph-theoretic and
algorithmic properties that make it especially important in the design of parameterized algorithms
and approximation schemes on planar graphs. Furthermore, I will briefly explain some of the
connections of treewidth to complexity and automata theory.

In the next part of the lecture, we will turn our attention to the more advanced topic of graphs
excluding a fixed minor: the structure of such graphs, finding minors, and the well-quasi-ordering
of the minor relation. The primary goal here is to provide clear and useful statements of these
results and to show how they generalize the concepts of treewidth and planar graphs. Finally,
I will briefly overview some more recent results involving different kinds of excluded structures,
such as graphs excluding odd minors and topological minors.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases graph theory, graph minors, structure theorems

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.7

© Dániel Marx;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 7–7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.7
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Searching for better fill-in∗

Fedor V. Fomin1 and Yngve Villanger1

1 Department of Informatics, University of Bergen, Bergen, Norway,
{fomin,yngve.villanger}@ii.uib.no

Abstract
Minimum Fill-in is a fundamental and classical problem arising in sparse matrix computa-

tions. In terms of graphs it can be formulated as a problem of finding a triangulation of a given
graph with the minimum number of edges. By the classical result of Rose, Tarjan, Lueker, and
Ohtsuki from 1976, an inclusion minimal triangulation of a graph can be found in polynomial
time but, as it was shown by Yannakakis in 1981, finding a triangulation with the minimum
number of edges is NP-hard.

In this paper, we study the parameterized complexity of local search for the Minimum Fill-
in problem in the following form: Given a triangulation H of a graph G, is there a better
triangulation, i.e. triangulation with less edges than H, within a given distance from H? We
prove that this problem is fixed-parameter tractable (FPT) being parameterized by the distance
from the initial triangulation by providing an algorithm that in time O(f(k)|G|O(1)) decides if a
better triangulation of G can be obtained by swapping at most k edges of H.

Our result adds Minimum Fill-in to the list of very few problems for which local search is
known to be FPT.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases Local Search, Parameterized Complexity, Fill-in, Triangulation, Chordal
graph

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.8

1 Introduction

A graph is chordal (or triangulated) if every cycle of length at least four contains a chord,
i.e. an edge between non-adjacent vertices of the cycle. The Minimum Fill-in problem
(also known as Minimum Triangulation and Chordal Graph Completion) is to turn
a given graph into a chordal by adding as few new edges as possible. The name fill-in is
due to the fundamental problem arising in sparse matrix computations which was studied
intensively in the past. During Gaussian eliminations of large sparse matrices new non-
zero elements called fills can replace original zeros thus increasing storage requirements and
running time needed to solve the system. The problem of finding an optimal elimination
ordering minimizing the number of fill elements can be expressed as the Minimum Fill-in
problem on graphs [44, 45]. See also [9, Chapter 7] for a more recent overview of related
problems and techniques. Besides sparse matrix computations, applications of Minimum
Fill-in can be found in database management [3], artificial intelligence, and the theory
of Bayesian statistics [8, 22, 32, 50]. The survey of Heggernes [25] gives an overview of
techniques and applications of minimum and minimal triangulations.

∗ Supported by the European Research Council (ERC) via grant Rigorous Theory of Preprocessing,
reference 267959, and the Research Council of Norway.

© F.V. Fomin and Y. Villanger;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 8–19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.8
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

F.V. Fomin and Y. Villanger 9

Minimum Fill-in (under the name Chordal Graph Completion) was one of the 12
open problems presented at the end of the first edition of Garey and Johnson’s book [19]
and it was proved to be NP-complete by Yannakakis [51]. While different approximation
and parameterized algorithms for Minimum Fill-in were studied in the literature [2, 5,
7, 8, 17, 27, 38], in practice, to reduce the fill-in different heuristic ordering methods are
commonly used. We refer to the recent survey of Duff and Bora [13] on the history and
recent developments of fill-in reducing heuristics.

In this paper we study the following local search variant of the problem: given a fill-in
of a graph, is it possible to obtain a better fill-in by changing a small number of edges? An
efficient local search algorithm could be used as a generic subroutine of almost every fill-in
heuristic.

The idea of local search is to improve a solution by searching for a better solution in a
neighborhood of the current solution, that is defined in a problem specific way. For example,
for the classic Traveling Salesman problem, the neighborhood of a tour can be defined as
the set of all tours that differ from it in at most k edges, the so-called k-exchange neighborhood
[33, 42]. For inputs of size n, a naïve brute-force search of the k-exchange neighborhood
requires nO(k) time; this is infeasible in practical terms even for relatively small values of
k. But is it possible to do better? Is it possible to solve local search problems in, say time
τ(k) · nO(1), for some function τ of k only? It has been generally assumed, perhaps because
of the typical algorithmic structure of local search algorithms: “Look at all solutions in the
neighborhood of the current solution ...”, that finding an improved solution (if there is one)
in a k-exchange neighborhood necessarily requires brute-force search of the neighborhood;
therefore, verifying optimality in a k-exchange neighbourhood requires Ω(nk) time (see, e.g.
[1] p. 339 or [29] p. 680).

An appropriate tool to answer these questions is parameterized complexity. In the para-
meterized framework, for decision problems with input size n and a parameter k, the goal is
to design algorithms with runtime τ(k) · nO(1), where τ is a function of k alone. Problems
having such algorithms are said to be fixed-parameter tractable (FPT). There is also a the-
ory of hardness to identify parameterized problems that are probably not amenable to FPT
algorithms, based on a complexity hypothesis similar to P6=NP. For an introduction to the
field and more recent developments, see the books [12, 15, 39].

By making use of developments from parameterized complexity, it appeared that the
complexity of local search is much more interesting and involved than it was assumed to be
for a long time. While many k-exchange neighbourhood search problems, like determining
whether there is an improved solution in the k-exchange neighborhood for TSP, are W [1]-
hard parameterized by k [35], it appears that for some problems FPT algorithms exist.
For example, Khuller, Bhatia, and Pless [28] investigated the NP-hard problem of finding a
feedback edge set that is incident to the minimum number of vertices. One of the results
obtained in [28] is that checking whether it is possible to improve a solution by replacing
at most k edges can be done in time O(n2 + nτ(k)), i.e., it is FPT parameterized by k.
Similar results were obtained for many problems on planar graphs [14] and for the feedback
arc set problem in tournaments [16]. Complexity of k-exchange problems for Boolean CSP
and SAT was studied in [31, 47]. The parameterized complexity of local search of different
problems was investigated in [20, 24, 36, 37, 41]. However, most of these results exhibit
the hardness of local search, and, as it was mentioned by Marx in [34], in most cases, the
fixed-parameter tractability results are somewhat unexpected.

Our result. There are various neighborhoods considered in the literature for different
problems. Since for the Minimum Fill-in problem the solution is determined by an edge

STACS’13

10 Searching for better fill-in

subset, the following definition of the neighbourhood comes naturally. For a pair of graphs
G = (V,E) and G′ = (V,E′) on the same vertex set V , let H(G,G′) be |E 4 E′|, i.e. the
Hamming distance between the edge sets of E and E′. We say that G is a neighbor of G′
with respect to k-exchange neighbourhood k-ExN if H(G,G′) ≤ k. Let N en

k (G) be the set
of neighbours of G with respect to k-ExN. We define the following variant of local search.

k-Local Search Fill-in (k-LS-FI) Parameter: k
Input: A graph G = (V,E), its triangulation H = (V,E ∪ F) and an integer k > 0.
Question: Decide whether there is a triangulation of H ′ = (V,E ∪ F ′) of G such that
H ′ ∈ N en

k (H) and |F ′| < |F |.

The main result of the paper is the following theorem.

I Theorem 1. k-LS-FI is FPT.

The theorem is proved in several steps. Let a graph G = (V,E) and its triangulation
H = (V,E ∪ F) be an input of k-LS-FI. We refer to a graph H ′ ∈ N en

k (H) with |F ′| < |F |
as to a solution of k-LS-FI. We start from a simple criteria to identify edges of F that
should be in every solution of k-LS-FI (Lemma 15). Based on this criteria, we can show
that if a solution exist, i.e. G and H is a YES-instance of k-LS-FI, then there is a solution
H ′ = (V,E ∪ F ′) such that the edges of F4F ′ “affect" at most k(k + 1) maximal cliques
of H. This is done in Lemma 17. The next step is to identify the cliques of H that can be
affected by the solution. While the number of sets of at most k(k + 1) maximal cliques in
a chordal graph can be nO(k2), we design a procedure to generate at most n2O(k5) sets of
maximal cliques of H, each set containing at most k(k+ 1) cliques, and at least one of these
sets is a set of cliques affected by the solution. The procedure generating sets of affected
maximal cliques is given in Lemma 20, and this is the most technical part of our algorithm.
What remains to show is that for a given set of maximal cliques, we can construct in FPT
time a solution of k-LS-FI affecting only these cliques.

2 Preliminaries

We denote byG = (V,E) a finite, undirected and simple graph with vertex set V (G) = V and
edge set E(G) = E. We also use n to denote the number of vertices in G. For a non-empty
subset W ⊆ V , the subgraph of G induced by W is denoted by G[W]. We also use G \W
to denote G[V \W]. The open neighborhood of a vertex v is N(v) = {u ∈ V : uv ∈ E}
and the closed neighborhood is N [v] = N(v) ∪ {v}. For a vertex set W ⊆ V , we put
N(W) =

⋃
v∈W N(v) \W and N [W] = N(W) ∪W . We say that an edge uv of graph G

is contained in set X ⊆ V , if u, v ∈ X. We refer to Diestel’s book [10] for basic definitions
from graph theory.

A walk is a sequence of vertices v1v2 . . . v` where vivi+1 ∈ E(G) for 1 ≤ i < `. The walk
is called a path if the vertices are distinct, and the path is called a cycle if v1v` ∈ E. The
path is refereed to as induced if G[{v1v2 . . . v`}] only contains the edges of the walk, and the
walk is an induced cycle if v1v` is the only non-walk edge. A chord of a cycle is an edge
between two non-consecutive vertices of the cycle, thus induced cycles are chordless.

Chordal graphs and minimal triangulations. Chordal or triangulated graphs form the
class of graphs containing no induced cycles of length more than three. In other words,
every cycle of length at least four in a chordal graph contains a chord.

A triangulation of graph G = (V,E) is a chordal supergraph H = (V,E ∪F) of G. For a
triangulation H = (V,E∪F), we refer to edge set F as the set of fill edges. A triangulation

F.V. Fomin and Y. Villanger 11

H of graph G is called minimal if H ′ = (V,E ∪ F ′) is not chordal for any edge set F ′ ⊂ F

and H is a minimum triangulation if H ′ = (V,E ∪ F ′) is not chordal for every edge set F ′
such that |F ′| < |F |. If H is a minimum triangulation of G, then |F | is the minimum fill-in
for G.

By the following result, for every non-minimal triangulation, there is a fill edge whose
removal leaves a chordal graph. It also implies that a greedy approach—as far as there is an
edge e which removal does not create an induced 4-cycle, delete e—can be used to obtain a
minimal triangulation from a non-minimal triangulation.
I Proposition 2 ([46]). A triangulation H = (V,E ∪F) of G = (V,E) is minimal if and only
if for every edge uv ∈ F , deleting uv from H results in a graph with a chordless cycle of
length four.

If chordal graph H = (V,E ∪ F) is not a minimal triangulation of G = (V,E), then by
Proposition 2, we can always find an edge uv ∈ F such that H\uv is chordal. It is possible to
check in linear time if the input graph is chordal [48], and thus in time O(|F |(|V |+ |E∪F |))
one can check if H is a minimal triangulation of G. Hence if the input graph H is not a
minimal triangulation of G, we can solve k-LS-FI in time O(|F |(|V | + |E ∪ F |)). In the
remaining part of the paper, we assume that H is a minimal triangulation of G.

Even though we can always argue that the input chordal graph H is a minimal triangu-
lation of G, we can not ensure that every solution H ′ of the k-LS-FI problem is a minimal
triangulation of G, see Fig. 1.

u

v

H
u

v

H'

Figure 1 In the instance of k-LS-FI, k = 3, the original edges of G = (V, E) are solid lines, and
the fill edges F are dashed lines. Graph H = (V, E ∪ F) is one of two minimal triangulations of
G = (V, E) and H ′ on the right side is a solution of the provided 3-LS-FI instance. However, graph
H ′ is not a minimal triangulation of G as H ′ \ uv is chordal and to obtain a minimal triangulation
H ′ \ uv from H one has to swap four edges.

On the other hand, the following lemma ensures that we can seek a solution which is
a minimal triangulation of some supergraph of G and a subgraph of H. Because of the
following lemma, we will be able to use nice properties of minimal triangulations in search
of a better solution.

I Lemma 3. Let H ′ = (V,E∪F ′) be a solution of k-LS-FI with instance graphs G = (V,E)
and H = (V,E ∪F). Then there is a solution H ′′ = (V,E ∪ F ′′) such that H ′′ is a minimal
triangulation of Hr = (V,E ∪ (F ∩ F ′)).

Proof. Graph H ′ is chordal and is a supergraph of Hr, hence it is a triangulation of Hr.
If H ′ was not a minimal triangulation of Hr, then removal of a non-empty subset of edges
S ⊆ F ′ \ (F ∩F ′) from H ′ results in a minimal triangulation H ′′ = (V,E ∪F ′′) of Hr. Since
|F4F ′′| < |F4F ′| ≤ k, we have that H ′′ is the required minimal triangulation. J

Vertex eliminations. A vertex of a graph is simplicial, if its neighbourhood is a clique. By
the classical result of Fulkerson and Gross [18], a graph H is chordal if and only if it admits

STACS’13

12 Searching for better fill-in

a perfect elimination ordering, i.e. vertex ordering π : {1, 2, . . . , n} → V (G) such that for
every i ∈ {1, 2, . . . , n}, vertex π(i) is simplicial in graph H[{π(i), . . . , π(v)}]. Given a vertex
ordering π of a graph G, we can construct a triangulation H of G such that π is a perfect
elimination ordering for H. Triangulation H is obtained by the following vertex elimination
procedure (also known as Elimination Game) [18, 44]. A vertex elimination procedure takes
as an input a vertex ordering π of graph G and outputs a chordal graph H = Hn. We put
H0 = G and define Hi to be the graph obtained from Hi−1 by completing all neighbours v
of π(i) in Hi−1 with π−1(v) > i into a clique. An elimination ordering π is called minimal
if the corresponding vertex elimination procedure outputs a minimal triangulation of G.
I Proposition 4 ([40]). Graph H is a minimal triangulation of G if and only if there exists
a minimal elimination ordering π of G such that the corresponding procedure outputs H.

We will also need the following description of the fill edges introduced by vertex elemin-
ations.
I Proposition 5 ([46]). Let H be the chordal graph produced by vertex elimination of graph
G according to ordering π. Then uv 6∈ E(G) is a fill edge of H if and only if there exists a
path P = uw1w2 . . . w`v such that π−1(wi) < min(π−1(u), π−1(v)) for each 1 ≤ i ≤ `.

By the arguments used by Fulkerson and Gross [18] in combination with Ohtsuki et
al. [40], we can reach the following conclusion.
I Proposition 6 (Folklore). Let H be a minimal triangulation of G and let X ⊆ V be a clique
of G. Then there exists a minimal elimination ordering π of G resulting in H such that
vertices of X are the last vertices in π.

Minimal separators. Let u and v be two non-adjacent vertices of a graph G. A set of
vertices S ⊆ V is an u, v-separator if u and v are in different connected components of the
graph G[V \ S]. We say that S is a minimal u, v-separator of G if no proper subset of S is
an u, v-separator and that S is a minimal separator of G if there are two vertices u and v
such that S is a minimal u, v-separator. Notice that a minimal separator can be contained
in another one. If a minimal separator is a clique, we refer to it as to a clique minimal
separator. In a chordal graph, each minimal separator is a clique minimal separator. Also a
chordal graph on n vertices contains at most n maximal cliques and n−1 minimal separators
[11].

A connected component C of G \ S is a full component associated with S if N(C) = S.
The following proposition is an exercise in [23].
I Proposition 7 (Folklore). A set S of vertices of G is a minimal a, b-separator if and only
if a and b are in different full components associated with S. In particular, S is a minimal
separator if and only if there are at least two distinct full components associated with S.

Two separators S and S′ are crossing if S is a u, v-separator for a pair of vertices u, v ∈ S′,
and S′ is a u′, v′-separator for some u′, v′ ∈ S.
I Proposition 8 ([43]). Graph H is a minimal triangulation of G if and only if H can be
obtained from G by completing a maximal set of pairwise non-crossing minimal separators
into cliques.
I Proposition 9 ([30, 43]). Let H be a minimal triangulation of G. Then every minimal
separator in H is a minimal separator in G.

For a minimal triangulation H = (V,E ∪ F) of G, propositions 8 and 9 imply that for
every edge uv ∈ F there exists a minimal separator S of both G and H such that u, v ∈ S.
We also use the following result.

F.V. Fomin and Y. Villanger 13

I Proposition 10 ([30, 43]). Let H be a minimal triangulation of G. Then every full com-
ponent C associated with a minimal separator S in H is also a full component associated
with the minimal separator S in G.

The following proposition is folklore; see, e.g., [5].

I Proposition 11 ([5]). Let H = (V,E ∪F) be a minimal triangulation of G = (V,E) and let
v1v2 . . . v` be a chordless cycle in G. Then either v2v` ∈ F , or v1vi ∈ F for some 2 < i < `.

We also use the following result.

I Proposition 12 ([30]). Let S be a minimal separator of G, and let GS be the graph obtained
from G by completing S into a clique. Let C1, C2, . . . , Cr be the connected components of
G \ S. Then graph H obtained from GS by adding a set of fill edges F is a minimal
triangulation of G if and only if F =

⋃r
i=1 Fi, where Fi is the set of fill edges in a minimal

triangulation of GS [N [Ci]].

Clique trees and tree decompositions. A tree decomposition TDG of a graphG = (V,E)
is a pair (T, χ) consisting of a set χ of vertex subsets of V and the elements of χ are mapped
bijectively onto the nodes of T such that V =

⋃
X∈χX; for every uv ∈ E, u, v ∈ X for

some X ∈ χ;, and for every vertex v ∈ V the set of elements of χ containing v induces a
subtree of T . Tree decompositions are strongly related to chordal graphs due to the following
proposition.

I Proposition 13 ([6, 21, 49]). Graph G is chordal if and only if there exists a tree decom-
position (T, χ) of G such that every X ∈ χ is a maximal clique in G.

Such a tree decomposition is referred to as a clique tree of G. It is well known that a
clique tree of a chordal graph on n vertices and m edges can be constructed in O(n + m)
time [4]. Vertices of the clique tree will be refereed to as nodes in order to distinguish them
from the vertices of the graph. We also need the following result relating edges of a clique
tree of a chordal graph and its minimal separators.

I Proposition 14 ([6, 26]). Let (T, χ) be a clique tree of a chordal graph G. Then S is a
minimal separator of G if and only if S = Xi ∩Xj for some edge XiXj ∈ E(T).

For ease of notation we will often refer to the edge set of an edge XiXj in the clique tree
T as the vertex set S = Xi ∩Xj .

Parameterized complexity. A parameterized problem Π is a subset of Γ∗ × N for some
finite alphabet Γ. An instance of a parameterized problem consists of (x, k), where k is called
the parameter. A central notion in parameterized complexity is fixed-parameter tractability
(FPT) which means, for a given instance (x, k), solvability in time f(k) · p(|x|), where f is
an arbitrary function of k, and p is a polynomial in the input size. We refer to the book of
Downey and Fellows [12] for further reading on parameterized complexity.

3 Local search

Immovable edges. Let G = (V,E) be a graph and H = (V,E ∪ F) be a minimal tri-
angulation of G. We say that an edge e ∈ F is immovable, if for every triangulation
H ′ = (V,E ∪F ′) ∈ N en

k (H) we have e ∈ F ′. In other words, each triangulation H ′ from the
k-neighbourhood of H should contain e. We need a sequence of results providing conditions
enforcing edges to be immovable. Due to space limitations the proof of the following lemma
has been removed.

STACS’13

14 Searching for better fill-in

I Lemma 15. Let S be a minimal separator of a minimal triangulation H = (V,E ∪ F) of
an n-vertex graph G = (V,E), let C be a full component associated with S in H, and let
u, v ∈ S such that uv ∈ F and |(NH(u) ∩NH(v)) \ (C ∪ S)| > k. Then uv is an immovable
edge. Moreover, one can check in time O(n3) if an edge uv ∈ F satisfies the above conditions
and thus is immovable.

Lemma 15 yields the following lemma.

I Lemma 16. Let H = (V,E ∪ F) be a minimal triangulation of graph G = (V,E) and
let X1 and X2 be maximal cliques of H such that |X2 \ X1| > k. Then every edge of F
contained in X1 ∩X2 is immovable.

Proof. Let T be a clique tree of H and remember that each node of T represent a maximal
clique of H. Let X ′ be the neighbour of X1 on the unique path from X1 to X2 in T . By
Proposition 14, S = X1∩X ′ is a minimal separator in H. Let us remark, that S ⊇ X1∩X2.
Let C be the full component of H \ S associated with S containing X1 \ S. For every
edge uv ∈ F such that u, v ∈ X1 ∩ X2, we have that u, v ∈ S, and because X2 is a
clique, we have that every vertex from X2 \ (S ∪ C) is adjacent to both u and v. Finally,
|(NH(u)∩NH(v)) \ (C ∪ S)| ≥ |X2 \ (S ∪C)| = |X2 \X1| > k. Now the proof of the lemma
follows by Lemma 15. J

I Lemma 17. Let H = (V,E∪F) and H ′ = (V,E∪F ′) ∈ N en
k (H) be minimal triangulations

of G. Then H has at most k(k+ 1) maximal cliques containing both endpoints of some edge
from F \ F ′.

Proof. We start the proof with the following claim.
Claim: Every edge uv ∈ F contained in more than k+1 maximal cliques of H is immovable.

Proof of the claim: In the clique tree T of H, the nodes corresponding to these maximal
cliques containing uv induce a subtree Tuv. Let X1, X2, . . . , X`, ` ≥ k + 2 be the maximal
cliques corresponding to nodes of Tuv and let them be numbered such that X1 is a leaf of
Tuv and X2 is the parent of X1 in Tuv. Then S = X1∩X2 is a minimal separator containing
u and v. Because X1 is a maximal clique, there is x1 ∈ X1 \ S such that the connected
component of H \S containing x1 is a full component C associated with S. Remove X1 and
repeat on the cliques X2, . . . , X`, ` ≥ k + 2 that still induces a sub-tree of T . Hence, there
are at least k+ 1 vertices that are adjacent to both u and v and not contained in C ∪S. By
Lemma 15, edge uv is immovable. This concludes the proof of the claim.

We proceed with the proof of the lemma. Because H ′ ∈ N en
k (H), we have that none

of the edges from F \ F ′ is immovable. By the claim above, each such edge e ∈ F \ F ′ is
contained in at most k+ 1 maximal cliques of H. Since |F \F ′| ≤ k, the lemma follows. J

Generating affected cliques. The following lemmata allow us to reduce the search space.
As a result, we are able to generate at most 2O(k5) sets of cliques, each set of size at most
k(k + 1), such that if there is a solution to the problem, then there is also a solution that
swaps edges only between vertices in one of the sets of maximal cliques. Due to space
limitations the proof of the following lemma has been removed.

I Lemma 18. Let H = (V,E ∪F) be a minimal triangulation of G and let H ′ = (V,E ∪F ′)
be a solution of k-LS-FI. If H has a minimal separator S containing no edges of F \ F ′,
then there is a connected component C of H \S and a solution H ′′ = (V,E∪F ′′) of k-LS-FI
such that every edge from (F ′′ \ F) ∪ (F \ F ′′) is contained in NH [C].

F.V. Fomin and Y. Villanger 15

By Lemma 18, we obtain the following lemma.

I Lemma 19. Let H = (V,E∪F) be a minimal triangulation of G and let T be a clique tree
of H. If there is a triangulation H ′ = (V,E ∪ F ′) ∈ N en

k (H) with |F ′| < |F |, then there is
a triangulation H ′′ = (V,E ∪ F ′′) ∈ N en

k (H) with |F ′′| < |F | such that the maximal cliques
of H containing edges from F \ F ′′ induce a subtree of T .

Proof. As long as the maximal cliques of H containing edges from F \ F ′ do not induce a
subtree of the clique tree T of H, there exists a minimal separator S of H such that no edges
of F \F ′ are contained in S and there exist endpoints of edges in F \F ′ that are separated by
S. By Lemma 18, we can obtain a new solution H ′′ = (V,E ∪F ′′) where |F \F ′′| < |F \F ′|
and all endpoints of the edges in F \F ′′ are contained in the same connected component of
H[V \ S]. Repeat this until the maximal cliques of H containing edges from F \ F ′′ induce
a subtree of the clique tree of H. J

By Lemma 19, if there is a solution of k-LS-FI, then there is also a solution where the
maximal cliques of H containing edges deleted from H form a subtree of the clique tree
of H. The next lemma gives an algorithm that in FPT time outputs at least one of such
subtrees. Due to space limitations the proof of the following lemma has been removed.

I Lemma 20. Let H = (V,E∪F) be a minimal triangulation of an n-vertex graph G. There
is an algorithm that in time O(2O(k5)n2 + |F | · n3) outputs sets X1,X2, . . . ,Xt, t ≤ n2O(k5),
of maximal cliques of H such that

if there is a solution to k-LS-FI, then there exists a solution H ′ = (V,E∪F ′), |F ′| < |F |,
of k-LS-FI and a set X ∈ {X1,X2, . . . ,Xt} such that the cliques of X induces a subtree
of clique tree T of H and are exactly the cliques containing edges of F \ F ′.

Final step. By Lemma 20, we are able to compute at least one of the subtrees of the
maximal clique tree of H that consists of maximal cliques containing edges of H that will
be removed in a better triangulation. We are ready to prove the main result about k-LS-FI,
Theorem 1.

Proof of Theorem 1. To prove the theorem, we show that given a minimal triangulation
H = (V,E ∪F) of an n-vertex graph G = (V,E), searching for a better triangulation in the
k-exchange neighbourhood of H can be performed in time O(2O(k5)n4 + |F | · n3).

Let T be a clique tree ofH. We use Lemma 15 to mark some edges of F as immovable. We
also mark minimal separators of H containing only immovable edges from F as immovable.
We use the algorithm from Lemma 20 to output at most n2O(k5) sets X1,X2, . . . ,Xt of
maximal cliques of H = (V,E ∪ F) such that

If pair G and H is a YES-instance of k-LS-FI, then there is a triangulation of G, H ′ =
(V,E ∪ F ′) ∈ N en

k (H) with |F ′| < |F | such that at least one Xi consists of all cliques
containing both endpoints for some edge of F \ F ′;
Each set Xi contains at most k(k + 1) maximal cliques of H;
For every set Xi, no two maximal cliques from Xi can be separated by an immovable
separator.

For set Xi, 1 ≤ i ≤ t, we define Hi to be the induced subgraph of H induced by the
vertices of cliques from Xi. Let S be a minimal separator of Hi. By Lemma 16, for every
intersecting maximal cliques X1, X2 ∈ Xi, we have that |X1 \ X2| < k. Hence, graph Hi

contains at most |S|+k2(k+ 1) vertices as the hole sub-tree can be reduced to two maximal
cliques by recursively removing leaf cliques and each of them have at most k − 1 private

STACS’13

16 Searching for better fill-in

vertices. We also define Gi to be the induced subgraph of G induced by the vertices of
cliques from Xi. Then Gi also has at most |S|+ k2(k + 1) vertices.

Let C be the set of all maximal cliques of H. By Lemmata 18 and 20, the search of
a solution boils down to the search in the k-exchange neighbourhood of H for a better
triangulation H ′ = (V,E ∪F ′), which satisfies for some i, 1 ≤ i ≤ t, the following additional
condition: no maximal clique C ∈ C \ Xi contains any edges from F \ F ′ and no edge from
F ′ \ F . The later is trivial as edges of F ′ \ F are not present in H.

Let G′i be the graph obtained from Gi by adding immovable edges of Hi and all edges of
F ∩E(Hi) which are contained in maximal cliques of C \ Xi. We show how to find a better
triangulation of G′i.

By Proposition 4, every minimal triangulation of G′i corresponds to a minimal elimination
ordering of G′i. In graph G′i, there are at most k2(k + 1) vertices outside S. Thus in every
elimination ordering, there are at most k2(k + 1) vertices preceding the first vertex of S.
We try all possible subsets of V (G′i) \ S and their permutations for a possible prefix in
this ordering. Thus we try at most 2k2(k+1)(k2(k + 1))! ordered subsets. For every prefix
π, we guess also the first vertex v ∈ S which goes after π. So in total we try at most
n ·2k2(k+1)(k2(k + 1))! ordered subsets. Let Y be the subset of vertices of S which are either
adjacent to v or reachable from v through the vertices of the prefix. By Proposition 5, set
Y is a clique in any triangulation obtained by an ordering extending π. Let Z = S \ Y . If
|Z| > k, then we made a wrong guess on the prefix π because at least k + 1 edges incident
to v have to be deleted, and this prefix cannot produce a triangulation in a k-exchange
neighbourhood of Hi.

Hence we assume that |Z| ≤ k. By eliminating vertices of π and v first it follows by
Proposition 6, that there exists a minimal elimination ordering producing the minimum fill
such that the vertices of Y are the last vertices in this ordering. Thus there is a minimal
elimination ordering producing the minimum fill of the form πvZY . As we already shown,
there are at most 2k2(k+1)(k2(k + 1))! ways to select the ordered prefix π, and at most n ways
to select v ∈ S. As far as π and v are fixed, there is a unique way to define Y and Z. There
are at most k! permutations of Z and any permutation of Y will do the job. Thus in total,
there are at most n · 2k2(k+1)(k2(k + 1))!k! = 2O(k3 log k)n permutations. If H ′i ∈ N en

k (Hi),
then we output the minimal triangulation H ′ = (V,E ∪ (F \ (E(Hi)) ∪ E(H ′i). If for every
i, 1 ≤ i ≤ t, the minimum triangulation H ′i 6∈ N en

k (Hi), then we conclude that the pair G
and H is a NO-instance of the problem, and thus there is no better triangulation of G in
the k-exchange neighbourhood of H.

By Lemma 20, it takes time O(2O(k5)n2 + |F | · n3) to generate all subsets of set X
and there are 2O(k5)n such subsets. For each of the subsets consisting of at most k(k + 1)
maximal cliques, a separator S can be found in O(n2) time. For each set, we try 2O(k3 log k)n

permutations, resulting in 2O(k5)n · 2O(k3 log k)n = 2O(k5)n2 different elimination orderings.
Finally, for each ordering, the corresponding triangulation can be computed in O(n2) time.
Thus, the total running time is O(2O(k5)n4 + |F | · n3). J

4 Conclusion and open problems

We have shown fixed-parameter tractability of the variant of search of the k-exchange neigh-
bourhood for Minimum Fill-in. Since only a very few search problems known to be FPT,
we find it very interesting to explore what general properties of problems and exchange
neighbourhoods are responsible for such phenomena. Another natural question is about the
running time of the algorithm. The worst case upper bound on the running time of our

F.V. Fomin and Y. Villanger 17

algorithm makes the result of the paper mainly of theoretical importance. However, the
common story about improvements of FPT algorithms is that with more work and new
ideas, these algorithm can be made practical.1 Very recently, it was shown that the para-
meterized version of Minimum Fill-in is solvable in subexponential 2o(k)nO(1) time. Can
it be that k-LS-FI is solvable in time O(2o(k)nc) for some small constant c? Combined with
other fill-in reducing heuristics, such an algorithm would be of real practical importance.

References

1 Emile H. L. Aarts and Jan Karel Lenstra. Local Search in Combinatorial Optimization.
Princeton University Press, 1997.

2 Ajit Agrawal, Philip N. Klein, and R. Ravi. Cutting down on fill using nested dissection:
provably good elimination orderings. Graph Theory and Sparse Matrix Computation, 56:31–
55, 1993.

3 Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the desirability of
acyclic database schemes. J. ACM, 30(3):479–513, 1983.

4 J. R. S. Blair and B. W. Peyton. An introduction to chordal graphs and clique trees. In
Graph Theory and Sparse Matrix Computations, pages 1–30. Springer, 1993. IMA Volumes
in Mathematics and its Applications, Vol. 56.

5 Hans Bodlaender, Pinar Heggernes, and Yngve Villanger. Faster parameterized algorithms
for minimum fill-in. Algorithmica, 61:817–838, 2011.

6 P. Buneman. A characterization of rigid circuit graphs. Discrete Math., 9:205–212, 1974.
7 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary

properties. Inf. Process. Lett., 58(4):171–176, 1996.
8 Fan R. K. Chung and David Mumford. Chordal completions of planar graphs. J. Comb.

Theory, Ser. B, 62(1):96–106, 1994.
9 Timothy A. Davis. Direct methods for sparse linear systems, volume 2 of Fundamentals

of Algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
2006.

10 Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-
Verlag, Berlin, third edition, 2005.

11 G. A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg, 25:71–76, 1961.
12 R. G. Downey and M. R. Fellows. Parameterized complexity. Springer-Verlag, New York,

1999.
13 Iain S. Duff and Bora Ucar. Combinatorial problems in solving linear systems. In Combin-

atorial Scientific Computing, number 09061 in Dagstuhl Seminar Proceedings, Dagstuhl,
Germany, 2009. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

14 Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond, Saket
Saurabh, and Yngve Villanger. Local search: Is brute-force avoidable? J. Comput. Syst.
Sci., 78(3):707–719, 2012.

15 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer-Verlag, Berlin,
2006.

16 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Fast local
search algorithm for weighted feedback arc set in tournaments. In Proceedings of the 24th
AAAI Conference on Artificial Intelligence (AAAI 2010), pages 65–70. AAAI Press, 2010.

1 Parameterized complexity community wiki contains different examples of running time improvements
at http://fpt.wikidot.com/fpt-races

STACS’13

18 Searching for better fill-in

17 Fedor V. Fomin and Yngve Vilanger. Subexponential parameterized algorithm for minimum
fill-in. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2012), pages 1737–1746. SIAM, 2012.

18 D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific J. Math.,
15:835–855, 1965.

19 Michael R. Garey and David S. Johnson. Computers and Intractability, A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

20 Serge Gaspers, Eun Jung Kim, Sebastian Ordyniak, Saket Saurabh, and Stefan Szeider.
Don’t be strict in local search! In Proceedings of the 26th AAAI Conference (AAAI-12),
page to appear. AAAI Press, 2012.

21 F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. J.
Combin. Theory Ser. B, 16:47–56, 1974.

22 D. Geman. Random fields and inverse problems in imaging. In École d’été de Probabilités de
Saint-Flour XVIII—1988, volume 1427 of Lecture Notes in Math., pages 113–193. Springer,
Berlin, 1990.

23 M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New
York, 1980.

24 Jiong Guo, Sepp Hartung, Rolf Niedermeier, and Ondrej Suchý. The parameterized com-
plexity of local search for TSP, more refined. In Proceedings of the 22nd International
Symposium on Algorithms and Computation (ISAAC 2011), volume 7074 of LNCS, pages
614–623. Springer, 2011.

25 Pinar Heggernes. Minimal triangulations of graphs: A survey. Discrete Mathematics,
306(3):297–317, 2006.

26 Chin-Wen Ho and R.C.T. Lee. Counting clique trees and computing perfect elimination
schemes in parallel. Information Processing Letters, 31(2):61 – 68, 1989.

27 Haim Kaplan, Ron Shamir, and Robert E. Tarjan. Tractability of parameterized completion
problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput.,
28:1906–1922, May 1999.

28 Samir Khuller, Randeep Bhatia, and Robert Pless. On local search and placement of meters
in networks. SIAM J. Comput., 32(2):470–487, 2003.

29 Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2005.

30 Ton Kloks, Dieter Kratsch, and Jeremy Spinrad. On treewidth and minimum fill-in of
asteroidal triple-free graphs. Theor. Comput. Sci., 175(2):309–335, 1997.

31 Andrei Krokhin and Dániel Marx. On the hardness of losing weight. ACM Trans. Al-
gorithms, 8(2):19:1–19:18, 2012.

32 S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. J. Royal Statist. Soc. B, 50(2):157–224,
1988.

33 S. Lin and B. W. Kernighan. An effective heuristic algorithm for traveling-salesman prob-
lem. Operations Research, 21:498–516, 1973.

34 Dániel Marx. Local search. Parameterized Complexity Newsletter, 3:7–8, 2008.
35 Dániel Marx. Searching the k-change neighborhood for TSP is W[1]-hard. Oper. Res. Lett.,

36(1):31–36, 2008.
36 Dániel Marx and Ildikó Schlotter. Parameterized complexity and local search approaches

for the stable marriage problem with ties. Algorithmica, 58(1):170–187, 2010.
37 Dániel Marx and Ildikó Schlotter. Stable assignment with couples: Parameterized com-

plexity and local search. Discrete Optimization, 8(1):25–40, 2011.
38 Assaf Natanzon, Ron Shamir, and Roded Sharan. A polynomial approximation algorithm

for the minimum fill-in problem. SIAM J. Comput., 30:1067–1079, October 2000.

F.V. Fomin and Y. Villanger 19

39 Rolf Niedermeier. Invitation to fixed-parameter algorithms. Oxford University Press, 2006.
40 T. Ohtsuki, L. K. Cheung, and T. Fujisawa. Minimal triangulation of a graph and optimal

pivoting ordering in a sparse matrix. J. Math. Anal. Appl., 54:622–633, 1976.
41 Sebastian Ordyniak and Stefan Szeider. Algorithms and complexity results for exact

bayesian structure learning. In Proceedings of the 26th Conference on Uncertainty in Arti-
ficial Intelligence (UAI 2010), pages 401–408. AUAI Press, 2010.

42 Christos H. Papadimitriou and Kenneth Steiglitz. On the complexity of local search for
the traveling salesman problem. SIAM J. Comput., 6(1):76–83, 1977.

43 Andreas Parra and Petra Scheffler. Characterizations and algorithmic applications of
chordal graph embeddings. Discrete Applied Mathematics, 79(1-3):171–188, 1997.

44 S. Parter. The use of linear graphs in Gauss elimination. SIAM Review, 3:119–130, 1961.
45 D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive definite

systems of linear equations. In R. C. Read, editor, Graph Theory and Computing, pages
183–217. Academic Press, New York, 1972.

46 D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination on
graphs. SIAM J. Comput., 5:266–283, 1976.

47 Stefan Szeider. The parameterized complexity of k-flip local search for SAT and MAX
SAT. Discrete Optimization, 8(1):139–145, 2011.

48 Robert Endre Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hyper-
graphs. SIAM J. Comput., 13(3):566–579, 1984.

49 J. R. Walter. Representations of rigid cycle graphs. PhD thesis, Wayne State University,
1972.

50 S. Wong, D. Wu, and C. Butz. Triangulation of Bayesian networks: A relational database
perspective. In Rough Sets and Current Trends in Computing, volume 2475 of LNCS, pages
950–950. Springer, 2002.

51 M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth.,
2:77–79, 1981.

STACS’13

Probably Optimal Graph Motifs∗

Andreas Björklund1, Petteri Kaski2, and Łukasz Kowalik3

1 Department of Computer Science, Lund University, Sweden
andreas.bjorklund@yahoo.se

2 Helsinki Institute for Information Technology HIIT & Department of
Information and Computer Science, Aalto University, Finland
petteri.kaski@aalto.fi

3 Institute of Informatics, University of Warsaw, Poland
kowalik@mimuw.edu.pl

Abstract
We show an O∗(2k)-time polynomial space algorithm for the k-sized Graph Motif problem. We
also introduce a new optimization variant of the problem, called Closest Graph Motif and
solve it within the same time bound. The Closest Graph Motif problem encompasses several
previously studied optimization variants, like Maximum Graph Motif, Min-Substitute, and
Min-Add.

Moreover, we provide a piece of evidence that our result might be essentially tight: the
existence of an O∗((2−ε)k)-time algorithm for the Graph Motif problem implies an O((2−ε′)n)-
time algorithm for Set Cover.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases graph motif, FPT algorithm

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.20

1 Introduction

The Graph Motif problem is defined as follows. We are given an undirected connected
graph G = (V,E), a vertex coloring c : V → C, and a multiset M consisting of colors in the
set C. The goal is to find a subset S ⊆ V such that the induced subgraph G[S] is connected,
and the multiset c(S) of colors of the vertices of S is equal to M . To avoid confusion, let
us stress that the input function c is arbitrary and it does not need to be a proper vertex
coloring. Let k = |S| denote the size of the solution (which is |M | in the case of Graph
Motif but may differ from |M | in variants of the problem also considered in this paper).

Graph Motif was introduced by Lacroix et al. [17] and motivated by applications in
bioinformatics, specifically in metabolic network analysis. It is known to be NP-hard even
when the given graph is a tree of maximum degree 3 and the motif is a set [11]. However,
in practice the size of M is expected to be small, what motivates the research on so-called
FPT algorithms parameterized by k, that is, algorithms with running times bounded from
above by a function f(k) times a function polynomial in the input size, which is commonly
abbreviated by O∗(f(k)). Indeed, Fellows et al. [10] discovered that such an algorithm exists,
which was followed by a rapid series of improvements to f(k) (see Table 1).

∗ This research was supported in part by the Academy of Finland, Grants 252083 and 256287 (P.K.),
and by the National Science Centre of Poland, Grant N206 567140 (Ł.K.).

© Andreas Björklund, Petteri Kaski, and Łukasz Kowalik;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 20–31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.20
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Björklund, P. Kaski, and Ł. Kowalik 21

Table 1 The progress on FPT algorithms for the Graph Motif problem

Paper Running time Approach
Fellows et al. [10] O∗(87k), implicit Color-coding
Betzler et al. [1] O∗(4.32k) Color-coding
Guillemot and Sikora [12] O∗(4k) Multilinear detection
Koutis [15] O∗(2.54k) Constrained multilinear detection
this work O∗(2k) Constrained multilinear detection

The two most recent results, namely the O∗(4k) algorithm of Guillemot and Sikora [12]
and the O∗(2.54k)-time algorithm of Koutis [15] apply the so-called multilinear detec-
tion technique. This technique was introduced by Koutis [13] and further developed by
Williams [20] and Koutis and Williams [16] to solve subgraph containment problems. In-
spired by the Graph Motif application and the reduction to multilinear detection [12],
Koutis [15] introduced a tailored variant of multilinear detection called constrained mul-
tilinear detection (abbreviated k-CMlD) to make further progress on the Graph Motif
problem. In the k-CMlD problem, we are given a multivariate polynomial represented as
an arithmetic circuit, and are asked determine whether the polynomial has a multilinear
monomial of degree k with an odd coefficient, with the further constraint that the poly-
nomial indeterminates have colors associated to them, and the monomial must not exceed
a prescribed number of occurrences of each color. At a Dagstuhl seminar in 2010, Koutis
[14] posed the open problem of devising an O∗(2k)-time algorithm for k-CMlD. His recent
paper [15] provides an O∗(2.54k)-time algorithm for the problem where the worst case bound
results from a budget of at most three occurrences of every color.

In this paper we indirectly show an O∗(2k)-time polynomial space algorithm for k-CMlD,
thereby answering Koutis’s open problem in the affirmative. Since the main application of
k-CMlD is the Graph Motif problem and its variants, we here present the result directly
in terms of graph motifs. In the full version of this paper we will give a self-contained
proof for the general k-CMlD (see also [4]). Our approach is inspired by Koutis’s beautiful
idea of assigning random subspaces of dimension equal to the prescribed multiplicities of
the colors. Koutis used group algebras F2[Zk2] for his construction, whereas ours appear to
require an extension to F2β [Zk2] for β = Ω(log k). Rather than proving the result in terms of
a group algebra as Koutis suggests, we provide a construction using inclusion–exclusion over
labelled indeterminates. As in [3], a paper using the technique co- authored by a subset of
the present authors, we find it more convenient to work in this alternative setting.

A further contribution of the present work is to develop a generalization of Graph Motif
called Closest Graph Motif. In particular, we introduce a notion of edit distance between
two multisets, and the objective is to find the subset S ⊆ V such that G[S] is connected and
the edit distance from M to c(S) is minimized (see Section 3 for a precise definition). In the
literature there are some more optimization variants of Graph Motif and our Closest
Graph Motif generalizes three of them: Maximum Graph Motif (see Section 2), Min-
Add, and Min-Substitute (see Section 3). The previous fastest algorithms for these
problems are due to Koutis [15]; he shows O∗(2.54k)-time algorithms for Maximum Graph
Motif and Min-Add, and an O∗(5.08k)-time algorithm for Min-Substitute. We present
an O∗(2k)-time algorithm for the general Closest Graph Motif.

Similarly to the three previous FPT improvements on Graph Motif relative to the

STACS’13

22 Probably Optimal Graph Motifs

parameter k, our algorithm is Monte Carlo with one-sided error (with probability at most
1/2 the algorithm asserts the absence of a solution when in fact there is one; one can get
arbitrarily small error probability p by repeating the algorithm log2(1/p) times).

In addition to our algorithmic results, we give a piece of evidence that further improve-
ment on the running time is substantially harder. Namely, we show that for any ε > 0
the existence of an O∗((2− ε)k)-time algorithm for the Graph Motif problem implies an
O((2 − ε′)n)-time algorithm for the Set Cover problem, for some ε′ > 0. Thus, instead
of trying to improve our algorithm one should rather attack the more generic Set Cover.
After decades of research on the problem, an O((2 − ε)n)-time algorithm for Set Cover
would be a major breakthrough. Indeed, the nonexistence of such an algorithm has already
been used as an assumption for proving hardness results [5]. Furthermore, it is conjec-
tured [5] that an O((2− ε)n)-time algorithm for Set Cover contradicts the SETH (Strong
Exponential Time Hypothesis, which states that if k-CNF SAT can be solved in O∗(cnk)
time, then limk→∞ck = 2). This conjecture is supported by the fact that the number of
solutions to Set Cover cannot be computed in O((2− ε)n) time for any ε > 0 unless SETH
fails [5]. Another consequence of such a counting algorithm would be the existence of an
O((2− ε′)n)-time algorithm to compute the permanent of an n× n integer matrix, see [2].

This paper is organized as follows. In Section 2 we describe our O∗(2k)-time algorithm
for Maximum Graph Motif, while in Section 3 we describe how our algorithm works for
the more general Closest Graph Motif and how it encompasses earlier named variants.
In Section 4 we show the reduction from Set Cover.

2 An O∗(2k)-time algorithm for Maximum Graph Motif

2.1 The general approach
In this section we will study a slight generalization of Graph Motif, namely the Maximum
Graph Motif problem parameterized by the solution size k. That is, for a given instance
(G, c,M), the task is to decide whether there exists a subset S ⊆ V such that (i) the induced
subgraph G[S] is connected, (ii) |S| = k, and (iii) the multiset inclusion c(S) ⊆M holds.

It is immediate that once we have an algorithm for the decision problem that runs in
T (n, k) time, we can find a solution in O(nT (n, k)) time as follows. For every vertex v ∈ V ,
check whether a solution exists if we remove v frmo G; if not, then put v back to G; in both
cases proceed to the next vertex. After iterating over all vertices, we are left with a desired
induced subgraph G[S].

To solve the decision problem we use the following approach. We define a multivariate
polynomial P that has two key properties: (1) P is not identically zero if and only if there
is a solution S, and (2) P can be evaluated fast (that is, in O∗(2k) time) at any given point.
Then an O∗(2k)-time algorithm follows via the DeMillo–Lipton–Schwartz–Zippel Lemma
(see Section 2.6). We note that alternatively, instead of the polynomial approach one can
use the random weights approach and the Isolation Lemma (see e.g. [6]).

The main difference between the present approach and earlier works that deploy a similar
polynomial sieve is that we employ the same “labels” (the universe of k elements whose
subsets we use in sieving) to simultaneously accomplish two different tasks: (i) we sieve out
all homomorphisms that are not injective, and (ii) we sieve out all multisets that use too
many colors when compared with M .

The rest of the section is organized as follows. First we give some preliminaries and
notation on branching walks and labellings in Sections 2.2 and 2.3. In Section 2.4 we define
the polynomial P and we prove the property (1) as Lemma 1. In Section 2.5 we show

A. Björklund, P. Kaski, and Ł. Kowalik 23

property (2) and finally in Section 2.6 we describe the complete algorithm and analyze its
failure probability using the DeMillo–Lipton–Schwartz–Zippel Lemma.

2.2 Preliminaries on branching walks

The concept of branching walks was first introduced by Nederlof [18] to sieve for Steiner
trees. Here we provide a slightly modified definition of branching walks. Let G be a graph
with vertex set V = V (G) and edge set E = E(G). A mapping h : V (T) → V (G) is
a homomorphism from a graph T to a graph G if for all {u, v} ∈ E(T) it holds that
{h(u), h(v)} ∈ E(G). We adopt the convention of calling the elements of V (T) nodes and
the elements of V (G) vertices.

A branching walk G is a pair W = (T, h) where T is an ordered rooted tree with node
set V (T) = {1, 2, . . . , |V (T)|} such that every node v ∈ V (T) coincides with its rank in the
preorder traversal of T , and h : V (T) → V (G) is a homomorphism from T to G. For a
vertex r ∈ V , we say that W starts from r if h(1) = r.

Let W = (T, h) be a branching walk in G. We define h(T) to be the subgraph of G
induced by the set of edges {{h(u), h(v)} : {u, v} ∈ E(T)}. We observe that h(T) is not
necessarily a tree because h need not be injective. We say that W is simple if h(T) is
injective.

It will be convenient to assume that V (G) is totally ordered. Towards this end, let us
assume that V = V (G) = {1, 2, . . . , n}. We say that a branching walk W = (T, h) in G is
properly ordered if any two sibling nodes u < v in T satisfy h(u) < h(v).

2.3 Labelling and shading

Let (G, c,M) be the input instance of the Maximum Graph Motif problem and let m :
C → N be the multiplicity function for M . For each color q ∈ C and i = 1, 2, . . . ,m(q), let
us call the formal pair (q, i) the i-th shade of color q. In particular, the number of shades
for each color matches the multiplicity of the color in M . Let us write D(q) = {(q, i) : i =
1, 2, . . . ,m(q)} for the set of all shades of color q ∈ C, and D = ∪q∈CD(q) for the set of all
shades of all colors.

A branching walk (T, h) in G may be labelled with a function ` : V (T) → {1, 2, . . . , k}.
The three-tuple (T, h, `) is called a labelled branching walk, and the function ` is a labelling
of the branching walk.

A branching walk (T, h) in G may also be shaded with a function s : V (T) → D. A
shading may also be partial, that is, of the form s : U → D for a subset U ⊆ V (T). We say
that a (partial) shading s : U → D of a branching walk (T, h) is consistent with the input
coloring c : V (G)→ C if for every node v ∈ U we have s(v) ∈ D(c(h(v))). For a branching
walkW = (T, h) and a subset U ⊆ V (T), denote by SU (W) the set of all consistent (partial)
shadings s : U → D. Let us abbreviate S(W) = SV (T)(W).

2.4 The polynomial P

We use three different types of indeterminates in our polynomials. First, for each edge
{a, b} ∈ E(G), introduce two indeterminates xa,b and xb,a. Second, for each vertex a ∈ V (G)
and each shade t ∈ D(c(a)), introduce an indeterminate ya,t. Third, for each shade t ∈ D
and each label j ∈ {1, 2, . . . , k}, introduce an indeterminate zt,j . Let us write x, y, z for the
sequences of all the xa,b-type, ya,t-type, and zt,j-type variables, respectively.

STACS’13

24 Probably Optimal Graph Motifs

Let W = (T, h) be a branching walk in G, let s : V (T) → D be a consistent shading of
W , and let ` : V (T) → {1, 2, . . . , k} be a labelling of W . Associate with the consistently
shaded and labelled branching walk (W, s, `) the monomial

mon(W, s, `) =
∏

{u,v}∈E(T)
u<v

xh(u),h(v)
∏

v∈V (T)

yh(v),s(v)zs(v),`(v) .

Denote byW the set of all branching walks of W = (T, h) in G that are properly ordered
and satisfy |V (T)| = k. Let β = dlog ke + 3 and denote by F2β the finite field of order 2β .
Define the multivariate polynomial P with coefficients in F2β by setting

P (x,y, z) =
∑

W=(T,h)∈W

∑
s∈S(W)

∑
`:V (T)→{1,2,...,k}

` bijective

mon(W, s, `) .

I Lemma 1. We have P 6≡ 0 if and only if there exists a solution S ⊆ V (G).

Proof. (⇐) Let TS be a spanning tree of G[S]. Transform TS into a rooted tree, and make
TS an ordered tree so that the children of every vertex listed in tree order form an increasing
sequence. If we replace every vertex in TS with its rank in a preorder traversal, we obtain a
properly ordered simple branching walk W = (T, h). Define the shading s : V (T) → D for
each node v ∈ V (T) by setting

s(v) = (c(h(v)), |{w ∈ S : c(h(w)) = c(h(v)) and w ≤ v}|) .

Note that s is well-defined and consistent because S is a solution. Furthermore, observe
that s is injective. Finally, choose an arbitrary bijection ` : V (T)→ {1, 2, . . . , k}. We must
now have P 6≡ 0 because we can uniquely reconstruct any three-tuple (W, s, `) with a simple
W = (T, h) ∈ W , an injective s ∈ S(W), and a bijective ` : V (T) → {1, 2, . . . , k} from its
monomial representation mon(W, s, `) – indeed, first recover W = (T, h) from the xa,b-type
indeterminates using the fact W is simple, properly ordered, and starts from the unique
vertex r such that mon(W, s, `) contains variables of the form xr,v but does not contain
variables of the form xv,r; then recover s from the ya,t-type indeterminates using the fact
that h is injective; finally recover ` from the zs,j-type indeterminates using the fact that s
is injective.

(⇒) Since P 6≡ 0 there is a branching walk W = (T, h) ∈ W , a shading s ∈ S(W) and a
bijective labelling ` : V (T)→ {1, 2, . . . , k} such that the monomial mon(W, s, `) in P has a
nonzero coefficient. We must derive a solution S from (W, s, `).

Let us first show that mon(W, s, `) has zero coefficient in P unless h is injective. Suppose
that h is not injective; that is, h(u0) = h(v0) for some distinct nodes u0, v0 ∈ V (T). If there
are many such pairs, take the minimum pair in the lexicographic ordering of 2-subsets of
V (T). Define `′ : V (T)→ {1, 2, . . . , k} for all v ∈ V (T) by

`′(v) =

`(v0) if v = u0,

`(u0) if v = v0,

`(v) otherwise.

Similarly, define s′ : V (T)→ D for all v ∈ V (T) by

s′(v) =

s(v0) if v = u0,

s(u0) if v = v0,

s(v) otherwise.

A. Björklund, P. Kaski, and Ł. Kowalik 25

We observe that `′ is bijective and that `′ 6= ` because ` is bijective. Moreover, s′ is
consistent because c(h(u0)) = c(h(v0)) and s is consistent. In this way, to the triple (W, s, `)
we associated a different triple (W, s′, `′) such that mon(W, s, `) = mon(W, s′, `′). Since F2β

has characteristic 2, these two monomials cancel out in P . Conversely, if we begin from
(W, s′, `′) and follow the same association rule, we get (W, s, `). Hence, the set of all triples
((T, h), s, `) in which the homomorphism h is not injective is partitioned into pairs, and the
two monomials corresponding to each pair cancel out. It follows that the homomorphism
h is injective in every triple ((T, h), s, `) in the preimage of a monomial with a nonzero
coefficient in P .

Next suppose that h is injective but s is not injective. Then there is pair of distinct
nodes u0, v0 ∈ V (T) that have the same shade s(u0) = s(v0). Again, if there are many such
pairs we take the lexicographic minimum pair. Define `′ : V (T) → {1, 2, . . . , k} as before.
Again, to the triple (W, s, `) we assigned a different triple (W, s, `′) and again one can verify
that mon(W, s, `) = mon(W, s, `′). By a similar argument as above, we see that the two
monomials corresponding to these two triples cancel out. It follows that the shading s is
injective in every triple ((T, h), s, `) in the preimage of a monomial with a nonzero coefficient
in P .

So we must have that both h and s are injective in a three-tuple ((T, h), s, `) where the
monomial mon(W, s, `) in P has a nonzero coefficient. Let S = V (h(T)). Because h is
injective, |S| = k. Because T is connected and h is a homomorphism, we have that h(T) is
connected and hence so is G[S]. Since s is consistent and injective, S is a solution. J

2.5 Evaluating the polynomial in time O∗(2k)
In this section we show that the polynomial P can be evaluated in a given point (x,y, z)
in time O∗(2k). To this end, let us rewrite P as a sum of 2k polynomials such that each of
them can be evaluated in time polynomial in the input size. For each X ⊆ {1, 2, . . . , k}, let

PX(x,y, z) =
∑

W=(T,h)∈W

∑
s∈S(W)

∑
`:V (T)→X

mon(W, s, `) ,

Note that we do not assume that the labellings in the third summation are bijective.

I Lemma 2. P (x,y, z) =
∑

X⊆{1,2,...,k}

PX(x,y, z).

Proof. Let us fix a branching walk W = (T, h) ∈ W such that |V (T)| = k and a shading
s ∈ S(W). Because |V (T)| = k, a function ` : V (T) → {1, 2, . . . , k} is bijective if and only
if it is surjective, so∑

`:V (T)→{1,2,...,k}
` bijective

mon(W, s, `) =
∑

`:V (T)→{1,2,...,k}
` surjective

mon(W, s, `). (1)

Observing again that F2β has characteristic 2, and hence −1 = 1, we have, by the Principle
of Inclusion and Exclusion,∑

`:V (T)→{1,2,...,k}
` surjective

mon(W, s, `) =
∑

X⊆{1,2,...,k}

∑
`:V (T)→X

mon(W, s, `) . (2)

From (1) and (2) we immediately obtain

P (x,y, z) =
∑

W=(T,h)∈W

∑
s∈S(W)

∑
X⊆{1,2,...,k}

∑
`:V (T)→X

mon(W, s, `) . (3)

STACS’13

26 Probably Optimal Graph Motifs

The claim follows by changing the order of summation. J

Now we are left with a tedious job of evaluating PX(x,y, z) in polynomial time. This
is slightly technical because we consider properly ordered branching walks. To simplify
notation in the running time bounds, let us write e for the number of edges in G, and
µ = O(β log β log log β) for the time needed to multiply or add two elements of F2β .

I Lemma 3. Given a nonempty subset X ⊆ {1, 2, . . . , k} and three vectors x,y, z of values
in F2β as input, the value of PX(x,y, z) can be computed by dynamic programming in time
O(k2eµ) and space O(keβ).

Proof. Recall that we assume that V (G) = {1, 2, . . . , n}. For a vertex a ∈ V (G), denote the
ordered sequence of neighbors of a in G by a1 < a2 < · · · < adegG(a). For each a ∈ V (G),
1 ≤ i ≤ degG(a) + 1, and 0 ≤ l ≤ k, denote by W(a, i, l) the set of properly ordered
branching walks W = (T, h) such that (i) W starts from a, (ii) for any child node u of 1 in
T it holds that h(u) = aj implies j ≥ i, and (iii) |V (T)| = l.

Our objective is to compute a three-dimensional array AX whose entries are defined by

AX [a, i, l] =
∑

W=(T,h)∈W(a,i,l)

∑
s∈SV (T)\{1}(W)

∑
`:V (T)\{1}→X∏

{u,v}∈E(T)

xh(u),h(v)
∏

v∈V (T)\{1}

yh(v),s(v)zs(v),`(v) .

The entries of AX admit the following recurrence. For i = degG(a) + 1 or l = 1, we have

AX [a, i, l] =
{

1 if l = 1,
0 otherwise.

For 1 ≤ i ≤ degG(a) and 2 ≤ l ≤ k, we have

AX [a, i, l] = AX [a, i+ 1, l] +

xa,ai ·

 ∑
t∈D(c(ai))

∑
j∈X

yai,tzt,j

 · ∑
l1+l2=l
l1,l2≥1

AX [a, i+ 1, l1] ·AX [ai, 1, l2]. (4)

To see that the recurrence is correct, observe that the two lines above correspond to properly
ordered branching walks in W(a, i, l) where either (a) there is no child node u of 1 in T such
that h(u) = ai or (b) there is a unique such child. (At most one such child may exist because
the branching walk is properly ordered.)

To recover the value of the polynomial PX(x,y, z), we observe that

PX(x,y, z) =
∑
r∈V

∑
t∈D(c(r))

∑
j∈X

yr,tzt,j ·AX [r, 1, k] . (5)

The time bound follows by noting that the values of
∑
t∈D(c(a))

∑
j∈X ya,tzt,j can be pre-

computed and tabulated in O(k2nµ) time to accelerate the computations for the individual
entries of AX . J

A. Björklund, P. Kaski, and Ł. Kowalik 27

2.6 The decision algorithm
I Lemma 4 (DeMillo and Lipton [7], Schwartz [19], Zippel [21]). Let P (x1, x2, . . . , xm) be
a nonzero polynomial of degree at most d over a field F and let S be a finite subset of F.
Then, the probability that P evaluates to zero on a random element (a1, a2, . . . , am) ∈ Sm
is bounded by d/|S|.

I Theorem 5. The Maximum Graph Motif problem admits a Monte Carlo algorithm
that runs in O(2kk2eµ) time and in polynomial space, with the following guarantees: (i) the
algorithm always returns NO when given a NO-instance as input, (ii) the algorithm returns
YES with probability at least 1/2 when given a YES-instance as input.

Proof. The algorithm is as follows. Select values for the variables in x,y, z independently
and uniformly at random from F2β . Then iterate over all X ⊆ {1, 2, . . . , k} and use the
algorithm in Lemma 3 to evaluate the value PX(x,y, z). Accumulate the sum of the values
PX(x,y, z) to obtain P (x,y, z) by Lemma 2. If P (x,y, z) 6= 0, answer YES and otherwise
answer NO.

When the input is a NO instance, the polynomial P is the zero polynomial by Lemma 1,
so the algorithm returns NO. When the input is a YES instance, by Lemma 1 the polynomial
P is nonzero. The degree of P is exactly 3k − 1, while the size of F2β is 2dlog ke+3 ≥ 8k.
Thus, by Lemma 4 the probability that P evaluated to 0 is bounded by 3k−1

8k < 1
2 . J

3 Variants of the Graph Motif Problem

In Section 2 we described an algorithm for Maximum Graph Motif. It is easy to see
that the algorithm can also be used to solve classical Graph Motif by setting k = |M |.
Another variant of the problem studied in the literature is the list version of the problem,
where every vertex a ∈ V (G) is assigned a set of colors C(a) ⊆ C, not just one color c(a),
and for every vertex in a solution we can choose any of its colors to match the multiset
M . It is straightforward to modify our algorithm for Maximum Graph Motif to solve
the list version: in the dynamic programming of Lemma 3, in (4) instead of summing over
t ∈ D(c(ai)) we sum over t ∈

⋃
q∈C(ai) D(q), and similarly in (5).

Although Maximum Graph Motif (introduced in [8]) is a natural optimization version
of the problem, it is not the only one. Two more optimization variants were introduced in [9];
we describe their decision versions below.

Min-Add
Input: Graph G = (V,E), a coloring c : V → C, a multiset of colors M , and d ∈ N.
Question: Is there a subset S ⊆ V such that G[S] is connected, M ⊆ c(S) and
|c(S) \M | ≤ d?

Min-Substitute
Input: Graph G = (V,E), a coloring c : V → C, a multiset of colors M , and d ∈ N.
Question: Is there a subset S ⊆ V such that G[S] is connected and c(S) can be
obtained from M with at most d substitutions?
In this paper we introduce a new variant, which is a generalization of Maximum Graph

Motif, Min-Add and Min-Substitute. We believe that it might be useful in bioinfor-
matics applications.

Consider the following three operations on a multiset M over a set of colors C:

1. insertion (I): adds a copy of c ∈ C to M ,

STACS’13

28 Probably Optimal Graph Motifs

2. deletion (D): removes a copy of c ∈M from M ,
3. substitution (S): removes a copy of c1 ∈M from M and adds a copy of c2 ∈ C to M .

Associate with each of the three operations a nonnegative integer cost κI , κD, κS . Consider
a sequence σ of the three operations applied to a multiset M . Let mI,mD,mS be the
numbers of insertions, deletions, and substitutions in σ. Then the cost of σ is defined as
mIκI +mDκD +mSκS. Moreover, for two multisets M and M ′, the weighted edit distance is
defined as the minimum cost κ(M,M ′) of a sequence of operations that turns M into M ′.

Closest Graph Motif
Input: Graph G = (V,E), a coloring c : V → C, a multiset of colors M , and numbers
d, κI, κD, κS ∈ N.
Question: Is there a subset S ⊆ V such that G[S] is connected and κ(M, c(S)) ≤ d?
Note that Min Add reduces to Closest Graph Motif by settting κI = 1, κD = κS =

d+ 1. Similarly, for Min Substitute set κS = 1, κI = κD = d+ 1.
We next describe an algorithm for Closest Graph Motif subject to the parameteri-

zation that we are given an additional integer k ∈ N as input and the subset S must satisfy
|S| = k. We will present an O∗(2k)-time polynomial space algorithm, assuming that d is
bounded by a polynomial function in n. Note that when parameterized by the edit distance
(which also seems natural) the problem is unlikely to admit an FPT algorithm since Graph
Motif is NP-hard. Since the algorithm is a rather straightforward extension of the algo-
rithm for Maximum Graph Motif presented in Section 2, we only sketch it by describing
the modifications needed to handle the more general problem.

We proceed to define an analog of the polynomial P from Section 2. We use the same
indeterminates as before, with additional indeterminates for tracking substitutions and the
edit distance. Towards this end, for each a ∈ V (G), introduce the indeterminate wa. Denote
by w the sequence of all such indeterminates. Introduce one further indeterminate η for
tracking the edit distance.

Recall that in the polynomial P , every monomial corresponds to a consistently shaded
and bijectively labelled branching walk (W, s, `). In the new polynomial Q, every monomial
corresponds to a quadruple (W, f, s, `), where f : V (T)→ {0, 1} is an indicator function for
substitutions. That is, f(v) = 1 and s(v) = (q, i) for a node v means that a copy of color
q (the copy corresponding to the ith shade of q) is substituted by the color c(h(v)). We
need to modify the set of shades in order to make it accept insertions. For a color q ∈ C
let D′(q) = {(q, i) : i = 1, 2, . . . ,m(q) + bd/κIc} and let D′ =

⋃
q∈C D

′(q). In Q the
shading function s maps V (T) to D′. The meaning of this modification is that the shade
(q, i) for i > m(q) corresponds to an inserted shade of color q. Accordingly, the notion of
consistency of a shading requires a modification in order to accept substitutions. We say
that a (partial) shading s : U → D′ of a branching walk W = (T, h) and a substitution
indicator f : V (T) → {0, 1} is consistent if for every node v ∈ U ⊆ V (T) one of the
following conditions holds: (i) if f(v) = 0 then s(v) = (c(h(v)), i) for some i, or (ii) if
f(v) = 1 then s(v) ∈ D. For a given branching walk W = (T, h), a substitution indicator
f : V (T)→ {0, 1}, and a set U ⊆ V (T), denote by SU (W, f) the set of all (partial) shadings
s : U → D′ of W that are consistent. Let us abbreviate S(W, f) = SV (T)(W, f).

The following lemma will be useful in the construction of Q.

I Lemma 6. Consider a sequence σ of mI insertions, mS substitutions and a number of
deletions which transforms a multiset M into a multiset M ′ of size k. Then, the cost of σ
is equal to mI(κI + κD) +mSκS + (|M | − k)κD.

Proof. Observe that σ contains |M |+mI − k deletions. J

A. Björklund, P. Kaski, and Ł. Kowalik 29

By the above lemma, given a quadruple (W, f, s, `) the cost of the sequence of operations
corresponding to this quadruple is

κ(f, s) =

∑
q∈C

bd/κIc∑
i=1
|s−1((q,m(q) + i))|

 (κI + κD) + |f−1(1)|κS + (|M | − k)κD .

For a substitution indicator function f : V (T)→ {0, 1} and a homomorphism h : V (T)→
V (G), let us write wf

h =
∏
u∈V (T) w

f(u)
h(u) for the indicator monomial of f given h.

Now we are ready to define the polynomial

Q(x,y, z,w, η) =
∑

W=(T,h)∈W

∑
f :V (T)→{0,1}

∑
s∈S(W,f)

∑
`:V (T)→{1,2,...,k}

` bijective

mon(W, s, `)wf
hη
κ(f,s) .

I Lemma 7. Let Q(x,y, z,w, η) =
∑
i≥0 Qi(x,y, z,w)ηi. Then, we have Qi 6≡ 0 for an

i ≤ d if and only if there exists a solution S ⊆ V (G) with κ(M, c(S)) ≤ d.

Proof. Analogous to the proof of Lemma 1, with the following modifications to handle the
substitution indicator f .

(⇐) Recover h as before, use the editing sequence for i = κ(M, c(S)) ≤ d to construct
a substitution indicator f , then define s and `. To conclude that Qi 6≡ 0, reconstruct a
quadruple (W, s, f, `) from its monomial representation as before but with the additional
observation that when h is injective we can recover f from wf

h.
(⇒) When h is not injective, define f ′ from f by transposing the images of u0 and v0

under f . When h is injective but s is not injective, proceed as before. Construct S as before.
From f and s we can read off a sequence of edits to transform M to c(S) with cost i ≤ d. J

It is immediate that once we can evaluate polynomial Q in a given vector (x,y, z,w, η) we
can test whether the polynomials Qi are nonzero using the DeMillo–Lipton–Schwartz–Zippel
Lemma and Lagrange interpolation. By Lemma 2, the task of evaluating Q in time O∗(2k)
boils down to evaluating QX in polynomial time (where QX is defined analogously as PX).
The evaluation proceeds as in Lemma 3, with minor changes to the dynamic programming
recurrence. In particular, in (4) we change the expression

∑
s∈D(c(ai))

∑
j∈X yai,szs,j into

∑
s∈D(c(ai))

∑
j∈X

yai,szs,j+
m(c(ai))+bd/κIc∑
p=m(c(ai))+1

∑
j∈X

yai,(c(ai),p)z(c(ai),p),jη
κI+κD +

∑
s∈D

∑
j∈X

yai,szs,jwaiη
κS .

The three summands correspond to the three possibilities: (i) ai just gets a color from
M , (ii) ai gets a new copy of the color c(ai) that is inserted into M , (iii) one copy of a
color from M is substituted by one copy of the color c(ai). A similar change is required
for the expression (5), including also multiplication of the whole expression by η(|M |−k)κD .
(Alternatively, one may offset the final edit distance by (|M | − k)κD.) Precomputing the
above expression takes O(nk(k + d + |M |)µ) time so single evaluation of QX is performed
in time O(k2eµ+ nk(k + d+ |M |)µ) = O((ke+ nd+ n|M |)kµ).

We conclude with the following theorem which follows from considerations in this section.
The additional factor of (k + |M |)d in the running time is caused by the use of Lagrange
interpolation, which requires O((k + |M |)d) evaluations of Q. Note that the degree of η
in Q is bounded by (k + |M |)(κI + κD + κS) = O((k + |M |)d) because we can assume
κI, κD, κS ≤ d + 1. We also note that for every i ≥ 0, we have deg(Qi) ≤ (3k − 1)k, so to
get the bound on the error probability as before, the size of the finite field F2β should be
at least 2(3k − 1)k. On the other hand, Lagrange interpolation requires F2β to have size at
least (k + |M |)(κI + κD + κS). It suffices to put β = max{d2 log2 ke, dlog2(k + |M |)de}+ 3.

STACS’13

30 Probably Optimal Graph Motifs

I Theorem 8. The Closest Graph Motif problem admits a Monte Carlo algorithm that
runs in O(2k(ke+ nd+ n|M |)(k + |M |)dkµ) time and in polynomial space.

4 A reduction from Set Cover

In the Set Cover problem we are given an integer t and a family of sets S = {S1, S2, . . . , Sm}
over the universe U =

⋃m
j=1 Sj with n = |U |. The task is to determine whether there is a

subfamily of t sets Si1 , Si2 , . . . , Sit such that U =
⋃t
j=1 Sij .

Cygan et al. proved the following result (see Theorem 4.4 in [5]1).

I Theorem 9 (Cygan et al. [5]). If Set Cover can be solved in O((2− ε)n+t) time for some
ε > 0 then it can also be solved in O((2− ε′)n) time, for some ε′ > 0.

We use Theorem 9 to show the following.

I Theorem 10. If Graph Motif can be solved in O((2 − ε)k) time for some ε > 0 then
Set Cover can be solved in O((2− ε′)n) time, for some ε′ > 0. Moreover, this holds even
for Graph Motif restricted to one of the following two extreme cases:

(i) M is a set,
(ii) M has only two distinct colors.

Proof. Let (S, t) be an instance of Set Cover. We are going to show a polynomial-time
reduction to Graph Motif so that in the resulting instance (G, c,M) the multiset M has
cardinality n+ t+ 1. Clearly, combined with Theorem 9, this will prove our claim.

Graph G = (V,E) is defined as follows. The vertex set consists of U , t copies of the
family S and a special vertex r, that is, V = U ∪ {sji : i = 1, 2, . . . ,m, j = 1, 2, . . . , t} ∪ {r}.
Moreover, E = {esji : e ∈ Si} ∪ {rsji : i = 1, 2, . . . ,m, j = 1, 2, . . . , t}.

To establish case (i), let M = {1, 2, . . . , n+ t+ 1}. Moreover we put c(sji) = j for every
i = 1, 2, . . . ,m, j = 1, 2, . . . , t. Further, c(r) = t+ 1. The n colors t+ 2, t+ 3, . . . , n+ t+ 1
are assigned bijectively to the vertices from U . Now we show that (S, t) is a YES-instance
of Set Cover iff (G, c,M) is a YES-instance of Graph Motif. Assume Si1 , Si2 , . . . , Sit is
a solution to Set Cover. Then let S = {r} ∪U ∪ {sjij : j = 1, 2, . . . , t}. It is clear that the
multiset of colors on S matches M . Obviously, G[{r} ∪ {sjij : j = 1, 2, . . . , t}] is connected.
Since for every e ∈ U there is j = 1, 2, . . . , t such that e ∈ Sij , so es

j
ij
∈ E(G[S]). It follows

that G[S] is connected, and hence S is a solution for Graph Motif. Conversely, if S is a
solution for Graph Motif in (G, c,M) then for every j = 1, 2, . . . , t there is exactly one
ij ∈ {1, 2, . . . ,m} such that sjij ∈ S, since the colors of S match M . Moreover, since G[S]
is connected we infer that for every e ∈ U there is j = 1, 2, . . . , t such that esjij ∈ E(G[S]).
However, then e ∈ Sij and it follows that Si1 , 2, . . . , Sit is a solution for Set Cover.

To establish case (ii), let M consist of n+ 1 copies of color 1 and t copies of color 2. We
put c(r) = 1 and c(e) = 1 for every e ∈ U . All the remaining vertices are colored with 2.
The equivalence can be shown very similarly to the case (i), we skip the details. J

Acknowledgments

We thank reviewers for helpful comments. The third author thanks Sylwia Antoniuk, Marek
Cygan, Michal Debski and Matthias Mnich for helpful discussions on related topics.

1 Actually Theorem 4.4 is stated in a slightly different way, taking into account the maximum size of sets
Si, but Theorem 9 follows immediately from their proof.

A. Björklund, P. Kaski, and Ł. Kowalik 31

References
1 N. Betzler, M. R. Fellows, C. Komusiewicz, and R. Niedermeier. Parameterized algorithms

and hardness results for some graph motif problems. In Proc. CPM’08, volume 5029 of
LNCS, pages 31–43, 2008.

2 A. Björklund. Counting perfect matchings as fast as Ryser. In Proc. SODA’12, pages
914–921, 2012.

3 A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Narrow sieves for parameterized
paths and packings. CoRR, abs/1007.1161, 2010.

4 A. Björklund, P. Kaski, and Ł. Kowalik. Probably optimal graph motifs. CoRR,
abs/1209.1082, 2012.

5 M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Paturi,
S. Saurabh, and M. Wahlström. On problems as hard as CNF-SAT. In IEEE Confer-
ence on Computational Complexity, pages 74–84, 2012.

6 M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and J. O. Woj-
taszczyk. Solving connectivity problems parameterized by treewidth in single exponential
time. In Proc. FOCS’11, pages 150–159, 2011.

7 R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing. Inf.
Process. Lett., 7:193–195, 1978.

8 R. Dondi, G. Fertin, and S. Vialette. Maximum motif problem in vertex-colored graphs.
In Proc. CPM’09, volume 5577 of LNCS, pages 221–235, 2009.

9 R. Dondi, G. Fertin, and S. Vialette. Finding approximate and constrained motifs in graphs.
In Proc. CPM’11, volume 6661 of LNCS, pages 388–401, 2011.

10 M. R. Fellows, G. Fertin, D. Hermelin, and S. Vialette. Sharp tractability borderlines for
finding connected motifs in vertex-colored graphs. In Proc. ICALP’07, volume 4596 of
LNCS, pages 340–351, 2007.

11 M. R. Fellows, G. Fertin, D. Hermelin, and S. Vialette. Upper and lower bounds for finding
connected motifs in vertex-colored graphs. J. Comput. Syst. Sci., 77(4):799–811, 2011.

12 S. Guillemot and F. Sikora. Finding and counting vertex-colored subtrees. In Proc.
MFCS’10, volume 6281 of LNCS, pages 405–416, 2010.

13 I. Koutis. Faster algebraic algorithms for path and packing problems. In Proc. ICALP’08,
volume 5125 of LNCS, pages 575–586, 2008.

14 I. Koutis. The power of group algebras for constrained multilinear monomial detection.
Dagstuhl meeting 10441, 2010.

15 I. Koutis. Constrained multilinear detection for faster functional motif discovery. Informa-
tion Processing Letters, 112(22):889 – 892, 2012.

16 I. Koutis and R. Williams. Limits and applications of group algebras for parameterized
problems. In ICALP (1), volume 5555 of LNCS, pages 653–664, 2009.

17 V. Lacroix, C. G. Fernandes, and M.-F. Sagot. Motif search in graphs: Application to
metabolic networks. IEEE/ACM Trans. Comput. Biology Bioinform., 3(4):360–368, 2006.

18 J. Nederlof. Fast polynomial-space algorithms using Möbius inversion: Improving on Steiner
tree and related problems. In Proc. ICALP’09, volume 5555 of LNCS, pages 713–725, 2009.

19 J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, 1980.

20 R. Williams. Finding paths of length k in O∗(2k) time. Inf. Process. Lett., 109(6):315–318,
2009.

21 R. Zippel. Probabilistic algorithms for sparse polynomials. In Proc. International Sympo-
sium on Symbolic and Algebraic Computation, volume 72 of LNCS, pages 216–226, 1979.

STACS’13

Tight bounds for Parameterized Complexity of
Cluster Editing∗

Fedor V. Fomin1, Stefan Kratsch2, Marcin Pilipczuk3, Michał
Pilipczuk1, and Yngve Villanger1

1 Department of Informatics, University of Bergen, Bergen, Norway,
{fomin,michal.pilipczuk,yngve.villanger}@ii.uib.no

2 MPI Informatics, Saarbrücken, Germany, skratsch@mpi-inf.mpg.de
3 Institute of Informatics, University of Warsaw, Poland, malcin@mimuw.edu.pl

Abstract
In the Correlation Clustering problem, also known as Cluster Editing, we are given an
undirected graph G and a positive integer k; the task is to decide whether G can be transformed
into a cluster graph, i.e., a disjoint union of cliques, by changing at most k adjacencies, that
is, by adding or deleting at most k edges. The motivation of the problem stems from various
tasks in computational biology (Ben-Dor et al., Journal of Computational Biology 1999) and
machine learning (Bansal et al., Machine Learning 2004). Although in general Correlation
Clustering is APX-hard (Charikar et al., FOCS 2003), the version of the problem where the
number of cliques may not exceed a prescribed constant p admits a PTAS (Giotis and Guruswami,
SODA 2006).

We study the parameterized complexity of Correlation Clustering with this restriction
on the number of cliques to be created. We give an algorithm that

in time O(2O(
√
pk) + n + m) decides whether a graph G on n vertices and m edges can be

transformed into a cluster graph with exactly p cliques by changing at most k adjacencies.

We complement these algorithmic findings by the following, surprisingly tight lower bound on
the asymptotic behavior of our algorithm. We show that unless the Exponential Time Hypothesis
(ETH) fails

for any constant 0 ≤ σ ≤ 1, there is p = Θ(kσ) such that there is no algorithm deciding in
time 2o(

√
pk) · nO(1) whether an n-vertex graph G can be transformed into a cluster graph

with at most p cliques by changing at most k adjacencies.
Thus, our upper and lower bounds provide an asymptotically tight analysis of the multivariate
parameterized complexity of the problem for the whole range of values of p from constant to a
linear function of k.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases parameterized complexity, cluster editing, correlation clustering, subex-
ponential algorithms, tight bounds

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.32

∗ The authors from University of Bergen are supported by the European Research Council (ERC) via
grant Rigorous Theory of Preprocessing, reference 267959 and by the Research Council of Norway. The
third author is supported by the National Science Centre grant N206 567140 and Foundation for Polish
Science.

© F.V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 32–43

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.32
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

F.V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger 33

1 Introduction

Correlation clustering, also known as clustering with qualitative information or cluster editing,
is the problem to cluster objects based only on the qualitative information concerning
similarity between pairs of them. For every pair of objects we have a binary indication
whether they are similar or not. The task is to find a partition of the objects into clusters
minimizing the number of similarities between different clusters and non-similarities inside of
clusters. The problem was introduced by Ben-Dor, Shamir, and Yakhini [6] motivated by
problems from computational biology, and, independently, by Bansal, Blum, and Chawla
[5], motivated by machine learning problems concerning document clustering according
to similarities. The correlation version of clustering was studied intensively, including
[1, 3, 4, 13, 14, 24, 34].

The graph-theoretic formulation of the problem is the following. A graph K is a cluster
graph if every connected component of K is a complete graph. Let G = (V,E) be a graph;
then F ⊆ V × V is called a cluster editing set for G if G4F = (V,E4F) is a cluster graph.
Here E4F is the symmetric difference between E and F . In the optimization version of
the problem the task is to find a cluster editing set of minimum size. Constant factor
approximation algorithms for this problem were obtained in [1, 5, 13]. On the negative side,
the problem is known to be NP-complete [34] and, as was shown by Charikar, Guruswami,
and Wirth [13], also APX-hard.

Giotis and Guruswami [24] initiated the study of clustering when the maximum number
of clusters that we are allowed to use is stipulated to be a fixed constant p. As observed by
them, this type of clustering is well-motivated in settings where the number of clusters might
be an external constraint that has to be met. It appeared that p-clustering variants posed
new and non-trivial challenges. In particular, in spite of the APX-hardness of the general
case, Giotis and Guruswami [24] gave a PTAS for this version of the problem.

A cluster graph G is called a p-cluster graph if it has exactly p connected components
or, equivalently, if it is a disjoint union of exactly p cliques. Similarly, a set F is a p-cluster
editing set of G, if G4F is a p-cluster graph. In parameterized complexity, correlation
clustering and its restriction to bounded number of clusters were studied under the names
Cluster Editing and p-Cluster Editing, respectively.

Cluster Editing Parameter: k.
Input: A graph G = (V,E) and a non-negative integer k.
Question: Is there a cluster editing set for G of size at most k?

p-Cluster Editing Parameters: p, k.
Input: A graph G = (V,E) and non-negative integers p and k.
Question: Is there a p-cluster editing set for G of size at most k?

The parameterized version of Cluster Editing, and variants of it, were studied intens-
ively [7, 8, 9, 10, 11, 16, 20, 25, 27, 28, 31, 33]. The problem is solvable in time O(1.62k+n+m)
[7] and it has a kernel with 2k vertices [12, 15] (see Section 2 for the definition of a kernel).
Shamir et al. [34] showed that p-Cluster Editing is NP-complete for every fixed p ≥ 2. A
kernel with (p+ 2)k + p vertices was given by Guo [26].

Our results

We study the impact of the interaction between p and k on the parameterized complexity of
p-Cluster Editing. Our main algorithmic result is the following.

STACS’13

34 Tight bounds for Parameterized Complexity of Cluster Editing

I Theorem 1. p-Cluster Editing is solvable in time O(2O(
√
pk) +m+ n).

It is straightforward to modify our algorithm to work also in the following variants of the
problem, where each edge and non-edge is assigned some edition cost: either (i) all costs are
at least one and k is the bound on the maximum total cost of the solution, or (ii) we ask for
a set of at most k edits of minimum cost. Let us also remark that, by Theorem 1, if p = o(k)
then p-Cluster Editing can be solved in 2o(k)nO(1) time, and thus it belongs to complexity
class SUBEPT defined by Flum and Grohe [21, Chapter 16]. Until very recently, the only
problems known to be in the class SUBEPT were the problems with additional constraints
on the input, like being a planar, H-minor-free, or tournament graph [2, 17]. However, recent
algorithmic developments indicate that the structure of the class SUBEPT is much more
interesting than expected. It appears that some parameterized problems related to chordal
graphs, like Minimum Fill-in or Chordal Graph Sandwich, are also in SUBEPT [23].

We would like to remark that p-Cluster Editing can be also solved in worse time
complexity O((pk)O(

√
pk) +m+ n) using simple guessing arguments. One such algorithm is

based on the following observation: Suppose that, for some integer r, we know at least 2r+ 1
vertices from each cluster. Then, if an unassigned vertex has at most r incident modifications,
we know precisely to which cluster it belongs: it is adjacent to at least r + 1 vertices already
assigned to its cluster and at most r assigned to any other cluster. On the other hand, there
are at most 2k/r vertices with more than r incident modifications. Thus (i) guessing 2r + 1
vertices from each cluster (or all of them, if there are less than 2r + 1), and (ii) guessing all
vertices with more than r incident modifications, together with their alignment to clusters,
results in at most n(2r+1)pn2k/rp2k/r subcases. By pipelining it with the kernelization of
Guo [26] and with simple reduction rules that ensure p ≤ 6k (see Section 3.1 for details), we
obtain the claimed time complexity for r ∼

√
k/p.

An approach via chromatic coding, introduced by Alon et al. [2], also leads to an algorithm
with running time O(2O(p

√
k log p) + n+ m). However, one needs to develop new concepts

to construct an algorithm for p-Cluster Editing with complexity bound as promised in
Theorem 1, and thus obtain a subexponential complexity for every sublinear p.

The crucial observation is that a p-cluster graph, for p = O(k), has 2O(
√
pk) edge cuts of

size at most k (henceforth called k-cuts). As in a YES-instance to the p-Cluster Editing
problem each k-cut is a 2k-cut of a p-cluster graph, we infer a similar bound on the number
of cuts if we are dealing with a YES-instance. This allows us to use dynamic programming
over the set of k-cuts. Pipelining this approach with a kernelization algorithm for p-Cluster
Editing proves Theorem 1.

A new and active direction in parameterized complexity is the pursuit of asymptotically
tight bounds on the complexity of problems. In several cases, it is possible to obtain a
complete analysis by providing matching lower (complexity) and upper (algorithmic) bounds.
We refer to the recent survey of Marx [32], where recent developments in the area are
discussed, and the “optimality program" is announced among the main future research
directions in parameterized complexity. The most widely used complexity assumption for
such tight lower bounds is the Exponential Time Hypothesis (ETH), which posits that no
subexponential-time algorithms for k-CNF-SAT or CNF-SAT exist [29].

Following this direction, we complement Theorem 1 with two lower bounds. Our first,
main lower bound is based on the following technical Theorem 2, which shows that the
exponential time dependence of our algorithm is asymptotically tight for any choice of
parameters p and k, where p = O(k). As one can provide polynomial-time reduction rules
that ensure that p ≤ 6k (see Section 3.1 for details), this provides a full and tight picture of
the multivariate parameterized complexity of p-Cluster Editing: we have asymptotically

F.V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger 35

matching upper and lower bounds on the whole interval between p being a constant and linear
in k. To the best of our knowledge, this is the first fully multivariate and tight complexity
analysis of a parameterized problem.

I Theorem 2. For any ε > 0 there is δ > 0 and a polynomial-time algorithm that, given
positive integers p and k and a 3-CNF-SAT formula Φ with n variables and m clauses, such
that k, n ≥ εp and n,m ≤

√
pk/ε, computes a graph G and integer k′, such that k′ ≤ δk,

|V (G)| ≤ δ
√
pk, and

if Φ is satisfiable then there is a 6p-cluster graph G0 with V (G) = V (G0) and such that
|E(G)4E(G0)| ≤ k′;
if there exists a p′-cluster graph G0 with p′ ≤ 6p, V (G) = V (G0) and |E(G)4E(G0)| ≤ k′,
then Φ is satisfiable.

As the statement of Theorem 2 may look technical, we gather its two main consequences
in Corollaries 3 and 4. We state both corollaries in terms of an easier p≤-Cluster Editing
problem, where the number of clusters has to be at most p instead of precisely equal to
p. Clearly, this version can be solved by an algorithm for p-Cluster Editing with an
additional p overhead in time complexity by trying all possible p′ ≤ p, so the lower bound
holds also for harder p-Cluster Editing; however, we are not aware of any reduction in the
opposite direction. In both corollaries we use the fact that existence of a subexponential, in
both the number of variables and clauses, algorithm for verifying satisfiability of 3-CNF-SAT
formulas would violate ETH [29].

I Corollary 3 (♠1). Unless ETH fails, for every 0 ≤ σ ≤ 1, there is p = Θ(kσ) such that
p≤-Cluster Editing is not solvable in time 2o(

√
pk)|V (G)|O(1).

I Corollary 4 (♠). Unless ETH fails, for every constant p ≥ 6, there is no algorithm solving
p≤-Cluster Editing in time 2o(

√
k)|V (G)|O(1) or 2o(|V (G)|).

Note that Theorem 2 and Corollary 3 do not rule out possibility that the general Cluster
Editing is solvable in subexponential time. Our second, complementary lower bound shows
that when the number of clusters is not constrained, then the problem cannot be solved in
subexponential time unless ETH fails. This disproves the conjecture of Cao and Chen [12].
We note that Theorem 5 was independently obtained by Komusiewicz in his PhD thesis [30].

I Theorem 5 (♠). Unless ETH fails, Cluster Editing cannot be solved in time 2o(k)nO(1).

Clearly, by Theorem 1, the reduction of Theorem 5 must produce an instance where the
number of clusters in any solution, if there exists any, is Ω(k). Therefore, intuitively the
hard instances of Cluster Editing are those where every cluster needs just a constant
number of adjacent editions to be extracted.

2 Preliminaries

We use n to denote the number of vertices and m the number of edges in the input graph G.
For graphs G,H with V (G) = V (H), by H(G,H) we denote the number of edge modifications
needed to obtain H from G, i.e., H(G,H) = |E(G)4E(H)|. By E(X,Y) we denote the set
of edges having one endpoint in X and second in Y .

1 Due to space constraints, the proofs of all statements marked with ♠ are omitted. The full version of
this paper is available at http://arxiv.org/abs/1112.4419.

STACS’13

36 Tight bounds for Parameterized Complexity of Cluster Editing

A parameterized problem Π is a subset of Γ∗ ×N for some finite alphabet Γ. An instance
of a parameterized problem consists of (x, k), where k is called the parameter. A central
notion in parameterized complexity is fixed-parameter tractability (FPT) which means, for a
given instance (x, k), solvability in time f(k) · p(|x|), where f is an arbitrary computable
function of k and p is a polynomial in the input size. We refer to the book of Downey and
Fellows [19] for further reading on parameterized complexity.

A kernelization algorithm for a parameterized problem Π ⊆ Γ∗ × N is an algorithm that
given (x, k) ∈ Γ∗ × N outputs in time polynomial in |x|+ k a pair (x′, k′) ∈ Γ∗ × N, called
a kernel such that (x, k) ∈ Π if and only if (x′, k′) ∈ Π, |x′| ≤ g(k), and k′ ≤ k, where g is
some computable function.

We also need the following result of Guo [26].
I Proposition 6 ([26]). p-Cluster Editing admits a kernel with (p+ 2)k + p vertices. The
running time of the kernelization algorithm is O(n+m), where n is the number of vertices
and m the number of edges in the input graph G.

3 A subexponential algorithm for p-Cluster Editing

In this section we prove Theorem 1, that is, we show a O(2O(
√
pk) + n+m)-time algorithm

for p-Cluster Editing.

3.1 Reduction for large p

The first step of our algorithm is an application of the kernelization algorithm by Guo [26]
(Proposition 6) followed by some additional preprocessing rules that ensure that p ≤ 6k.
These additional rules are encapsulated in the following technical lemma.

I Lemma 7 (♠). There exists a polynomial time algorithm that, given an instance (G, p, k)
of p-Cluster Editing, outputs an equivalent instance (G′, p′, k), where G′ is an induced
subgraph of G and p′ ≤ 6k.

The key idea behind Lemma 7 is the observation that if p > 2k, then at least p − 2k
clusters in the final cluster graph cannot be touched by the solution, hence they must have
been present as isolated cliques already in the beginning. Hence, if p > 6k then we have to
already see p− 2k > 4k isolated cliques; otherwise, we may safely provide a negative answer.
Although these cliques may be still merged (to decrease the number of clusters) or split (to
increase the number of clusters), we can apply greedy arguments to identify a clique that
may be safely assumed to be untouched by the solution. Hence we can remove it from the
graph and decrement p by one. Although the greedy arguments seem very intuitive, their
formal proofs turn out to be somewhat technical.

3.2 Small cuts
We now proceed to the algorithm itself. Let us introduce the key notion.

I Definition 8. Let G = (V,E) be an undirected graph. A partition (V1, V2) of V is called
a k-cut of G if |E(V1, V2)| ≤ k.

I Lemma 9. k-cuts of a graph G can be enumerated with polynomial time delay.

Proof. We follow the standard branching. We order the vertices arbitrarily, start with empty
V1, V2 and for each consecutive vertex v we branch into two subcases: we put v either into V1

F.V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger 37

or into V2. Once the alignment of all vertices is decided, we output the partition. However,
each time we put a vertex in one of the sets, we run a polynomial-time max-flow algorithm
to check whether the minimum edge cut between V1 and V2 constructed so far is at most k.
If not, then we terminate this branch as it certainly cannot result in any solutions found.
Thus, we always pursue a branch that results in at least one feasible solution, and finding
the next solution occurs within a polynomial number of steps. J

Intuitively, k-cuts of the graph G form the search space of the algorithm. Therefore, we
would like to bound their number. We do this by firstly bounding the number of cuts of a
cluster graph, and then using the fact that a YES-instance is not very far from some cluster
graph. We begin with the following bound on binomial coefficients.

I Lemma 10 (♠). If a, b are nonnegative integers, then
(
a+b
a

)
≤ 22

√
ab.

I Lemma 11. Let K be a cluster graph containing at most p clusters, where p ≤ 6k. Then
the number of k-cuts of K is at most 28

√
pk.

Proof. By slightly abusing the notation, assume that K has exactly p clusters, some of
which may be empty. Let C1, C2, . . . , Cp be these clusters and c1, c2, . . . , cp be their sizes,
respectively. We firstly establish a bound on the number of partitions (V1, V2) such that the
cluster Ci contains xi vertices from V1 and yi from V2. Then we discuss how to bound the
number of ways of selecting pairs xi, yi summing up to ci for which the number of k-cuts is
positive. Multiplying the obtained two bounds gives us the claim.

Having fixed the numbers xi, yi, the number of ways in which the cluster Ci can be
partitioned is equal to

(
xi+yi

xi

)
. Note that

(
xi+yi

xi

)
≤ 22√xiyi by Lemma 10. Observe that

there are xiyi edges between V1 and V2 inside the cluster Ci, so if (V1, V2) is a k-cut, then∑p
i=1 xiyi ≤ k. By applying the Cauchy-Schwarz inequality we infer that

∑p
i=1
√
xiyi ≤√

p ·
√∑p

i=1 xiyi ≤
√
pk. Therefore, the number of considered cuts is bounded by

p∏
i=1

(
xi + yi
xi

)
≤ 22

∑p

i=1
√
xiyi ≤ 22

√
pk.

Moreover, observe that min(xi, yi) ≤
√
xiyi; hence,

∑p
i=1 min(xi, yi) ≤

√
pk. Thus, the

choice of xi, yi can be modeled by first choosing for each i, whether min(xi, yi) is equal to xi
or to yi, and then expressing b

√
pkc as the sum of p+ 1 nonnegative numbers: min(xi, yi) for

1 ≤ i ≤ p and the rest, b
√
pkc −

∑p
i=1 min(xi, yi). The number of choices in the first step is

equal to 2p ≤ 2
√

6pk, and in the second is equal to
(b√pkc+p

p

)
≤ 2
√
pk+
√

6pk. Therefore, the

number of possible choices of xi, yi is bounded by 2(1+2
√

6)
√
pk ≤ 26

√
pk. Hence, the total

number of k-cuts is bounded by 26
√
pk · 22

√
pk = 28

√
pk, as claimed. J

I Lemma 12. If (G, p, k) is a YES-instance of p-Cluster Editing with p ≤ 6k, then the
number of k-cuts of G is bounded by 28

√
2pk.

Proof. LetK be a cluster graph with at most p clusters such that H(G,K) ≤ k. Observe that
every k-cut of G is also a 2k-cut of K, as K differs from G by at most k edge modifications.
The claim follows from Lemma 11. J

3.3 The algorithm
Proof of Theorem 1. Let (G = (V,E), p, k) be the given p-Cluster Editing instance. By
making use of Proposition 6, we can assume that G has at most (p+ 2)k+ p vertices, thus all

STACS’13

38 Tight bounds for Parameterized Complexity of Cluster Editing

the factors polynomial in the size of G can be henceforth hidden within the 2O(
√
pk) factor.

Application of Proposition 6 gives the additional O(n+m) summand to the complexity. By
further usage of Lemma 7 we can also assume that p ≤ 6k. Note that application of Lemma 7
can spoil the bound |V (G)| ≤ (p+ 2)k + p as p can decrease; however the number of vertices
of the graph is still bounded in terms of initial p and k.

We now enumerate k-cuts of G with polynomial time delay. If we exceed the bound
28
√

2pk given by Lemma 12, we know that we can safely answer NO, so we immediately
terminate the computation and give a negative answer. Therefore, we can assume that we
have computed the set N of all k-cuts of G and |N | ≤ 28

√
2pk.

Assume that (G, p, k) is a YES-instance and let K be a cluster graph with at most p
clusters such that H(G,K) ≤ k. Again, let C1, C2, . . . , Cp be the clusters of K. Observe that
for every j ∈ {0, 1, 2, . . . , p}, the partition

(⋃j
i=1 V (Ci),

⋃p
i=j+1 V (Ci)

)
has to be the k-cut

with respect to G, as otherwise there would be more than k edges that need to be deleted
from G in order to obtain K. This observation enables us to use a dynamic programming
approach on the set of cuts.

We construct a directed graph D, whose vertex set is equal to N × {0, 1, 2, . . . , p} ×
{0, 1, 2, . . . , k}; note that |V (D)| = 2O(

√
pk). We create arcs going from ((V1, V2), j, `) to

((V ′1 , V ′2), j + 1, `′), where V1 (V ′1 (hence V2) V ′2), j ∈ {0, 1, 2, . . . , p − 1} and `′ =
`+ |E(V1, V

′
1 \ V1)|+ |E(V ′1 \ V1, V

′
1 \ V1)| ((V,E) is the complement of the graph G). The

arcs can be constructed in 2O(
√
pk) time by checking for all the pairs of vertices whether

they should be connected. We claim that the answer to the instance (G, p, k) is equivalent to
reachability of any of the vertices of form ((V, ∅), p, `) from the vertex ((∅, V), 0, 0).

In one direction, if there is a path from ((∅, V), 0, 0) to ((V, ∅), p, `) for some ` ≤ k, then the
consecutive sets V ′1 \V1 along the path form clusters Ci of a cluster graph K, whose editing dis-
tance toG is accumulated on the last coordinate, thus bounded by k. In the second direction, if
there is a cluster graph K with clusters C1, C2, . . . , Cp within editing distance at most k from
G, then vertices

((⋃j
i=1 V (Ci),

⋃p
i=j+1 V (Ci)

)
, j,H

(
G
[⋃j

i=1 V (Ci)
]
,K
[⋃j

i=1 V (Ci)
]))

form a path from ((∅, V), 0, 0) to ((V, ∅), p,H(G,K)). Note that all these triples are indeed
vertices of the graph D, as

(⋃j
i=1 V (Ci),

⋃p
i=j+1 V (Ci)

)
are k-cuts of G.

Reachability in a directed graph can be tested in linear time with respect to the number
of vertices and arcs. We can now apply this algorithm to the graph D and conclude solving
the p-Cluster Editing instance in O(2O(

√
pk) + n+m) time. J

4 Multivariate lower bound

This section is devoted to sketching the proof of Theorem 2. As the provided reduction is
very technical, in this extended abstract we only provide the construction of the graph G,
explaining also all the necessary intuition, and sketch the completeness implication, i.e., how
to translate a satisfying assignment of Φ into a 6p-cluster graph G0 close to G. To ease the
presentation, in this extended abstract we show the proof for ε = 1.

4.1 Preprocessing of the formula
We start with a step that regularizes the input formula Φ, while increasing its size only by a
constant factor. The purpose of this step is to ensure that, when we translate a satisfying
assignment of Φ into a cluster graph G0 in the completeness step, the clusters are of the same
size, and therefore contain the minimum possible number of edges. This property is crucial

F.V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger 39

in the argumentation of the soundness step. The proof of the following lemma consists of
several steps that ensure consecutive properties of formula Φ′ by syntactic modifications, like
copying variables and clauses.

I Lemma 13 (♠). There exists a polynomial-time algorithm that, given a 3-CNF formula Φ
with n variables and m clauses and an integer p ≤ n, constructs a 3-CNF formula Φ′ with
n′ variables and m′ clauses together with a partition of the variable set Vars(Φ′) into p parts
Varsr, 1 ≤ r ≤ p, such that the following properties hold:

(a) Φ′ is satisfiable iff Φ is;
(b) in Φ′ every clause contains exactly three literals corresponding to different variables;
(c) in Φ′ every variable appears exactly three times positively and exactly three times negatively;
(d) n′ is divisible by p and, for each 1 ≤ r ≤ p, we have |Varsr| = n′/p (i.e., the variables

are split evenly between the parts Varsr);
(e) if Φ′ is satisfiable, then there exists a satisfying assignment of Vars(Φ′) with the property

that in each part Varsr the numbers of variables set to true and to false are equal.
(f) n′ +m′ = O(n+m).

4.2 Construction
We now sketch how to compute the graph G and the integer k′ from the formula Φ′ given by
Lemma 13. As Lemma 13 increases the size of the formula by a constant factor, we have
that n′,m′ = O(

√
pk) and |Varsr| = n′/p = O(

√
k/p) for 1 ≤ r ≤ p. The idea is to pack the

variables from each part Varsr, for 1 ≤ r ≤ p, into group gadgets, each costing 6 cliques.
Evaluation of the variables from each part corresponds to some clustering strategy inside the
group gadget. The clauses are encoded by additional groups of vertices, whose connections
to group gadgets ensure that they can be split among the clusters optimally iff at least one
literal satisfies the clause.

We proceed with the description of group gadgets. Let L = 1000 ·
(

1 + n′

p

)
= O(

√
k/p).

For each part Varsr, 1 ≤ r ≤ p, we create six cliques Qrα, 1 ≤ α ≤ 6, each of size L. Let Q
be the set of all vertices of all cliques Qrα. In this manner we have 6p cliques. Intuitively, if
we seek for a 6p-cluster graph close to G, then the cliques are large enough so that merging
two cliques is too expensive — in the intended solution we have exactly one clique in each
cluster. One may view the construction as a procedure of assigning vertices not from Q to
different cliques Qrα.

For every variable x ∈ Varsr, we create six vertices wx1,2, wx2,3, . . . , wx5,6, wx6,1. Connect
them into a cycle in this order; this cycle is called a 6-cycle for the variable x. Moreover,
for each 1 ≤ α ≤ 6 and v ∈ V (Qrα), create edges vwxα−1,α and vwxα,α+1 (we assume that the
indices behave cyclically, i.e., wx6,7 = wx6,1, Qr7 = Qr1 etc.). Let W be the set of all vertices
wxα,α+1 for all variables x. Intuitively, the cheapest way to cut the 6-cycle for variable x is to
assign the vertices wxα,α+1, 1 ≤ α ≤ 6, all either to the clusters with cliques with only odd
indices or only with even indices. Choosing even indices corresponds to setting x to false,
while choosing odd ones corresponds to setting x to true, and both choices lead to saving
exactly 3 editions inside the 6-cycle. By property (e) of formula Φ′ we know that if Φ′ is
satisfiable, then in some satisfying assignment exactly half of the variables in each group are
assigned true value, and half false. For this satisfying assignment, each clique Qrα will be
assigned exactly the same number of vertices from W.

We now proceed with the description of the encoding of the clauses. Let r(x) be the index
of the part that contains variable x, that is, x ∈ Varsr(x). In each clause C we (arbitrarily)

STACS’13

40 Tight bounds for Parameterized Complexity of Cluster Editing

enumerate variables: for 1 ≤ η ≤ 3, let var(C, η) be the variable in the η-th literal of C, and
sgn(C, η) = 0 if the η-th literal is negative and sgn(C, η) = 1 otherwise.

For every clause C create nine vertices: sCβ,ξ for 1 ≤ β, ξ ≤ 3. Let S be the set of all the
vertices created in this manner. Let us first focus on vertices sC1,1, sC1,2, sC1,3.

For each 1 ≤ η ≤ 3 and each ξ ∈ {1, 2, 3}, create an edge sC1,ξw
var(C,η)
2η−1,2η ;

for each 1 ≤ η ≤ 3 connect sC1,1 to all the vertices of one of the cliques adjacent to
w

var(C,η)
2η−1,2η depending on the sign of the η-th literal in C, that is, the clique Qr(var(C,η))

2η−sgn(C,η);
for each 1 ≤ η ≤ 3 and ξ ∈ {2, 3}, connect sC1,ξ to all vertices of both cliques the vertex
w

var(C,η)
2η−1,2η is adjacent to, that is, the cliques Qr(var(C,η))

2η−1 and Qr(var(C,η))
2η .

In this manner, vertex sC1,1 is adjacent to three cliques Qrα, while sC1,2 and sC1,3, which are
twins, are adjacent to six of them. Assuming that each clique Qrα is in a different cluster, we
need to edit two connections to the cliques for vertex sC1,1, and five for each of vertices sC1,2,
sC1,3. Checking satisfaction of the assignment is performed on the edges between sC1,1 and
vertices from W. The crucial observation is that:

if at least one of the literals in the clause is satisfied, then at least one of the three vertices
from W adjacent to sC1,1 is already assigned to a clique that is connected to sC1,1.
if none of the literals of the clause is satisfied, then all the vertices from W , to which sC1,1
is adjacent, are assigned to cliques not connected to sC1,1.

Hence, if the first possibility takes place, we can save one edition by not changing adjacency
between sC1,1 and the corresponding vertex from W . However, if the second possibility takes
place, we need to change all three adjacencies, unless we want to separate sC1,1 from all the
three adjacent cliques Qrα, which is too expensive.

Vertices sC1,2 and sC1,3 help us to balance the sizes of the clusters, as we may assign them
to any clique that is adjacent to them. For example, if sC1,1 was assigned to Qr(x)

1 , then
we can assign sC1,2 to Qr(y)

3 and sC1,3 to Qr(z)
6 . The construction of vertices {sC2,1, sC2,2, sC2,3}

and {sC3,1, sC3,2, sC3,3} follow the same rules, but the lower indices of the cliques and vertices
from W to which the constructed vertices are adjacent, are cyclically shifted by 2 and 4,
respectively. In this manner we are able to ensure the following properties: if the assignment
satisfies clause C, then vertices sCβ,ξ can be assigned to the cliques so that (i) each vertex is
assigned to a clique it is connected to, (ii) for each vertex we save one edition on editing
adjacencies to vertices from W, (iii) each clique with an odd lower index is assigned one
vertex if the corresponding literal appears positively in C, and zero otherwise, (iv) each
clique with an even lower index is assigned one vertex if the corresponding literal appears
negatively in C, and zero otherwise. By property (c) of the formula Φ′ we know that for the
satisfying assignment all the cliques are assigned exactly the same number of vertices from S.

This concludes the construction. We note that |V (G)| = 6pL+O(n′ +m′) = O(
√
pk).

We now calculate the budget k′ for edge editions in the created instance. Then we argue
why in case of existence of a satisfying assignment there is a set of at most k′ edge editions
that turns G into a 6p-cluster graph. (The argument for the converse is deferred to the full
version.) In the constructed solution all the cliques Qrα will be in different clusters.

To make the presentation more clear, we split this budget into few summands. Let

kQ−Q = 0, kQ−WS = (6n′ + 36m′)L, kall
WS−WS = 6p

(6n′+9m′

6p
2

)
,

kexist
WS−WS = 6n′ + 27m′, ksave

W−W = 3n′, ksave
W−S = 9m′,

and finally

k′ = kQ−Q + kQ−WS + kall
WS−WS + kexist

WS−WS − 2ksave
W−W − 2ksave

W−S .

F.V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger 41

Note that, as p ≤ k, L = O(
√
k/p) and n′,m′ = O(

√
pk), we have k′ = O(k).

The intuition behind this split is as follows. The intended solution for the p-Cluster
Editing instance (G, 6p, k′) creates no edges between the cliques Qrα, each clique is contained
in its own cluster, and kQ−Q = 0. For each v ∈ W ∪ S, the vertex v is assigned to a cluster
with one clique adjacent to v; kQ−WS accumulates the cost of removal of other edges in
E(Q,W∪S). Finally, we count the editions in (W∪S)× (W∪S) in an indirect way. First we
cut all edges of E(W ∪S,W ∪S) (summand kexist

WS−WS). We group the vertices of W ∪S into
clusters and add edges between vertices in each cluster; the summand kall

WS−WS corresponds
to the cost of this operation when all the clusters are of the same size (and the number of
edges is minimum possible, due to the convexity of function t→

(
t
2
)
). Finally, in summands

ksave
W−W and ksave

W−S we count how many edges are removed and then added again in this
process: ksave

W−W corresponds to saving three edges from each 6-cycle in E(W,W) and ksave
W−S

corresponds to saving one edge in E(W,S) per each vertex sCβ,ξ. By the described properties
of clause encoding it directly follows, that a satisfying assignment can be translated into an
edition set of size at most k′.

Having sketched the completeness proof, we would like to intuitively describe the difficulties
that arise in the proof of soundness, i.e., that the existence of a p′-cluster graph within
edition distance at most k′, for p′ ≤ 6p, implies that Φ′ is satisfiable. If we assume that the
solution behaves ’sensibly’, then the minimal possible budget given for kall

WS−WS and the
properties of clause encoding already ensure that it translates to an assignment satisfying Φ′.
Unfortunately, we need to argue also that the solution does not ’cheat’; the main two ways
of cheating are (i) trying to merge two cliques Qrα, (ii) trying to separate a vertex sCβ,ξ from
all the adjacent cliques. Clearly, each of these operations is locally suboptimal, but we need
to guarantee that one cheat cannot lead to a lot of further savings. For example, merging
two cliques Qrα implies that some vertices sCβ,ξ may be separated from less cliques they are
adjacent to, than intended.

Usually, one copes with such problems by creating several ’layers’ of the budget and
ensuring that all the possible savings from any cheating cannot compensate even cost of one
cheat. In our setting, making cliques Qrα much bigger would solve the problem. However,
then we would need to increase the budget as well and the reduction would yield a weaker
lower bound. Instead, we have to provide an extremely careful bookkeeping analysis of the
possible shape of the solution in order to show that, indeed, the possible gains from cheating
cannot amortise the costs.

5 Conclusion and open questions

We gave an algorithm that solves p-Cluster Editing in time O(2O(
√
pk) + n + m) and

complemented it by a multivariate lower bound, which shows that the running time of our
algorithm is asymptotically tight for all p sublinear in k.

In our multivariate lower bound it is crucial that the cliques and clusters are arranged in
groups of six. However, the drawback of this construction is that Theorem 2 settles the time
complexity of p-Cluster Editing problem only for p ≥ 6 (Corollary 4). It does not seem
unreasonable that, for example, the 2-Cluster Editing problem, already NP-complete
[34], may have enough structure to allow an algorithm with running time O(2o(

√
k) + n+m).

Can we construct such an algorithm or refute its existence under ETH?
Secondly, we would like to point out an interesting link between the subexponential

parameterized complexity of the problem and its approximability. When the number of
clusters drops from linear to sublinear in k, we obtain a phase transition in parameterized

STACS’13

42 Tight bounds for Parameterized Complexity of Cluster Editing

complexity from exponential to subexponential. As far as approximation is concerned, we
know that bounding the number of clusters by a constant allows us to construct a PTAS [24],
whereas the general problem is APX-hard [13]. The mutual drop of the parameterized
complexity of a problem — from exponential to subexponential — and of approximability —
from APX-hardness to admitting a PTAS — can be also observed for many hard problems
when the input is constrained by additional topological bounds, for instance excluding a fixed
pattern as a minor [17, 18, 22]. It is therefore an interesting question, whether p-Cluster
Editing also admits a PTAS when the number of clusters is bounded by a non-constant,
yet sublinear function of k, for instance p =

√
k.

Acknowledgements

We thank Christian Komusiewicz for pointing us to the recent results on Cluster Editing
[7, 31] and his thesis [30]. Moreover, we thank Pål Grønås Drange, M. S. Ramanujan and
Saket Saurabh for helpful discussions.

References
1 Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:

ranking and clustering. In Proc. of STOC’05, pages 684–693. ACM, 2005.
2 Noga Alon, Daniel Lokshtanov, and Saket Saurabh. Fast FAST. In Proc. of ICALP’09,

volume 5555 of Lecture Notes in Comput. Sci., pages 49–58. Springer, 2009.
3 Noga Alon, Konstantin Makarychev, Yury Makarychev, and Assaf Naor. Quadratic forms

on graphs. In Proc. of STOC’05, pages 486–493. ACM, 2005.
4 Sanjeev Arora, Eli Berger, Elad Hazan, Guy Kindler, and Muli Safra. On non-

approximability for quadratic programs. In Proc. of FOCS’05, pages 206–215. IEEE Com-
puter Society, 2005.

5 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning,
56:89–113, 2004.

6 Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression patterns.
Journal of Computational Biology, 6(3/4):281–297, 1999.

7 Sebastian Böcker. A golden ratio parameterized algorithm for cluster editing. In Proc. of
IWOCA’11, pages 85–95, 2011.

8 Sebastian Böcker, Sebastian Briesemeister, Quang Bao Anh Bui, and Anke Truß. A fixed-
parameter approach for weighted cluster editing. In Proc. of APBC’08, volume 6 of Ad-
vances in Bioinformatics and Computational Biology, pages 211–220, 2008.

9 Sebastian Böcker, Sebastian Briesemeister, and Gunnar W. Klau. Exact algorithms for
cluster editing: Evaluation and experiments. Algorithmica, 60(2):316–334, 2011.

10 Sebastian Böcker and Peter Damaschke. Even faster parameterized cluster deletion and
cluster editing. Inf. Process. Lett., 111(14):717–721, 2011.

11 Hans L. Bodlaender, Michael R. Fellows, Pinar Heggernes, Federico Mancini, Charis
Papadopoulos, and Frances A. Rosamond. Clustering with partial information. Theor.
Comput. Sci., 411(7-9):1202–1211, 2010.

12 Yixin Cao and Jianer Chen. Cluster editing: Kernelization based on edge cuts. In Proc. of
IPEC’10, volume 6478 of Lecture Notes in Computer Science, pages 60–71. Springer, 2010.

13 Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. In Proc. of FOCS’03, pages 524–533. IEEE Computer Society, 2003.

14 Moses Charikar and Anthony Wirth. Maximizing quadratic programs: Extending Grothen-
dieck’s inequality. In Proc. of FOCS’04, pages 54–60. IEEE Computer Society, 2004.

15 Jianer Chen and Jie Meng. A 2k kernel for the cluster editing problem. Journal of Computer
and System Sciences, 78(1):211 – 220, 2012.

F.V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger 43

16 Peter Damaschke. Fixed-parameter enumerability of cluster editing and related problems.
Theory Comput. Syst., 46(2):261–283, 2010.

17 Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free
graphs. Journal of the ACM, 52(6):866–893, 2005.

18 Erik D. Demaine and Mohammadtaghi Hajiaghayi. Bidimensionality: New connections
between FPT algorithms and PTASs. In Proc. of SODA’05, pages 590–601, 2005.

19 R. G. Downey and M. R. Fellows. Parameterized complexity. Springer-Verlag, New York,
1999.

20 Michael R. Fellows, Jiong Guo, Christian Komusiewicz, Rolf Niedermeier, and Johannes
Uhlmann. Graph-based data clustering with overlaps. Discrete Optimization, 8(1):2–17,
2011.

21 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2006.

22 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Bidimension-
ality and EPTAS. In Proc. of SODA’11, pages 748–759. SIAM, 2011.

23 Fedor V. Fomin and Yngve Vilanger. Subexponential parameterized algorithm for minimum
fill-in. In Proc. of SODA’12, pages 1737–1746. SIAM, 2012.

24 Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed number of
clusters. In Proc. of SODA’06, pages 1167–1176. ACM Press, 2006.

25 Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-modeled data cluster-
ing: Exact algorithms for clique generation. Theory Comput. Syst., 38(4):373–392, 2005.

26 Jiong Guo. A more effective linear kernelization for cluster editing. Theor. Comput. Sci.,
410(8-10):718–726, 2009.

27 Jiong Guo, Iyad A. Kanj, Christian Komusiewicz, and Johannes Uhlmann. Editing graphs
into disjoint unions of dense clusters. Algorithmica, 61(4):949–970, 2011.

28 Jiong Guo, Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann. A more
relaxed model for graph-based data clustering: s-plex cluster editing. SIAM J. Discrete
Math., 24(4):1662–1683, 2010.

29 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

30 Christian Komusiewicz. Parameterized Algorithmics for Network Analysis: Clustering &
Querying. PhD thesis, Technische Universität Berlin, 2011. Available at http://fpt.akt.
tu-berlin.de/publications/diss-komusiewicz.pdf.

31 Christian Komusiewicz and Johannes Uhlmann. Alternative parameterizations for cluster
editing. In Proc. of SOFSEM’11, volume 6543 of Lecture Notes in Computer Science, pages
344–355. Springer, 2011.

32 Dániel Marx. What’s next? future directions in parameterized complexity. In Hans L.
Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel Marx, editors, The Multivariate
Algorithmic Revolution and Beyond, volume 7370 of Lecture Notes in Computer Science,
pages 469–496. Springer, 2012.

33 Fábio Protti, Maise Dantas da Silva, and Jayme Luiz Szwarcfiter. Applying modular
decomposition to parameterized cluster editing problems. Theory Comput. Syst., 44(1):91–
104, 2009.

34 Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Discrete
Applied Mathematics, 144(1-2):173–182, 2004.

STACS’13

http://fpt.akt.tu-berlin.de/publications/diss-komusiewicz.pdf
http://fpt.akt.tu-berlin.de/publications/diss-komusiewicz.pdf

Bounded-width QBF is PSPACE-complete
Albert Atserias1 and Sergi Oliva2

1 Universitat Politècnica de Catalunya
Barcelona, Spain
atserias@lsi.upc.edu

2 Universitat Politècnica de Catalunya
Barcelona, Spain
oliva@lsi.upc.edu

Abstract
Tree-width is a well-studied parameter of structures that measures their similarity to a tree. Many
important NP-complete problems, such as Boolean satisfiability (SAT), are tractable on bounded
tree-width instances. In this paper we focus on the canonical PSPACE-complete problem QBF,
the fully-quantified version of SAT. It was shown by Pan and Vardi [LICS 2006] that this problem
is PSPACE-complete even for formulas whose tree-width grows extremely slowly. Vardi also posed
the question of whether the problem is tractable when restricted to instances of bounded tree-
width. We answer this question by showing that QBF on instances with constant tree-width is
PSPACE-complete.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Tree-width, QBF, PSPACE-complete

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.44

1 Introduction

Tree-width is a well-known parameter that measures how close a structure is to being a
tree. Many NP-complete problems have polynomial-time algorithms on inputs of bounded
tree-width. In particular, the Boolean satisfiability problem can be solved in polynomial
time when the constraint graph of the input cnf-formula has bounded tree-width (cf. [3], [4]).

A natural question suggested by this result is whether QBF, the problem of determining
if a fully-quantified cnf-formula is true or false, can also be solved in polynomial time
when restricted to formulas whose cnf has bounded tree-width. In [1], Chen concludes
that the problem stays tractable if the number of alternations, as well as the tree-width, is
bounded. On the negative side, Gottlob, Greco and Scarcello [6] proved that the problem
stays PSPACE-complete when the number of alternations is unbounded even if the constraint
graph of the cnf-formula has logarithmic tree-width (and indeed, its incidence graph is
even a tree). By different methods, and improving upon [6], Pan and Vardi [8] show that,
unless P = NP, the dependence of the running time of Chen’s algorithm on the number of
alternations must be non-elementary, and that the QBF problem restricted to instances of
tree-width log∗ in the size of the input is PSPACE-complete. All these negative results hold
also for path-width, which is a parameter that measures the similarity to a path and is in
general smaller than tree-width. However, they leave open whether QBF is tractable for
instances whose constraint graph has constant path-width, or even constant tree-width.

In this paper, we resolve this question by showing that, even for inputs of constant
path-width, QBF is PSPACE-complete. Our construction builds on the techniques from [8]
with two essential differences. The first difference is that instead of reducing from the so-called

© A. Atserias and S. Oliva;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 44–54

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.44
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Atserias and S. Oliva 45

tiling-game and producing a quantified Boolean formula of log∗-smaller path-width, our
reduction starts at QBF itself and produces a quantified Boolean formula whose path-width
is only logarithmically smaller. Although this looks like backward progress, it leaves us in a
position where iterating the reduction makes sense. However, in order to do so, we need to
analyze which properties of the output of the reduction can be exploited by the next iteration.
Here comes the second main difference: we observe that the output of the reduction has not
only smaller path-width, but also smaller window-size, which means that any two occurences
of the same variable appear close to each other in some ordering of the clauses. We call such
formulas n-leveled, where n is a bound related to the window-size. Our main lemma exploits
this structural restriction in a technical way to show that the QBF problem for n-leveled
formulas reduces to the QBF problem for O(log n)-leveled formulas. Iterating this reduction
until we reach O(1)-leveled formulas yields the result.

Comparison to previous work. A few more words on the differences between our methods
and those in [8] and [6] are in order. The technical tool from [8] that is used to achieve
n-variable formulas of O(log∗ n) path-width builds on the tools from [7] and [5] that were
used for showing non-elementary lower-bounds for some problems related to second-order
logic. These tools are based on an encoding of natural numbers that allows the comparison
of two n-bit numbers by means of an extremely smaller formula; one of size O(log∗ n). It is
interesting that, by explicitely avoiding this technique, our iteration-based methods take us
further: beyond O(log∗ n) path-width down to constant path-width. For the same reason
our proof can stay purely at the level of propositional logic without the need to resort to
second-order logic. Along the same lines, our method also shows that the QBF problem for
n-variable formulas of constant path-width and O(log∗ n) quantifier alternations is NP-hard
(and ΣiP-hard for any i ≥ 1), while the methods from [8] could only show this for O(log∗ n)
path-width and O(log∗ n) alternations. It is worth noting that, in view of the results in [1],
these hardness results are tight up to the hidden constants in the asymptotic notation.

Structural restrictions on the generalization of QBF to unbounded domains, sometimes
called QCSP, have also been studied. Gottlob et al. [6] proved that QCSP restricted to trees
is already PSPACE-complete. Their hardness result for QBF of logarithmic tree-width follows
from this by booleanization. They also identify some new tractable fragments, and some
other hardness conditions. Finally, Chen and Dalmau [2] introduced a general framework for
studying structural restrictions on QCSP, and characterized the restrictions that make the
problem tractable under complexity-theoretic assumptions.

Paper organization. The paper is organized as follows. In section 2, we introduce the
basic definitions. In section 3, we formalize the concept of leveled-qbf and state and prove
the main lemma. Finally, in section 4, we present the main theorem of the paper, which
shows how to iterate the lemma to obtain the desired result.

2 Preliminaries

We write [n] := {1, . . . , n} and |n| := dlog(n+ 1)e. All logarithms are base 2. Note that |n| is
the length of the binary encoding of n. We define log(0) n := n and log(i) n := log(log(i−1) n)
for i > 0. Also, we use log∗ n as the least integer i such that log(i) n ≤ 1.

The negation of a propositional variable x is denoted by x. We also use the notation x(1)

and x(0) to denote x and x, respectively. Note that the notation is chosen so that x(a) is
made true by the assignment x = a. The underlying variable of x(a) is x, and its sign is
a. A literal is a variable or the negation of a variable. A clause is a sequence of literals. A

STACS’13

46 Bounded-width QBF is PSPACE-complete

cnf-formula is a sequence of clauses. The size of a clause is its length as a sequence, and the
size of a cnf-formula is the sum of the sizes of its clauses. For example,

φ = ((x1, x2), (x2, x3, x4), (x4)) (1)

is a cnf-formula of size 6 made of three clauses of sizes 2, 3, and 1, respectively. If φ is a
cnf-formula of size s, we write `1(φ), . . . , `s(φ) for the s literals of φ in the left-to-right order
in which they appear in φ. For example, in (1) we have `4(φ) = x3. When φ is clear from
the context we write `i instead of `i(φ).

Let φ be a cnf-formula. A path-decomposition of φ is a sequence A1, . . . , Am of subsets of
variables that satisfies the following properties:
1. for every clause C of φ there is some i ∈ [m] such that all the variables of C are in Ai,
2. for every i, j, k ∈ [m] such that i ≤ j ≤ k we have Ai ∩Ak ⊆ Aj .
The width of the path-decomposition is the maximum |Ai| minus one. The path-width of
φ is the smallest width of all its path-decompositions. The path-width is bounded by the
tree-width of the constraint graph of the cnf-formula, defined in the usual way (cf. [4]).

A qbf is a quantified Boolean formula of the form

φ = Q1x1 · · ·Qqxq(φ′), (2)

where x1, . . . , xq are propositional variables, the matrix φ′ is a cnf-formula, and Qi is either
∀ or ∃ for every i ∈ {1, . . . , q}. The size of a qbf as in (2) is defined as the size of its matrix
φ′. The path-width of a qbf is the path-width of its matrix.

3 Leveled Formulas

In this section we state and prove the main lemma. This lemma is a reduction from n-leveled
qbfs to O(log n)-leveled qbfs, which is progress in our iterative argument. Before stating the
lemma, we formalize the concept of leveled-qbf.

Let n be a positive integer. An n-leveled cnf-formula is a cnf-formula φ in which its
sequence of clauses is partitioned into blocks B1, . . . , B`, where each block is a consecutive
subsequence of clauses of φ, and its set of variables is partitioned into the same number
of groups G1, . . . , G`, each containing at most n variables, and such that for every j ∈
{1, . . . , `− 1} we have that every clause C in Bj has all its variables in Gj ∪Gj+1, and every
clause C in B` has all its variables in G`. An n-leveled qbf is a quantified Boolean formula
whose matrix is an n-leveled cnf-formula.

Observe that every qbf with n variables is an n-leveled qbf: put all clauses in a single
block and all variables in a single group. However, when the sizes of the groups are limited,
we get a nice structure:

I Lemma 1. Let n be a positive integer. Every n-leveled qbf has path-width at most 2n− 1.

Proof. Let φ be an n-leveled qbf with groups G1, . . . , G`. It is straightforward to check from
the definition of leveled formula that the sequence A1, . . . , A` defined by Aj = Gj ∪Gj+1 for
j ∈ {1, . . . , `− 1} and A` = G` forms a path-decomposition of the cnf-formula in the matrix
of φ. Since each Gj has cardinality at most n, the claim follows. J

Now, we can formalize the statement of the main lemma.

I Lemma 2. There exist c, d ≥ 1 and a polynomial-time algorithm that, for every n, s ≥ 1,
given an n-leveled qbf φ of size s, computes a c · |n|-leveled qbf ψ of size d · s · |n| such that
φ↔ ψ.

A. Atserias and S. Oliva 47

We devote the rest of the section to the proof of this lemma. In order to improve the
readability of Boolean formulas, we use + for disjunction and · for conjunction.

3.1 Definition of θ
Let φ be a n-leveled qbf as in (2) whose matrix φ′ is an n-leveled cnf-formula of size s with
groups G1, . . . , G` and blocks B1, . . . , B`. As a first step towards building ψ we define an
intermediate formula θ. The formula θ contains variables τ1, . . . , τs, one for each literal in φ′,
and is defined as

θ := Q1τ 1 · · ·Qqτ q(ncons∀ + (cons∃ · sat))

where
1. each τ j , for j ∈ [q], is the tuple of τ -variables corresponding to all the occurrences of the

variable xj in φ′,
2. consQ, for Q ∈ {∀, ∃}, is a qbf to be defined later that is satisfied by an assignment to

τ1, . . . , τs if and only if all the variables from the same τ j with Qj = Q are given the
same truth value,

3. nconsQ for Q ∈ {∀, ∃} is a qbf that is equivalent to the negation of consQ,
4. sat is a qbf to be defined later that is satisfied by an assignment to τ1, . . . , τs if and only

if every clause of φ′ contains at least one literal `k = x(a) such that τk is given value a.
This information about the constituents of θ is enough to prove the following claim.

I Claim 1. φ↔ θ

Proof. We need to prove both implications. In both cases we use a game in which two
players, the existential player and the universal player, take rounds following the order of
quantification of the formula to choose values for the variables quantified their way. The aim
of the existential player is to show that the matrix of the formula can be made true while
the aim of the universal player is to show him wrong.

In the following, for j ∈ [q], we say that an assignment to the variables of τ j is consistent
if they are given the same truth value, say a ∈ {0, 1}. In case the assignment is consistent,
we say that a is the corresponding assignment for the variable xj . Conversely, if a is an
assignment to the variable xj , the corresponding consistent assignment for the tuple τ j is
the assignment that sets each variable in τ j to a. If an assignment to τ j is not consistent we
call it inconsistent.

(→): Assume φ is true and let α be a winning strategy for the existential player in φ.
We build another strategy β that guarantees him a win in θ. The construction of β will be
based on the observation that, in the course of the game on θ, if the assignment given by the
universal player to some τ j with Qj = ∀ is inconsistent, then ncons∀ is true irrespective
of all other variables, and hence the matrix of θ is true. With this observation in hand,
the strategy β is defined as follows: at round j with Qj = ∃, if all τ 1, . . . , τ j−1 have been
given consistent assignments up to this point and a1, . . . , aj−1 ∈ {0, 1} are the corresponding
assignments to the variables x1, . . . , xj−1, let aj be the assignment given to xj by the strategy
α in this position of the game on φ, and let the existential player assign value aj to every
variable in τ j . If on the other hand some τ k with k < j has been given an inconsistent
assignment, let the existential player assign an arbitrary value (say 0) to every variable in
τ j . Using the observation above and the assumption that α is a winning strategy, it is not
hard to see that β is a winning strategy.

(←): Assume θ is true and let β be a winning strategy for the existential player in θ.
We build a strategy α for the existential player in φ. In this case the construction of α will

STACS’13

48 Bounded-width QBF is PSPACE-complete

be based on the observation that, in the course of the game on θ, as long as the universal
player assigns consistent values to every τ j with Qj = ∀, the assignment given by β to
each new τ j with Qj = ∃ must be consistent. To see this note that, if not, the universal
player would have the option of staying consistent all the way until the end of the game
in which case both ncons∀ and cons∃ would become false, thus making the matrix of θ
false. With this observation in hand, the strategy α is defined as follows: at round j with
Qj = ∃, let a1, . . . , aj−1 ∈ {0, 1} be the assignment given to x1, . . . , xj−1 up to this point,
let a1, . . . , aj−1 be the corresponding consistent assignments for τ 1, . . . , τ j−1, and let aj be
the assignment given by β to τ j in this position of the game on θ. By the observation above,
since each ak with k < j and Qk = ∀ is consistent by definition and each ak with k < j

and Qj = ∃ has been assigned according to the strategy β, the assignment aj must also be
consistent. Thus the existential player can set xj to its corresponding value aj and continue
with the game.

We need to show that α is a winning strategy for the existential player on φ. First, if the
existential player plays according to α, then the final assignment a1, . . . , aq that is reached
in the game on φ is such that the corresponding assignment a1, . . . , aq in the game on ψ
satisfies the matrix of θ. Since each aj is consistent this means that sat must be made true
by a1, . . . , aq, thus the matrix of φ is made true by a1, . . . , aq. This shows that the existential
player wins. J

Now, we show how to construct the qbf-formulas sat, cons∃ and ncons∀. These formulas
have the τ -variables as free variables and a new set of quantified variables for each literal in
φ′. Recall that the τ -variables assign a truth value to each variable-ocurrence in φ′. The
formula sat will verify that these assignments satisfy all clauses of φ′, the formula cons∃
will verify that each existentially quantified variable is assigned consistently, and the formula
ncons∀ will verify that at least one universally quantified variable is assigned inconsistently.

3.2 Definition of SAT
For every i ∈ [s+ 1], we have variables µi and νi. By scanning its literals left-to-right, the
formula checks that every clause of φ′ contains at least one literal `k = x(a) such that τk

is given value a. To do so, µi and νi indicate the status of this process when exactly i− 1
literals have been scanned. The intended meaning of the variables is the following:

µi = “just before scanning `i, the clauses already completely scanned are satisfied, and
the current clause is not satisfied yet”.
νi = “just before scanning `i, the clauses already completely scanned are satisfied, and
the current clause is satisfied as well”.

Note that `s+1 is not a literal. Therefore, “just before scanning `s+1” means “just after
scanning the last literal” in this case. Also, variables µ1 and ν1 are initialized to true and
false, respectively. We want to make sure that at position i = s+ 1, i.e. after scanning the
last literal, µs+1 is true. Later, we will axiomatize the transition between positions i and
i+ 1. That will define µi+1 and νi+1 depending on µi, νi and `i according to its intended
meaning. We will axiomatize this into the formula sat(i). Then, sat is defined as

sat := ∃µ∃ν
(
µ1 · ν1 ·

s∏
i=1

sat(i) · µs+1

)

where µ = (µ1, . . . , µs+1) and ν = (ν1, . . . , νs+1).
Next, we formalize sat(i). For every i ∈ [s], let ai ∈ {0, 1} denote the sign of `i, the i-th

literal of φ′, and let ki ∈ {0, 1} be the predicate that indicates whether `i is the last in literal

A. Atserias and S. Oliva 49

its clause. Then, sat(i) is the conjunction of the following formulas:

µi+1 ↔ ki µi ai τi + ki µi ai τi + ki µi ai τi + ki µi ai τi + ki νi,

νi+1 ↔ ki µi ai τi + ki µi ai τi + ki νi.

In words, the axiomatization states that µi+1 holds in one of three cases: 1) if `i is the
last literal in its clause and the clause has been satisfied by a previous literal (kiνi), or 2) if
`i is the last literal in its clause, this clause is not yet satisfied by a previous literal, but
the truth assignment satisfies the current one (kiµiaiτi + kiµiaiτi), or 3) if `i is not the
last literal in its clause, this clause is not yet satisfied by a previous literal, and the truth
assignment does not satisfy the current one either (kiµiaiτi + kiµiaiτi). The axiomatization
of νi+1 is similar.

Note that these two formulas can be written in cnf by writing ↔ in terms of conjunctions
and disjunctions and by distributing disjunctions over conjunctions. We call i-link a clause
that contains variables only with indices i and i+ 1. Observe for later use that all clauses in
the resulting cnf-formulas for sat(i) are i-links. Also, the size of sat written in cnf is c · s
for some constant c ≥ 1.

3.3 Definition of CONS∃

The construction of cons∃ is a bit more complicated. It uses universally quantified variables
{π1, . . . , πs} as pointers to the literals of φ′, in one-to-one correspondance with {τ1, . . . , τs}.
We say that pointer πi points to literal `i. If x is the underlying variable of `i, we say that πi

points to x. Pointers that are set to true are called activated. We say that a pointer has been
scanned if its pointed literal has been scanned. The formula checks the following: whenever
exactly two pointers are activated and they point to occurrences of the same existentially
quantified variable, then the truth values assigned to the pointed literals are consistent. To
refer to a variable, we do not encode its identifier directly. Instead, we encode the parity of
its group and its index inside this group. This is enough information to distinguish between
different variables in the same or neighbouring blocks. This fact is key to our argument and
will be proved later in Claim 2. The point is that this compact encoding uses only |n|+ 1 bits
per occurrence, where n is the number of variables per group, which may be much smaller
than the total number of variables.

The formula uses the following variables for i ∈ [s+ 1]:

ξi = “just before scanning `i, all the activated pointers already scanned point to an
existentially quantified variable”.
σi,k = “just before scanning `i, exactly k activated pointers have been scanned”.
χi,k = “just before scanning `i, exactly one activated pointer has been scanned and there
have been k changes of block between the pointed literal and position i, or exactly two
have been scanned and there have been exactly k changes of block between the pointed
literals”.
ωi = “just before scanning `i, exactly one activated pointer has been scanned and the
parity of the group of the pointed variable is equal to the parity of the block of the clause
of the pointed literal, or exactly two have been scanned and the groups of the pointed
variables are the same”.
κi = “just before scanning `i, exactly one activated pointer has been scanned and the
τ -variable at the pointed position is true, or exactly two have been scanned and the truth
values of the τ -variables at the pointed positions are the same”.

STACS’13

50 Bounded-width QBF is PSPACE-complete

λi,b = “just before scanning `i, exactly one activated pointer has been scanned and the
b-th bit of the index of the pointed variable in its group is 1, or exactly two have been
scanned and the b-th bit of the indices of the pointed variables in their respective groups
are the same”.

The variables at step i+ 1 will be axiomatized in terms of the variables at step i and `i

in the formula cons∃(i). The formula cons∃ also requires a consistency condition for all
possible combinations of activated pointers. For a given combination of these pointers, the
consistency condition holds if: either there is a problem with the pointers (there are not
exactly two pointers activated or one is not pointing to an existentially quantified variable),
or the pointed variables are not comparable (are not of the same group or do not have the
same index in the group) or, they are comparable and both receive the same truth value.
This consistency condition will be encoded in the formula consacc

∃ . Also, the value of the
variables at position i = 1 will be encoded in the formula consini

∃ . Now,

cons∃ := ∀π∃ξ∃σ∃χ∃ω∃κ∃λ
(

consini
∃ ·

s∏
i=1

cons∃(i) · consacc
∃

)

where π = (πi | 1 ≤ i ≤ s), ξ = (ξi | 1 ≤ i ≤ s + 1), σ = (σi,k | 1 ≤ i ≤ s + 1, 0 ≤ k ≤ 2),
χ = (χi,k | 1 ≤ i ≤ s + 1, 0 ≤ k ≤ 1), ω = (ωi | 1 ≤ i ≤ s + 1), κ = (κi | 1 ≤ i ≤ s + 1) and
λ = (λi,b | 1 ≤ i ≤ s+ 1, 1 ≤ b ≤ |n|).

Next we axiomatize the introduced variables, but before that we need to introduce some
notation.

Let gi ∈ [`] be the group-number of the variable underlying literal `i, let ni ∈ [|Ggi
|]

be the index of this variable within Ggi , and recall ai ∈ {0, 1} denotes the sign of `i. For
every i ∈ [s], let hi ∈ {0, 1} be the predicate that indicates whether the i-th literal `i is the
last in its block or not (recall that the blocks are subsequences of consecutive clauses that
partition the sequence of clauses), and recall that ki ∈ {0, 1} is the predicate that indicates
whether the i-th literal `i is the last in its clause or not. Next we encode the quantification
of φ in a way that the type of quantification of each variable can be recovered from each of
its occurrences: for every i ∈ [s], let qi ∈ {0, 1} be the predicate that indicates whether the
variable that underlies the i-th literal `i is universally or existentially quantified in φ.

Finally, observe that the definition of leveled formula implies that if bi ∈ [`] is the number
of the block that contains the clause to which the i-th literal belongs, then the group-number
gi is either bi or bi + 1 whenever 1 ≤ bi ≤ `− 1, and is equal to ` if bi = `. Accordingly, let
ei ∈ {0, 1} be such that gi = bi− ei + 1 for every i ∈ [s]. In other words, ei indicates whether
the parities of gi and bi agree or not.

The following claim shows that, although the number ` of groups is in general unbounded,
a constant number of bits of information are enough to tell if the underlying variables of two
literals belong to the same group:

I Claim 2. Let i, j be such that 1 ≤ i < j ≤ s. Then, the underlying variables of `i and `j

belong to the same group if and only if one of the following conditions holds:
1. ei = ej and bi = bj , or
2. ei = 0, ej = 1, and bi = bj − 1.

Proof. For the only if side, we have gi = gj . Then, bi − ei = bj − ej and also bi is either bj

or bj − 1. If bi = bj , then ei = ej . If bi = bj − 1, then necessarily ei = 0 and ej = 1.
For the if side, in the first case, gi = bi − ei + 1 = bj − ej + 1 = gj . In the second case,

gi = bi − ei + 1 = bj − 1 + 1 = bj − ej + 1 = gj . Therefore, gi = gj . J

A. Atserias and S. Oliva 51

Using this claim, we axiomatize cons∃(i) as the conjunction of the following formulas:

ξi+1 ↔ πi ξi + πi ξi qi

σi+1,0 ↔ σi,0 πi

σi+1,1 ↔ σi,0 πi + σi,1 πi

σi+1,2 ↔ σi,1 πi + σi,2 πi

χi+1,0 ↔ σi,0 πi hi + σi,1 πi χi,0 hi + σi,1 πi χi,0 + σi,2 χi,0

χi+1,1 ↔ σi,0 πi hi + σi,1 πi χi,0 hi + σi,1 πi χi,1 hi + σi,1 πi χi,1 + σi,2 χi,1

ωi+1 ↔ σi,0 πi ei + σi,1 πi ωi + σi,1 πi (χi,0 ωi ei + χi,0 ωi ei + χi,1 ωi ei) + σi,2 ωi

κi+1 ↔ σi,0 πi τi + σi,1 πi κi + σi,1 πi κi τi + σi,1 πi κi τi + σi,2 κi

and, for all b ∈ [|n|],

λi+1,b ↔ σi,0 πi ni,b + σi,1 πi λi,b + σi,1 πi λi,b ni,b + σi,1 πi λi,b ni,b + σi,2 λi,b

where ni,b is the b-th bit of the binary encoding of ni.
Also, we define consini

∃ as the conjunction of the following unit clauses:

ξ1, σ1,0, σ1,1, σ1,2, χ1,0, χ1,1, ω1, κ1, λ1,1, . . . , λ1,|n|.

Furthermore, we define consacc
∃ as the following clause:

ξs+1 + σs+1,2 + ωs+1 +
|n|∑

b=1
λs+1,b + κs+1.

Again, note that each of these formulas can be written in cnf just by writing ↔ in terms
of conjunctions and disjunctions and by distributing disjunctions over conjunctions, and that
the clauses in the resulting cnf-formulas for cons∃(i) are i-links: the (first) index of the
variables they contain is either i or i+ 1. Also, the size of cons∃ written in cnf is c · s · |n|
for some constant c ≥ 1.

3.4 Definition of NCONS∀

The formula ncons∀ is very similar to cons∃, since it verifies for universally quantified
variables exactly the opposite of what cons∃ verifies for existentially quantified variables.
For this reason, we proceed to its axiomatization directly.

The formula ncons∀ is defined as

ncons∀ := ∃π∃ξ∃σ∃χ∃ω∃κ∃λ
(

nconsini
∀ ·

s∏
i=1

ncons∀(i) · nconsacc
∀

)

where π, ξ, σ, χ, ω, κ, λ are defined as before, nconsini
∀ := consini

∃ , the formula ncons∀(i)
is axiomatized identically to cons∃(i) except by replacing every occurrence of qi by qi for
every i ∈ [s], and the formula nconsacc

∀ is the negation of consacc
∃ , i.e. the following set of

unit clauses:

ξs+1, σs+1,2, ωs+1, λs+1,1, . . . , λs+1,|n|, κs+1.

In cnf, the formula ncons∀(i) is again a set of i-links, and its size is c · s · |n| for some
c ≥ 1.

STACS’13

52 Bounded-width QBF is PSPACE-complete

3.5 Converting θ to leveled-qbf
Recall that θ was defined as Q1τ 1 · · ·Qqτ q(ncons∀+(cons∃ ·sat)). By writing this formula
in prenex form, we obtain the equivalent formula

Qz (ncons′∀ + (cons′∃ · sat′))

where Qz is the appropriate prefix of quantified variables and the primed formulas are the
matrices of the corresponding non-primed qbfs. We would like to write it as a leveled-qbf.

Let a and b be two new variables and let ϑ be the conjunction of the following formulas:

a+ ncons′∀
b+ ncons′∀
ā+ cons′∃
b̄+ sat′

It is easy to see that
∃a∃b(ϑ)↔ ncons′∀ + (cons′∃ · sat′).

We write ϑ in cnf. For the first disjunction a+ ncons′∀, it is enough to add a to every
clause of ncons′∀, and similarly for the others. Note that, except for the variables a and b,
the result is a conjunction of i-links.

In order to make them proper i-links, we introduce new variables {a1, . . . , as+1} and
{b1, . . . , bs+1}, and clauses ai ↔ ai+1 and bi ↔ bi+1 for every i ∈ [s] to mantain consistency
between the introduced variables. Now, we replace each occurrence of a and b in an improper
i-link by ai and bi respectively. Let ψ′ be the resulting formula.

Finally, define
ψ := Qz∃a∃b(ψ′)

where a = (a1, . . . , as+1) and b = (b1, . . . , bs+1). Note that the construction guarantees
ψ ↔ θ, and by Claim 1, ψ ↔ φ.

We partition the variables of ψ in groups H1, . . . ,Hs+1 where group Hi is the set of
variables with (first) index i. We also partition the clauses of ψ in blocks C1, . . . , Cs+1 where
block Ci is the set of i-links of ψ. Note that, by the definition of i-link, all variables in Ci are
contained in Hi ∪Hi+1. Therefore, ψ is a leveled-qbf with groups H1, . . . ,Hs+1 and blocks
C1, . . . , Cs+1.

Now, for every i ∈ [s + 1], the size of Hi is the number of variables with index i in ψ,
namely c · |n| for some constant c ≥ 1. Also, the size of ψ is d · s · |n| for some constant d ≥ 1.
Therefore, ψ is a c · |n|-leveled qbf of size d · s · |n| such that φ↔ ψ.

Finally, it is clear that all the steps to produce ψ from φ can be performed in time
polynomial in s, thus finishing the proof.

4 Main Theorem

In this section we prove the main result of the paper.

I Theorem 3. There exists an integer w ≥ 1 such that QBF on inputs of path-width at most
w is PSPACE-complete.

Proof. We show that there exists a constant n0 ≥ 1 and a polynomial-time reduction from
the canonical PSPACE-complete problem QBF to the restriction of QBF itself to n0-leveled
qbfs. Then the result will follow by setting the path-width to w = 2n0 − 1 and applying
Lemma 1.

A. Atserias and S. Oliva 53

Let c and d be the constants from the end of section 3. We choose the constant n0 large
enough so that whenever N ≥ n0 the following conditions are satisfied:
1. c · |N | < N ,
2. c · |c · |N || ≤ logN ,
3. (2 log∗N)(log |N |) ≤ logN ,
4. d2 log∗ N ≤ logN .
All these conditions can be met simultaneously. The idea of the reduction is to start with
an arbitrary qbf formula φ0 with N0 variables and size S0, view it as an N0-leveled qbf,
and apply Lemma 2 repeatedly until we get a n0-leveled qbf for the large fixed constant
n0. Since the final formula will be equivalent to φ0, we just need to make sure that this
process terminates in a small number of iterations and that the size of the resulting formula
is polynomial in S0. We formalize this below.

Let φ0 be an arbitrary qbf formula with N0 variables and size S0. In particular φ0 is an
N0-leveled qbf of size S0. If N0 ≤ n0 then φ0 is already n0-leveled and there is nothing to
do. Assume then N0 > n0. We apply Lemma 2 to get an N1-leveled qbf of size S1 where
N1 = c · |N0| and S1 = d · S0 · |N0|. By condition 1 on n0 we get N1 < N0, which is progress.
Repeating this we get a sequence of formulas φ0, φ1, . . . , φt, where φi is an Ni-leveled qbf of
size Si with
1. Ni = c · |Ni−1|, and
2. Si = di · S0 ·

∏i−1
j=0 |Nj |,

for i ≥ 1. We stop the process at the first i = t such that Nt ≤ n0. We claim that
t ≤ 2 log∗N0 and that St ≤ S0 ·N0 · logN0. This will be enough, since then the algorithm
that computes φt from φ0 is the required reduction as it runs in time polynomial in the size
of the formula, and φ0 ↔ φt.
I Claim 3. It holds that t ≤ 2 log∗N0.

Proof. First, by conditions 1 and 2 on n0 we have
1. Ni = c · |Ni−1| < Ni−1, and
2. Ni+1 = c · |Ni| = c · |c · |Ni−1|| ≤ logNi−1
for every i ≥ 1 such that Ni−1 > n0. In particular, this means that the process terminates
and t exists. Unfolding the second inequality gives

Nt−1 ≤ log(b(t−1)/2c) N0.

However, by the choice of t we have Nt−1 > n0 ≥ 1, which means that b(t− 1)/2c < log∗N0
and therefore t ≤ 2 log∗N0. J

Given this bound on t, we bound St. We have

St = dt · S0 ·
t−1∏
j=0
|Nj | ≤ dt · S0 · |N0|t,

where in the inequality we used the fact that Ni ≤ Ni−1 for every i ≥ 1 such that Ni−1 > n0,
by condition 1 on n0. Now:

|N0|t ≤ 2(2 log∗ N0)(log |N0|) ≤ 2log N0 = N0.

In the first inequality we used the bound on t, and in the second we used the assumption
that N0 ≥ n0 and condition 3 on n0. Altogether, this gives

St ≤ d2 log∗ N0 · S0 ·N0 ≤ S0 ·N0 · logN0,

which concludes the proof. Again, we used the assumption that N0 ≥ n0 and condition 4 on
n0. J

STACS’13

54 Bounded-width QBF is PSPACE-complete

References
1 H. Chen. Quantified constraint satisfaction and bounded treewidth. Proceedings of the

16th European Conference on Artificial Intelligence (ECAI), pp. 161-165. IOS Press, 2004.
2 H. Chen and V. Dalmau. Decomposing Quantified Conjunctive (or Disjunctive) Formulas,

Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science (LICS),
pp. 205-214. IEEE Computer Society, 2012.

3 R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelligence,
vol. 38, pp. 353-366. Elsevier, 1989.

4 E. Freuder. Complexity of k-tree structured constraint satisfaction problems. Proceedings
of the 8th National Conference on Artificial Intelligence (AAAI), vol. 1, pp. 4-9. AAAI
Press, 1990.

5 M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic
revisited. Proceedings of the 17th IEEE Symposium on Logic in Computer Science (LICS),
pp. 215-224. IEEE Computer Society, 2002.

6 G. Gottlob, G. Greco, and F. Scarcello. The complexity of quantified constraint satisfac-
tion problems under structural restrictions. Proceedings of the 19th International Joint
Conference on Artificial Intelligence (IJCAI), pp. 150-155. Professional Book Center, 2005.

7 A. Meyer. Weak monadic second order theory of succesor is not elementary recursive. Logic
Colloquium. Lecture Notes in Mathematics, vol. 453, pp. 132-154. Springer-Verlag, 1975.

8 G. Pan and M.Y. Vardi. Fixed-parameter hierarchies inside PSPACE. Proceedings of the
21th IEEE Symposium on Logic in Computer Science (LICS), pp. 27-36. IEEE Computer
Society, 2006.

Model Counting for CNF Formulas of Bounded
Modular Treewidth∗

Daniel Paulusma1, Friedrich Slivovsky2, and Stefan Szeider3

1 School of Engineering and Computing Sciences, Durham University
Durham, DH1 3LE, UK daniel.paulusma@durham.ac.uk

2 Institute of Information Systems, Vienna University of Technology
A-1040 Vienna, Austria fslivovsky@gmail.com

3 Institute of Information Systems, Vienna University of Technology
A-1040 Vienna, Austria stefan@szeider.net

Abstract
The modular treewidth of a graph is its treewidth after the contraction of modules. Modular
treewidth properly generalizes treewidth and is itself properly generalized by clique-width. We
show that the number of satisfying assignments of a CNF formula whose incidence graph has
bounded modular treewidth can be computed in polynomial time. This provides new tractable
classes of formulas for which #SAT is polynomial. In particular, our result generalizes known
results for the treewidth of incidence graphs and is incomparable with known results for clique-
width (or rank-width) of signed incidence graphs. The contraction of modules is an effective
data reduction procedure. Our algorithm is the first one to harness this technique for #SAT.
The order of the polynomial time bound of our algorithm depends on the modular treewidth.
We show that this dependency cannot be avoided subject to an assumption from Parameterized
Complexity.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Satisfiability, Model Counting, Parameterized Complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.55

1 Introduction

Given a set {x1, . . . , xn} of variables, consider a propositional formula Fm,n defined as follows.
Fm,n consists of m distinct clauses each containing n literals over {x1, . . . , xn}, so that every
variable occurs in every clause. It is easy to see that Fm,n has exactly 2n −m satisfying
assignments. The vertices of the incidence graph of Fm,n (i.e., the bipartite graph whose
vertex classes consist of variables and clauses, and a variable is adjacent to the clauses it
occurs in) can be partitioned into two large modules (a module in a graph is a set S of
vertices such that for any vertex v /∈ S, every vertex in S is a neighbor of v or every vertex
in S is a non-neighbor of v). By contracting these modules, the incidence graph reduces to a
single edge.

Contraction of modules is an important preprocessing step for a wide range of combinator-
ial optimization problems [14]. The aim of this paper is to harness its power for propositional
model counting (#SAT), a well-studied problem with various applications in artifical intelli-
gence, such as probabilistic inference [1]. We consider CNF formulas whose incidence graph

∗ Slivovsky and Szeider’s research was supported by the ERC, grant reference 239962. Paulusma’s research
was supported by EPSRC, grant reference EP/G043434/1.

© Daniel Paulusma, Friedrich Slivovsky, and Stefan Szeider;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 55–66

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.55
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

56 Model Counting for CNF Formulas of Bounded Modular Treewidth

incidence β-hypertree width

incidence clique-width

modular incidence treewidthsigned incidence clique-width

incidence treewidth

primal treewidth

Figure 1 Hierarchy of structural parameters. An arc from parameter p to parameter q reads as
“q is bounded whenever p is bounded.” Bold type indicates parameters that are known to render
#SAT polynomial-time tractable when bounded.

has bounded treewidth after contraction of modules (we call this the modular incidence
treewidth). We will prove that #SAT is polynomial-time tractable for such formulas.

I Theorem 1. The number of satisfying assignments of a CNF formula F with modular
incidence treewidth at most k can be computed in time `O(k), where ` is the length of F .

This result characterizes new tractable classes for a notoriously hard problem. #SAT is
#P-complete in general [24] and remains #P-hard even for monotone 2CNF formulas and
Horn 2CNF formulas. It is NP-hard to approximate the number of models of a formula with
n variables is within 2n1−ε for ε > 0. Again, this hardness result still holds for monotone
2CNF formulas and Horn 2CNF formulas [22]. These syntactic restrictions do no lead to
tractability of #SAT.

By contrast, modular incidence treewidth is a so-called structural parameter. Structural
restrictions are applied in terms of parameters (invariants) of graphs or hypergraphs associated
with formulas. Figure 1 illustrates the relation of modular incidence treewidth to other
structural parameters. For a detailed discussion, see Section 1.1 below. Our algorithmic
result presented in Section 3 is achieved by dynamic programming on a tree decomposition
of the modular incidence graph (the graph obtained from the incidence graph of a formula
by contracting modules). Vertices in the modular incidence graph represent entire modules
(i.e., sets of variables or sets of clauses), whose size cannot be bounded in terms of the
modular incidence treewidth alone. Algorithms for #SAT on formulas of bounded treewidth
typically rely on data structures indexed by the subsets of variables and clauses associated
with a bag of the tree decomposition [23]. The number of subsets of variables and clauses
occurring in even a single module can be exponential in the length of the input formula, so
these algorithms do not yield tractability in our case. It is a significant challenge to encode
the information required to perform dynamic programming in space polynomially bounded
by the input size. Our main technical contribution is the use of projections in solving this
task. We define an equivalence relation on assignments based on their projections onto a
particular formula. This formula is determined by the boundary of a subgraph induced
by the decomposition. The resulting equivalence relation is sufficiently precise while its
rank can still be polynomially bounded. This allows our algorithm to run in polynomial
time. Note that the order of the polynomial time bound in Theorem 1 is a function in the
modular incidence treewidth. The hardness result presented in Section 4 shows that one
cannot replace this function by a constant (subject to an assumption from Parameterized
Complexity).

D. Paulusma, F. Slivovsky, and S. Szeider 57

1.1 Related structural parameters
For sake of comparing two structural parameters p and q of CNF formulas, we say p

dominates q if there is a function f such that p(F) ≤ f(q(F)) for all formulas F . Parameters p
and q are equivalent if p dominates q and q dominates p. We say p is more general than q
if p dominates q but not the other way around. Two parameters p and q are incomparable if
neither p dominates q nor q dominates p. The primal treewidth of a formula is the treewidth
of its primal graph. The primal graph has as vertices the variables of the given formula, and
two variables are joined by an edge if they occur together in a clause. It is well known that
#SAT on formulas of bounded primal treewidth is linear-time tractable [23]. A similar result
has been shown in terms of the branchwidth of formulas [1], a parameter that is equivalent to
primal treewidth. The incidence treewidth of a formula is the treewidth of its incidence graph.
This parameter is known to be more general than primal treewidth [13]. Again, #SAT on
formulas of bounded incidence treewidth is linear-time tractable [10, 23]. Clique-width is a
graph invariant based on graph grammars [4]. Signed clique-width is a variant of clique-width
for directed graphs [7]. The signed incidence clique-width of a formula corresponds to the
signed clique-width of its signed incidence graph, which is obtained from the incidence
graph by orientating edges so as to indicate positive or negative occurrences of variables. A
polynomial-time algorithm for #SAT on formulas of bounded signed incidence clique-width is
due to Fischer, Makowsky, and Ravve [10]. Clique-width is typically approximated by means
of another parameter known as rank-width [20]. A class of graphs has bounded rank-width if
and only if it has bounded clique-width. But while it is open whether, for fixed k ≥ 4, graphs
of clique-width at most k can be recognized in polynomial time [9], this is known to be the
case for graphs of rank-width at most k [15]. Ganian, Hlinený, and Obdrzálek proposed a
polynomial-time algorithm for #SAT for formulas of bounded signed incidence rank-width, a
parameter that is equivalent to signed incidence clique-width [12]. Signed incidence clique-
width and signed incidence rank-width are currently the most general structural parameters
based on width measures for which #SAT is known to be polynomial time-tractable. The
following two examples show that modular incidence treewidth is incomparable with these
parameters and more general than incidence treewidth. Due to space constraints, we will
only sketch the proofs and refer to known results wherever possible.

I Example 2 (Fischer, Makowsky, and Ravve [10]). Let x1, . . . , xm be distinct variables.
The formula ϕm is defined as the set of clauses Ci,j for 1 ≤ i, j ≤ m and i 6= j, where
Ci,j = ({x1, . . . , xm} \ {xi, xj})∪ {¬xi,¬xj}. The signed incidence clique-width of ϕm tends
to infinity with m. The (unsigned) incidence graph corresponds to the complete bipartite
graph Kn,m for n =

(
m
2
)
. As in our initial example, module contraction reduces Kn,m to a

single edge, so the modular incidence treewidth of ϕm is 1 for arbitrary m.

I Example 3. Let x1, . . . , xm, y1, . . . , ym be distinct variables. We let ψm consist of the
clauses Ci for 1 ≤ i ≤ m where Ci = {yi, x1, . . . , xm}, along with m singleton clauses
{x1}, . . . , {xm}. The incidence graph I(ψm) of ψm has no nontrivial modules (it is prime),
so the modular incidence treewidth and incidence treewidth of ψm coincide. Since I(ψm)
contains Km,m as a subgraph, its treewidth is at least m. By contrast, it can be shown that
the signed incidence clique width of ψm is at most 5 for arbitrary m.

I Proposition 4. Modular incidence treewidth and signed incidence clique-width are incom-
parable.

It is readily verified that modular incidence treewidth dominates incidence treewidth: by
contracting modules, we obtain an induced subgraph of the incidence graph, and the treewidth

STACS’13

58 Model Counting for CNF Formulas of Bounded Modular Treewidth

of a graph is bounded from below by the treewidth of any of its subgraphs. Also note that the
sequence of formulas from Example 2 has unbounded treewidth. By combining these facts,
we can conclude that modular incidence treewidth is more general than incidence treewidth.
Incidence clique-width is known to be more general than signed incidence clique-width [10].
It is also more general than modular incidence treewidth.

I Proposition 5. Incidence clique-width is more general than modular incidence treewidth.

Proof. It is well known that there is a function that provides an upper bound on the
clique-width of any graph in terms of its treewidth, and that clique-width is invariant
under contraction of modules [7]. It follows that incidence clique-width dominates modular
incidence treewidth. Because incidence clique-width dominates signed incidence clique-width,
the sequence of formulas described in Example 3 has bounded incidence clique-width. We
conclude that incidence clique-width is more general than modular incidence treewidth. J

The incidence β-hypertree width is parameter that is yet more general than incidence clique-
width [13]. At this time, it remains open whether #SAT is polynomial-time tractable on
formulas for which one of these parameters is bounded.

We note that tractability of #SAT for formulas of bounded primal treewidth, bounded
incidence treewidth, or bounded signed incidence clique-width can also be established using
algorithmic meta-theorems by Courcelle, Makowsky, and Rotics [5, 6]. The hardness result
presented in Section 4 implies that our Theorem 1 cannot be proved in this way.

2 Preliminaries

Let X and Y be sets and let f : X → Y be a function. We write f−1(y) = {x ∈ X | f(x) = y}.
For a subset X ′ ⊆ X, we let f |X′ denote the restriction of f to X ′. If Y = 2Z for some set Z
and f(x) = {z} for some z ∈ Z, then we may write f(x) = z instead. If g : X∗ → Y ∗ is a
function with g(x) = f(x) for all x ∈ X ∩X∗, then the function f ∪ g : X ∪X∗ → Y ∪ Y ∗ is
defined as (f ∪ g)(x) = f(x) if x ∈ X and (f ∪ g)(x) = g(x) if x ∈ X∗ \X.

We assume an infinite supply of propositional variables. A literal is a variable x or a
negated variable x; we put var(x) = var(x) = x; if y = x is a literal, then we write y = x.
For a set S of literals we put S = {x | x ∈ S }; S is tautological if S ∩ S 6= ∅. A clause is a
finite non-tautological set of literals. A finite set of clauses is a CNF formula (or formula, for
short). The length of a formula F is given by

∑
C∈F |C|. The union of two clauses C and D

denoted CD is the union of the literals of C and D. A variable x occurs in a clause C if
x ∈ C ∪C. We let var(C) denote the set of variables that occur in C. A variable x occurs in
a formula F if it occurs in one of its clauses, and we let var(F) =

⋃
C∈F var(C).

Let F be a formula. The incidence graph of F is the bipartite graph I(F) with vertex
set var(F) ∪ F and edge set {Cx | C ∈ F and x ∈ var(C) }. Two vertices are twins if they
have the same neighbors in I(F). The equivalence classes of the twin relation are called
modules. By the definition of I(F), twins either consist of two variables or of two clauses.
If the vertices of a module correspond to clauses, then we call the module a clause module;
otherwise we call it a variable module. By definition, all clauses of any clause module C
of F contain all variables of any variable module X of F if and only if one clause of C
contains at least one variable from X. This implies that the set of variable modules of C is a
subset of the set of variable modules of F . For a set of clause or variable modules S, we let
〈S〉 =

⋃
S∈S S denote the union of the elements of S. The modular incidence graph I∗(F) is

the bipartite graph obtained from I(F) after removing all but one vertices of each module. A
truth assignment is a mapping τ : X → { 0, 1 } defined on some set X ⊆ var(F) of variables.

D. Paulusma, F. Slivovsky, and S. Szeider 59

For x ∈ X, we define τ(x) = 1− τ(x). A truth assignment τ satisfies a clause C if C contains
some literal x with τ(x) = 1. If τ satisfies all clauses of F , then τ satisfies F ; in that case we
call F satisfiable. The satisfiability (SAT) problem is that of testing whether a given formula
is satisfiable. Propositional model counting (#SAT) is a generalization of SAT that asks for
the number of satisfying truth assignments.

Let X be a set of variables. For a clause C, we let CX = { ` ∈ C | var(`) ∈ X }.
For a formula F , we let FX = {CX | C ∈ F } \ {∅}. For a truth assignment τ , we let
clause(τ) = τ−1(0) ∪ τ−1(1). This leads to the following lemma.

I Lemma 6. Let τ : X → {0, 1} be a truth assignment, and let C be a clause. Then C is
not satisfied by τ if and only if CX = clause(τ |X∩var(C)).

We now define the notion of a projection, which plays an important role in our paper. As
an aside, Kaski, Koivisto, and Nederlof [16] recently showed that SAT can be solved in
polynomial time for formulas with a bounded number of projections. Let F be a formula
and X be a set of variables. We refer to the set of clauses of F not satisfied by a truth
assignment σ : X → {0, 1} as the (negative) projection of σ on F denoted F (σ). We denote
the set of all these projections by P(F,X) = {F (σ) | σ : X → {0, 1} }. If X ⊇ var(F),
then we may write PF instead, as P(F,X) = P(F,var(F)) holds in that case. Note that F
is satisfiable if and only if the empty projection ∅ belongs to PF , and that the number
of satisfying truth assignments of F is equal to |{σ : var(F) → { 0, 1} | F (σ) = ∅ }|. The
following lemma states a useful property of projections.

I Lemma 7. Let F be a formula and let X,Y be two sets of variables. Let σ : X → {0, 1} and
τ : Y → {0, 1} be two truth assignments that agree on X ∩ Y . Then F (σ ∪ τ) = F (σ)∩F (τ).

For a clause C and a formula F we let select(F,C) = {C ′ ∈ F | C ⊆ C ′ }. We will now
prove two useful lemmas. The first lemma is for clause modules C. It implies that every
truth assignment on var(〈C〉) either satisfies C or does not satisfy a unique clause of C. The
second lemma is similar but with respect to variable modules X.

I Lemma 8. Let C be a clause module of a formula F , and let τ be a truth assignment
defined on a set X of variables. Then C(τ) = select(C, clause(τ |X∩var(C))).

Proof. Let C ∈ C. Because C is a clause module, var(C) = var(C). Then, by using Lemma 6
and the definitions of clause and select, we find that C ∈ C(τ) if and only if C is not
satisfied by τ if and only if CX = clause(τ |X∩var(C)) = clause(τ |X∩var(C)) if and only if
C ∈ select(C, clause(τ |X∩var(C))). J

I Lemma 9. Let X be a variable module of a formula F , and let τ be a truth assignment
defined on a superset of X. If FX(τ) 6= ∅, then FX(τ) = clause(τ |X).

Proof. Let C ∈ FX . Because X is a variable module, var(C) = X. Lemma 6 tells us that C
is not satisfied by τ if and only if C = clause(τ |X∩var(C)) = clause(τ |X). J

We also need the following lemma.

I Lemma 10. Let X be a variable module of a formula F . Let E = {σ : X → {0, 1} | FX(σ)
= Π} for some Π ∈PFX . Then |E| = 1 if Π 6= ∅, and |E| = 2|X| − |FX | if Π = ∅.

Proof. First suppose that Π 6= ∅. By Lemma 9, the only truth assignment τ : X → {0, 1}
with FX(τ) = Π is the truth assignment τX with FX(τX) = clause(τX). Hence, |E| = 1 in
this case. Now suppose that Π = ∅. The number of truth assignments defined on X is equal

STACS’13

60 Model Counting for CNF Formulas of Bounded Modular Treewidth

to 2|X|. By Lemma 9, each such truth assignment τX does not satisfy one unique clause with
set of variables X, namely the clause clause(τX). Then there are exactly 2|X| − |FX | truth
assignments τX that do satisfy FX , i.e., that have FX(τX) = ∅ = Π. Hence, in this case,
|E| = 2|X| − |FX | . J

We finish this section with some terminology on tree decompositions. Let G = (VG, EG)
be a finite, undirected graph with neither self-loops nor multiple edges. A tree decomposition
of G is a triple (T, χ, r), where T = (VT , ET) is a tree rooted at r and χ : VT → 2VG is
a labeling of the vertices of T (called nodes) by subsets of VG (called bags) such that the
following conditions hold:

1.
⋃
t∈VT

χ(t) = VG,
2. for each edge uv ∈ EG, there is a node t ∈ VT with {u, v} ⊆ χ(t),
3. for each vertex x ∈ VG, the set of nodes t with x ∈ χ(t) forms a connected subtree of T .

The width of a tree decomposition (T, χ) is the size of a largest bag χ(t) minus 1. The
treewidth of G is the minimum width over all possible tree decompositions of G. A tree
decomposition (T, χ, r) is nice if T is a binary tree such that the nodes of T belong to one of
the following four types:

A. a leaf node t is a leaf of T ,
B. an introduce node t has one child t′ and χ(t) \ {v} = χ(t′) for some vertex v ∈ VG,
C. a forget node t has one child t′ and χ(t′) \ {v} = χ(t) for some vertex v ∈ VG,
D. a join node t has two children t1, t′2 and χ(t) = χ(t1) = χ(t2).

Kloks [17] showed that every tree decomposition of a graph G can be converted in linear
time to a nice tree decomposition, such that the size of the largest bag does not increase,
and the corresponding tree has at most 4|VG| nodes.

Let F be a formula. We call the treewidth of I∗(F) the modular incidence treewidth of F .
Let (T, χ, r) be a nice tree decomposition of I∗(F). For t ∈ VT , we write χc(t) and χv(t)
to denote the sets of clause modules and variable modules in χ(t), respectively. Note that
χ(t) = χc(t) ∪ χv(t). Moreover, we let Xt and Ft denote the set of variable modules and the
set of clause modules occurring in the subtree rooted at t, respectively. We write Xt = 〈Xt〉
and Ft = 〈Ft〉. Note that Xr = var(F) and Fr = F .

3 Solving #SAT for Formulas of Bounded Modular Treewidth

In this section, we present an algorithm for computing the number of satisfying truth
assignments of a formula F . This algorithm runs in polynomial time provided that the
modular incidence treewidth of F is bounded. We begin by explaining the main ideas.

Let F be a formula and X be a set of variables. We can partition truth assignments
defined on X into equivalence classes with respect to a relation ∼(F,X), which is defined
as follows. Let σ, τ : X → {0, 1} be two distinct truth assignments. Then σ ∼(F,X) τ if
and only if σ and τ satisfy exactly the same set of clauses of F , or equivalently, if and only
if F (σ) = F (τ). Due to the latter equivalence, we can speak about the projection of an
equivalence class of ∼(F,X) on F . Recall that the number of satisfying truth assignments
of F is equal to |{σ : var(F)→ { 0, 1} | F (σ) = ∅ }|, which is the size of the equivalence class
of ∼(F,var(F)) corresponding to the empty projection.

Now let (T, χ, r) be a nice tree decomposition of I∗(F). We will apply dynamic program-
ming over (T, χ, r). As is usual, we start in the leaves of the tree and, using the parent-child

D. Paulusma, F. Slivovsky, and S. Szeider 61

relation, move to nodes closer to the root, and we stop after having processed the root. For
each node t ∈ VT , we define the formula

F ∗t =
{
FX | X ∈ χv(t)

}
∪ Ft =

{
FX | X ∈ χv(t)

}
∪ 〈χc(t)〉 ∪ Ft \ 〈χc(t)〉,

and we compute the sizes of those equivalence classes [τ] of ∼(F∗t ,Xt) that consist of truth
assignments τ with (Ft \ 〈χc(t)〉)(τ) = ∅; we call such equivalence classes transferable. Below
we explain the reasons why we do this.

First, the union of the transferable equivalence classes of ∼(F∗r ,Xr) that consist of truth
assignments τ with 〈χc(r)〉(τ) = ∅ in addition to (Fr \ 〈χc(t)〉)(τ) = (F \ 〈χc(t)〉)(τ) = ∅
contains all satisfying truth assignments of F . Note that such truth assignments may
not satisfy some formula FX for some X ∈ χv(r), but in that case only formulas in
FX \ Fr = FX \ F are not satisfied, and these are irrelevant for our output.

Second, we do not have to compute the sizes of any non-transferable equivalence classes of
∼(F∗t ,Xt). The reason for this is that these equivalence classes only contain truth assignments τ
that cannot be extended to satisfying truth assignments of F . This can be seen as follows.
Let τ be a truth assignment from a non-transferable equivalence class of ∼(F∗t ,Xt). By
definition, Ft \ 〈χc(t)〉 contains a clause C not satisfied by τ . Then C must contain at least
one variable x ∈ Xr \Xt in order to be satisfied by an extension of τ . Let C be the clause
module that contains C. Let X be the variable module that contains x. Then XC ∈ I∗(F).
Hence, by condition 2 of the definition of a tree decomposition, there exists a node t′ ∈ VT
with {X, C} ⊆ χ(t′). Because x ∈ Xr \Xt, we find that X ∈ Xr \Xt. Because X ∈ χ(t′), this
means that t′ is not a node of the subtree of T rooted at t. Because C ∈ χ(t′), we then find
that C ∈ Fr \ Ft. However, as C ∈ Ft \ 〈χc(t)〉, we also have C ∈ Ft \ χc(t). This violates
condition 3 of the definition of a tree decomposition. Hence, non-transferable equivalence
classes may be discarded during our dynamic programming.

Third, we must keep track of how truth assignments that not yet satisfy all clauses in F
can be extended to truth assignments that do satisfy F in a later stage of the dynamic
programming. In particular, such truth assignments may not yet satisfy clauses C that
belong to clause modules in χc(t) or that contain variables from variable modules in χv(t);
in the latter case their restriction CX belongs to FX for some X ∈ χv(t). In order to do this
bookkeeping we must partition truth assignments that satisfy Ft \ 〈χc(t)〉 into equivalence
classes of truth assignments that satisfy exactly the same clauses of any FX with X ∈ χv(t)
and exactly the same clauses of any C ∈ χc(t). The reason why the partitioning does not
cause an exponential blow-up if the modular incidence treewidth of F is bounded is due to
two of our lemmas from Section 2. For a clause module C ∈ χc(t), the number of equivalence
classes of ∼(C,Xt) on is bounded by |C|+ 1 due to Lemma 8. For a variable module X ∈ χv(t),
the number of equivalence classes of ∼(FX ,Xt) is bounded by |F |+ 1 due to Lemma 9. Hence,
the total number of different transferable equivalence classes of ∼(F∗t ,Xt) is at most∏
C∈χc(t)

(|C|+ 1) ·
∏

X∈χv(t)

(|F |+ 1) ≤ (|F |+ 1)|χc(t)|+|χv(t)| = (|F |+ 1)|χ(t)| ≤ (|F |+ 1)k, (1)

where k denotes the treewidth of I∗(F), i.e., the modular incidence treewidth of F . We
observe that this bound is polynomial if k is fixed.

In order to describe the transferable equivalence classes, we use some terminology intro-
duced by Ganian, Hlinený and Obdrzálek [12], which we adjusted for our purposes. Let t ∈ T .
A shape for t is a pair of mappings (α, θ) where α has domain χv(t) with α(X) ∈PFX for
all X ∈ χv(t) and θ has domain χc(t) with θ(C) ∈P(C,Xt) for all C ∈ χc(t). An assignment
τ : Xt → {0, 1} is said to be of shape (α, θ) if it satisfies the following three conditions:

STACS’13

62 Model Counting for CNF Formulas of Bounded Modular Treewidth

(a) FX(τ) = α(X) for all X ∈ χv(t)
(b) C(τ) = θ(C) for all C ∈ χc(t)
(c) (Ft \ 〈χc(t)〉)(τ) = ∅.

In other words, the set of assignments τ that are of shape (α, θ) describes exactly one
transferable equivalence class of ∼(F∗t ,Xt). From now we denote this class by Nt(α, θ), and
we write nt(α, θ) = |Nt(α, θ)|. We denote the set of all shapes for t that correspond to a
transferable equivalence class by St. By (1), we have |St| ≤ (|F |+ 1)k for all nodes t ∈ VT .
Also note that any truth assignment τ : Xt → {0, 1} has a (unique) shape if and only if
(Ft \ 〈χc(t)〉)(τ) = ∅. We sometimes denote the shape of such a truth assignment τ by
(αtτ , θtτ), where αtτ (X) = FX(τ) for all X ∈ χv(t) and θtτ (C) = C(τ) for all C ∈ χc(t). Because
equivalence classes are nonempty by definition, not all pairs (α, θ) with α(X) ∈PFX for all
X ∈ χv(t) and θ(C) ∈ P(C,Xt) for all C ∈ χc(t) form a shape for a node t ∈ VT . We make
this more explicit in our next lemma (see condition (ii) in particular).

I Lemma 11. Let (α, θ) ∈ St with t ∈ VT , and let χ∗v(t) ⊆ χv(t). Moreover, let τ : Xt →
{0, 1} satisfy FX(τ) = α(X) for all X ∈ χ∗v(t). For all C ∈ χc(t), the following three
conditions hold:

(i) If C has no variable modules in χ∗v(t), then C(τ |〈χ∗v(t)〉) = C.
(ii) If C has some variable module X ∈ χ∗v(t) with α(X) = ∅, then C(τ |〈χ∗v(t)〉) = C(τ) = ∅,

and moreover, θ(C) = ∅ should τ ∈ Nt(α, θ).
(iii) If C has exactly p ≥ 1 variable modules X1, . . . , Xp in χ∗v(t) and α(Xi) 6= ∅ for

i = 1, . . . , p, then C(τ |〈χ∗v(t)〉) = select(C, α(X1) · · ·α(Xp)).

We will now give the exact details of our dynamic programming, i.e., how we compute all
sizes nt(α, θ) over all t ∈ VT in order to be able to compute the desired output

n =
∑

(α,θ)∈S ∗r

nr(α, θ),

where S ∗r consists of those (α, θ) ∈ Sr with θ(C) = ∅ for all C ∈ χc(r). Note that S ∗r = ∅ is
possible; in that case F is not satisfiable and n = 0.

Recall that the nodes of a tree of a nice tree decomposition can be partitioned into four
types of nodes. Our next four lemmas show how to compute the sizes nt(α, θ) for these four
types, i.e., for leaf nodes, introduce nodes, forget nodes and join nodes t, respectively.

I Lemma 12. Let t be a leaf node and (α, θ) ∈ St. Then nt(α, θ) =
∏
X∈α−1(∅)(2|X|−|FX |).

Let (α, θ) ∈ St for some t ∈ VT . We define a mapping g with domain χc(t) × χv(t) as
follows. When X ∈ χv(t) is not a variable module of a clause C ∈ χc(t), we let g(C, X) = C.
Otherwise, we let g(C, X) = ∅ if α(X) = ∅, and g(C, X) = select(C, α(X)) if α(X) 6= ∅.

I Lemma 13. Let t ∈ T be an introduce node with child t′, such that χ(t) \ {S} = χ(t′) for
a module S ∈ χ(t). Let (α, θ) ∈ St. Moreover, let α′ = α|χv(t′) and θ′ = θ|χc(t′).

(i) If S ∈ χv(t), then nt(α, θ) =

∑

θ∗∈T

nt′(α′, θ∗) if α(S) 6= ∅

(2|S| − |FS |)
∑

θ∗∈T

nt′(α′, θ∗) if α(S) = ∅,

where T = { θ∗ | (α′, θ∗) ∈ St′ and θ∗(C) ∩ g(C, S) = θ(C) for all C ∈ χc(t) }.

(ii) If S ∈ χc(t), then nt(α, θ) = nt′(α, θ′).

D. Paulusma, F. Slivovsky, and S. Szeider 63

I Lemma 14. Let t ∈ T be a forget node with child t′, such that χ(t) = χ(t′) \ {S} for a
module S ∈ χ(t′). Let (α, θ) ∈ St.

(i) If S ∈ χv(t′), then nt(α, θ) =
∑

Π∈PF S

nt′(α ∪ {(S,Π)}, θ).

(ii) If S ∈ χc(t′), then nt(α, θ) = nt′(α, θ ∪ {(S, ∅)}).

I Lemma 15. Let t ∈ T be a join node with children t1 and t2. Let (α, θ) ∈ St. Moreover,
let T1,2 = { (θ1, θ2) | (α, θ1) ∈ St1 , (α, θ2) ∈ St2 , and θ1(C)∩θ2(C) = θ(C) for all C ∈ χc(t) }.
Then the following equality holds:

nt(α, θ) = 1∏
X∈α−1(∅)

(2|X| − |FX |)
∑

(θ1,θ2)∈T1,2

nt1(α, θ1) · nt2(α, θ2).

We are now ready to present the proof of our main result, which we restate below.

Theorem 1. The number of satisfying assignments of a CNF formula F with modular
incidence treewidth at most k can be computed in time `O(k), where ` is the length of F .

Proof. Let F be a formula with modular incidence treewidth at most k. We first construct
I(F) and perform module contraction to obtain I∗(F). Clearly, this can be done in time
O(`c) for some constant c independent of F . By using Bodlaender’s algorithm [2] we obtain in
linear time a tree decomposition of I∗(F) of width at most k. Recall that Kloks [17] showed
that such a tree decomposition can be converted in linear time to a nice tree decomposition
(T, χ, r) of width at most k, and at most 4|VI∗(F)| ≤ 4` nodes. Also recall that the desired
output is

n =
∑

(α,θ)∈S ∗r

nr(α, θ),

where S ∗r consists of those (α, θ) ∈ Sr with θ(C) = ∅ for all C ∈ χc(r). In order to compute n,
we compute the sizes nt(α, θ) for all t ∈ VT . Here we follow a bottom-up approach starting
at the leaves. For each node t ∈ VT , we use one of the Lemmas 12–15 depending on the type
of t, i.e., whether t is a leaf, introduce, forget or join node, respectively. The correctness of
our algorithm follows from these lemmas and some extra arguments: when any new clause
module C is introduced in a node t (that is either a leaf or an introduce node) we find that
θ(C) = C(τ) = C(τ |〈χv(t)〉) should τ be a truth assignment in Nt(α, θ) for some pair (α, θ),
and then Lemma 11 tells us that θ(C) must be fixed to some set of clauses. Hence, if θ(C) is
not equal to this set of clauses, then we must discard the pair (α, θ).

If t is a leaf node, then we first determine which pairs (α, θ) may belong to St. We do
this by using Lemma 11, where we choose χ∗v(t) = χv(t) = Xt; the latter equality follows
from the fact that t is a leaf. We then find that there can only exist a truth assignment
τ ∈ Nt(α, θ) if the following three conditions hold for all C ∈ χc(t).

(i) θ(C) = C(τ) = C(τ |〈χv(t)〉) = C if C has no variable modules in χv(t).
(ii) θ(C) = ∅ if C has a variable module in χc(t) with α(X) = ∅.
(iii) θ(C) = C(τ) = C(τ |〈χv(t)〉) = select(C, α(X1) · · ·α(Xp)) If C has exactly p ≥ 1 variable

modules X1, . . . , Xp in χv(t) and α(Xi) 6= ∅ for i = 1, . . . , p.

Note that checking these three conditions for all C ∈ χc(t) takes linear time for a given pair
(α, θ). If these conditions are violated for some C ∈ χc(t), then we discard the pair (α, θ).
Otherwise, i.e., if these conditions are satisfied for all C ∈ χc(t), then we apply Lemma 12. If
we find that nt(α, θ) = 0, then (α, θ) /∈ St (as equivalence classes are nonempty by definition)

STACS’13

64 Model Counting for CNF Formulas of Bounded Modular Treewidth

and we discard this pair. If t is a introduce node that introduces a variable module, then
we apply Lemma 13 (i). Here, we find that a pair (α, θ) ∈ St only if nt(α, θ) > 0. If t is a
introduce node that introduces a clause module C, then we we first determine which pairs (α, θ)
may belong to St. We do this by using Lemma 11, where we choose χ∗v(t) = χv(t). Because C
is introduced by t, we find that C /∈ Ft \ χc(t). Hence, by definition of a tree decomposition,
C contains no variable modules from Xt \χv(t). This means that C(τ) = C(τ |〈χv(t)〉) should τ
be a truth assignment in Nt(α, θ). Lemma 11 tells us that this can only happen if the above
conditions (i)–(iii) hold. Note that checking these three conditions for C takes linear time
for a given pair (α, θ). If these conditions are satisfied for C, then we apply Lemma 13 (ii).
If we find that nt(α, θ) = 0, then (α, θ) /∈ St and we discard this pair. If t is a forget node
that forgets a variable module or a clause module, then we apply Lemmas 14 (i) and (ii),
respectively. If t is a join node, then we apply Lemma 15. In all these three cases, we find
that a pair (α, θ) ∈ St only if nt(α, θ) > 0.

As soon as we are of distance two from a node t, we can forget the sizes nt(α, θ). Recall
that |St| ≤ (|F | + 1)k for all nodes t ∈ VT due to (1). This bound on the number of
transferable equivalence classes for a node t has the following two consequences. First,
as can be seen from the equations in Lemmas 12–15, it means that it takes at most
p(`)(|F |+1)k(|F |+1)k = (|F |+1)2k time to compute the size nt(α, θ) of an equivalence class
Nt(α, θ), where p(`) is a polynomial that only depends on `, which also includes the additional
time necessary to verify whether a pair (α, θ) may belong to St in case of Lemma 12 and
Lemma 13 (ii). Second, it means that for each node we must compute and verify at most
(|F |+ 1)k sizes nt(α, θ). As the total number of nodes is at most 4`, we find that the total
running time is at most 4` · (|F |+ 1)k · p(`) · (|F |+ 1)2k = `O(k). J

4 A (Parameterized) Hardness Result

The polynomial-time algorithm developed in the proof of Theorem 1 runs in time `O(k) for
formulas of length ` and modular incidence treewidth at most k. That is, the order of the
polynomial depends on k. The question arises whether this dependency is necessary: Is there
a better algorithm with a running time of, say, O(`c) where c is a constant independent of
k? We give a negative answer subject to the complexity theoretic assumption W[1] 6= FPT
from the area of Parameterized Complexity.

We briefly review basic concepts of Parameterized Complexity; for more information
we refer to other sources [8, 11, 18]. An instance of a parameterized problem is a pair
(x, k), where x is the main part and k (usually a non-negative integer) is the parameter. A
parameterized problem is fixed-parameter tractable if it can be solved in time O(f(k)|x|c)
where f is a computable function and c is a constant independent of k. FPT denotes the
class of all fixed-parameter tractable decision problems. Parameterized Complexity offers a
completeness theory similar to the theory of NP-completeness for non-parameterized problems.
A parameterized problem P fpt-reduces to a parameterized problem Q if we can transform
an instance (x, k) of P into an instance (x′, k′) of Q with k′ ≤ g(k) in time O(f(k)|x|c) (f, g
are arbitrary computable functions, c is a constant) such that (x, k) is a yes-instance of P if
and only if (x′, k′) is a yes-instance of Q. A parameterized complexity class is the class of
parameterized decision problems fpt-reducible to a certain parameterized decision problem.
Of particular interest is the class W[1] which is considered as the parameterized analog to NP.
For example, the Clique problem (given a graph G and an integer k, decide whether G
contains a k-clique a complete subgraph on k vertices), parameterized by k, is well-known to
be W[1]-complete. It is believed that FPT 6= W[1], and there is strong theoretical evidence

D. Paulusma, F. Slivovsky, and S. Szeider 65

that supports this belief; for example, FPT = W[1] implies that the Exponential Time
Hypothesis fails [11].

Ordyniak, Paulusma, and Szeider [19] showed that satisfiability is W[1]-hard when
parameterized by the incidence β-hypertree width (see Section 1.1), using an fpt-reduction
from the following problem, which is W[1]-complete [21] (a k-partite graph is balanced
if its k partition classes are of the same size): The input is a balanced k-partite graph
G = (V1, . . . , Vk, E), the parameter is k. The question is whether G contains a k-clique.

Let G = (V1, . . . , Vk) be a balanced k-partite graph for k ≥ 2. The reduction [19]
maps the instance (G, k) to an instance (F, k) such that k is an upper bound on the β-
hypertree width of I(F). By taking a closer look at the incidence graph I(F), we will show
that the modular incidence treewidth of F can also be bounded by a function of k. Let
Vi = {vi1, . . . , vin}. The incidence graph I(F) of F is structured as follows. One vertex
class (corresponding to variables of F) contains the vertices of G plus new vertices zij for
1 ≤ i ≤ k and 1 ≤ j ≤ n− 1. The other vertex class (corresponding to clauses of F) consists
of vertices Cu,v for u ∈ Vi, v ∈ Vj (i 6= j) and uv /∈ E(G) such that NI(F)(Cu,v) = Vi ∪ Vj .
Moreover, for 1 ≤ i ≤ k, it contains the vertices Di

1, . . . , D
i
n with NI(F)(Di

1) = {zi1, vi1, vi2} ,
NI(F)(Di

j) = {zij , zij−1, v
i
j+1} for 2 ≤ j ≤ n− 1 and NI(F)(Di

n) = {zin−1}.
The set of vertices Cu,v can be partitioned into modules C1, . . . , Cm, where m ≤

(
k
2
)
. By

deleting these modules, we obtain a graph I ′(F) that consists of k connected components
corresponding to the subgraphs of I(F) induced by {vi1, . . . , vin, zi1, . . . , zin−1, D

i
1, . . . , D

i
n}

for 1 ≤ i ≤ k. Note that these component are trees, so the treewidth of I ′(F) is 1. Thus
the graph obtained from I ′(F) by contracting modules has treewidth 1. We can turn the
corresponding tree decomposition into a tree decomposition of I∗(F) by simply adding the
set of clause modules {C1, . . . , Cm} to each bag. So the modular incidence treewidth of F is
at most m+ 1 ≤

(
k
2
)

+ 1. This proves the following result.

I Theorem 16. The Satisfiability problem is W[1]-hard, when parameterized by an upper
bound on the modular incidence treewidth of the input formula.

That is, already deciding whether #(F) > 0 for a formula F of length ` and bounded modular
incidence treewidth cannot be done in time O(`c) for constant c unless FPT = W[1] (where
#(F) denotes the number of satisfying truth assignments of F). In particular, this implies a
negative answer to the question raised at the beginning of this section.

5 Conclusion

In this paper, we proved that #SAT becomes polynomial-time tractable on formulas of
bounded modular incidence treewidth. Modular incidence treewidth combines treewidth
and module contraction, a powerful preprocessing technique widely used in combinatorial
optimization. The resulting parameter is incomparable with the most general structural
parameters for which #SAT is known to be tractable.

With this result, we approach the frontier of tractability from a new direction. On the
other side, one can find incidence β-hypertree width and incidence clique-width. It remains
open whether #SAT becomes tractable when these parameters are bounded. We think that
this work is a significant step towards proving tractability of #SAT on formulas of bounded
clique-width. Graphs of bounded clique-width that do not contain large bipartite subgraphs
are known to have bounded treewidth [3]. This gives us reason to believe that our techniques
carry over to the case of bounded incidence clique-width.

STACS’13

66 Model Counting for CNF Formulas of Bounded Modular Treewidth

References
1 F. Bacchus, S. Dalmao, and T. Pitassi. Algorithms and complexity results for #SAT yand

Bayesian inference. In FOCS’03, pages 340–351, 2003.
2 H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small

treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.
3 B. Courcelle. The monadic second-order logic of graphs XIV: Uniformly sparse graphs and

edge set quantifications. Theoretical Computer Science, 299(1–3):1 – 36, 2003.
4 B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hypergraph grammars. J.

of Computer and System Sciences, 46(2):218–270, 1993.
5 B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems

on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
6 B. Courcelle, J. A. Makowsky, and U. Rotics. On the fixed parameter complexity of graph

enumeration problems definable in monadic second-order logic. Discr. Appl. Math., 108(1-
2):23–52, 2001.

7 B. Courcelle and S. Olariu. Upper bounds to the clique-width of graphs. Discr. Appl.
Math., 101(1-3):77–114, 2000.

8 R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer Verlag, 1999.
9 M. R. Fellows, F. A. Rosamond, U. Rotics, and S. Szeider. Clique-width is NP-complete.

SIAM J. Discrete Math., 23(2):909–939, 2009.
10 E. Fischer, J. A. Makowsky, and E. R. Ravve. Counting truth assignments of formulas of

bounded tree-width or clique-width. Discr. Appl. Math., 156(4):511–529, 2008.
11 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer Verlag, 2006.
12 R. Ganian, P. Hlinený, and J. Obdrzálek. Better algorithms for satisfiability problems for

formulas of bounded rank-width. In K. Lodaya and M. Mahajan, editors, FSTTCS 2010,
volume 8 of LIPIcs, pages 73–83. 2010.

13 G. Gottlob and R. Pichler. Hypergraphs in model checking: Acyclicity and hypertree-width
versus clique-width. In ICALP 2001, volume 2076 of Lecture Notes in Computer Science,
pages 708–719, 2001.

14 M. Habib and C. Paul. A survey of the algorithmic aspects of modular decomposition.
Computer Science Review, 4(1):41–59, 2010.

15 P. Hlinený and S. il Oum. Finding branch-decompositions and rank-decompositions. SIAM
J. Comput., 38(3):1012–1032, 2008.

16 P. Kaski, M. Koivisto, and J. Nederlof. Homomorphic hashing for sparse coefficient extrac-
tion. In IPEC 2012, 2012.

17 T. Kloks. Treewidth: Computations and Approximations. Springer Verlag, 1994.
18 R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
19 S. Ordyniak, D. Paulusma, and S. Szeider. Satisfiability of acyclic and almost acyclic CNF

formulas. In FSTTCS 2010, volume 8 of LIPIcs, pages 84–95. 2010.
20 S. Oum and P. Seymour. Approximating clique-width and branch-width. J. Combin.

Theory Ser. B, 96(4):514–528, 2006.
21 K. Pietrzak. On the parameterized complexity of the fixed alphabet shortest common

supersequence and longest common subsequence problems. J. of Computer and System
Sciences, 67(4):757–771, 2003.

22 D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1-2):273–302,
1996.

23 M. Samer and S. Szeider. Algorithms for propositional model counting. J. of Discrete
Algorithms, vol. 8, no. 1, pp. 50–64, 2010.

24 L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8(2):189–201, 1979.

Backdoors to q-Horn
Serge Gaspers1, Sebastian Ordyniak2, M. S. Ramanujan3, Saket
Saurabh3, and Stefan Szeider4

1 The University of New South Wales and National ICT Australia
sergeg@cse.unsw.edu.au

2 Masaryk University, Brno
sordyniak@gmail.com

3 The Institute of Mathematical Sciences, Chennai
{msramanujan | saket}@imsc.res.in

4 Institute of Information Systems, Vienna University of Technology
stefan@szeider.net

Abstract
The class q-Horn, introduced by Boros, Crama and Hammer in 1990, is one of the largest known
classes of propositional CNF formulas for which satisfiability can be decided in polynomial time.
This class properly contains the fundamental classes of Horn and Krom formulas as well as the
class of renamable (or disguised) Horn formulas. In this paper we extend this class so that its
favorable algorithmic properties can be made accessible to formulas that are outside but “close”
to this class. We show that deciding satisfiability is fixed-parameter tractable parameterized by
the distance of the given formula from q-Horn. The distance is measured by the smallest number
of variables that we need to delete from the formula in order to get a q-Horn formula, i.e., the size
of a smallest deletion backdoor set into the class q-Horn. This result generalizes known fixed-
parameter tractability results for satisfiability decision with respect to the parameters distance
from Horn, Krom, and renamable Horn.

1998 ACM Subject Classification G.2.1, F.2.2

Keywords and phrases Algorithms and data structures. Backdoor sets. Satisfiability. Fixed
Parameter Tractability.

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.67

1 Introduction

The satisfiability problem (SAT) is a well-known fundamental problem in Computer Sci-
ence [3]. Many hard combinatorial problems including problems from the domains of hard-
ware and software verification, Artificial Intelligence, planning and scheduling can be en-
coded as SAT instances [2, 4, 15, 17, 23]. However, the problem is known to be NP-hard
and thus we cannot hope to solve it polynomial time [7]. In spite of this, over the last
two decades, SAT-solvers have become quite successful in solving formulas with hundreds
of thousands of variables that encode problems arising from various application areas (see,
e.g., [14]), but theoretical performance guarantees are far from explaining this empirically
observed efficiency. In fact, there is an enormous gap between theory and practice.

The discrepancy between theory and practice can be potentially explained by the pres-
ence of a certain “hidden structure” in real-world problem instances. One such “hidden
structure” in real-world instances of SAT is the presence of small backdoor sets [24]. There
are three variants of backdoor sets with respect to a particular base class C of polynomial-
time decidable CNF formulas: strong C-backdoor sets, where for each truth assignment to

© Gaspers, Ordyniak, Ramanujan, Saurabh, and Szeider;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 67–79

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.67
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

68 Backdoors to q-Horn

the backdoor variables, the reduced formula belongs to C; deletion C-backdoor sets, where
deleting all backdoor variables and their negations from the formula moves the formula into
the base class C; and weak backdoor sets where, for at least one truth assignment to the
backdoor variables, the reduced formula belongs to C and is satisfiable. Given a backdoor
set of a formula with respect to a particular tractable base class C, the satisfiability of the
formula can be decided by guessing an assignment to the variables in the backdoor set and
deciding the satisfiability of the reduced formula, which is guaranteed to be in C, using a
sub-solver for C. An equivalent view of this is to consider the size of the backdoor set to
be the “distance” of the formula from the class C. The objective is to extend the favorable
algorithmic properties of the class C to formulas which are “close” to this class. Ideally, we
would want the class C to be as large as possible.

In a 1990 paper [5], Boros, Crama and Hammer introduced an interesting class of CNF
formulas, later called q-Horn [6], with favorable algorithmic properties: both recognition as
well as satisfiability decision of q-Horn formulas can be carried out in linear-time [5, 6]. This
class q-Horn properly contains the fundamental classes of Horn and Krom formulas [22], and
the class of renamable (or disguised) Horn formulas [16, 1]:

Horn (renamableHorn (q-Horn) Krom.

The fact that this class is so large serves as an additional motivation for choosing it as our
base class of interest. In this paper, we study the problem of finding small backdoor sets
with respect to the class of q-Horn formulas and obtain algorithmic as well as hardness
results.

1.1 Contribution
The main contribution of this paper is an algorithm that, given a CNF formula F of length
` with n variables and an integer k ≥ 0, runs in time O(6kk`n), and either returns a deletion
q-Horn-backdoor set for F of size at most k2 + k, or concludes correctly that no such set of
size at most k exists. As a consequence, we obtain that SAT is fixed-parameter tractable with
the size of the smallest deletion q-Horn-backdoor set as the parameter, as we can use this
algorithm to reduce the satisfiability problem of a CNF formula F of distance k from being
q-Horn to testing the satsfiability of 2O(k2)-many q-Horn formulas. Our result simultaneously
generalizes the known fixed-parameter tractability results for SAT parameterized by the
deletion distance from the class of renamable Horn formulas [20] and from the class of Krom
formulas [19].

At the highest level, our algorithm works by finding a bounded number of variables
whose deletion results in an instance with an optimal solution strictly smaller than that
of the original instance. By repeatedly computing such a set and deleting it, we obtain
the approximate solution. The main technical part of the paper is the algorithm to com-
pute the bounded set of variables with the required properties. This algorithm relies on a
characterization of q-Horn formulas in terms of their quadratic cover by Boros, Hammer,
and Sun [6]. We use this characterization to model the problem of finding a small deletion
q-Horn-backdoor set as a problem of hitting certain types of paths in an auxiliary digraph
related to the formula. Using this characterization, we show that if we are guaranteed that
an optimal solution hits all paths between a carefully chosen pair of vertices in this digraph,
then we can compute in polynomial time a set of variables whose size is bounded by some
f(k) such that (a) there is a minimal (though not necessarily optimal) solution containing
these variables and (b) deletion of these variables results in a formula whose solution is
strictly smaller than the solution for the formula we started with. A standout feature of

S. Gaspers, S. Ordyniak, M. S. Ramanujan, S. Saurabh, and S. Szeider 69

our algorithm is that at its core, it reduces to computing flows in a directed graph whose
size is linear in the input size. As a result, our algorithm is quite efficient not only with
respect to the dependence of the running time on the parameter, but also with respect to
the dependence on the input size, along with having only a small hidden constant factor in
the asymptotic running time. Finally, towards the end of the paper we also provide param-
eterized complexity results regarding the detection of weak and strong backdoor sets with
respect to the class q-Horn.

1.2 Related Work
The parameterized complexity of finding small backdoor sets was initiated by Nishimura
et al. [19] who showed that for the base classes of Horn formulas and Krom formulas, the
detection of strong backdoor sets is fixed-parameter tractable. Their algorithms exploit the
fact that for these two base classes, strong and deletion backdoor sets coincide, and that
deletion backdoor sets with respect to Horn and Krom can be characterized in terms of
vertex covers and hitting sets of certain graphs and 3-uniform hypergraphs associated with
the input formula, respectively. For base classes other than Horn and Krom, strong backdoor
sets can be much smaller than deletion backdoor sets, and their detection is more difficult.
In particular, for the base classes of renamable Horn and q-Horn, there are formulas that
have a strong backdoor set of size 1 but require an arbitrarily large deletion backdoor set.
In fact, Razgon and O’Sullivan [20] showed that the detection of deletion backdoor sets with
respect to the base class renamable Horn is fixed-parameter tractable although the detection
of strong backdoor sets is W[2]-hard [13]. For more recent results, the reader is referred to
a survey on the parameterized complexity of backdoor sets [13].

2 Preliminaries

2.1 Formulas
We assume an infinite supply of propositional variables. A literal is a variable x or a negated
variable x̄; if y = x or y = x̄ is a literal for some variable x, then we write ȳ to denote x̄ or x,
respectively. For a set S of literals we put S̄ = { x̄ : x ∈ S }; S is consistent if S ∩ S̄ = ∅. A
clause is a finite consistent set of literals; we consider a clause as a disjunction of its literals.
A finite set of clauses is a CNF formula (or formula, for short); we consider a formula to
be the conjunction of its clauses. A formula is Horn if each of its clauses contains at most
one positive literal, a formula is Krom (or 2CNF, or quadratic) if each clause contains at
most two literals. A variable x occurs in a clause C if x ∈ C ∪ C̄; var(C) denotes the set of
variables which occur in C. For a set X of variables, lit(X) denotes the set of literals of the
variables in X, that is, lit(X) = X ∪ X̄ and for a set L of literals, var(L) denotes the set
of variables whose literals are in L, that is, var(L) = {x : x ∈ L or x̄ ∈ L }. A variable x
occurs in a formula F if it occurs in one of its clauses, and we let var(F) =

⋃
C∈F var(C) and

lit(F) = var(F) ∪ var(F). The length of a CNF formula F , denoted by ‖F‖, is defined as∑
C∈F |C|. If F is a formula and X a set of variables, then we denote by F −X the formula

obtained from F after removing all literals in lit(X) from the clauses in F . If X = {x} we
simply write F − x instead of F − {x}.

Let F be a formula and X ⊆ var(F). A truth assignment is a mapping τ : X → { 0, 1 }
defined on some set X of variables; we write var(τ) = X. For x ∈ var(τ) we define τ(x̄) =
1 − τ(x). For a truth assignment τ and a formula F , we define F [τ] = {C \ τ−1(0) : C ∈
F, C ∩ τ−1(1) = ∅ }, i.e., F [τ] denotes the result of instantiating variables according to τ

STACS’13

70 Backdoors to q-Horn

and applying the usual simplifications, i.e., removing clauses that are satisfied by τ and
removing unsatisfied literals from clauses. A truth assignment τ satisfies a clause C if C
contains some literal x with τ(x) = 1; τ satisfies a formula F if it satisfies all clauses of F . A
formula is satisfiable if it is satisfied by some truth assignment; otherwise it is unsatisfiable.

The Satisfiability (SAT) problem asks whether a given CNF formula is satisfiable.

2.2 Parameterized Complexity

An instance of a parameterized problem is a pair (I, k) where I is the main part and k

is the parameter ; the latter is usually a non-negative integer. A parameterized problem is
fixed-parameter tractable if there exist a computable function f and a constant c such that
instances (I, k) can be solved in time O(f(k)‖I‖c) where ‖I‖ denotes the size of I. FPT is
the class of all fixed-parameter tractable decision problems and algorithms which run in the
time specified above are called FPT algorithms.

An FPT-reduction is a many-one reduction where the parameter for one problem maps
into the parameter for the other. More specifically, given two parameterized decision prob-
lems L and L′, problem L reduces to problem L′ if there is a mapping R from instances of L
to instances of L′ such that (i) (I, k) is a yes-instance of L if and only if (I ′, k′) = R(I, k) is
a yes-instance of L′, (ii) k′ ≤ g(k) for a computable function g, and (iii) R can be computed
in time O(f(k)‖I‖c) where f is a computable function and c is a constant.

The Weft Hierarchy consists of parameterized complexity classes W[1] ⊆ W[2] ⊆ · · ·
which are defined as the closure of certain parameterized problems under FPT-reductions
(see [9, 11] for definitions). There is strong theoretical evidence that parameterized problems
that are hard for classes W[i] are not fixed-parameter tractable. For example FPT = W[1]
implies that the Exponential Time Hypothesis (ETH) fails; that is, FPT = W[1] implies the
existence of a 2o(n) algorithm for n-variable 3SAT [11].

An FPT-approximation algorithm with ratio ρ for a minimization problem P is an FPT
algorithm that, given an instance x of P and a positive integer k, either determines that there
is no solution of size at most k or computes a solution of size at most kρ(k) (see, e.g., [10]).
The definition can be adapted to maximization problems. Note that the approximation
ratio ρ is a function of k and not the input size: intuitively, if k is small, then kρ(k) can
be still considered small. We say that a problem is FPT-approximable if it has an FPT-
approximation algorithm for some function ρ.

2.3 Backdoors

Here, we introduce the basic terminology for backdoors and the class of q-Horn formulas.
For further information on backdoors and other tractable base classes of Satisfiability we
refer the reader to [13].

Backdoors are defined with respect to a fixed class C of CNF formulas, the base class
(or target class, or more figuratively, island of tractability). We say a class C of formulas is
clause-induced if it is closed under subsets, i.e., if F ∈ C implies F ′ ∈ C for each F ′ ⊆ F .

A strong C-backdoor set of a CNF formula F is a set B of variables such that F [τ] ∈ C
for each assignment τ : B → {0, 1}. A weak C-backdoor set of F is a set B of variables
such that F [τ] is satisfiable and F [τ] ∈ C holds for some assignment τ : B → {0, 1}. A
deletion C-backdoor set of F is a set B of variables such that F − B ∈ C. Backdoor sets
where independently introduced by Crama et al. [8] and by Williams et al. [24], the latter
authors coined the term “backdoor”.

S. Gaspers, S. Ordyniak, M. S. Ramanujan, S. Saurabh, and S. Szeider 71

If we know a strong C-backdoor set of F of size k, we can reduce the satisfiability of F to
the satisfiability of 2k formulas in C. Thus SAT becomes fixed-parameter tractable with k
as the parameter. If we know a weak C-backdoor set of F , then F is clearly satisfiable,
and we can verify it by trying for each τ ∈ 2k whether F [τ] is in C and satisfiable. If C
is clause-induced, every deletion C-backdoor set of F is a strong C-backdoor set of F . For
several base classes, deletion backdoor sets are of interest because they are easier to detect
than strong backdoor sets. The challenging problem is to find a strong, weak, or deletion
C-backdoor set of size at most k if it exists. For each class C of CNF formulas, the various
backdoor detection problems are defined as follows.

Deletion C-Backdoor Set Detection Parameter: k

Input: A CNF formula F and a positive integer k
Question: Does F have a deletion C-backdoor set of size at most k?

2.4 q-Horn Formulas
In this paper we are mainly interested in the class of q-Horn formulas [5, 6]. A CNF formula
F is in this class if there is a certifying function β : var(F) ∪ var(F) → {0, 1

2 , 1} with
β(x) = 1− β(x̄) for every x ∈ var(F) such that

∑
l∈C β(l) ≤ 1 for every clause C of F .

In the following sense, strong q-Horn-backdoor sets are more general than deletion
q-Horn-backdoor sets: For every positive integer n there is a formula Fn such that Fn

has a strong q-Horn-backdoor set of size 1 but every deletion q-Horn-backdoor set of F has
size at least n. To see this, take for instance F =

⋃
1≤i≤n{{xi, yi, zi, a}, {x̄i, ȳi, z̄i, ā}}. Evi-

dently, {a} is a strong q-Horn-backdoor set of F . However, every deletion q-Horn-backdoor
set of F must contain at least one variable xi, yi, or zi for every 1 ≤ i ≤ n.

3 FPT-approximation for Deletion q-Horn Backdoor Set
Detection

In this section we prove our main result:

I Theorem 1. There is an algorithm that, given an instance (F, k) of Deletion q-Horn
Backdoor Set Detection, runs in time O(6kk`n) and either correctly concludes that F
has no deletion q-Horn-backdoor set of size at most k or returns a deletion q-Horn-backdoor
set of F of size at most k2 + k, where ` is the length of F and n is the number of variables
in F .

3.1 Quadratic covers, implication graphs and separators
In this subsection we give some definitions regarding quadratic covers, implication graphs
and separators in implication graphs, which will be required for the description of our
algorithm. The following definition of the quadratic cover of a CNF formula was used Boros
et al. [6] to give a linear time algorithm to recognize q-Horn formulas.

I Definition 2. Given a CNF formula F , the quadratic cover of F , is a Krom formula
denoted by F2 and is defined as follows. Let x1, . . . , xn be the variables of F . For every
clause C, we have |C| − 1 new variables yC

1 , . . . , y
C
|C|−1. We order the literals in each clause

according to their variables, that is, a literal of xi will occur before a literal of xj if i < j.
Let lC1 , . . . , lC|C| be the literals of the clause C in this order. The quadratic cover is defined
as

STACS’13

72 Backdoors to q-Horn

F2 =
⋃

C∈F

⋃
1≤i≤|C|−1{{lCi , yC

i }, {ȳC
i , l

C
i+1}} ∪

⋃
C∈F

⋃
1≤i≤|C|−2{{ȳC

i , y
C
i+1}}.

I Definition 3. Given a CNF formula F , the implication graph of F2 is denoted by
D(F2) and defined as follows. The vertex set of the graph is the set of literals of F2 and
for every clause {l1, l2} in F2, we have arcs (l̄1, l2) and (l̄2, l1). We refer to the vertices of
the implication graph as literals since there is a one to one correspondence between the two.
Given a set X ⊆ var(F) of variables, we define the graph D(F2)−X as the graph obtained
from D(F2) by deleting lit(X).

The following observations are direct consequences of the definition of an implication graph.
I Observation 1. Let F be a CNF formula of length `.
(a) If there is a path from l1 to l2 in D(F2), then there is also a path from l̄2 to l̄1 in D(F2).
(b) The number of arcs in D(F2) is O(`).
(c) Let C = {l1, . . . , lr} be a clause of F . Then, for any 1 ≤ i < j ≤ r, D(F2) contains a
path from l̄i to lj and from l̄j to li whose internal vertices are all disjoint from lit(F).
(d) Let X ⊆ var(F) and F ′ = F − X. Then, for any literal l ∈ lit(F) \ lit(X), there is a
path from l to l̄ in D(F ′2) if and only if there is a path from l to l̄ in D(F2)−X.

I Definition 4. Given a CNF formula F and a set L of literals of F , we denote by N+
F (L)

the set of literals in lit(F) \ L which can be reached from L in D(F2) via a path whose
internal vertices are disjoint from lit(F).

I Definition 5. ([6]) Given a CNF formula F , define a canonical function β̂ : lit(F) →
{0, 1

2 , 1} as follows. Consider a topological ordering π of the strongly connected components
of D(F2). For every literal l ∈ lit(F) such that the strongly connected component containing
l appears before the one containing l̄ in π, set β̂(l) = 1 and for every literal l such that the
strongly connected component containing l also contains l̄, set β̂(l) = 1

2 .

I Lemma 6. ([6]) A CNF formula F is q-Horn if and only if the function β̂ defined above
is a certifying function for F .

I Definition 7. A clause C of a given CNF formula is called a violating clause if∑
l∈C β̂(l) > 1. Any three literals l1, l2, l3 of a violating clause such that

∑3
i=1 β̂(li) > 1

form a violating triple.

I Lemma 8. Let F be a CNF formula of length ` and suppose that F is not a q-Horn
formula. Any violating clause of F has a violating triple lying entirely inside a strongly
connected component of D(F2) and we can compute such a violating triple in time O(`).

Because of space constraints we omit the easy proof of this lemma.
We now move on to some definitions on separators in implication graphs which will be
required in the description of our algorithm.

I Definition 9. Let F be a CNF formula and L ⊆ lit(F) be a consistent set of literals. We
say that a set J ⊆ lit(F) is an L-L̄ separator if J is disjoint from L and L̄ and there is no
path from L to L̄ in the graph D(F2)−J . We say that J is a minimal L-L̄ separator if no
proper subset of J is an L-L̄ separator.

I Definition 10. Let F be a CNF formula, L ⊆ lit(F) be a consistent set of literals and
let X be a set of variables of F . We call X an L-L̄ variable separator if lit(X) is an L-L̄
separator. We call X a minimal L-L̄ variable separator if no proper subset of X is an L-L̄
variable separator. We drop the word variable if it is clear from the context that the set we
are dealing with is a set of variables.

S. Gaspers, S. Ordyniak, M. S. Ramanujan, S. Saurabh, and S. Szeider 73

I Definition 11. Let F be a CNF formula, L ⊆ lit(F) be a consistent set of literals and
X be an L-L̄ variable separator. We denote by R(L,X) the set of literals of F that can be
reached from L via directed paths in D(F2)−X, and we denote by R̄(L,X) the set of literals
of F which have a directed path to L in D(F2)−X.

We also require the following observation.
I Observation 2. Let F be a CNF formula, L ⊆ lit(F) be a consistent set of literals and X
be an L-L̄ variable separator. Then, the sets R(L,X) and R̄(L̄,X) are also consistent and
in fact complements of each other.

3.2 The algorithm
We begin with the following simple lemma.

I Lemma 12. Let (F, k) be an instance of Deletion q-Horn Backdoor Set Detection.
Let (l1, l2, l3) be a violating triple in a strongly connected component of D(F2) and X be
a solution for the given instance disjoint from {var(l1), var(l2), var(l3)}. Then, for some
1 ≤ i ≤ 3, X is an li-l̄i separator in D(F2).

Proof. Let β̂′ be the canonical certifying function for F ′ = F −X obtained from the graph
D(F ′2). We claim that there is an 1 ≤ i ≤ 3 such that β̂′(li) = 0. This is true since F ′
contains a clause with all three literals l1, l2 and l3 and it cannot be the case that any
certifying function sets non zero values to all three. By definition of β̂′, β̂′(li) = 0 implies
that there is no path from li to l̄i in the graph D(F ′2). If X were not an li-l̄i separator in
D(F2), then D(F ′2) would also contain an li-l̄i path (by Observation 1(d)), a contradiction.
This completes the proof of the lemma. J

Lemma 8 combined with Lemma 12 allows us to compute in linear time, a set of three literals
such that for every solution X one of the three corresponding variables is part of X or for
at least one of these literals, say l, there is a path from l to l̄ in D(F2) and X an l-l̄ variable
separator in D(F2).

I Lemma 13. Let (F, k) be an instance of Deletion q-Horn Backdoor Set Detection
and X be a solution such that it is disjoint from var(l) and is an l-l̄ separator for some literal
l ∈ lit(F). Consider an l-l̄ variable separator X ′. Let X ′′ be the set of variables of X with
a literal in R(l,X ′). Then, the set X̃ = (X \X ′′) ∪X ′ is also a deletion q-Horn-backdoor
set for the given instance.

Proof. Let F ′ = F − X and F̃ = F − X̃. If X̃ were not a deletion q-Horn-backdoor set,
then there is a violating clause in F̃ and by Lemma 8, there is a violating triple (l1, l2, l3)
in a strongly connected component of D(F̃2). This implies the presence of a closed walk in
D(F̃2) containing all the literals of the violating triple and their complements (by Lemma 8).
Since X was a solution, this closed walk could not have survived in D(F ′2) and hence must
contain a literal of a variable in X \X̃. Recall that the only variables of X that are not in X̃
are those in X ′′. Let p be a literal on this closed walk which corresponds to such a variable,
that is, var(p) ∈ X ′′. On the other hand, by definition, the literals of the variables in X ′′

can either reach l̄ or be reached from l in D(F̃2), that is, they must lie in R(l, X̃) or R̄(l̄, X̃).
Combining this path along with the closed walk and the fact that D(F̃2) is an implication
graph implies the presence of a path from l to l̄ in D(F̃2). However, by construction, X̃ is
also an l-l̄ separator in D(F2). Observation 1(d) implies that this is a contradiction. This
completes the proof of the lemma. J

STACS’13

74 Backdoors to q-Horn

I Lemma 14. Let (F, k) be an instance of Deletion q-Horn Backdoor Set Detection
where F is a CNF formula of length `, with n variables. Let X be a solution to the given
instance and let l be a literal of F such that there is an l-l̄ path in D(F2). Furthermore,
suppose that X is an l-l̄ variable separator. Then, there is an algorithm that, given F , k
and l, runs in time O(k`n) and either concludes correctly that there is no k-sized l-l̄ variable
separator in D(F2) or returns an l-l̄ variable separator X ′ of size at most 2k such that
(X ′ ∪ var(R(l,X ′))) ∩X is non-empty

Proof. We show that Algorithm 3.1 has the stated properties. The algorithm computes an
l-l̄ variable separator X ′ which essentially maximizes the set of literals of D(F2) reachable
from l after removing X ′. We will then show that such a separator indeed has the required
properties.

If it the algorithm returns No in Line 4, then D(F2) has no l-l̄ variable separator of
size at most k. Let S be the minimal separator in D(F2) which was computed in the
penultimate iteration of the while loop. We claim that X ′ = var(S) satisfies the conditions
in the statement of the lemma. Clearly, it must be the case that for some choice of a literal
l′ in lit(var(S)) ∩N+

F (L), the next iteration of the loop could not find an L ∪ {l′}-L̄ ∪ {l̄′}
separator of size at most 2k.

Suppose that (X ′ ∪ var(R(l,X ′))) ∩X is empty. Recall that when the procedure stops,
L = R(l,X ′). Furthermore, if there is at least one path from l to l̄ in D(F2) then it
must be the case that lit(var(S)) ∩ N+

F (L) is non-empty. Since X is an l-l̄ separator and
disjoint from L, X is also an L-L̄ separator. Since X is also disjoint from X ′, for any
l′ ∈ lit(var(S)) ∩N+

F (L), X intersects all paths from L ∪ {l′} to L̄ ∪ {l̄′}. Hence, lit(X) is a
set of size at most 2k which intersects all L ∪ {l′}-L̄ ∪ {l̄′} paths, which is a contradiction.
Therefore, the set (X ′ ∪ var(R(l,X ′)))∩X is non-empty for any l-l̄ variable separator X of
size at most k.

To bound the running time, observe that in each iteration, we only need to test if there
is an L-L̄ separator of size at most 2k. Hence, it suffices for us to run the Ford-Fulkerson
algorithm [12] for at most 2k steps on the graph D(F2) and the number of iterations is
bounded by the number of variables in the formula since in each iteration, we add a literal
to L. Since the number of arcs in D(F2) is O(`) (Observation 1(b)), the claimed time bound
follows. This completes the proof of the lemma. J

I Lemma 15. Let (F, k) be an instance of Deletion q-Horn Backdoor Set Detec-
tion and let l be a literal of F disjoint from a solution X and suppose that X is an l-l̄
variable separator in D(F2). Consider an l-l̄ variable separator in D(F2), X ′, such that
(X ′∪var(R(l,X ′)))∩X is non-empty. Then, the instance F−X ′ has a deletion q-Horn-back-
door set of size at most |X| − 1.

Proof. By Lemma 13, we know that the set X̂ = (X\X ′′)∪X ′ is a deletion q-Horn-backdoor
set. Hence, X \ (X ′′ ∪X ′) is indeed a deletion q-Horn-backdoor set for the instance F −X ′.
Since (X ′ ∪ X ′′) ∩ X is non-empty, the size of X \ (X ′′ ∪ X ′) is at most |X| − 1. This
completes the proof of the lemma. J

Lemmas 14 and 15 allow us to compute a bounded set of variables whose deletion from the
formula results in an instance that has a solution which is strictly smaller than any solution
of the input instance. This completes the formalization of our ideas and we are now ready
to prove Theorem 1 by describing our algorithm for Deletion q-Horn Backdoor Set
Detection.

S. Gaspers, S. Ordyniak, M. S. Ramanujan, S. Saurabh, and S. Szeider 75

Input : A tuple (F, k, l) where F is a CNF formula, k a positive integer and l a literal of F

Output: No provided that D(F2) has no l-l̄ variable separator of size at most k, or an l-l̄
variable separator S of size at most 2k such that (S ∪ var(R(l, S))) has non-empty
intersection with some minimum deletion q-Horn-backdoor set

1 if there is an l-l̄ separator of size at most 2k in D(F2) then
2 S ← such a separator
3 end
4 else return No
5 L← R(l, var(S)) // L is consistent by Observation 2
6 while there is an L ∪ {l′}-L̄ ∪ {l̄′} separator of size at most 2k where

l′ ∈ (lit(var(S)) ∩N+
F (L)) is an arbitrarily chosen such literal do

7 S ← such a separator
8 L← R(L, var(S))
9 end

10 return var(S)

Algorithm 3.1: Algorithm COMPUTE-SEPARATOR

3.2.1 Description of the Algorithm

Algorithm 3.2 checks whether there is a violating triple and if so, computes one and in the
first 3 branches, it adds the variable corresponding to each of the literals of the violating
triple to the solution, deletes it from the formula and recurses on the resulting instance with
a budget of k − 1. In each of the next 3 branches, it picks a literal of the violating triple
and continues by assuming that this literal is assigned 0 by a certifying function of F −X
where X is a solution. We know that there must be at least one such literal (see the proof of
Lemma 12) in the violating triple. This implies that X is an l-l̄ separator for the literal l in
the violating triple which is assigned 0 by a certifying function of F −X. Finally, Lemma 14
is used to either conclude that there is no l-l̄ variable separator of size at most k in which
case the algorithm returns No, or to compute an l-l̄ variable separator of size at most 2k
with the required properties. The variables in X ′ are added to our proposed approximate
solution and deleted from the formula, and the algorithm recurses on the resulting instance
with a budget of k − 1.

3.2.2 Analysis

Since Steps 2, 4, and 10 at any node of the search tree take time O(k`n) and we have a
6-way branching at each node of the search tree with the budget k dropping by 1 in each
branch, the algorithm clearly runs in the claimed time bound. Therefore, it only remains
for us to prove the correctness of the algorithm. Let X be a solution for the given instance
and let β be a certifying function for F −X. We prove the correctness of the algorithm by
induction on k.

In the base case, when k = 0, the algorithm is correct by Lemma 6. We assume as
induction hypothesis that the algorithm is correct for all values of k up to some k′−1 where
k′ − 1 > 0. We now consider the case when k = k′.

In Lines 5–8, we consider the case when X intersects the set {var(l1), var(l2), var(l3)} and
branch accordingly. Applying the induction hypothesis, the size of any returned solution
in a subsequent recursive call is at most (k − 1)2 + (k − 1). Hence, the size of a solution
returned here is bounded by 1 + (k − 1)2 + (k − 1) ≤ k2 + k.

STACS’13

76 Backdoors to q-Horn

Input : A CNF formula F of length ` with n variables, integer k

Output: Either no solution of size at most k or a solution of size at most k2 + k for the
instance (F, k) of Deletion q-Horn Backdoor Set Detection

1 if k < 0 then return No
2 check for a violating clause by computing D(F2) and a topological ordering of D(F2)
3 if there is no violating clause then return ∅
4 Compute a violating triple (l1, l2, l3)
5 for l = l1, l2, l3 do
6 S1 ← DELETION-QHORN-BSD(F − {var(l)}, k − 1)
7 if S1 is not No then return S1 ∪ {var(l)}
8 end
9 for l = l1, l2, l3 do

10 S ← COMPUTE-SEPARATOR(F, k, l)
11 if S is No then return No else
12 S1 ← DELETION-QHORN-BSD(F − {S}, k − 1)
13 end
14 if S1 is not No then return S1 ∪ {S}
15 end
16 return No

Algorithm 3.2: Algorithm DELETION-QHORN-BSD

In Lines 9–15, we consider the case when X is disjoint from the set of variables corre-
sponding to l1, l2 and l3. Since l1, l2, l3 lie in the same clause and none of their corresponding
variables are in X, by Lemma 12, X is an li-l̄i separator for at least one of the literals li.
Let us assume that this literal is l1. In Line 10, we apply Lemma 14 to compute an l1-l̄1
separator S of size at most 2k and add it to the solution we are constructing. By Lemma 15,
we know that there is a solution for the instance F − S of size at most |X| − 1. Hence, by
the induction hypothesis, we obtain a solution of size at most (k − 1)2 + (k − 1) from the
subsequent recursive call and adding to it the set S of size at most 2k results in a solution
of size at most k2 + k, which proves the correctness of the algorithm, completing the proof
of Theorem 1.

In order to test the satisfiability of a given CNF formula F , it suffices to first compute a
smallest deletion q-Horn-backdoor set of F and for each assignment to this set, test the
satisfiability of the reduced formula which is q-Horn. Since testing satisfiability of a q-Horn
formula is linear time [5], Theorem 1 has the following corollary.

I Corollary 16. There is an algorithm that, given a formula F of length ` with n variables,
runs in time 2O(k2)`n and decides the satisfiability of F , where k is the size of the smallest
deletion q-Horn-backdoor set of F .

4 Hardness

In this section we show that there is no FPT algorithm for Strong q-Horn-backdoor Set
Detection or Weak q-Horn-backdoor Set Detection unless FPT=W[2]. In order to
show this, we begin from the following problem, which is well-known to be W[2]-complete [9].

Hitting Set Parameter: k

Input: A set E of elements, a family S of finite subsets of E, and an integer k > 0.
Question: Does S have a hitting set, i.e., a subset H of E such that H ∩ S 6= ∅ for
every S ∈ S, of size at most k?

S. Gaspers, S. Ordyniak, M. S. Ramanujan, S. Saurabh, and S. Szeider 77

I Theorem 17. Strong q-Horn-backdoor Set Detection is W[2]-hard.

Proof. We prove the theorem via an FPT-reduction from Hitting Set. Let (E,S, k) be
an instance of Hitting Set. We construct a formula F that has a strong q-Horn-backdoor
set of size at most k if and only if S has a hitting set of size at most k. The formula F has
two clauses P i

S = S∪{xi, yi, zi} and N i
S = Ē∪{x̄i, ȳi, z̄i} for every S ∈ S and 1 ≤ i ≤ k+1.

Note that var(F) = E ∪ {xi, yi, zi : 1 ≤ i ≤ k + 1 }. Furthermore, for any S and for any
1 ≤ i ≤ k + 1, the formula comprising the two clauses P i

S and N i
S is clearly not q-Horn. It

is not hard to verify that S has a hitting set of size at most k if and only if F has a strong
q-Horn-backdoor set of size at most k. J

I Theorem 18. Weak q-Horn-backdoor Set Detection is W[2]-hard, even for 3-CNF
formulas.

Proof. We prove the theorem via an FPT-reduction from Hitting Set. Let (E,S, k) be an
instance of Hitting Set. We construct a 3-CNF formula F that has a weak q-Horn-back-
door set of size at most k if and only if S has a hitting set of size at most k. For ev-
ery S ∈ S with S = {s1, . . . , s|S|}, every 1 ≤ i ≤ |S|, and every 1 ≤ j ≤ k + 1 the
formula F contains the clauses {zj

i (S), s̄i, z̄
j
i+1(S)}, {z̄j

1(S), zj
|S|+1(S)}, {z̄j

1(S), z̄j
|S|+1(S)},

{zj
1(S), zj

|S|+1(S)}, {zj
|S|+1(S), aj(S), bj(S)}, and {āj(S), b̄j(S)}. Note that var(F) = E ∪

{ zj
i (S) : S ∈ S and 1 ≤ i ≤ |S| + 1 and 1 ≤ j ≤ k + 1 } ∪ { aj(S), bj(S) : S ∈ S and 1 ≤

j ≤ k + 1 }. Note furthermore that F is satisfiable by the assignment τSAT that sets the
variables in { zj

|S|+1(S), aj(S) : S ∈ S and 1 ≤ j ≤ k + 1 } to 1 and all other variables to 0.
It is not hard to verify that S has a hitting set of size at most k if and only if F has a weak
q-Horn-backdoor set of size at most k. J

It remains an open problem whether Strong q-Horn-backdoor Set Detection
or Weak q-Horn-backdoor Set Detection are FPT-approximable. However we note
that since the reductions used in the above theorems are parameter preserving, an FPT-
approximation algorithm for either of these problems would imply the existence of an FPT-
approximation algorithm for Hitting Set, which is an open problem [18].

5 Conclusions

In this paper we have developed an FPT-approximation algorithm for the detection of dele-
tion q-Horn-backdoor sets (Theorem 1). This renders SAT, parameterized by the deletion
distance from the class of q-Horn-formulas (i.e., the size of a smallest deletion q-Horn-back-
door set) fixed-parameter tractable (Corollary 16). Our result simultaneously generalizes
the known fixed-parameter tractability results for SAT parameterized by the deletion dis-
tance from the class of renamable Horn formulas [20] and from the class of Krom formulas
[19]. We would like to point out that our FPT-approximation algorithm is quite efficient,
and its asymptotic running time does not include large hidden factors.

The deletion distance from q-Horn is incomparable with parameters for SAT based on
width measures such as the treewidth of the formula’s primal, dual, or incidence graph [21].
This can be easily verified, since one can define q-Horn formulas where all of these width
parameters are arbitrarily large. Conversely, by adding to a formula variable-disjoint copies
of itself, we can make the deletion distance from q-Horn arbitrarily large, the width however
does not increase.

There are several interesting research questions that arise from our paper. First, it would
be interesting whether our algorithm can be strengthened to an exact FPT-algorithm for

STACS’13

78 Backdoors to q-Horn

the detection of deletion q-Horn-backdoor sets. It would also be interesting, whether the
W[2]-hardness of the detection of strong q-Horn-backdoor sets (Theorem 17) also holds if
the input formula is in 3CNF. Finally, our hardness results contribute additional attention
and significance to the problem of whether the parameterized Hitting Set problem has an
FPT-approximation algorithm [18].

Acknowledgments

The authors acknowledge support from the OeAD (Austrian Indian collaboration grant,
IN13/2011). Serge Gaspers, Sebastian Ordyniak, and Stefan Szeider acknowledge support
from the European Research Council (COMPLEX REASON, 239962) and Serge Gaspers
acknowledges support from the Australian Research Council (DE120101761).

References
1 B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the truth of

certain quantified Boolean formulas. Information Processing Letters, 8(3):121–123, 1979.
2 A. Biere. Bounded model checking. In A. Biere, M. Heule, H. van Maaren, and T. Walsh,

editors, Handbook of Satisfiability, pages 457–481. IOS Press, 2009.
3 A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability. IOS

Press, 2009.
4 P. Bjesse, T. Leonard, and A. Mokkedem. Finding bugs in an alpha microprocessor using

satisfiability solvers. In Proceedings CAV 2001, pages 454–464, 2001.
5 E. Boros, Y. Crama, and P. L. Hammer. Polynomial-time inference of all valid implications

for horn and related formulae. Ann. Math. Artif. Intell., 1:21–32, 1990.
6 E. Boros, P. L. Hammer, and X. Sun. Recognition of q-Horn formulae in linear time. Discr.

Appl. Math., 55(1):1–13, 1994.
7 S. A. Cook. The complexity of theorem-proving procedures. In Proc. 3rd Annual Symp.

on Theory of Computing, pages 151–158, Shaker Heights, Ohio, 1971.
8 Y. Crama, O. Ekin, and P. L. Hammer. Variable and term removal from Boolean formulae.

Discr. Appl. Math., 75(3):217–230, 1997.
9 R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer

Science. Springer Verlag, New York, 1999.
10 R. G. Downey, M. R. Fellows, and C. McCartin. Parameterized approximation problems.

In Proceedings IWPEC 2006, volume 4169 of LNCS, pages 121–129. Springer Verlag, 2006.
11 J. Flum and M. Grohe. Parameterized Complexity Theory, Springer Verlag, Berlin, 2006.
12 L. R. Ford, Jr. and D. R. Fulkerson. Maximal flow through a network. Canadian J. Math.,

8:399–404, 1956.
13 S. Gaspers and S. Szeider. Backdoors to satisfaction. In H. L. Bodlaender, R. Downey,

F. V. Fomin, and D. Marx, editors, The Multivariate Algorithmic Revolution and Beyond,
volume 7370 of LNCS, pages 287–317. Springer Verlag, 2012.

14 C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman. Satisfiability solvers. In Handbook of
Knowledge Representation, volume 3 of Foundations of Artificial Intelligence, pages 89–134.
Elsevier, 2008.

15 H. A. Kautz and B. Selman. Planning as satisfiability. In Proceedings ECAI 1992, pages
359–363, 1992.

16 H. R. Lewis. Renaming a set of clauses as a Horn set. J. of the ACM, 25(1):134–135, Jan.
1978.

17 A. G. M. Prasad, A. Biere. A survey of recent advances in SAT-based formal verification.
Software Tools for Technology Transfer, 7(2):156–173, 2005.

18 D. Marx. Can you beat treewidth? Theory of Computing, 6:85–112, 2010.

S. Gaspers, S. Ordyniak, M. S. Ramanujan, S. Saurabh, and S. Szeider 79

19 N. Nishimura, P. Ragde, and S. Szeider. Detecting backdoor sets with respect to Horn and
binary clauses. In Proceedings of SAT 2004, pages 96–103, 2004.

20 I. Razgon and B. O’Sullivan. Almost 2-SAT is fixed parameter tractable. J. of Computer
and System Sciences, 75(8):435–450, 2009.

21 M. Samer and S. Szeider. Algorithms for propositional model counting. J. Discrete Algo-
rithms, 8(1):50–64, 2010.

22 T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of STOC 1978),
pages 216–226. ACM, 1978.

23 M. N. Velev and R. E. Bryant. Effective use of Boolean satisfiability procedures in the formal
verification of superscalar and VLIW microprocessors. J. Symbolic Comput., 35(2):73–106,
2003.

24 R. Williams, C. Gomes, and B. Selman. Backdoors to typical case complexity. In Proceed-
ings of IJCAI 2003, pages 1173–1178. Morgan Kaufmann, 2003.

STACS’13

On Polynomial Kernels for Sparse Integer Linear
Programs
Stefan Kratsch∗

Technical University Berlin, Germany
stefan.kratsch@tu-berlin.de

Abstract
Integer linear programs (ILPs) are a widely applied framework for dealing with combinatorial
problems that arise in practice. It is known, e.g., by the success of CPLEX, that preprocessing
and simplification can greatly speed up the process of optimizing an ILP. The present work seeks
to further the theoretical understanding of preprocessing for ILPs by initiating a rigorous study
within the framework of parameterized complexity and kernelization.

A famous result of Lenstra (Mathematics of Operations Research, 1983) shows that feasibility
of any ILP with n variables and m constraints can be decided in time O(cn3 ·mc′). Thus, by a
folklore argument, any such ILP admits a kernelization to an equivalent instance of size O(cn3). It
is known, that unless NP ⊆ coNP/poly and the polynomial hierarchy collapses, no kernelization
with size bound polynomial in n is possible. However, this lower bound only applies for the case
when constraints may include an arbitrary number of variables since it follows from lower bounds
for SAT and Hitting Set, whose bounded arity variants admit polynomial kernelizations.

We consider the feasibility problem for ILPs Ax ≤ b where A is an r-row-sparse matrix
parameterized by the number of variables. We show that the kernelizability of this problem
depends strongly on the range of the variables. If the range is unbounded then this problem
does not admit a polynomial kernelization unless NP ⊆ coNP/poly. If, on the other hand, the
range of each variable is polynomially bounded in n then we do get a polynomial kernelization.
Additionally, this holds also for the more general case when the maximum range d is an additional
parameter, i.e., the size obtained is polynomial in n+ d.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases integer linear programs, kernelization, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.80

1 Introduction

The present work seeks to initiate a study of the preprocessing properties of integer linear
programs (ILPs) within the framework of parameterized complexity. Generally, preprocessing
(or data reduction) is a universal strategy for coping with combinatorially hard problems and
can be combined with other strategies like approximation, brute-force, exact exponential-time
algorithms, local search, or heuristics. Unlike those other approaches, preprocessing itself
incurs only a polynomial-time cost and is error free (or, in rare cases, with negligible error);
recall that under standard assumptions we do not expect to exactly solve any NP-hard problem
in polynomial time. Thus, preprocessing before applying other paradigms is essentially free
and saves solution quality and/or runtime on parts of the input that are sufficiently easy to

∗ Work done in part while postdoc at Utrecht University supported by NWO project “KERNELS” and in
part at Max-Planck-Institute for Informatics, Saarbrücken, Germany.

© Stefan Kratsch;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 80–91

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.80
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Kratsch 81

handle in polynomial time (see e.g. [24]). For a long time, preprocessing has been neglected
in theoretical research for lack of appropriate tools1 and research was limited to experimental
evaluation of preprocessing strategies. The introduction of parameterized complexity and its
notion of kernelization has sparked a strong interest in theoretically studying preprocessing
with proven upper and lower bounds on its performance.

Integer linear programs are widely applied in theory and practice. There is a huge body
of scientific literature on ILPs both as a topic of research itself and as a tool for solving other
problems. From a theoretical perspective, many fundamental problems that revolve around
ILPs are hard, e.g., checking feasibility of a 0/1-ILP is NP-hard by an easy reduction from
the classic Satisfiability problem [15]. Similarly, it is easy to express Vertex Cover or
Independent Set, thus showing that simple covering and packing ILPs are NP-hard to
optimize. Thus, for worst-case complexity considerations, the high expressive power of ILPs
comes at the price of encompassing plenty of hard problems and, effectively, inheriting all
their lower bounds (e.g., approximability).

In practice, the expressive power of ILPs makes them a versatile framework for encoding
and solving many combinatorially hard problems. Coupled with powerful software packages
for optimizing ILPs this has created a viable way for solving many practical problems on
real-world instances. We refer to a survey of Atamtürk and Savelsbergh [1] for an explanation
of the capabilities of modern ILP solvers; this includes techniques such as probing and
coefficient reduction. One of the most well-known solvers is the CPLEX package, which is,
in particular, known for its extensive preprocessing options and parameters.2 It is known
that appropriate preprocessing and simplification of ILPs can lead to strong improvements
in running time, e.g., reducing the range of variables or eliminating them altogether, or
reducing the number of constraints. Given the large number of options that a user has for
controlling the preprocessing in CPLEX, e.g., the number of substitution rounds to reduce
rows and columns, this involves some amount of engineering and has a more heuristic flavor.
In particular, there are no performance guarantees for the effect of the preprocessing.

Naturally, this leads to the question of whether there are theoretical performance guar-
antees for the viability of preprocessing for ILPs. To pursue this question in a rigorous
and formal way, we take the perspective of parameterized complexity and its notion of
(polynomial) kernelization. Parameterized complexity studies classical problems in a more
fine-grained way by introducing one or more additional parameters and analyzing time- and
space-usage as functions of input size and parameter. In particular, by formalizing a notion
of fixed-parameter tractability, which requires efficient algorithms when the parameter is
small, this makes the parameter a quantitative indicator of the hardness of a given instance
(see Section 2 for formal definitions). This in turn permits us to formalize preprocessing as a
reduction to an equivalent instance of size bounded in the parameter, a so-called kerneliza-
tion. The intuition is that relatively easy instances should be reducible to a computationally
hard, but small core, and we do not expect to reduce instances that are already fairly
hard compared to their size (e.g., instances that are already reduced). While classically,
no efficient algorithm can shrink each instance of an NP-hard problem [17], the notion of
kernelization has been successfully applied to a multitude of problems (see recent surveys
by Guo and Niedermeier [16] and Bodlaender [4]). Due to many interesting upper bound

1 In fact, it has been observed that no polynomial-time algorithm can shrink all instances of some NP-hard
problem unless P = NP [17]; this issue can be avoided in parameterized complexity.

2 The interested reader is referred to the online documentation and manual of ILOG CPLEX 12.4 at
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r4/index.jsp (see “presolve”, “preprocessing”).

STACS’13

82 On Polynomial Kernels for Sparse Integer Linear Programs

results (e.g., [6, 13, 21]) but also the fairly recent development of a lower bound framework
for polynomial kernels [17, 14, 5, 9], the existence or non-existence of polynomial kernels
(which reduce to size polynomial in the parameter) is receiving high interest.

In this work, we focus on the effect that the dimension, i.e., the number of variables,
has on the preprocessing properties of ILPs. Feasibility and optimization of ILPs with low
dimension has been studied extensively already, see e.g. [19, 18, 22, 23, 20, 8, 11, 12]. The
most important result for our purpose is a well-known work of Lenstra [22], who showed that
feasibility of an ILP with n variables and m constraints can be decided in time O(cn3 ·mO(1));
this also means that the problem is fixed-parameter tractable with respect to n. This has
been improved further, amongst others by Kannan [20] to O(nO(n)) dependence on the
dimension and by Clarkson [8] to (expected) O((cn)n/2+O(1)) dependence. We take these
results as our starting point and consider the problem of determining feasibility of a given
ILP parameterized by the number of variables, formally defined as follows.

Integer Linear Program Feasibility(n)– ILPF(n)
Input: A matrix A ∈ Qm×n and a vector b ∈ Qm.
Parameter: n.
Output: Is there a vector x ∈ Zn such that Ax ≤ b?

It is known by a simple folklore argument that any parameterized problem is fixed-
parameter tractable if and only if it admits a kernelization; unfortunately the implied size
guarantee is usually impractical as it is exponential in the parameter. As an example, using
the runtime given by Kannan [20] we only get a kernel size of O(ncn).3 Unsurprisingly, we
are more interested in what kernel sizes can be achieved by nontrivial preprocessing rules.
In particular, we are interested in the conditions under which an ILP with n variables can
be reduced to size polynomial in n, i.e., in the existence of polynomial kernels for Integer
Linear Program Feasibility(n).
Related work. Regarding the existence of polynomial kernels for Integer Linear Pro-
gram Feasibility(n) only little is known. In general, parameterized by the number of
variables, ILPF(n) admits no polynomial kernelization unless NP ⊆ coNP/poly and the
polynomial hierarchy collapses. This follows for example from the results of Dell and van
Melkebeek [9] regarding lower bounds for the compressibility of the satisfiability problem,
since there is an immediate reduction from SAT to ILPF(n). Similarly, it follows also from
earlier results of Dom et al. [10] who showed that Hitting Set parameterized by the universe
size admits no polynomial kernelization under the same assumption.

We note that both ways of excluding polynomial kernels for Integer Linear Program
Feasibility(n) use reductions from problems with unbounded arity. Crucially, both d-
Hitting Set and d-SAT admit polynomial kernels of size roughly O(nd), where n is the
number of elements and variables respectively, which can be obtained trivially by discarding
duplicate sets or clauses, respectively. Surprisingly perhaps, the work of Dell and van
Melkebeek [9] shows that these bounds are tight, assuming NP * coNP/poly, i.e., there are
no reductions to size O(nd−ε) for any ε > 0. We emphasize that this also implies the lower
bound of Integer Linear Program Feasibility(n) since it can express, e.g., Hitting
Set with sets of unbounded size (exceeding any constant d).

Motivated by these facts about the kernelization lower bound for Integer Linear
Program Feasibility(n) and the existing straightforward polynomial kernels for d-Hitting

3 If the instance is larger than O(ncn), then Kannan’s algorithm runs in polynomial time and we may
simply return the answer or a trivial yes- or no-instance. Otherwise, the claimed bound trivially holds.

S. Kratsch 83

Set and d-SAT, we study the influence of arity on the existence of polynomial kernels for
ILPF(n). Regarding the considered integer linear programs with constraints Ax ≤ b this
translates to A being r-row-sparse, i.e., to have at most r nonzero variables in each row.
Our results. We study Integer Linear Program Feasibility(n) for the case that
the constraint matrix A is r-row-sparse; we call this problem r-Sparse Integer Linear
Program Feasibility(n) (r-SILPF(n)). Note that r is a constant that is fixed as a part of
the problem (it makes no sense to study r as an additional parameter since we already know
that constraints involve at most all n variables, but already for SAT parameterized by the
number of variables this is not enough to avoid a kernelization lower bound).

Our main result is that r-SILPF(n) admits no polynomial kernelization assuming that
NP * coNP/poly, for any r ≥ 3. Thus we see that unlike the simpler problems d-Hitting
Set and d-SAT, a restriction on the arity (or row-sparseness) is not enough to ensure
a polynomial kernelization. For this result we give a cross-composition (introduced by
Bodlaender et al. [7]; see Section 2) from Clique to r-SILPF(n). Concretely, we encode t
instances of Clique into a single instance of r-SILPF(n) with parameter value bounded
polynomially in the largest Clique instance plus log t, such that our obtained instance is
yes if and only if at least one of the Clique instances is yes.

Unlike other proofs via compositions or cross-compositions, the parameterization by the
number of variables combined with the row-sparseness restriction prevent many standard
tricks. For example, without the row-sparseness we could simply encode the selection of
an instance number of one of the t Clique instances. Then we could add constraints that
encode all the edges of the input graphs, but which are only valid when the binary encoding
of the instance number matches the constraint. Unfortunately, this involves constraints
with O(log t) variables.4 (Of course without row-sparseness, a lower bound is known already.)
Similarly, if we could use t slack variables we could very easily control the constraints and
have only those for a single instance of Clique be relevant; however, we cannot afford this.

Our solution goes by using a significantly larger domain for the variables that encode the
selection of a clique in one of the t input graphs. We use a variable s for the instance number,
and add (linear) constraints that enforce r = s2. This permits us to use indicator variables
for the desired clique whose feasible values depend quadratically on the chosen instance
number. Accordingly, we can arrange the constraints for the edges of all input graphs Gi,
such that they intersect this feasible region when i = s. In this way, depending on s, only
the constraints from one instance will restrict the choice of values for the indicator variables
(beyond the restriction imposed directly by s and r = s2). This is presented in Section 3.

Complementing our lower bound, and recalling the large domain required for the con-
struction, we analyze the effect of the maximum variable range on the preprocessing. It
turns out that we can efficiently reduce row-sparse ILPs of form Ax ≤ b to a size that is
polynomial in n + d, where n is the number of variables and d is the maximum range of
any variable. In other words, r-Sparse Integer Linear Program Feasibility admits
a polynomial kernelization with respect to the combined parameter n + d, or when d is
polynomially bounded in n; this is showed in Section 4. Together our upper and lower bound
show that the existence for r-Sparse Integer Linear Program Feasibility depends
strongly on the permitted range for the variables. We emphasize that small range without
row-sparseness does not suffice by the mentioned reductions from SAT and Hitting Set.

Furthermore, let us point out that for the case of an ILP of form Ax = b, x ≥ 0, r-

4 We can emulate a few such constraints by use of auxiliary variables, but we cannot afford to do this for
the constraints corresponding to all t instances.

STACS’13

84 On Polynomial Kernels for Sparse Integer Linear Programs

row-sparseness does suffice to reduce the number of constraints. (Note that this problem
is polynomially solvable for r ≤ 2 and NP-hard for r ≥ 3, cf. [3].) This follows easily from
standard tools for solving systems of linear equations, namely Gaussian elimination. We
briefly explain this in Section 5. Note that, while in general there are trivial transformations
between Ax ≤ b and A′x′ = b′, going from Ax ≤ b to A′x′ = b′ uses one slack variable per
constraint and hence would increase our parameter (the number of variables) by the number
of constraints; this would make any further reduction arguments pointless.

2 Preliminaries

Parameterized complexity and kernelization. A parameterized problem over some
finite alphabet Σ is a language P ⊆ Σ∗ × N. The problem P is fixed-parameter tractable
if (x, k) ∈ P can be decided in time f(k) · (|x|+ k)O(1), where f is an arbitrary computable
function. A polynomial-time algorithm K is a kernelization for P if, given input (x, k), it
computes an equivalent instance (x′, k′) with |x′|+ k′ ≤ h(k) where h is some computable
function; K is a polynomial kernelization if h is polynomially bounded (in k). By relaxing
the restriction that the created instance (x′, k′) must be of the same problem and allow the
output to be an instance of any classical decision problem we get the notion of (polynomial)
compression. Almost all lower bounds for kernelization apply also for this weaker notion.

For our lower bound proof we use the concept of an (or-)cross-composition of Bodlaender
et al. [7] which builds on a series of earlier results [14, 5, 9] that created a framework for
ruling out polynomial kernelizations for certain problems. Cross-composition streamlines
and extends the earlier notion of a composition by allowing arbitrary source problems and
simplifying padding arguments via the concept of a polynomial equivalence relation.

I Definition 1 ([7]). An equivalence relation R on Σ∗ is called a polynomial equivalence
relation if the following two conditions hold:
1. There is a polynomial-time algorithm that decides whether two strings belong to the

same equivalence class (time polynomial in |x|+ |y| for x, y ∈ Σ∗).
2. For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S into a

number of classes that is polynomially bounded in the size of the largest element of S.

I Definition 2 ([7]). Let L ⊆ Σ∗ be a language, let R be a polynomial equivalence relation
on Σ∗, and let P ⊆ Σ∗ × N be a parameterized problem. An or-cross-composition of L
into P (with respect to R) is an algorithm that, given t instances x1, x2, . . . , xt ∈ Σ∗ of L
belonging to the same equivalence class of R, takes time polynomial in

∑t
i=1 |xi| and outputs

an instance (y, k) ∈ Σ∗ × N such that:
1. The parameter value k is polynomially bounded in maxi |xi|+ log t.
2. The instance (y, k) is yes for P if and only if at least one instance xi is yes for L.
We then say that L or-cross-composes into P.

I Theorem 3 ([7]). If an NP-hard language L or-cross-composes into the parameterized
problem P, then P does not admit a polynomial kernelization or polynomial compression
unless NP ⊆ coNP/poly and the polynomial hierarchy collapses.

3 A kernelization lower bound for sparse ILP Feasibility

In this section we show our main result, namely that a restriction to row-sparse matrices is not
enough to ensure a polynomial kernelization for Integer Linear Program Feasibility
parameterized by the number of variables. The problem is defined as follows.

S. Kratsch 85

r-Sparse Integer Linear Programming Feasibility(n) – r-SILPF(n)
Input: An r-row-sparse matrix A ∈ Qm×n and a vector b ∈ Qm.
Parameter: n.
Output: Is there a vector x ∈ Zn such that Ax ≤ b?

To prove the kernelization lower bound for r-SILPF we give an or-cross-composition
from the NP-hard Clique problem, i.e., a reduction of many Clique instances into a single
instance of r-SILPF. The idea behind the construction is to use a fairly large domain in order
to recycle the same variables for the constraints that correspond to many different instances.

As a first step we state two propositions which together allow us to “compute” the square
of a variable inside an ILP, i.e., to add constraints such that some variable is exactly the
square of another in all feasible solutions.
I Proposition 1. Let si, sj, sij, and dij denote integer variables with range {0, 1} each.
Then any feasible assignment for sij = 1

2 (si + sj − dij) satisfies sij = si · sj. Conversely,
for any choice of si, sj, and sij such that sij = si · sj, there is a choice of dij ∈ {0, 1} such
that sij = 1

2 (si + sj − dij) holds.
I Proposition 2. Let s ∈ {0, . . . , t− 1} with t = 2` and let s0, . . . , s`−1 ∈ {0, 1} denote the
binary expansion of s, i.e., s =

∑`−1
i=0 2isi. Then

s2 =
`−1∑
i=0

`−1∑
j=0

2i+jsi · sj

 .

Together the two propositions provide a way of forcing some variable in an ILP to take a
value exactly equal to the square of another value. If s ∈ {0, . . . , t− 1} this requires O(log2 t)
auxiliary variables and O(log2 t) constraints. Now we will give our construction.
I Theorem 4. Let r ≥ 3 be an integer. The r-SILPF problem does not admit a polynomial
kernelization or compression unless NP ⊆ coNP/poly and the polynomial hierarchy collapses.
Proof. We give an or-cross-composition from the NP-hard Clique problem. Let t instances
of Clique be given. By a polynomial equivalence relation that partitions instances according
to number of vertices and requested clique size it suffices to consider instances that ask
for the same clique size k and such that each input graph has n vertices. We denote the
instances (G0, k), . . . , (Gt−1, k); for convenience, assume that all t graphs have the same
vertex set V and edge sets Ei for i ∈ {0, . . . , t − 1}. We will create a single instance of
r-Sparse Integer Linear Program Feasibility(n) that is yes if and only if at least
one instance (Gi, k) is yes for Clique. Without loss of generality, we assume that t = 2`;
otherwise we could copy some instance sufficiently often (at most doubling the input size).
Construction–essential part. For the sake of readability we first describe the matrix A
by writing down the constraints in a succinct way ignoring the sparsity requirement; there
will be a small number of constraints on more than three variables which will be converted
later. We also specify explicit ranges for the variables which can be enforced by the obvious
constraints. Note that n, t, `, k, i, and j are constants in the ILP; i and j are used in sums
but the expansion of each sum is a constraint where i and j have constant values.

The first group of variables, namely s and s0, . . . , s`−1 serve to pick an instance number s ∈
{0, . . . , t− 1} and enforce the variables si to equal the binary expansion of s.

s ∈ {0, . . . , t− 1} (1)
s0, . . . , s`−1 ∈ {0, 1} (2)

s =
`−1∑
i=0

2isi (3)

STACS’13

86 On Polynomial Kernels for Sparse Integer Linear Programs

Next we create a variable r and auxiliary variables sij and dij with the sole purpose of
enforcing r = s2 but using only linear constraints.

r ∈ {0, . . . , (t− 1)2} (4)
sij , dij ∈ {0, 1} for all i, j ∈ {0, . . . , `− 1} (5)

sij = 1
2(si + sj − dij) for all i, j ∈ {0, . . . , `− 1} (6)

r =
`−1∑
i=0

`−1∑
j=0

2i+jsij

 (7)

We introduce variables yv for all v ∈ V which will encode a k-clique in instance s. These
variables are restricted to take one of two values that depend on s in a quadratic way
(using r = s2; recall that t is a constant).

yv ≤ 2ts− r + 2 for all v ∈ V (8)
yv ≥ 2ts− r + 1 for all v ∈ V (9)

That is, we restrict yv to yv ∈ {2ts− r + 1, 2ts− r + 2} ⊆ {0, . . . , 2t2}.
Now we get to the central piece of the ILP, namely the constraints which will enforce

the non-edges of the graph Gs. However, we of course need to add those constraints for
all input graphs Gi. It is crucial that only the constraints for i = s have an effect on
the y-variables (beyond the restriction already imposed by (8) and (9)). We add the following
for all {u, v} ⊆ V and instance numbers i ∈ {0, . . . , t− 1} if {u, v} is not an edge of Gi.

if {u, v} /∈ Ei then yu + yv ≤ 4 · (t− i) · s+ 2i2 + 3 (10)

Finally, we take the sum over all yv, deduct n times the minimum value 2ts− r + 1 and
check that this is at least as large as the specified target value k.(∑

v∈V
yv

)
− n · (2ts− r + 1) ≥ k (11)

This completes the essential part of the construction. Formally we still need to convert
all constraints into form Ax ≤ b and to use only three variables in each constraint. However,
the proof will be given regarding the more accessible constraints stated above.
Construction–formal part. We use x to refer to the vector of all variables used above,
e.g., x = (s, s0, . . . , s`−1, r, s00, . . . , s`−1,`−1, d00, . . . , d`−1,`−1, yv1 , . . . , yvn). Thus, at this
point, we use 1 + `+ 1 + 2 · `2 + n ∈ O(n+ `2) = (n+ log t)O(1) variables.

To formally complete the construction one now needs to translate all constraints to
form Ax ≤ b. Furthermore, using auxiliary variables, one needs to convert this to A′x′ ≤ b′
such that A′ has at most three non-zero entries in each row. It is clear that all range
constraints, namely (1), (2), (4), and (5) can be expressed by two linear inequalities with
one variable each. Also the constraints (8), (9), and (10) need no further treatment since
they are already linear inequalities with at most three variables each (that is, it suffices to
rearrange them to have all variables on one side when transforming to Ax ≤ b).

For the remaining constraints, namely (3), (6), (7), and (11) we need to use auxiliary
variables to replace them by small sets of linear inequalities with at most three variables
each. We sketch this for (3), which requires expressing a sum using partial sums. We

S. Kratsch 87

introduce ` new variables z0, . . . , z`−1 and replace s =
∑`−1
i=0 2isi as follows; the intuition is

that zj =
∑j
i=0 2isi.

z0 − s0 ≤ 0 −z0 + s0 ≤ 0
zi − zi−1 − 2isi ≤ 0 −zi + zi−1 + 2isi ≤ 0 for i ∈ {1, . . . , `− 1}

s− z`−1 ≤ 0 −s+ z`−1 ≤ 0

We use ` variables for constraint (3), `2 variables for constraints (6), `2 variables for
constraint (7), and n + 2 variables for constraint (11). Altogether we use O(n + `2) =
O(n+ log2 t) additional variables. In total our ILP uses O(n+ log2 t) = O((n+ log t)O(1))
variables, which is consistent with the definition of a cross-composition (polynomial in the
largest input instance plus the logarithm of the number of instances).
Completeness. To show correctness, let us first assume that some instance (Gi∗ , k) is yes
for Clique, and let C ⊆ V be some k-clique in Gi∗ . We will determine a value x′ = x′(i∗, C)
such that A′x′ ≤ b′ (this is the system obtained by transforming all constraints to inequalities
in at most three variables). Again, for clarity, we will simply pick values only for all variables
used in the succinct representation (i.e., all variables occurring in (1)–(11)) and check that
all (in-)equalities are satisfied. It is obvious how to extend this to the auxiliary variables
that are required for formally writing down all constraints as A′x′ ≤ b′.

First of all, we set s = i∗ ∈ {0, . . . , t − 1} and set the variables s0, . . . , s`−1 ∈ {0, 1}
such that they match the binary expansion of s. Clearly, this satisfies constraint (3) as
well as the range of each encountered variable. It follows from Proposition 1 that we can
set sij = si · sj ∈ {0, 1} and also find feasible values for all dij such that all constraints (6)
are satisfied. Hence, by Proposition 2 we can set r = s2 while satisfying constraint (7).

Now, let us assign values to variables yv for v ∈ V as follows

yv =
{

2ts− r + 2 if, v ∈ C
2ts− r + 1 if v /∈ C.

It is easy to see that this choice satisfies both constraints (9) and (11), since |C| = k.
Finally, we have to check that the (non-)edge constraints (10) are satisfied for all i ∈

{0, . . . , t − 1} and all edges {u, v}. There are two cases, namely i = i∗ and i 6= i∗, i.e., we
have to satisfy constraints for Gi∗ (using the fact that C is a clique) but also constraints
created for graphs Gi with i 6= i∗.

Let us first consider the case i 6= i∗; concretely, we take the maximum value for yu + yv,
namely 2·(2ts−r+2), and compare it to the value of constraint (10), namely 4·(t−i)·s+2i2+3,
using that r = s2 and s = i∗:

4 · (t− i) · s+ 2i2 + 3 ≥ 2 · (2ts− r + 2)
⇔ 4ts− 4is+ 2i2 + 3 ≥ 4ts− 2s2 + 4
⇔ 2s2 − 4is+ 2i2 − 1 ≥ 0
⇔ 2(s− i)2 − 1 ≥ 0.

Since s = i∗ the last inequality holds if i 6= i∗, which is exactly what we assumed. Thus all
non-edge constraints for graphs Gi with i 6= i∗ are satisfied.

We now consider the non-edge constraints for Gi∗ . We compute the difference between
the bound of constraint (10) and the minimum value of yu + yv, namely 2 · (2ts− r + 1), to
check that our assignment to y-variables is feasible. Note that r = s2 and s = i∗ = i:

(4 · (t− i) · s+ 2i2 + 3)− 2 · (2ts− r + 1) = 4ts− 4is+ 2i2 + 3− 4ts+ 2s2 − 2 = 1.

STACS’13

88 On Polynomial Kernels for Sparse Integer Linear Programs

Thus, if {u, v} /∈ Ei∗ then at most one of yu and yv can take value 2ts − r + 2 without
violating constraint (10). Otherwise, if {u, v} ∈ Ei∗ , then, from the perspective of this edge,
both variables may take value 2ts− r + 2. Clearly, this is consistent with our assignment to
the y-variables, since the larger value 2ts− r + 2 is assigned to all variables that correspond
to the vertices of the k-clique C.
Soundness. For soundness, let us assume that we have a feasible solution x′ such that A′x′ ≤
b′. Again, we consider only the variables of constraints (1)–(11). Recall that s ∈ {0, . . . , t−1}.
We claim that the graph Gs must have a clique of size at least k.

Observe that all variables yv for v ∈ V have value 2ts− r + 2 or 2ts− r + 1 in x due to
constraints (8) and (9). We define a vertex subset C ⊆ V by stating that it contains exactly
those vertices v with yv = 2ts− r + 2. The goal is to show that C is a clique in Gs.

As for the converse direction, feasible solutions are required to have r = s2, which follows
from Propositions 1 and 2; note that obviously the variables s0, . . . , s`−1 need to equal the
binary expansion of s due to constraint (3).

Now, we consider the non-edge constraints (10) for Gs and compare them to the lower
bound of 2ts − r + 1 for variables yv; we already did this computation earlier, again we
have r = s2 and s = i:

4 · (t− i) · s+ 2i2 + 3− 2 · (2ts− r + 1) = 1.

Hence, for every non-edge {u, v} of Gs among yu and yv at most one of the two variables
can take the larger value 2ts− r + 2. Therefore, when yu = yv = 2ts− r + 2, then {u, v} is
an edge of Gs. Thus, C is a clique in Gs. It follows from yv ∈ {2ts− r + 1, 2ts− r + 2} that
constraint (11) enforces that yv = 2ts− r+ 2 for at least k vertices v ∈ V . Therefore, C is of
size k. This completes the or-cross-composition from Clique.

By Theorem 3, r-Sparse Integer Linear Program Feasibility(n) has no polynomial
kernelization unless NP ⊆ coNP/poly and the polynomial hierarchy collapses [7]. J

4 A polynomial kernelization for sparse ILP with bounded range

We have seen that for r-Sparse Integer Linear Program Feasibility(n) there is
no polynomial kernelization unless NP ⊆ coNP/poly. The proof relies strongly on having
variables of high range in order to encode the constraints of t instances of Clique. It is
natural to ask, whether a similar result can be proven when the maximum range of any
variable is small, e.g., polynomial in the number of variables. We show that this is not the
case by presenting a polynomial kernelization for the variant where the maximum range is
an additional parameter. The problem is defined as follows.

r-Sparse Bounded Integer Linear Program Feasibility(n,d)
Input: An r-row-sparse matrix A ∈ Qm×n and a vector b ∈ Qm.
Parameter: n+ d.

Output: Is there a vector x ∈ {0, . . . , d− 1}n such that Ax ≤ b?

Note that we restrict to the seemingly special case where each variable is not only restricted
to d different consecutive values, but in fact all variables must take values from {0, . . . , d− 1}.
It can be easily checked that this is as general as allowing any d consecutive integers, since
we could shift variables to range {0, . . . , d− 1} without changing feasibility (by changing b).

I Theorem 5. r-Sparse Bounded Integer Linear Programming Feasibility(n, d)
admits a polynomial kernelization with size O(nr · dr · log nd).

S. Kratsch 89

Proof. We assume that r ≥ 3 since otherwise the problem can be solved in time O(m · d) by
work of Bar-Yehuda and Rawitz [2] and the theorem follows trivially. Recall that for r ≥ 3
the problem is NP-hard by a reduction from 3-SAT.

The kernelization works by considering all choices of r of the n variables and replacing
the constraints (i.e., inequalities) in Ax ≤ b which contain only those variables. The starting
observation is that there are dr choices of picking values for r variables, and the considered
constraints prevent some of those from being feasible. It can be efficiently checked which of
the dr assignments are feasible. For each infeasible point P = (p1, . . . , pr) we show how to
give a small number of constraints that exactly exclude this point. Together, all those new
constraints have the same effect as the original ones, allowing the latter to be discarded.

Let x1, . . . , xr be any r of n variables and let P̂ denote the set of all points P = (p1, . . . , pr)
that are infeasible for constraints only involving x1, . . . , xr. (Note that the whole ILP might
be infeasible, but locally we only care for an equivalent replacement of the constraints.) We
show constraints that enforce (x1, . . . , xr) 6= (p1, . . . , pr):

∀i ∈ {1, . . . , r} : xi = pi + si − d · ti si ∈ {0, . . . , d− 1}, ti ∈ {0, 1} (12)
r∑
i=1

si ≥ 1 (13)

This requires 2r variables and r + 1 constraints; a few more variables and constraints are
required to transform the constraints into an equivalent set of inequalities with at most r
variables each: For constraint (13) it suffices to flip the sign since it is already an inequality
on r variables. For constraints (12) we can replace each equality by two equalities using a
new auxiliary variable (in fact this is only needed when r = 3) and replacing both equalities
in turn by two inequalities. We use 3r variables and 4r + 1 constraints total. Note that all
coefficients have values in {−1, 0, 1, d} and can be encoded by O(log d) bits (in fact two bits
suffice easily for four values).

Again, we will argue correctness on the more succinct representation, i.e., on (12) and (13).
Assume first that (x1, . . . , xr) = (p1, . . . , pr). Thus 0 = xi − pi = si − d · ti, which

implies that si = ti = 0 (taking into account the domains of si and ti) for all i. Thus
constraint (13) is violated, making (x1, . . . , xr) = (p1, . . . , pr) infeasible. On the other
hand, if (x1, . . . , xr) 6= (p1, . . . , pr), then there is a position j with xj 6= pj . It follows
that 0 < |xj − pj | < d (due to the range of xj) which in turn implies that sj 6= 0 since the
contribution of d · tj to the equality is a multiple of d. Thus constraint (13) is fulfilled.

It follows that we are able to add constraints which exclude any desired point for x1, . . . , xr.
Let us complete the proof. Clearly, if a vector x fulfills Ax ≤ b then any choice of r variables
from x fulfills all constraints that contain only these variables. This in turn means that
those variables avoid the points that are excluded by the constraints, which implies that they
satisfy all our new constraints (since avoiding those points is all that is needed).

Conversely, assume that a vector x fulfills all new constraints and hence any choice of r
variables avoids all forbidden points. Since any of the original constraints contains at most r
variables, it comes down to forbidding some set of points. Since x fulfills our new constraints
it also avoids all infeasible points for Ax ≤ b. Thus, x satisfies also all original constraints.

Summarizing, we are able to replace all constraints by new constraints with small
coefficients, which have the same outcome. Clearly the computations can be performed
in polynomial time (the input size dominates n, m, and the encodings of all coefficients
in A and b). Since for any r variables there are at most dr infeasible points, we need at
most (4r + 1) · dr ·

(
n
r

)
= O(dr · nr) constraints and 3r · dr · nr = O(dr · nr) variables. The

generated equivalent instance can be encoded by r·O(log(dr ·nr))·O(dr ·nr) = O(dr ·nr ·log dn)

STACS’13

90 On Polynomial Kernels for Sparse Integer Linear Programs

bits, by encoding each constraint (on r variables) as the binary encoded names of the variables
with nonzero coefficients followed by the values of the coefficients. J

5 Preprocessing for sparse Equality ILP

Now we will briefly describe how to reduce the number of constraints for the feasibility
problem of r-row-sparse ILPs of form Ax = b, x ≥ 0. Note that we make no explicit use of
the non-negativity of x but the problem is polynomially solvable without it.

r-Sparse Equality Integer Linear Programming Feasibility(n) – r-SEILPF(n)
Input: An r-row-sparse matrix A ∈ Qm×n and a vector b ∈ Qm.
Parameter: n.
Output: Is there a vector x ∈ Zn such that Ax = b and x ≥ 0?

I Theorem 6. There is a polynomial-time algorithm that reduces any instance of r-Sparse
Equality Integer Linear Program Feasibility(n) to an equivalent instance with at
most O(nr) constraints.

Proof. Given an instance of r-SEILPF, apply the following procedure for each of the
(
n
r

)
choices of r of the n variables. For a given set of variables, say x1, . . . , xr, list all constraints
in Ax = b that contain only x1, . . . , xr as variables. If there are more than r such constraints,
then apply Gaussian elimination to either find a redundant constraint, or to find out that
there is no feasible assignment for this set of variables. In the latter case, clearly, the whole
instance is infeasible and we return no (or a dummy no-instance). Repeat while there are
more than r constraints. At the end, if we never terminate with no, we have reduced the
overall number of constraints down to at most r ·

(
n
r

)
= O(nr) constraints. J

We point out that the reduction of Theorem 6 does not imply a polynomial kernelization.
The reason is that while we reduce to an equivalent ILP A′x = b′ where A′ is an O(nr)× n
matrix, the coefficients in A′ and b′ may still have arbitrary values and coding length.

6 Conclusion

We prove that the existence of polynomial kernels for r-Sparse Integer Linear Program
Feasibility with respect to the number n of variables depends strongly on the maximum
range of the variables. If the range is unbounded, then there is no polynomial kernelization
under standard assumptions. Otherwise, if the range of each variable is polynomially bounded
in n then we establish a polynomial kernelization. This holds also for the more general case
of using the maximum range as an additional parameter.

Future work will be directed at more restricted cases of ILPs in order to obtain more pos-
itive kernelization results. Similarly, structural parameters of ILPs seem largely unexplored.

S. Kratsch 91

References
1 Alper Atamtürk and Martin W. P. Savelsbergh. Integer-programming software systems.

Annals OR, 140(1):67–124, 2005.
2 Reuven Bar-Yehuda and Dror Rawitz. Efficient algorithms for integer programs with two

variables per constraint. Algorithmica, 29(4):595–609, 2001.
3 Manuel Bodirsky, Gustav Nordh, and Timo von Oertzen. Integer programming with 2-

variable equations and 1-variable inequalities. Inf. Process. Lett., 109(11):572–575, 2009.
4 Hans L. Bodlaender. Kernelization: New upper and lower bound techniques. In IWPEC,

volume 5917 of LNCS, pages 17–37. Springer, 2009.
5 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On

problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.
6 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,

and Dimitrios M. Thilikos. (Meta) Kernelization. In FOCS, pages 629–638, 2009.
7 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Cross-composition: A new

technique for kernelization lower bounds. In STACS, volume 9 of LIPIcs, pages 165–176.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

8 Kenneth L. Clarkson. Las vegas algorithms for linear and integer programming when the
dimension is small. J. ACM, 42(2):488–499, 1995.

9 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses. In STOC, pages 251–260. ACM, 2010.

10 Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompressibility through colors
and ids. In ICALP (1), volume 5555 of LNCS, pages 378–389. Springer, 2009.

11 Friedrich Eisenbrand. Fast integer programming in fixed dimension. In ESA, volume 2832
of LNCS, pages 196–207. Springer, 2003.

12 Friedrich Eisenbrand and Gennady Shmonin. Parametric integer programming in fixed
dimension. Math. Oper. Res., 33(4):839–850, 2008.

13 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and kernels. In SODA, pages 503–510. SIAM, 2010.

14 Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct
PCPs for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011.

15 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

16 Jiong Guo and Rolf Niedermeier. Invitation to data reduction and problem kernelization.
SIGACT News, 38(1):31–45, 2007.

17 Danny Harnik and Moni Naor. On the compressibility of NP instances and cryptographic
applications. SIAM J. Comput., 39(5):1667–1713, 2010.

18 Ravi Kannan. Improved algorithms for integer programming and related lattice problems.
In STOC, pages 193–206. ACM, 1983.

19 Ravindran Kannan. A polynomial algorithm for the two-variable integer programming
problem. J. ACM, 27(1):118–122, 1980.

20 Ravindran Kannan. Minkowski’s convex body theorem and integer programming. Math-
ematics of Operations Research, 12(3):415–440, 1987.

21 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New
tools for kernelization. In FOCS, pages 450–459. IEEE Computer Society, 2012.

22 Hendrik W. Lenstra. Integer programming with a fixed number of variables. Mathematics
of Operations Research, 8:538–548, 1983.

23 Nimrod Megiddo. Linear programming in linear time when the dimension is fixed. J. ACM,
31(1):114–127, 1984.

24 Karsten Weihe. Covering trains by stations or the power of data reduction. In Proceedings
of ALENEX, pages 1–8, 1998.

STACS’13

Linear kernels for (connected) dominating set on
graphs with excluded topological subgraphs
Fedor V. Fomin∗1, Daniel Lokshtanov1, Saket Saurabh2, and
Dimitrios M. Thilikos†3

1 Department of Informatics, University of Bergen, Norway
{fomin|daniello}@ii.uib.no

2 The Institute of Mathematical Sciences,
Chennai 600113, India.
saket@imsc.res.in

3 National and Kapodistrian University of Athens, Greece.
sedthilk@thilikos.info

Abstract
We give the first linear kernels for Dominating Set and Connected Dominating Set

problems on graphs excluding a fixed graph H as a topological minor.

1998 ACM Subject Classification G.2.2, F.2.2

Keywords and phrases Parameterized complexity, kernelization, algorithmic graph minors,
dominating set, connected dominating set

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.92

1 Introduction

Kernelization is an emerging technique in parameterized complexity. A parameterized prob-
lem is said to admit a polynomial kernel if there is a polynomial-time algorithm (the degree
of the polynomial is independent of the parameter k), called a kernelization algorithm, that
reduces the input instance down to an instance with size bounded by a polynomial p(k) in k,
while preserving the answer. This reduced instance is called a p(k) kernel for the problem.
If the size of the kernel is O(k), then we call it a linear kernel.

The Dominating Set (DS) problem together with its numerous variants is one of the
most classic and well-studied problems in algorithms and combinatorics [27]. In the Domin-
ating Set problem, we are given a graph G and a non-negative integer k, and the question
is whether G contains a set of k vertices whose closed neighborhood contains all the vertices
of G. In the connected variant, Connected Dominating Set (CDS), we additionally
demand the subgraph induced by the dominating set to be connected. A considerable part
of the algorithmic study on these NP-complete problems has been focused on the design of
parameterized and kernelization algorithms. In general, DS is W[2]-complete and therefore
it cannot be solved by a parameterized algorithm, unless an unexpected collapse occurs in
the Parameterized Complexity Hierarchy (see [18]) and thus also does not admit a kernel.

∗ Supported by European Research Council (ERC) grant “Rigorous Theory of Preprocessing”, reference
267959.
† Co-financed by the European Union (European Social Fund - ESF) and Greek national funds through

the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Frame-
work (NSRF) - Research Funding Program: “Thales. Investing in knowledge society through the
European Social Fund.”

© Fomin, Lokshtanov, Saurabh and Thilikos;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 92–103

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.92
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

F. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos 93

However, there are interesting graph classes where FPT-algorithms exist for the DS prob-
lem. The project of widening the horizon where such algorithms exist spanned a multitude
of ideas that made DS the testbed for some of the most cutting-edge techniques of para-
meterized algorithm design. For example, the initial study of parameterized subexponential
algorithms for DS on planar graphs [13, 24] resulted in the creation of bidimensionality the-
ory characterizing a broad range of graph problems that admit efficient approximate schemes,
fixed-parameter algorithms or kernels on a broad range of graphs [14, 15, 20, 22, 21].

One of the first results on linear kernels is the celebrated work of Alber, Fellows, and
Niedermeier on DS on planar graphs [1]. This work augmented significantly the interest
in proving polynomial (or preferably linear) kernels for other parameterized problems. The
result of Alber et al. [1], see also [8], has been extended to a much more general graph
classes like graphs of bounded genus [6] and apex-minor free graphs [22]. An important
step in this direction was done by Alon and Gutner [2, 26] who obtained a kernel of size
O(kh) for DS on H-minor-free and H-topological-minor free graphs, where the constant h
depends on the excluded graph H. Later, Philip, Raman, and Sikdar [31] obtained a kernel
of size O(kh) on Ki,j-free and d-degenerated graphs, where h depends on i, j and d. In
particular, for d-degenerate graphs, a subclass of Ki,j-free graphs, the algorithm of Philip,
Raman, and Sikdar [31] produces a kernel of size O(kd2). Similarly, the sizes of kernels
in [26, 31] are bounded by polynomials in k with degrees depending on the size of the
excluded minor H. Alon and Gutner [2] mentioned as a challenging question to characterize
the families of graphs for which the dominating set problem admits a linear kernel, i.e. a
kernel of size f(h) · k, where the function f depends exclusively on the graph family. In
this direction, there are already results for more restricted graph classes. According to the
meta-algorithmic results on kernels introduced in [6], DS has a kernel of size f(g) · k on
graphs of genus g. An alternative meta-algorithmic framework, based on bidimensionality
theory [14], was introduced in [22], implying the existence of a kernel of size f(H) ·k for DS
on graphs excluding an apex graph H as a minor. Recently, the result on linear kernels on
apex-minor-free graphs was extended to graphs excluding an arbitrary graph H as a minor
[23]. Prior to our work, the only result on linear kernels for DS on graphs excluding H as
a topological subgraph, was the result of Alon and Gutner in [2] for a very special case
H = K3,h. See Fig. 1 for the relationship between these classes.

planar
DS: linear kernel [J.ACM 04]
CDS: linear kernel [FOCS 09]bounded genus

DS: linear kernel [FOCS 09]
CDS: linear kernel [FOCS 09]

apex-minor-free
DS: linear kernel [SODA 10]
CDS: linear kernel [SODA 10]

H-minor-free
DS: linear kernel [SODA 12]
CDS: linear kernel [SODA 12]

d-degenerated
DS: poly-kernel for fixed d [ESA 09]
CDS: no poly-kernel for d>1 [WG 10]

bounded degree
DS: trivial linear kernel
CDS: trivial linear kernel H-topological-minor-free

DS: linear kernel
CDS: linear kernel

THIS PAPER

Figure 1 Kernels for DS and CDS on classes of sparse graphs. Arrows represent inclusions of
classes (where the class at the head is contained in the class at the tail). In the diagram, [J.ACM
04] is referred to the paper of Albers et al. [1], [FOCS 09] to the paper of Bodlaender et al. [6],
[SODA 10] and [SODA 12] to the papers of Fomin et al. [22] and [23], [ESA 09] to the paper of
Philip et al. [31], and [WG 10] to Cygan et al. [10].

It is tempting to suggest that similar improvements on kernel sizes are possible for more

STACS’13

94 Linear kernels for dominating set

general graph classes like d-degenerated graphs. For example, for graphs of bounded vertex
degree, a subclass of d-degenerate graphs, DS has a trivial linear kernel. Unfortunately, for
d-degenerate graphs the existence of a linear kernel and even polynomial kernel with the
exponent of the polynomial independent of d is very unlikely. By the very recent work of
Cygan et al. [9], the kernelization algorithm of Philip, Raman, and Sikdar [31] is essentially
tight—existence of a kernel of size O(k(d−3)(d−1)−ε)), would imply that coNP is in NP/poly.
In spite of these negative news, we show how to lift the linearity of kernelization for DS
from bounded-degree graphs and H-minor free graphs to the class of graphs excluding H as
a topological subgraph. Moreover, a modification of the ideas for DS kernelization can be
used to obtain a linear kernel for CDS, which is usually a much more difficult problem to
handle due to the connectivity constraint. For example, CDS does not have a polynomial
kernel on 2-degenerated graphs unless coNP is in NP/poly [10].

The class of graphs excluding H as a topological subgraph is a wide class of graphs
containing H-minor-free graphs and graphs of constant vertex degrees. The existence of
a linear kernel for DS on this class of graphs significantly extends and improves previous
works [23, 26]. The basic idea behind kernelization algorithms on apex-minor-free and
minor-free graphs is the bidimensionality of DS. Roughly speaking, the treewidth of these
graphs with dominating set k is either o(k) (as in planar, bounded genus or apex-minor-
free graphs [14]) or becomes o(k) after applying the irrelevant vertex technique [23]. This
idea can hardly work on graphs of bounded degree, and hence on graphs excluding H as a
topological subgraph. The reason is that the bound o(k) on the treewidth of such graphs
would imply that DS is solvable in subexponential time on graphs of bounded degree, which
in turn can be shown to contradict the Exponential Time Hypothesis [28]. This is why the
kernelization techniques developed for H-minor-free graphs does not seem to be applicable
directly in our case.

2 Preliminaries
In this section we give various definitions which we make use of in the paper. We refer
to Diestel’s book [16] for standard definitions from Graph Theory. Let G be a graph with
vertex set V (G) and edge set E(G). A graph G′ is a subgraph of G if V (G′) ⊆ V (G)
and E(G′) ⊆ E(G). For subset V ′ ⊆ V (G), the subgraph G′ = G[V ′] of G is called the
subgraph induced by V ′ if E(G′) = {uv ∈ E(G) | u, v ∈ V ′}. By NG(u) we denote the
(open) neighborhood of u in graph G. That is, the set of all vertices adjacent to u and
by N [u] = N(u) ∪ {u}. Similarly, for a subset D ⊆ V , we define NG[D] = ∪v∈DNG[v]
and NG(D) = NG[D] \ D. We omit the subscripts when they are clear from the context.
Throughout the paper, given a graph G and vertex subsets Z and S, whenever we say that a
subset Z dominates all but (everything but) S then we mean that V (G)\S ⊆ N [Z]. Observe
that a vertex of S can also be dominated by the set Z.

We denote by Kh the complete graph on h vertices. Also for a given graph G and a
vertex subset S, by K[S] we mean a clique on the vertex set S. For an integer r ≥ 1 and
vertex subsets P,Q ⊆ V (G), we say that a subset Q is r-dominated by P , if for every v ∈ Q
there is a u ∈ P such that the distance between u and v is at most r. For r = 1, we simply
say that Q is dominated by P . We denote by Nr

G(P) the set of vertices r-dominated by P .
Given an edge e = xy of a graph G, the graph G/e is obtained from G by contracting

the edge e, that is, the endpoints x and y are replaced by a new vertex vxy which is adjacent
to the old neighbors of x and y (except from x and y). A graph H obtained by a sequence
of edge-contractions is said to be a contraction of G. We denote it by H ≤c G. A graph H
is a minor of a graph G if H is the contraction of some subgraph of G and we denote it by
H ≤m G. We say that a graph G is H-minor-free when it does not contain H as a minor.

F. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos 95

We also say that a graph class GH is H-minor-free (or, excludes H as a minor) when all its
members are H-minor-free. An apex graph is a graph obtained from a planar graph G by
adding a vertex and making it adjacent to some of the vertices of G. A graph class GH is
apex-minor-free if GH excludes a fixed apex graph H as a minor. A subdivision of a graph
H is obtained by replacing each edge of H by a path of at least one edge. We say that H
is a topological minor of G if some subgraph of G is isomorphic to a subdivision of H and
denote it by H �T G. A graph G excludes graph H as a (topological) minor if H is not a
(topological) minor of G. For a graph H, by CH , we denote all graphs that exclude H as
topological minor.
Tree Decompositions. A tree decomposition of a graph G = (V,E) is a pair (M,β) where
M is a rooted tree and β : V (M)→ 2V , such that :
1.

⋃
t∈V (M) β(t) = V .

2. For each edge {u, v} ∈ E, there is a t ∈ V (M) such that both u and v belong to β(t).
3. For each v ∈ V , the nodes in the set {t ∈ V (M) | v ∈ β(t)} form a subtree of M .
The following notations are the same as that in [25]. Given a tree decomposition of graph
G = (V,E), we define mappings σ, γ : V (M)→ 2V and κ : E(M)→ 2V . For all t ∈ V (M),
σ(t) = ∅ if t is the root of M else σ(t) = β(t) ∩ β(s) if s is the parent of t in M . We also
set γ(t) =

⋃
u is a descendant of t β(u). For all e = uv ∈ E(M), κ(e) = β(u) ∩ β(v). For a

subgraph M ′ of M by β(M ′) we denote ∪t∈V (M ′)β(t).
Let (M,β) be a tree decomposition of a graph G. The width of (M,β) is min{|β(t)|−1 |

t ∈ V (M)}, and the adhesion of the tree decomposition is max{|σ(t)| | t ∈ V (M)}. We
use tw(G) to denote the treewidth of the input graph, that is the minimum width of a
tree-decomposition of G. For every node t ∈ V (M), the torso at t is the graph τ(t) :=
G[β(t)] ∪ E(K[σ(t)]) ∪

⋃
u child of tE(K[σ(u)]).

Given a graph G, we say that a set X ⊆ V (G) is an r-protrusion of G if tw(G[X]) ≤ r

and the number of vertices in X with a neighbor in V (G) \X is at most r.
Known Decomposition Theorem. The decomposition theorem that we use extensively
for our proofs is given in the next theorem.
I Theorem 1 ([25, 32]). For every graph H, there exists a constant h, depending only on the
size of H, such that for every graph G with H 6�T G, there is a tree decomposition (M,β) of
adhesion at most h such that for all t ∈ V (M), one of the following conditions is satisfied:
1. τ(t) excludes a clique of size h as a minor.
2. τ(t) has at most h vertices of degree at least h (we call these vertices apices of τ(t)).
Moreover, if G is H-minor free graph G then nodes of second type do not exist. Furthermore,
there is an algorithm that, given graphs G, H of sizes n and h respectively, computes such
a tree decomposition in time h · nO(1) and computes the corresponding apex set Zt of size at
most h for every bag τ(t).

Actually, we can assume that in (M,β), for any x, y ∈ V (M), β(x) 6⊆ β(y). That is, no
bag is contained in other. See [18, Lemma 11.9] for the proof.

3 An approximation algorithm for DS on H 6�T G
In this section we give a constant factor approximation for DS on CH . It is well known
that graphs in CH have bounded degeneracy. In a recent manuscript a subset of the au-
thors together with others show that DS has a O(d2) factor approximation algorithm on
d-degenerate graphs [29]. To make this paper self contained we provide an approximation
algorithm for DS on CH here. The main idea of the approximation algorithm is to first
compute the tree-decomposition (M,β) given by Theorem 1 for G and then suitably select
a bag of this decomposition that still contains a vertex that is not dominated. Then we
locally find an approximate dominating set for this bag by using either an approximation

STACS’13

96 Linear kernels for dominating set

algorithm for DS on H-minor free graphs or on graphs of almost bounded degree. We apply
this step iteratively and finally show that the dominating set returned by the algorithm is
indeed a constant factor approximation. This results in the following lemma.
I Lemma 2. Let H be a graph. Then there exists a constant η(H) depending only on |H|
such that DS admits a η(H)-factor approximation algorithm on CH .

4 Generalized Protrusions
A parameterized graph problem Π can be seen as a subset of Σ∗×Z+ where, in each instance
(x, k) of Π, x encodes a graph and k is the parameter (we denote by Z+ the set of all non-
negative integers). Here we define the notion of t-boundaried graphs and various operations
on them.

I Definition 1. [t-Boundaried Graphs] A t-boundaried graph is a graph G with a set
B ⊆ V (G) of at most t distinguished vertices and an injective labeling from B to the set
{1, . . . , t}, . The set B is called the boundary of G and vertices in B are called boundary
vertices or terminals. Given a t-boundaried graph G we denote its boundary by δ(G). We
use the notation Ft to denote the class of all t-boundaried graphs.

I Definition 2. [Gluing by ⊕] Let G1 and G2 be two t-boundaried graphs. We denote
by G1 ⊕ G2 the graph obtained by taking the disjoint union of G1 and G2 and identifying
equally-labeled vertices of the boundaries of G1 and G2. We stress that, in G1 ⊕G2, there
is an edge between two labeled vertices if there is an edge between them in G1 or in G2.

When we are dealing with a gluing operation we use the term common boundary in G1 and
G2 in order to denote the set of identified vertices in G1 ⊕G2.

I Definition 3. [Gluing by ⊕δ] The boundaried gluing operation ⊕δ is similar to the normal
gluing operation, but results in a t-boundaried graph rather than a graph. Specifically
G1 ⊕δ G2 results in a t-boundaried graph where the graph is G = G1 ⊕G2 and a vertex is
in the boundary of G if it was in the boundary of G1 or G2. Vertices in the boundary of G
keep their label from G1 or G2.

Let G be a class of (not boundaried) graphs. By slightly abusing notation we say that
a boundaried graph belongs in a graph class G if the underlying graph belongs in G. By
∂G(X), we denote the boundary of X in G, that is the vertices of G that are not in X and
are neighbours of vertices in X.

I Definition 4. [Replacement] Let G be a t-boundaried graph containing a set X ⊆ V (G)
such that ∂G(X) = δ(G). Let G1 be a t-boundaried graph. The result of replacing X with
G1 is the graph G? ⊕ G1, where G? = G \ (X \ ∂(X)) is treated as a t-boundaried graph,
where δ(G?) = δ(G).

I Definition 5. [Equivalence of t-boundaried graphs] Let Π be a parameterized graph
problem whose instances are pairs of the form (G, k). Given two t-boundaried graphs G1, G2,

we say that G1 ≡Π,t G2 if there exist a transposition constant c ∈ Z such that ∀(F, k) ∈
Ft × Z(G1 ⊕ F, k) ∈ Π⇔ (G2 ⊕ F, k + c) ∈ Π.

Note that for every t, the relation ≡Π,t on t-boundaried graphs is an equivalence relation.
Next we define a notion of “transposition-minimality” for the members of each equivalence
class of ≡Π,t .

I Definition 6. [Progressive representatives] Let Π be a parameterized graph problem
whose instances are pairs of the form (G, k) and let C be some equivalence class of ≡Π,t for
some t ∈ Z+. We say that J ∈ C is a progressive representative of C if for every H ∈ C there
exist c ∈ Z−, such that ∀(F, k) ∈ Ft × Z (H ⊕ F, k) ∈ Π⇔ (J ⊕ F, k + c) ∈ Π.

F. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos 97

I Lemma 3 ([6]). Let Π be a parameterized graph problem whose instances are pairs of
the form (G, k) and let t ∈ Z+. Then each equivalence class of ≡Π,t has a progressive
representative.

After Lemma 3 we are in position to give the following definitions.
I Definition 7. A parameterized graph problem Π whose instances are pairs of the form (G, k)
has Finite Integer Index (or simply has FII), if and only if for every t ∈ Z+, the equivalence
relation ≡Π,t is of finite index, that is, has a finite number of equivalence classes. For
each t ∈ Z+, we define St to be a set containing exactly one progressive representative of
each equivalence class of ≡Π,t . We say that a parameterized graph problem Π is positive
monotone if for every graph G there exists a unique ` ∈ N such that for all `′ ∈ N and `′ ≥ `,
(G, `′) ∈ Π and for all `′ ∈ N and `′ < `, (G, `′) /∈ Π. A parameterized graph problem Π is
negative monotone if for every graph G there exists a unique ` ∈ N such that for all `′ ∈ N
and `′ ≥ `, (G, `′) /∈ Π and for all `′ ∈ N and `′ < `, (G, `′) ∈ Π. Π is monotone if it is either
positive monotone or negative monotone. We denote the integer ` by Thr(G). Let Π be a
monotone parameterized graph problem that is FII. Let St be a set containing exactly one
progressive representative of each equivalence class of ≡Π,t . For a t-boundaried graph G by
κ(G) we denote maxG′∈St

Thr(G⊕G′).

I Lemma 4. Let Π be a monotone parameterized graph problem that is FII. Furthermore,
let A be an algorithm for Π that given a pair (G, k) decides whether it is in Π in at most
f(|V (G)|, k) steps for some function f : N × N → N. Then for every t ∈ N, there exists a
ξt ∈ Z+ (depending on Π and t), and an algorithm that, given a t-boundaried graph G with
|V (G)| > ξt, outputs, in O(κ(G)(f(|V (G)|+ ξt, κ(G))) steps, a t-boundaried graph G∗ such
that G ≡Π,t G

∗ and |V (G∗)| < ξt. Moreover we can compute the translation constant c from
G to G∗ in the same time.

We remark that the algorithm whose existence is guaranteed by the Lemma 4 assumes that
the set St of representatives are hardwired in the algorithm and that in general there is no
procedure that for FII problems Π outputs such a representative set.

5 Slice-Decomposition
In this section our objective is to show that in polynomial-time we can partition the graph
G satisfying certain properties that will be useful later. To obtain our decomposition we
need to use a more general notion of protrusion. More precisely, we need the following kind
of protrusions.
I Definition 8. [r-DS-protrusion] Given a graph G, we say that a set X ⊆ V (G) is an
r-DS-protrusion of G if the number of vertices in X with a neighbor in V (G) \X is at most
r and there exists a subset S ⊆ X of size at most r such that S is a dominating set of G[X].

The notion of r-DS-protrusion X differs from normal protrusion in the following way. In
the normal protrusion we demand that tw(X) is at most r while in the r-DS-protrusion we
demand that the dominating set of the graph induced on X is small. We can similarly define
the notion of r-Π-protrusion for various other graph problems Π. The next question is what
do we achieve if we get a large r-DS-protrusion (or r-CDS-protrusion). The next lemma
shows that in that case we can replace it with an equivalent small graph. More precisely we
have the following.

I Lemma 5. Let H be a fixed graph. For every t ∈ Z+, there exist a ξt ∈ Z+ (depending
on DS (CDS), t and H), and an algorithm A such that given a t-DS-protrusion (t-CDS-
protrusion) X, with |X| > ξt, and H 6�T X, A outputs in O(|X|) time (|X|O(1)) time), a
t-boundaried graph X ′ such that X ≡DS,t X

′ (X ≡CDS,t X
′) and |X ′| ≤ ξt. Moreover in the

same time we can also find the translation constant c from X to X ′.

STACS’13

98 Linear kernels for dominating set

Let (M,β) be a tree decomposition of a graph G. For a subtree Mi of M , we define
E(Mi) as the set of edges in M that have exactly one endpoint in V (Mi). Furthermore we
define R+

i = β(Mi) and τ(M ′) := G[R+
i] ∪

⋃
e∈E(Mi)K[κ(e)]. Our main objective in this

section is to obtain the following (α, β)-slice decomposition for α = β = O(k).

I Definition 9. [(α, β)-slice decomposition] Let G be a graph with H 6�T G and let (M,β)
be the tree decomposition given by Theorem 1. An (α, β)-slice decomposition of a graph G
is a collection P of pairwise disjoint connected subtrees {M1, . . . ,Mα} of M such that the
following holds.

Each of τ(Mi) is either H∗-minor free for some graph H∗ whose size only depends on h
or τ(Mi) has at most h vertices of degree at least h.∑ρ
i=1(

∑
e∈E(Mi) |κ(e)|) ≤ β.

We call the sets R+
i , i ∈ {1, . . . , ρ}, slices of P.

Essentially, the slice-decomposition allows us to partition the input graph G into sub-
graphs C0, C1, . . . , C`, such that |C0| = O(k); for every i ≥ 1, the neighbourhood N(Ci) ⊆
C0, and

∑
1≤i≤` |N(Ci)| = O(k). Now we define a notion of measure.

I Definition 10. Let (M,β) be the tree decomposition of a graph G given by the Theorem 1.
For a subset Q ⊆ V (G) and a subtree M ′ of M we define µ(M ′, Q) = |β(M ′) ∩ Q|. If we
delete an edge e = uv ∈ E(M) from the tree M then we get two trees. We call the trees as
Mu and Mv based on whether they contain u or v.

I Lemma 6. Let H be a fixed graph and CH be the class of graphs excluding H as a topological
minor. Then there exist two constants δ1 and δ2 (depending on the problem DS (CDS))
and a polynomial time algorithm such that given a yes instance (G, k) of DS (CDS), can
either find

a (δ1k, δ2k)-slice decomposition; or
a 2h-DS-protrusion (or 2h-CDS-protrusion) of size more than ξ2h or;
a h′-protrusion of size more than ξh′ where h′ depends only on h.

Sketch of the proof. To obtain the slice-decomposition we introduce our marking scheme
as follows.

1. Apply Lemma 2 on the input graph G and compute a η(H)-factor approximation (con-
nected) dominating set D for G.

2. Use Theorem 1 and compute a tree-decomposition (M,β). We call a tree edge e = uv ∈
E(M) heavy if µ(Mu, D) ≥ h + 1 and µ(Mv, D) ≥ h + 1. Mark all the edges of M that
are heavy. We use F to denote all the set of edges that have been marked.

Let M∗ be the subtree (requires proof) induced on all the heavy edges. We use this
tree M∗ to obtain the decomposition. If (G, k) is a yes instance then one can show that
the number of leaves in the tree M∗ is upper bounded by O(k). This immediately implies
that the number of maximal paths consisting only of degree 2 vertices is upper bounded
by O(k). We show that if any of these paths is too long then we can obtain a 2h-DS-
protrusion of large size. This implies that the size of the tree M∗ is upper bounded by O(k).
Now we delete all the edges appearing in M∗ from M . This breaks the tree M into O(k)
subtrees, P = {M1, . . . ,Mα}. We argue that these subtrees form the partition described in
the definition of slice decomposition. To show that

∑ρ
i=1(

∑
e∈F(Mi) |κ(e)|) ≤ O(k), we use

the fact that any edge of M∗ sees at most two trees among P. J

F. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos 99

6 Final Kernel
In this section we use slice-decomposition obtained in the last section and the reduction
rules used in [23] to obtain linear kernels for DS and CDS. We first outline our algorithm
for DS and then explain how we can obtain a linear kernel for CDS.
Kernelization Algorithm for DS. Given an instance (G, k) of DS we first apply Lemma 2
and find a dominating set D of G. If |D| > η(H)k we return that (G, k) is a no instance to
DS. Else, we apply Lemma 6 and

either find (δ1k, δ2k)-slice decomposition; or
a 2h-DS-protrusion X of G (or 2h-CDS-protrusion) of size more than ξ2h; or
a h′-protrusion of size more than ξh′ where h′ depends only on h.

In the second case we apply Lemma 5. Given X we apply Lemma 5 and obtain a boundaried
graph X ′ such that |X ′| ≤ ξ2h and X ≡DS,2h X

′ (X ≡CDS,2h X
′). We also compute the

translation constant c between X and X ′. Now we replace the graph X with X ′ and obtain
a new equivalent instance (G′, k + c). (Recall that c is a non-positive integer). In the third
case we apply the protrusion replacement lemma of [6, Lemma 7] to obtain a new equivalent
instance (G′, k′) for k′ ≤ k with |V (G′)| < |V (G)|. We repeat this process until Lemma 6
returns a slice-decomposition. For simplicity we denote by (G, k) itself the graph on which
Lemma 6 returns the slice-decomposition. Since the number of times this process can be
repeated is upper bounded by n = |V (G)|, we can obtain (δ1k, δ2k)-slice decomposition for
(G, k) in polynomial-time.

Let P be the pairwise disjoint connected subtrees {M1, . . . ,Mα} of M coming from
the slice-decomposition of G. Recall that R+

i = β(Mi). Let Qi =
⋃
e∈E(Mi) κ(e), Bi =

(D ∩ R+
i) ∪ Qi and bi = |Bi|. In this section we will treat Gi := G[R+

i] as a graph with
boundary Bi. Observe that Bi is a dominating set for Gi.

We have two kinds of graphs Gi. In one case we have that Gi is H∗-minor free for a
graph H∗ whose size only depends on h. In the other case we have that the graph Gi has at
most h′ vertices of degree at least h′. To obtain our kernel we will show the following two
lemmata.
I Lemma 7. There exists a constant δ and a polynomial time algorithm that, given a graph
G with boundary S where S is a dominating set for G and G has at most h′ vertices of degree
at least h′, outputs a graph G′ with boundary S such that G′ ≡DS,|S| G and |V (G′)| ≤ δ|S|.
Furthermore we can also compute the translation constant c of G and G′ in polynomial-time.

I Lemma 8. There exists a constant δ and a polynomial time algorithm that, given an
H-minor free graph G with boundary S where S is a dominating set for G, outputs a graph
G′ with boundary S such that G′ ≡DS,|S| G and |V (G′)| ≤ δ|S|. Furthermore we can also
compute the translation constant c of G and G′ in polynomial-time.

Once we have proved Lemmata 7 and 8, we obtain the linear sized kernel for DS as
follows. Given the graph G we obtain the slice-decomposition and check if any of Gi has size
more than δbi. If yes then we either apply Lemma 7 or Lemma 8 based on the type of Gi and
obtain a graph G′i such that G′i ≡DS,bi Gi and |V (G′i)| ≤ δbi. We think G = Gi⊕G?, where
G? = G \ (R+

i \Bi) as a bi-boundaried graph with boundary Bi. Then we obtain a smaller
equivalent graph G′ = G? ⊕G′i and k′ = k + c. After this we can repeat the whole process
once again. This implies that when we can not apply Lemmata 8 or 7 on (G, k) we have
that each of |V (Gi)| ≤ δbi. Furthermore notice that ∪αi=1R

+
i = V (G). This implies that in

this case we have the following:
∑α
i=1 |R

+
i | ≤ δ

∑α
i=1 bi = δ(

∑α
i=1(|Qi|+ |(D∩R+

i)\Qi|)) =
δ(

∑α
i=1 |Qi|+

∑α
i=1 |(D∩R

+
i)\Qi|) ≤ δδ2k+δη(H)k = O(k). This bring us to the following

theorem.

STACS’13

100 Linear kernels for dominating set

I Theorem 9. DS admits a linear kernel on graphs excluding a fixed graph H as a topological
minor.

It only remains to prove Lemmata 7 and 8 to complete the proof of Theorem 9.
Irrelevant Vertex Rule and proof for Lemma 7. For the proofs of Lemmata 7 and 8 we
need to use an irrelevant vertex rule developed in [23]. Furthermore, the proof of Lemma 8
is essentially a reformulation of the results presented in [23].

If the graph G is Kh′ -minor free then the irrelevant vertex rule will be used in a recursive
fashion. In each recursive step it is used in order to reduce the treewidth of torsos and hence
also the entire graph. Then the graph is split in two pieces and the procedure is applied
recursively to the two pieces. In the bottom of the recursion when the graph becomes smaller
but still big enough then we apply Lemma 5 on it and obtain an equivalent instance.

Let G be a graph given with its tree-decomposition (M,β) as described in Theorem 1,
and τ(t) be one of its torsos. Let S be a dominating set of G, and Zt = A, |A| ≤ h, be the
set of apices of τ(t). The reduction rule essentially “preserves” all dominating sets of size at
most |S| in G, without introducing any new ones. To describe the reduction rule we need
several definitions. The first step in our reduction rule is to classify different subsets A′ of
A into feasible and infeasible sets. The intuition behind the definition is that a subset A′ of
A is feasible if there exists a set D in G of size at most |S| + 1 such that D dominates all
but S and D ∩ A = A′. However, we cannot test in polynomial-time whether such a set D
exists. We will therefore say that a subset A′ of A is feasible if the 2-approximation for DS
on H-minor-free graphs [20] outputs a set D of size at most 2(|S|+2) such that D dominates
V (G) \ (A ∪ S) and D ∩A = A′. Observe that if such a set D of size at most |S|+ 1 exists
then A′ is surely feasible, while if no such set D of size at most 2|S| + 2 exists, then A′ is
surely not feasible. We will frequently use this in our arguments. Let us remark that there
always exists a feasible set A′ ⊆ A. In particular, A′ = S ∩ A is feasible since S dominates
G. For feasible sets A′ we will denote by D(A′) the set D output by the approximation
algorithm.

For every subset A′ ⊆ A, we select a vertex v of G such that A′ ⊆ NG[v]. If such a
vertex exist, we call it a representative of A′. Let us remark that some sets can have no
representatives and some distinct subsets of A may have the same representative. We define
R to be the set of representative vertices for subsets of A. The size of R is at most 2|A|. For
A′ ⊆ A, the set of dominated vertices (by A′) is W (A′) = N(A′) \ A. We say that vertex
v ∈ V (G) \ A is fully dominated by A′ if N [v] \ A ⊆ W (A′). A vertex w ∈ V (G) \ A is
irrelevant with respect to A′ if w /∈ R, w /∈ S, and w is fully dominated by A′. Now we are
ready to state the irrelevant vertex rule.
Irrelevant Vertex Rule: If a vertex w is irrelevant with respect to every feasible A′ ⊆ A,

then delete w from G.

I Lemma 10. Let S be a dominating set in G, and G′ be the graph obtained by applying
the Irrelevant Vertex Rule on G, where w was the deleted vertex. Then G′ ≡DS,|S| G.

Proof. Let the transposition constant be 0. To show that G′ ≡DS,|S| G, we show that given
a |B|-boundaried graph G1 and a positive integer ` we have that (G ⊕ G1, `) ∈ DS ⇔
(G′ ⊕ G1, `) ∈ DS . Let Z ⊂ V (G ⊕ G1) be a dominating set for G ⊕ G1 of size at most
`. Let Z1 = V (G) ∩ Z. If |Z1| > |S| then (Z \ Z1) ∪ S is a smaller dominating set for
G ⊕ G1. Therefore we assume that |Z1| ≤ |S|. Let A′ = Z ∩ A, and observe that A′ is
feasible because Z1 dominates all but S. If w /∈ Z, then Z ′ = Z is a dominating set of
size at most ` for G′ ⊕ G1. So assume w ∈ Z. Observe that w ∈ Z1 and w /∈ S and
therefore all the neighbors of w lie in G. Since w is irrelevant with respect to all feasible

F. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos 101

subsets of A and A′ is feasible, we have that w is irrelevant with respect to A′. Hence
NG⊕G1(w) \NG⊕G1(Z \ w) ⊆ A. There is a representative w′ ∈ R, w′ 6= w (since w /∈ R),
such that (NG⊕G1(w) = NG(w)) ∩ A ⊆ NG(w′) ∩ A. Hence Z ′ = (Z ∪ {w′}) \ {w} is a
dominating set of G′ ⊕G1 of size at most `.

Now, let Z ′ ⊆ V (G′ ⊕ G1) be a dominating set of size at most ` for G′ ⊕ G1. Let
Z ′1 = V (G′)∩Z ′. As in the forward direction we can assume that |Z ′1| ≤ |S|. We show that
Z ′ also dominates w in G⊕G1. Specifically Z ′1 ∪ {w} is a dominating set of all but S in G
of size at most |S|+ 1 so Z ′1 ∩A is feasible. Since {w} is irrelevant with respect to Z ′1 ∩A,
we have w ∈ NG(Z ′1 ∩A) and thus Z ′ is a dominating set for G′⊕G1 of size at most `. This
concludes the proof. J

For a graph G and its dominating set S, we apply the Irrelevant Vertex Rule exhaustively
on all torsos of G, obtaining an induced subgraph G′ of G. By Lemma 10 and transitivity of
≡DS,t we have that G′ ≡DS,|S| G. We now prove that a graph G which can not be reduced
by the irrelevant vertex rule has a property that each of its torso has a small 2-dominating
set (the proof is omitted in this extended abstract).
I Lemma 11. There is a polynomial-time algorithm that for a given graph G and a dom-
inating set S of G, outputs graph G′ such that G′ ≡DS G and for every torso τ(t) of the
tree-decomposition (M,β) of G, we have that τ(t)\Zt has a 2-dominating set of size O(|S|).
Furthermore if G is a H-minor free graph then tw(G) = O(

√
|S|).

Proof of Lemma 7. We apply Lemma 11 to G with a decomposition that has a single bag
containing the entire graph and the apices A of the bag being the vertices of degree at least
h′. By Lemma 11, G \ A has a 2-dominating set of size δ3|S|. Since all vertices of G \ A
have degree at most h′ it follows that |V (G)| ≤ h′ + δ3h|S|δ3h2|S| ≤ δ|S|. J

Kernelization algorithm for CDS. To obtain kernelization algorithm for CDS the only
thing that remains to show are results analogous to Lemmata 8 and 7 for DS. However to
obtain this we need to apply reduction rules developed in [23] for CDS. Finally we need to
adapt the proofs of Lemmata 11, 12, 13 and 14 given in the full-version available at [23] with
the new perspective. Two of these lemmata essentially shows the correctness of reduction
rules for CDS and that every torso has 2-dominating set of size at most O(|S|). Here S
is a connected dominating set of the input graph G. The only result that is not proved
in [23] is the result analogous to Lemma 7 for DS. However, the size of a dominating set is
at most the size of a connected dominating set. After this the proof for the case that given a
graph G with at most h′ vertices of degree at least h′ we can return a canonically equivalent
graph G′ is verbatim to the proof of Lemma 7. We omit these adaptation details from this
extended abstract.
I Theorem 12. CDS admits a linear kernel on graphs excluding a fixed graph H as a
topological minor.

7 Conclusions

In this paper we give linear kernels for two widely studied parameterized problems, namely
DS and CDS, for every graph class that excludes some graph as a topological minor. The
emerging questions are the following two: (1) Can our techniques be extended to more
general sparse graph classes? (2) Can our techniques be applied to more general families
of parameterized problems? We believe that any step towards resolving the first question
should be based on significant graph-theoretical advances. Our results make use of the
decomposition theorem of Grohe and Marx in [25] that, in turn, can be seen as an extension

STACS’13

102 Linear kernels for dominating set

of seminal results of the Graph Minor Series by Robertson and Seymour [32]. So far no
similar structural theorem is known for more general sparse graph classes. We also believe
that a broadening of the kernelization horizon for these two problems without the use of
some tree-based structural characterization of sparsity requires completely different ideas.

The first move towards resolving the second question is to extend our techniques for
more variants of the dominating set problem. Natural candidates in this direction could be
the r-Domination problem (asking for a set S that is within distance r from any other
vertex of the graph), the Independent Domination problem (asking for a dominating set
that induces an edgeless graph), or, more interestingly, the Cycle Domination problem
(asking for a set S that dominates at least one vertex from each cycle of G). However, a more
general meta-algorithmic framework, including general families of parameterized problems,
seems to be far from reach.

References
1 J. Alber, M. R. Fellows, and R. Niedermeier. Polynomial-time data reduction for domin-

ating sets. J. ACM, 51:363–384, 2004.
2 N. Alon and S. Gutner. Kernels for the dominating set problem on graphs with an excluded

minor. Technical Report TR08-066, ECCC, 2008.
3 S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph

reduction. Journal of the ACM, 40:1134–1164, 1993.
4 H. L. Bodlaender and B. de Fluiter. Reduction algorithms for constructing solutions in

graphs with small treewidth. pages 199–208, 1996.
5 H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without

polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.
6 H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. M.

Thilikos. (Meta) Kernelization. In Proceedings of the 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2009), pages 629–638. IEEE, 2009.

7 H. L. Bodlaender and B. van Antwerpen-de Fluiter. Reduction algorithms for graphs of
small treewidth. Information and Computation, 167:86–119, 2001.

8 J. Chen, H. Fernau, I. A. Kanj, and G. Xia. Parametric duality and kernelization: Lower
bounds and upper bounds on kernel size. SIAM J. Comput., 37:1077–1106, 2007.

9 M. Cygan, F. Grandoni, and D. Hermelin. Tight kernel bounds for problems on graphs
with small degeneracy. Manuscript, 2012.

10 M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. Wojtaszczyk. Kernelization hardness of
connectivity problems in d-degenerate graphs. In Proceedings of the 36th International
Workshop on Graph-Theoretic Concepts in Computer Science (WG 2010), volume 6410 of
Lect. Notes Comp. Sc., pages 147–158. Springer, 2010.

11 B. de Fluiter. Algorithms for Graphs of Small Treewidth. PhD thesis, Utrecht University,
1997.

12 H. Dell and D. van Melkebeek. Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. In Proceedings of the 42nd ACM Symposium on
Theory of Computing (STOC 2010), pages 251–260, 2010.

13 E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. Fixed-parameter al-
gorithms for (k, r)-center in planar graphs and map graphs. ACM Trans. Algorithms,
1(1):33–47, 2005.

14 E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. Subexponential paramet-
erized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM, 52(6):866–
893, 2005.

F. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos 103

15 E. D. Demaine and M. Hajiaghayi. The bidimensionality theory and its algorithmic ap-
plications. The Computer Journal, 51(3):332–337, 2007.

16 R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag,
Berlin, third edition, 2005.

17 M. R. Fellows and M. A. Langston. An analogue of the myhill-nerode theorem and its use
in computing finite-basis characterizations (extended abstract). In FOCS, pages 520–525,
1989.

18 J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag, Berlin, 2006.

19 F. V. Fomin, D. Lokshtanov, N. Misra, G. Philip, and S. Saurabh. Hitting forbidden minors:
Approximation and kernelization. In Proceedings of the 8th International Symposium on
Theoretical Aspects of Computer Science (STACS 2011), volume 9 of LIPIcs, pages 189–
200. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

20 F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Bidimensionality and EPTAS.
In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2011), pages 748–759. SIAM, 2010.

21 F. V. Fomin, D. Lokshtanov, and S. Saurabh. Bidimensionality and geometric graphs. In
Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2012), pages 1563–1575. SIAM, 2012.

22 F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality and kernels.
In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2010), pages 503–510. ACM-SIAM, 2010.

23 F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Linear kernels for (connected)
dominating set on H-minor-free graphs. In Proceedings of the 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2012), http://www.ii.uib.no/ daniello/.

24 F. V. Fomin and D. M. Thilikos. Dominating sets in planar graphs: Branch-width and
exponential speed-up. SIAM J. Comput., 36:281–309, 2006.

25 M. Grohe and D. Marx. Structure theorem and isomorphism test for graphs with excluded
topological subgraphs. In STOC, pages 173–192, 2012.

26 S. Gutner. Polynomial kernels and faster algorithms for the dominating set problem on
graphs with an excluded minor. In Proceedings of the 4th Workshop on Parameterized and
Exact Computation (IWPEC 2009), Lect. Notes Comp. Sc., pages 246–257. Springer, 2009.

27 T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of domination in graphs.
Marcel Dekker Inc., New York, 1998.

28 R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-
plexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

29 M. Jones, D. Lokshtanov, M. S. Ramanujan, S. Saurabh, and O. Suchy. Parameterized
complexity of directed steiner tree on sparse graphs. Manuscript, 2012.

30 E. J. Kim, A. Langer, C. Paul, F. Reidl, P. Rossmanith, I. Sau, and S. Sikdar. Linear kernels
and single-exponential algorithms via protrusion decompositions. CoRR, abs/1207.0835,
2012.

31 G. Philip, V. Raman, and S. Sikdar. Solving dominating set in larger classes of graphs: FPT
algorithms and polynomial kernels. In Proceedings of the 17th Annual European Symposium
on Algorithms (ESA 2009), volume 5757 of Lect. Notes Comp. Sc., pages 694–705. Springer,
2009.

32 N. Robertson and P. D. Seymour. Graph minors. XVI. Excluding a non-planar graph. J.
Combin. Theory Ser. B, 89(1):43–76, 2003.

STACS’13

The PCP theorem for NP over the reals∗

Martijn Baartse and Klaus Meer1

1 Computer Science Institute, BTU Cottbus
Platz der Deutschen Einheit 1
D-03046 Cottbus, Germany
martijnbaartse@msn.com,meer@informatik.tu-cottbus.de

Abstract
In this paper we show that the PCP theorem holds as well in the real number computational
model introduced by Blum, Shub, and Smale. More precisely, the real number counterpart NPR
of the classical Turing model class NP can be characterized as NPR = PCPR(O(log n), O(1)).
Our proof structurally follows the one by Dinur for classical NP. However, a lot of minor and
major changes are necessary due to the real numbers as underlying computational structure. The
analogue result holds for the complex numbers and NPC.

1998 ACM Subject Classification F.2.2 Complexity of Proof Procedures

Keywords and phrases PCP, real number computation, systems of polynomials

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.104

1 Introduction

One of the major achievements in theoretical computer science within the last two decades
certainly was the PCP theorem. It gave a new characterization of the complexity class NP
via so called probabilistically checkable proofs and had tremendous impact on the field of
approximation algorithms in combinatorial optimization.

Starting point for the present paper is the real number model of computation and its
related complexity theory as introduced by Blum, Shub, and Smale, henceforth called BSS-
model for short, see [6, 5]. The model focusses on algebraic aspects of computation over
arbitrary structures, and here in particular the real numbers. As with the Turing model the
major open question in this real number framework is whether the real complexity classes PR
and NPR of problems decidable and verifiable, respectively, in polynomial time are different.

The definition of probabilistically checkable proofs makes sense as well in the real number
model. Given the importance of the classical PCP theorem it is only natural to ask whether
the corresponding characterization holds as well in the BSS framework for NPR. The goal of
this paper is to prove the PCP theorem in this setting.

1.1 Previous work and outline of proof
For the classical PCP theorem, i.e., the equality PCP(O(log n), O(1)) = NP in the Turing
model two different proofs are known, the original proof by Arora et al. [3, 2] and, more
recently, the groundbreaking new proof by Dinur [7]. The first PCP type theorem for the
real number model was given in [9]. There, the existence of so called transparent long proofs

∗ We gratefully acknowledge support of both authors by project ME 1424/7-1 of the Deutsche Forschungs-
gemeinschaft DFG.

© Martijn Baartse and Klaus Meer;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 104–115

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.104
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Baartse and K. Meer 105

for the real counterpart NPR of NP is shown, see also [4]. Due to the reals as underlying
structure the proof needs considerable technical changes compared to the analogue discrete
result. The latter are mainly caused by the presence of unstructured domains of certain
linear real functions; on these domains, invariants of the uniform distribution on the vector
space GF (2n) are lost. Those invariants, however, play a central role in proving the Turing
model result.

The first characterization of real NPR by a PCPR class is presented in [10]: NPR =
PCPR(O(log n), polylog(n)). The proof faces similar difficulties as the one in [9], this time
dealing with low-degree polynomials as coding objects instead of linear functions on certain
real domains. The key point here is to embed and expand a so called low-degree test for
polynomials defined on (almost) arbitrary real domains given in [8] to construct a suitable
verifier for an NPR-complete problem.

Whereas the design of a long transparent proof goes into both existing proofs for the
PCP theorem in the Turing model, the construction of real low-degree tests structurally
follows the original proof by Arora and co-authors. It is, however, unclear to the authors of
this paper at the time being whether one can obtain the full real PCP theorem by continuing
the proof along these lines. We comment on that at the end of the paper. Thus, it is natural
to ask whether Dinur’s proof can be carried over to the real number model.

Dinur’s proof is based on constructing a certain reduction between 3-SAT formulas in
which for unsatisfiable formulas a so called gap amplification is obtained. The existence of
such a reduction is known to imply the PCP theorem. Nevertheless, at a first glance it is not
clear whether similar ideas could be used for an appropriate NPR-complete problem over the
reals. The reason is that Dinur’s proof heavily works with constraint systems that are to be
solved over different finite alphabets as domains. The proof constructs several transformations
between such finite alphabet constraint problems. It seems unclear whether the same can be
done over uncountable structures. However, it turns out that this part depends more on the
combinatorial structure of the constraints involved than on the question over which domains
they are to be solved. To see this, a view of real polynomial systems – the main objects
involved in real number computations – is taken that seems a bit uncommon in algorithmic
semi-algebraic geometry. The latter requires not only to consider the semi-algebraic solution
set of such a system (as it is usually done in algebraic geometry), but to put more focus on
a suitable grouping of the polynomials involved in the system. Then, it is more important
to argue about common semi-algebraic solutions of some of these groups than of the entire
system. It turns out that this can be accomplished as well over R. Consequently, at the
moment Dinur’s proof seems more appropriate for adaptation to real computational models
than the classical one. The arguments given hold as well for the complex number BSS model
and its corresponding PCPC classes and NPC. Since all required changes are minor below we
only add short remarks on the complex model where appropriate.

The paper is organized as follows. Section 2 introduces the main notions like real number
verifiers and PCPR classes as well as the central NPR-complete problem to be studied. It is
a particular form of deciding solvability of polynomial systems; the problem is defined in
such a way that the existence of a reduction amplifying the unsatisfiability gap will imply
the PCPR theorem. The construction of this reduction is given in Section 3. A discussion
about future questions ends the paper. All lacking proofs are postponed to the full version.

A word concerning the style of writing: We decided to extensively explain the flow of
ideas at the cost of having to omit most of the proofs due to lacking space. This hopefully
clarifies what is needed for a transformation of Dinur’s proof to the reals and why this indeed
is possible. A description of Dinur’s proof is given in the very recommendable textbook [1].

STACS’13

106 The PCP theorem for NP over the reals

2 Basic notions

We assume the reader to be familiar with real and complex number complexity theory, see
[5]. Very briefly, a BSS machine is a uniform Random Access Machine that computes with
real numbers as basic entities. An input x ∈ Rn is given the algebraic size sizeR(x) := n,

and each operation {+,−, ∗, :,≥ 0?} among real numbers can be performed with (algebraic)
costs 1. The complexity class NPR consists of all decision problems L for which there exists
a polynomial time verification procedure that satisfies the following requirements. Given
x ∈ L there is a proof y of polynomial size in the (algebraic) size of x such that the procedure
accepts (x, y). And for every x 6∈ L the procedure rejects all tuples (x, y), no matter what y
looks like. For complex computations inputs stem from some Cn and only equality tests are
allowed. The Quadratic Polynomial Systems problem introduced below is a typical example
of a problem in NPR or in NPC, respectively, depending on where coefficients lie and where
solutions are searched.

Usually, the natural verification procedures for NPR problems have to inspect all com-
ponents of y before the decision is made. The question one studies in relation with PCPs is
whether this has to be the case. It is formalized using special randomized algorithms.

I Definition 1 (Verifiers). Let r, q : N 7→ N be two functions. An (r(n), q(n))-restricted
verifier V in the BSS model is a particular randomized real number algorithm working in
three phases. For an input x ∈ R∗ :=

⋃
i≥1 Ri of algebraic size n and another vector y ∈ R∗

representing a potential membership proof of x in a certain set L ⊆ R∗, the verifier in a first
phase produces non-adaptively a sequence ρ of r(n) many random bits (under the uniform
distribution on {0, 1}r(n)). Given x and this sequence ρ of r(n) many random bits, in the
next phase, V computes deterministically the indices of q(n) many components of y. Finally,
in the decision phase V uses the input x, the random string ρ and the values of the chosen
components of y in order to perform a deterministic polynomial time algorithm in the BSS
model. At the end of this algorithm V either accepts or rejects the triple (x, y, ρ). For an
input x, a guess y and a sequence of random bits ρ we denote by V (x, y, ρ) ∈ {0, 1} the
result of V .

Though being a real number algorithm the verifier generates discrete random bits in
phase 1. The use of these bits is for addressing registers of the machine in which the basic
units of a proof y, i.e., real numbers are stored. Therefore it is appropriate to work with this
discrete kind of randomness. We can define the real language accepted by a verifier together
with complexity classes PCPR(r(n), q(n)) as follows.

I Definition 2 (PCPR-classes). Let r, q : N 7→ N; a real number decision problem L ⊆ R∗
is in class PCPR(r(n), q(n)) iff there exists an (r(n), q(n))-restricted verifier V such that
conditions a) and b) below hold:
a) For all x ∈ L there exists a y ∈ R∗ such that for all randomly generated strings

ρ ∈ {0, 1}r(sizeR(x)) the verifier accepts.
b) For any x 6∈ L and for all y ∈ R∗ the verifier rejects with probability at least 3

4 .

In both cases the probability is chosen uniformly over all random strings ρ.

We next introduce the central decision problem to consider in this paper. It deals with
polynomial systems and is a variant of the Hilbert Nullstellensatz problem. However, the
viewpoint under which we structure such systems is a bit unusual, so the definition at a first
glance might look confusing. The reason we take this unusual point of view is that we want
this decision problem to resemble the CSP problem which plays a main role in Dinur’s proof.
A clarifying example follows after the definition.

M. Baartse and K. Meer 107

I Definition 3. a) Let m, k, q, s be integers. An instance of the quadratic polynomial
systems decision problem QPS(m, k, q, s) is defined as follows. There are m constraints, each
of which is a group of at most k real polynomials. The polynomials depend on arrays of
real number variables. These arrays are disjoint, different arrays do not contain the same
variable. Each array has s components and thus represents a vector of variables ranging over
Rs. The single polynomials then depend on the variables that occur as components in one of
the arrays. All polynomials in one constraint have degree at most 2 and depend on at most
q many arrays, i.e., on at most qs many real variables altogether.

b) A constraint is satisfied by a point x ∈ Rqs if x is a common zero of all polynomials
in the constraint. The QPS(m, k, q, s)-instance is solvable if there is a common real solution
for all its constraints.

c) If above coefficients belong to C and solutions are searched in Cqs we obtain the
complex QPS(m, k, q, s) problem.

I Remark. a) Below, we usually consider the parameters k, q, s as constants, whereas m
is depending on the actual instance. In that sense it would be more correct to talk about
QPS(k, q, s)-instances; however, at many places we argue about the changes in the number
of constraints, so the above seems notationally easier.

b) Over the reals parameter k in principle is not necessary. Here, using basic arguments
from [6] we could always choose k = 1 and the corresponding constraint to be given by a
single polynomial equation f(x) = 0 of degree at most 4 with f being non-negative on a
corresponding Rn. However, we notationally prefer to take care of k. Firstly in order to
deal as well with the complex BSS model in which the above simplification does not work.
Secondly, in many cases below we believe specifying k increases readability to state explicitly
which polynomial equations enter into which constraints and might cause its unsatisfiability.

c) Since mqs is an upper bound for the number of variables an instance depends on at
many places below we do not specify this number for concrete instances more precisely.

I Example 4. It is well known that deciding existence of a real zero of a polynomial system
P := {p1, . . . , pm}, where each polynomial pi depends on at most three variables and has
degree at most two is NPR-complete, see [5]. We give two formulations of this question
in the new framework by specifying different choices of parameters. The examples show
NPR-completeness of the QPS problem for the given choices of k, q, and s.

i) The system P can be formulated as an instance in QPS(m, 1, 3, 1). Each constraint
consists of a single polynomial pi, thus k = 1; the variable arrays all have dimension s = 1
and each polynomial depends on at most 3 such arrays.

ii) If we take arrays of dimension s = 3, then in a first reduction step we consider all such
arrays as depending on different variables. Then additional constraints have to be added
to guarantee consistency between the same variables occurring in arrays of different
polynomials. Such a constraint has a single polynomial depending on two arrays. It
claims equality between variable components that have to be the same in the originally
given system. We thus obtain a QPS(m̃, 1, 2, 3) instance where m̃ is a bound for m plus
the number of different pairs of variable arrays.

Note that the above instances are equivalent to P as far as solvability is concerned. Below it
will be very important to argue about the number of constraints not satisfied if a system is
unsolvable. For these arguments it is crucial to group the single polynomials into constraints.

For what follows QPS-instances with parameter q = 2 are most important. This is due to
the possibility of canonically assigning a constraint graph to such an instance that connects

STACS’13

108 The PCP theorem for NP over the reals

arrays as vertices. It is then more important to argue about this graph than about the
semi-algebraic solution set of (subsets of) the polynomials involved in the system (though
the latter of course cannot not be completely disregarded).

The starting point of Dinur’s proof is a simple observation which implies the PCP theorem
if the existence of a very particular reduction can be established. We next recall this type of
reduction and state the corresponding easy lemma for QPS and the PCPR theorem.

I Definition 5. a) For a QPS(m, k, q, s)-instance φ denote by UNSAT (φ) the smallest
fraction of constraints in φ that cannot be satisfied in common. Thus, if φ is satisfiable
UNSAT (φ) = 0 and otherwise UNSAT (φ) ≥ 1

m .

b) A gap reduction for QPS-instances is a polynomial time BSS algorithm that works as
follows. There is a fixed ε > 0 such that given a QPS(m, k, q, s) instance φ the algorithm
computes an instance ψ in QPS(m′, k, q, s) satisfying the following:
i) if φ is satisfiable so is ψ;
ii) if φ is not satisfiable, then at most a fraction of (1− ε) many of the constraints of ψ are

satisfiable in common, i.e., UNSAT (ψ) ≥ ε.
Clearly, m′ is polynomially bounded in m.

The following lemma is easy to prove. Note, however, that it seems unclear whether its
converse holds as well as it does in the Turing model.

I Lemma 6. Suppose there exists a gap reduction for QPS with a fixed ε > 0. Then the
PCPR theorem follows, i.e., NPR = PCPR(O(log n), O(1)).

3 The main proof

We shall now turn to the main part of the proof, the construction of a gap reduction for
the NPR-complete problem QPS(m,C,Q, 1), see Example 4. The parameters C ≥ 1 and
Q ≥ 3 are constants that will be specified later. The structure of the proof is similar to
that of the classical PCP theorem by Dinur. Its basic idea is as follows. Starting from
a QPS(m,C,Q, 1)-instance φ which is unsatisfiable an amplification step is performed. It
constructs in polynomial time another QPS-instance ψ out of φ that has an increased
unsatisfiability ratio. More precisely, if UNSAT (φ) = ε, then UNSAT (ψ) ≥ c · ε for a
suitable constant c > 1 and ε small enough. Now in principle starting with UNSAT (φ) ≥ 1

m

and repeating this amplification logm times the gap is increased from at least one unsatisfied
constraint in φ to a constant fraction of unsatisfied constraints in the finally resulting instance.
However, the amplification step increases the dimension of the variable arrays too much.
Thus, before repeating amplification a dimension reduction step is performed that first
reduces the parameter s again. Note that dimension reduction in Dinur’s proof is called
alphabet reduction. Over the reals, however, parameter s refers to the dimension of variable
arrays, whereas the underlying alphabet is always infinite. We thus consider the changed
notion to be more appropriate here.

Amplification is performed on instances having particularly structured constraint graphs.
These are related to so called expanders. Therefore, in a preprocessing step it has to be
shown why it is possible to start with such particular instances.

The section is organized as follows. The first subsection collects the results necessary to
do the preprocessing. Since it closely follows the classical preprocessing step omit the proofs.
Next, the amplification step is described. Though basically Dinur’s idea works over the reals
as well, a lot of small details and calculations have to be changed. We thus include the full

M. Baartse and K. Meer 109

proof, always pointing out where differences to the discrete setting occur. The dimension
reduction step is given in subsection 3.3. It relies on the long transparent proofs for NPR,
see [9, 4].

3.1 Preprocessing
In order to apply below the main steps necessary to establish the existence of a gap reduction
for QPS, namely amplification and dimension reduction, we first have to preprocess a given
instance. The goal of this preprocessing step is to obtain a QPS instance that has a constraint
set which in a certain sense is highly structured. Such instances are called nice below.
Niceness is modelled using expanders, a well known concept from graph theory. Throughout
this section (except for the start of the first preprocessing step) we consider QPS instances
whose constraints depend on two variable arrays, i.e., for which parameter q = 2. This allows
to canonically attach a constraint graph to the instance.

I Definition 7. (Constraint graph) For a QPS(m, k, 2, s) instance φ we define its constraint
graph as the graph which uses the variable arrays of φ as vertices and where two of them are
connected iff they occur in a common constraint of φ.

Before the amplification step is performed it is necessary to guarantee that this constraint
graph has a particular structure.

We shall first give the necessary graph theoretical definitions and then show why without
loss of generality we can start from a nice QPS instance. Expanders are regular graphs
that in a certain sense exhibit properties of random regular graphs of the same degree of
regularity. In this section we define algebraic expanders.

For the definition of algebraic expansion we need the random walk matrix of a graph G.

I Definition 8. (Random walk matrix) Let G = (V,E) be a graph. The random walk matrix
A(G) of G is defined to be the |V | × |V | matrix in which the entry Aij equals the probability
that in a random walk on G vertex j is chosen after vertex i. Here each edge incident with
node i and not being a loop is chosen with the same probability, whereas loops are chosen
with twice this probability; see Remark 3.1 below.

I Definition 9. (Algebraic expansion) Let n, d ∈ N, λ < 1, and G = (V,E) a d-regular graph
with |V | = n. Let λ(G) be the second largest eigenvalue in absolute value of A(G). The
graph G is called a d-regular expander with expansion parameter λ if λ(G) ≤ λ.

The QPS-instances that are important below are required to have a constraint graph
which is an expander having additional properties. The corresponding definition is

I Definition 10. A QPS(m, k, q, s)-instance φ is called nice if the following conditions hold:

i) the number q of arrays on which each constraint depends is 2;
ii) the constraint graph G of φ is d-regular for some absolute constant d ∈ N which is in

particular independent of the parameter s. We allow G to have loops (resulting from
constraints that only depend on a single array); for each vertex of the graph one third of
the edges incident to that vertex are loops.

iii) The constraint graph is an expander with algebraic expansion parameter λ(G) ≤ 0.9.

I Remark. Our main purpose when considering random walks on a constraint graph is to
guarantee that all edges occur with the same probability as, say, first edge of such a walk if
a vertex is chosen at random. To achieve this property we consider loops as contributing one

STACS’13

110 The PCP theorem for NP over the reals

edge which, however, in a random walk is chosen with twice the probability of edges that are
no loops. There is still one constraint attached to a loop, and the loop contributes 2 to the
degree of its vertex. Consequently, for the random walk matrix a loop contributes 2

d to the
corresponding diagonal entry.

The following theorem summarizes preprocessing.

I Theorem 11. There exist a constant d ∈ N and a polytime computable function from QPS
instances to QPS instances which maps a QPS(m, k, q, s) instance φ to a nice instance ψ in
QPS(3qd2m, k + qs, 2, qs) such that
- if φ is satisfiable, then ψ is satisfiable;
- if φ is not satisfiable, then UNSAT(ψ) ≥ UNSAT(φ)/(240qd2).

It is important for what follows that above both the number of constraints is increased
and the unsatisfiability factor is decreased by a constant factor only.

3.2 Amplification
Given a nice QPS-instance the all-over purpose now is to perform a logarithmic number
of reduction rounds to increase the unsatisfiability gap. The first step in a round is an
amplification step which increases the ratio of unsatisfied constraints by a constant factor
> 1. After the amplification step a dimension reduction step reduces again the dimension
of the variable arrays which has been increased during amplification. In this subsection
amplification is explained.

Suppose a nice QPS(m, k, 2, s)-instance ψ is given. Let d denote the corresponding
regularity parameter and let n be the number of variable arrays. Our final goal is to construct
an instance which either is satisfiable if ψ was or in which for any assignment a constant
fraction εfinal > 0 (to be specified) of the constraints will not be satisfied. We will concentrate
our arguments on how amplification works for unsatisfiable instances ψ which have a gap
that is too small, i.e., smaller than εfinal. If UNSAT (ψ) is already large enough it will stay
above this εfinal after the reduction, see below.

So we assume that the input instance has a gap which is smaller than some constant
which we will specify later. Our goal is to construct in polynomial time an instance ψt in
some QPS(m(t), k(t), 2, s(t)) such that UNSAT (ψt) ≥ c ·UNSAT (ψ) for a suitable constant
c > 1. Here, t ∈ N is a suitably chosen constant that results from the construction. Before
going into details here is a brief outline of how amplification was done by Dinur, adapted to
the real case. The new instance ψt has the same number n of variable arrays as ψ. Whereas
the latter range over Rs the former range over an enlarged Rs(t), where s(t) := dt+

√
t+1 · s.

The constraints in the new instance are built on base of paths with 2t many edges in the
old constraint graph Gψ. Each such path results in an own constraint of ψt. Before defining
such a constraint it is necessary to describe the role of the variable arrays in ψt. For a vertex
i ∈ {1, . . . , n} the corresponding variable array yi ∈ Rs(t) consists of dt+

√
t+1 many blocks of

dimension s each (therefore s(t) = dt+
√
t+1 · s). Each block is thought of as an old variable

array of ψ that corresponds to a vertex in Gψ reachable within t+
√
t steps from i. Since Gψ

is d-regular there are at most dt+
√
t+1 many such vertices. In that sense we can say that an

assignment for all new variable arrays yi ∈ Rs(t), 1 ≤ i ≤ n, claims a value for all old arrays
xj for vertices j in a (t+

√
t)-neighborhood of vertex i. Of course, different yi might claim

different values on the same old array.
Now let p be a path of length 2t in Gψ from vertex i1 to i2t+1, say p := (i1, i2, . . . , i2t+1).

For each such path a constraint is added to ψt as follows: The constraint depends on the
two arrays yi1 and yi2t+1 and expresses two requirements:

M. Baartse and K. Meer 111

1. Consistency-between-new-variables requirement: Since yi1 claims values for xi1 , xi2 , . . . ,
xit+

√
t+1

and yi2t+1 claims values for xi2t+1 , xi2t
, . . . , xit−√t+1

, the old variables xij for
j ∈ {t−

√
t+ 1, . . . , t+

√
t+ 1} are covered by both new arrays. We thus include for all

those j linear equations expressing that that yi1 and yi2t+1 claim the same values on all
their components. This contributes (2

√
t+ 1) · s linear equations to the constraint. 1

2. Consistency-with-old-constraints requirement: As explained above edges (ij , ij+1) of Gψ
are covered by both variable arrays yi1 , yi2t+1 for j ∈ {t −

√
t + 1, . . . , t +

√
t}; to each

of these 2
√
t many edges there corresponds an old constraint of ψ. The new constraint

requires as well that those old constraints are satisfied by the values assigned to the old
variable arrays through yi1 (or equivalently, because of item 1., through yi2t+1).

Requirement 2. for each j is the same as in the given instance just changing variables. So
each constraint in ψt is made of ≤ k(t) := 2

√
tk + (2

√
t+ 1) · s many polynomial equations.

Since Gψ is regular there are at most m(t) := n · d2t many paths of length 2t, so this bounds
as well the number of constraints in ψt.

It is easy to see that a satisfying assignment for ψ extends to one for ψt. Just propagate
the assignment to the yi’s according to the first consistency requirement above. The hard
part to see is why an unsatisfiability ratio of a given (unsatisfiable) ψ is increased by the
construction. Towards this aim we relate any assignment for the new variable arrays to a
so-called plurality assignment for the old arrays. Assuming this plurality assignment (like
any other) to violate a fraction of UNSAT (ψ) many constraints in ψ it is then shown that
the given assignment y for ψt violates a ratio of ≥ c · UNSAT (ψ) many constraints of
ψt. This reasoning closely follows Dinur’s one. However, due to the fact that assignments
stem from the uncountable set Rs(t) instead of a finite set some arguments have to be
adjusted. One necessary change in order to perform this adjustment is the inclusion of the
consistency-between-new-variables requirement above.

Now towards the details. Given an assignment y = (y1, . . . , yn) ∈ Rn·s(t) for the n variable
arrays yi ∈ Rs(t) of ψt, we first define the plurality assignment inferred from it to the old
arrays xj ∈ Rs : Let t ∈ N be fixed. Consider a vertex v of Gψ together with a random walk
in Gψ of length t starting in v. Remember the way loops are treated in such a walk, see
Remark 3.1. With a certain probability the walk reaches a vertex u which obviously belongs
to the t-neighborhood of v. Then for this u there is a new variable array yu. Its assignment
in particular claims a value for the old array xv. The plurality assignment xpav for xv then
is defined to be the assignment resulting with highest probability from y according to the
above random walk process. Ties can be broken arbitrarily.

One technical difference to the discrete setting has to be pointed out here. Over the reals
there is no guarantee how often the plurality assignment occurs at least. It is only clear that
it occurs at least once. Contrary, if the variables take values over a finite alphabet there
is a constant lower bound on the probability with which the plurality assignment occurs;
this bound depends only on the alphabet size but not on t. This difference requires below a
modification of the discrete arguments.

Suppose then that ψ is unsatisfiable with UNSAT (ψ) = ε > 0. Let an arbitrary assignment
y for ψt and the related plurality assignment xpa for ψ be fixed. Every assignment xpa
violates ≥ m · ε constraints (where m denotes the number of constraints in ψ). Our goal is
to show that y violates at least a fraction of ε(t) = c · ε constraints in ψt for a large enough

1 These requirements are not included in the classical construction due to the underlying finite alphabets.
It will become obvious below why it is needed over the reals.

STACS’13

112 The PCP theorem for NP over the reals

value c > 1. This is achieved by analyzing two cases. Consider an edge e = (ij , ij+1) in Gψ
such that the plurality assignment (xpaij , x

pa
ij+1

) violates the corresponding constraint in ψ.

a) If the values xpaij , x
pa
ij+1

have been claimed by relatively many (to be specified) endpoints
of the corresponding random walks it is shown that many of the endpoints of 2t-step paths
of Gψ in which e occurs in the middle segment claim the plurality values for xpaij , x

pa
ij+1

,
i.e., y violates many constraints in ψt. This part is analyzed similarly as in the finite
alphabet situation.

b) If at least one of the values xpaij or xpaij+1
has been claimed by few endpoints only (but still

represents the majority of the occurring values) we show that y violates the consistency-
between-new-variables requirements in a lot of constraints. This case has to be handled
because of the reals as underlying structure.

We now calculate a lower bound for the expectation of a random variable V defined as
follows: V counts the number of edges e as mentioned above in a random path that cause
the corresponding constraint to be unsatisfied. We also calculate an upper bound for the
square E[V 2] of the number of such edges in a random path. Since for any nonnegative
random variable V taking integral values by an application of Chebychev’s inequality it is
Pr[V > 0] ≥ E[V]2/E[V 2] this will then give us a lower bound on the fraction of paths for
which the corresponding constraint in ψt is not satisfied.

Assume we have an edge e = (ij , ij+1) such that the corresponding constraint in ψ is
violated by the plurality assignment. We start by considering case a) and assume that the
plurality values of xij , xij+1 are claimed relatively often. At first sight this information seems
pretty useless because if we look at the set of paths in which e occurs in the middle segment
then it is obvious that for almost all of them the distance (along the path) from xij and xij+1

to the respective endpoints is not t. The plurality assignment was defined using random
walks of length t, so it does not say anything directly about walks which have a different
length. To solve this problem we need the many loops guaranteed to exist by the niceness
condition. Their existence implies that a random walk of t steps statistically is not too
different from a random walk which has a few steps more or less. If the random walk starts
in u, the probability that we end in v only changes very slightly if we make our walk a few
steps longer or shorter. The following lemma makes this precise.

I Lemma 12. Let t ∈ N, δ ≤ 1/160 and j ∈ {t − δ
√
t, . . . , t + δ

√
t}. If the plurality

assignments for xij and xij+1 both occur with probability at least 5
8 , then the following holds.

For a fraction of at least 1
4 of the paths of length 2t that have e = (ij , ij+1) as j-th edge the

values that the starting point yi1 and the endpoint yi2t+1 of the path claim for xij and xij+1 ,
respectively, agree with the plurality assignments for those arrays.

In order to obtain the desired lower bound for E[V] next we have to deal with the case
where the plurality assignment is claimed with a small probability only. The following shows
that in this case the corresponding edge e leads in a large fraction of the paths to a violation
of the corresponding constraint via case b).

I Lemma 13. Let t ∈ N, δ ≤ 1/160 and j ∈ {t−δ
√
t, . . . , t+δ

√
t}. If the plurality assignment

for xij occurs with probability less than 5
8 the following holds. For a fraction of at least 1

4 of
the paths of length 2t that have e as j-th edge the values that the starting point yi1 and the
endpoint yi2t+1 of the path claim for xij disagree.

The corresponding statement is true for xij+1 .

Let F denote the set of edges in the instance ψ such that the corresponding constraint
is violated by the plurality assignment. Recall that our goal is to prove a lower bound for

M. Baartse and K. Meer 113

Pr[V > 0], where V is the random variable which counts the number of edges e in a random
2t-step path that satisfy the following: e belongs to F , it is the j-th edge in the path for a
j ∈ {t− δ

√
t, . . . , t+ δ

√
t}, where δ = 1/160 and causes the corresponding constraint in ψt

to be unsatisfied by assignment y. We are now able to extract such a lower bound.

I Lemma 14. Let ε ≤ 1
d·
√
t
, let ψ be an instance with UNSAT (ψ) = ε and ψt be constructed

as above. For the random variable V as defined above it is Pr[V > 0] ≥ c · ε with c =
√
t

3520d .

The above lemmas result in

I Theorem 15. There exists an algorithm which works in polynomial time that maps a nice
QPS(m, k, 2, s) instance ψ to a QPS(d2tm, 2

√
tk + (2

√
t+ 1)s, 2, dt+

√
t+1s)-instance ψt and

has the following properties:
If ψ is satisfiable, then ψt is satisfiable.
If ψ is not satisfiable and UNSAT(ψ) < 1

d
√
t
, then UNSAT(ψt) ≥

√
t

3520d · UNSAT(ψ).

Note that the construction works precisely the same in the complex BSS model.

3.3 Dimension reduction
The amplification step increases an unsatisfiability ratio ε < 1

d
√
t
by a factor c ≥

√
t

3520d . Thus
starting with an unsatisfiable instance φ that has m constraints it would be sufficient to
repeat the amplification step Ω(logm) number of times in order to end with an instance
that has a constant unsatisfiability gap ≥ 1

d
√
t
. However, doing it naively the dimension

of arrays in the resulting instance would no longer remain constant. This would imply as
well the query complexity to be not any longer constant, compare Lemma 6. Therefore, the
dimension has to be reduced again each time an amplification step was applied. This has to
be done in such a way that we do not lose too much of the gap-increase the amplification
step gave.

To get around this problem one should first alter the instance in such a way that every
constraint depends on at most Q variables only. Here, Q is an absolute constant independent
of the array size. In Dinur’s proof this is done using so-called transparent long proofs
for NP. The corresponding construction is called alphabet-reduction there because the
different amplification steps deal with satisfiability problems over finite alphabets of different
cardinalities. With respect to the real number model it is more appropriate to consider it as
a dimension reduction. All instances that occur during amplification are to be solved over
the reals, i.e., there are no different ’alphabets’ to deal with.

Transparent long proofs have been used already in the first proof of the classical PCP
theorem, see [2], where they are crucial for applying a technique called verifier-composition.
In the real and complex number model [9, 4] show the existence of transparent long proofs for
all problems in NPR and NPC, respectively. More precisely, a verifier for an NPR-complete
problem is designed which uses a superpolynomial number of random bits and inspects a
constant number Q of proof components. As already said in the introduction proving this
requires considerable additional work in comparison to the Turing setting. The main task is
to design an algorithm for testing linearity of certain real number functions on unstructured
finite subsets of some Rn. Unstructured here means in particular that these domains are not
closed under addition and scalar multiplication. This causes certain invariance properties of
the uniform distribution to be violated. The latter, however, is crucially used in the finite
alphabet framework to show existence of long transparent proofs.

Long transparent proofs provide a way to replace each constraint in ψt by many constraints
all depending on at most Q real variables (i.e., arrays of dimension 1); Q denotes the constant

STACS’13

114 The PCP theorem for NP over the reals

query complexity of the long transparent proof and thus is independent of the instance. If
the old constraint is not satisfiable, then at least half of the new ones will not be satisfied.
Thus one gets a reduction from constraints considered as QPS-instances to QPS-instances
which blows up the gap to a constant. As seeming disadvantage the size of the long proof
becomes superpolynomial in the size of the instance. But the verification using long proofs
will be applied to instances of constant size only, namely single constraints in ψt. Thus
the length of the transparent long proofs in fact does not matter at all. The much more
important aspect is their structure which will not be explained here due to lack of space.
The main result of this subsection, of which we also omit the proof, is

I Theorem 16. There exists a reduction which works in polynomial time and maps a
QPS(m(t), k(t), 2, s(t))-instance ψt to a QPS(m̂(t), C,Q, 1)-instance ψ̂t, where C,Q are
constants, m̂(t) is linear in m(t) (the multiplication factor being double exponential in s(t))
and the following holds:

If ψt is satisfiable, then so is ψ̂t and
if ψt is unsatisfiable, then UNSAT(ψ̂t) ≥ UNSAT(ψt)/(160(d+ 1)2).

3.4 Putting all together
Let Q ≥ 3 be the O(1)-constant from long transparent proofs for QPS(m, 1, 3, 1) and let
C ≥ 1 be the number of polynomials in a proof check ,i.e., the number of polynomials in the
QPS-instance which the verifier computes out of the input instance and the random bits.

Given an instance φ of QPS(m,C,Q, 1), applying preprocessing yields a nice instance
of QPS(3Qd2m,C +Q, 2, Q) (Theorem 11), then applying amplification yields an instance
of QPS(3d2t+2Qm, 2

√
t(C +Q) + (

√
t+ 1)Q, 2, dt+

√
t+1Q), and finally applying dimension

reduction yields an instance ψ̂t of QPS(m′, C,Q, 1) with the following properties.
m′ is linear in m, the multiplication factor is double exponential in Qdt;
if φ is satisfiable so is ψ̂t;
if φ is unsatisfiable and UNSAT(φ) ≤ 1

d
√
t
, then UNSAT(ψ̂t) ≥ UNSAT(φ) ·

√
t

1010Qd4 .
Assume φ is not satisfiable. We now choose t = (2 · 1010Qd4)2 so that a gap which is smaller
than 1

d
√
t
will be amplified with a factor of at least 2 by this reduction. Thus from an instance

of QPS(m, 1, 3, 1), one builds in logm steps an instance with a gap of at least 1
d
√
t
.

Finally, since in every step the number of constraints increases linearly, after less than
logm steps the number of constraints in the final instance is polynomial in m. Using Lemma
6 we thus arrive at the Main Theorem:

I Theorem 17. It holds NPR = PCPR(O(log n), O(1)). The same is true in the BSS model
over C.

4 Open questions

First, we consider it interesting to figure out whether the theorem as well can be proved
along the lines of the first proof of the classical PCP theorem in [2, 3]. Its main ingredients
are certain property testing procedures as well as a technique called verifier composition.
Whereas the latter is very similar to the ideas behind the dimension reduction step above, the
different property testing algorithms necessary probably result in more severe difficulties in
the real number setting. Testing linear functions can be done similarly, as has been discussed
above in relation with transparent long proofs for NPR. In [10] a first characterization of NPR
via PCPR(O(log n), O(polylog(n))) was given by designing a real algorithm for testing low-
degree polynomials. This algorithm is based on testing the maximal degree of a polynomial

M. Baartse and K. Meer 115

with respect to its variables. In order to apply the verifier composition step the classical
proof of the PCP theorem puts such a low-degree test into a better structure by designing a
total-degree test. It is unclear whether such a test could be designed as well over the reals
without loosing other important properties such as the length of a proof.

Secondly, approximation problems have not yet been studied in real number complexity
to a comparable extent as in classical complexity theory. An important implication of the
classical PCP theory was the non-approximability of the MAX-3-SAT optimization problem
via so called polynomial time approximation schemes, see [1]. A natural problem to study in
this respect is to maximize the number of commonly solvable polynomial equations in a real
number polynomial system. A direct implication of the existence of a gap-reduction shows
that this maximum is not efficiently approximable. More precisely, given a system and an
arbitrary ε > 0, unless PR = NPR there is no real number algorithm running in polynomial
time in the system’s size which approximates the maximal number of commonly solvable
equations within a relative factor 1 + ε. A promising direction for future research seems to
get more (non)-approximability results of that type for natural real number optimization
problems as consequence of the PCPR theorem.

Thirdly, in view of the BSS model having been introduced for many further structures
like rings, vector spaces or groups one might ask whether the PCP theorem as well holds in
such structures.

Finally, there are of course many further questions that have been studied in the Turing
model as consequence of the PCP theorem which also make sense in the BSS-model. One
typical such is the problem to optimize the parameters in the PCPR theorem.

References
1 S. Arora, B. Barak: Computational Complexity: A Modern Approach. Cambridge Univer-

sity Press, 2009.
2 S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy: Proof verification and hardness of

approximation problems. Journal of the ACM 45 (3), 501–555, 1998. Preliminary version:
Proc. 33rd Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society, 14–23, 1992.

3 S. Arora, S. Safra: Probabilistic checking proofs: A new characterization of NP. Journal
of the ACM 45 (1), 70–122, 1998. Preliminary version: Proc. of the 33rd Annual IEEE
Symposium on the Foundations of Computer Science, 2–13, 1992.

4 M. Baartse, K. Meer: Topics in real and complex number complexity theory. Submitted
to: Proc. of the Santaló Summer School ”Real Computation and Complexity”, UIMP,
Santander, 2012.

5 L. Blum, F. Cucker, M. Shub, S. Smale: Complexity and Real Computation. Springer,
1998.

6 L. Blum, M. Shub, S. Smale: On a theory of computation and complexity over the real
numbers: NP-completeness, recursive functions and universal machines. Bull. AMS, vol.
21, 1–46, 1989.

7 I. Dinur: The PCP theorem by gap amplification. Journal of the ACM Vol. 54 (3), 2007.
8 K. Friedl, Z. Hátsági, A. Shen: Low-degree tests. Proc. SODA, 57–64, 1994.
9 K. Meer: Transparent long proofs: A first PCP theorem for NPR. Foundations of Compu-

tational Mathematics, Springer, Vol. 5, Nr. 3, 231–255, 2005.
10 K. Meer: Almost transparent short proofs for NPR. Extended abstract in: Proc. 18th In-

ternational Symposium on Fundamentals of Computation Theory FCT 2011, Oslo, Lecture
Notes in Computer Science 6914, 41–52, 2011.

STACS’13

Mutual Dimension∗

Adam Case and Jack H. Lutz

Department of Computer Science, Iowa State University
Ames, IA 50011 USA

Abstract
We define the lower and upper mutual dimensions mdim(x : y) and Mdim(x : y) between any
two points x and y in Euclidean space. Intuitively these are the lower and upper densities of
the algorithmic information shared by x and y. We show that these quantities satisfy the main
desiderata for a satisfactory measure of mutual algorithmic information. Our main theorem, the
data processing inequality for mutual dimension, says that, if f : Rm → Rn is computable and
Lipschitz, then the inequalities mdim(f(x) : y) ≤ mdim(x : y) and Mdim(f(x) : y) ≤Mdim(x :
y) hold for all x ∈ Rm and y ∈ Rt. We use this inequality and related inequalities that we prove
in like fashion to establish conditions under which various classes of computable functions on
Euclidean space preserve or otherwise transform mutual dimensions between points.

1998 ACM Subject Classification F. Theory of Computation

Keywords and phrases computable analysis, data processing inequality, effective fractal dimen-
sions, Kolmogorov complexity, mutual information

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.116

1 Introduction

Recent interactions among computability theory, algorithmic information theory, and geo-
metric measure theory have assigned a dimension dim(x) and a strong dimension Dim(x) to
each individual point x in a Euclidean space Rn. These dimensions, which are real numbers
satisfying 0 ≤ dim(x) ≤ Dim(x) ≤ n, have been shown to be geometrically meaningful. For
example, the classical Hausdorff dimension dimH(E) of any set E ⊆ Rn that is a union of
Π0

1 (computably closed) sets is now known [16, 10] to admit the pointwise characterization

dimH(E) = sup
x∈E

dim(x).

More recent investigations of the dimensions of individual points in Euclidean space have
shed light on connectivity [18, 22], self-similar fractals [17, 6], rectifiability of curves [9, 20, 8],
and Brownian motion [11].

In their original formulations [16, 1], dim(x) is cdim({x}) and Dim(x) is cDim({x}),
where cdim and cDim are constructive versions of classical Hausdorff and packing dimensions
[7], respectively. Accordingly, dim(x) and Dim(x) are also called constructive fractal dimen-
sions. It is often most convenient to think of these dimensions in terms of the Kolmogorov
complexity characterization theorems

dim(x) = lim inf
r→∞

Kr(x)
r

, Dim(x) = lim sup
r→∞

Kr(x)
r

, (1.1)

∗ This research was supported in part by National Science Foundation Grants 0652569, 1143830, and
1247051. Part of the second author’s work was done during a sabbatical at Caltech and the Isaac
Newton Institute for Mathematical Sciences at the University of Cambridge.

© Adam Case and Jack H. Lutz;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 116–126

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.116
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Case and J. H. Lutz 117

where Kr(x), the Kolmogorov complexity of x at precision r, is defined later in this introduc-
tion [19, 1, 17]. These characterizations support the intuition that dim(x) and Dim(x) are
the lower and upper densities of algorithmic information in the point x.

In this paper we move the pointwise theory of dimension forward in two ways. We
formulate and investigate the mutual dimensions — intuitively, the lower and upper densities
of shared algorithmic information — between two points in Euclidean space, and we investigate
the conservation of dimensions and mutual dimensions by computable functions on Euclidean
space. We expect this to contribute to both computable analysis — the theory of scientific
computing [3] — and algorithmic information theory.

The analyses of many computational scenarios call for quantitative measures of the degree
to which two objects are correlated. In classical (Shannon) information theory, the most
useful such measure is the mutual information I(X : Y) between two probability spaces X
and Y [5]. In the algorithmic information theory of finite strings, the (algorithmic) mutual
information I(x : y) between two individual strings x, y ∈ {0, 1}∗ plays an analogous role
[15]. Under modest assumptions, if x and y are drawn from probability spaces X and Y of
strings respectively, then the expected value of I(x : y) is very close to I(X : Y) [15]. In this
sense algorithmic mutual information is a refinement of Shannon mutual information.

Our formulation of mutual dimensions in Euclidean space is based on the algorithmic
mutual information I(x : y), but we do not use the seemingly obvious approach of using the
binary expansions of the real coordinates of points in Euclidean space. It has been known
since Turing’s famous correction [23] that binary notation is not a suitable representation for
the arguments and values of computable functions on the reals. (See also [12, 24].) This is
why the characterization theorems (1.1) use Kr(x), the Kolmogorov complexity of a point
x ∈ Rn at precision r, which is the minimum Kolmogorov complexity K(q) — defined in a
standard way [15] using a standard binary string representation of q — for all rational points
q ∈ Qn∩B2−r (x), where B2−r (x) is the open ball of radius 2−r about x. For the same reason
we base our development here on the mutual information Ir(x : y) between points x ∈ Rm
and y ∈ Rn at precision r. This is the minimum value of the algorithmic mutual information
I(p : q) for all rational points p ∈ Qm ∩ B2−r (x) and q ∈ Qn ∩ B2−r (y). Intuitively, while
there are infinitely many pairs of rational points in these balls and many of these pairs
will contain a great deal of “spurious” mutual information (e.g., any finite message can be
encoded into both elements of such a pair), a pair of rational points p and q achieving the
minimum I(p : q) = Ir(x : y) will only share information that their proximities to x and y
force them to share. Sections 2 and 3 below develop the ideas that we have sketched in this
paragraph, along with some elements of the fine-scale geometry of algorithmic information in
Euclidean space that are needed for our results. A modest generalization of Levin’s coding
theorem (Theorem 2.1) is essential for this work.

In analogy with the characterizations (1.1) we define our mutual dimensions as the lower
and upper densities of algorithmic mutual information,

mdim(x : y) = lim inf
r→∞

Ir(x : y)
r

, Mdim(x : y) = lim sup
r→∞

Ir(x : y)
r

, (1.2)

in section 4. We also prove in that section that these quantities satisfy all but one of the
desiderata (e.g., see [2]) for any satisfactory notion of mutual information.

We save the most important desideratum — our main theorem — for section 5. This is
the data processing inequality for mutual dimension (actually two inequalities, one for mdim
and one for Mdim). The data processing inequality of Shannon information theory [5] says
that, for any two probability spaces X and Y and any function f : X → Y ,

I(f(X) : Y) ≤ I(X : Y), (1.3)

STACS’13

118 Mutual Dimension

i.e., the induced probability space f(X) obtained by “processing the information in X

through f” does not share any more information with Y than X shares with Y . The data
processing inequality of algorithmic information theory [15] says that, for any computable
partial function f : {0, 1}∗ → {0, 1}∗, there is a constant cf ∈ N (essentially the number of
bits in a program that computes f) such that, for all strings x ∈ domf and y ∈ {0, 1}∗,

I(f(x) : y) ≤ I(x : y) + cf . (1.4)

That is, modulo the constant cf , f(x) contains no more information about y than x contains
about y.

The data processing inequality for points in Euclidean space is a theorem about functions
f : Rm → Rn that are computable in the sense of computable analysis [3, 12, 24]. Briefly, an
oracle for a point x ∈ Rm is a function gx : N→ Qm such that |gx(r)− x| ≤ 2−r holds for
all r ∈ N. A function f : Rm → Rn is computable if there is an oracle Turing machine M
such that, for every x ∈ Rm and every oracle gx for x, the function r →Mgx(r) is an oracle
for f(x).

Given (1.2), (1.3), and (1.4), it is natural to conjecture that, for every computable function
f : Rm → Rn, the inequalities

mdim(f(x) : y) ≤ mdim(x : y), Mdim(f(x) : y) ≤Mdim(x : y) (1.5)

hold for all x ∈ Rm and y ∈ Rt. However, this is not the case. For a simple example, there
exist computable functions f : R→ R2 that are space-filling, e.g., satisfy [0, 1]2 ⊆ range f

[4]. For such a function f we can choose x ∈ R such that dim(f(x)) = 2. Letting y = f(x),
we then have

mdim(f(x) : y) = dim(f(x)) = 2 > 1 ≥ Dim(x) ≥Mdim(x : y),

whence both inequalities in (1.5) fail.
The difficulty here is that the above function f is extremely sensitive to its input, and

this enables it to compress a great deal of “sparse” high-precision information about its
input x into “dense” lower-precision information about its output f(x). Many theorems
of mathematical analysis exclude such excessively sensitive functions by assuming a given
function f to be Lipschitz, meaning that there is a real number c > 0 such that, for all x
and x′, |f(x) − f(x′)| ≤ c|x − x′|. This turns out to be exactly what is needed here. In
section 5 we prove prove the data processing inequality for mutual dimension (Theorem 5.1),
which says that the conditions (1.5) hold for every function f : Rm → Rn that is computable
and Lipschitz. In fact, we derive the data processing inequality from the more general
modulus processing lemma (Lemma 5.2). This lemma yields quantitative variants of the
data processing inequality for other classes of functions. For example, we use the modulus
processing lemma to prove that, if f : Rm → Rn is Hölder with exponent α (meaning that
0 < α ≤ 1 and there is a real number c > 0 such that |f(x) − f(x′)| ≤ c|x − x′|α for all
x, x′ ∈ Rm), then the inequalities

mdim(f(x) : y) ≤ 1
α
mdim(x : y), Mdim(f(x) : y) ≤ 1

α
Mdim(x : y) (1.6)

hold for all x ∈ Rm and y ∈ Rt.
In section 5 we also derive reverse data processing inequalities, e.g., giving conditions

under which mdim(x : y) ≤ mdim(f(x) : y). We then use data processing inequalities and
their reverses to explore conditions under which computable functions on Euclidean space
preserve, approximately preserve, or otherwise transform mutual dimensions between points.

A. Case and J. H. Lutz 119

We expect mutual dimensions and the data processing inequalities to be useful for future
research in computable analysis. We also expect the development of mutual dimensions in
Euclidean spaces — highly structured spaces in which it is clear that mdim and Mdim are
the right notions — to guide future explorations of mutual information in more challenging
contexts, including computational complexity and the computational theory of chemical
reaction networks.

2 Kolmogorov Complexity in Euclidean Space

We begin by developing some elements of the fine-scale geometry of algorithm information in
Euclidean space. In this context it is convenient to regard the Kolmogorov complexity of a
set of strings to be the number of bits required to specify some element of the set.

Definition (Shen and Vereshchagin [21]). The Kolmogorov complexity of a set S ⊆ {0, 1}∗
is

K(S) = min{K(x) |x ∈ S}.

Note that S ⊆ T implies K(S) ≥ K(T). Intuitively, small sets may require “higher resolution”
than large sets.

Similarly, we define the algorithmic probability of a set S ⊆ {0, 1}∗ to be

m(S) =
∑

π∈{0,1}∗

U(π)∈S

2−|π|,

where U is the fixed universal Turing machine used in defining Kolmogorov complexity. For
a single string x ∈ {0, 1}∗, we write m(x) = m({x}).

We need a generalization of Levin’s coding theorem [13, 14] that is applicable to certain
systems of disjoint sets.

Notation. Let B ⊆ N× N× {0, 1}∗ and r, s ∈ N.
1. The (r, s)-block of B is the set Br,s = {x ∈ {0, 1}∗ | (r, s, x) ∈ B}.
2. The rth layer of B is the sequence Br = (Br,t | t ∈ N).

Definition. A layered disjoint system (LDS) is a set B ⊆ N× N× {0, 1}∗ such that, for all
r, s, t ∈ N,

s 6= t⇒ Br,s ∩Br,t = ∅.

Note that this definition only requires the sets within each layer of B to be disjoint.

I Theorem 2.1 (LDS coding theorem). For every computably enumerable layered disjoint
system B there is a constant cB ∈ N such that, for all r, t ∈ N,

K(Br,t) ≤ log 1
m(Br,t)

+K(r) + cB .

If we take Br,t = {st}, where st is the tth element of the standard enumeration of {0, 1}∗,
then Theorem 2.1 tells us that K(x) ≤ log 1

m(x) +O(1), which is Levin’s coding theorem.
Our next objective is to use the LDS coding theorem to obtain useful bounds on the

number of times that the value K(S) is attained or approximated.

STACS’13

120 Mutual Dimension

Definition. Let S ⊆ {0, 1}∗ and d ∈ N.
1. A d-approximate K-minimizer of S is a string x ∈ S for which K(x) ≤ K(S) + d.
2. A K-minimizer of S is a 0-approximate K-minimizer of S.
We use the LDS coding theorem to prove the following.

I Theorem 2.2. For every computably enumerable layered disjoint system B there is a
constant cB ∈ N such that, for all r, t, d ∈ N, the block Br,t has at most 2d+K(r)+cB d-
approximate K-minimizers.

We now lift our terminology and notation to Euclidean space Rn. In this context, a
layered disjoint system is a set B ⊆ N× N× Rn such that, for all r, s, t ∈ N,

s 6= t⇒ Br,s ∩Br,t = ∅.

We lift our Kolmogorov complexity notation and terminology to Rn in two steps:
1. Lifting to Qn: Each rational point q ∈ Qn is encoded as a string x ∈ {0, 1}∗ in a natural

way. We then write K(q) for K(x). In this manner, K(S), m(S), K-minimizers, and
d-approximate K-minimizers are all defined for sets S ⊆ Qn.

2. Lifting to Rn. For S ⊆ Rn, we define K(S) = K(S ∩ Qn) and m(S) = m(S ∩ Qn).
Similarly, a K-minimizer for S is a K-minimizer for S ∩Qn, etc.

For each r ∈ N and each m = (m1, . . . ,mn) ∈ Zn, let

Q(r)
m = [m1 · 2−r, (m+ 1) · 2−r)× · · · × [mn · 2−r, (mn + 1) · 2−r)

be the r-dyadic cube at m. Note that each Q(r)
m is “half-open, half-closed” in such a way that,

for each r ∈ N, the family

Q(r) = {Q(r)
m |m ∈ Zn}

is a partition of Rn. It follows that (modulo trivial encoding) the collection

Q = {Q(r)
m | r ∈ N and m ∈ Zn}

of all dyadic cubes is a layered disjoint system whose rth layer is Q(r). Moreover, the set

{(r,m, q) ∈ N× Zn ×Qn | q ∈ Q(r)
m }

is decidable, so Theorem 2.2 has the following useful consequence.

I Corollary 2.3. There is a constant c ∈ N such that, for all r, d ∈ N, no r-dyadic cube has
more than 2d+K(r)+c d-approximate K-minimizers. In particular, no r-dyadic cube has more
than 2K(r)+c K-minimizers.

The Kolmogorov complexity of an arbitrary point in Euclidean space depends on both
the point and a precision parameter.

Definition. Let x ∈ Rn and r ∈ N. The Kolmogorov complexity of x at precision r is

Kr(x) = K(B2−r (x)).

That is, Kr(x) is the number of bits required to specify some rational point in the open
ball B2−r (x). Note that, for each q ∈ Qn, Kr(q)↗ K(q) as r →∞.

A careful analysis of the relationship between cubes and balls enables us to derive the
following from Corollary 2.3.

I Theorem 2.4. There is a constant c ∈ N such that, for all r, d ∈ N, no open ball of radius
2−r has more than 2d+2K(r)+c d-approximate K-minimizers. In particular, no open ball of
radius 2−r has more than 22K(r)+c K-minimizers.

A. Case and J. H. Lutz 121

3 Mutual Information in Euclidean Space

This section develops the mutual dimensions of points in Euclidean space at a given precision.
As in section 2 we assume that rational points q ∈ Qn are encoded as binary strings in some
natural way. Mutual information between rational points is then defined from conditional
Kolmogorov complexity in the standard way [15] as follows.

Definition. Let p ∈ Qm, r ∈ Qn, s ∈ Qt.
1. The mutual information between p and q is

I(p : q) = K(q)−K(q | p).

2. The mutual information between p and q given s is

I(p : q|s) = K(q | s)−K(q | p, s).

The following properties of mutual information are well known [15].

I Theorem 3.1. Let p ∈ Qm and q ∈ Qn.
1. I(p,K(p) : q) = K(p) +K(q)−K(p, q) +O(1).
2. I(p,K(p) : q) = I(q,K(q) : p) +O(1).
3. I(p : q) ≤ min {K(p),K(q)}+O(1).

(Each of the properties 1 and 2 above is sometimes called symmetry of mutual information.)
Mutual information between points in Euclidean space at a given precision is now defined

as follows.

Definition. The mutual information of x ∈ Rn and y ∈ Rt at precision r ∈ N is

Ir(x : y) = min{I(qx : qy) | qx ∈ B2−r (x) ∩Qn and qy ∈ B2−r (y) ∩Qt}.

As noted in the introduction, the role of the minimum in the above definition is to
eliminate “spurious” information that points qx ∈ B2−r ∩Qn and qy ∈ B2−r (y) ∩Qt might
share for reasons not forced by their proximities to x and y, respectively.

Notation. We also use the quantity

Jr(x : y) = min{I(qx : qy) | px is a K-minimizer of B2−r (x) and
py is a K–minimizer of B2−r (y)}.

Although Jr(x : y), having two “layers of minimization”, is somewhat more involved than
Ir(x : y), one can imagine using it as the definition of mutual information. Using Theorem
2.4 (and hence the LDS coding theorem), we prove the useful fact that Jr(x : y) does not
differ greatly from Ir(x : y).

I Theorem 3.2. For all x ∈ Rn and y ∈ Rt,

Ir(x : y) = Jr(x : y) + o(r)

as r →∞.

Using this we establish the following useful properties of Ir(x : y).

I Theorem 3.3. For all x ∈ Rn and y ∈ Rt, the following hold as r →∞.
1. Ir(x : y) = Kr(x) +Kr(y)−Kr(x, y) + o(r).
2. Ir(x : y) ≤ min{Kr(x),Kr(y)}+ o(r).
3. If x and y are independently random, then Ir(x : y) = o(r).
4. Ir(x : y) = Ir(y : x) + o(r).

STACS’13

122 Mutual Dimension

4 Mutual Dimension in Euclidean Space

We now define mutual dimensions between points in Euclidean space(s).

Definition. The lower and upper mutual dimensions between x ∈ Rn and y ∈ Rt are

mdim(x : y) = lim inf
r→∞

Ir(x : y)
r

and

Mdim(x : y) = lim sup
r→∞

Ir(x : y)
r

,

respectively.

With the exception of the data processing inequality, which we prove in section 5, the
following theorem says that the mutual dimensions mdim andMdim have the basic properties
that any mutual information measure should have. (See, for example, [2].)

I Theorem 4.1. For all x ∈ Rn and y ∈ Rt, the following hold.
1. mdim(x : y) ≥ dim(x) + dim(y)−Dim(x, y).
2. Mdim(x : y) ≤ Dim(x) +Dim(y)− dim(x, y).
3. mdim(x : y) ≤ min{dim(x), dim(y)}, Mdim(x : y) ≤ min{Dim(x), Dim(y)}.
4. 0 ≤ mdim(x : y) ≤Mdim(x : y) ≤ min{n, t}.
5. If x and y are independently random, then Mdim(x : y) = 0.
6. mdim(x : y) = mdim(y : x), Mdim(x : y) = Mdim(y : x).

5 Data Processing Inequalities and Applications

Our objectives in this section are to prove data processing inequalities for lower and upper
mutual dimensions in Euclidean space and to use these inequalities to investigate how certain
functions on Euclidean space preserve or predictably transform mutual dimensions.

The following result is our main theorem. The meaning and necessity of the Lipschitz
hypothesis are explained in the introduction.

I Theorem 5.1 (data processing inequality). If f : Rn → Rt is computable and Lipschitz,
then, for all x ∈ Rn and y ∈ Rt,

mdim(f(x) : y) ≤ mdim(x : y)

and

Mdim(f(x) : y) ≤Mdim(x : y).

We in fact prove a stronger result.

Definition. A modulus (of uniform continuity) for a function f : Rn → Rk is a nondecreasing
function m : N→ N such that, for all x, y ∈ Rn and r ∈ N,

|x− y| ≤ 2−m(r) ⇒ |f(x)− f(y)| ≤ 2−r.

A. Case and J. H. Lutz 123

I Lemma 5.2 (modulus processing lemma). If f : Rn → Rk is a computable and uniformly
continuous function, and m is a computable modulus for f , then for all x ∈ Rn and y ∈ Rt,

mdim(f(x) : y) ≤ mdim(x : y)
(

lim sup
r→∞

m(r + 1)
r

)
and

Mdim(f(x) : y) ≤Mdim(x : y)
(

lim sup
r→∞

m(r + 1)
r

)
.

Theorem 5.1 follows immediately from Lemma 5.2 and the following.

I Observation 5.3. If a function f : Rn → Rk is Lipschitz, then there exists s ∈ N such
that m(r) = r + s is a modulus for f .

In similar fashion, we can derive the following fact from the modulus processing lemma.
(Recall the definition of Hölder functions given in the introduction.)

I Corollary 5.4. If f : Rn → Rk is computable and Hölder with exponent α, then, for all
x ∈ Rn and y ∈ Rt,

mdim(f(x) : y) ≤ 1
α
mdim(x : y)

and

Mdim(f(x) : y) ≤ 1
α
Mdim(x : y).

We next develop reverse versions of the above inequalities.

Notation. Let n ∈ Z+.
1. [n] = {1, · · · , n}.
2. For S ⊆ [n], x ∈ R|S|, y ∈ Rn−|S|, the string

x ∗S y ∈ Rn

is obtained by placing the components of x into the positions in S (in order) and the
components of y into the positions in [n] \ S (in order).

Definition. Let f : Rn → Rk.
1. f is co-Lipschitz if there is a real number c > 0 such that for all x, y ∈ Rn,

|f(x)− f(y)| ≥ c|x− y|.

2. f is bi-Lipschitz if f is both Lipschitz and co-Lipschitz.
3. For S ⊆ [n], f is S-co-Lipschitz if there is a real number c > 0 such that, for all u, v ∈ R|S|

and y ∈ Rn−|S|,

|f(u ∗S y)− f(v ∗S y)| ≥ c|u− v|.

4. For i ∈ [n], f is co-Lipschitz in its ith argument if f is {i}-co-Lipschitz.

Note that f is [n]-co-Lipschitz if and only if f is co-Lipschitz.
Example. The function f : Rn → R defined by

f(x1, · · · , xn) = x1 + · · ·+ xn

is S-co-Lipschitz if and only if |S| ≤ 1. In particular, if n ≥ 2, then f is co-Lipschitz in every
argument, but f is not co-Lipschitz.

We next relate co-Lipschitz conditions to moduli.

STACS’13

124 Mutual Dimension

Definition. Let f : Rn → Rk.
1. An inverse modulus for f is a nondecreasing function m : N → N such that, for all

x, y ∈ Rn and r ∈ N,

|f(x)− f(y)| ≤ 2−m(r) ⇒ |x− y| ≤ 2−r.

2. Let S ⊆ [n]. An S-inverse modulus for f is a nondecreasing function m : N → N such
that, for all u, v ∈ R|S|, all y ∈ Rn−|S|, and all r ∈ N,

|f(u ∗S y)− f(v ∗S y)| ≤ 2−m(r) ⇒ |u− v| ≤ 2−r.

3. Let i ∈ [n]. An inverse modulus for f in its ith argument is an {i}-inverse modulus for f .

I Observation 5.5. Let f : Rn → Rk and S ⊆ [n].
1. If f is S-co-Lipschitz, then there is a positive constant t ∈ N such that m′(r) = r + t is

an S-inverse modulus of f .
2. If f is co-Lipschitz, then there is a positive constant t ∈ N such that m′(r) = r + t is an

inverse modulus of f .

I Lemma 5.6 (reverse modulus processing lemma). If f : Rn → Rk is a uniformly continuous
function and m′ is a computable S-inverse modulus for f , then, for all S ⊆ [n], x ∈ R|S|,
y ∈ Rt, and z ∈ Rn−|S|,

mdim(x : y) ≤ mdim((f(x ∗S z), z) : y)
(

lim sup
r→∞

m′(r + 1)
r

)
and

Mdim(x : y) ≤Mdim((f(x ∗S z), z) : y)
(

lim sup
r→∞

m′(r + 1)
r

)
.

By Observation 5.5 and Lemma 5.6, we have the following.

I Theorem 5.7 (reverse data processing inequality). If S ⊆ [n] and f : Rn → Rk is computable
and S-co-Lipschitz, then, for all x ∈ R|S|, y ∈ Rt, and z ∈ Rn−|S|,

mdim(x : y) ≤ mdim((f(x ∗S z), z) : y)

and

Mdim(x : y) ≤Mdim((f(x ∗S z), z) : y).

Definition. Let f : Rn → Rk and 0 < α ≤ 1.
1. f is co-Hölder with exponent α if there is a real number c > 0 such that for all x, y ∈ Rn,

|x− y| ≤ c|f(x)− f(y)|α.

2. For S ⊆ [n], f is S-co-Hölder with exponent α if there is a real number c > 0 such that,
for all u, v ∈ R|S| and y ∈ Rn−|S|,

|u− v| ≤ c|f(u ∗S y)− f(v ∗S y)|α.

I Corollary 5.8. If S ⊆ [n] and f : Rn → Rk is computable and S-co-Hölder with exponent
α, then, for all x ∈ R|S|, y ∈ Rt, and z ∈ Rn−|S|,

mdim(x : y) ≤ 1
α
mdim((f(x ∗S z), z) : y)

and

Mdim(x : y) ≤ 1
α
Mdim((f(x ∗S z), z) : y).

A. Case and J. H. Lutz 125

The rest of this section is devoted to applications of the data processing inequalities and
their reverses.

I Theorem 5.9 (mutual dimension conservation inequality). If f : Rn → Rk and g : Rt → Rl
are computable and Lipschitz, then, for all x ∈ Rn and y ∈ Rt,

mdim(f(x) : g(y)) ≤ mdim(x : y)

and

Mdim(f(x) : g(y)) ≤Mdim(x : y).

I Theorem 5.10 (reverse mutual dimension conservation inequality). Let S1 ⊆ [n] and S2 ⊆ [t].
If f : Rn → Rk is computable and S1-co-Lipschitz, and g : Rt → Rl is computable and S2-co-
Lipschitz, then, for all x ∈ R|S1|, y ∈ R|S2|, w ∈ Rn−|S1|, and z ∈ Rt−|S2|,

mdim(x : y) ≤ mdim((f(x ∗S w), w) : (g(y ∗S z), z))

and

Mdim(x : y) ≤Mdim((f(x ∗S w), w) : (g(y ∗S z), z))

I Corollary 5.11 (preservation of mutual dimension). If f : Rn → Rk and g : Rt → Rl are
computable and bi-Lipschitz, then, for all x ∈ Rn and y ∈ Rt,

mdim(f(x) : g(y)) = mdim(x : y)

and

Mdim(f(x) : g(y)) = Mdim(x : y).

I Corollary 5.12. If f : Rn → Rk and g : Rt → Rl are computable and Hölder with exponents
α and β, respectively, then, for all x ∈ Rn and y ∈ Rt,

mdim(f(x) : g(y)) ≤ 1
αβ

mdim(x : y)

and

Mdim(f(x) : g(y)) ≤ 1
αβ

Mdim(x : y).

I Corollary 5.13. Let S1 ⊆ [n] and S2 ⊆ [t]. If f : Rn → Rk is computable and S1-co-Hölder
with exponent α, and g : Rt → Rl is computable and S2-co-Hölder with exponent β, then, for
all x ∈ R|S1|, y ∈ R|S2|, w ∈ Rn−|S1|, and z ∈ Rt−|S2|,

mdim(x : y) ≤ 1
αβ

mdim((f(x ∗S w), w) : (g(y ∗S z), z))

and

Mdim(x : y) ≤ 1
αβ

Mdim((f(x ∗S w), w) : (g(y ∗S z), z)).

Acknowledgments. We thank Elvira Mayordomo, A. Pavan, Giora Slutzki, and Jim
Lathrop for useful discussions.

STACS’13

126 Mutual Dimension

References
1 Krishna B. Athreya, John M. Hitchcock, Jack H. Lutz, and Elvira Mayordomo. Effective

strong dimension in algorithmic information and computational complexity. SIAM Journal
of Computing, 37(3):671–705, 2007.

2 C.B. Bell. Mutual information and maximal correlation as measures of dependence. Annals
of Mathematical Statistics, 33(2):587–595, 1962.

3 Mark Braverman and Stephen Cook. Computing over the reals: foundations for scientific
computing. Notices of the American Mathematical Society, 53(3):318–329, 2006.

4 P. J. Couch, B. D. Daniel, and Timothy H. McNicholl. Computing space-filling curves.
Theory of Computing Systems, 50(2):370–386, 2012.

5 Thomas R. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley &
Sons, Inc., second edition, 2006.

6 Randall Dougherty, Jack H. Lutz, Daniel R. Mauldin, and Jason Teutsch. Translating
the Cantor set by a random real. Transactions of the American Mathematical Society, to
appear.

7 Kenneth Falconer. Fractal Geometry: Mathematical Foundations and Applications. Wiley,
second edition, 2003.

8 Xiaoyang Gu, Jack Lutz, and Elvira Mayordomo. Curves that must be retraced. Informa-
tion and Computation, 209(6):992–1006, 2011.

9 Xiaoyang Gu, Jack H. Lutz, and Elvira Mayordomo. Points on computable curves. In
Foundations of Computer Science, pages 469–474. IEEE Computer Society, 2006.

10 John M. Hitchcock. Correspondence principles for effective dimensions. Theory of Com-
puting Systems, 38(5):559–571, 2005.

11 Bjørn Kjos-Hanssen and Anil Nerode. Effective dimension of points visited by Brownian
motion. Theoretical Computer Science, 410(4-5):347–354, 2009.

12 Ker-I Ko. Complexity Theory of Real Functions. Birkhäuser, first edition, 1991.
13 Leonid A. Levin. On the notion of a random sequence. Soviet Mathematics Doklady,

14(5):1413–1416, 1973.
14 Leonid A. Levin. Laws of information conservation (nongrowth) and aspects of the found-

ation of probability theory. Problemy Peredachi Informatsii, 10(3):30–35, 1974.
15 Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and Its Applications.

Springer, third edition, 2008.
16 Jack H. Lutz. The dimension of individual strings and sequences. Information and Com-

putation, 187(1):49–79, 2003.
17 Jack H. Lutz and Elvira Mayordomo. Dimensions of points in self-similar fractals. SIAM

Journal on Computing, 38(3):1080–1112, 2008.
18 Jack H. Lutz and Klaus Weihrauch. Connectivity properties of dimension level sets. Math-

ematical Logic Quarterly, 54(5):483–491, 2008.
19 Elvira Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff

dimension. Information Processing Letters, 84(1):1–3, 2002.
20 Robert Rettinger and Xizhong Zheng. Points on computable curves of computable lengths.

In MFCS, pages 736–743. Springer, 2009.
21 Alexander Shen and Nikolai K. Vereshchagin. Logical operations and Kolmogorov complex-

ity. Theoretical Computer Science, 271(1-2):125–129, 2002.
22 Daniel Turetsky. Connectedness properties of dimension level sets. Theoretical Computer

Science, 412(29):3598–3603, 2011.
23 Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem.

A correction. Proceedings of the London Mathematical Society, 43(2):544–546, 1937.
24 Klaus Weihrauch. Computable Analysis: An Introduction. Springer, first edition, 2000.

Exact and Approximation Algorithms for the
Maximum Constraint Satisfaction Problem over
the Point Algebra
Yoichi Iwata1 and Yuichi Yoshida2

1 University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
y.iwata@is.s.u-tokyo.ac.jp

2 National Institute of Informatics and Preferred Infrastructure, Inc.
2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, Japan
yyoshida@nii.ac.jp

Abstract
We study the constraint satisfaction problem over the point algebra. In this problem, an instance
consists of a set of variables and a set of binary constraints of forms (x < y), (x ≤ y), (x 6= y) or
(x = y). Then, the objective is to assign integers to variables so as to satisfy as many constraints
as possible. This problem contains many important problems such as Correlation Clustering,
Maximum Acyclic Subgraph, and Feedback Arc Set.

We first give an exact algorithm that runs in O∗(3
log 5
log 6n) time, which improves the previ-

ous best O∗(3n) obtained by a standard dynamic programming. Our algorithm combines the
dynamic programming with the split-and-list technique. The split-and-list technique involves
matrix products and we make use of sparsity of matrices to speed up the computation.

As for approximation, we give a 0.4586-approximation algorithm when the objective is maxim-
izing the number of satisfied constraints, and give an O(log n log log n)-approximation algorithm
when the objective is minimizing the number of unsatisfied constraints.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Constraint Satisfaction Problems, Point Algebra, Exact Algorithms, Ap-
proximation Algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.127

1 Introduction

Problems involving temporal constraints arise in various areas of computer science such
as scheduling, program verification, and parallel computation. One of the most common
frameworks to express temporal constraints is temporal constraint satisfaction problems
(Temporal CSPs). In Temporal CSP, an instance consists of a set of variables and a set of
constraints defined by first-order sentences with the predicate (<), the strict total order
of integers. Then, the objective is to assign integers to variables so as to satisfy all the
constraints.1

One of most famous Temporal CSPs is the CSP over the point algebra, introduced by
Vilain and Kautz [18]. In this problem, we have constraints of forms (x < y), (x ≤ y), (x 6= y)

1 We often choose the domain as the set of rational numbers and the predicate (<) as the dense strict
total order of rational numbers (e.g., [5]). However, we choose the domain as the set of integers to
simplify our expositions.

© Y. Iwata and Y. Yoshida;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 127–138

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.127
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

128 Algorithms for the Constraint Satisfaction Problem over the Point Algebra

and (x = y). A considerably larger class of Temporal CSPs is the CSP over the Ord-Horn
relations, introduced by Nebel and Bürkert [13]. CSPs over the point algebra and over
Ord-Horn relations are known to be solvable in polynomial time [13, 18]. Also, Ordering
CSPs introduced in [9] can be formulated as Temporal CSPs in which all variables must be
assigned different integers.

Most existing works on Temporal CSPs are concerned with the problem of deciding whether
all constraints are satisfied [1, 5, 12, 18]. However, it is natural to ask for an assignment that
satisfies as many constraints as possible when all constraints are not satisfied simultaneously.
In this paper, we are especially interested in the CSP over the point algebra as it is the
most fundamental Temporal CSP. We can look at the problem in terms of maximizing the
number of satisfied constraints (Max-PA), or in terms of minimizing the number of unsatisfied
constraints (Min-PA). These two are equivalent at optimality but, as usual, differ from the
point of view of approximation.

First, we give an exact algorithm for Max-PA (and hence for Min-PA) running in O∗(3
log 5
log 6n)

time, where n is the number of variables.23 This result improves the current best O∗(3n)
obtained by a standard dynamic programming. Our algorithm is obtained by combining the
dynamic programming with the split-and-list technique due to Ryan Williams [19]. That is,
we reduce computation of the dynamic programming to computation of matrix products.
The reduction is not trivial since the original split-and-list technique is only used to speed-up
exhaustive search. Using the current fastest algorithm for multiplying general square matrices
by Vassilevska Williams [20], we obtain an algorithm that runs in O∗(3

ω
log 6n) time, where

ω < 2.3727 < log 6. However, one of the matrices generated by the reduction is sparse and
has some recursive structure. To make use of this property, we modify the algorithm due to
Bini et al. [3] and get an algorithm that runs in O∗(3

log 5
log 6n) time.

Next, we give a 0.4586-approximation algorithm for Max-PA. The idea of our algorithm is
similar to [16]. We first solve a semidefinite relaxation and round the solution using three or
four hyperplanes (we take the better one). If two variables are in the same side for every
hyperplane, they will get the same value. Thus, we use at most 16 values. The ordering of
values assigned to different clusters is chosen randomly.

If we only use constraints of the form (x < y), then Max-PA coincides with Maximum
Acyclic Subgraph, in which we want to find an ordering of vertices in a digraph so as to
maximize the number of edges that go forward. It is NP-Hard to get a (0.5+ε)-approximation
for any ε > 0 assuming Khot’s unique games conjecture [10, 11]. The hardness suggests that
it would be difficult to improve our approximation ratio significantly.

Finally, we give an O(log n log log n)-approximation algorithm for Min-PA. If we only use
constraints of the form (x < y), then Min-PA coincides with Feedback Arc Set, in which we
want to find an ordering of vertices in a digraph so as to minimize the number of edges
that go backward. The best algorithm for Feedback Arc Set has an approximation ratio
O(log n log log n) [8]. Thus, our algorithm can be seen as a generalization of the algorithm
for Feedback Arc Set. The idea of our algorithm is reducing the problem to a variant of
multicut problem, which we call the symmetric multicut problem. In this problem, we are
given a digraph G = (V,E), and a set of terminal pairs T = {(s1, t1), . . . , (sk, tk)}. Then,
we want to find an edge set F ⊆ E of minimum cardinality such that, for any terminal pair
(s, t) ∈ T , G− F contains no path from s to t or no path from t to s. Then, we obtain an
O(log n log log n)-approximation algorithm for the symmetric multicut problem.

2 O∗(·) hides a factor polynomial in n.
3 We denote by log the logarithm to the base 2.

Y. Iwata and Y. Yoshida 129

1.1 Related Works
By restricting types of constraints further, the CSP over the point algebra coincides with
many other problems. If we use constraints of the form (x = y) and (x 6= y) only, then we
get Correlation Clustering [2]. As far as we know, exact algorithms for Correlation Clustering is
not studied in the literature. However, we can easily obtain an O∗(2n)-time algorithm by a
simple application of fast subset convolution by Björklund et al. [4] (see Section 3 for detail).
If the underlying graph is a complete graph, then the maximization version admits PTAS and
the minimization version can be approximated within a factor of 4 [6]. For general underlying
graphs, the maximization version can be approximated within a factor of 0.7666 [16] and the
minimization version can be approximated within a factor of O(log n) [6].

If we use constraints of the form (x < y) only, then Max-PA coincides with Maximum
Acyclic Subgraph and Min-PA coincides with Feedback Arc Set. The current fastest exact
algorithm for Maximum Acyclic Subgraph (and hence Feedback Arc Set) is a simple O∗(2n)-time
dynamic programming. The current best approximation algorithm for Maximum Acyclic
Subgraph is just the random assignment and its approximation ratio is 1/2. As we mentioned,
Guruswami et al. [10] showed that it is NP-Hard to obtain (1/2 + ε)-approximation for
any ε > 0 assuming Khot’s unique games conjecture. As for Feedback Arc Set, there is an
O(log n log log n)-approximation algorithm [8]. It is known that obtaining 1.36-approximation
is NP-Hard [7] and obtaining any constant approximation ratio is NP-Hard assuming Khot’s
unique games conjecture [10].

A Temporal CSP with a single predicate is called an Ordering CSP if all variables must
be assigned different values. Guruswami et al. [9, 10] considered the maximization version
of Ordering CSPs, and they showed that the random assignment always gives the best
approximation ratio assuming Khot’s unique games conjecture.

1.2 Organization

We give definitions used in this paper in Section 2. In Section 3, we show an O∗(3
log 5
log 6n)-time

exact algorithm for Max-PA. Sections 4 and 5 are devoted to show a 0.4586-approximation
algorithm for Max-PA and an O(log n log log n)-approximation algorithm for Min-PA, respect-
ively.

2 Preliminaries

For an integer n, we denote by [n] the set {1, . . . , n}. A (d-ary) relation over a domain
[k] is a subset of [k]d, and a (d-ary) constraint is a pair of a tuple of d variables and a
d-ary relation. A constraint e = ({x1, . . . , xt}, R) is called satisfied by an assignment f if
(f(x1), . . . , f(xt)) ∈ R. Now, we define two problems, Max-PA, and Min-PA.

Max-PA
Input: A set of n variables V and a set of m constraints C. Each variable x ∈ V takes value
from [n], and each constraint is of the forms (x < y), (x ≤ y), (x 6= y) and (x = y).
Output: An assignment f : V → [n] that maximizes the number of satisfied constraints.

Min-PA
Input: Same as Max-PA.
Output: An assignment f : V → [n] that minimizes the number of unsatisfied constraints.

Since the number of unsatisfied constraints is the number of constraints minus the number

STACS’13

130 Algorithms for the Constraint Satisfaction Problem over the Point Algebra

of satisfied constraints, the optimal assignments for the two problems coincide. Thus, for the
exact algorithm, we deal with Max-PA only. In this paper, we only deal with unweighted
instances, but our argument can be easily extended to weighted instances, for which we want
to maximize (resp., minimize) the total weight of satisfied (resp., unsatisfied) constraints. If
weights are integers between −W and W , then the running time of our exact algorithm takes
additional O∗(W) factor. Running times of our approximation algorithms do not change.

3 Exact Algorithms

In this section, we give an exact algorithm for Max-PA and prove the following theorem.

I Theorem 1. Max-PA can be solved in O∗(3
min(ω,log 5)

log 6 n) time and O∗(3
2

log 6n) space, where
ω is the matrix product exponent.

We cannot compare ω and log 5 since we do not know the true value of ω. The current best
bound on ω is 2.3727 by Vassilevska Williams [20], which is larger than log 5 < 2.3220.

Before proving Theorem 1, we first show an O∗(2n)-time algorithm for Correlation Clus-
tering to see the difficulty of Max-PA. We formalize Correlation Clustering as a dynamic
programming and solve it using fast subset convolution to achieve the time complexity
O∗(2n). This can be done because of the simplicity of the recurrence in the dynamic
programming.

Then, we introduce a standard O∗(3n)-time dynamic programming algorithm for Max-PA.
We will see that we cannot apply fast subset convolution to the recurrence. This is the
point we become apart from Correlation Clustering, and we improve the running time of the
algorithm to O∗(3

ω
log 6n) by applying the split-and-list technique to compute the recurrences.

Finally, we further improve the running time by using structure of matrices involved when
applying the split-and-list technique and give an O∗(3

log 5
log 6n)-time algorithm.

3.1 Algorithm for Correlation Clustering
We explain an O∗(2n)-time dynamic programming algorithm for Correlation Clustering. Recall
that Correlation Clustering is a special case of Max-PA such that each constraint has the form
(x = y) and (x 6= y) only. First, we reduce an instance of unweighted Correlation Clustering
into an instance of weighted Correlation Clustering that has (=)-constraints only. This can be
done by replacing each constraint of the form (x 6= y) by a constraint (x = y) with weight
−1. If an assignment satisfies a removed constraint (x 6= y), then it does not satisfy the
added constraint (x = y) and contributes to the objective value of the reduced instance by
0. Otherwise it satisfies the added constraint and contributes to the objective value by −1.
Thus the difference of its contribution to the original instance and the reduced instance is
always a fixed constant. Therefore, the optimal assignment does not change through the
reduction.

Then, we solve the reduced instance by dynamic programming. For a subset S ⊆ V , we
define dpi(S) as the maximum total weight of satisfied constraints by assigning values from
[i] to S. When some variable in a constraint is not assigned any value, we simply regard that
the constraint is not satisfied. We define dp0(∅) = 0 and dp0(S) = −∞ for any S 6= ∅. The
optimal value can be obtained as dpn(V). We can compute dpi+1 from dpi by the following
recurrence:

dpi+1(S) = max
T⊆S
{dpi(T) + w(S \ T)}, (1)

Y. Iwata and Y. Yoshida 131

where w(S) is the total weight of the constraints of the form (x = y) with x ∈ S and
y ∈ S. The running time of this dynamic programming is O∗(

∑n
i=0
(
n
i

)
2i) = O∗(3n).

Björklund et al. [4] showed that any recurrence of this form can be computed in O∗(2n) time
by developing a technique called fast subset convolution. Thus, we can solve Correlation
Clustering in O∗(2n) time.

3.2 Standard Dynamic Programming Algorithm
We explain an O∗(3n)-time dynamic programming algorithm for Max-PA. First, we reduce an
instance of unweighted Max-PA into an instance of weighted Max-PA that has (<)-constraints
only. This can be done by the following reduction.

For each constraint of the form (x < y), we set its weight as 1.
For each constraint of the form (x ≤ y), we replace it by a constraint (x > y) with weight
−1.
For each constraint of the form (x 6= y), we replace it by two constraints (x < y) and
(x > y) with weight 1.
For each constraint of the form (x = y), we replace it by two constraints (x < y) and
(x > y) with weight −1.

If an assignment satisfies a removed constraint (x ≤ y), then it does not satisfy the added
constraint (x > y) and contributes to the objective value of the reduced instance by 0.
Otherwise it satisfies the added constraint and contributes to the objective value by −1.
Thus the difference of its contribution to the original instance and the reduced instance is
always a fixed constant. We have the same property for constraints (x 6= y) and (x = y).
Therefore, the optimal assignment does not change through the reduction.

Then, we solve the reduced instance by dynamic programming. For a subset S ⊆ V , we
define dpi(S) as we did in the previous subsection. We can compute dpi+1 from dpi by the
following recurrence:

dpi+1(S) = max
T⊆S
{dpi(T) + w(T, S \ T)}, (2)

where w(A,B) is the total weight of constraints of the form (x < y) with x ∈ A and y ∈ B.
The running time of this dynamic programming is O∗(3n) and it uses O∗(2n) space.

Compare to the recurrence (1) for Correlation Clustering, w in this recurrence does not
have the form of w(S \ T) but has the form of w(T, S \ T) to which we cannot apply fast
subset convolution. This is because, in order to determine whether a constraint is satisfied,
we need to know not only how variables are partitioned into equal-valued sets, but also the
ordering of those sets.

3.3 Split-and-List Algorithm for Max-PA
In this subsection, we improve the standard dynamic programming algorithm in the previous
subsection by applying split-and-list technique. The original technique was developed to speed-
up the exhaustive search for Max 2-SAT by Ryan Williams [19], and here, we demonstrate that
it can be used to speed-up the computation of the recurrence in the dynamic programming.
In the original technique for Max 2-SAT, we split the variable set into three equal-sized parts
A, B, and C. Then we create two matrices X and Y from the number of satisfied clauses
by each assignment on A ∪B and B ∪ C, respectively, so that we can obtain the maximum
number of satisfied clauses from the product XY . In our application, we create two matrices
X and Y from values of dpi so that we can obtain values of dpi+1 from the product XY .

STACS’13

132 Algorithms for the Constraint Satisfaction Problem over the Point Algebra

I Lemma 2. Max-PA can be solved in O∗(3
ω

log 6n) time and O∗(3
2

log 6n) space.

Proof. We divide the variables into two parts V1 and V2 so that α|V1| = |V2|, where α ≥ 1 is
a parameter. Then, for S1 ⊆ V1 and S2 ⊆ V2, we can rewrite the recurrence of the dynamic
programming (2) as follows.

dpi+1(S1 ∪ S2) = max
T⊆S1∪S2

{dpi(T) + w(T, (S1 ∪ S2) \ T)}

= max
T1⊆S1

max
T2⊆S2

{dpi(T1 ∪ T2) + w(T1 ∪ T2, (S1 ∪ S2) \ (T1 ∪ T2))}

= max
T1⊆S1

max
T2⊆S2

{dpi(T1 ∪ T2) + w(T1, S1 ∪ S2) + w(T2, S1 ∪ S2)

− w(T1 ∪ T2, T1 ∪ T2)}
= max
T1⊆S1

{w(T1, S1 ∪ S2)+

max
T2⊆S2

{dpi(T1 ∪ T2) + w(T2, S1)− w(T1 ∪ T2, T1 ∪ T2) + w(T2, S2)}}.

We can reduce the computation of this recurrence into a product of the following two
matrices X and Y with an indeterminate t.

X(S1,T1),T2 = [T1 ⊆ S1] tdpi(T1∪T2)+w(T2,S1)−w(T1∪T2,T1∪T2),

YT2,S2 = [T2 ⊆ S2] tw(T2,S2),

where T1, S1 ⊆ V1 and T2, S2 ⊆ V2. Also, [·] has value 1 if the condition inside is true and
has value 0 otherwise. Indeed, the product XY can be expressed as

(XY)(S1,T1),S2 = [T1 ⊆ S1]
∑
T2⊆S2

tdpi(T1∪T2)+w(T2,S1)−w(T1∪T2,T1∪T2)+w(T2,S2).

Thus, the value of dpi+1(S1 ∪ S2) coincides with the maximum degree of a non-zero term in∑
T1⊆S1

tw(T1,S1∪S2)(XY)(S1,T1),S2

=
∑
T1⊆S1

tw(T1,S1∪S2)
∑
T2⊆S2

tdpi(T1∪T2)+w(T2,S1)−w(T1∪T2,T1∪T2)+w(T2,S2)

=
∑

T⊆S1∪S2

tdpi(T)+w(T,S1∪S2\T).

The number of choices for S1 and T1 with T1 ⊆ S1 ⊆ V1 is 3
n

1+α , and the number of
choices for T2 ⊆ V2 is 2

αn
1+α . By setting α = log 3, sizes of matrices X and Y become

3
n

log 6 × 3
n

log 6 , and we can multiply them in O∗(3
ω

log 6n) time. After the multiplication, we can
compute the sum over T in O∗(3

2
log 6n) time. In total, we can compute dpi+1 from dpi in

O∗(3
ω

log 6n) time and O∗(3
2

log 6n) space, and thus we can compute dpn(V) in the same time
(up to a polynomial factor) and the same space. J

3.4 Utilizing Sparsity
Since YT2,S2 in the previous subsection has non-zero value only when T2 ⊆ S2, the matrix Y
has only 3|V2| non-zero entries. Moreover, by aligning indices of Y properly, we can see that
Y is a recursively partial matrix, defined as follows.

Y. Iwata and Y. Yoshida 133

I Definition 3 (Recursively Partial Matrix). Any matrix X with size 1 × 1 is a recursively
partial matrix. A square matrix X with size 2k is called recursively partial if when dividing
it into four submatrices of size 2k−1, the bottom left submatrix is a zero matrix and the
other three submatrices are recursively partial matrices.

To exploit this structure when computing matrix products, we use the following theorem due
to Bini et al. [3].

I Theorem 4 ([3]). We can compute an approximate product of a 2× 2 matrix of the form[
a b

0 c

]
and any 2× 2 matrix with 5 multiplications.

Here, approximate product means that for any ε > 0, we can compute the product
with relative error depending on ε and it convergences to the exact value when ε → 0.
Schönhage [14] observed that we can compute the exact matrix product by regarding ε as an
indeterminate. This modification increases the running time by O(log n) factor. This type of
matrix product, which computes the product of matrices containing zeros in a structured
way, is called partial matrix product. The partial matrix product has been well studied for
obtaining a faster algorithm for square matrix product, however, in our case, we can use the
algorithm recursively to multiply a matrix X and a recursively partial matrix Y .

We give a detailed explanation of the algorithm. Let A be a 2k × 2k matrix, B be a
2k × 2k recursively partial matrix, and C be a product of A and B. We say that C ′ is a
d-approximate product of C with an indeterminate ε if for each index (i, j), C ′i,j can be
written as C ′i,j = Ci,j + εPi,j(ε) for some polynomial P of degree at most d − 1. Now, we
compute the k-approximate product C ′ of C. We divide each matrix into four submatrices
of size 2k−1 × 2k−1. Then, the product of these two matrices is:

C1,1 =A1,1B1,1, C1,2 =A1,1B1,2 +A1,2B2,2,

C2,1 =A2,1B1,1, C2,2 =A2,1B1,2 +A2,2B2,2.

We compute the (k − 1)-approximate products of the followings by applying the algorithm
recursively.

Z1 =(A2,1 + εA2,2)(B2,2 + εB1,2),
Z2 =A1,1(B1,1 + εB1,2),
Z3 =A2,1B2,2,

Z4 =(A1,1 +A2,1 + εA1,2)B1,1,

Z5 =(A2,1 + εA1,2)(B2,2 +B1,1).

Then, we can obtain k-approximate product C ′ from these products as follows:

C ′1,1 =Z2, C ′1,2 =ε−1(Z2 − Z3 − Z4 + Z5),
C ′2,1 =− Z3 + Z5, C ′2,2 =ε−1(Z1 − Z3).

Therefore, we can compute k-approximate product of two matrices in O∗(5k) time. Because
the degree of each polynomial Pi,j is at most k − 1, we can compute the exact product C by
running the algorithm k times and using the interpolation.

By using this partial matrix product algorithm, we can compute the product XY in
O∗(5|V2|) = O∗(3

log 5
log 6n) time. Recall that |V2| = αn

1+α = log 3
log 6n by our choice of α = log 3. As

a result, we can solve Max-PA in O∗(3
log 5
log 6n) time and O∗(3

2
log 6n) space.

STACS’13

134 Algorithms for the Constraint Satisfaction Problem over the Point Algebra

4 Approximation Algorithms for Max-PA

In this section, we give a 0.4586-approximation algorithm for Max-PA. First, we reduce
an instance of general Max-PA into an instance of Max-PA that has (<)-constraints and
(=)-constraints only. This can be done by the following reduction.

For each constraint of the form (x ≤ y), we replace it by two constraints (x < y) and
(x = y).
For each constraint of the form (x 6= y), we replace it by two constraints (x < y) and
(y < x).

The optimal value does not change through the reduction. This is because, for any assignment
f , if the removed constraint is satisfied by f , then exactly one of the added two constraints
is satisfied by f , and if the removed constraint is not satisfied by f , then none of the added
two constraints is satisfied by f .

After applying the reduction, consider the following SDP:

maximize
∑

(u=v)∈C

〈xu, xv〉+
∑

(u<v)∈C

(1− 〈xu, xv〉),

subject to ‖xv‖2 = 1 (∀v ∈ V),
〈xu, xv〉 ≥ 0 (∀u, v ∈ V),

where xv (v ∈ V) is a real vector. To see that the SDP above is indeed a relaxation, let
f∗ : V → [n] be the optimal solution. Then, we set xv be the vector whose i-th coordinate
is 1 if f∗(v) = i and 0 otherwise. Note that 〈xu, xv〉 = 1 iff f∗(u) = f∗(v). In particular,
1− 〈xu, xv〉 has value 1 when the constraint (u < v) is satisfied. Therefore, the optimal SDP
value gives the upper bound on the optimal value of the original Max-PA.

We can solve the SDP in polynomial time and let x∗ be the optimal SDP solution. We
create an assignment f by rounding x∗ as follows. First, we generate k random n-dimensional
unit vectors y1, . . . , yk, where k is a parameter. Then, we partition the variable set V into
2k groups according to the signs of k inner products 〈x∗v, yi〉. For each group, we assign a
unique value to all variables in the group. Thus, we use at most 2k different values in total.
Finally, we introduce a random ordering among the values assigned to groups.

Now, we analyze the approximation ratio of this algorithm. A constraint (u = v) is
satisfied if u and v are in the same group. This event happens when they are in the same
side of every hyperplane 〈x, yi〉 = 0. Thus, the probability that (u = v) is satisfied is

Pr[f(u) = f(v)] =
(

1− θ

π

)k
,

where θ is the angle between two vectors x∗u and x∗v. In contrast, the constraint (u = v)
contributes to the SDP value by 〈x∗u, x∗v〉 = cos θ.

A constraint (u < v) is satisfied with probability 1
2 if they are in different groups. Thus,

the probability that the constraint is satisfied is

1
2 Pr[f(u) 6= f(v)] = 1

2

(
1−

(
1− θ

π

)k)
.

In contrast, the constraint (u < v) contributes to the SDP value by 1− 〈x∗u, x∗v〉 = 1− cos θ.
The approximation ratio is a convex function of k and takes the maximum between k = 3

and k = 4. In order to take the balance, we run the algorithm by choosing k = 3 with

Y. Iwata and Y. Yoshida 135

probability α and k = 4 with probability 1− α. Then, the approximation ratio is at least

min
{

min
θ

α(1− θ
π)3 + (1− α)(1− θ

π)4

cos θ ,min
θ

α
(
1− (1− θ

π)3)+ (1− α)
(
1− (1− θ

π)4)
2(1− cos θ)

}
.

By setting α = 191
593 , the above value becomes 272

593 > 0.4586. The worst case is achieved when
θ = π

3 for (=)-constraints and θ = π
2 for (<)-constraints.

5 Approximation Algorithms for Min-PA

In this section, we give an O(log n log log n)-approximation algorithm for Min-PA. First, we
reduce an instance of general Min-PA into an instance of Min-PA that has (≤)-constraints
and (6=)-constraints only. This can be done by the following reduction.

For each constraint of the form (x = y), we replace it by two constraints (x ≤ y) and
(x ≥ y).
For each constraint of the form (x < y), we replace it by two constraints (x ≤ y) and
(x 6= y).

The optimal value does not change through the reduction. This is because, for any assignment
f , if the removed constraint is unsatisfied by f , then exactly one of the added two constraints
is unsatisfied by f , and if the removed constraints is not unsatisfied, then none of the added
two constraints is unsatisfied by f .

A sequence of variables (v1, . . . , vk) is called a (≤)-path from v1 to vk if a constraint
(vi ≤ vi+1) exists for every i ∈ [k − 1]. Using the notion of (≤)-path, we can obtain the
following necessary and sufficient condition under which an instance is satisfiable.

I Lemma 5 ([17]). A CSP instance with (≤)-constraints and (6=)-constraints only is satisfiable
if and only if, for any constraint (x 6= y), we do not have a (≤)-path from x to y and a
(≤)-path from y to x simultaneously.

Due to Lemma 5, Min-PA with (≤)-constraints and (6=)-constraints only can be formulated
as the following integer programming.

minimize
∑
e∈C

xe,

subject to xe +
∑

f∈Pu,v

xf +
∑

f∈Pv,u

xf ≥ 1

 ∀e = (u 6= v) ∈ C
∀Pu,v : a (≤)-path from u to v
∀Pv,u : a (≤)-path from v to u

 , (3)

xe ∈ {0, 1} (∀e ∈ C).

Here, xe = 1 means that the constraint e is unsatisfied. Now we relax it to a linear
programming by changing the last constraint to xe ≥ 0. The LP contains an exponential
number of constraints. However, we can solve it in polynomial time by using the ellipsoid
method since there is a polynomial-time separation oracle. More specifically, we construct
a digraph as follows to check constraints (3). That is, For each constraint of the form
e = (u ≤ v), we make an edge (u, v) of length xe. Then, we check the corresponding
constraints (3) is satisfied for each constraint of the form e = (u = v). Here,

∑
f∈Pu,v xf

(resp.,
∑
f∈Pu,v xf) can be computed as the length of the shortest path from u to v (resp., v

to u) in the digraph.
Let x∗ be the optimal solution to the LP. We create a new LP by using x∗. Let e = (u 6= v)

be a constraint, Pu,v be a (≤)-path from u to v and Pv,u be a (≤)-path from v to u. We

STACS’13

136 Algorithms for the Constraint Satisfaction Problem over the Point Algebra

first remove the corresponding constraint (3). If x∗e ≥ 1
2 , then we add a constraint xe ≥ 1 to

the new LP. Otherwise and hence if
∑
f∈Pu,v x

∗
f +

∑
f∈Pv,u x

∗
f ≥ 1

2 , then we add a constraint∑
f∈Pu,v xf +

∑
f∈Pv,u xf ≥ 1 to the new LP. The optimal value of the new LP is at most

twice the optimal value of the original LP since 2x∗ is a feasible solution to the new LP, and
any feasible solution to the new LP is also a feasible solution to the original LP. Therefore,
an integer solution to the new LP whose value is at most k times the optimal value of the
new LP is a 2k-approximation solution to the original problem.

The obtained problem can be considered as a variant of the directed multicut problem:
given a digraph G = (V,E) and a set of terminal pairs T , find an edge set F ⊆ E of
minimum cardinality such that for any terminal pair (u, v) ∈ T , G − F contains no path
from u to v or no path from v to u. We call this problem as the symmetric multicut problem.
Also, we call a terminal pair (u, v) separated if there is no path from u to v or there is
no path from v to u. We note that, in the standard multicut problem, a terminal pair
(u, v) is also directed and we only care about deleting paths from u to v. We can obtain
an instance of the symmetric multicut problem by setting E = {(u, v) | (u ≤ v) ∈ C}, and
T = {(u, v) | e = (u 6= v) ∈ C, x∗e < 1

2}.
To get approximation to the symmetric multicut problem, we consider the following LP

relaxation:

minimize
∑
e∈E

xe,

subject to
∑

f∈Pu,v

xf +
∑

f∈Pv,u

xf ≥ 1

 ∀(u, v) ∈ T
∀Pu,v : a path from u to v
∀Pv,u : a path from v to u

 , (4)

xe ≥ 0 (∀e ∈ E).

Even et al. [8] showed an O(log n log log n)-approximation algorithm for the (standard)
multicut problem in some special kind of graphs, called circular networks. We use the same
approach to solve the symmetric multicut problem. The following theorem immediately gives
that the symmetric multicut problem and hence Min-PA can be approximated within a factor
of O(log n log log n).

I Theorem 6. The solution to the symmetric multicut problem whose value is at most
O(log n log log n) times the optimal value of the LP (4) can be obtained in polynomial time.

Proof. Let l be twice the optimal value of the LP (4). For an edge set F ⊆ E, we define
l(F) =

∑
e∈F l(e). We define the length of a path P as l(P), and the distance from u to v as

the length of the shortest path from u to v. For any terminal pair (s, t), the sum of distances
from s to t and from t to s is at least 2.

We fix some terminal pair (s, t) and we assume that the distance from s to t is at least 1.
Let d(v) be the distance from s to v. For any 0 ≤ x ≤ 1, we define edge sets A(x), L(x), and
B(x) as follows:

A(x) = {(u, v) ∈ E | d(u), d(v) ≤ x},
L(x) = {(u, v) ∈ E | d(u) ≤ x < d(v)},
B(x) = {(u, v) ∈ E | x < d(u), d(v)}.

Now we claim that there exists 0 ≤ x ≤ 1 such that

|L(x)| ≤ µ(l(E))− µ(l(A(x)))− µ(l(B(x))), (5)

Y. Iwata and Y. Yoshida 137

where µ(x) = 4x ln(4x) ln log(4x). To show the claim, we use the following lemma by
Seymour [15].

I Lemma 7 ([15]). Let k > 0 be a real number, let y be a real-valued monotone increasing
function on [0, 1] such that y(0) ≥ 0, y(1) ≤ 1 and for all h ∈ [0, 1]− I, where I ⊆ [0, 1] is
some finite subset of [0, 1], y is differentiable and dy

dx

∣∣∣
x=h
≥ 1

k . Then there exists h with
1
4 < h < 3

4 , h 6∈ I, such that

k
dy

dx

∣∣∣∣
x=h
≤ µ(k)− µ(ky(h))− µ(k(1− y(h))).

This lemma is slightly different from the original one. In the original lemma, y is required to
be contiguous, and this implies that y is monotone increasing because dy

dx

∣∣∣
x=h
≥ 1

k . Actually,
the same proof can be applied if y is not contiguous but monotone increasing.

We instantiate Lemma 7 with the following function y:

y(x) = 1
l(E)

l(A(x)) +
∑

e=(u,v)∈L(x)

(x− d(u))

 .

Note that the function y(x) is not contiguous at x = d(v) for v ∈ V . An edge e = (u, v)
contributes to y by 1

l(E) (x−d(u)) if e ∈ L(x), and by 1
l(E) l(e) if e ∈ A(x). Thus its contribution

changes from 1
l(E) (d(v) − d(u)) to 1

l(E) l(e) at x = d(v). Because d(v) − d(u) ≤ l(e) holds
for any edge e = (u, v), its contribution to y never decreases. Therefore, the function y is
monotone increasing. For any differentiable point 0 < x < 1, the value of dydx is |L(x)|

l(E) , which
is at least 1

l(E) because L(x) 6= ∅. Therefore, there exists h such that:

|L(h)| = l(E) dy
dx

∣∣∣∣
x=h

≤ µ(l(E))− µ(l(E)y(h))− µ(l(E)(1− y(h)))
≤ µ(l(E))− µ(l(A(h)))− µ(l(B(h))),

and the claim holds. Because there are essentially at most n choices for h, we can find it in
polynomial time.

To obtain a good cut, we just find a real number x satisfying the condition (5) and then
we remove the edge set L(x). Let V1 be the set of vertices whose distances from s are at
most x and V2 be the set of vertices whose distances from s are greater than x. Then, L(x)
contains only edges from V1 to V2 and does not contain any edge from V2 to V1. Nonetheless,
since all paths from V1 to V2 are cut, every terminal pair (u, v) with u ∈ V1 and v ∈ V2
become separated. In particular, the terminal pair (s, t) is separated.

Thus, we can consider two graphs G1 = (V1, A(x)) and G2 = (V2, B(x)) separately, and
we can recursively solve the symmetric multicut problem on G1 and G2 independently. We
can show that the total number of removed edges in recursive steps is at most µ(l(E)) by
induction on |E| because |L(x)|+ µ(l(A(x))) + µ(l(B(x))) ≤ µ(l(E)). On the other hand,
since l is twice the optimal LP solution, the optimal LP value is 1

2 l(E). Thus we can obtain a
solution whose value is at most O(log n log log n) times the optimal value of the LP (4). J

Acknowledgments

The authors are grateful to François Le Gall for valuable discussions about the usage of
sparse matrix product for the exact algorithm.

STACS’13

138 Algorithms for the Constraint Satisfaction Problem over the Point Algebra

References
1 J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,

26(11):832–843, 1983.
2 N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning, 56(1):89–

113, 2004.
3 D. Bini, M. Capovani, F. Romani, and G. Lotti. O(n2.7799) complexity for n∗n approximate

matrix multiplication. Inf. Process. Lett., 8(5):234–235, 1979.
4 A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius: fast subset

convolution. In Proc. 39th Annual ACM Symposium on Theory of Computing (STOC),
pages 67–74, 2007.

5 M. Bodirsky and J. Kára. The complexity of temporal constraint satisfaction problems.
Journal of the ACM, 57(2):1–41, 2010.

6 M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative information.
Journal of Computer and System Sciences, 71(3):360–383, 2005.

7 I. Dinur and S. Safra. On the hardness of approximating minimum vertex cover. Annals
of Mathematics, pages 439–485, 2005.

8 G. Even, J. Naor, B. Schieber, and M. Sudan. Approximating minimum feedback sets and
multicuts in directed graphs. Algorithmica, 20(2):151–174, 1998.

9 V. Guruswami, J. Håstad, R. Manokaran, P. Raghavendra, and M. Charikar. Beating the
random ordering is hard: Every ordering CSP is approximation resistant. SIAM Journal
on Computing, 40(3):878–914, 2011.

10 V. Guruswami, R. Manokaran, and P. Raghavendra. Beating the random ordering is hard:
Inapproximability of maximum acyclic subgraph. In Proc. 49th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 573–582, 2008.

11 S. Khot. On the power of unique 2-prover 1-round games. In Proc. 34th Annual ACM
Symposium on Theory of Computing (STOC), pages 767–775, 2002.

12 J. Malik and T. Binford. Reasoning in time and space. In Proc. 8th International Joint
Conferences on Artificial Intelligence (IJCAI), pages 343–345, 1983.

13 B. Nebel and H. Bürckert. Reasoning about temporal relations: a maximal tractable
subclass of Allen’s interval algebra. Journal of the ACM, 42(1):43–66, 1995.

14 A. Schönhage. Partial and total matrix multiplication. SIAM J. Comput., 10(3):434–455,
1981.

15 P. D. Seymour. Packing directed circuits fractionally. Combinatorica, 15(2):281–288, 1995.
16 C. Swamy. Correlation clustering: maximizing agreements via semidefinite programming.

In Proc. 15th Annual ACM-SIAM Symposium on Discrete algorithms (SODA), pages 526–
527, 2004.

17 P. van Beek and R. Cohen. Exact and approximate reasoning about temporal relations.
Computational Intelligence, 6:132–144, 1990.

18 M. Vilain and H. Kautz. Constraint propagation algorithms for temporal reasoning. In
Proc. 5th National Conference on Artificial Intelligence, pages 377–382, 1986.

19 R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2):357–365, 2005.

20 V. V. Williams. Multiplying matrices faster than Coppersmith-Winograd. In Proc. 44th
Annual ACM Symposium on Theory of Computing (STOC), pages 887–898, 2012.

Local Search is Better than Random Assignment
for Bounded Occurrence Ordering k-CSPs
Konstantin Makarychev1

1 Microsoft Research, Redmond, WA 98052

Abstract
We prove that the Bounded Occurrence Ordering k-CSP Problem is not approximation resistant.
We give a very simple local search algorithm that always performs better than the random as-
signment algorithm (unless, the number of satisfied constraints does not depend on the ordering).
Specifically, the expected value of the solution returned by the algorithm is at least

Alg ≥ Avg + α(B, k)(Opt−Avg),

where Opt is the value of the optimal solution; Avg is the expected value of the random solution;
and α(B, k) = Ωk(B−(k+O(1))) is a parameter depending only on k (the arity of the CSP) and B
(the maximum number of times each variable is used in constraints).

The question whether bounded occurrence ordering k-CSPs are approximation resistant was
raised by Håstad [6], who recently showed that bounded occurrence 3-CSPs and “monotone”
k-CSPs admit a non-trivial approximation.

1998 ACM Subject Classification F.2.2 Computations on discrete structures

Keywords and phrases approximation algorithms, approximation resistance, ordering CSPs

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.139

1 Introduction

Overview. In this work, we give a very simple local search algorithm for ordering con-
straints satisfaction problems that works better than the random assignment for those in-
stances of the ordering k-CSP problem, where each variable is used only a bounded number
of times. To motivate the study of the problem, we first overview some known results for
regular constraint satisfaction problems.

An instance of a constraint satisfaction problem consists of a set of variables V =
{x1, . . . , xn} taking values in a domain D and a set of constraints C. Each constraint C ∈ C
is a function from Dk to R+ applied to k variables from V . Given an instance of a CSP, our
goal is to assign values to the variables to maximize the total payoff of all constraints:

max
x1,...,xn∈Dn

∑
C∈C

C(x1, . . . , xn).

Note, that we write C(x1, . . . , xn) just to simplify the notation. In fact, C may depend on at
most k variables. The parameter k is called the arity of the CSP. In specific CSP problems,
constraints C come from a specific family of constraints. For example, in Max Cut, the
domain is D = {−1, 1}, and all constraints have the form C(x1, . . . , xn) = 1(xi 6= xj); in
Max 3LIN-2, the domain D = {0, 1}, and all constraints have the form C(x1, . . . , xn) =
1(xi ⊕ xj ⊕ xl = 0) or C(x1, . . . , xn) = 1(xi ⊕ xj ⊕ xl = 1).

Various approximation algorithms have been designed for CSPs. The most basic among
them, the “trivial” probabilistic algorithm simply assigns random values to the variables.

© Konstantin Makarychev;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 139–147

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.139
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

140 Local Search Algorithm for Ordering k-CSPs

It turns out, however, that in some cases this algorithm is essentially optimal. Håstad [8]
showed that for some CSPs e.g., 3LIN-2 and E3-SAT, beating the approximation ratio of the
random assignment algorithm (by any positive constant ε) is NP-hard. Such problems are
called approximation resistant. That is, a constraint satisfaction problem is approximation
resistant, if for every positive ε > 0, it is NP-hard to find a (Atrivial + ε) approximation,
where Atrivial is the approximation ratio of the random assignment algorithm. If there exists
an algorithm with the approximation ratio (Atrivial+ ε) for some positive ε, we say that the
problem admits a non-trivial approximation. It is still not known which constraint satis-
faction problems are approximation resistant and which admit a non-trivial approximation.
This is an active research question in approximation algorithms.

Suppose now that in our instance of k-CSP, each variable is used by at most B constraints.
(For example, for Max Cut, this means that the maximum degree of the graph is bounded
by B.) Håstad [9] proved that such instances (which we call B-bounded occurrence k-CSPs)
admit a non-trivial approximation. Let Opt denote the value of the optimal solution; Avg
denote the expected value of the random assignment; and Alg denote the expected value
returned by the algorithm. Håstad [9] showed that there exists an approximation algorithm
such that1

Alg ≥ Avg + Opt−Avg
Ok(B) .

Here the hidden constant in Ok(·) may depend on k. Trevisan [12] showed a hardness of
approximation lower bound of Avg + (Opt−Avg)/(Ωk(

√
B)).

In this work, we study ordering constraints satisfaction problems. A classical example
of an ordering k-CSP is the Maximum Acyclic Subgraph problem. Given a directed graph
G = (V,E), the goal is to find an ordering of the vertices π : V → {1, . . . , n} (π is a bijection;
n = |V |), so as to maximize the number of forward edges. In this case, the edges of the graph
are constraints on the ordering π. An edge (u, v) corresponds to the constraint π(u) < π(v).
Another example is the Betweenness problem. We are given a set of vertices V and a set
of constraints {Cu,v,w}. Each Cu,v,w is defined as follows: Cu,v,w(π) = 1, if u < v < w or
w < v < u, and Cu,v,w(π) = 0, otherwise. The goal again is to find an ordering satisfying
the maximum number of constraints.

More generally, in an ordering k-CSP, each constraint C is a function of the ordering
that depends only on the relative order of k vertices. The goal is given a set of vertices V
and a set of constraints C, to find an ordering π : V → [n] to maximize the total value of all
constraints:

max
π:V→[n]

∑
C∈C

C(π).

Here π is a bijection and n = |V |. If all constraints take values {0, 1}, then the objective
is simply to maximize the number of satisfied constraints. Note, that an ordering k-CSP is
not a k-CSP.

Surprisingly, we know more about ordering CSPs than about regular CSPs. Guruswami,
Håstad, Manokaran, Raghavendra, and Charikar [4] showed that every ordering CSP prob-
lem is approximation resistant assuming the Unique Games Conjecture (special cases of this

1 The quantity (“value of the solution” − Avg) is called the advantage over random. The algorithm of
Håstad [9] is Ok(B) approximation algorithm for the advantage over random:

Alg − Avg ≥ Opt − Avg
Ok(B) .

K. Makarychev 141

result were obtained by Guruswami et al. [5] and Charikar et al. [2]). On the positive side,
Berger and Shor [1] showed that bounded degree Maximum Acyclic Subgraph, and thus every
bounded occurrence ordering 2CSP, admits a non-trivial approximation. Their result im-
plies that Alg ≥ Avg + (Opt−Avg)/O(

√
B). Charikar, Makarychev, and Makarychev [3]

showed that a slight advantage over the random assignment algorithm can be also achieved
for instances of Maximum Acyclic Subgraph (Alg ≥ Avg + (Opt−Avg)/O(log n)) whose
maximum degree is not bounded. Gutin, van Iersel, Mnich, and Yeo [7] showed that the
“advantage over the random assignment” for ordering 3CSPs is fixed–parameter tractable (we
refer the reader to the paper for definitions and more details). Finally, Guruswami and Zhou
[6] proved that all bounded occurrence ordering 3CSPs admit a non-trivial approximation
(Alg ≥ Avg + (Opt−Avg)/Ok(B)). They also proved that there exists an approximation
algorithm for monotone k-CSP (i.e., ordering CSPs, where all constraints are of the form
π(ui1) < π(ui2) < · · · < π(uik)) with approximation ratio 1/k! + 1/Ok(B).

Our results. We show that a very simple randomized local search algorithm finds a
solution of expected value:

Alg ≥ Avg + Opt−Avg
Ok(Bk+2) . (1)

This algorithm works for every bounded occurrence ordering k-CSP. Consequently, all
bounded occurrence ordering k-CSPs admit a non-trivial approximation. The running time
of the algorithm is O(n log n). We do not know whether the dependence on B is optimal.
However, the result of Trevisan [12] implies a hardness of approximation upper bound of
Alg + (Opt−Avg)/Ωk(

√
B)2.

Techniques. Our algorithm works as follows: first, it permutes all vertices in a random
order. Then, n times, it picks a random vertex and moves it to the optimal position without
changing the positions of other vertices. We give an elementary proof that this algorithm
performs better than the random assignment. However, the bound we get is exponentially
small in B.

Then, we improve this bound. Roughly speaking, instead of the original problem we
consider the “D-ordering” problem, where the algorithm puts vertices in D ≈ Bk buckets
(possibly, in a clever way), then it randomly permutes vertices in each of the buckets, and
finally outputs vertices in the first bucket, second bucket, etc. This idea was previously used
by Charikar, Makarychev, and Makarychev [3], Guruswami, Håstad, Manokaran, Raghaven-
dra, and Charikar [4], Gutin, van Iersel, Mnich, and Yeo [7] and Guruswami and Zhou [6].
The transition to “D-orderings” allows us to represent the payoff function as a Fourier series
with relatively few terms. We prove that the L1 weight of all coefficients of the payoff func-
tion is at least Avg + Ωk(Opt − Avg) (Note, that the optimal value of the “D-ordering”
problem may be less than Opt). Then we show that (a) for each vertex we can find one
“heavy” Fourier coefficient f̂S ; and (b) when the original local search algorithm moves a
vertex it increases the value of the solution in expectation by at least Ωk(f̂S/B). This
concludes the proof.

Correction. In the preliminary version of the paper that appeared at arXiv, we proved
the main result of the paper, Theorem 1. We also gave an alternative, more complicated
algorithm in the Appendix. We erroneously claimed that the performance guarantee of the
alternative algorithm is slightly better than (1). This is not the case. So the best bound
known to the author is (1).

2 Every k-CSP can be encoded by an ordering 2k-CSP by replacing every boolean variable x with two
variables u←x and u→x , and letting x = 1 if and only if π(u←x) < π(u→x).

STACS’13

142 Local Search Algorithm for Ordering k-CSPs

2 Preliminaries

An instance of an ordering k-CSP problem (V, C) consists of a set of vertices V of size
n, and a set of constraints C. An ordering of vertices π : V → {1, . . . , n} is a bijection
from V to {1, . . . , n}. Each constraint C ∈ C is a function from the set of all ordering
SV = {π : V → {1, . . . , n}} to R+ that depends on the relative order of at most k vertices.
That is, for every C there exists a set TC ⊂ V of size at most k such that if for two orderings
π1 and π2, π1(u) < π1(v)⇔ π2(u) < π2(v) for all u, v ∈ TC , then C(π1) = C(π2). The value
of an ordering π equals

value(π, C) =
∑
C∈C

C(π).

We will sometimes write value((u1, . . . un), C) to denote the value(π, C) for π : ui 7→ i.
We denote the optimal value of the problem by Opt(V, C) ≡ maxπ∈SV

value(π, C), the
average value — the value returned by the random assignment algorithm — by Avg(V, C) =
1/n!

∑
π∈SV

value(π, C).

3 Algorithm

We now present the algorithm.

Randomized Local Search Algorithm

Input: a set of vertices V , and a set of constraints C.
Output: an ordering of vertices (v1, . . . , vn).

1. Randomly permute all vertices.
2. Repeat n times:

Pick a random vertex u in V .
Remove u from the ordering and insert it at a new location to maximize the payoff.
I.e., if v1, . . . , vn−1 is the current ordering of all vertices but the vertex u, then find a
location i that maximizes the value(v1, . . . , vi−1, u, vi+1, . . . vn−1, C), and put u in the
i-th position.

3. Return the obtained ordering.

I Theorem 1. Given an instance (V, C) of a B-bounded occurrence ordering k-CSP problem,
the Randomized Local Search Algorithm returns a solution πAlg of expected value

E value(πAlg, C) ≥ Avg(V, C) + Opt(V, C)−Avg(V, C)
Ok(Bk+2) . (2)

I Remark. In fact, our proof implies a slightly stronger bound: The second term on the right
hand side of the inequality (2) can be replaced with (Opt(V, C)−Worst(V, C))/Ok(Bk+2),
where Worst(V, C) is the value of the worst possible solution.

Proof. I. We first show using an elementary argument that

E value(πAlg, C) ≥ Avg(V, C) + α(B, k)(Opt(V, C)−Avg(V, C)),

K. Makarychev 143

for some function α(B, k) depending only on B and k. This immediately implies that every
bounded occurrence ordering k-CSP admits a non-trivial approximation. Then, using a
slightly more involved argument we prove the bound (2).

Observe, that the expected value of the solution after step 1 is exactly equal to Avg(V, C).
So we need to estimate how much local moves at step 2 improve the solution. Let ∆u be
the maximum possible increase in the value of an ordering π, when we move u to another
position. In other words, ∆u = maxπ+,π−(value(π+, C)− value(π−, C)), where the orderings
π+ and π− differ only in the position of the vertex u. Let π∗ be the optimal ordering, and
π∗ be the worst possible ordering. We can transition from π∗ to π∗ by moving every vertex
u at most once. Thus,∑
u∈V

∆u ≥ value(π∗, C)−value(π∗, C) = Opt(V, C)−Worst(V, C) ≥ Opt(V, C)−Avg(V, C).

Now, our goal is to show that when the algorithm moves a vertex u, the value of the solution
increases in expectation by at least α(B, k)∆u for some function α depending only on B

and k.
Fix a vertex u. Let π+ and π− be the orderings that differ only in the position of the

vertex u such that ∆u = value(π+, C) − value(π−, C). It may happen that the random
permutation chosen by the algorithm at step 1 is π−, and u is chosen first among all vertices
in V at step 2. In this case, the algorithm can obtain the permutation π+ by moving u, and
thus it can increase the value of the solution by ∆u. However, the probability of such event
is negligible. It is 1/n · 1/n!. The main observation is that the increase in the value of the
ordering, when we move u, depends only on the order of the neighbors of u i.e., those vertices
that share at least one common constraint C ∈ C with u (including u itself). We denote
the set of neighbors by N(u). Since each vertex participates in at most B constraints, and
every constraint depends on at most k variables, |N(u)| ≤ kB.

Consider an execution of the algorithm. We say that u is fresh if u was chosen at least once
in the “repeat” loop of the algorithm, and none of the neighbors were chosen before u was
chosen the first time. The probability that a variable u is fresh is at least 1/2|N(u)|−1. Indeed,
the probability that at least one vertex in N(u) is chosen is 1− (1 − |N(u)|/n)n > 1− 1/e;
the probability that the first vertex chosen in N(u) is u is 1/|N(u)| (since all vertices in
N(u) have the same probability of being chosen first).

If u is fresh, then when it is chosen, its neighbors are located in a random order (since
none of them was moved by the algorithm). Thus, with probability 1/N(u)! ≥ 1/(kB)!, the
order of neighbors of u is the same as in π−. Then, by moving u we can increase the value
of the ordering by ∆u.

Therefore, when the algorithm moves the vertex u, the value of the ordering increases in
expectation by at least

Pr(u is fresh) · Pr(N(u) is ordered as π− after step 1) ·∆u = ∆u

2|N(u)| |N(u)|! ≥
∆u

kB (kB)! .

This finishes the elementary proof that a positive α(B, k) exists.

II. We now improve the lower bound on α(B, k). We show that for a fresh variable u,
the value of the ordering increases in expectation by at least Ωk(B−(k+1))∆u, and thus (2)
holds. Let L = dlog2(|N(u)|+ 1)e and D = 2L. Consider D buckets [D] = {1, . . . , D}. For
every mapping x of the vertices to the buckets v 7→ xv ∈ [D], we define a distribution Ux
on orderings of V . A random ordering from Ux is generated as follows: put each vertex v
in the bucket xv; then randomly and uniformly permute vertices in each bucket; and finally

STACS’13

144 Local Search Algorithm for Ordering k-CSPs

output vertices in the first bucket, second bucket, etc (according to their order in those
buckets). Let Cu be the set of constraints that depend on the vertex u. Since every variable
participates in at most B constraints, |Cu| ≤ B. Let f(x) be the expected total value of
constraints in Cu on a random ordering π sampled from the distribution Ux:

f(x) = Eπ∼Ux

[∑
C∈Cu

C(π)
]
.

Since the number of buckets D is greater than or equals to |N(u)| + 1, we may put
every vertex in N(u) in its own bucket and keep one bucket empty. Let π+ and π− be the
orderings as in part I of the proof: π+ and π− differ only in the position of the vertex u,
and value(π+, C)− value(π−, C) = ∆u. Consider mappings x+ : V → [D] and x− : V → [D]
that put only one vertex from N(u) in every bucket and such that x+

v = x−v for every v 6= u,
and x+ orders vertices in N(u) according to π+, x− orders vertices in N(u) according to
π−. For example, if π+ arranges vertices in the order (a, b, u, c), and π− arranges vertices
in the order (a, u, b, c), then x+ = (a 7→ 1, ∗, b 7→ 3, u 7→ 4, c 7→ 5) and x− = (a 7→ 1, u 7→
2, b 7→ 3, ∗, c 7→ 5). Since the order of all vertices in N(u) is fixed by x+ and x−, we have
f(x+) = value(π+, Cu) and f(x−) = value(π−, Cu). Then

f(x+)− f(x−) = value(π+, Cu)− value(π−, Cu)
= value(π+, C)− value(π−, C) = ∆u.

We now use Theorem 2, which we prove in Section 4. Let Xv (for v ∈ V) be independent
random variables uniformly distributed in [D]. By Theorem 2,

E[max
xu∈D

f(xu, {Xv}v 6=u)− f(Xu, {Xv}v 6=u)] ≥ Ωk(B−1D−k)(f(x+)− f(x−))

= Ωk(B−(k+1))∆u.

Here, (xu, {Xv}v 6=u) denotes the mapping u 7→ xu and v 7→ Xv for v 6= u; and (Xu, {Xv}v 6=u)
denotes the mapping v 7→ Xv for all v.

Observe, that when we sample random variables Xv, and then sample π according to
UX , we get a random uniform ordering π of all vertices in V . Thus,

E[f(Xu, {Xv}v 6=u)] = Eπ∈SV

[∑
C∈Cu

C(π)
]

= Eπ[value(π, Cu)].

Similarly, when we sample random variables Xv, set xu = argmaxxu∈D f(xu, {Xv}v 6=u), and
then sample π′ according to U(xu,{Xv}v 6=u), we get a random uniform ordering of all vertices
except for the vertex u. Denote by LS(π, u) the ordering obtained from the ordering π by
moving the vertex u to the optimal position. It is easy to see that if π is a random uniform
ordering, then LS(π, u) has the same distribution as LS(π′, u), since the new optimal posi-
tion of u depends only on the relative order of other vertices v, and not on the old position
of u. Hence,

E[max
xu∈D

f(xu, {Xv}v 6=u)] ≡ Eπ′ [value(π′, Cu)]

≤ Eπ′ [value(LS(π′, u), Cu)]
= Eπ[value(LS(π, u), Cu)].

Hence,

Eπ[value(LS(π, u), C)− value(π, u, C)] = Eπ[value(LS(π, u), Cu)− value(π, u, Cu)]
≥ Ωk(B−(k+1))∆u.

J

K. Makarychev 145

4 Theorem 2

I Theorem 2. Let D be a set of size 2L (for some L). Consider a function f : Dn+1 → R
that can be represented as a sum of T functions ft : Dn+1 → R:

f(x0, x1, . . . , xn) =
T∑
t=1

ft(x0, x1, . . . , xn)

such that each function ft depends on at most k variables xu. Here, x0, . . . , xn ∈ D. Then,
the following inequality holds for random variables X0, . . . , Xn uniformly and independently
distributed in D:

E[max
x∈D

f(x,X1, . . . , Xn)− f(X0, X1, . . . , Xn)] ≥

Ωk(T−1|D|−k) max
x+,x−,x1,...,xn∈D

(f(x+, x1, . . . , xn)− f(x−, x1, . . . , xn)).

I Remark. The variable x0 corresponds to xu from the proof of Theorem 1. The functions
ft(x) are equal to Eπ∼Ux

Ct(π), where Ct is the t-th constraint from Cu.

Proof. Without loss of generality we assume that elements of D are vertices of the boolean
cube {−1, 1}L. We denote the i-th coordinate of x ∈ D by x(i). We now treat f as a
function of (n+ 1)L boolean variables xu(i). We write the Fourier series of the function f .
The Fourier basis consists of functions

χS(x0, . . . , xn) =
∏

(u,i)∈S

xu(i),

which are called characters. Each index S ⊂ {0, 1, . . . , n} × {1, . . . , L} corresponds to the
set of boolean variables {xu(i) : (u, i) ∈ S}. Note, that χ∅(x0, . . . , xn) = 1. The Fourier
coefficients of f equal

f̂S = E[f(X0, . . . , Xn)χS(X0, . . . , Xn)],

and the function f equals

f(x0, . . . , xn) =
∑
S

f̂S χS(x0, . . . , xn).

I Remark. In the proof, we only use the very basic facts about the Fourier transform. The
main property we need is that the characters form an orthonormal basis, that is,

E[χS1(X0, . . . , Xn)χS2(X0, . . . , Xn)] =
{

1, if S1 = S2;
0, if S1 6= S2.

Particularly, for S 6= ∅,

E[χS(X0, . . . , Xn)] = E[χS(X0, . . . , Xn)χ∅(X0, . . . , Xn)] = 0.

We will also need the following property: if f does not depend on the variable xu(i), then
all Fourier coefficients f̂S with (u, i) ∈ S are equal to 0.

STACS’13

146 Local Search Algorithm for Ordering k-CSPs

Here is a brief overview of the proof: We will show that the L1 weight of Fourier co-
efficients of f is at least f(x+, x1, . . . , xn) − f(x−, x1, . . . , xn), and the weight of one of
the coefficients f̂S∗ is at least Ω(T−1|D|−k(f(x+, x1, . . . , xn) − f(x−, x1, . . . , xn))). Con-
sequently, if we flip a single bit X0(i∗) in X0 to make the term f̂S∗χS∗(X ′0, X1, . . . , Xn)
positive, we will increase the expected value of f by |f̂S∗ |.

Observe, that since each function ft depends on at most kL boolean variables, it has at
most 2kL = |D|k nonzero Fourier coefficients. Thus, f has at most T |D|k nonzero Fourier
coefficients f̂S .

Pick x+, x−, x∗1, . . . , x
∗
n that maximize f(x+, x∗1, . . . , x

∗
n)− f(x−, x∗1, . . . , x∗n). We have

f(x+, x∗1, . . . , x
∗
n)− f(x−, x∗1, . . . , x∗n) =

∑
S

f̂S(χS(x+, x∗1, . . . , x
∗
n)− χS(x−, x∗1, . . . , x∗n)).

If S does not contain pairs (0, i) corresponding to the bits of the variable x0, then the charac-
ter χS(x0, x1, . . . , xn) does not depend on x0, and χS(x+, x∗1, . . . , x

∗
n)−χS(x−, x∗1, . . . , x∗n) =

0, hence

f(x+, x∗1, . . . , x
∗
n)− f(x−, x∗1, . . . , x∗n) =

=
∑

S:∃i s.t. (0,i)∈S

f̂S · (χS(x+, x∗1, . . . , x
∗
n)− χS(x−, x∗1, . . . , x∗n)) ≤ 2

∑
S:∃i s.t. (0,i)∈S

|f̂S |.

Pick a character f̂S∗ with maximum absolute value and pick one of the elements (0, i∗) ∈ S∗.
Since the number of nonzero characters f̂S is at most T |D|k,

|f̂S∗ | ≥
f(x+, x∗1, . . . , x

∗
n)− f(x−, x∗1, . . . , x∗n)
2T |D|k .

Let σ = sgn(f̂S∗). Define a new random variable X ′0 on the same probability space as
X0, . . . , Xn,

X ′0(i) =
{
X0(i), for i 6= i∗;
σ χS∗(X0, . . . , Xn)X0(i), for i = i∗.

Consider a character χS . If (0, i∗) /∈ S, then χS does not depend on the bit x0(i∗), hence
E[χS(X ′0, X1, . . . , Xn)] = E[χS(X0, X1, . . . , Xn)]. On the other hand, if (0, i∗) ∈ S, then

E[χS(X ′0, X1, . . . , Xn)] = E
[X ′0(i∗)
X0(i∗) χS(X0, X1, . . . , Xn)

]
=

E[σχS∗(X0, X1, . . . , Xn)χS(X0, X1, . . . , Xn)] =
{

0, if S 6= S∗;
σ, if S = S∗.

The last equality holds because characters χS form an orthonormal basis. Therefore,

E[f(X ′0, X1, . . . , Xn)− f(X0, X1, . . . , Xn)] = σf̂S∗ = |f̂S∗ |.

We get

E[max
x∈D

f(x,X1, . . . , Xn)−f(X0, X1, . . . , Xn)] ≥ E[f(X ′0, X1, . . . , Xn)−f(X0, X1, . . . , Xn)]

= |f̂S∗ | ≥ Ωk(T−1|D|−k) max
x∗,x∗,x1,...,xn∈D

(f(x+, x1, . . . , xn)− f(x−, x1, . . . , xn)).

J

K. Makarychev 147

5 Concluding remarks

We can guarantee that the algorithm finds a solution of value (2) with high probability by
repeating the algorithm Θk(Bk+2) times (since the maxim possible value of the solution is
Opt).

We note that our local search algorithm works not only for ordering k-CSPs, but also
for (regular) k-CSPs. The algorithm first assigns random values to all variable xi, and then,
n times, picks a random i ∈ {1, . . . , n}, and changes the value of the variable xi to the
optimal value for fixed other variables. The approximation guarantee of the algorithm is
Avg(V, C)+(Opt(V, C)−Avg(V, C))/Ok,D(B), here k is the arity, andD is the domain size of
the CSP. The approximation guarantee has the same dependence on B as the approximation
guarantee of Håstad’s [9] original algorithm. The analysis relies on Theorem 2.

References
1 B. Berger and P. Shor. Approximation Algorithms for the Maximum Acyclic Subgraph

Problem. SODA 1990.
2 M. Charikar, V. Guruswami, and R. Manokaran. Every Permutation CSP of arity 3 is

Approximation Resistant. IEEE Conference on Computational Complexity 2009.
3 M. Charikar, K. Makarychev, and Y. Makarychev. On the Advantage over Random for

Maximum Acyclic Subgraph. FOCS 2007.
4 V. Guruswami, J. Håstad, R. Manokaran, P. Raghavendra, and M. Charikar. Beating the

Random Ordering Is Hard: Every Ordering CSP Is Approximation Resistant. SIAM J.
Comput. 40(3) 2011.

5 V. Guruswami, R. Manokaran, and P. Raghavendra. Beating the Random Ordering is
Hard: Inapproximability of Maximum Acyclic Subgraph. FOCS 2008.

6 V. Guruswami and Y. Zhou. Approximating Bounded Occurrence Ordering CSPs.
APPROX-RANDOM 2012.

7 G. Gutin, L. van Iersel, M. Mnich and A. Yeo. Every ternary permutation constraint
satisfaction problem parameterized above average has a kernel with a quadratic number of
variables. J. Comput. Syst. Sci., vol 78 (1) 2012.

8 J. Håstad. Some optimal inapproximability results. STOC 1997.
9 J. Håstad. On bounded occurrence constraint satisfaction. Inf. Process. Lett. (IPL) 74(1-

2):1-6 2000.
10 J. Håstad. Every 2-CSP allows nontrivial approximation. STOC 2005.
11 A. Newman. The Maximum Acyclic Subgraph Problem and Degree-3 Graphs. RANDOM-

APPROX 2001.
12 L. Trevisan. Non-approximability results for optimization problems on bounded degree

instances. STOC 2001.

STACS’13

The complexity of approximating
conservative counting CSPs∗

Xi Chen1, Martin Dyer2, Leslie Ann Goldberg3, Mark Jerrum4,
Pinyan Lu5, Colin McQuillan3, and David Richerby3

1 Dept. of Comp. Sci., Columbia University, 450 Comp. Sci. Building, 1214
Amsterdam Avenue, Mailcode: 0401, New York, NY 10027-7003, USA.

2 School of Computing, University of Leeds, Leeds, LS2 9JT, UK.
3 Department of Computer Science, University of Liverpool, Liverpool,

L69 3BX, UK.
4 School of Mathematical Sciences, Queen Mary, University of London,

Mile End Road, London, E1 4NS, UK.
5 Microsoft Research Asia, Microsoft Shanghai Technology Park, No 999,

Zixing Road, Minhang District, Shanghai, 200241, China.

Abstract
We study the complexity of approximation for a weighted counting constraint satisfaction problem
#CSP(F). In the conservative case, where F contains all unary functions, a classification is
known for the Boolean domain. We give a classification for problems with general finite domain.
We define weak log-modularity and weak log-supermodularity, and show that #CSP(F) is in FP
if F is weakly log-modular. Otherwise, it is at least as hard to approximate as #BIS, counting
independent sets in bipartite graphs, which is believed to be intractable. We further sub-divide
the #BIS-hard case. If F is weakly log-supermodular, we show that #CSP(F) is as easy as
Boolean log-supermodular weighted #CSP. Otherwise, it is NP-hard to approximate. Finally,
we give a trichotomy for the arity-2 case. Then, #CSP(F) is in FP, is #BIS-equivalent, or is
equivalent to #SAT, the problem of approximately counting satisfying assignments of a CNF
Boolean formula.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases counting constraint satisfaction problem, approximation, complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.148

1 Introduction

A weighted counting constraint satisfaction problem has a fixed finite domain D and a fixed
finite “weighted constraint language” F , a set of functions. Every F ∈ F maps a tuple of
domain elements to a value called a “weight”. In the computational problem #CSP(F), an
instance consists of a set V = {v1, . . . , vn} of variables and a set of “weighted constraints”.
A weighted constraint applies a function from F to an appropriate-sized tuple of variables.

For example, with Boolean domain D = {0, 1}, F might contain a single binary (arity-2)
function F defined by F (0, 0) = F (0, 1) = F (1, 0) = 1 and F (1, 1) = 2. An instance might
have variables v1, v2, v3 and weighted constraints F (v1, v2), F (v2, v3). If x = (x1, x2, x3) is
an assignment of domain elements to the variables, the total weight associated with x is the

∗ This work was supported by the EPSRC Research Grant “Computational Counting”. Xi Chen was also
supported by NSF Grant CCF-1139915 and Columbia University start-up funds. Full version: [11].

© Chen, Dyer, Goldberg, Jerrum, McQuillan, and Richerby;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 148–159

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.148
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

X. Chen, M. Dyer, L. A. Goldberg, M. Jerrum, C. McQuillan, and D. Richerby 149

product of the weighted constraints, evaluated at x. The computational problem is to evaluate
the sum of weights of all assignments. In our example, this is

∑
x∈{0,1}3 F (x1, x2)F (x2, x3) =

1 + 1 + 1 + 2 + 1 + 1 + 2 + 4 = 13.
There has been a lot of work on classifying the computational difficulty of exactly solving

#CSP(F). For some F , this task is computationally easy; for others it is intractable. We
briefly summarise what is known: see the surveys of Chen [10] and Lu [21] for more detail.

First, suppose the domain D is Boolean (that is, D = {0, 1}). Creignou and Hermann [14]
showed that, when the weights also lie in {0, 1}, #CSP(F) is in FP (functions computable in
polynomial time) if all F ∈ F are affine but, otherwise, it is #P-complete. Dyer, Goldberg,
and Jerrum [16] extended this dichotomy to non-negative rational weights, showing that
the problem is polynomial-time solvable if (1) every F ∈ F is expressible as a product of
unary functions, equalities and disequalities, or (2) every F ∈ F is a constant multiple of an
affine function. Otherwise, the problem is complete in the complexity class FP#P. We do not
deal with negative weights but the above results have been extended to these [4] and also to
complex [9] weights. A dichotomy exists for the related Holant∗ problem [8] (see also [21]).

Next, consider arbitrary finite D. For {0, 1} weights, Bulatov’s breakthrough [2] showed
that #CSP(F) is always either in FP or #P-hard. This was simplified by Dyer and
Richerby [18], using a new criterion called “strong balance”, and extended to non-negative
rational weights by Bulatov et al. [3] and to all non-negative algebraic weights by Cai, Chen
and Lu [7], using a generalised notion of balance that we use here. Finally, Cai and Chen [6]
extended the dichotomy to complex algebraic weights. The criteria for the above dichotomies
are known to be decidable [7, 18], except for the complex case, which remains open.

Less is known about the complexity of approximation for #CSP(F). The complexity of
approximate counting within #P was studied by Dyer, Goldberg, Greenhill and Jerrum [15],
who identified three complexity classes for approximation problems within #P:
1. the class of problems with a fully-polynomial randomised approximation scheme (FPRAS),
2. a logically-defined complexity class called #RHΠ1, and
3. a class of problems for which approximation is NP-hard.
A typical complete problem in #RHΠ1 is #BIS, approximately counting independent sets
in bipartite graphs. Either all complete problems in #RHΠ1 have an FPRAS, or none
do; it is conjectured that none do [19]. #SAT, counting satisfying assignments of CNF
Boolean formulas, is complete in class 3. Another important concept in the classification of
approximate counting CSPs is log-supermodularity [5]. A function with Boolean domain is
log-supermodular if its logarithm is supermodular; we give a formal definition later.

Over the Boolean domain, Dyer, Goldberg and Jerrum [17] gave a trichotomy for the
complexity of approximately solving #CSP for {0, 1} weights. If every F ∈ F is affine, then
#CSP(F) is in FP. Otherwise, it is at least as hard to approximate as #BIS. The hard
approximation problems can be divided into #BIS-equivalent cases and #SAT-equivalent
cases. When the domain D is Boolean, but arbitrary non-negative weights are allowed, no
complete classification is known. However, Bulatov et al. [5] gave a classification for the
so-called “conservative” case, where F contains all unary functions. Informally,

if every function in F can be expressed in a certain simple way using disequality and
unary functions, then, for any finite G ⊂ F , #CSP(G) has an FPRAS;
otherwise,

for some finite G ⊂ F , #CSP(G) is at least as hard to approximate as #BIS and,
if F contains any function that is not log-supermodular, then there is a finite G ⊂ F
such that #CSP(G) is as hard to approximate as #SAT.

STACS’13

150 The complexity of approximating conservative counting CSPs

Yamakami [26] gave an approximation dichotomy when further unary functions are in F
(including those with negative values). The negative weights cause more constraint languages
to become intractable [26]. Here, we allow only non-negative weights, since more subtle
complexity classifications arise.

Prior to this paper, no complexity classification was known for approximation of #CSP(F)
when the domain is not Boolean. This is the problem that we address. Our main result,
Theorem 2, is a classification for the conservative case (where all unary functions are in F).
An informal description is given below. The technical concepts are defined in §1.1.

If F is “weakly log-modular” then, for any finite G ⊂ F , #CSP(G) is in FP.
Otherwise, for some finite G ⊂ F , #CSP(G) is at least as hard to approximate as #BIS,
and

if F is “weakly log-supermodular” then, for any finite G ⊂ F , there is a finite set G′ of
log-supermodular functions on the Boolean domain such that #CSP(G) is at least as
easy to approximate as #CSP(G′);
otherwise, #CSP(G) is as hard to approximate as #SAT.

Our hardness results build on the approximation classification in the Boolean case [5]
and on the key role played by log-supermodular functions. The easiness results use the
classification of the exact evaluation of #CSP(F) in the general case [7] and balance, in
particular. The results concerning weak log-supermodularity build on key studies of the
complexity of optimisation CSPs by Takhanov [24], Cohen, Cooper and Jeavons [12] and
Kolmogorov and Živný [20]. We use arguments and ideas from these papers, and not merely
their results. Thus, we must delve into them in some detail.

Our final result is a trichotomy for the binary case, where all F ∈ F have arity at most 2.
This additionally uses work of Rudolf and Woeginger [23] on decomposing Monge matrices.

If F is weakly log-modular then, for any finite G ⊂ F , #CSP(G) is in FP.
Otherwise, if F is weakly log-supermodular, then

for every finite G ⊂ F , #CSP(G) is at least as easy to approximate as #BIS and
for some finite G ⊂ F , #CSP(G) is at least as hard to approximate as #BIS.

Otherwise, for some finite G ⊂ F , #CSP(G) is as hard to approximate as #SAT.

1.1 Preliminaries and statement of results
IfD is a finite domain with |D| ≥ 2, we denote the set of functionsDk → R, for some codomain
R, by Funck(D,R) and then Func(D,R) =

⋃∞
k=0 Funck(D,R). Let EQ be the binary equality

function defined by EQ(x, x) = 1 and EQ(x, y) = 0 for x 6= y; let NEQ(x, y) = 1− EQ(x, y).
We use the following definitions from [5]. Let F ⊆ Func(D,R) and let V = {v1, . . . , vn} be

a set of variables. Atomic formulas have the form ϕ = G(vi1 , . . . , via) where G ∈ F , a = a(G)
is the arity of G, and (vi1 , vi2 , . . . , via) ∈ V a is the “scope”. (The vij need not be distinct.)
The associated function is Fϕ : Dn → R, where Fϕ(x) = G(x(vi1), . . . ,x(via)) and x : V → D

is an assignment. To simplify notation, we write xj = x(vj) so Fϕ(x) = G(xi1 , . . . , xia).
A pps-formula (“primitive product summation formula”) is a sum of products of atomic

formulas. A pps-formula ψ over F in variables V ′ = {v1, . . . , vn+k} and its associated
function Fψ : Dn → R are defined as follows.

ψ =
∑

vn+1,...,vn+k

m∏
j=1

ϕj , Fψ(x) =
∑

y∈Dk

m∏
j=1

Fϕj
(x,y) . (1)

X. Chen, M. Dyer, L. A. Goldberg, M. Jerrum, C. McQuillan, and D. Richerby 151

Here ϕj are atomic formulas over F in the variables V ′. (The variables in V = {v1, . . . , vn}
are free and those in V ′ \ V are bound). The vectors x and y are assignments x : V → D

and y : V ′ \ V → D. The functional clone 〈F〉# generated by F is the set of functions
representable by pps-formulas over F ∪ {EQ}. Note that 〈〈F〉#〉# = 〈F〉# by [5, Lemma 1].
We will rely on this transitivity property implicitly.

I Definition 1.

1. A weighted constraint language F is a subset of Func(D,Q≥0). Functions in F are called
weight functions.

2. A weighted constraint language F is conservative if UD ⊆ F , where UD = Func1(D,Q≥0).
3. A weighted constraint language F is weakly log-modular if, for all binary functions F ∈
〈F〉# and all elements a, b ∈ D, F (a, a)F (b, b) = F (a, b)F (b, a), or F (a, a) = F (b, b) = 0,
or F (a, b) = F (b, a) = 0.

4. F is weakly log-supermodular if, for all binary functions F ∈ 〈F〉# and elements a, b ∈ D,
F (a, a)F (b, b) ≥ F (a, b)F (b, a) or F (a, a) = F (b, b) = 0.

5. A function F ∈ Funck({0, 1},Q≥0) is log-supermodular if F (x ∨ y)F (x ∧ y) ≥ F (x)F (y),
for all x,y ∈ {0, 1}k, where ∧ (min) and ∨ (max) are applied component-wise. LSM is the
set of all log-supermodular functions in Func({0, 1},Q≥0). 〈LSM〉# = LSM [5, Lemma 7].

Note that, in §4, we introduce valued constraint languages and cost functions, for optim-
isation CSPs. These should be distinguished from the weighted version, for counting.

The counting problem #CSP(F) over a finite, weighted constraint language F is:

Instance. A pps-formula ψ, consisting of a product of m atomic F-formulas over n free
variables x. (Thus, ψ has no bound variables.)

Output. The value
∑

x∈Dn Fψ(x), where Fψ is the function defined by ψ.

Where convenient, we write #CSP(F) to mean #CSP({F}) and write #CSP(F ,F ′) to
mean #CSP(F∪F ′). As in [5] and other works, we take the size of a #CSP(F) instance to be
n+m, where n is the number of (free) variables and m is the number of weighted constraints
(atomic formulas). In contrast to the unweighted case, the multiplicity of constraints matters,
so we cannot bound m in terms of n. We typically denote an instance of #CSP(F) by I and
the output by Z(I), which is often called the “partition function”.

A counting problem, for our purposes, is any function from instances, encoded as words
over a finite alphabet Σ, to Q≥0. A randomised approximation scheme for a counting
problem #X is a randomised algorithm that takes an instance w and returns an approximation
Y to #X(w), where a parameter ε ∈ (0, 1) specifies the error tolerance. Since the algorithm
is randomised, the output Y is a random variable depending on the “coin tosses” made by
the algorithm. We require that, for every instance w and every ε ∈ (0, 1),

Pr
[
e−ε#X(w) ≤ Y ≤ eε#X(w)

]
≥ 3/4 .

The randomised approximation scheme is said to be a fully polynomial randomised
approximation scheme, or FPRAS, if it runs in time bounded by a polynomial in |w| (the
length of the word w) and ε−1. See Mitzenmacher and Upfal [22, Definition 10.2].

If #X and #Y are counting problems, an “approximation-preserving reduction” [15] (AP-
reduction) turns an FPRAS for #Y into an FPRAS for #X. Specifically, an AP-reduction
from #X to #Y is a randomised algorithm A for computing #X using an oracle for #Y . A’s
input is a pair (w, ε) ∈ Σ∗×(0, 1), and: (i) oracle calls made by A are of the form (v, δ), where
v ∈ Σ∗ is an instance of #Y , and 0 < δ < 1 is an error bound with δ−1 ≤ poly(|w|, ε−1);

STACS’13

152 The complexity of approximating conservative counting CSPs

(ii) A is a randomised approximation scheme for #X whenever the oracle is a randomised
approximation scheme for #Y ; and (iii) the run-time of A is polynomial in |w| and ε−1. If
an AP-reduction from #X to #Y exists, we write #X ≤AP #Y . A counting problem #X
is #Y -easy if #X ≤AP #Y and it is #Y -hard if #Y ≤AP #X. A problem #X is LSM-easy
if there is a finite, weighted constraint language F ⊂ LSM such that #X ≤AP #CSP(F).

The notion of pps-definability is closely related to AP-reductions. In particular, [5,
Lemma 17] shows that G ∈ 〈F〉# implies that #CSP(F , G) ≤AP #CSP(F). We will use
this fact without comment. Note that, subsequent to [15], the notation ≤AP has been used
for a different approximation-preserving reduction which applies to optimisation problems.
Since our emphasis is on counting problems, this should not cause confusion.

We now state our main theorem. Note that we have only defined #CSP(F) for finite F .

I Theorem 2. Let F be a conservative weighted constraint language taking values in Q≥0.
1. If F is weakly log-modular then #CSP(G) is in FP for every finite G ⊂ F .
2. If F is weakly log-supermodular but not weakly log-modular, then #CSP(G) is LSM-easy

for every finite G ⊂ F and #BIS-hard for some such G.
3. If F is weakly log-supermodular but not weakly log-modular and consists of functions

of arity at most two, then #CSP(G) is #BIS-easy for every finite G ⊂ F and #BIS-
equivalent for some such G.

4. If F is not weakly log-supermodular, then #CSP(G) is #SAT-easy for every finite G ⊂ F
and #SAT-equivalent for some such G.

In particular, among conservative #CSPs, there are no new complexity classes below
#BIS or above LSM; furthermore there is a trichotomy for conservative weighted constraint
languages with no functions of arity greater than two.

#BIS-hardness and relationships with #SAT are proved in §2, restated as Theorem 4.
Membership in FP is Theorem 7 in §3. LSM-easiness and #BIS-easiness are established by
Theorem 29 in §6. Further, there is an algorithm that determines which case of Theorem 2
holds for H ∪ UD where H is finite, as shown in §7. Full proofs are in [11].

2 Hardness results

Our hardness results use the following special case of [5, Theorem 18]. That result is
expressed in terms of efficiently computable reals and we restrict to rationals for simplicity.
The statement of [5, Theorem 18] does not imply our lemma but the proof does.

I Lemma 3. Let F be a function in Func2({0, 1},Q≥0).
If F /∈ 〈NEQ,U{0,1}〉#, then #CSP(G) is #BIS-hard for some finite G ⊂ {F} ∪ U{0,1}.
If F /∈ 〈NEQ,U{0,1}〉# ∪ LSM, then #CSP(G) is #SAT-hard for some finite G ⊂ {F} ∪
U{0,1}.

I Theorem 4. Let F be a conservative weighted constraint language taking values in Q≥0.
If F is not weakly log-modular, #CSP(G) is #BIS-hard for some finite G ⊂ F .
If F is not weakly log-supermodular, #CSP(G) is #SAT-hard for some finite G ⊂ F .
For all finite G ⊂ F , #CSP(G) is #SAT-easy.

Proof (sketch). Functions in 〈NEQ,U{0,1}〉# can have only certain forms. If F is not weakly
log-modular, we construct F ∈ 〈F〉# that does not have any of these forms and #BIS-
hardness follows from Lemma 3. The proof of #SAT-hardness is similar. #SAT-easiness
follows from the reduction to the unweighted case [3], which is #SAT-easy [15]. J

X. Chen, M. Dyer, L. A. Goldberg, M. Jerrum, C. McQuillan, and D. Richerby 153

3 Balance and weak log-modularity

In this section we use the notion of balance to show that weak log-modularity implies
tractability. We may associate a matrix M with an undirected bipartite graph GM whose
vertex partition consists of the set of rows R and columns C of M. A pair (r, c) ∈ R×C is an
edge of GM if, and only if, Mrc 6= 0. A block of M is a submatrix whose rows and columns
form a connected component in GM. M has block-rank 1 if all its blocks have rank 1.

A weighted constraint language F is balanced [7,18] if, for every function F (x1, . . . , xn) ∈
〈F〉# with arity n ≥ 2, and every k with 0 < k < n, the |D|k×|D|n−k matrix F ((x1, . . . , xk),
(xk+1, . . . , xn)) has block-rank 1.

A function F : {0, 1}n → R has rank 1 if it has the form F (x1, . . . , xk) = U1(x1) · · ·Uk(xk).
A function F : Dn → Q≥0 is essentially pseudo-Boolean if its support is a subset of D1×· · ·×
Dn with |D1|, . . . , |Dn| ≤ 2. The projection of a relation R ⊆ Dn onto indices 1 ≤ i < j ≤ n
is the set of (a, b) ∈ D2 such that there exists x ∈ R with xi = a and xj = b. A generalised
NEQ is a relation {(xi, xj), (yi, yj)} ⊂ D2 for some xi 6= yi and xj 6= yj .

I Lemma 5. Let F : Dn → Q≥0 be an essentially pseudo-Boolean function which is not of
rank 1. If {F} ∪ UD is weakly log-modular, then some binary projection of the support of F
is a generalised NEQ.

I Lemma 6. Every conservative weakly log-modular weighted constraint language is balanced.

Proof (sketch). If F is not balanced, there is a function F ∈ 〈F〉# and a partition of its
variables for which the corresponding matrix M is not block-rank-1. We show that M
has a 2 × 2 submatrix that is not block-rank-1 and use this to construct an essentially
pseudo-Boolean function G that is not of rank 1 and none of whose binary projections is a
generalised NEQ. Now, use Lemma 5. J

This, along with the dichotomy of Cai, Chen and Lu [7] for the complexity of exact
evaluation of #CSP, gives us the tractable case of Theorem 2, since balanced problems can
be solved exactly, in polynomial time.

I Theorem 7. Let F be a conservative weighted constraint language taking values in Q≥0.
If F is weakly log-modular then, for any finite G ⊂ F , #CSP(G) ∈ FP.

4 Valued clones, valued CSPs and relational clones

To define valued clones, we use the same set-up as §1.1 except that summation is replaced
by minimisation and product is replaced by sum. Let D be a finite domain with |D| ≥ 2
and let R be a codomain with {0,∞} ⊆ R, where ∞ obeys the following rules for all
x ∈ R: x +∞ = ∞, x ≤ ∞ and min{x,∞} = x. Let Φ be a subset of Func(D,R). Let
V = {v1, . . . , vn} be a set of variables. For each atomic formula ϕ = G(vi1 , . . . , via) we use
the notation fϕ to denote the function represented by ϕ, so fϕ(x) = G(xi1 , . . . , xia).

A psm-formula (“primitive sum minimisation formula”) is a minimisation of a sum of
atomic formulas. A psm-formula ψ over Φ in variables V ′ = {v1, . . . , vn+k}, and its associated
function fψ are defined, analogously to (1), by

ψ = min
vn+1,...,vn+k

m∑
j=1

ϕj , fψ(x) = min
y∈Dk

m∑
j=1

fϕj
(x,y),

where the ϕj are atomic formulas and x : {v1, . . . , vn} → D, y : {vn+1, . . . , vn+k} → D are
assignments.

STACS’13

154 The complexity of approximating conservative counting CSPs

The valued clone 〈Φ〉V generated by Φ is the set of all functions that can be represented
by a psm-formula over Φ ∪ {eq}, where eq is the binary equality function on D given by
eq(x, x) = 0 and eq(x, y) =∞ for x 6= y.

We next introduce valued constraint satisfaction problems (VCSPs), which are optimisa-
tion problems. In the work of Kolmogorov and Živný [20], the codomain is R = Q≥0 ∪ {∞}.
It will be useful to extend the codomain to include irrational numbers. This causes no
problems since, apart from Theorem 23, we use only calculations from their papers, not
complexity results. For Theorem 23, we avoid irrational numbers and, in fact, restrict to
cost functions taking values in {0,∞} ⊂ R. Furthermore, all the real numbers we use are
either rationals, or their logarithms, so are efficiently computable.

Let R≥0 = R≥0 ∪ {∞} be the set of non-negative real numbers together with ∞.

I Definition 8. A cost function is a function Dk → R≥0. A valued constraint language is a
set of cost functions Φ ⊆ Func(D,R≥0).

For a valued constraint language Φ, a problem in VCSP(Φ) has instance ψ, a psm-formula
which is a sum of m atomic Φ-formulas in n free variables x, and computes the value

minCost(ψ) = min
x∈Dn

fψ(x) , where fψ is the function defined by ψ.

We typically use the notation of Kolmogorov and Živný. An instance is usually denoted
by the letter I. In this case, we use fI to denote the function specified by the psm-formula
corresponding to instance I, so the value of the instance is denoted by minCost(I). The
psm-formula corresponding to I is a sum of atomic formulas (since all of the variables are
free variables). We refer to each of these atomic formulas as a valued constraint and we
represent these by the multiset T of all valued constraints in the instance I. For each valued
constraint t ∈ T we use kt to denote its arity, ft to denote the function represented by
the corresponding atomic formula, and σt to denote its scope, which is given as a tuple
(i(t, 1), . . . , i(t, kt)) ∈ {1, . . . , n}kt containing the indices of the variables in the scope. Thus,

fI(x) =
∑
t∈T

ft(xi(t,1), . . . , xi(t,kt)) . (2)

We will use x[σt] as an abbreviation for the tuple (xi(t,1), . . . , xi(t,kt)). In this abbreviated
notation, the function defined by instance I may be written as fI(x) =

∑
t∈T ft(x[σt]).

Now, let [0, 1]Q = [0, 1] ∩Q. For reasons which will be clear below, it will be useful to
work with weight functions in Func(D, [0, 1]Q). For such a weight function F , let the cost
function `(F) ∈ Func(D,R≥0) be the function defined by

(`(F))(x) =
{
− lnF (x) if F (x) > 0
∞ if F (x) = 0.

For example, `(EQ) = eq. For a weighted constraint language F ⊆ Func(D, [0, 1]Q), let `(F)
be the valued constraint language defined by `(F) = {`(F) | F ∈ F}.

There is a bijection between instances of #CSP(F) and VCSP(`(F)), given by replacing
each function Ft in the former by the function ft = `(Ft) in the latter, with scopes unchanged.
Note that fI(x) = − lnFI(x), for any assignment x, with the convention − ln 0 =∞.

I Definition 9. A valued constraint language is conservative if it contains all arity-1 cost
functions D → R≥0.

The mapping F 7→ `(F) from Func(D, [0, 1]Q) to Func(D,R≥0) is not surjective since not
all real numbers are logarithms of rationals. Similarly, for any weighted constraint language

X. Chen, M. Dyer, L. A. Goldberg, M. Jerrum, C. McQuillan, and D. Richerby 155

F , the valued constraint language `(F) is not conservative. Finally, note that we define `(F)
only for F ∈ Func(D, [0, 1]Q). The extension to F ∈ Func(D,Q≥0) produces negative-valued
cost functions. We wish to avoid this since Kolmogorov and Živný [20] do not allow it.

I Definition 10. A cost function is crisp [13] if f(x) ∈ {0,∞} for all x.

I Definition 11. For a cost function f , let Feas(f) be the relation Feas(f) = {x | f(x) <∞}.

Thus, any cost function f can be associated with its underlying relation. Similarly, we can
represent any relation by a crisp cost function f for which f(x) = 0 if and only if x is in the
relation. A crisp constraint language is a set of relations, which we always represent as crisp
cost functions, not as functions with codomain {0, 1}. For a valued constraint language Φ,
the crisp constraint language Feas(Φ) is given by Feas(Φ) = {Feas(f) | f ∈ Φ}. A relational
clone is simply a crisp constraint language Feas(〈Φ〉V) for a valued constraint language Φ.

I Lemma 12. Suppose Φ ⊆ Func(D,R≥0). Then 〈Feas(Φ)〉V = Feas(〈Φ〉V).

Proof. The mapping ρ : R≥0 → {0,∞} defined by ρ(∞) =∞ and ρ(x) = 0, for all x <∞,
is a homomorphism of semirings, from (R≥0,min,+) to ({0,∞},min,+). J

I Definition 13. A crisp constraint language is conservative if it includes all arity-1 relations.

5 STP/MJN multimorphisms and weak log-supermodularity

In [20, Corollary 12], Kolmogorov and Živný showed that the VCSP associated with a
conservative valued constraint language Φ is tractable iff Φ has an STP/MJN multimorphism.

We define STP/MJN multimorphisms below. In this section, we show that, if a weighted
constraint language F ∈ Func(D, [0, 1]Q) is weakly log-supermodular, the corresponding
valued constraint language `(F) has an STP/MJN multimorphism. In §6, this will enable us
to use such a multimorphism (via the work of Kolmogorov and Živný [20] and Cohen, Cooper
and Jeavons [12]) to prove #BIS-easiness and LSM-easiness of the weighted counting CSP.

Our proofs rely on work of Kolmogorov and Živný [20] and Takhanov [24]. We start with
some general definitions. Note that some of these definitions in [20] differ from those in [12].

I Definition 14.

1. A k-ary operation on D is a function from Dk to D. An operation on D is a k-ary
operation, for some k. We omit “on D” when the domain D is clear from the context.

2. A k-tuple 〈ρ1, . . . , ρk〉 of k-ary operations ρ1, . . . , ρk is conservative if the multisets
{{x1, . . . , xk}} and {{ρ1(x), . . . , ρk(x)}} are equal for all x = (x1, . . . , xk) ∈ Dk.

3. 〈ρ1, . . . , ρk〉 is a multimorphism of an arity-r cost function f if:

k∑
i=1

f(ρi(x1
1, . . . , x

k
1), . . . , ρi(x1

r, . . . , x
k
r)) ≤

k∑
i=1

f(xi) for all x1, . . . ,xk ∈ Dr.

4. 〈ρ1, . . . , ρk〉 is a multimorphism of a valued constraint language Φ if it is a multimorphism
of every f ∈ Φ.

Note that we have defined “conservative” for operations and constraint languages
(weighted, valued and crisp). These notions are connected, but we do not need that here.

I Observation 15. If 〈ρ1, . . . , ρk〉 is conservative, it is a multimorphism of every unary f .

STACS’13

156 The complexity of approximating conservative counting CSPs

I Definition 16.

1. Suppose M ⊆ D2. A pair 〈u,t〉 of binary operations is a symmetric tournament pair
(STP) on M if it is conservative and both operations are commutative on M . We say
that it is an STP if it is an STP on D2.

2. Suppose M ⊆ D2. A triple 〈Mj1, Mj2, Mn3〉 of ternary operations is an MJN on M if it is
conservative and, for all triples (a, b, c) ∈ D3 with {{a, b, c}} = {{x, x, y}} where x 6= y

and (x, y) ∈M , we have Mj1(a, b, c) = Mj2(a, b, c) = x and Mn3(a, b, c) = y.
3. An STP/MJN multimorphism of a valued constraint language Φ consists of a pair of

operations 〈u,t〉 and a triple of operations 〈Mj1, Mj2, Mn3〉, both of which are multimorph-
isms of Φ, for which, for some symmetric subset M of D2, 〈u,t〉 is an STP on M and
〈Mj1, Mj2, Mn3〉 is an MJN on {(a, b) ∈ D2 \M | a 6= b}.

4. Φ ⊆ Func(D,R≥0) is weakly submodular if, for all binary f ∈ 〈Φ〉V and a, b ∈ D,
f(a, a) + f(b, b) ≤ f(a, b) + f(b, a) or f(a, a) = f(b, b) =∞.

Our definition of weak submodularity for cost functions restates Kolmogorov and Živný’s
“Assumption 3”. It is nontrivial that weak log-supermodularity for F is related to weak
submodularity for `(F). In particular, we cannot expect 〈`(F)〉V = `(〈F〉#) to hold in
general. However, the following is suitable for our purposes.

I Lemma 17. Suppose F ⊆ Func(D, [0, 1]Q) and let Φ = `(F). If F is weakly log-
supermodular then Φ is weakly submodular.

Proof (sketch). For the contrapositive, take a binary f ∈ 〈Φ〉V that is not weakly submodular
and let F (k) ∈ 〈F〉# be the function defined by replacing every atomic formula g(x,y) in the
definition of f with G(x,y)k, where g = `(G). For k large enough, F (k)(x)1/k is close enough
to the maximum value taken by any G(x,y) in the definition of F . But this maximum value
is exp(−f(x)) and we can now show that F (k) is not weakly log-supermodular. J

Let Γ be a crisp constraint language. A majority polymorphism of Γ is a ternary operation ρ
such that ρ(a, a, b) = ρ(a, b, a) = ρ(b, a, a) = a for all a, b ∈ D, and for all k-ary relations
R ∈ Γ, x,y, z ∈ R implies that (ρ(x1, y1, z1), . . . , ρ(xk, yk, zk)) ∈ R.

The formulation of the following theorem is essentially [24, Theorem 9.1] (but note that
Takhanov uses the term “functional clone” in a different way to us).

I Theorem 18 (Takhanov). Let N(a, b, c, d) be the relation {(a, c), (b, c), (a, d)}, and let Γ
be a conservative relational clone with domain D. At least one of the following holds.

There are distinct a, b ∈ D such that N(a, b, a, b) ∈ Γ.
There are distinct a, b ∈ D such that {(a, a, a), (a, b, b), (b, a, b), (b, b, a)} ∈ Γ.
For some k ≥ 1, there are a0, . . . , a2k, b0, . . . , b2k ∈ D such that, for each 0 ≤ i ≤ 2k,
ai 6= bi and, for each 0 ≤ i ≤ 2k − 1, N(ai, bi, ai+1, bi+1) ∈ Γ and N(a2k, b2k, a0, b0) ∈ Γ.
Γ has a majority polymorphism.

To prove the following lemma, we show that the first three bullets of Takhanov’s theorem
cannot hold, so the fourth must.

I Lemma 19. If Φ ⊆ Func(D,R≥0) is conservative and weakly submodular then Γ =
〈Feas(Φ)〉V has a majority polymorphism.

The main theorem of this section now follows from Lemmas 17 and 19. The final
construction of the STP/MJN multimorphism comes from [20, §§6.1–6.4].

I Theorem 20. Let F be a weighted constraint language with Func1(D, [0, 1]Q) ⊆ F ⊆
Func(D, [0, 1]Q). If F is weakly log-supermodular then `(F) has an STP/MJN multimorphism.

X. Chen, M. Dyer, L. A. Goldberg, M. Jerrum, C. McQuillan, and D. Richerby 157

6 LSM-easiness and #BIS-easiness

Our aim is to show that F is LSM-easy if `(F) has an STP/MJN multimorphism. This
will use arguments from [12] and [20], but we try, as far as possible, to avoid going into the
details of their proofs. We start by generalising the notion of an STP multimorphism.

I Definition 21. Let f be an arity-k cost function. A generalised STP multimorphism of f
is a pair 〈u,t〉, defined as follows. For 1 ≤ i ≤ k, ui and ti are operations on the set
Di = {a ∈ D | ∃x : xi = a and f(x) <∞}, and 〈ui,ti〉 is an STP of {f}.

The operation u is the binary operation on D1× · · · ×Dk defined by applying u1, . . . ,uk
component-wise. Similarly, t is defined by applying t1, . . . ,tk component-wise. We require
that, for all x,y ∈ Dk, f(t(x,y)) + f(u(x,y)) ≤ f(x) + f(y). Equivalently, we require that
f(t1(x1, y1), . . . ,tk(xk, yk)) + f(u1(x1, y1), . . . ,uk(xk, yk)) ≤ f(x) + f(y).

Theorem 22 is closely related to [20, Theorem 11]. Its proof is the same but we stop
when [20, Lemma 35] has been proved. We also need an algorithmic consequence.

I Theorem 22 (Kolmogorov and Živný). Suppose Φ0 is a finite, valued constraint language
which has an STP/MJN multimorphism. Then there is a polynomial-time algorithm that
takes an instance I of VCSP(Φ0) and returns a generalised STP multimorphism 〈u,t〉 of
fI . The pair 〈u,t〉 depends only on the STP/MJN multimorphism of Φ0 and on the relation
Feas(fI) underlying fI . It does not depend in any other way on I.

I Theorem 23 (Kolmogorov and Živný). If Φ0 is a finite, crisp constraint language that has
an STP/MJN multimorphism, then there is a polynomial-time algorithm for VCSP(Φ0).

For our eventual construction, we would like 〈u,t〉 to induce a generalised STP mul-
timorphism of ft for each individual valued constraint t in the instance. We do not know
whether this is true of the generalised STP multimorphism provided by Kolmogorov and
Živný’s algorithm, but something sufficiently close to this is true.

I Definition 24. For an instance I, a valued constraint t and a length-kt vector a, define
RI,t(a) = 0 if there exists x with x[σt] = a and fI(x) < ∞ and RI,t(a) = ∞, otherwise.
Define f ′t = ft +RI,t. Thus, f ′t is a “trimmed” version of ft whose domain is precisely the
kt-tuples of values that can actually arise in feasible solutions to instance I.

We will see that, if the scope σt contains variables with indices i(t, 1), . . . , i(t, kt), then〈
u[σt],t[σt]

〉
=
〈
(ui(t,1), . . . ,ui(t,kt)), (ti(t,1), . . . ,ti(t,kt))

〉
is a generalised STP multimorph-

ism of f ′t , even though it might not necessarily be a generalised STP multimorphism of ft.
Note that Theorem 23 has the following consequence.

I Corollary 25. Let Φ0 be a finite, valued constraint language that has an STP/MJN
multimorphism. There is a polynomial-time algorithm that takes an instance I of VCSP(Φ0),
a valued constraint t and a length-kt vector a and returns a (finite) truth table for f ′t.

I Theorem 26 (Extends Theorem 22). Suppose Φ0 is a finite, valued constraint language which
has an STP/MJN multimorphism. Consider the algorithm from Theorem 22 which takes an
instance I of VCSP(Φ0) (in the form (2)) and returns a generalised STP multimorphism
〈u,t〉 of fI . Then, for all t ∈ T ,

〈
u[σt],t[σt]

〉
is a generalised STP multimorphism of f ′t.

We say that two n-variable instances I and I ′ of VCSP(Φ) are equivalent if fI(x) = fI′(x)
for all x ∈ Dn. Given a finite, valued constraint language Φ0 ⊂ Func(D,R≥0), let Φ′0 be
the set of functions of the form f +R, for f ∈ Φ0 ∩ Funck(D,R≥0), R ∈ Funck(D, {0,∞})
and k ∈ N. Note that Φ′0 is finite because Funck(D, {0,∞}) is finite for any finite k. These
definitions, along with Corollary 25 and Theorem 26 allow us to prove the following.

STACS’13

158 The complexity of approximating conservative counting CSPs

I Lemma 27. Suppose Φ0 is a finite, valued constraint language which has an STP/MJN
multimorphism. Consider an instance I of VCSP(Φ0). There is an equivalent instance I ′ of
VCSP(Φ′0) and a generalised STP multimorphism 〈u,t〉 of fI′ which induces a generalised
STP multimorphism of ft for each valued constraint t of I ′. Both I ′ and 〈u,t〉 are polynomial-
time computable (given I). Moreover, each operation ui and ti induces a total order.

The proof of the next lemma uses a reduction from the given #CSP problem over
domain D to a Boolean problem. A variable x ranging over D is simulated by Boolean
variables {xd | d ∈ D} and an assignment x = a is simulated by setting xb = 1 for all
b < a and xb = 0, otherwise, where “b < a” is determined by the appropriate total order
from the multimorphism. The constraints needed to prevent assignments to the xd that
do not correspond to an assignment to x can be represented by LSM functions, as can the
corresponding translation of a weight function f : Dk → [0, 1]Q to f ′ : {0, 1}kd → [0, 1]Q.
In the case where all functions in F have arity at most 2, it can be shown that all of the
necessary constraints can be implemented using Boolean implication and unary weights.

I Lemma 28. If F ⊆ Func(D, [0, 1]Q) and `(F) has an STP/MJN multimorphism, then,
for every finite G ⊂ F , #CSP(G) is LSM-easy, and #BIS-easy if every weight function has
arity at most 2.

Our main theorem, Theorem 2, now follows from Theorems 4 and 7 and the following.

I Theorem 29. Let F be a weakly log-supermodular, conservative weighted constraint lan-
guage taking values in Q≥0.

For any finite G ⊂ F , there is a finite G′ ⊂ LSM such that #CSP(G) ≤AP #CSP(G′).
If all F ∈ F have arity at most two, then #CSP(G) is #BIS-easy for any finite G ⊂ F .

Proof (sketch). Scale F to obtain a weakly log-supermodular weighted constraint language
F ′ where all weights are in [0, 1]Q. By Theorem 20, `(F ′) has an STP/MJN multimorphism.
The result follows from Lemma 28 and the fact that the scaling does not affect complexity. J

7 Algorithmic aspects

Finally, we show that there is an algorithm that determines the complexity of approximating
#CSP with constraints from the language H ∪ UD for finite H. The proof is by reduction
to determining whether a certain finite subset of H ∪ UD is balanced, whether `(H) has an
STP/MJN multimorphism and whether H’s weight functions have arity at most 2. Balance
is decidable by [7], the existence of an STP/MJN multimorphism can be checked by brute
force, since H is finite, and we can clearly check the maximum arity of the weight functions.

I Theorem 30. There is an algorithm that, given a finite, weighted constraint language H
taking values in Q≥0, correctly makes one of the following deductions, where F = H ∪ UD:
1. #CSP(G) is in FP for every finite G ⊂ F ;
2. #CSP(G) is LSM-easy for every finite G ⊂ F and #BIS-hard for some such G;
3. #CSP(G) is #BIS-easy for all finite G ⊂ F and #BIS-equivalent for some such G;
4. #CSP(G) is #SAT-easy for all finite G ⊂ F and #SAT-equivalent for some such G.
If every function in H has arity at most 2, the output is not deduction 2.

References
1 E. Boros and P. Hammer. Pseudo-Boolean optimization. Discrete Appl. Math., 123:155–225,

2002.

X. Chen, M. Dyer, L. A. Goldberg, M. Jerrum, C. McQuillan, and D. Richerby 159

2 A. Bulatov. The complexity of the counting constraint satisfaction problem. In Proc. 35th
ICALP (Part I), LNCS 5125, pp. 646–661. Springer, 2008.

3 A. Bulatov, M. Dyer, L.A. Goldberg, M. Jalsenius, M. Jerrum and D. Richerby. The
complexity of weighted and unweighted #CSP. J. Comput. Syst. Sci., 78:681–688, 2012.

4 A. Bulatov, M. Dyer, L.A. Goldberg, M. Jalsenius and D. Richerby. The complexity of
weighted Boolean #CSP with mixed signs. Theor. Comput. Sci., 410:3949–3961, 2009.

5 A. Bulatov, M. Dyer, L.A. Goldberg, M. Jerrum and C. McQuillan. The expressibility
of functions on the Boolean domain, with applications to counting CSPs. CoRR eprint,
arXiv:abs/1108.5288, 2011.

6 J.-Y. Cai and X. Chen. Complexity of counting CSP with complex weights. In Proc. 44th
STOC, pp. 909–920. ACM, 2012.

7 J.-Y. Cai, X. Chen, and P. Lu. Non-negatively weighted #CSP: An effective complexity
dichotomy. In Proc. 26th CCC, pp. 45–54. IEEE, 2011.

8 J.-Y. Cai, P. Lu, and M. Xia. Dichotomy for Holant∗ problems of Boolean domain. In Proc.
22nd SODA, pp. 1714–1728. ACM–SIAM, 2011.

9 J.-Y. Cai, P. Lu and M. Xia. Holant problems and counting CSP. In Proc. 41st STOC,
pp. 715–724. ACM, 2009.

10 X. Chen. Complexity dichotomies of counting problems. SIGACT News, 42:54–76, 2011.
11 X. Chen, M. Dyer, L. A. Goldberg, M. Jerrum, P. Lu, C. McQuillan and D. Rich-

erby. The complexity of approximating conservative counting CSPs. CoRR eprint,
arXiv:abs/1208.1783, 2012.

12 D. Cohen, M. Cooper and P. Jeavons. Generalising submodularity and Horn clauses: Tract-
able optimization problems defined by tournament pair multimorphisms. Theor. Comput.
Sci., 401:36–51, 2008.

13 D. Cohen, M. Cooper, P. Jeavons and A. Krokhin. Soft constraints: Complexity and
multimorphisms. In Proc. 9th CP, LNCS 2833, pp. 244–258. Springer, 2003.

14 N. Creignou and M. Hermann. Complexity of generalized satisfiability counting problems.
Inform. Comput., 125:1–12, 1996.

15 M. Dyer, L. A. Goldberg, C. Greenhill and M. Jerrum. The relative complexity of approx-
imate counting problems. Algorithmica, 38:471–500, 2004.

16 M. Dyer, L. A. Goldberg and M. Jerrum. The complexity of weighted Boolean CSP. SIAM
J. Comput., 38:1970–1986, 2009.

17 M. Dyer, L. A. Goldberg and M. Jerrum. An approximation trichotomy for Boolean #CSP.
J. Comput. Syst. Sci., 76:267–277, 2010.

18 M. Dyer and D. Richerby. An effective dichotomy for the counting constraint satisfaction
problem. SIAM J. Comput., to appear. (Conference version in STOC 2010.)

19 L. A. Goldberg and M. Jerrum. Approximating the partition function of the ferromagnetic
Potts model. J. Assoc. Comput. Mach., to appear. (Conference version in ICALP 2010.)

20 V. Kolmogorov and S. Živný. The complexity of conservative valued CSPs. CoRR eprint,
arXiv:abs/1110.2809, 2011. (Conference version in SODA 2012.)

21 P. Lu. Complexity dichotomies of counting problems. ECCC eprint, 18:93, 2011.
22 M. Mitzenmacher and E. Upfal. Probability and Computing. CUP, 2005.
23 R. Rudolf and G. J. Woeginger. The cone of Monge matrices: extremal rays and applica-

tions. Math. Method Oper. Res., 42:161–168, 1995.
24 R. Takhanov. A dichotomy theorem for the general minimum cost homomorphism problem.

CoRR eprint, arXiv:abs/0708.3226, 2007. (Conference version in STACS 2010.)
25 D. Topkis. Minimizing a submodular function on a lattice. Oper. Res., 26:305–321, 1978.
26 T. Yamakami. Approximate counting for complex-weighted Boolean constraint satisfaction

problems. Inform. Comput., 219:17–38, 2012.

STACS’13

Lossy Chains and Fractional Secret Sharing
Yuval Ishai∗1, Eyal Kushilevitz†2, and Omer Strulovich‡3

1 Technion, Haifa, Israel
yuvali@cs.technion.ac.il

2 Technion, Haifa, Israel
eyalk@cs.technion.ac.il

3 Technion, Haifa, Israel
omers@cs.technion.ac.il

Abstract
Motivated by the goal of controlling the amount of work required to access a shared resource or
to solve a cryptographic puzzle, we introduce and study the related notions of lossy chains and
fractional secret sharing.

Fractional secret sharing generalizes traditional secret sharing by allowing a fine-grained con-
trol over the amount of uncertainty about the secret. More concretely, a fractional secret sharing
scheme realizes a fractional access structure f : 2[n] → {0, . . . ,m− 1} by guaranteeing that from
the point of view of each set T ⊆ [n] of parties, the secret is uniformly distributed over a set
of f(T) + 1 potential secrets. We show that every (monotone) fractional access structure can
be realized. For symmetric structures, in which f(T) depends only on the size of T , we give an
efficient construction with share size poly(n, logm).

Our construction of fractional secret sharing schemes is based on the new notion of lossy
chains which may be of independent interest. A lossy chain is a Markov chain (X0, . . . , Xn)
which starts with a random secret X0 and gradually loses information about it at a rate which
is specified by a loss function g. Concretely, in every step t, the distribution of X0 conditioned
on the value of Xt should always be uniformly distributed over a set of size g(t). We show how
to construct such lossy chains efficiently for any possible loss function g, and prove that our
construction achieves an optimal asymptotic information rate.

1998 ACM Subject Classification E.3 Data Encryption

Keywords and phrases Cryptography, secret sharing, Markov chains

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.160

1 Introduction

In this work, we introduce and study two related notions: lossy chains and fractional secret
sharing. We start by describing the latter.

Fractional secret sharing. Suppose that we wish to share a secret password between several
parties, such that the largest subset of cooperating parties will be the first to guess the
correct password. (Think of the password as a key which locks vault, where the number of
guessing attempts measures the amount of work required for unlocking the vault.)

∗ Supported by the European Research Council as part of the ERC project CaC (grant 259426), ISF
grant 1361/10, and BSF grant 2008411.
† Supported by ISF grant 1361/10 and BSF grant 2008411.
‡ Supported by ERC grant 259426.

© Yuval Ishai, Eyal Kushilevitz, and Omer Strulovich;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 160–171

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.160
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Y. Ishai, E. Kushilevitz, and O. Strulovich 161

A simple solution that comes to mind is the following. If the password is a binary string of
length k and we have n ≤ k parties, we can give each party one or more bits of the password.
In this solution, a larger cooperating subset of parties will need a smaller expected number
of attempts to guess the password than a smaller one. This solution achieves our goal, but is
limited to specific parameters. For example, we cannot easily extend this method to n > k

parties, nor can we have finer control over the relative amount of expected work required by
different subsets of parties.

Our goal is to find a solution which gives maximal control over the amount of information
about the password revealed to each subset of parties. This motivates the notion of fractional
secret sharing. In traditional secret sharing [9, 3, 6], each subset of n parties either has full
information about the secret or has no information about the secret. Fractional secret sharing
generalizes this notion by allowing a fine-grained control over the amount of uncertainty of
each subset about a uniformly random secret. The uncertainty is specified by a fractional
access structure f : 2[n] → {0, . . . ,m− 1}. A fractional secret sharing scheme realizing f
should have the property that from the point of view of each set T ⊆ [n] of parties, the secret
is always uniformly distributed over a set of f(T) + 1 potential secrets. Since adding a party
to a subset cannot reduce the amount of available information, we assume f to be monotone
in the sense that if T ⊆ T ′ then f(T ′) ≤ f(T). This raises the following questions:

Can every (monotone) fractional access structure be realized? If so, how efficiently?

How to gradually forget. Motivated in part by the problem of fractional secret sharing, we
introduce the related notion of lossy chains. A lossy chain is a Markov chain (X0, . . . , Xn)
which starts with a random secret X0 and gradually loses information about it at a rate
which is specified by a predefined loss function g : [n]→ [m]. More concretely, we require
that for any 1 ≤ i ≤ n and any possible value xi in the support of Xi, the distribution of the
secret X0, conditioned on the event that Xi = xi, is uniform1 over a set of size g(i). (The
identity of this set may depend on xi.) In a similar manner to fractional access structures, we
require that the loss function g be monotone, in the sense that for i < j we have g(i) < g(j).
This raises the following questions:

Can every (monotone) loss function be realized? If so, how efficiently?

The Markov property of the chain (namely, the requirement that Xi+1 be independent
of X0, . . . , Xi−1 given Xi) is important for our motivating applications, as it rules out the
possibility of combining several values Xi in order to learn more information than that
implied by the “best” value Xi. Jumping ahead, this property will turn out to be crucial for
the construction of fractional secret sharing from lossy chains.

Why uniform? An important aspect of our notions of fractional secret sharing and lossy
chains is that they require each conditional distribution to always be uniform over a subset
of potential secrets having a specified size. One could instead consider alternative definitions
which only specify some measure of entropy, such as conditional Shannon entropy [10],
or min-entropy [8], without further restricting the distribution. Insisting on a uniform
distribution has several important advantages. First, a crude measure of uncertainty such
as entropy is not informative enough to capture all relevant properties of a distribution.

1 The uniformity requirement rules out simple solutions that are based on gradually adding independent
random noise to the initial secret (cf. [4]), see further discussion below.

STACS’13

162 Lossy Chains and Fractional Secret Sharing

For instance, min-entropy determines the best probability of guessing the secret in the first
attempt, but says little about the expected number of attempts until the secret is correctly
guessed. Second, using the uniform distribution does not only give control over the expected
number of attempts in an optimal guessing strategy, but it also minimizes the variance of
the number of such attempts under the expectation constraint. (See full version for a proof
that the uniform distribution beats any other distribution in this respect.) Finally, in some
scenarios it may be desirable to spread the point in time in which the secret is correctly
guessed as evenly as possible (think of a password controlling a shared resource). This too is
achieved optimally by the uniform distribution. We note that one could relax the requirement
of uniformity to being statistically close to uniform. This is addressed in the full version.

1.1 Our Results
We obtain several positive and negative results about lossy chains and fractional secret
sharing.

We show that any monotone loss function g : [n] → [m] can be efficiently realized by
a lossy chain (X0, . . . , Xn) in which the bit-length of each Xi is at most n · dlogme.
Moreover, we show this bound to be asymptotically tight by demonstrating the existence
of a family of loss functions gn,m : [n]→ [m] for which some Xi must be Ω (n logm) bits
long. This asymptotic lower bound still holds even if we allow the conditional distributions
to have negligible statistical distance from uniform. Settling for a constant statistical
distance, the bit-length of each Xi can be O(log2 m), independently of n.
We show a general reduction of fractional secret sharing to lossy chains, which implies
that every monotone fractional access structure f : 2[n] → {0, . . . ,m− 1} can be realized.
For the important case of symmetric structures, in which f(T) depends only on the size
of T , we get an efficient construction in which the share size of each party is at most
n · dlog max {n,m}e.

1.2 Overview of Techniques
Recall that a lossy chain is a Markov chain (X0, . . . , Xn), where X0 is a random secret,
and each step loses additional information about the secret. This loss is specified by a
loss function g : [n] → [m], such that for each 1 ≤ i ≤ n and xi in the support of Xi, the
distribution of X0 conditioned on Xi = xi is uniform over a set of size g(i). (See Section 3.1
for a formal definition.)

As a simple warmup example, let X0 be uniform over {0, 1}n, and let Xi include the first
n− i bits of X0. In this case, X0 conditioned on Xi = xi is distributed uniformly over a set
of size 2i. Thus, this lossy chain realizes the loss function g (i) = 2i. This simple approach
only works for a loss function g which is increasing exponentially, and can be generalized
only to loss functions g such that g (i) divides g (i+ 1).

The following alternative approach works for any monotone loss function g : [n]→ [m],
where without loss of generality g (n) = m:

1. Pick x0 uniformly from [m].
2. For i = 1, . . . , n, pick (a set) xi uniformly at random from all subsets of [m] of size g (i)

containing xi−1.
3. Output (x0, x1, . . . , xn)

Intuitively, this method starts from a set {x0} containing only the correct secret, and in
each step adds g (i)−g (i− 1) new random “distractors” from [m]. This allows us to realize a

Y. Ishai, E. Kushilevitz, and O. Strulovich 163

lossy chain for any loss function. However, storing or sending the values of such a chain may
be infeasible when m is large (e.g., think of m as the number of possible passwords). It is
therefore desirable to get a solution in which the bit-length of each Xi grows logarithmically
with m instead of linearly with m.

A natural approach is to limit the subsets represented by Xi to only be discrete intervals
of the form [j, k] = {j, j + 1, . . . , k}, where 1 ≤ j ≤ k ≤ m. Unfortunately, this simple
modification of the previous construction fails to satisfy the uniform conditional distribution
property. More concretely, given an interval [j, k] for Xi, the probability of the secret X0
being in the middle of the interval will be higher than in the edges of the interval. To avoid
this problem, we employ cyclic intervals. Intuitively, given an arbitrary ordered set, a cyclic
interval can “cycle” through the end back to the start of the set. Using recursive nesting
of such cyclic intervals, we construct a lossy chain for any loss function while keeping the
support of each Xi small. We describe our results for lossy-chains in Section 3. We present
the above construction in Section 3.2, and we establish the optimality of this construction
in Section 3.3 by using some basic linear algebraic properties of the probability vectors
associated with a lossy chain. Positive and negative results for the statistical relaxation of
lossy chains are given in the full version.

Finally, in Section 4 we describe the reduction of fractional secret sharing to lossy
chains. Recall that a fractional secret sharing scheme realizes a fractional access structure
f : 2[n] → {0, . . . ,m− 1} by ensuring that from the point of view of each set T ⊆ [n] of
parties, the secret is uniformly distributed over a set of f(T)+1 potential secrets. (See Section
4.1 for a formal definition.) In the case of a symmetric structure f , where f(T) depends only
on the size of T , we can use the following natural construction: let g(i) = f([n− i]) + 1 and
let (X0, . . . , Xn) be a lossy chain realizing g. A fractional secret sharing scheme realizing f
can be obtained by using a threshold secret sharing scheme (such as Shamir’s scheme [9]) to
distribute the value of each Xi between the n parties with reconstruction threshold n− i. Any
set T of t parties will be able to reconstruct the values Xn−t, . . . , Xn, which by the Markov
property contain the same information about the secret X0 as Xn−t. By the definition of
g, the distribution of X0 conditioned on the value of Xn−t is uniform over a set of size
f(T) + 1, as required. The above construction can be generalized to arbitrary fractional
access structures. However, similarly to traditional secret sharing, the complexity of the
general construction may be exponential in the number of parties.

Related work. The notion of fractional secret sharing can be viewed as a restricted instance
of non-perfect secret sharing (also referred to as ramp secret sharing). While in standard
(perfect) secret sharing schemes each set of players should either be able to fully reconstruct
the secret or alternatively should learn nothing about it, in a non-perfect secret sharing there
is also a third kind of sets that may learn partial information about the secret. Non-perfect
schemes were proposed mainly for the reason of improving the efficiency of secret sharing
by reducing the size of the shares. Unlike fractional secret sharing, in non-perfect secret
sharing there is no requirement on the type of partial information available to the third kind
of subsets. For works on non-perfect secret sharing, see [2, 11, 7, 5] and references therein.

2 Preliminaries

Notation. We let [n] denote the set of integers {1, 2, . . . , n}. We use log n to denote log2 n.
For a random variable X, we let supp(X) denote the support set of X, that is, the set of
values which X may take with nonzero probability. The support set of a real-valued vector
is the set of coordinates in which it takes nonzero values.

STACS’13

164 Lossy Chains and Fractional Secret Sharing

Markov chains. A Markov chain is a sequence of random variables such that the distribution
of each variable in the sequence depends only on the value of the previous variable. Formally:

I Definition 1. (Markov chain) Let X̄ = (X0, X1, . . . , Xn) be a sequence of jointly
distributed random variables. We say that X̄ is a Markov chain if for every i ∈ [n] and for
any sequence of values x0 ∈ supp(X0), . . . , xi ∈ supp(Xi),

Pr [Xi = xi|Xi−1 = xi−1] = Pr [Xi = xi|Xi−1 = xi−1, . . . , X0 = x0] .

In general, Markov chains can be defined as infinite sequences of random variables with
infinite support size. However, in this work we will only consider finite Markov chains.

The above definition is equivalent to requiring that for any i and xi in the support of
Xi, the random variables (X1, . . . , Xi−1) and (Xi+1, . . . , Xn) are independent conditioned
on Xi = xi. The symmetry of the above conditional independence requirement implies the
following “reversibility” property of Markov chains:2

I Fact 1. If X̄ = (X0, X1, . . . , Xn) is a Markov chain, then so is X̄R = (Xn, Xn−1, . . . , X0).

3 Lossy Chains

In this section we define our new notion of a lossy chain (Section 3.1), present an efficient
construction of lossy chains (Section 3.2), and prove a lower bound on their efficiency
(Section 3.3).

3.1 Definitions and Basic Properties
A lossy chain is a Markov chain in which the information loss about the initial value is fully
specified by a loss function. We start by defining the latter.

I Definition 2. (Loss function) A loss function is a monotone increasing function g : [n]→
[m]. That is, for every 1 ≤ i < j ≤ n we have g(i) < g(j).

We now turn to define lossy chains.

I Definition 3. (Lossy chain) Let g : [n] → [m] be a loss function, and let X̄ =
(X0, X1, . . . , Xn) be a sequence of random variables. We say that X̄ is a lossy chain realizing
g if the following conditions hold:

X̄ is a Markov chain, and
for every i ∈ [n] and every xi in the support of Xi, the distribution of X0 conditioned on
Xi = xi is uniform over a set of size g (i).

Our goal is to construct lossy chains in which each value can be succinctly described. To
this end we use the following measure of efficiency.

I Definition 4. (Information rate) Let X̄ = (X0, X1, . . . , Xn) be a lossy chain. The
information rate of X̄ is defined as

ρ(X̄) = min
0≤i≤n

log g(n)
log |supp (Xi) |

2 For a formal proof see [1, p. 215].

Y. Ishai, E. Kushilevitz, and O. Strulovich 165

Figure 1 The cyclic interval from a4 to b4 is taken from a set S4 with a cyclic order to create S3.
Then S2 is created as a subset of S3 by taking another cyclic interval. This goes on, until S0, the
starting value is chosen from S1.

It will be convenient to assume that in a lossy chain realizing g : [n]→ [m], the initial
value X0 is uniformly distributed over a set of size g(n), and Xn has support set of size 1.
The following claim shows that this assumption is without loss of generality: any lossy chain
realizing g can be converted into a canonical form that has this property and has the same
or better information rate.

I Claim 1. (Canonical lossy chain) Let g : [n] → [m] be a loss function and let
X̄ = (X0, X1, . . . , Xn) be a lossy chain realizing g. Let xn be an arbitrary element in the
support of Xn. Let X̄ ′ = (X ′0, X ′1, . . . , X ′n) be the joint distribution defined by

Pr[X̄ ′ = (x′0, x′1, . . . , x′n)] = Pr[X̄ = (x′0, x′1, . . . , x′n) |Xn = xn].

Then X̄ ′ is a lossy chain realizing g. Moreover, X ′0 is uniform over a set of size g(n) and
supp(X ′i) ⊆ supp(Xi) for 0 ≤ i ≤ n.

3.2 An Efficient Construction
In the Introduction, we have seen a simple general construction of a lossy chain realizing
g : [n] → [m] whose information rate is Θ̃ (1/m). This construction may be infeasible for
large values of m. In this section, we show how the rate can be improved to 1/n.

We first recall the scheme described in the Introduction. Given g : [n] → [m] where
(without loss of generality) g (n) = m, the lossy chain is computed as follows.
1. Pick x0 uniformly from [m].
2. For i = 1, . . . , n, pick a set xi uniformly at random from all subsets of [m] of size g (i)

containing xi−1.
3. Output (x0, x1, . . . , xn).
This chain is inefficient in that it requires to store arbitrary subsets of [m]. In order to obtain
a more efficient variant of this construction, we restrict these subsets to be nested cyclic
intervals.

I Definition 5. (Cyclic interval) Let S = {e0, . . . , em−1} be a linearly ordered set, where
e0 < e1 < . . . < em−1. For any two integers a, b ∈ {0, . . . ,m− 1}, the cyclic interval from a

to b over S, denoted [a, b]S , is defined by:

STACS’13

166 Lossy Chains and Fractional Secret Sharing

“Cyclic Intervals” lossy chain

Input: A loss function g : [n]→ [m].

Algorithm:
1. Sn ← [g(n)]
2. For i = n− 1, ..., 1

a. Pick ai ∈ {0, ..., g (i)− 1} uniformly at random
b. bi ← (ai + g (i)− 1)mod g (i+ 1)
c. set Si = [ai, bi]Si+1

3. Pick x0 uniformly at random from S1

Output: x̄ = (x0, S1, S2, . . . , Sn)

Figure 2 Lossy chain obtained via nested cyclic intervals

[a, b]S =
{
{ea, . . . , eb} a ≤ b
{ea, . . . , em−1} ∪ {e0, . . . eb} a > b

Note that for a given size k, there are exactly |S| distinct nested intervals of size k in S, one
for each starting point a. The algorithm for generating the lossy chain iteratively generates
subsets Si of size g (i) for every i ∈ [n] in decreasing order, where each subset Si is a random
cyclic interval in Si+1. See Figure 1 for a visual illustration. A precise description of the
algorithm is given in Figure 2.

We now prove that the output of the “Cyclic Intervals” algorithm from Figure 2 forms a
lossy chain realizing g. In the following, we denote by X̄ = (X0, . . . , Xn) the joint distribution
of the output. We start by showing that the output indeed forms a Markov chain.

I Lemma 1. The output distribution (X0, . . . , Xn) forms a Markov chain.

Proof. For 1 ≤ i ≤ n, the output Xi−1 is sampled based on Xi alone. This implies that
(Xn, . . . , X0) is a Markov chain and, by Fact 1, we have that (X0, . . . , Xn) is also a Markov
chain. J

I Lemma 2. The chain X̄ realizes the loss function g.

Proof. We prove that for any 1 ≤ i ≤ n and any Si ∈ supp(Xi), the distribution of X0
conditioned on the event Xi = Si is distributed uniformly over Si. Since |Si| = g(i) the
lemma will follow.

The above claim intuitively follows by symmetry. We formally prove it by induction on i.
The case i = 1 follows directly from the algorithm’s description. Suppose the claim holds
for i, and let Si+1 be in the support of Xi+1. We need to prove that X0 conditioned on
Xi+1 = Si+1 is uniformly distributed over Si+1. Indeed, when Xi+1 = Si+1 the choice of the
output x0 can be viewed as resulting from the following two step process:
1. Pick Si as a random cyclic interval in Si+1 of size g(i).
2. Pick x0 from the distribution of X0 conditioned on Xi = Si.

Y. Ishai, E. Kushilevitz, and O. Strulovich 167

Figure 3 On the left, a states graph for a simple lossy chain realizing g (i) = 2i with 4 possible
starting values. On the right, a lossy chain realizing g (i) = i + 1, also with 4 possible starting values.

The choice of Si in the first step guarantees that each x ∈ Si+1 has an equal probability to
be in Si. By the induction’s hypothesis, the second step picks x0 uniformly at random from
Si. Combining the two steps, x0 is uniformly distributed over Si+1, as required. J

Using the above two lemmas, we obtain the main theorem of this section.

I Theorem 3. For any loss function g : [n]→ [m], there is a lossy chain realizing g whose
information rate is at least 1

n−1 .

I Remark. (On computational efficiency) The description in Figure 2 does not address
the question of how the sets Si are represented and how one can efficiently enumerate the
elements of Si or sample from Si. To this end, we note that if we modify the algorithm such
that Xi contains the representation of Si by the sequence (an−1, . . . , ai), the resulting chain
still realizes g (namely, the additional information provided by this sequence does not change
the distribution of X0 conditioned on Si). Moreover, the information rate of this (slightly
redundant) representation of the sets Si is still lower bounded by 1/(n− 1). See full version
for efficient algorithms supporting this representation.

3.3 A Negative Result
In this section, we establish a limitation on the information rate of lossy chains, showing
that the cyclic intervals construction cannot be asymptotically improved in the worst case.
Specifically, we show a family of loss functions g : [n] → [m] for which the support size of
each Xi is at least

(
m

m−n+i

)
. For proving this result, it is convenient to use the following

notion of a states graph of a Markov chain.

I Definition 6. (States graph) Let X̄ = (X0, . . . , Xn) be a Markov chain, and let Vi

denote the support set of Xi. Assume, without loss of generality, that the sets Vi are pairwise
disjoint. The states graph of X̄ is a weighted directed graph (G, f) where

G = (V,E) is a layered graph in which Vi is the set of i-th level nodes and E contains
the edges (u, v) such that, for some i, we have u ∈ Vi, v ∈ Vi+1 and v is in the support of
Xi+1 conditioned on Xi = u.
For any u ∈ Vi and v ∈ Vi+1, we have f(u, v) = Pr [Xi+1 = v|Xi = u].

STACS’13

168 Lossy Chains and Fractional Secret Sharing

An example for a states graph of a simple lossy chain appears in Figure 3.
We define, for each node v ∈ V \V0, a probabilities vector which contains the probability

of each starting value given that Xj was chosen to be v.

I Definition 7. (Probabilities vector) Let g : [n] → [m] be a loss function such that
g(n) = m. Let X̄ = (X0, . . . , Xn) be a lossy chain realizing g with |supp(X0)| = m, and let
G be its states graph. Let v ∈ Vj be a node in layer j of G. The probabilities vector of v is a
vector v̄ ∈ Rm such that v̄ [i] = Pr [X0 = ei|Xj = v], where ei is the element with index i in
V0, and v̄ [i] is the ith coordinate of v̄. We say that a vector ū ∈ Rm fits layer j of G if ū has
g (j) entries of value 1

g(j) and the other entries are 0.

Note that if v̄ is the probabilities vector of a node v ∈ Vj , then v̄ necessarily fits layer j.
However, the converse is not necessarily true.

Our negative result relies on the fact that the probabilities vector of any node in the
states graph is a convex linear combination of the probabilities vectors of its parents (that is,
a linear combination with positive coefficients that add up to 1).

I Lemma 4. Let X̄ = (X0 . . . , Xn) be a lossy chain with states graph G = (V,E). For
any 1 ≤ j ≤ n, let v ∈ Vj be a node of G and u1, . . . , uk ∈ Vj−1 be all the nodes such that
(ui, v) ∈ E. Then v̄, the probabilities vector of v, is a convex linear combination of ū1, . . . , ūk,
the probabilities vectors of u1, . . . , uk.

The main theorem of this section shows a tight negative result on the efficiency of a lossy
chain realizing a concrete family of loss functions.

I Theorem 5. Let m,n be positive integers such that m ≥ n and let gm,n : [n]→ [m] be the
loss function defined by gm,n (i) = m − n + i. Let (X0, . . . , Xn) be a lossy chain realizing
gm,n. Then, for any 0 < i ≤ n, it holds that |supp (Xi) | ≥

(
m

m−n+i

)
.

The theorem relies on the following technical lemma, which will imply a lower bound on
the number of probabilities vectors from level i required to span a probabilities vector from
level i+ 1.

I Lemma 6. Let v̄ ∈ Rn be a 0-1 vector of Hamming weight k. Let ū1, . . . , ūm be 0-1 vectors
of Hamming weight k− 1. If v̄ is a linear combination of ū1, . . . , ūm with positive coefficients,
then m ≥ k.

We are now ready to prove Theorem 5.

Proof. Let X̄ = (X0, . . . , Xn) be a lossy chain realizing gm,n. By Claim 1, we may assume
without loss of generality that X0 is uniform over a set of size gm,n(n) = m and Xn has
support of size 1.

Let V0, . . . , Vn be the layers in the states graph of X̄. We prove by induction that, for
any i ∈ [n] and for any of the

(
m

m−n+i

)
probabilities vectors v̄ which fit layer i, there is a

node v ∈ Vi such that v̄ is the probabilities vector of v. The base case is i = n. In this case,
the probabilities vector of the (single) node in Vn is (1/m, . . . , 1/m), which is the only vector
which fits level n.

We now assume that the claim holds for layer i+ 1 and prove it for layer i. Let ū be a
vector which fits layer i. By the induction hypothesis, we know that for any vector v̄ which
fits layer i+ 1 there is a corresponding node v ∈ Vi+1. Let v ∈ Vi+1 be such a node for which
the support set of v̄ contains that of ū. By Lemma 4, v̄ is a convex linear combination of the
probability vectors of its parents ui. Note that each probabilities vector of a parent node ui

Y. Ishai, E. Kushilevitz, and O. Strulovich 169

is a scalar multiple of a 0-1 vector of weight gm,n(i) whereas v̄ is a scalar multiple of a 0-1
vector of weight gm,n(i+ 1). By Lemma 6 and the fact that gm,n(i+ 1) = gm,n(i) + 1, the
probability vectors ūi of the parent nodes ui have support sets that cover all m− n+ i+ 1
subsets of size m− n+ i of the support set of v̄. In particular, one of the ūi must coincide
with ū. Since the above holds for any ū which fits layer i, this concludes the proof of the
claim and the theorem. J

Using loss functions of the form g (i) = m− n+ i, we get the following corollary.

I Corollary 7. For every ε > 0 there is an infinite family of loss functions gn : [n]→ [m(n)],
where m(n) = dn1+εe, such that the information rate of any lossy chain realizing gn is O

(1
n

)
.

4 Fractional Secret Sharing

In this section, we define the notion of fractional secret sharing and show how to realize it
via the use of lossy chains.

4.1 Definitions
An instance of the fractional secret sharing problem is specified by a fractional access structure.
Recall that a traditional access structure specifies which subsets of parties can reconstruct the
secret, where the remaining sets of parties should learn nothing about the secret. A fractional
access structure generalizes this by allowing full control on the amount of information learned
by each set of parties.

I Definition 8. (Fractional access structure) Let P = {p1, . . . , pn} be a finite set of
parties and let m be an integer. A function f : 2P → {0, . . . ,m− 1} is monotone if
B ⊆ C implies that f(B) ≥ f(C). A fractional access structure is a monotone function
f : 2P → {0, . . . ,m− 1}, with f (∅) = m− 1. We say that f is symmetric if f(B) depends
only on |B|.

We note that if we limit the range of f to {0,m− 1} then f corresponds to a traditional
access structure. We now formally define our notion of fractional secret sharing.

I Definition 9. (Fractional secret sharing scheme) Let f : 2P → {0, . . . ,m− 1} be
a fractional access structure and let S be a finite secret-domain. Let D be a randomized
algorithm which outputs a uniformly random s ∈ S together with an n-tuple of shares
(s1, . . . , sn). We say that D is a fractional secret-sharing scheme realizing f with secret-
domain S if there exists a positive integer k such that the following holds: For every Q ⊆ P ,
and any possible share vector sQ of parties in Q, the distribution of s conditioned on the
event that parties in Q receive the shares sQ is uniform over a subset of S of size f (Q) · k+ 1.
If the above holds with k = 1, we say that D strictly realizes f .

Note that our default notion of realizing a fractional access structure views the structure
as only specifying a kind of ratio between the amount of uncertainty of different sets, without
specifying the absolute amount of uncertainty or the size of the secret-domain. This relaxation
is needed in order to capture standard access structures as a special case. Also note that the
above definition generates a random secret along with the shares, unlike most traditional
definitions of secret sharing which do not refer to any particular distribution over the secret
domain. As in the case of traditional secret sharing, we measure the complexity by comparing
the size of the biggest share-domain to the size of the secret-domain.

STACS’13

170 Lossy Chains and Fractional Secret Sharing

4.2 Fractional Secret Sharing from Lossy Chains
We now apply the positive results from Section 3.2 towards realizing any fractional access
structure.

I Theorem 8. For any fractional access structure f : 2P → {0, . . . ,m− 1}, there exists a
fractional secret sharing scheme which strictly realizes f .

Proof. Without loss of generality, assume that f(P) = 0 and f(∅) = m− 1. We shall use
S = [m] as the secret-domain. Let α0, ..., αl be all the different values in the range of f in
increasing order; that is, α0 < ... < αl. By our assumptions, we have α0 = 0 and αl = m− 1.
Define a loss function g : [l] → [m] such that g (i) = αi + 1 and let X̄ be a lossy chain
realizing g. The share generation algorithm D can now proceed as follows:

1. Sample values (x0, . . . , xl) from X̄ and let s = x0;
2. For every subset of parties Q ⊆ P , let f (Q) = αj + 1. Use a traditional |Q|-out-of-|Q|

secret sharing scheme to share xj into sQ,1, . . . , sQ,|Q| (e.g., using additive secret sharing)
and give the j-th party in Q the share sQ,j .

We now show that D is a fractional secret sharing scheme strictly realizing f . Let
Q ⊆ P be a subset of parties. By the properties of the underlying |Q|-out-of-|Q| scheme,
the information available to parties in Q is equivalent to learning all values xj such that
f(Q′) = αj + 1 for some Q′ ⊆ Q. By the monotonicity of f this means the parties in Q learn
xi, where i is the index such that f(Q) = αi + 1, and possibly additional values xj for j > i.
By the Markov property of a lossy chain, the distribution of the secret s conditioned on the
above values xi and xj is uniform over a set of size g(i) = αi + 1 = f(Q), as required. J

We remark that if f(P) 6= 0, we can add another party p′ to the set of parties and set f(Q)
to 0 for every subset Q containing p′. We can then execute the proposed algorithm and
“throw away” all the shares of p′.

Similarly to traditional secret sharing, the size of the shares produced by the above
algorithm can be exponential in the number of parties. This can be avoided in the case of
symmetric fractional access structures.

I Theorem 9. Let f : 2P → {0, . . . ,m− 1} be a symmetric fractional access structure with
f(∅) = m− 1. Then there exists a fractional secret sharing scheme D which (strictly) realizes
f with secret-domain [m], where the bit-length of each share is at most n · dlog max {n,m}e.

Proof. As before, let α1, . . . , αl be all the different values in the range of f in increasing
order and define g : [l]→ [m] such that g(i) = αi + 1. We now define D as follows:

1. Generate values x̄ = (x0, . . . , xl) for the cyclic intervals lossy chain realizing g, and let
s = x0. Furthermore, let a1, . . . , al−1 be the starting values of the cyclic intervals defining
x̄ (see Remark 3.2).

2. For every i ∈ [n], let αj be the value such that for any subset of parties Q ⊆ P of size i
we have f(Q) = αj + 1. Use Shamir’s i-out-of-n threshold secret sharing scheme to create
shares of aj and give one share to each of the parties in P .

We now show that D is a fractional secret sharing scheme. For every subset of parties
Q ⊆ P , the parties can reconstruct all the values out of x0, . . . , xn that were shared in a
threshold scheme requiring |Q| or less parties. This means that if f (Q) = αj + 1, the parties
of Q can reconstruct aj , . . . , al. By the definition of the cyclic intervals lossy chain, the
parties can reconstruct xj , . . . , xl from aj , . . . , al and since xj , . . . , xl were generated as values

Y. Ishai, E. Kushilevitz, and O. Strulovich 171

from a lossy chain realizing g we see that the secret s conditioned on Xj = xj , . . . , Xl = xl

is distributed uniformly over a set of size αj + 1, where αj + 1 = f (Q) as required.
We are left with showing that the size of share for each party is no more than n ·

dlog (max {n,m})e. Each party receives n different shares, one from each invocation of the
threshold secret sharing algorithm done by D. The secrets shared are a1, . . . , al where we
recall that all of them are values picked from at most m values. Using Shamir’s threshold
secret sharing scheme, each of the values is shared with shares of size dlog (max {n,m})e.
This amounts to a share size of at most n · dlog (max {n,m})e for each party, as required. J

5 Conclusions and Open Questions

We introduced the notion of lossy chains – Markov chains which gradually lose information
about an initial secret in a controlled fashion. We presented an efficient construction of
lossy chains and a matching negative result on the efficiency of lossy chains. Finally, we
have shown how lossy chains can be used to realize fractional secret sharing, a natural
generalization of traditional secret sharing which supports a fine-grained control over the
amount of uncertainty about the secret.

While we essentially settle the main complexity question about lossy chains, it remains
open to obtain a characterization of the best achievable information rate for a given loss
function g.

The most interesting open question regarding the complexity of fractional secret sharing
is to settle the case of symmetric fractional access structures, which naturally generalize
threshold access structures. While the latter can be realized by an ideal scheme in which the
size of each share is equal to the size of the secret (for a sufficiently large secret), we do not
know whether an analogous result holds in the fractional domain.

References
1 D. Bertsekas and R. Gallager. Data networks, 1992.
2 G. Blakley and C. Meadows. Security of ramp schemes. In Proceedings of Crypto ’84, pages

242–268, 1984.
3 G. R. Blakley. Safeguarding cryptographic keys. In National Computer Conference, page

313. AFIPS Press, 1979.
4 R. Cleve. Controlled gradual disclosure schemes for random bits and their applications. In

Proceedings of Crypto ’89, pages 573–588, 1989.
5 O. Farràs and C. Padró. Extending brickell-davenport theorem to non-perfect secret sharing

schemes. IACR Cryptology ePrint Archive, 2012:595, 2012.
6 M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general access structure.

Electronics and Communications in Japan, 72(9):56–64, 1989.
7 K. Kurosawa, K. Okada, K. Sakano, W. Ogata, and S. Tsujii. Nonperfect secret sharing

schemes and matroids. In Proceedings of EUROCRYPT ’93, pages 126–141, 1993.
8 A. Rényi. On measures of entropy and information. In Fourth Berkeley Symposium on

Mathematical Statistics and Probability, pages 547–561, 1961.
9 A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

10 C.E. Shannon. Communication Theory of Secrecy Systems. Bell Systems Technical Journal,
28(4):656–715, 1949.

11 H. Yamamoto. Secret sharing system using (k, L, n) threshold scheme. Electronics and
Communications in Japan (Part I: Communications), 69(9):46–54, 1986.

STACS’13

Two Hands Are Better Than One (up to constant
factors): Self-Assembly In The 2HAM vs. aTAM

Sarah Cannon∗1, Erik D. Demaine†2, Martin L. Demaine‡3, Sarah
Eisenstat§4, Matthew J. Patitz¶5, Robert T. Schweller‖6, Scott M.
Summers7, and Andrew Winslow∗∗8

1 Mathematical Institute, University of Oxford, 24-29 St. Giles’, Oxford OX1
3LB, UK sarah.cannon@linacre.ox.ac.uk.

8 Department of Computer Science, Tufts University, Medford, MA 02155, USA,
{scanno01,awinslow}@cs.tufts.edu.

2,3,4Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, 32 Vassar St., Cambridge, MA 02139, USA,
{edemaine,mdemaine,seisenst}@mit.edu.

5 Department of Computer Science and Computer Engineering, University of
Arkansas, Fayetteville, AR 72701, USA, patitz@uark.edu.

6 Department of Computer Science, University of Texas–Pan American,
Edinburg, TX, 78539, USA, rtschweller@utpa.edu.

7 Department of Computer Science and Software Engineering, University of
Wisconsin–Platteville, Platteville, WI 53818, USA, summerss@uwplatt.edu

Abstract
We study the difference between the standard seeded model (aTAM) of tile self-assembly, and the
“seedless” two-handed model of tile self-assembly (2HAM). Most of our results suggest that the
two-handed model is more powerful. In particular, we show how to simulate any seeded system
with a two-handed system that is essentially just a constant factor larger. We exhibit finite
shapes with a busy-beaver separation in the number of distinct tiles required by seeded versus
two-handed, and exhibit an infinite shape that can be constructed two-handed but not seeded.
Finally, we show that verifying whether a given system uniquely assembles a desired supertile is
co-NP-complete in the two-handed model, while it was known to be polynomially solvable in the
seeded model.

1998 ACM Subject Classification F.1.2

Keywords and phrases abstract tile assembly model, hierarchical tile assembly model, two-
handed tile assembly model, algorithmic self-assembly, DNA computing, biocomputing, Wang
tiles

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.172

∗ Research supported in part by National Science Foundation grants CCF-0830734 and CBET-0941538.
† Research supported in part by NSF grant CDI-0941538.
‡ Research supported in part by NSF grant CDI-0941538.
§ Research supported in part by NSF grant CDI-0941538.
¶ Research supported in part by National Science Foundation grant CCF-1117672.
‖ Research supported in part by National Science Foundation grant CCF-1117672.
∗∗Research supported in part by National Science Foundation grants CCF-0830734 and CBET-0941538.

© S. Cannon et. al.;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 172–184

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.172
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Cannon et. al. 173

1 Introduction

Algorithmic self-assembly is a burgeoning area that studies how to computationally design
geometric systems of simple parts that self-assemble into desired complex shapes or func-
tionalities. The field began with Erik Winfree’s PhD thesis [17] and two STOC papers
about a decade ago [2,15]. The theoretical models introduced in this work have since been
implemented in real molecular systems using DNA tiles [5, 16]. From a practical perspective,
these systems are exciting because they enable controlled manufacture of precise geometric
objects at nanometer resolution (nanomanufacture). From a theoretical Computer Science
perspective, this area is exciting because it offers a model of computation where the computer
consists of geometric objects, which is challenging to work with because the allowed operations
are highly constrained (simple, local interactions between the objects), yet there are many
results classifying the difficulty of assembling many different shapes.

1.1 A tale of two models
Most work in algorithmic self-assembly uses the abstract Tile Assembly Model (aTAM) [2,15,
17]. In this model, the core of a self-assembly system is a set of Wang tiles—unit squares
with up to one glue (label) on each edge, with each type available in infinite supply. One
such tile is marked as a seed (starting point) of a single assembly, and the model defines
how tiles can repeatedly attach to this assembly (according to glue strengths and an overall
temperature—see Section 2.1 for details), which ultimately becomes the (usually single)
output of the system.

In reality, tiles mix in solution according to Brownian motion, and attractive forces cause
them to fuse into larger assemblies. Presumably, the aTAM defines a seed tile to keep track
of a single assembly instead of the many copies assembled in reality (as seen in the atomic
force microscopy images in [5, 16]). However, as a side effect, the aTAM fails to capture
the possibility that multiple assemblies grow (e.g., from multiple copies of the seed) and
attach to each other, potentially making unintended assemblies not predicted by the aTAM.
In addition, the ability to fuse larger assemblies in reality could potentially be exploited to
design more efficient self-assembly systems for a desired shape. These possible discrepancies
between the aTAM and reality are the topic of this paper.

The Two-Handed Tile Assembly Model (2HAM) [1, 7, 9, 10, 12, 13] (also known as Hierar-
chical Self-Assembly [6]) is essentially an unseeded generalization of the aTAM, in which any
two assemblies (including but not limited to individual tiles) can fuse to each other. Instead
of using seeds, the 2HAM defines the “output” of the system to consist of all assemblies that
cannot be fused with any others possibly produced by the system. (See Section 2.2 for the
definition.) This model captures the possibility of larger assemblies fusing together, although
it remains to be studied whether it accurately models reality.1

1.2 Our results
The central problem addressed in this paper is to determine the difference in theoretical
power between these two models of self-assembly: the aTAM and the 2HAM. In particular

1 2HAM does not model the “floppiness” of assemblies (i.e. non-rigidity), which may allow bending
that prevents proper alignment of glues or shifting of potentially blocking portions between two larger
assemblies. It also ignores the reduced speed and/or concentration of larger assemblies, which may
substantially impact the time required for assembly.

STACS’13

174 Two Hands Are Better Than One (up to constant factors)

Table 1 Summary of results for simulating the aTAM model using the 2HAM model.

aTAM systems Simulating 2HAM systems
τ ∈ {1, 2} τ = 2, scale factor 5(thm. 4.2)
τ = 3 τ = 3, scale factor 5(thm. 4.3)
τ ≥ 4 τ = 4, scale factor 5(thm. 4.1)

Table 2 Summary of results showing separation between the aTAM and 2HAM with respect
to tile complexity. The value of a cell denotes the tile complexity. Note that some of our results
are asymptotic while others are exact complexities. The term Finite assembly refers to finite
self-assembly, which is defined in Section 2. For infinite staircases, “Yes” means the structure does
self-assemble, “No” means that it does not self-assemble and “Open” means the question is open.
Note that, for table cells that do not contain a reference, the theorem and corresponding proof are
omitted from this version of the paper due to space constraints.

Loops Staircases Infinite staircases
τ = 1 τ = 2 τ = 2 Finite assembly Self-assembly

aTAM n+ 5 n+ 3 2n steps: Ω
(

n
log n

)
No No

(thm. 3.2) (thm. 3.6) (thm. 3.6)
2HAM 2n+ 2 ≤ n+ 3 2O(running time of M on x) steps: Yes (τ = 2) Open

O(|Q|+ |x|) (thm. 3.3) (thm. 3.5)

we show that, up to constant factors, many results in the standard aTAM can be converted
to apply in the 2HAM. On the other hand, we show that the 2HAM enables substantially
more efficient self-assembly systems in some cases than what is possible in the aTAM. We
conclude that two hands are better than one, up to constant factors.

Our main results are the following (see Tables 1, 2, and 3 for additional results):

Simulation: [Section 4, Table 1]

1. Any aTAM system with temperature τ ≥ 2 can be simulated by a 2HAM system with
the same temperature τ , which produces a 5× 5 scaled version of the same shape plus a
portion of a unit-thickness “coating”.

2. Any aTAM system with temperature τ ≥ 4 can be simulated by a 2HAM system with
a temperature of 4. Thus low-temperature 2HAM is at least as powerful as even high-
temperature aTAM, up to constant-factor scale.

Separation: [Section 3, Table 2]

3. There is a shape that can be assembled in the aTAM at temperature τ = 1 using n+ 5
unique tile types but any 2HAM system in which the shape assembles at the same
temperature requires 2n+ 2 unique tile types. At temperature τ = 2, the same shape can
be assembled in both models using n+ 3 tile types.

4. There is a shape that can be assembled in the 2HAM using n tile types, while the number
of tile types required for any aTAM assembly of the shape is (roughly) exponential in n.
This result can be extended to show that there is a shape that can be built in the 2HAM
using O(n) tile types, but in the aTAM the same shape requires BB(n) tile types, where
BB(n) is the busy beaver function.

5. There is an infinite shape that can self-assemble in the aTAM but not in the 2HAM. Note
that this does not contradict our first simulation result because our simulation scales up
the simulated system by a constant factor.

6. There is an infinite shape that can self-assemble (in a weaker sense) in the 2HAM but not
in the aTAM.

S. Cannon et. al. 175

Table 3 Complexities of assembly verification problems for the aTAM and 2HAM. The variable
a denotes the size of an input assembly, and τ and t denote the temperature and tileset size for an
input aTAM or 2HAM system. “UC” stands for uncomputable. Note that, for table cells that do
not contain a reference, the theorem and corresponding proof are omitted from this version of the
paper due to space constraints.

Producible Unique Assembly Unique Shape
τ = 1 τ = 2 τ = 1 τ = 2 τ = 1 τ = 2

aTAM O(a) O(a2 + at) [3] co-NPC co-NPC [7]
2HAM O(at) O(a4) [11] O(ta2 + at2) co-NPC co-NP [7] co-NPC [7]

(thm. 5.1)
Terminal Finite Existence Infinite Existence

τ = 1 τ = 2 τ = 1 τ = 2 τ = 1 τ = 2
aTAM O(at) [3] UC UC
2HAM O(at) UC UC Open UC

Verification: [Section 5, Table 3]

7. It is co-NP-complete to determine whether a given 2HAM self-assembly system uniquely
assembles a given 3D supertile (the Unique Assembly problem is co-NP-complete in the
2HAM), while the same problem is known to be polynomial time solvable for aTAM [3]2
(This result is the only one in 3D; all other results are in 2D.) We provide results for the
complexity for five additional verification problems for the aTAM and the 2HAM.

This paper aims to be a first major step toward a thorough “complexity theory” for
self-assembly. Like traditional complexity theory, there are several potential models for
self-assembly, and we need to understand the relative power among these models. Even our
definition of “simulation” is new in that it is the first to also handle the dynamics of systems
such as the 2HAM, and we hope that it forms the foundation for further such results.

2 Preliminaries and notation

We work in the 2-dimensional discrete space Z2. Define the set U2 = {(0, 1), (1, 0), (0,−1), (−1, 0)}
to be the set of all unit vectors in Z2. We also sometimes refer to these vectors by their
cardinal directions N , E, S, W , respectively. All graphs in this paper are undirected. A grid
graph is a graph G = (V,E) in which V ⊆ Z2 and every edge {~a,~b} ∈ E has the property
that ~a−~b ∈ U2.

Intuitively, a tile type t is a unit square that can be translated, but not rotated, having a
well-defined “side ~u” for each ~u ∈ U2. Each side ~u of t has a “glue” with “label” labelt(~u)–a
string over some fixed alphabet–and “strength” strt(~u)–a nonnegative integer–specified by
its type t. Two tiles t and t′ that are placed at the points ~a and ~a+ ~u respectively, bind with
strength strt (~u) if and only if (labelt (~u) , strt (~u)) = (labelt′ (−~u) , strt′ (−~u)).

In the subsequent definitions, given two partial functions f, g, we write f(x) = g(x) if f
and g are both defined and equal on x, or if f and g are both undefined on x.

2 Adleman et. al. [3] actually considered a slight variant of the Unique Assembly problem in which the
input is a shape and the output is whether or not the input system uniquely assembles one supertile
with that shape. Within the aTAM, the complexity of this variant problem is polynomially related
to our problem. In contrast, this is not clearly the case in the 2HAM, making this variant problem
a potentially interesting direction for future work. Further, [3] call their problem the Unique Shape
problem, which is not the same as our version of the Unique Shape problem in that we do not require
the input system be directed. Our version of the Unique Shape problem was first considered in [7].

STACS’13

176 Two Hands Are Better Than One (up to constant factors)

Fix a finite set T of tile types. A T -assembly, sometimes denoted simply as an assembly
when T is clear from the context, is a partial function α : Z2 99K T defined on at least one
input, with points ~x ∈ Z2 at which α(~x) is undefined interpreted to be empty space, so that
dom α is the set of points with tiles. We write |α| to denote |dom α|, and we say α is finite if
|α| is finite. For assemblies α and α′, we say that α is a subassembly of α′, and write α v α′,
if dom α ⊆ dom α′ and α(~x) = α′(~x) for all x ∈ dom α.

For τ ∈ N, an assembly is τ -stable if every cut of its binding graph has strength at least
τ , where the weight of an edge is the strength of the glue it represents. That is, the supertile
is stable if at least energy τ is required to separate the supertile into two parts.

2.1 Informal description of the abstract tile assembly model (aTAM)
In this section we give an informal description of the aTAM. The reader is encouraged to
see [14,15,17] for a formal development of the model.

In the aTAM, self-assembly begins with a seed assembly σ (typically assumed to be finite
and τ -stable) and proceeds asynchronously and nondeterministically, with tiles adsorbing
one at a time to the existing assembly in any manner that preserves stability at all times.

An aTAM tile assembly system (TAS) is an ordered triple T = (T, σ, τ), where T is a
finite set of tile types, σ is a seed assembly with finite domain, and τ is the temperature. An
assembly sequence in a TAS T = (T, σ, τ) is a (possibly infinite) sequence ~α = (αi | 0 ≤ i < k)
of assemblies in which α0 = σ and each αi+1 is obtained from αi by the “τ -stable” addition
of a single tile. The result of an assembly sequence ~α is the unique assembly res(~α) satisfying
dom res(~α) =

⋃
0≤i<k dom αi and, for each 0 ≤ i < k, αi v res(~α).

We write A[T] for the set of all producible assemblies of T . An assembly α is terminal,
and we write α ∈ A�[T], if no tile can be stably added to it. We write A�[T] for the set
of all terminal assemblies of T . A TAS T is directed, or produces a unique assembly, if it
has exactly one terminal assembly i.e., |A�[T]| = 1. The reader is cautioned that the term
“directed” has also been used for a different, more specialized notion in self-assembly [4]. We
interpret “directed” to mean “deterministic”, though there are multiple senses in which a
TAS may be deterministic or nondeterministic.

Given a connected shape X ⊆ Z2, we say a TAS T self-assembles X if every producible,
terminal assembly places tiles exactly on those positions in X. (Note that this notion is
equivalent to strict self-assembly as defined in [14].) For an infinite shape X ⊆ Z2, we say
that T finitely self-assembles X if every finite producible assembly of T has a possible way
of growing into an assembly that places tiles exactly on those points in X. Note that if a
shape X self-assembles in T , then X finitely self-assembles in T .

2.2 Informal description of two-handed tile assembly model (2HAM)
The 2HAM [1, 7, 9, 10, 12, 13] is a generalization of the aTAM in that it allows for two
assemblies, both possibly consisting of more than one tile, to attach to each other. Since we
must allow that the assemblies might require translation before they can bind, we define a
supertile to be the set of all translations of a τ -stable assembly, and speak of the attachment
of supertiles to each other, modeling that the assemblies attach, if possible, after appropriate
translation. We now give a brief, informal, sketch of the 2HAM.

A supertile (a.k.a., assembly) is a positioning of tiles on the integer lattice Z2. Two
adjacent tiles in a supertile interact if the glues on their abutting sides are equal and have
positive strength. Each supertile induces a binding graph, a grid graph whose vertices are
tiles, with an edge between two tiles if they interact. The supertile is τ -stable if it is τ -stable

S. Cannon et. al. 177

in the sense of aTAM. A 2HAM tile assembly system (TAS) is a pair T = (T, τ), where T is
a finite tile set and τ is the temperature, usually 1 or 2. Given a TAS T = (T, τ), a supertile
is producible, written as α ∈ A[T] if either it is a single tile from T , or it is the τ -stable result
of translating two producible assemblies without overlap.3 A supertile α is terminal, written
as α ∈ A�[T] if for every producible supertile β, α and β cannot be τ -stably attached. A
TAS is directed if it has only one terminal, producible supertile.

Given a connected shape X ⊆ Z2, we say a TAS T self-assembles X if it self-assembles
in the sense of aTAM (appropriately translated if necessary). For an infinite shape X ⊆ Z2,
we say that T finitely self-assembles X if it finitely self-assembles in the sense of aTAM
(appropriately translated if necessary).

3 Are two hands more (tile) efficient than one?

From a theoretical perspective, is the 2HAM “better” than the aTAM in terms of the
minimum number of tiles required to uniquely produce a target shape? Is it possible to build
certain infinite shapes in one model but not the other? Or perhaps is it possible to build
finite shapes more (tile) efficiently in one model than the other? These are the questions
that motivate this section.

We find, somewhat surprisingly, that it is possible for both models to “win”, in the sense
that there exist shapes that self-assemble more efficiently in the aTAM than the 2HAM,
and vice versa, depending on both the choice of shape as well as temperature value. At
temperature τ = 1, we discover an O(1) separation between the aTAM and 2HAM in favor
of the aTAM winning. At temperature τ > 1, we see a nearly exponential (and beyond)
separation in favor of the 2HAM.

3.1 Finite Shapes: staircases
We first examine classes of finite shapes that “separate” the aTAM and the 2HAM with
respect to the tile complexities of the systems that uniquely produce them.

Given a shape X ⊆ Z2, we say that CτaTAM(X) is the tile complexity of X in the aTAM
at temperature τ ∈ N. In other words, CτaTAM(X) = min{|T | | for some σ where |σ| = 1
and X self-assembles in T = (T, σ, τ)}. Intuitively, CτaTAM(X) is the size of the smallest
tile set that produces assemblies that place tiles on–and only on–the target shape X. Let
CaTAM(X) = min {CτaTAM(X)| τ ∈ N}. The quantities Cτ2HAM(X) and C2HAM(X) are defined
similarly.

i

i

i

i

c

c

s

s

$

$

z

z

z

z

!

!

?

?

!

!

!

!

!

#

#

!

!

!

!

!

?

?

c

c

$

$

c

c

c

c

s

s

a

a

*a

*a

u

u

*u

*u

b

b

n

n

n

n

u

u

u

u

u

u

n

*u

*u

*n

*n

*n

*n

*n

*u

*u

a

a

i

11

22

33

44

1

1

1

1

*a

*a

b

b

b

b

b

r

r

u

u

*u

*u

n

n

*n

*n

u

u

*u

*u

r

r

n

n

*n

*n

u

u

*u

*u

r

r

u

u

0

0

1

1

1

1

1

1

0

*1

*1

*0

*0

*0

*0

*0

*1

*1

0

0

n – 1

55

i + 1

22

33

44

55

*0

*0

0*

0*

0*

0*

0*

?

?

a

a

*u

*u

*u

*u

*u

*u

*u

*u

u

u

u

u

u

u

u

u

r

r

*a

*a

n

n

*n

*n

u

u

*u

*u

b

b

k

n – 2

n – 2

k

2

2

2

2

2

2 2

2

2

2

2

2 1

1

1

1

1

1

1

1

1

1

1 #

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

##

#

#

#

#

#

#

#

0*

0*

0*

1*

1*

?*

?*

?*

?*?????????? ?*?

0*

0*

0*

?

?

??

?

1

1

1

1

0

1

1

1 *0

*0

*0

*0

*0

*1

*1

1

0

*0

*0

*0

*1

*?

*?

0

0

0

0

0 0

? ?

? ?

1 1

1

1

1

1

0

1

1

1 0

0

0

0

0

0

0

0

1

1

0

0

0

1

1

11

1

#

*1

11

0

0

0

#

*0

*?

0

1

0

0

0

0

1

1

1

1

0

0

0

0

0

0

1

1

1

1

1

1

0

1

1

0

0

0

0

0
1

1

0

0

x

x

i

11

22

33

44

n 1–

55

0

0

b

b

a

t2

t2

t0

t1

t0t0

a

0

0

0

0

0

0

0

1

1

?

r

?

1 ?

r

?

1

?

r

?

1

1

1

1

1

0

0

0

0

1

1

1

1

1

1

s

r

b

1

s

r

b

1

0

0

0 0

0

?

0
0

?

0
0

?

0
0

?

0
0

?

0
0

?

0
0

?

0

1 1

?

1

1
?

1

1
?

1

1
?

1

1

1

1

i + 1

i + 1

i + 1

i + 1

s

s

c

a

n

0 s

c

a

n

0 s

c

a

n

0 s

c

a

n

0 s

c

a

n

0 s

c

a

n

0 s

s

s

*a

*n

0 s

*a

*n

0 s

*a

*n

0 s

s

s

s

u

u

1 s

s

u

u

1 s

s

u

u

1 s

s

u

u

1 s

s

u

u

1 s

s

u

u

1 s

s

u

u

1 s

s

u

u

1 s

s

s

$

*u

*u

1 s

$

*u

*u

1 s

$

*u

*u

1 s

$

*u

*u

1 s

$

*u

*u

1 s

$

$

$ $

$ $

$ $

$ $

$ $

$ $

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0

z

b

r

0
z

z

z

n

u

0 z

z

n

u

0 z

z

n

u

0 z

z

n

u

0 z

z

n

u

0 z

!

!

?

?

?

u

1

1 ? ?

u

1

1 ?

?

u

1

1 ?

!

!

!

!

!

?

?

#

*u

*1

1 ?

!

!

!

!

!

!

!

?

?

x

x

x

xx

0

0

a

a

?

?

*a

*0

0 ?

*a

*0

0 ?

!

!

x

x

x

xx

0

0

a

a

e

i

1

e

e n 1–

i + 1

e

d c n 1–

i

0aS

d c

0a

e

e

e

e

e

e

e

e

e

e

e

e

e

d d

d

c cd

c

5

5c

1

2

1

2

3

2

3

4

3

4

5

4

0

1

00

a

a 0aS a

z

z

c

u

a

1 z

c

u

a

1 z

c

u

a

1 z

c

u

a

1 z

c

u

a

1 z

c

u

a

1 z

$

$

r

$

r

$

r

$

r

$

r

$

r

$

z

z

*u

*a

1 z

*u

*a

1 z

*u

*a

1 z

*u

*a

1 z

*u

*a

1 z

c

c

c

c

*n

*n

0 c

*n

*n

0 c

c

c

c

c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

*u

*u

1 c

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

s

r

b

1

0 00 01 11 1

1 1

1 11 1
halt

halt ??? ??? ?? ?? ??

q 10

q 01

q 02

q 13

q 11

0

1

0

00

1

1

1

0

0

0

0

0

0

0

0

0

halt

0 00 0

0 000 00

1 11 10 01 1

A

A

A
B

B

B

1 1

1 11

2 2

2

3 3

3 33

4 4

4 44

5 5

7

5
5

6 6

6

7 7
8 8
9 910 1011 11

16 16
14 1413 13

12 1215 15
17 17

5
?

? ?
?

6
6

22

A0

A0

B0 B0

B0

A1

A1

B1

X1

Y1

X0 Y0

S

S

1 12 2
3 3
4 4
5 56 6

7 7
8 8
9 910 1011 11

16 16
14 1413 13

12 1215 15
17 17A0 B0

A1

Figure 1 A staircase with 23 steps with each step of width 3. The black square represents the
point (0, 0).

I Definition 3.1. For each i, k ∈ N, let Bi,k = ({0, . . . , k − 1} × {−k, . . . , 0, . . . , i+ 2}) ∪
{(−1, i+ 1), (k, 0)} and define, Sn =

⋃2n−1
i=0 (Bi,n + ((n+ 1)i, 0)). Intuitively, the set Sn is a

“staircase with 2n steps with each step of width n.” See Figure 1 for an example of S3.

3 The restriction on overlap is our formalization of the physical mechanism of steric protection.

STACS’13

178 Two Hands Are Better Than One (up to constant factors)

We will use Sn to show a non-trivial (nearly) exponential separation between the aTAM
and the 2HAM.

I Theorem 3.2. For all n ∈ N, CaTAM (Sn) = Ω(n
logn) and C2

2HAM (Sn) = O
(

logn
log logn

)
.

We use a counting argument to prove CaTAM (Sn) = Ω
(

n
logn

)
. It is interesting to note

that, if one were to apply the standard, perhaps most obvious information-theoretic argument
to prove the bound, one would only obtain a bound of Ω

(
logn

log logn

)
, which would not give

more than a O(1) separation between the aTAM and the 2HAM.
We get C2

2HAM (Sn) = O
(

logn
log logn

)
because, in 2HAM, we can enforce pairs of connector-

column tiles to attach simultaneously, which is not possible in aTAM constructions. Intuitively,
the construction works as follows. We begin by using a modified version of the optimal square
construction [3] to form the lower n× n square portion of each stair step. We modify the
optimal square construction to allow tiles to nondeterministically attach to the top row of the
square to form a length n binary string. Then we use a binary counter [2, 7] to count from
the nondeterministically chosen value, say x, up to 2n+1 − 1. Finally, consecutive stair steps
come together, in a purely two-handed fashion, via two strength-1 glues that are separated
by a distance proportional to the height of the stair step on which they are present.

We can “iterate” the basic staircase construction using Turing machines to build each
stair step. This gives an even greater separation.

I Theorem 3.3 (“Busy Beaver” staircase). Let M = (Q, {0, 1}, 0, {0, 1}, δ, q0, F) be a Turing
machine and x ∈ {0, 1}∗ such that M halts on x. Then C2

2HAM
(
S2t(x)+|x|+2

)
= O(|Q|+ |x|),

where t(x) denotes the running time of M on input x.

Theorem 3.3 says that, at temperature τ = 2, the 2HAM can be used to build certain
shapes much (much much...) more efficiently than in the aTAM, which requires some number
of tile types nearly exponential in the number of time steps of a busy beaver Turing machine!

3.2 Infinite Shapes
In this subsection, we examine a class of infinite (staircase-like) shapes that finitely self-
assemble in 2HAM but do not self-assemble in aTAM.

We first note that it is easy to exhibit a class of infinite shapes that self-assemble in
the aTAM but do not self-assemble in the 2HAM. Simply take any finite shape X ⊂ Z2

and union it with a one-way infinite line to get a kind of “blob with an infinite tail” (See
Figure 2 for an example of such a shape). Such shapes do not self-assemble in the 2HAM
via a straightforward pumping lemma argument on the infinite tail portion of the shape.
However, we note that it is easy to take any such blob+tail shape and exhibit an aTAM TAS

Figure 2 A blob with an infinite tail.

in which that shape self-assembles. To see this, simply create hard-coded tile types for the
finite blob portion (with the seed tile placed at some location in the blob) and then have a
single tile type that repeats infinitely in one direction for the tail portion. This construction
also testifies to the finite self-assembly of a blob+tail shape in the 2HAM.

S. Cannon et. al. 179

I Definition 3.4. For each i ∈ N, let Bi = ({0, . . . , i+ 2} × {0, . . . , i+ 2}) ∪ {(−1, i +
1), (i, 0)} and S∞ =

⋃∞
i=0

(
Bi +

((
i(i+7)

2

)
, 0
))

. Intuitively, the set S∞ is essentially a
succession of larger and larger squares that are connected by pairs of tiles positioned at the
top right and bottom right of each square. See Figure 3 for an example.

#<<#

<# <#

?*

? ?*

*?

?

*?

*

*

*

*

*

*

*

? ?

?*

*

?

?*

*

?

<

?

?

<

>

$$

*

< >

?

? >

?

? >

?

? >

?

? >

?

? >

$

*?

< $

*?

< $

<

*

<

<< <<<<

<<

<< <<

<< <<

<<

<<

<<

>

>>

>>

>>

>>

>

*

*

>

*

*

>

*

*

>

*

*

>

*

*

>

$

*

$$

*

$$

$

$$

$$$$

$$

$$

$

*$

*$

<

*

*

<<

*

*

<<

*

*

<<

*

*

<<

*

*

<<

*

<

*

<

*

?

#

?*

? #

?*

?

?

?

?< ?
?

?< ?

?

?< ?
?

?< ?

?

?< ?

?

*?

*

?* ?

*?

*

?* ?

#

#

$ $

$ $

$ $

Figure 3 A finite portion of the infinite staircase, denoted as S∞. The black square represents
the origin.

I Theorem 3.5. The infinite staircase S∞ finitely self-assembles in the 2HAM.

Intuitively, our construction for Theorem 3.5 proceeds as follows. We first assemble
horizontal lines using three tile types: one to start the line, one to keep it going and one
to stop the line. The tile that stops the line may attach non-deterministically at any step,
whence lines of every length are able to form. Each line of length k ultimately grows into a
k × k square. Connector-tiles that attach to the left and right of each square ensure that
only a (k − 1)× (k − 1) square may attach to the left of a k × k square.

I Theorem 3.6. The infinite staircase S∞ does not finitely self-assemble in the aTAM.

Intuitively, the proof for Theorem 3.6 is the “infinite” version of Theorem 3.2 in which
there are infinitely many identical and cooperating pairs of connector tiles, and we can
use really “tall” cooperating connector-columns to force “shorter” versions of identical
connector-columns to grow outside of S∞.

I Corollary 3.7. The infinite staircase S∞ does not self-assemble in the aTAM.

4 Simulating aTAM with 2HAM

This section describes how to simulate an aTAM system by a 2HAM system, which suggests
that anything the aTAM can do, the 2HAM can do (at least as good as, if not) better. A key
property of our constructions is that they not only simulate the produced shapes assembled
by the aTAM system, but also simulate the incremental assembly process, where single tiles
aggregate on a larger seed assembly.

4.1 Simulation definition: simulate an aTAM (or 2HAM) system with
another 2HAM (or aTAM) system

In this subsection, we formally define what it means for one 2HAM TAS to “simulate” another
2HAM (or aTAM) TAS. For a tileset T , let AT and ÃT denote the set of all assemblies over
T and all supertiles over T respectively.

Anm-block assembly over tile set S is a partial function γ : Z2
m 99K S. Let BSm be the set of

all m-block assemblies over S. The m-block with no domain is said to be empty. For a general
assembly α ∈ AS define αmx,y to be the m-block defined by αmx,y(i, j) = α(mx + i,my + j)
for 0 ≤ i, j < m. For a partial function R : BSm 99K T , define the assembly replacement
function R∗ : AS → AT such that R∗(α) = β if and only if β(x, y) = R(αmx,y) for all x, y ∈ Z2.
Further, α is said to map cleanly to β under R∗ if for all non empty blocks αmx,y, either 1)

STACS’13

180 Two Hands Are Better Than One (up to constant factors)

(x+u, y+ v) ∈ dom β for some u, v ∈ {−1, 0, 1}, or 2) α has at most one non-empty m-block
αmx,y. For a given assembly replacement function R∗, define the supertile replacement function
R̃ : ÃS → P(AT) such that R̃(α̃) = {R∗(α)|α ∈ α̃}. α̃ is said to map cleanly to R̃(α̃) if
R̃(α̃) ∈ ÃT and α maps cleanly to R∗(α) for all α ∈ α̃.

Consider an aTAM or 2HAM system S with tileset S, and an aTAM or 2HAM system
T with tile set T . S simulates T at scale factor m if there exists an m-block replacement
R : BSm → T satisfying the following conditions.

1. Equivalent Production: (1)
{
R̃(α)|α ∈ A[S]

}
= A[T] and (2) for all α ∈ A[S], α maps

cleanly to R̃(α)
2. Equivalent Dynamics: (1) For any α, α′ ∈ A[S] such that α→1

S′ α′, then R̃(α)→≤1
T R̃(α′),

and (2) for any β, β′ ∈ A[T] such that β →1
T β
′, then for all α such that R̃(α) = β, there

exists an α′′ such that R̃(α′′) = β, α→S α′′, and α′′ →1
S α
′ for some α′ with R̃(α′) = β′.

4.2 Simulating aTAM at τ ≥ 4 with 2HAM τ = 4
It is possible to simulate the aTAM at temperature τ ≥ 4 using the 2HAM at temperature 4
with a constant scale factor of 5. Given any aTAM system, each tile t in the aTAM system
is represented by 25 tiles forming a 5 × 5 macrotile assembly in the 2HAM system. The
macrotile in the 2HAM system consists of a 3× 3 center brick assembly, surrounded on all
sides by a mortar one tile thick. These tiles are designed such that bricks and certain mortar
pieces can assemble independently, but bricks cannot attach to mortar pieces or other bricks
unless additional tiles are present.

We mimic the seeded nature of aTAM systems by allowing the mortar to assemble around
a seed brick corresponding to the seed tile in the aTAM system by strengthening the glues
at this seed macrotile. Once any brick has its complete set of mortar pieces attached to it,
mortar pieces for adjacent tiles can attach to the assembly; new bricks can then attach to this
partially built assembly only once their mortar is partially constructed. In this way, we ensure
that bricks can only attach to partially built assemblies containing a seed brick, mimicking
the seeded nature of an aTAM system. Additionally, we divide instances of glues into inward
and outward glue sets, such that an outward glue g can only attach to an inward glue of
the same type. Throughout the assembly process, the invariant that all exposed glues in
any assembly containing a seed brick are outward glues is maintained; this prevents partially
built seeded assemblies from attaching to each other. An example of the construction in
which 3× 3 bricks, 3× 1 mortar rectangles, and individual mortar tiles attach to form 5× 5
supertiles can be seen in Figure 4.

I Theorem 4.1. Any aTAM system at τ ≥ 4 can be simulated by a 2HAM system at τ = 4.

4.3 Simulating aTAM at τ ∈ {1, 2} with 2HAM τ = 2
The construction described in the previous section can be modified to also enable simulating
aTAM systems at τ = {1, 2} with the 2HAM at τ = 2 with scale factor 5.

I Theorem 4.2. Any aTAM system at τ ∈ {1, 2} can be simulated by a 2HAM system at
τ = 2.

4.4 Simulating aTAM at τ = 3 with 2HAM τ = 3
The construction used to simulate the τ ≥ 4 aTAM model with the τ = 4 2HAM model can
also be modified to simulate the τ = 3 aTAM model with the τ = 3 2HAM model. The

S. Cannon et. al. 181

Simulating 2HAM, τ = 4

Simulated aTAM, τ = 4

Brick

Mortar rectangle

Mortar tile

Macrotile

Figure 4 The simulation of an assembly in an aTAM system simulated using a 2HAM system.
The filled and unfilled arrows represent glues of strength 2 and 1 respectively in the 2HAM system,
while the dashes each represent a bond of strength 1 in the aTAM system (i.e. 4 dashes on the
North side of a tile is a glue of strength 4).

construction given also simulates the aTAM model under the restriction of planarity (tiles
can only attach at locations on the exterior of the assembly).

I Theorem 4.3. Any aTAM system at τ = 3 can be simulated by a 2HAM system at τ = 3.

5 Verification algorithms for aTAM and 2HAM

In this section, we explore the algorithmic complexities of verifying certain properties of a
given (2HAM or aTAM) tile assembly system. Sections 3 and 4 suggest that the 2HAM is
at least as (if not perhaps strictly more) powerful than the aTAM. In this section, we show
that verifying properties of self-assembly systems in the 2HAM is at least as (if not perhaps
strictly more) difficult than verifying properties of aTAM systems.

5.1 Unique assembly verification
A fundamental computational problem in self-assembly is that of deciding whether a given
self-assembly system uniquely produces a given assembly. We refer to this problem as the
Unique Assembly Verification problem (UAV). The aTAM has enjoyed a polynomial time
solution [3] to this problem reaching back to 2002. Fast verification within the aTAM has
been of tremendous assistance for self-assembly system designers by allowing for simulators
that can quickly spot bugs in tile systems. In contrast, the complexity of UAV for 2HAM
systems has been a core open problem since the Palaeolithic era. The results of this paper,
thus far, seem to suggest “aTAM = O(2HAM)”, i.e., the 2HAM is, in general, at least as
powerful as the aTAM. Thus, it should not be difficult for one to believe that, in general,
verifying 2HAM systems should be at least as difficult as verifying aTAM systems. In this
section, we show that a general fast verification algorithm is unlikely to exist by showing
that the UAV is co-NP-complete.

Our UAV co-NP-complete result applies to temperature τ = 2 systems that utilize at

STACS’13

182 Two Hands Are Better Than One (up to constant factors)

most one step into the third dimension4. This result resolves the general question of whether
efficient unique assembly verification algorithms exist, but leaves open the possibility of a
fast algorithm for the important class of 2D 2HAM self-assembly systems. Further, this
result is potentially useful for optimistic algorithm designers in search of such 2D efficient
systems in that it points out that any such solution will need to make fundamental use of
the planarity of self-assembly to have a chance at working. Formally, the UAV problem is
stated as follows:

Input: An aTAM system T = (T, σ, τ), or a 2HAM system T = (T, τ), and a T -assembly α
Output: Does T uniquely produce α, i.e., is α such that A�[T] = {α}?

I Theorem 5.1. The UAV problem is co-NP-complete for 3D, temperature τ = 2 2HAM
systems that use only 2 separate planes of the third dimension.

Proof sketch. Proving membership in co-NP involves observing that a non-unique producible
assembly implies the existence of a small, producible witness to non-uniqueness that is
inconsistent with the input assembly. NP-hardness is shown by reducing from 3-SAT (see
Figure 5. The assembly input tile system places clause blocks, row by row, from bottom
to top, with the completion of a given row verifying that a given clause is satisfied by the
variable assignment represented by the attachment of a sequence of variable loops. The
assembly has the property that upon completion of all clause rows, 2 glues are exposed
that may permit a final attachment that is inconsistent with the input assembly. Such a
completion is impossible for non-satisfiable formulas without the use of cheating in which
some variable is assigned both true and false values. If cheating occurs, the true and false
variable loops that cheated will restrict the final attachment from growing further, yielding
that the target assembly is uniquely produced if and only if the 3-SAT formula has no
satisfying assignment. J

Acknowledgments

The authors would like to thank Zachary Abel, David Doty and Damien Woods for helpful
discussions.

References
1 Zachary Abel, Nadia Benbernou, Mirela Damian, Erik D. Demaine, Martin L. Demaine,

Robin Y. Flatland, Scott D. Kominers, and Robert T. Schweller. Shape replication through
self-assembly and rnase enzymes. In SODA, pages 1045–1064, 2010.

2 Leonard Adleman, Qi Cheng, Ashish Goel, and Ming-Deh Huang. Running time and
program size for self-assembled squares. In Proceedings of the 33rd Annual ACM Symposium
on Theory of Computing, pages 740–748, Hersonissos, Greece, 2001.

3 Leonard M. Adleman, Qi Cheng, Ashish Goel, Ming-Deh A. Huang, David Kempe,
Pablo Moisset de Espanés, and Paul W. K. Rothemund. Combinatorial optimization prob-
lems in self-assembly. In Proceedings of the Thirty-Fourth Annual ACM Symposium on
Theory of Computing, pages 23–32, 2002.

4 Leonard M. Adleman, Jarkko Kari, Lila Kari, Dustin Reishus, and Petr Sosík. The undecid-
ability of the infinite ribbon problem: Implications for computing by self-assembly. SIAM
Journal on Computing, 38(6):2356–2381, 2009.

4 We do not formally define the 3D 2HAM because the generalization from the 2D 2HAM is straightforward.
Details of the 3D 2HAM that we use can be found in [8]

S. Cannon et. al. 183

(a)

(b) (c)

zy

c1,1 c1,2 c1,3 c1,4 c1,5

ai,1

ai,2

ai,3

ai,4

ai,5

ai,6

bi,1

bi,2

bi,3

bi,4

bi,5

bi,6

bi,0ai,0
tifi f'i t'i

ti,j

ti,j+1

fi,j

fi,j+1

f''i t''i

fi,1 ti,1

fi,6 ti,6

ri,j si,j

ri,6 si,6

ai,6 bi,6

ai,j bi,j

ai,0 bi,0

f1 f'1 f''1 t
''
1 t

'
1 t1 f'2 f''2 t

''
2 t

'
2 t2f2 f'5 f''5 t

''
5 t

'
5 t5f5f'3 f''3 t

''
3 t

'
3 t3f3 f'4 f''4 t

''
4 t

'
4 t4f4

(x1 v x3 v x5)

(x2 v x4 v x5)

(x1 v x3 v x4)

(x1 v x2 v x3)

(x2 v x3 v x5)

(x2 v x3 v x4)
c1,1

c1,4

c1,5 c2,5

g2,1

g2,2

g2,3

g2,4

g3,1

g3,2

g3,3

g3,4

g4,1

g4,2

g4,3

g4,4

g5,1

g5,2

g5,3

g5,4

g2,6 g3,6 g4,6 g5,6
y z

c2,1

c2,2

c2,3

c2,4

c3,2

c3,5

c3,1

c3,3

c3,4 c4,4

c4,5

c4,1

c4,2

c4,3

c5,5

c5,1

c5,2

c5,3

c5,4

c2,6 c3,6 c4,6 c5,6

ri,j

c1,2

c1,3

c1,6
g5,5g4,5g3,5g2,5

Figure 5 This figure details the tile set for the temperature τ = 2 system used in the polynomial
time reduction of the 3-SAT problem to the Unique Assembly problem. The tiles in this figure are
those derived for the example 3-SAT instance shown in (a). Tiles that are placed within the z = 1
plane appear smaller than those that occur in the z = 0 plane. Strength-1 glues are denoted by single
dashes for north,south,east and west glues, and solid circles for top and bottom glues. Strength-2
glues are denoted by double dashes and triangle inscribed circles for top/bottom glues. Each glue
within this system occurs on exactly two tile faces of opposite orientation. Some tiles are shown as
already bound together for the purpose of implicitly specifying which edges share strength-2 glues.

5 Robert D. Barish, Rebecca Schulman, Paul W. Rothemund, and Erik Winfree. An
information-bearing seed for nucleating algorithmic self-assembly. Proceedings of the Na-
tional Academy of Sciences, 106(15):6054–6059, March 2009.

6 Ho-Lin Chen and David Doty. Parallelism and time in hierarchical self-assembly. In SODA
2012: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms.

7 Qi Cheng, Gagan Aggarwal, Michael H. Goldwasser, Ming-Yang Kao, Robert T. Schweller,
and Pablo Moisset de Espanés. Complexities for generalized models of self-assembly. SIAM
Journal on Computing, 34:1493–1515, 2005.

8 Matthew Cook, Yunhui Fu, and Robert Schweller. Temperature 1 self-assembly: Determin-
istic assembly in 3d and probabilistic assembly in 2d. In Proceedings of the 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms, 2011.

9 Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete, Mashhood Ishaque, Eynat Rafalin,
Robert T. Schweller, and Diane L. Souvaine. Staged self-assembly: nanomanufacture of
arbitrary shapes with O(1) glues. Natural Computing, 7(3):347–370, 2008.

10 Erik D. Demaine, Matthew J. Patitz, Robert T. Schweller, and Scott M. Summers. Self-
assembly of arbitrary shapes using rnase enzymes: Meeting the kolmogorov bound with
small scale factor (extended abstract). In STACS 2011: Proceedings of the Twenty Eighth
International Symposium on Theoretical Aspects of Computer Science, pages 201–212, 2011.

11 David Doty. personal communication, 2011.
12 David Doty, Matthew J. Patitz, Dustin Reishus, Robert T. Schweller, and Scott M. Sum-

mers. Strong fault-tolerance for self-assembly with fuzzy temperature. In FOCS 2010:
Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science,
pages 417–426. IEEE, 2010.

13 Bin Fu, Matthew J. Patitz, Robert T. Schweller, and Robert Sheline. Self-assembly with
geometric tiles. In ICALP (1), pages 714–725, 2012.

STACS’13

184 Two Hands Are Better Than One (up to constant factors)

14 James I. Lathrop, Jack H. Lutz, and Scott M. Summers. Strict self-assembly of discrete
Sierpinski triangles. Theoretical Computer Science, 410:384–405, 2009.

15 Paul W. K. Rothemund and Erik Winfree. The program-size complexity of self-assembled
squares (extended abstract). In STOC ’00: Proceedings of the thirty-second annual ACM
Symposium on Theory of Computing, pages 459–468, 2000.

16 Paul W.K. Rothemund, Nick Papadakis, and Erik Winfree. Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biology, 2(12):2041–2053, 2004.

17 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of
Technology, June 1998.

Unlabeled Data Does Provably Help∗

Malte Darnstädt1, Hans Ulrich Simon1, and Balázs Szörényi2,3

1 Department of Mathematics, Ruhr-University Bochum, Germany
{malte.darnstaedt,hans.simon}@rub.de

2 INRIA Lille, SequeL project, France
3 MTA-SZTE Research Group on Artificial Intelligence, Szeged, Hungary

szorenyi@inf.u-szeged.hu

Abstract
A fully supervised learner needs access to correctly labeled examples whereas a semi-supervised
learner has access to examples part of which are labeled and part of which are not. The hope is
that a large collection of unlabeled examples significantly reduces the need for labeled-ones. It
is widely believed that this reduction of “label complexity” is marginal unless the hidden target
concept and the domain distribution satisfy some “compatibility assumptions”. There are some
recent papers in support of this belief. In this paper, we revitalize the discussion by presenting
a result that goes in the other direction. To this end, we consider the PAC-learning model in
two settings: the (classical) fully supervised setting and the semi-supervised setting. We show
that the “label-complexity gap” between the semi-supervised and the fully supervised setting
can become arbitrarily large for concept classes of infinite VC-dimension (or sequences of classes
whose VC-dimensions are finite but become arbitrarily large). On the other hand, this gap is
bounded by O(ln |C|) for each finite concept class C that contains the constant zero- and the
constant one-function. A similar statement holds for all classes C of finite VC-dimension.

1998 ACM Subject Classification I.2.6 Concept Learning

Keywords and phrases algorithmic learning, sample complexity, semi-supervised learning

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.185

1 Introduction

In the PAC1-learning model [11], a learner’s input are samples, labeled correctly according
to an unknown target concept, and two parameters ε, δ > 0. He has to infer, with high
probability of success, an approximately correct binary classification rule, which is called
“hypothesis” in this context. In the non-agnostic setting (that we focus on in this paper), the
following assumptions are made:

There is a concept class C (known to the learner) so that the “correct” labels are assigned
to the instances x from the underlying domain X by a function c : X → {0, 1} from C

(the unknown target function).
There is a probability distribution P on X (unknown to the learner) so that the samples
(labeled according to c) are independently chosen at random according to P .

The learner is considered successful if his hypothesis h satisfies P [h(x) 6= c(x)] < ε (approxi-
mate correctness).2 The probability for success should be larger than 1− δ (so the learner’s

∗ This work was supported by the bilateral Research Support Programme between Germany (DAAD
50751924) and Hungary (MÖB 14440).

1 PAC = Probably Approximately Correct
2 Note, that we don’t require the learner to observe that his hypothesis is accurate to be successful.

© Malte Darnstädt, Hans Ulrich Simon, and Balázs Szörényi;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 185–196

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.185
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

186 Unlabeled Data Does Provably Help

hypothesis is probably approximately correct). The learner is called proper if he commits
himself to picking his hypothesis from C. We refer to ε as the accuracy parameter, or simply
as the accuracy, and we refer to δ as the confidence parameter, or simply as the confidence.

Providing a learner with a large collection of labeled samples is expensive because reliable
classification labels are typically generated by a human expert. On the other hand, unlabeled
samples are easy to get (e.g., can be collected automatically from the web). This raised the
question whether the “label complexity” of a learning problem can be significantly reduced
when learning is “semi-supervised”, i.e., if the learner is not only provided with labeled
samples but also with unlabeled-ones.3 The existing analysis of the semi-supervised setting
can be summarized roughly as follows:

The benefit of unlabeled samples can be enormous if the target concept and the domain
distribution satisfy some suitable “compatibility assumptions” (see [1]).
On the other hand, the benefit seems to be marginal if we do not impose any extra-
assumptions (see [2, 7]).

These findings perfectly match with the common belief that some kind of compatibility
between the target concept and the domain distribution is needed for adding horsepower
to semi-supervised algorithms. However, the results of the second type are not yet fully
convincing:

The paper [2] provides some upper bounds on the label complexity in the fully supervised
setting and some lower bounds, that match up to a small constant factor, in the semi-
supervised setting (or even in the setting with a distribution P that is known to the
learner). These bounds however are established only for some special concept classes over
the real line. It is unclear whether they generalize to a broader variety of concept classes.
The paper [7] analyzes arbitrary finite concept classes and shows the existence of a purely
supervised “smart” PAC-learning algorithm whose label consumption exceeds the label
consumption of the best learner with full prior knowledge of the domain distribution
at most by a constant factor for the “vast majority” of pairs (c, P). This however does
not exclude the possibility that there still exist “bad pairs” (c, P) leading to a poor
performance of the smart learner.

In this paper, we reconsider the question whether unlabeled samples can be of significant
help to a learner even when we do not impose any extra-assumptions on the PAC-learning
model. A comparably old paper, [8], indicates that an affirmative answer to this question is
thinkable (despite of the fact that it was written a long time before semi-supervised learning
became an issue). In [8] it is shown that there exists a concept class C∞ and a family P∞ of
domain distributions such that the following holds:
1. For each P ∈ P∞, C∞ is properly PAC-learnable under the fixed distribution P (where

“fixed” means that the learner has full prior knowledge of P).
2. C∞ is not properly PAC-learnable under unknown distributions taken from P∞.
These results point into the right direction for our purpose, but they are not precisely what
we want:

Although “getting a large unlabeled sample” comes close to “knowing the domain distribu-
tion”, it is not quite the same. (In fact, one can show that C∞, with domain distributions
taken from P∞, is not PAC-learnable in the semi-supervised setting.)

3 In contrast to the setting of “active learning”, we do however not assume that the learner can actively
decide for which samples the labels are uncovered.

M. Darnstädt, H. U. Simon, and B. Szörényi 187

The authors of [8] do not show that C∞ is not PAC-learnable under unknown distributions
P taken from P∞. In fact, their proof uses a target concept that almost surely (w.r.t. P)
assigns 1 to every instance in the domain. But the (proper!) learner must not return the
constant 1-function of error 0 because of his commitment to hypotheses from C∞.

Main Results:
The precise statement of our main results requires some more notation. For any concept

class C over domain X and any domain distribution P , let mC,P (ε, δ) denote the smallest
number of labeled samples (in dependence of the accuracy ε and the confidence δ) needed to
PAC-learn C under fixed distribution P . For any concept class C and any (semi-supervised
or fully supervised) PAC-learning algorithm A, let mA

C,P (ε, δ) denote the smallest number
of labeled samples such that the resulting hypothesis of A is ε-accurate with confidence δ
provided that P , unknown to A, is the underlying domain distribution. We first investigate
the conjecture (up to minor differences identical to Conjecture 4 in [2])4 that there is a
purely supervised learner whose label consumption exceeds the label consumption of the best
learner with full prior knowledge of the domain distribution at most by a factor k(C) that
depends on C only, as opposed to a dependence on ε or δ. The following result, whose proof
is found in Section 3.1, confirms this conjecture to a large extent for finite classes, and to a
somewhat smaller extent for classes of finite VC-dimension:

I Theorem 1. Let C be a concept class over domain X that contains the constant zero- and
the constant one-function. Then:
1. If C is finite, there exists a fully supervised PAC-learning algorithm A such that, for

every domain distribution P , mA
C,P (2ε, δ) = O(ln |C|) ·mC,P (ε, δ).

2. If the VC-dimension of C is finite, there exists a fully supervised PAC-learning algorithm
A such that, for every domain distribution P , mA

C,P (2ε, δ) = O(VCdim(C) · log(1/ε)) ·
mC,P (ε, δ) = Õ(VCdim(C)) ·mC,P (ε, δ).

Can we generalize Theorem 1 to concept classes C of infinite VC-dimension provided that
the domain distribution is taken from a family P such that mC,P (ε, δ) <∞ for all P ∈ P?
This question will be answered to the negative by the following result (proved in Section 3.2):

I Theorem 2. There exists a concept class C∗ over domain {0, 1}∗ and a family P∗ of
domain distributions such that the following holds:
1. There exists a semi-supervised algorithm A such that, for all P ∈ P∗, mA

C∗,P
= O(1/ε2 +

log(1/δ)/ε). (This implies the same upper bound on mC∗,P for all P ∈ P∗.)
2. For every fully supervised algorithm A and for all ε < 1/2, δ < 1:

supP∈P∗
mA
C∗,P

(ε, δ) =∞.
Does there exist a universal constant k (not depending on C) such that we get a result similar
to Theorem 1 but with k(C) replaced by k? The following result (proved in Section 3.2)
shows that, even for classes of finite VC-dimension, such a universal constant does not exist.

I Theorem 3. There exists a sequence (Cn)n≥1 of concept classes over domains ({0, 1}n)n≥1
such that limn→∞VCdim(Cn) =∞ and a sequence (Pn)n≥1 of domain distribution families
such that the following holds:
1. There exists a semi-supervised algorithm A that PAC-learns (Cn)n≥1 under any unknown

distribution and, for all P ∈ Pn, mA
Cn,P

(ε, δ) = O(1/ε2 + log(1/δ)/ε). (This implies the
same upper bound on mCn,P for all P ∈ Pn.)

4 In contrast to [2], we allow the supervised learner to be twice as inaccurate as the semi-supervised
learner because, otherwise, it can be shown that results in the manner of Theorem 1 are impossible
even for simple classes.

STACS’13

188 Unlabeled Data Does Provably Help

2. For every fully supervised algorithm A and all ε < 1/2, δ < 1:
supn≥1,P∈Pn

mA
Cn,P

(ε, δ) =∞.
Some comments are in place here:

Since the class C∗ from Theorem 2 has a countable domain, namely {0, 1}∗, C∗ occurs (via
projection) as a subclass in every concept class that shatters a set of infinite cardinality. A
similar remark applies to the sequence (Cn)n≥1 and concept classes that shatter finite sets
of arbitrary size. Thus every concept class of infinite VC-dimension contains subclasses
that are significantly easier to learn in the semi-supervised setting of the PAC-model (in
comparison to the full supervised setting).
An error bound ε = 1/2 is trivially achieved by random guesses for the unknown label.
Let α and β be two arbitrary small, but strictly positive, constants. Theorems 2 and 3
imply that even the modest task of returning, with a success probability of at least α, a
hypothesis of error at most 1/2− β cannot be achieved in the fully supervised setting
unless the number of labeled examples becomes arbitrarily large.
Theorem 3 implies that the results from [2] do not generalize (from the simple classes
discussed there) to arbitrary finite classes. It implies furthermore that the “bad pairs”
(c, P) occurring in the main result from [7] are unavoidable and not an artifact of the
analysis in that paper.
Cn is not an artificially constructed or exotic class: it is in fact the class of non-negated
literals over n boolean variables, which occurs as a subset of many popular concept classes
(e.g. monomials, decision lists, half spaces). The class C∗ is a natural generalization of
Cn to the set of boolean strings of arbitrary length.
The classes C∗,P∗ from Theorem 2, defined in Section 3.2, are close relatives of the
classes C∞,P∞ from [8], but the adversary argument that we have to employ is much
more involved than the corresponding argument in [8] (where the learner was assumed to
be proper and had been fooled mainly because of his commitment to hypotheses from
C∞).

2 Definitions, Notations and Facts

For any n ∈ N, we define [n] = {1, . . . , n}. The symmetric difference between two sets A
and B is denoted A ⊕ B, i.e., A ⊕ B = (A \ B) ∪ (B \ A). The indicator function I(cond)
yields 1 if “cond” is a true condition, and 0 otherwise.

2.1 Prerequisites from Probability Theory

Let X be an integer-valued random variable. As usual, a most likely value a for X is called
a mode of X. In this paper, the largest integer that is a mode of X is denoted mode(X). As
usual, X is said to be unimodal if Pr[X = x] is increasing with x for all x ≤ mode(X), and
decreasing with x for all x ≥ mode(X).

Let Ω be a space equipped with a σ-algebra of events and with a probability measure P .
For any sequence (An)n≥1 of events, lim supn→∞An is defined as the set of all ω ∈ Ω that
occur in infinitely many of the sets An, i.e., lim supn→∞An = ∩∞n=1 ∪∞m=n Am. We briefly
remind the reader of the Borel-Cantelli Lemma:

I Lemma 4 ([9]). Let (An)n≥1 be a sequence of independent events, and let A = lim sup
n→∞

An.

Then P (A) = 1 if
∑∞
n=1 P (An) =∞, and P (A) = 0 otherwise.

M. Darnstädt, H. U. Simon, and B. Szörényi 189

I Corollary 5. Let (An)n≥1 be a sequence of independent events such that
∑∞
n=1 P (An) =∞.

Let Bk,n be the set of all ω ∈ Ω that occur in at least k of the events A1, . . . , An. Then, for
any k ∈ N, limn→∞ P (Bk,n) = 1.

Proof. Note that Bk,n ⊆ Bk,n+1 for every n. Since probability measures are continuous from
below, it follows that limn→∞ P (Bk,n) = P (∪∞n=1Bk,n). Since, obviously, lim supn→∞An ⊆
∪∞n=1Bk,n, an application of the Borel-Cantelli Lemma yields the result. J

The following result, which is a variant of the Central Limit Theorem for triangular
arrays, is known in the literature as the Lindeberg-Feller Theorem:

I Theorem 6 ([6]). Let (Xn,i)n∈N,i∈[n] be a (triangular) array of random variables such that
1. E[Xn,i] = 0 for all n ∈ N, i = 1, . . . , n.
2. Xn,1, . . . , Xn,n are independent for every n ∈ N.
3. limn→∞

∑n
i=1E[X2

n,i] = σ2 > 0.
4. For each ε > 0, limn→∞ sn(ε) = 0 where sn(ε) =

∑n
i=1E[X2

n,iI(|Xn,i| ≥ ε)].
Then limn→∞ P

[
a < 1

σ ·
∑n
i=1 Xn,i < b

]
= ϕ(b)−ϕ(a) where ϕ denotes the density function

of the standard normal distribution.

An easy padding argument shows that this theorem holds “mutatis mutandis” for triangular
arrays of the form (Xnk,i) where i = 1, . . . , nk and (nk)k≥1 is an increasing and unbounded
sequence of positive integers. (The limes is then taken for k →∞.) We furthermore note that,
for the special case of independent Bernoulli variables Xn,i with probability pi of success,
Theorem 6 applies to the triangular array (Xn,i − pi)/σn where σ2

n =
∑n
i=1 pi(1− pi). (A

similar remark applies to the more general case of bounded random variables.)
The following result is an immediate consequence of Theorem 6 (plus the remarks

thereafter):

I Lemma 7. Let l(k) = o(
√
k). Let (nk)k≥1 be an increasing and unbounded sequence of

positive integers. Let (pk,i)k∈N,i∈[nk] range over all triangular arrays of parameters in [0, 1]
such that

∀k ∈ N :
nk∑
i=1

pk,i(1− pk,i) ≥ k . (1)

Let (Xk,i)k∈N,i∈[nk] be the corresponding triangular array of row-wise independent Bernoulli
variables. Then the function h given by

h(k) = sup
(pk,i)

sup
s∈{0,...,nk}

P

[∣∣∣∣∣
nk∑
i=1

Xk,i − s

∣∣∣∣∣ < l(k)
]

approaches 0 as k approaches infinity.

Proof. Assume for sake of contradiction that lim supk→∞ h(k) > 0. Then there exist (pk,i)
satisfying (1) and sk ∈ {0, . . . , nk} such that

lim sup
k→∞

P

[∣∣∣∣∣
nk∑
i=1

Xk,i − sk

∣∣∣∣∣ < l(k)
]
> 0 . (2)

The random variable Sk =
∑nk

i=1 Xk,i has mean µk =
∑nk

i=1 pk,i and variance σ2
k =

∑nk

i=1 pk,i ·
(1 − pk,i) ≥ k. The Lindeberg-Feller Theorem applied to the triangular array

(
Xk,i−pi

σk

)
yields

lim
k→∞

P

[
a <

Sk − µk
σk

< b

]
= ϕ(b)− ϕ(a) . (3)

STACS’13

190 Unlabeled Data Does Provably Help

For Sk to hit a given interval of length 2l(k) (like the interval [sk − l(k), sk + l(k)] in (2))
it is necessary for (Sk − µk)/σk to hit a given interval of length 2l(k)/σk. Note that
limk→∞ l(k)/σk = 0 because σk ≥

√
k and l(k) = o(

√
k). Thus the hitting probability

approaches 0 as k approaches infinity. This contradicts to (2). J

For ease of later reference, we let k(β) for β > 0 be a function such that h(k) ≤ β for all
k ≥ k(β). (Such a function must exist according to Lemma 7.)

I Corollary 8. With the notation and assumptions from Lemma 7, the following holds: the
probability mass of the mode of

∑nk

i=1 Xk,i is at most β for all k ≥ k(β).

The following result implies the unimodality of binomially distributed random variables:

I Lemma 9 ([10]). Every sum of independent Bernoulli variables (with possibly different
probabilities of success) is unimodal.

2.2 Prerequisites from Learning Theory
A concept class C over domain X is a family of functions from X to {0, 1}. C is said to be
PAC-learnable with sample size m(ε, δ) if there exists a (possibly randomized) algorithm A

with the following property. For every concept c ∈ C, for every distribution P on X, and
for all ε, δ > 0 and m = m(ε, δ), if ~x = (x1, . . . , xm) is drawn at random according to Pm,
~b = (c(x1), . . . , c(xm)), and A is given access to ε, δ, ~x,~b, then, with probability greater than
1 − δ, A outputs a hypothesis h : X → {0, 1} such that P [h(x) = c(x)] > 1 − ε. We say
that h is ε-accurate (resp. ε-inaccurate) if P [h(x) = c(x)] > 1− ε (resp. P [h(x) 6= c(x)] ≥ ε).
We say the learner fails when he returns an ε-inaccurate hypothesis. As mentioned in the
introduction already, we refer to ε as the accuracy and to δ as the confidence. In this paper,
we consider the following variations of the basic model:
Proper PAC-learnability: The hypothesis h : X → {0, 1} must be a member of C.
PAC-learnability under a fixed distribution: P is fixed and known to the learner.
The semi-supervised setting: The input of the learning algorithm is augmented by a finite

number (depending on the various parameters of the learning task) of unlabeled samples.
All samples, labeled- and unlabeled-ones, are drawn independently from X according to
the domain distribution P .

Note that PAC-learnability with sample size m(ε, δ) under a fixed distribution follows from
PAC-learnability with sample size m(ε, δ) in the semi-supervised setting because, if A knows
the domain distribution P , it can first generate sufficiently many unlabeled samples and then
run a simulation of the semi-supervised learning algorithm.

Throughout the paper, a mapping from X to {0, 1} is identified with the set of instances
from X that are mapped to 1. Thus, concepts are considered as mappings from X to {0, 1}
or, alternatively, as subsets of X. (E.g., we may write P (h⊕ c) instead of P [h(x) 6= c(x)].)
X ′ ⊆ X is said to be shattered by C if {X ′ ∩ c| c ∈ C} coincides with the powerset of X ′.
The VC-dimension of C, denoted VCdim(C), is infinite if there exist arbitrarily large sets
that are shattered by C, and it is the size of the largest set shattered by C otherwise. We
remind the reader to the following well-known results:

I Lemma 10 ([4]). A finite class C is properly PAC-learnable by any consistent hypothesis
finder from dln(|C|/δ)/εe labeled samples.

I Lemma 11 ([5]). A class C of finite VC-dimension is properly PAC-learnable by any
consistent hypothesis finder from O((VCdim(C) · log(1/ε) + log(1/δ))/ε) labeled samples.

M. Darnstädt, H. U. Simon, and B. Szörényi 191

C ′ ⊆ C is called an ε-covering of C with respect to P if for any c ∈ C there exists c′ ∈ C ′
such that P (c⊕ c′) < ε. The covering number NC,P (ε) is the size of the smallest ε-covering
of C with respect to P . With this notation, the following holds:

I Lemma 12 ([3]). A concept class C is properly PAC-learnable under a fixed distribution
P from O(log(NC,P (ε/2)/δ)/ε) labeled samples.

A result by Balcan and Blum5 implies the same upper bound on the label complexity for
semi-supervised algorithms and concept classes of finite VC-dimension:

I Lemma 13 ([1]). Let C be a concept class of finite VC-dimension. Then C is PAC-learnable
in the semi-supervised setting from O(VCdim(C) log(1/ε)/ε2 + log(1/δ)/ε2) unlabeled and
O(log(NC,P (ε/6)/δ)/ε) labeled samples.

The following game between the learner and his adversary is useful for proving lower
bounds on the sample size m:
Step 1: An “adversary” fixes a probability distribution D on pairs of the form (c, P) where

c ∈ C and P is a probability distribution on the domain X.
Step 2: The target concept c and the domain distribution P (representing the learning task)

are chosen at random according to D.
Step 3: (x1, . . . , xm) is drawn at random according to Pm, and ε, δ, (x1, . . . , xm), (b1, . . . , bm)

such that bi = c(xi) is given as input to the learner.
Step 4: The adversary might give additional pieces of information to the learner.6
Step 5: The learner returns a hypothesis h. He “fails” if P [h(x) 6= c(x)] ≥ ε.
This game differs from the PAC-learning model mainly in two respects. First, the learner is
not evaluated against the pair (c, P) on which he performs worst but on a pair (c, P) chosen
at random according to D (albeit D is chosen by an adversary). Second, the learner possibly
obtains additional pieces of information in Step 4. Since both maneuvers can be to the
advantage of the learner only, they do not compromise the lower bound argument. Thus, if
we can show that, with probability at least δ, the learner fails in the above game, we may
conclude that the sample size m does not suffice to meet the (ε, δ)-criterion of PAC-learning.
Moreover, according to Yao’s principle [12], lower bounds obtained by this technique even
apply to randomized learning algorithms.

3 The Semi-supervised Versus the Purely Supervised Setting

This section is devoted to the proofs of our main results. The proof for Theorem 1 is presented
in Section 3.1. The proofs for Theorems 2 and 3 are presented in Section 3.2.

3.1 Proof of Theorem 1
We start with the following lower bound on mC,P (ε, δ):

I Lemma 14. Let C be a concept class and let P be a distribution on domain X. For any
ε > 0, let

dεeC,P = min{ε′| (ε′ ≥ ε) ∧ (∃c, c′ ∈ C : P (c⊕ c′) = ε′}

5 Apply Theorem 13 from [1] with a constant compatibility of 1 for all concepts and distributions.
6 This step has purely proof-technical reasons: sometimes the analysis becomes simpler when the power

of the learner is artificially increased.

STACS’13

192 Unlabeled Data Does Provably Help

where, by convention, the minimum of an empty set equals ∞. With this notation, the
following holds:
1. If d2εeC,P ≤ 1, then mC,P (ε, δ) ≥ 1.
2. Let γ = 1− d2εeC,P . If d2εeC,P < 1, then

mC,P (ε, δ) ≥ log1/γ
1
2δ = Ω

(
log1/γ

1
δ

)
. (4)

3. If d2εeC,P ≤ 1/4, then

mC,P (ε, δ) ≥
⌊

ln(1/(2δ))
2d2εeC,P

⌋
= Ω

(
ln(1/δ)
d2εeC,P

)
. (5)

Proof. It is easy to see that at least one labeled sample is needed if d2εeC,P ≤ 1. Let
us now assume that d2εeC,P < 1. Let c, c′ ∈ C be chosen such that P (c ⊕ c′) = d2εeC,P .
The adversary picks c and c′ as target concept with probability 1/2, respectively. With a
probability of (1− d2εeC,P)m, none of the labeled samples hits c⊕ c′. Since P (c⊕ c′) ≥ 2ε,
the learner has no hypothesis at his disposal that is ε-accurate for c and c′. Thus, if none the
samples distinguishes between c and c′, the learner will fail with a probability of 1/2. We can
conclude that the learner fails with an overall probability of at least 1

2 (1−d2εeC,P)m = 1
2γ

m.
Setting this probability less than or equal to δ and solving for m leads to the lower

bound (4). If d2εeC,P ≤ 1/4, a straightforward computation shows that 1
2γ

m is bounded from
below by 1

2 exp(−2d2εeC,Pm). Setting this expression less than or equal to δ and solving for
m leads to the lower bound (5). J

We are ready now for the Proof of Theorem 1:
We use the notation from Lemma 14. We first present the main argument under the (wrong!)
assumption that dεeC,P is known to the learner. At the end of the proof, we explain how a
fully supervised learning algorithm can compensate for not knowing P . The first important
observation, following directly from the definition of dεeC,P , is that, in order to achieve an
accuracy of ε, it suffices to achieve an accuracy dεeC,P with a hypothesis from C. Thus,
for the purpose of Theorem 1, it suffices to have a supervised proper learner that achieves
accuracy d2εeC,P with confidence δ. We proceed with the following case analysis:
Case 1: d2εeC,P ≤ 1/4.

There is a gap of O(ln |C|) only between the upper bound from Lemma 10 (with d2εeC,P
in the role of ε) and the lower bound (5). Returning a consistent hypothesis, so that
Lemma 10 applies, is appropriate in this case.

Case 2: 1/4 < d2εeC,P < 15/16.
We may argue similarly as in Case 1 except that the upper bound from Lemma 10 is
compared to the lower bound (4). (Note that γ = θ(1) in this case.) As in Case 1,
returning a consistent hypothesis is appropriate.

Case 3: 15/16 < d2εeC,P < 1.
In this case 0 < γ = 1 − d2εeC,P < 1/16. The learner will exploit the fact that one of
the hypotheses ∅ and X is a good choice. He returns hypothesis X if label “1” has the
majority within the labeled samples, and hypothesis ∅ otherwise. Let c, as usual, denote
the target concept. If γ < P (c) < 1− γ, then both of ∅ and X are d2εeC,P -accurate. Let
us assume that P (c) ≤ γ. (The case P (c) ≥ 1 − γ is symmetric.) The learner will fail
only if, despite of the small probability γ for label “1”, these labels have the majority. It
is easy to see that the probability for this to happen is bounded by (m/2)

(
m
m/2
)
γm/2 and

therefore also bounded by 23m/2γm/2 = (8γ)m/2. Setting the last expression less than

M. Darnstädt, H. U. Simon, and B. Szörényi 193

or equal to δ and solving for m reveals that O(log1/γ(1/δ)) many labeled samples are
enough. This matches the lower bound (4) modulo a constant factor.

Case 4: d2εeC,P = 1.
This is a trivial case where each labeled sample almost surely makes inconsistent any
hypothesis h ∈ C of error at least ε. The learner may return any hypothesis that is
supported by at least one labeled sample.

Case 5: d2εeC,P =∞.
This is another trivial case where any concept from C is 2ε-accurate with respect to any
other concept from C. The learner needs no labeled example and may return any h ∈ C.

In any case, the “label-complexity” gap is bounded by O(ln |C|). We finally have to explain
how this can be exploited by a supervised learner A who does not have any prior knowledge
of P . The main observation is that, according to the bound in Lemma 10, the condition
m > dln(|C|/δ)/(15/16)e indicates that the sample size is large enough to achieve an accuracy
below 15/16 so that returning a consistent hypothesis is the appropriate action (as in Cases
1 and 2 above). If, on the other hand, the above condition on m is violated, then A will set
either h = ∅ or h = X depending on which label holds the majority (which would also be an
appropriate choice in Cases 3 and 4 above). It is not hard to show that this procedure leads
to the desired performance, which concludes the proof for the first part of Theorem 1.
As for the second part, one can use a similar argument that employs Lemma 11 instead of
Lemma 10.

3.2 Proof of Theorems 2 and 3
Throughout this section, we set Xn = {0, 1}n and X∗ = {0, 1}∗. We will identify a finite
string x ∈ X∗ with the infinite string that starts with x and ends with an infinite sequence
of zeros. C∗ denotes the family of functions ci : X∗ → {0, 1}, i ∈ N∪ {0}, given by c0(x) = 0
and ci(x) = xi for all i ≥ 1. Note that ci(x) = 0 for all i > |x|. Cn denotes the class of
functions obtained by restricting a function from C∗ to the subdomain Xn. For every i ≥ 1,
let pi = 1/ log(3 + i). For every permutation σ of 1, . . . , n, let Pσ be the probability measure
on Xn obtained by setting xσ(i) = 1 with probability pi (resp. xσ(i) = 0 with probability
1− pi) independently for i = 1, . . . , n. Pn = {Pσ} denotes the family of all such probability
measures on Xn. Note that Pσ can also be considered as a probability measure on X∗ (that
is centered on Xn). P∗, a family of probability measures on X∗, is defined as ∪n≥1Pn.

I Lemma 15. 1. C∗ is properly PAC-learnable under any fixed distribution Pσ ∈ P∗ from
O(1/ε2 + log(1/δ)/ε) labeled samples.

2. For any (unknown) Pσ ∈ P∗, C∗ is properly PAC-learnable in the semi-supervised setting
from O(log(n/δ)/ε) unlabeled and O(1/ε2 + log(1/δ)/ε) labeled samples. Here, n denotes
the smallest index such that Pσ ∈ Pn.

3. There exists a semi-supervised algorithm A that PAC-learns Cn under any unknown
domain distribution. Moreover, for all P ∈ Pn, mA

Cn,P
(ε, δ) = O(1/ε2 + log(1/δ)/ε).

Proof. 1. Let σ be a permutation of 1, . . . , n. For all i > n: ci = ∅ almost surely w.r.t. Pσ.
For all 22/ε−3 ≤ i ≤ n: Pσ[cσ(i)⊕∅] = Pσ[cσ(i)] = pi ≤ ε/2. Thus, setting N = d22/εe−4,
{∅, cσ(1), . . . , cσ(N)} forms an ε/2-covering of C∗ with respect to Pσ. An application of
Lemma 12 now yields the result.

2. The very first unlabeled sample reveals the parameter n such that the unknown measure
Pσ is centered on Xn. Note that, for every i ∈ [n], xi = 1 with probability pσ−1(i). It is an
easy application of the multiplicative Chernov-bound (combined with the Union-bound)
to see that O(log(n/δ)/ε) unlabeled samples suffice to retrieve (with probability 1− δ/2

STACS’13

194 Unlabeled Data Does Provably Help

of success) an index set I ⊂ [n] with the following properties. On one hand, I includes
all i ∈ [n] such that pσ−1(i) ≥ ε/2. On the other hand, I excludes all i ∈ [n] such that
pσ−1(i) ≤ ε/8. Consequently {∅} ∪ {ci| i ∈ I} is an ε/2-covering of Cn with respect to Pσ
and its size is bounded by 1 + |I| ≤ 28/ε. Another application of Lemma 12 now yields
the result.

3. The third statement in Lemma 15 is an immediate consequence of Lemma 13 and the
fact that, as proved above, NCn

(ε/6) = 2O(1/ε) (regardless of the value of n). J

I Lemma 16. Let A be a fully supervised algorithm designed to PAC-learn C∗ under any
unknown distribution taken from P∗. For every finite sample size m and for all α, β > 0,
an adversary can achieve the following: with a probability of at least 1− α the hypothesis
returned by A has an error of at least 1/2− β.7

Proof. The proof will run through the following stages:
1. We first fix some technical notations and conditions (holding in probability) which the

proof builds on.
2. Then we specify the strategy of the learner’s adversary.
3. We argue that, given the strategy of the adversary, the learner has probably almost no

advantage over random guesses.
4. We finally verify the technical conditions.
Let us start with Stage 1. (Though somewhat technical it will help us to provide a precise
description of the subsequent stages.) Let M ∈ {0, 1}(m+1)×(N\{1}) be a random matrix
(with columns indexed by integers not smaller than 2) such that the entries are independent
Bernoulli variables where the variable Mi,j has probability pj = 1/ log(3 + j) < 1/2 of
success. Let M(n) denote the finite matrix composed of the first n− 1 columns of M . Let
k = max{d1/αe, k(2β)} where k(β) is the function from the remark right after Lemma 7. In
Stage 4 of the proof, we will show that there exists n = nk ∈ N such that, with probability
at least 1− 1/k, the following conditions are valid for each bit pattern b ∈ {0, 1}m+1:
(A) b ∈ {0, 1}m+1 coincides with at least 4k2 columns of M(n).
(B) Let b′ ∈ {0, 1}m be the bit pattern obtained from b by omission of the final bit. Call

column j ≥ 2 of M(n) “marked” if its first m bits yield pattern b′. Let I ⊆ {2, . . . , n}
denote the set of indices for marked columns. Then,

∑
i∈I pi ≥ 2k so that

∑
i∈I pi(1−pi) ≥

k (because pi < 1/2).
The strategy of the adversary (Stage 2 of the proof) is as follows: she sets n = nk, picks
a permutation σ of 1, . . . , n uniformly at random, chooses domain distribution Pσ, and
selects the target concept ct such that t = σ(1). In the sequel, probabilities are simply
denoted P [·]. Note that the component xt of a sample x can be viewed as a fair coin since
P [xt = 1] = p1 = 1/ log(4) = 1/2. The learning task resulting from this setting is related to
the technical definitions and conditions from Stage 1 as follows:

The first m rows of the matrix M(n) are the components σ(2), . . . , σ(n) of the m labeled
samples.
The bits of b′ ∈ {0, 1}m are the t-th components of the m labeled samples. These bits
are perfectly random, and they are identical to the classification labels.
The set I ⊆ {2, . . . , n} points to all marked columns of M(n), i.e., it points to all columns
of M(n) which are duplicates of b′.
Row m + 1 of M represents an unlabeled test sample that has to be classified by the
learner.

7 Loosely speaking, the learner has “probably almost no advantage over random guesses”.

M. Darnstädt, H. U. Simon, and B. Szörényi 195

The adversary passes also the set J = {σ(i)| i ∈ I ∪ {1}}, with the understanding that
index t of the target concept is an element of J , and the set I ⊆ {2, . . . , n} as additional
information to the learner. This maneuver marks the end of Stage 2 in our proof.
We now move on to Stage 3 of the proof and explain why the strategy of the adversary leads
to a poor learning performance (thereby assuming that conditions (A) and (B) hold). Note
that, by symmetry, every index in J has the same a-posteriori probability to coincide with
t. Because the learner has no way to break the symmetry between the indices in J before
he sees the test sample x, the best prediction for the label of x does not depend on the
individual bits in x but only on the number of ones in the bit positions from J , i.e., it only
depends on the value of

Y ′ =
∑
j∈J

xj = xσ(1) +
∑
i∈I

xσ(i) = xσ(1) + Y where Y =
∑
i∈I

xσ(i) =
∑
i∈I

Mm+1,i .

Note that the learner knows the distribution of Y (given by the parameters (pi)i∈I) since
the set I had been passed on to him by the adversary. For sake of brevity, let ` = xσ(1)
denote the classification label of the test sample x. Given a value s of Y ′ (and the fact that
the a-priori probabilities for ` = 0 and ` = 1 are equal), the Bayes decision is in favor of
the label ` ∈ {0, 1} which maximizes P [Y ′ = s|`]. Clearly, P [Y ′ = s|` = 1] = P [Y = s− 1]
and P [Y ′ = s|` = 0] = P [Y = s]. Thus, the Bayes decision is in favor of ` = 0 if and only
if P [Y = s] ≥ P [Y = s− 1]. Since Y is a sum of independent Bernoulli variables, we may
apply Lemma 9 and conclude that Y has a unimodal distribution. It follows that the Bayes
decision is the following threshold function: be in favor of ` = 0 iff Y ′ ≤ mode(Y). The
punchline of this discussion is as follows: the Bayes decision is independent of the true label
` unless Y hits its mode (so that Y ′ = Y + ` is either mode(Y) or mode(Y) + 1). It follows
that the Bayes error is at least (1− P [Y = mode(Y)])/2. Because of Condition (B) and the
fact that k ≥ k(2β), we may apply Corollary 8 and obtain P [Y = mode(Y)] ≤ 2β so that
the Bayes error is at least 1/2− β.
We finally enter Stage 4 of the proof and show that conditions (A) and (B) hold with a
probability of at least 1− α provided that n = nk is large enough. Let b range over all bit
patterns from {0, 1}m+1. Consider the events

Ar(b): b ∈ {0, 1}m+1 coincides with the r-th column of M .
Bk,n(b): b ∈ {0, 1}m+1 coincides with at least k columns of M(n).

It is easy to see that
∑∞
r=1 P (Ar(b)) = ∞. Applying the Borel-Cantelli Lemma to the

events (Ar(b))r≥1 and Corollary 5 to the events (B4k2,n(b))k,n≥1, we arrive at the following
conclusion. There exists nk(b) ∈ N such that, for all n ≥ nk(b), the probability of B4k2,n(b)
is at least 1− 1/(2m+3k). We set n = nk = maxb nk(b). Then, the probability of B4k2,n =⋂
b∈{0,1}m+1 B4k2,n(b) is at least 1− 1/(4k). In other words: with a probability of at least

1−1/(4k), each b ∈ {0, 1}m+1 coincides with at least 4k2 columns ofM(n). Thus condition (A)
is violated with a probability of at most 1/(4k).
We move on to condition (B). With p =

∑
i∈I pi, we can decompose P [B4k2,n] as follows:

P [B4k2,n] = P
[
B4k2,n |p < 2k

]
· P [p < 2k] + P

[
B4k2,n |p ≥ 2k

]
· P [p ≥ 2k]

Note that, according to the definitions of B4k2,n(b) and B4k2,n, event B4k2,n implies that
Y ≥ 4k2 because there must be at least 4k2 occurrences of 1 in row m + 1 and in the
marked columns of M(n). On the other hand, E[Y] = p. According to Markov’s inequality,
P
[
Y ≥ 4k2|p < 2k

]
≤ (2k)/(4k2) = 1/(2k). Thus, P [B4k2,n] ≤ 1/(2k) + P [p ≥ 2k]. Recall

that, according to condition (A), 1− 1/(4k) ≤ P [B4k2,n]. Thus, P [p ≥ 2k] ≥ 1− 1/(4k)−
1/(2k) = 1− 3/(4k). Since k ≥ 1/α, we conclude that the probability to violate one of the
conditions (A) and (B) is bounded by 1/k ≤ α. J

STACS’13

196 Unlabeled Data Does Provably Help

We are now ready to complete the proofs of our main results. Theorem 2 is a direct
consequence of the second statement in Lemma 15 and of Lemma 16. The first part of
Theorem 3 is a direct consequence of the third statement in Lemma 15. As for the second
part, an inspection of the proof of Lemma 16 reveals that the adversary argument uses a
“finite part” Cn of C∗ only (with n chosen sufficiently large).

4 Final Remarks:

As we have seen in this paper, it is impossible to show in full generality that unlabeled
samples have a marginal effect only in the absence of any compatibility assumptions. It would
be interesting to explore which concept classes are similar in this respect to the artificial
classes C∗ and (Cn)n≥1 that were discussed in this paper. We would also like to know if the
bounds of Theorem 1 are tight (either for special classes or for the general case). It would be
furthermore interesting to extend our results to the agnostic setting.

References
1 Maria-Florina Balcan and Avrim Blum. A discriminative model for semi-supervised learn-

ing. Journal of the Association on Computing Machinery, 57(3):19:1–19:46, 2010.
2 Shai Ben-David, Tyler Lu, and Dávid Pál. Does unlabeled data provably help? Worst-case

analysis of the sample complexity of semi-supervised learning. In Proceedings of the 21st
Annual Conference on Learning Theory, pages 33–44, 2008.

3 Gyora M. Benedek and Alon Itai. Learnability with respect to fixed distributions. Theo-
retical Computer Science, 86(2):377–389, 1991.

4 Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Occam’s
razor. Information Processing Letters, 24:377–380, 1987.

5 Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learn-
ability and the Vapnik-Chervonenkis dimension. Journal of the Association on Computing
Machinery, 36(4):929–965, 1989.

6 Kai Lai Chung. A Course in Probability Theory. Academic Press, 1974.
7 Malte Darnstädt and Hans U. Simon. Smart PAC-learners. Theoretical Computer Science,

412(19):1756–1766, 2011.
8 Richard M. Dudley, Sanjeev R. Kulkarni, Thomas J. Richardson, and Ofer Zeitouni. A

metric entropy bound is not sufficient for learnability. IEEE Transactions on Information
Theory, 40(3):883–885, 1994.

9 William Feller. An Introduction to Probability Theory and its Applications, volume 1. John
Wiley & Sons, 1968.

10 Julian Keilson and Hans Gerber. Some results for discrete unimodality. Journal of the
American Statistical Association, 66(334):386–389, 1971.

11 Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984.

12 Andrew Yao. Probabilistic computations: Toward a unified measure of complexity. In
Proceedings of the 18th Symposium on Foundations of Computer Science, pages 222–227,
1977.

FO2 with one transitive relation is decidable
Wiesław Szwast1 and Lidia Tendera∗1

1 Institute of Mathematics and Informatics,
Opole University, Oleska 48, 45-052 Opole, Poland
[szwast,tendera]@math.uni.opole.pl

Abstract
We show that the satisfiability problem for the two-variable first-order logic, FO2, over transitive
structures when only one relation is required to be transitive, is decidable. The result is optimal,
as FO2 over structures with two transitive relations, or with one transitive and one equivalence
relation, are known to be undecidable, so in fact, our result completes the classification of FO2-
logics over transitive structures with respect to decidability. We show that the satisfiability
problem is in 2-NExpTime. Decidability of the finite satisfiability problem remains open.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.1 Mathematical Logic,
F.4.3 Formal Languages

Keywords and phrases classical decision problem, two-variable first-order logic, decidability,
computational complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.317

1 Introduction

FO2 is the restriction of the classical first-order logic over relational signatures to formulae
with at most two distinct variables. It is well-known that FO2 enjoys the finite model
property [20], and its satisfiability (hence also finite satisfiability) problem is NExpTime-
complete [5].

One particular drawback of FO2 is that it can neither express transitivity of a binary
relation nor say that a binary relation is a partial (or linear) order, or an equivalence
relation. These natural properties are important for practical applications, thus research has
started to investigate FO2 over restricted classes of structures in which some distinguished
binary symbols are required to be interpreted as transitive relations, orders, equivalences,
etc. The idea comes from modal correspondence theory, where various conditions on the
accessibility relations allow to restrict the class of Kripke structures considered, e.g. to
transitive structures for the modal logic K4 or equivalence structures for the modal logic S5.
Orderings, on the other hand, are very natural when considering temporal logics, where they
model time flow, but they also are used in different scenarios, e.g. in databases or description
logics, to compare objects with respect to some parameters.

Unfortunately, the remarkably robust decidability of modal logics and its various exten-
sions towards greater expressibility does not transfer immediately to extensions of FO2, and
the picture for FO2 is more complex and to some extent less understood. It appeared that
both the satisfiability and the finite satisfiability problems for FO2 are undecidable in the
presence of several equivalence or several transitive relations [6, 7]. These results were later

∗ Lidia Tendera would like to acknowledge the support of Polish Ministry of Science and Higher Education
grant N N206 37133.

© Wiesław Szwast and Lidia Tendera;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 317–328

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.317
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

318 FO2 with one transitive relation is decidable

strengthened: FO2 is undecidable in the presence of two transitive relations [11, 9], three
equivalence relations [15], one transitive and one equivalence relation [17], or three linear
orders [12].

On the positive side it is known that FO2 with one or two equivalence relations is
decidable [16, 17, 14]. The same holds for FO2 with one linear order [22]. The intriguing
questions left open by this research was the case of FO2 with one transitive relation and
FO2 with two linear orders.

In this paper we answer the first question positively: we prove that the satisfiability
problem for the extension of FO2 where exactly one binary relation is required to be trans-
itive, FO2

T , is decidable in 2-NExpTime. The result completes the classification of variants
of FO2 over transitive structures with respect to decidability.

For the special case of two linear orders, ExpSpace-completeness of finite satisfiability
is shown, subject to certain restrictions on signatures, in [24]. (The case of unrestricted
signatures, and decidability of the general satisfiability problem are currently open.)

It is also worth to compare the above results with results concerning GF2 i.e. the two-
variable restriction of the guarded fragment GF [1] where quantifiers are guarded by atoms.
GF+TG is the restriction of GF2 with transitive relations where the transitive relation
symbols are allowed to appear only in guards. As shown in [26] undecidability of FO2 with
transitivity transfers to GF2 with transitivity; however, GF+TG is decidable irrespective
of the number of transitive symbols. Moreover, as noted in [11], the decision procedure
developed for GF2+TG can be applied to GF2 with one transitive relation that is allowed
to appear also outside guards, giving 2-ExpTime-completeness of the latter fragment.

Also of note in this context is the interpretation of FO2 over data words and data trees
that appear e.g. in verification and XML processing. Decidability of FO2 over data words
with one additional equivalence relation was shown in [3]. For more results related to FO2

over data words or data trees see e.g. [18, 24, 4, 21, 2].
It makes sense to also consider more expressive systems in which we may refer to the

transitive closure of some relation. In fact, relatively few decidable fragments of first-order
logic with transitive closure are known. One exception is the logic GF2 with a transitive
closure operator applied to binary symbols appearing only in guards [19]. This fragment
captures the two-variable guarded fragment with transitive guards, GF2+TG, preserving its
complexity [27, 10]. Also decidable is the satisfiability problem for the logic ∃∀(DTC+[E]),
i.e. the prefix class ∃∀ extended by the positive deterministic transitive closure operator of
one binary relation, which is shown to enjoy the exponential model property [8]. Recently,
it has been shown that the satisfiability problem for the two-variable universal fragment of
first-order logic with constants remains decidable when extended by the transitive closure
of a single binary relation [13]. Whether the same holds for full FO2 is open.

Expressive power of FO2
T . As has already been mentioned, FO2 has the finite model

property. Adding one transitive relation to GF2 (even restricted only to guards) we can
write infinity axioms, however models for this logic still enjoy the so called tree-like property,
i.e. new elements required by ∀∃-conjuncts can be added independently. Below we give an
example of an infinity axiom in FO2

T that enforces models where in some triples all elements
depend on each other.

We use the transitive relation symbol T and two unary symbols P andQ. It is not difficult
to formalize the following statements by an FO2

T formula: (a) T is strictly antisymmetric.
(b) Elements of P form one infinite chain. (c) Elements of Q are incomparable. (d) Every
element of P has an incomparable element in Q. (e) Every element of Q is smaller than
some element in P .

W. Szwast and L. Tendera 319

P . . . ◦ // ◦ // ◦ // ◦ // ◦ // ◦ . . .

Q . . . •

??

•

??

•

??

•

??

•

??

• . . .

Figure 1 A model satisfying (a)-(e). Arrows depict elements related by T . Lines connect elements
required by (d), not connected by T .

In any model satisfying (a)-(e) there is an infinite chain of elements in P that induces an
infinite antichain of elements in Q (see Figure 1). Note also, that it suffices that the unique
transitive relation is supposed to be a partial ordering.
Outline of the proof. Models for our logic, taking into account the interpretation of
the transitive relation, can obviously be seen as partitioned into cliques. As usually for
two-variable logics, we first establish a “Scott-type” normal form for FO2

T : ∀∀ ∧
∧

∀∃,
allowing us to restrict the nesting of quantifiers to depth two, as well as to concentrate
on the ∀∃-conjuncts demanding “witnesses” for all elements in a model. The form of the
∀∃-conjuncts enables to distinguish witnesses required inside cliques (i.e. realizing a 2-type
containing both T (x, y) and T (y, x), see Section 2 for a precise definition) from witnesses
outside cliques. We also establish a small clique property for FO2

T (practically the same as in
[15]), allowing us to restrict attention to models with cliques exponentially bounded in the
size of the signature. Further constructions proceed on levels of cliques rather than individual
elements. (An alternative approach would be to consider first the satisfiability problem over
an antisymmetric relation T and then reduce the general problem to the aforementioned one
taking into account the bound on the clique sizes.)

Crucial to our argument is this property: any infinitely satisfiable sentence has an infinite
narrow model, i.e. a model whose universe can be partitioned into segments (i.e. sets of
cliques) S0, S1, . . ., each of doubly exponential size, such that every element in

⋃j−1
i=0 Si

requiring a witness outside its clique has the witness either in S0 or in Sj (so, in every
Sk, k ≥ j, Def. 16). This immediately implies that, when needed, every single segment Sj

(j > 0) can be removed from the structure, to yield a model with new properties.
To prove existence of narrow models, we first make some useful observations. In partic-

ular, we show that a single clique can be duplicated, provided its type called splice appears
at least twice in a model (Claim 7). The property is used to show the main technical result
(Claim 10 and Corollary 11). Next, the idea is generalized in Lemma 13 to show that for
any finite subset F of elements, the model can be extended by a fixed number of cliques
(depending only on the signature, and not depending on the cardinality of F) providing all
required witnesses for elements from F .

As the main result of the paper, we show that from any narrow model we can build
a canonical model where every two segments of the infinite partition (except the first) are
isomorphic and they are connected using at most two distinct similarity types (Def. 19). In
fact, these constructions can be seen as an application of the infinite Ramsey theorem [23],
where segments of the models are considered to be nodes in a colored graph, and similarity
types of pairs of segments are colors of edges.

The above properties suffice to obtain the 2-NExpTime decision procedure for the sat-
isfiability problem for FO2

T given in Theorem 21 and Corollary 22. We note however that
the best lower bound coming from GF2+TG is 2-ExpTime, thus our result leaves a gap in
complexity. We also note that our decision procedure cannot be straightforwardly general-
ized to solve the finite satisfiability problem for FO2

T and to the best of our knowledge, the
latter problem remains open (see Outlook for some discussion).

STACS’13

320 FO2 with one transitive relation is decidable

2 Preliminaries

We denote by FO2 the two-variable fragment of first-order logic (with equality) over re-
lational signatures. By FO2

T we understand the set of FO2
T -formulas over any signature

σ = σ0 ∪ {T}, where T is a distinguished binary predicate. The semantics for FO2
T is as for

FO2, subject to the restriction that T is always interpreted as a transitive relation.
In this paper, σ-structures are denoted by Gothic capital letters and their universes

by corresponding Latin capitals. Where a structure is clear from context, we frequently
equivocate between predicates and their realizations, thus writing, for example, R in place
of the technically correct RA. If A is a σ-structure and B ⊆ A, then A � B denotes the
substructure of A with the universe B.

An (atomic and proper) k-type (over a given signature) is a maximal consistent set of
atoms or negated atoms over k distinct variables not containing equality atoms xi = xj

with i 6= j. If β(x, y) is a 2-type over variables x and y, then β � x (respectively, β � y)
denotes the unique 1-type that is obtained from β by removing atoms with the variable y
(respectively, the variable x). We denote by α the set of all 1-types and by β the set of all
2-types (over a given signature). Note that |α| and |β| are bounded exponentially in the
size of the signature. We often identify a type with the conjunction of all its elements.

For a given σ-structure A and a ∈ A we say that a realizes a 1-type α if α is the unique
1-type such that A |= α[a]. We denote by tpA(a) the 1-type realized by a. Similarly, for
distinct a, b ∈ A, we denote by tpA(a, b) the unique 2-type realized by the pair a, b, i.e. the
2-type β such that A |= β[a, b]. In general, for finite B,C ⊆ A, B ∩ C = ∅, by tpA(B,C)
we denote the similarity type of the substructure A � (B ∪ C) (or, in other words, its
card(B ∪ C)-type).

Assume A is a σ-structure and B,C ⊆ A. We denote by αA (respectively, αA[B]) the
set of all 1-types realized in A (respectively, realized in A � B), and by βA (respectively,
βA[B]) the set of all 2-types realized in A (respectively, realized in A � B). We denote by
βA[a,B] the set of all 2-types tpA(a, b) with b ∈ B, and by βA[B,C] the set of all 2-types
tpA(b, c) with b ∈ B, c ∈ C.

Let γ be a σ-sentence of the form ∀x ∃y ψ(x, y) and a ∈ A. We say that an element
b ∈ A is a γ-witness for a in the structure A if A |= ψ(a, b); b is a proper γ-witness, if b is a
γ-witness and a 6= b.

Scott normal form. As with FO2, so too with FO2
T , analysis is facilitated by the availab-

ility of normal forms.

I Definition 1. An FO2-sentence Ψ is in Scott normal form if it is of the following form:
∀x∀y ψ0(x, y) ∧

∧M
i=1 ∀x∃y ψi(x, y), where every ψi is quantifier-free and includes unary and

binary predicate letters only.

Without loss of generality we suppose that for i ≥ 1, ψi(x, y) entails x 6= y (replacing
ψi(x, y) with (ψi(x, y) ∨ ψi(x, x)) ∧ x 6= y, which is sound over all structures with at least
two elements).

Two formulas are said to be strongly equisatisfiable if they are satisfiable over the same
universe. The following Lemma is typical for two-variable logics.

I Lemma 2 ([25, 5]). For every formula ϕ ∈ FO2 one can compute in polynomial time a
strongly equisatisfiable normal form formula ψ ∈ FO2 over a new signature whose length is
linear in the length of ϕ.

Suppose the signature σ consists of predicates of arity at most 2. To define a σ-structure
A, it suffices to specify the 1-types and 2-types realized by elements and pairs of elements

W. Szwast and L. Tendera 321

from the universe A. In the presence of a transitive relation, we classify 2-types according
to the transitive connection between x and y. And so, we distinguish β→, β←, β↔ and β−

such that β = β→ ∪̇ β← ∪̇ β↔ ∪̇ β− and for instance: β ∈ β→ iff (T (x, y) ∧ ¬T (y, x)) ∈ β,

β ∈ β↔ iff (T (x, y) ∧ T (y, x)) ∈ β, etc.
For a quantifier-free formula ϕ(x, y) we use superscripts →, ←, ↔ and − to define new

formulas that explicitly specify the transitive connection between x and y. For instance, for
a quantifier-free formula ϕ(x, y) ∈ FO2

T we let ϕ→(x, y) := ϕ(x, y) ∧ T (x, y) ∧ ¬T (y, x).
This conversion of FO2

T -formulae leads to the the following variant of the Scott normal
form:

∀x∀y ψ0∧
m∧

i=1
γi ∧

m∧
i=1

δi (1)

where γi = ∀x∃y ψdi
i (x, y) with di ∈ {→,← ,− }, and δi = ∀x∃y ψ↔

i (x, y).
For a fixed sentence Ψ in normal form (1) we often write γi ∈ Ψ to indicate that γi is a

conjunct of Ψ of the form ∀x∃y ψdi
i (x, y).

I Lemma 3. Let ϕ be an FO2
T -formula over a signature τ . We can compute, in polynomial

time, a strongly equisatisfiable FO2
T -formula in normal form, over a signature σ consisting

of τ together with a number of additional unary and binary predicates.

Sketch. We employ the standard technique of renaming subformulas familiar from [25] and
[5], noting that any formula ∃yψ is logically equivalent to ∃yψ→∨∃yψ←∨∃yψ↔∨∃yψ−. J

The following trivial observation will be very useful in the paper.

I Proposition 4. Assume A is a σ-structure and Ψ is a FO2
T -sentence over σ in normal

form (1). Then A |= Ψ if and only if
(a) for every a ∈ A, for every γi (1 ≤ i ≤ m) there is a γi-witness for a in A,
(b) for every a ∈ A, for every δi (1 ≤ i ≤ m) there is a δi-witness for a in A,
(c) for every a, b ∈ A, tpA(a, b) |= ψ0,
(d) TA is transitive in A.

A small clique property for FO2
T . Let A be a σ-structure. A subset B of A is called

T -connected if β[B] ⊆ β↔[A]. Maximal T -connected subsets of A are called cliques. Note
that if β[a,A] ∩ β↔[A] = ∅, for some a ∈ A, then {a} is a clique. We prove the following
small clique property.

I Lemma 5. Let Ψ be a satisfiable FO2
T -sentence in normal form, over a signature σ. Then

there exists a model of Ψ in which the size of each clique is bounded exponentially in |σ|.

We first show how to replace a single clique in models of normal-form FO2
T -sentences by

an equivalent small one. The idea is not new, it was used in [27] to show that T -cliques in
models of GF2+TG can be replaced by appropriate small structures called T -petals (Lemma
17). Later, in [16] it was proved that for any structure A and its substructure B, one may
replace B by an alternative structure B′ of a bounded size in such a way that the obtained
structure A′ and the original structure A satisfy exactly the same normal form FO2 formulas.
Due to space limitations, a precise statement of the latter lemma and the proof of the small
clique model property will appear in the full version of the paper.

STACS’13

322 FO2 with one transitive relation is decidable

3 Splices and duplicability

In the remainder of the paper we fix a relational signature σ and assume Ψ is an FO2
T -

sentence in normal form (1). By Lemma 5, we may already assume (and we do so) that
models of Ψ have the small clique property. In the next two sections we assume that Ψ is
satisfiable and, if not stated otherwise, A |= Ψ.

In this section we analyze properties of models of Ψ on the level of cliques rather than
individual elements. We give here the key technical argument of the paper (Corollary 11).
It says, roughly speaking, that if A |= Ψ and elements of a finite subset F of the universe
A have their γi-witnesses in several “similar” cliques then A can be extended by one new
clique, where all the elements of F have their γi-witnesses.

First, we need to introduce some new notions and notation. For a ∈ A denote by ClA(a)
the unique clique C ⊆ A with a ∈ C. When F ⊆ A, denote ClA(F) = {ClA(a) : a ∈ F}
and finally, ClA = ClA(A). Note that whenever B ∈ ClA, and a ∈ A is an element outside
the clique B, then the 2-types between a and any element b ∈ B belong to the same subset
of β, i.e. either to β→, β← or β−. So, we might speak about elements of A connected with
the clique B using “directed” edges. Similarly, we can identify cliques connected with B

using “incoming” and “outgoing” edges.

I Definition 6. Let A be a σ-structure and let B ∈ ClA. Define:
InA(B) def= {tpA(C) : C ∈ ClA and β[C,B] ⊆ β→},
OutA(B) def= {tpA(C) : C ∈ ClA and β[C,B] ⊆ β←},
spA(B) = 〈tpA(B), InA(B), OutA(B)〉,
SpA = {spA(B) : B ∈ ClA}. Elements of SpA are called A-splices.

Splices define cliques reachable from a given clique via T .
We say that two cliques B,B′ ∈ ClA realize the same splice, written B ≡A B′, if

spA(B) = spA(B′). When A is understood we often omit the superscript in ≡A and write
≡. Note that ≡A is an equivalence relation on ClA. Moreover, if we have an a priori upper
bound on the size of cliques in ClA, then ClA/≡ is finite (and of bounded cardinality).

Additionally, we distinguish the set K(A) of unique cliques in A: K(A) = {B ∈ ClA :
card([B]≡) = 1} and the corresponding subset K(A) of the universe of A, that consists of
the elements of the unique cliques: K(A) =

⋃
B∈K(A) B.

Our task is now to show that any model of Ψ containing a non-unique clique B can be
extended into a new model of Ψ by adding a copy of B. The copy of B is added in such
a way that it also provides, for all conjuncts of the form γi, all the witnesses for elements
outside the two cliques that have been provided by B. This property will be explored later,
when new models will be constructed by removing segments (i.e. sets of cliques) from given
ones.

For every γi ∈ Ψ (recall γi = ∀x∃y ψdi
i (x, y) with di ∈ {→,← ,− }) and for every a ∈ A

we define WA
i (a) as the set of all proper γi-witnesses for a in A:

WA
i (a) def= {b ∈ A : A |= ψi(a, b), b 6= a}.

Similarly, for every γi ∈ Ψ and for every F ⊆ A we define WA
i (F) def=

⋃
a∈F W

A
i (a).

The following claim states that every non-unique clique in a given model can be properly
duplicated, as informally described above.

I Claim 7 (Duplicability). Assume A |= Ψ, B1 ∈ ClA and B1 6∈ K(A). There is an extension
A′ of A by one new clique D such that
1. A′ |= Ψ,

W. Szwast and L. Tendera 323

2. for every conjunct γi of Ψ, for every a ∈ A we have:
B1 ∩WA

i (a) 6= ∅ iff D ∩WA′

i (a) 6= ∅, and
3. spA′(D) = spA

′(B1) = spA(B1).

Proof. Let A |= Ψ, B1 ∈ ClA. Since B1 6∈ K(A), there exists B2 ∈ ClA, B2 6= B1 such that
spA(B2) = spA(B1). Assume D is a duplicate of A � B1, D ∩ A = ∅, f1 : D 7→ B1 and
f2 : D 7→ B2 are appropriate isomorphism functions. Let A′ be an extension of A with the
universe A∪̇D such that:

tpA
′(d, b) def= tpA(b, f2(d)), for every b ∈ B1, d ∈ D (note that β[d,B1] = β[B1, f2(d)]

and so β[D,B1] = β[B1, B2]),
tpA

′(d, a) def= tpA(f1(d), a), for every a ∈ A \ (B1 ∪D), d ∈ D (note that β[d,A \ B1] =
β[f1(d), A \B1] and so β[D,A \B1] = β[B1, A \B1]).

To see that A′ |= Ψ one can show that conditions (a)–(d) of Proposition 4 hold for A′. J

Using the above claim we may build saturated models in the following sense.

I Definition 8. Assume A |= Ψ. We say that A is witness-saturated, if A has the small
clique property and for every a ∈ A, for every γi ∈ Ψ (1 ≤ i ≤ m)

Wi(a) ⊆ K(A) or Wi(a) is infinite.

Note that if a witness-saturated model A is finite then A = K(A). By Lemma 5 and by
iterative application of Claim 7 we get the following.

I Lemma 9 (Saturated model). Every satisfiable normal form sentence Ψ has a countable
witness-saturated model. Additionally, if A is witness-saturated, then the extension A′ given
by Claim 7 is also witness-saturated.

The above Lemma is essential for the proof of the key technical tool for the paper,
Corollary 11, given below. It says that when several elements a1, a2, . . . , an of a model
A have γi-witnesses in several distinguished cliques that realize the same splice, one can
extend the model A by a single clique D (realizing the same splice) in which a1, a2, . . . , an

have their γi-witnesses. The proof is based on a more subtle (than in Claim 7) analysis of
models of a normal form sentence Ψ given in Claim 10. In the Claim note that whenever
β(C1, C2) ∈ β← then β(C2, C1) 6∈ β←.

I Claim 10. Assume A is countable witness-saturated and γi ∈ Ψ. Let C1, C2, B1, B2 ∈ ClA,

β(C1, C2) 6∈ β←, B1 6= B2, B1 ∩ Wi(C1) 6= ∅, B2 ∩ Wi(C2) 6= ∅, C1 6∈ K(A), C1 ≡ C2 and
B1 ≡ B2. Then, there exists an extension A1 of A by at least one clique D such that

(i) A1 |= Ψ and A1 is witness-saturated,
(ii) for every a ∈ A: if B1 ∩WA

i (a) 6= ∅ then D ∩WA1
i (a) 6= ∅,

(iii) for every a ∈ C2: if B2 ∩WA
i (a) 6= ∅ then D ∩WA1

i (a) 6= ∅,
(iv) spA1(D) = spA1(B1) = spA(B1).

Proof. We have several cases. In each case we add a duplicate D of the clique B1 where
both C1 and C2 will get their γi-witnesses. We sketch only one of the interesting cases.
Case 1. β[C1, B1] ⊆ β− and β[C1, C2] ⊆ β→ ∪ β−. In this case C1 6= C2 and γi =
∀x∃y ψ−i (x, y). So, β[C1, B1] ⊆ β− and β[C2, B2] ⊆ β−.
Subcase 1.a. β[C1, C2] ∈ β→, β[B1, B2] ⊆ β−, β[C1, B2] ⊆ β→ and β[B1, C2] ∈ β→.

The construction proceeds in four steps.
Step 1 (copying of B1). Let A′ be the witness saturated extension of A by one new clique D
– a duplicate of the clique B1 given by Claim 7 and Lemma 9. Observe that all conditions
(i)–(iv) hold in A′ except (iii) since by construction of A′ βA′

[C2, D] = βA[C2, B1] ⊆ β←.

STACS’13

324 FO2 with one transitive relation is decidable

Step 2 (modification of tpA′(C2, D)). To ensure that (iii) holds, a new structure A2 is built
by defining tpA2(C2, D) def= tpA

′(C2, B2).
Step 3 (transitivity correction). To ensure that T is transitive we construct a structure A3:
for every X ∈ ClA2 , if β[D,X] ⊆ β→ and β[X,C2] ⊆ β→ then replace tpA2(D,X) by
tpA2(B2, X). One can observe that β[X,B2] ⊆ β−, so T is transitive in A3.
Step 4 (γj-witness in X correction). Let X ∈ ClA2 be such that the type tpA2(D,X) is
changed in Step 3. We show that then there is a clique X2 ∈ ClA3 such that tpA3(X2) =
tpA3(X) and βA3 [D,X2] ⊆ β→. For, observe that tpA3(X) ∈ OutA3(B1) and so tpA3(X) ∈
OutA3(B2) since B1 ≡ B2. Let X1 ∈ ClA3 , tpA3(X1) = tpA3(X) and β[B2, X1] ⊆ β→.
Since β[C1, B2] ⊆ β→ we have β[C1, X1] ⊆ β→ and so tpA3(X1) ∈ OutA3(C1). Hence, since
C1 ≡ C2 there exist X2 ∈ ClA3 such that tpA3(X2) = tpA3(X1) and β[C2, X2] ⊆ β→. Since
β[B1, C2] ⊆ β→, so β[B1, X2] ⊆ β→, and hence, by construction of A′, β[D,X2] ⊆ β→.
To obtain the required model A1 replace tpA3(D,X2) by tpA2(D,X) (= tpA(B1, X)).

Correctness proof of the above construction, as well as other cases, will appear in the
full version of the paper. J

I Corollary 11. Assume A is countable witness-saturated, γi ∈ Ψ and X ∈ SpA. Let
F ⊆ A \ K(A) be a finite set such that for every a ∈ F there is b ∈ WA

i (a) such that
b 6∈ K(A) and sp(ClA(b)) = X. Then, there exists an extension A′ of A by at least one
clique D such that

(i) A′ |= Ψ and A′ is witness-saturated,
(ii) D ∩WA′

i (a) 6= ∅, for every a ∈ F ,
(iii) spA

′(D) = X.

Proof. Let F = {a1, a2, . . . , ap}, where a1 denotes an element of F such that for every
a ∈ F \ {a1}, tpA(a1, a) 6∈ β←. (Note that a1 can always be found since F is finite and T

is transitive in A.) We iteratively apply Claim 10. Denote A1 = A and for k = 2, 3, . . . , p
let Ak and Dk be the extension of Ak−1

1 by at least one clique Dk given by Claim 10 for
a1 and ak. Obviously, for every k (2 ≤ k ≤ p) we have Dk ∩ WA′

i (a) 6= ∅, for every a ∈
{a1, a2, . . . , ak}. J

4 Canonical models

In this section we analyze properties of models of Ψ on the level of segments which consist
of several cliques, and constitute a partition S0, S1, . . . of the universe of a model. Every
segment Sj has a fixed (doubly exponential) size and is meant to contain all γi-witnesses
for elements from earlier segments S0, S1, . . . , Sj−1. On this level of abstraction cliques and
splices of a model become less important.

I Definition 12. A finite subset S ⊂ A is a segment in A if ClA(a) ⊆ S for every a ∈ S.

In the following we reserve the letter S (possibly decorated) to denote segments. Define
s = |Sp(σ)| and denote by h the bound of the size of each clique in a small-clique σ-structure,
given by Lemma 5. Note that s is doubly exponential and h is exponential in |σ|.

We first prove a generalization of Corollary 11. It says, roughly speaking, that if A |= Ψ
and F is a finite subset of A, then it is possible to extend A by a segment of fixed cardinality
in which all elements of F have their γi-witnesses, for every i (1 ≤ i ≤ m).

I Lemma 13 (Witnesses compression). Assume A is a countable witness-saturated model of
Ψ and F ⊆ A \K(A) is finite. There is a witness-saturated extension A′ of A by a segment
S such that

W. Szwast and L. Tendera 325

1. A′ |= Ψ,
2. |S| ≤ m · s · h,
3. for every γi ∈ Ψ, for every a ∈ F , if WA

i (a) \K(A) 6= ∅, then WA′

i (a) ∩ S 6= ∅.

Proof. First, for given i (1 ≤ i ≤ m) and X ∈ SpA let FX
i ⊆ S be a maximal subset of F

such that for every a ∈ FX
i there is b ∈ WA

i (a) such that b 6∈ K(A) and sp(ClA(b)) = X.
Now, for every i (1 ≤ i ≤ m) and for every X ∈ SpA iteratively apply Corollary 11 for FX

i

and denote each new clique added in the process by DX
i . Let S be the segment consisting

of elements of the new cliques: S def=
⋃

1≤i≤m

⋃
X∈SpA DX

i .

Condition (i) of Lemma 11 implies that A′ |= Ψ. Obviously, |S| ≤ m · s ·h. To show that
condition 3 of our lemma holds, assume γi ∈ Ψ, a ∈ F and there exists b ∈ WA

i (a) such that
b 6∈ K(A). So a ∈ FX

i , where X = sp(ClA(b)). By condition (ii) of Lemma 11 we obtain
DX

i ∩WA′

i (a) 6= ∅, and so, WA′

i (a) ∩ S 6= ∅. J

I Definition 14. A segment S A is redundant in A, if for every a ∈ A \ S and for every
γi ∈ Ψ we have: WA

i (a) ∩ S 6= ∅ implies there exists c ∈ A \ S such that c ∈ WA
i (a).

I Claim 15. If A |= Ψ and S A is redundant in A, then A � (A \ S) |= Ψ.

Proof. Every subgraph of a transitive graph is also transitive. Conditions (a)–(c) of Pro-
position 4 obviously hold for A � (A \ S). J

I Definition 16. A model A of Ψ is narrow if there is an infinite partition PA = {S0, S1, . . .}
of the universe A such that:
1. K(A) ⊂ S0, |S0| ≤ (m+ 1) · s · h,
2. |Sj | ≤ m · s · h, for every j ≥ 1,
3. for every j ≥ 0, for every e ∈

⋃j
k=0 Sk and for every γi ∈ Ψ,

if WA
i (e) ∩ S0 = ∅, then WA

i (e) ∩ Sj+1 6= ∅.

I Lemma 17. Every infinitely satisfiable sentence Ψ has a narrow model.

Proof. Assume A is an infinite witness-saturated model of Ψ that exists by Lemma 13. For
γi ∈ Ψ and a ∈ A denote by γ̄i(a) an arbitrarily chosen element b ∈ WA

i (a). Define A0 = A

and S0 = K(A) ∪
⋃

a∈K(A) Cl
A(γ̄i(a)).

Now, for j = 0, 1, 2, . . . define:
Aj+1 = A′j , where A′j is the extension of Aj given by Lemma 13 for F =

⋃j
k=0 Sk,

Sj+1 = B, where B is the finite set given by Lemma 13; B extends Aj to Aj+1 in such
a way, that:

Aj+1 |= Ψ,
|B| ≤ m · s · h,
for every γi ∈ Ψ, for every a ∈ F , if WA

i (a) \K(Aj) 6= ∅, then W
Aj+1
i (a) ∩B 6= ∅.

Now, define A′ = (
⋃∞

k=0 Ak) �
⋃∞

k=0 Sk. By Claim 15 and Lemma 13, it is easy to see, that
A′ is a narrow model of Ψ with partition PA′ = {S0, S1, . . .}. J

I Definition 18. Assume A is a σ-structure, x, y ∈ N+ and B,B′, C, C ′ are finite subsets
of A with fixed orderings: B = {b1 < . . . < bx}, B′ = {b′1 < . . . < b′y}, C = {c1 < . . . < cx},
C ′ = {c′1 < . . . , c′y} such that B ∩B′ = ∅, C ∩ C ′ = ∅.
A connection type of B and B′ in A is the structure 〈B,B′〉 def= A � (B∪B′). Two connection
types 〈B,B′〉 and 〈C,C ′〉 are the same connection types in A, denoted 〈B,B′〉 ∼=A 〈C,C ′〉,
if the function f : B ∪B′ 7→ C ∪C ′ defined by f(bj) = cj and f(b′j) = c′j is an isomorphism
of 〈B,B′〉 and 〈C,C ′〉.

STACS’13

326 FO2 with one transitive relation is decidable

I Definition 19. Assume A is a narrow model of Ψ and PA = {S0, S1, . . .} is any partition
satisfying conditions 1-3 of Definition 16. We say that A is canonical if for every j, k ∈ N+,

0 < j < k, we have 〈Sj , S0〉 ∼=A 〈S1, S0〉, and 〈Sk, Sj〉 ∼=A 〈S2, S1〉.

I Lemma 20. Every infinitely satisfiable sentence Ψ has a canonical model.

Proof. Let A be a narrow model of Ψ with partition PA = {S0, S1, . . .} given by Definition
16. Additionally, assume that in every segment Sj , j ≥ 0, there is a fixed linear ordering.

Observe first that for every p > 0, Sp is redundant in A. For, assume (cf. Definition 14)
b ∈ Sp, a ∈ A\Sp and b ∈ WA

i (a). Assume a ∈ Sq and take j ∈ N+ such that j > max{p, q}.
By Definition 16, we have that if WA

i (a) ∩ S0 = ∅, then WA
i (a) ∩ Sj+1 6= ∅. So, there is

c ∈ S0 ∪ Sj+1 such that c ∈ WA
i (a). Similarly, for every infinite V ⊂ N+, the segment⋃

j∈N+\V Sj is redundant in A and, by Claim 15, A �
⋃

j∈V ∪{0} Sj |= Ψ.
To construct the canonical model we first find an infinite set V ⊂ N+ such that for every

j, l ∈ V , j 6= l, 〈Sl, S0〉 ∼=A 〈Sj , S0〉. Observe that the set V does exist (by the infinite
Ramsey theorem, there are infinitely many segments in PA and only a finite number of
similarity types).

Secondly, we find an infinite set W ⊆ V such that for every i, j, k, l ∈ W with i < j and
k < l we have 〈Sj , Si〉 ∼=A 〈Sl, Sk〉. (Again, W exists by the infinite Ramsey theorem).

Finally, we define A′ = A �
⋃

j∈W∪{0} Sj . By Claim 15, A′ |= Ψ. Obviously, A′ is
canonical with partition PA′ = {Sj : j ∈ N+, j = #p}, where #p is the position number of
p ∈ W ∪ {0}. J

5 Decidability and complexity

From Lemma 20 we get immediately the following theorem.

I Theorem 21. An FO2
T -sentence Ψ is satisfiable if and only if there exist a σ-structure A

and S0, S1, S2, S3 ⊆ A, such that:
1. |A| ≤ (4m+ 1) · s · h,
2. either S1 = S2 = S3 = ∅, or {S0, S1, S2, S3} is a partition of A and then

a. 〈S1, S0〉 ∼=A 〈S2, S0〉 ∼=A 〈S3, S0〉,
b. 〈S2, S1〉 ∼=A 〈S3, S2〉 ∼=A 〈S3, S1〉,

3. for every a, b ∈ A, tpA(a, b) |= ψ0,
4. TA is transitive in A,
5. for every j = 0, 1, 2, for every e ∈ Sj and for every γi ∈ Ψ,

if WA
i (e) ∩ S0 = ∅, then WA

i (e) ∩ Sj+1 6= ∅.

Proof. (⇒) There are two cases. Either Ψ has only finite models and then, by Lemma 9,
Ψ has a witness-saturated model A with A = K(A). In this case, we put S0 = A and S1 =
S2 = S3 = ∅. Or, Ψ has infinite models, and then, by Lemma 20, Ψ has a canonical model
A′ with partition PA′ = {S0, S1, . . .}. In this case, we define A

def= A′ � (S0∪̇S1∪̇S2∪̇S3).
Note that in either case |S0| ≤ s · h+m · s · h = (m+ 1) · s · h.
(⇐) Define a structure A′ such that A′ def= S0 ∪̇ S1 ∪̇ S2 ∪̇ S3 ∪̇

⋃̇∞
j=4 Sj and, for every

j, k ∈ N+ (0 < j < k) : 〈Sj , S0〉 ∼=A′
〈S1, S0〉 and 〈Sk, Sj〉 ∼=A′

〈S2, S1〉. It is obvious that
A′ satisfies conditions (a)–(c) of Proposition 4. To show that T is transitive in A′ it suffices to
prove that for every j, k, l (0 ≤ j ≤ k ≤ l), TA′�(Sj∪Sk∪Sl) is transitive in A′ � (Sj ∪Sk ∪Sl).
The latter condition can be easily verified; hence, A′ |= Ψ. J

I Corollary 22. SAT(FO2
T) ∈ 2 -NExpTime.

REFERENCES 327

Proof. To check whether a given FO2
T sentence Ψ is satisfiable we follow Theorem 21 and

we obtain a nondeterministic double exponential time procedure, as described below.
1. Guess a σ-structure A of cardinality |A| ≤ (4m+ 1) · s · h and partition

PA = {S0,S1, S2, S3};
2. Guess enumerations of every segment S0,S1, S2, S3;
3. If not:

a. 〈S1, S0〉 ∼=A 〈S2, S0〉 ∼=A 〈S3, S0〉 and
b. 〈S2, S1〉 ∼=A 〈S3, S2〉 ∼=A 〈S3, S1〉
then reject;

4. For every a, b ∈ A, if tpA(a, b) 6|= ψ0 then reject;
5. For every a, b, c ∈ A, if not (TA(a, b) ∧ TA(b, c) ⇒ TA(a, c)) then reject;
6. For every j = 0, 1, 2, for every e ∈ Sj , for every γi ∈ Ψ such that WA

i (e) ∩ S0 = ∅
if WA

i (e) ∩ Sj+1 = ∅ then reject;
7. Accept; J

6 Outlook

Since the finite model property fails for FO2
T , an interesting question is whether the finite

satisfiability problem is also decidable. Immediately from Lemma 17 we have the following
observation.

I Corollary 23. An FO2
T -sentence Ψ is satisfiable if and only if

Ψ has a model of cardinality ≤ s · h, or Ψ has an infinite model.
The s · h bound on the size of the finite model of Ψ depends on the number of different
σ-splices and the size of cliques in a structure with the small clique property. Unfortunately,
this observation does not suffice to answer the finite satisfiability problem, as in general, one
can imagine that a finite model contains several realizations of the same splice. So, to the
best of our knowledge, the finite satisfiability problem for FO2

T remains open. We believe
that the latter problem is decidable; however, we suppose that an essential extension of the
above approach is required to get the proof.

We also note that the 2-NExpTime bound for the satisfiability problem leaves a gap
in complexity, as the best lower bound coming from the two-variable guarded logic with
transitive guards is 2-ExpTime [10]. We believe that the upper bound proved in our paper
can be improved; however, as FO2

T does not enjoy the tree-like property, standard techniques
using alternating machines cannot be applied directly.

Acknowledgements The authors acknowledge insightful comments from the anonymous
referees that helped to improve the presentation and simplify some proofs in Section 4.

References

1 H. Andréka, J. van Benthem, and I. Németi. Modal languages and bounded fragments
of predicate logic. J. Philos. Logic, 27:217–274, 1998.

2 M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable
logic on data trees and xml reasoning. In Proc. of PODS-06, pages 10–19, New York,
NY, USA, 2006. ACM.

3 M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable
logic on words with data. In LICS-06, pages 7–16, 2006.

4 C. David, L. Libkin, and Tony Tan. On the satisfiability of two-variable logic over data
words. In Christian G. Fermüller and Andrei Voronkov, editors, LPAR (Yogyakarta),
volume 6397 of Lecture Notes in Computer Science, pages 248–262. Springer, 2010.

STACS’13

328 REFERENCES

5 E. Grädel, P. Kolaitis, and M. Vardi. On the decision problem for two-variable first-order
logic. Bull. of Symb. Logic, 3(1):53–69, 1997.

6 E. Grädel and M. Otto. On Logics with Two Variables. Theoretical Computer Science,
224:73–113, 1999.

7 E. Grädel, M. Otto, and E. Rosen. Undecidability results on two-variable logics. Arch.
Math. Log., 38(4-5):313–354, 1999.

8 N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, and G. Yorsh. The boundary
between decidability and undecidability for transitive-closure logics. In CSL, pages 160–
174, 2004.

9 Y. Kazakov. Saturation-based decision procedures for extensions of the guarded fragment.
PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, 2006.

10 E. Kieroński. The two-variable guarded fragment with transitive guards is
2EXPTIME-Hard. In Proc. of FOSSACS, volume LNCS 2620, pages 299–312, 2003.

11 E. Kieroński. Results on the guarded fragment with equivalence or transitive relations.
In Computer Science Logic, volume 3634, pages 309–324. Springer Verlag, 2005.

12 E. Kieroński. Decidability issues for two-variable logics with several linear orders. In
CSL-11, pages 337–351, 2011.

13 E. Kieroński and J. Michaliszyn. Two-variable universal logic with transitive closure. In
CSL-12, LIPIcs, pages 337–351, 2012.

14 E. Kieroński, J. Michaliszyn, I. Pratt-Hartmann, and L. Tendera. Two-variable first-
order logic with equivalence closure. In Proc. of LICS2012, pages 431–440. IEEE, 2012.

15 E. Kieroński and M. Otto. Small substructures and decidability issues for first-order
logic with two variables. In Proc. of LICS2005, pages 448–457, 2005.

16 E. Kieroński and M. Otto. Small substructures and decidability issues for first-order
logic with two variables. Journal of Symbolic Logic, 77 (3):729–765, 2012.

17 E. Kieroński and L. Tendera. On finite satisfiability of two-variable first-order logic with
equivalence relations. In Proc. of LICS2009, pages 123–132, 2009.

18 A. Manuel. Two variables and two successors. In Petr Hlinený and Antonín Kucera,
editors, MFCS, volume 6281 of Lecture Notes in Computer Science, pages 513–524.
Springer, 2010.

19 J. Michaliszyn. Decidability of the guarded fragment with the transitive closure. In
Proc. of ICALP2009, pages 261–272, 2009.

20 M. Mortimer. On languages with two variables. Zeitschr. f. Logik und Grundlagen d.
Math., 21:135–140, 1975.

21 M. Niewerth and T. Schwentick. Two-variable logic and key constraints on data words.
In Tova Milo, editor, ICDT, pages 138–149. ACM, 2011.

22 M. Otto. Two-variable first-order logic over ordered domains. Journal of Symbolic Logic,
66:685–702, 2001.

23 F. Ramsey. On a problem of formal logic. Proc. London Math. Soc. series 2, 30:264–286,
1930.

24 T. Schwentick and T. Zeume. Two-variable logic with two order relations - (extended
abstract). In CSL, pages 499–513, 2010.

25 D. Scott. A decision method for validity of sentences in two variables. J. Symb. Logic,
27:477, 1962.

26 W. Szwast and L. Tendera. On the decision problem for the guarded fragment with
transitivity. In Proc. of LICS2001, pages 147–156, 2001.

27 W. Szwast and L. Tendera. The guarded fragment with transitive guards. Annals of
Pure and Applied Logic, 128:227–276, 2004.

On Pairwise Spanners∗

Marek Cygan1, Fabrizio Grandoni1, and Telikepalli Kavitha2

1 IDSIA, University of Lugano, Switzerland; {marek, fabrizio}@idsia.ch
2 Tata Institute of Fundamental Research, India; kavitha@tcs.tifr.res.in

Abstract
Given an undirected n-node unweighted graph G = (V,E), a spanner with stretch function f(·)
is a subgraph H ⊆ G such that, if two nodes are at distance d in G, then they are at distance at
most f(d) in H. Spanners are very well studied in the literature. The typical goal is to construct
the sparsest possible spanner for a given stretch function.

In this paper we study pairwise spanners, where we require to approximate the u-v distance
only for pairs (u, v) in a given set P ⊆ V × V . Such P-spanners were studied before [Copper-
smith,Elkin’05] only in the special case that f(·) is the identity function, i.e. distances between
relevant pairs must be preserved exactly (a.k.a. pairwise preservers).

Here we present pairwise spanners which are at the same time sparser than the best known
preservers (on the same P) and of the best known spanners (with the same f(·)). In more
detail, for arbitrary P, we show that there exists a P-spanner of size O(n(|P| log n)1/4) with
f(d) = d+4 log n. Alternatively, for any ε > 0, there exists a P-spanner of size O(n|P|1/4

√
logn
ε)

with f(d) = (1 + ε)d+ 4. We also consider the relevant special case that there is a critical set of
nodes S ⊆ V , and we wish to approximate either the distances within nodes in S or from nodes
in S to any other node. We show that there exists an (S × S)-spanner of size O(n

√
|S|) with

f(d) = d + 2, and an (S × V)-spanner of size O(n
√
|S| log n) with f(d) = d + 2 log n. All the

mentioned pairwise spanners can be constructed in polynomial time.

1998 ACM Subject Classification G.2.2 Graphs Algorithms

Keywords and phrases Undirected graphs, shortest paths, additive spanners, distance preservers

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.209

1 Introduction

Let G = (V,E) be an undirected unweighted graph. A subgraph H of G is a spanner with
stretch function f(·) if, given any two nodes s, t ∈ V at distance δG(s, t) in G, the distance
δH(s, t) between the same two nodes in H is at most f(δG(s, t)). An (α, β) spanner is a
spanner with stretch functions f(d) = α · d+ β. (α and β are the multiplicative stretch and
additive stretch of the spanner, respectively). If β = 0 the spanner is called multiplicative,
and if α = 1 the spanner is called purely-additive. Spanners are very well studied in the
literature (see Section 1.2). The typical goal is to achieve the sparsest possible spanner for
a given stretch function f(·) [4, 5, 11, 12, 13, 15, 17, 19, 20, 22].

In this paper we address the natural problem of finding (even sparser) spanners in the
case that we want to approximately preserve distances only among a given subset P ⊆ V ×V
of pairs. More formally a pairwise spanner on pairs P, or P-spanner for short, with stretch
function f(·) is a subgraph H ⊆ G such that, for any (s, t) ∈ P , δH(s, t) ≤ f(δG(s, t)). In

∗ Partially supported by the ERC Starting Grant NEWNET 279352. This work was partially done while
the third author was visiting IDSIA.

© Marek Cygan, Fabrizio Grandoni, Telikepalli Kavitha;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 209–220

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.209
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

210 On Pairwise Spanners

particular, a classical (all-pairs) spanner is a (V × V)-spanner. Pairwise spanners capture
scenarios where we only (or mostly) care about some distances in the graph.

To the best of our knowledge, pairwise spanners were studied before only in the spe-
cial case that f(·) is the identity function, i.e. distances between relevant pairs have to be
preserved exactly. Coppersmith and Elkin [8] call such spanners pairwise (distance) pre-
servers, and show that one can compute pairwise preservers of size (i.e., number of edges)
O(min

{
|P|
√
n, n

√
|P|
}

).
The authors left it as an open problem to study the approximate variants of these pre-

servers, i.e. what we call pairwise spanners here. This paper takes the first step in answering
this question. We show that (for suitable P) it is possible to achieve P-spanners which are
at the same time sparser than the preservers in [8] (on the same set P) and than the sparsest
known classical spanners (with the same stretch function).

1.1 Our Results and Techniques
In this paper we present some polynomial-time algorithms to construct (α, β) P-spanners
for unweighted graphs. Our spanners are either purely-additive (i.e. α = 1) or near-additive
(i.e. α = 1 + ε for an arbitrarily small ε > 0). For arbitrary P, we achieve the following
main results (see Section 5).

I Theorem 1. (near-additive pairwise) For any ε > 0 and any P ⊆ V × V , there is a
polynomial time algorithm to compute a (1 + ε, 4) P-spanner of size O(n|P|1/4

√
log n/ε).

I Theorem 2. (purely-additive pairwise) For any integer k ≥ 1 and any P ⊆ V × V ,
there is a polynomial time algorithm to compute a (1, 4k) P-spanner of size
O(n1+1/(2k+1)(

√
(4k + 5)|P|)k/(2k+1)).

We also consider the relevant special case that all the pairs involve at least one node from
a critical set S ⊆ V . More precisely, we distinguish two types of such pairwise spanners: in
subsetwise spanners (see Section 3) we wish to approximate distances between nodes in S,
i.e. P = S × S; in sourcewise spanners (see Section 4) we wish to approximate distances
from nodes in S, i.e. P = S×V . We obtain the following improved results for the mentioned
cases.

I Theorem 3. (subsetwise) For any S ⊆ V , there is a polynomial time algorithm to
compute a (1, 2) (S × S)-spanner of size O(n

√
|S|).

I Theorem 4. (sourcewise) For any S ⊆ V and any integer k ≥ 1, there is a polynomial
time algorithm to compute a (1, 2k) (S × V)-spanner of size O(n1+1/(2k+1)(k|S|)k/(2k+1)) .

In particular, by choosing k = log n, we obtain a (1, 2 logn) sourcewise spanner of size
O(n

√
|S| log n), and a (1, 4 logn) pairwise spanner of size O(n(|P| log n)1/4).

All our spanners rely on a path-buying strategy which was first exploited in the (1, 6)
spanner by Baswana et al. [4]. The high-level idea is as follows. There is an initial clustering
phase, where we compute a suitable clustering of the nodes, and an associated subset of edges
which are added to the spanner. Then there is a path-buying phase, where we consider an
appropriate sequence of paths, and decide whether to add or not each path in the spanner
under construction1. In particular, each path has a cost which is given by the number of

1 In the spanner from Theorem 1 there is also a final step where we add a multiplicative (2 log n, 0)-
spanner.

M. Cygan, F. Grandoni, and T. Kavitha 211

edges of the path not already contained in the spanner, and a value which measures how
much the path helps to satisfy the considered set of constraints on pairwise distances. If
the value is sufficiently larger than the cost, we add the considered path to the spanner,
otherwise we do not.

In more detail, all our pairwise spanners exploit the same clustering phase. We compute
a partition C = {C1, . . . , Cq} of a subset of the nodes, and call unclustered the remaining
nodes V −∪iCi. The initial value of the spanner is GC = (V,EC), where EC contains all the
edges of G but possibly a subset of the inter-cluster edges (with endpoints in two different
clusters). The common clustering phase is described in Section 2.

During the path-buying phase we add to the spanner some extra inter-cluster edges.
Here we need to finely tune the sequence of paths that we consider, and also the definition
of value of a path. In our subsetwise and sourcewise spanners the value of a path ρ reflects
the number of pairs (v, C), where v is the endpoint of some pair and C is a cluster, such
that adding ρ to the current spanner decreases the distance between v and (the closest node
in) C. In the remaining pairwise spanners, we use a similar notion of value, but considering
the distance between pairs of clusters (C ′, C ′′).

The sequence of paths used in our subsetwise spanner and near-additive pairwise spanner
is simply given by the shortest paths among the relevant pairs. This naturally generalizes
the set of paths considered in [4]. However, for the sourcewise spanner and the purely-
additive pairwise spanner we need to consider a carefully constructed sequence of paths,
which includes slightly suboptimal paths. In more detail, we start with the set of shortest
paths between the relevant pairs. Then, for each such path ρ, if the cost of ρ is sufficiently
smaller than its value, we include ρ in the spanner. Otherwise, we replace ρ with a slightly
longer path ρ′ between the same endpoints which is much cheaper, and iterate the process
on ρ′. After a small number of iterations, the considered path becomes cheap enough and
hence we include it in the spanner. This (non-trivial) iterative construction of candidate
paths during the path-buying phase is probably the main algorithmic contribution of this
paper.

1.2 Related Work
Graph spanners were introduced by Peleg and Schaffer [17] in 1989. Spanners have been
extensively studied since then, and there are numerous applications involving spanners, such
as algorithms for approximate shortest paths [1, 7, 12], labeling schemes [16, 14], approximate
distance oracles [21, 6, 3], routing [2, 9, 10], and network design [18].

There are several algorithms for computing multiplicative and additive spanners in
weighted and unweighted graphs. In unweighted graphs, for any integer k ≥ 1, Halperin
and Zwick [15] gave a linear time algorithm to compute a multiplicative (2k− 1, 0)-spanner
of size O(n1+1/k), where n is the number of vertices. Note that for k = log n one obtains
a spanner with multiplicative stretch O(log n) and with size O(n): we will use this type of
spanner in Theorem 1. Analogous results are also known for weighted graphs [5, 20, 19].

The first purely-additive spanner (for unweighted graphs) is due to Dor et al. [11].
They describe a (1, 2) spanner of size O(n3/2 log n). This was subsequently improved to
O(n3/2) [13]. Note that our subsetwise spanner from Theorem 3 generalizes this result: in
particular, it has the same stretch function and is sparser whenever |S| = o(n). Baswana et
al. [4] describe a (1, 6)-spanner of size O(n4/3). Whenever |P| = O(n4/3−δ) for some con-
stant δ > 0, we achieve an asymptotically sparser pairwise spanner with constant additive
stretch (depending on δ). The same holds for our sourcewise spanner if |S| = O(n2/3−δ).

The result in [15] shows an elegant trade-off between the size of the spanner and its

STACS’13

212 On Pairwise Spanners

multiplicative stretch. No such trade-off is known for purely-additive spanners. In particular,
the spanner in [4] is the sparsest known purely-additive spanner. Theorems 2 and 4 show a
non-trivial trade-off between the size and additive stretch of pairwise spanners.

There have also been several results on near-additive spanners [13, 12, 22]. For example,
there is a (1 + ε, 4)-spanner of size O(n

4/3

ε) for any ε > 0 [13]. Our pairwise spanner from
Theorem 1 has the same stretch function, and is sparser for |P| = o(n4/3/(ε log n)2).

Compared to the preservers in [8], we achieve sparser pairwise spanners with additive
stretch O(log n) for |P| = ω(n2/3 log1/3 n), and a sparser subsetwise spanners for |S| =
ω(n1/3). Interestingly, our sourcewise spanners are always sparser than the pairwise pre-
servers from [8].

2 Clustering

A clustering of a graph G = (V,E) is a collection C = {C1, . . . , Cq} of pairwise disjoint
subsets of nodes Ci ⊆ V . Note that we do not require C to span all the nodes V : we call
unclustered the nodes V − ∪iCi.

We will crucially exploit the following construction of a clustering C and of an associated
cluster subgraph GC .

I Lemma 5. There is a polynomial time algorithm which, given β ∈ [0, 1] and a graph
G = (V,E), computes a clustering C with at most n1−β clusters and a subgraph GC of size
O(n1+β) such that:
1. (missing-edge property) If an edge uv ∈ E is absent in GC, then u and v belong to

two different clusters.
2. (cluster-diameter property) The distance in GC between any two vertices of the same

cluster is at most 2.

Proof. Let U be the set of nodes which are not yet clustered (initially we set U := V). As
long as there exists a vertex v ∈ V with at least dnβe neighbors in U , let C contain exactly
dnβe arbitrary neighbors of v in U . Add C to C, set U := U \C and add to GC all the edges
of G with both endpoints in C ∪ {v}. When no node v satisfies the mentioned property, we
stop creating new clusters and add to GC all the edges incident to the final set of unclustered
nodes U .

By construction, clusters are pairwise disjoint. Each time we create a new cluster, the
size of U decreases by at least nβ , hence there cannot be more than n1−β clusters. Any
two nodes in the same cluster C have some common neighbor v in GC , hence Property 2 is
satisfied. By construction, all the edges incident to unclustered nodes plus the intra-cluster
edges (with both endpoints in the same cluster) belong to GC , which implies Property 1.

It remains to bound the number of edges of GC . Each time we create a new cluster, the
number of edges of GC grows by at most O(n2β): this gives O(n1−βn2β) = O(n1+β) edges
altogether. When we stop creating clusters, each (clustered or unclustered) node v has at
most nβ neighbors in U : consequently the number of edges incident to unclustered nodes
that we add at the end of the procedure is at most O(n1+β). J

The following technical lemma turns out to be useful in the remaining sections.

I Lemma 6. Let C and GC be constructed with the procedure from Lemma 5 w.r.t. a given
graph G = (V,E). If the shortest path ρ in G between any two nodes u, v ∈ V contains
t edges that are absent in GC, then there are at least t/2 clusters of C having at least one
vertex on ρ.

M. Cygan, F. Grandoni, and T. Kavitha 213

Proof. We prove the lemma by counting pairs (u, e), where e is an edge of ρ absent in GC
and u is one of the endpoints of e: let S be the set of such pairs. Since ρ contains t edges
that are absent in GC there are exactly 2t pairs in S (each edge e = uv belongs to two
pairs: (u, e) and (v, e)). We say that a cluster C ∈ C owns a pair (u, e) if u ∈ C. By the
missing-edge property, each edge e of ρ absent in GC has both endpoints clustered, hence
each pair of S is owned by some cluster.

Let us assume that there are x clusters of C having at least one vertex on ρ. By the
cluster-diameter property any cluster C ∈ C contains at most 3 vertices on ρ, since otherwise
ρ would not be a shortest path between u and v. However, if a cluster C ∈ C contains exactly
3 vertices on ρ, those have to be consecutive vertices a, b, c of ρ, since ρ is a shortest path and
we know by the cluster-diameter property that there is a path of length at most 2 between
every pair in {a, b, c}. By the missing-edge property both edges ab and bc are present in
GC , and consequently C owns at most two pairs of S. Clearly if a cluster C ∈ C contains
at most 2 vertices on ρ, then it owns at most 4 pairs of S. Therefore each cluster owns at
most 4 pairs of S: since S has 2t pairs we have x ≥ t/2. J

3 Subsetwise Spanners

In this section we present our algorithm to compute a subsetwise spanner, and prove The-
orem 3.

Our algorithm consists of two main phases: a clustering phase and a path-buying phase.
In the clustering phase we invoke Lemma 5 and obtain a cluster subgraph GC of G of size
O(n1+β), together with a set C of at most n1−β clusters. The value of β will be defined
later.

In the path-buying phase we proceed as follows. Initially set G0 := GC and let
{ρ1, . . . , ρz} denote the set of z =

(|S|
2
)
shortest paths between all pairs of vertices in S. We

let (ui, vi) denote the endpoints of ρi. Next, we iterate over the paths ρi for i = 1, . . . , z.
To determine which paths are affordable, we define the functions value(·) and cost(·):

let cost(ρi) be the number of edges of ρi that are absent in Gi−1
let value(ρi) be the number of pairs (x,C), where x ∈ {ui, vi} and C ∈ C is a cluster,
such that ρi contains at least one vertex of C and the distance between x and C in the
graph Gi−1 is strictly greater than the distance between u and C in ρi, i.e., δGi−1(x,C) >
δρi(x,C).

Our path-buying strategy is as follows. If

cost(ρi) ≤ 2 value(ρi)

then we buy the path ρi, that is we set Gi := Gi−1 ∪ ρi (in words, Gi is given by Gi−1 plus
the edges of ρi not in Gi−1). Otherwise (i.e., 2value(ρi) < cost(ρi)), we do not buy ρi and
set Gi := Gi−1. The subsetwise spanner is given by Gs := Gz.

The next two lemmas bound the stretch and the size of the constructed spanner Gs,
respectively

I Lemma 7. For any (ui, vi) ∈ P, δGs
(ui, vi) ≤ δG(ui, vi) + 2.

Proof. Clearly the claim holds if our algorithm bought the path ρi, hence we assume
2value(ρi) < cost(ρi). Let cost(ρi) = t, that is there are exactly t edges of ρi which are
not present in the graph Gi−1. By Lemma 6 there are at least t/2 clusters having at least
one vertex on ρi. If there is no cluster C among them such that δGi−1(ui, C) = δG(ui, C) and
δGi−1(vi, C) = δG(vi, C), then all these clusters would contribute to value(ρi) (either with

STACS’13

214 On Pairwise Spanners

ui or with vi or both) which leads to a contradiction, because t = 2 · (t/2) ≤ 2value(ρi) <
cost(ρi) = t.

Thus there is a cluster C having a vertex of ρi such that δGi−1(ui, C) = δG(ui, C) and
δGi−1(vi, C) = δG(vi, C). This implies:

δGs(ui, vi) ≤ δGi−1(ui, vi) ≤ δGi−1(ui, C) + δGi−1(vi, C) + 2
≤ δG(ui, C) + δG(vi, C) + 2
≤ δG(ui, vi) + 2,

where the first inequality is because Gi−1 is a subgraph of Gs, the second inequality holds
since any two vertices of C are at distance at most two in GC ⊆ Gi−1 (by the cluster-diameter
property) and the last inequality follows from the assumption that C contains a vertex of
ρi. J

I Lemma 8. For β such that nβ =
√
|S| the graph Gs contains O(n

√
|S|) edges.

Proof. The clustering phase produces a graph with O(n1+β) = O(n
√
|S|) edges. Let B

be the set of paths bought in the path-buying phase. The total number of edges that
appear in B and do not appear in GC is equal to

∑
ρi∈B cost(ρi), which is upper bounded

by
∑
ρi∈B 2value(ρi). Observe that after the first contribution of a pair (x,C) to the above

sum, the distance between x and C is at most δG(x,C) + 2, hence each pair (x,C) can
contribute to the sum at most 3 times. Therefore the total number of edges added in the
second phase of our algorithm is upper bounded by O(n1−β |S|) = O(n

√
|S|). J

The proof of Theorem 3 follows from Lemmas 7 and 8.

4 Sourcewise spanners

In this section we present our algorithm to compute a sourcewise spanner from sources S,
and prove Theorem 4.

Our algorithm again consists of two phases, where the first is a clustering phase and the
second is a path-buying phase. The clustering phase is as in the algorithm from previous
section, for a proper value of β to be defined later. Let C and GC be the resulting clustering
and cluster subgraph.

At the start of the second phase we set G0 := GC and define {ρ1, . . . , ρz} as the set of
shortest paths between any two vertices of V such that at least one of them belongs to S.
Let us assume that the path ρi is a shortest path between ui ∈ S and vi ∈ V . Next, we
iterate over paths ρi for i = 1, . . . , z. For a given i we are going to define paths ρji , where
0 ≤ j ≤ k, maintaining the following invariants:

(i) ρji is a path between ui and vi in G of length at most δG(ui, vi) + 2j,
(ii) any cluster C ∈ C contains at most three vertices of ρji ,
(iii) cost(ρji) ≤ 2n1−β/γj , where cost(ρji) is the number of edges of ρji absent in Gi−1, and

γ = (3n1−β)1/k.

Our algorithm will buy exactly one path ρji for 0 ≤ j ≤ k, which will ensure (by Invariant
(i)) that in Gi, the distance between ui and vi is at most δG(ui, vi) + 2k.

We set ρ0
i := ρi. Observe that for j = 0, Invariant (i) is trivially satisfied, Invariant (ii)

is satisfied by the cluster-diameter property (otherwise ρi would not be a shortest path),
and Invariant (iii) is satisfied because there are at most n1−β clusters in C and consequently
by Lemma 6 cost(ρi) ≤ 2n1−β .

M. Cygan, F. Grandoni, and T. Kavitha 215

ui vi

y

x

R

Figure 1 The solid edges represent a path ρj
i , while the dashed edges denote the new prefix of

the path ρj+1
i .

Say we have constructed ρji , where j ∈ {0, . . . , k}. Let us define the function value(ρji)
as the number of clusters C ∈ C such that C contains a vertex of ρji and the distance
between ui and C in Gi−1 is strictly greater than the distance between ui and C in ρji , i.e.,
δGi−1(ui, C) > δρj

i
(ui, C). Now we check the condition

cost(ρji) ≤ 3γvalue(ρji).

If that is the case, then we buy the path ρji . That is, Gi is set to Gi−1 ∪ ρji . We ignore
the remaining values of j and proceed with the next value of i. Else we construct ρj+1

i as
follows:

Let R be the longest suffix of ρji containing exactly bcost(ρji)/γc edges that are absent
in Gi−1. Observe that the first node of R is clustered: by the maximality of R, the edge
e of ρji preceding R is absent in Gi−1, and hence both the endpoints of e (one of which is
the first node of R) are clustered by the missing-edge property of GC . Consequently at least
1 + bcost(ρji)/γc ≥ cost(ρji)/γ vertices of R are clustered, as R contains bcost(ρji)/γc edges
absent in Gi−1 and the endpoints of these edges are clustered.

By Invariant (ii) there are at least cost(ρji)/(3γ) clusters in C having at least one vertex
of R. Since we did not buy ρji , there exists a cluster C ∈ C containing a vertex x ∈ C of R
such that the distance between ui and C in Gi−1 is at most the distance between ui and x
in ρji . We construct the path ρj+1

i by taking a shortest path in Gi−1 from ui to the closest
node y ∈ C, then we add a path of length at most two between y and x (which exists in GC
hence in Gi−1 by the cluster-diameter property), and finally add the suffix of R starting at
x (see Fig. 1).

Let us show that ρj+1
i maintains the invariants. Note that by construction, Invariant

(i) is satisfied, since the length of ρj+1
i is at most the length of ρji plus 2. Then, as long as

there is a cluster C ∈ C containing at least four vertices on ρj+1
i , we let a, b be the vertices

of ρj+1
i closest to ui and vi respectively. Note that there are at least three edges on ρj+1

i

between a and b, hence we can replace the subpath of ρj+1
i by adding the at most two edges

of GC guaranteed by the cluster-diameter property. Consequently, Invariant (ii) is satisfied.
Moreover, by the choice of R, Invariant (iii) is also satisfied. This finishes the construction
of ρj+1

i .
Observe that by Invariant (iii) we have cost(ρki) ≤ 2/3: since cost(·) has only integral

values, it has to be that cost(ρki) = 0, which ensures that we buy a path ρji for some j ≤ k.
Finally, as our spanner Gs we take Gs := Gz.

I Lemma 9. For any pair (ui, vi) ∈ P, δGs
(ui, vi) ≤ δG(ui, vi) + 2k.

Proof. From the above discussion, we buy at least one path ρji for some 0 ≤ j ≤ k. By
Invariant (i), the length of the latter path is at most the length of the shortest path ρi
between ui and vi plus 2k. J

STACS’13

216 On Pairwise Spanners

I Lemma 10. For β such that nβ = (n1/k(2k + 3)|S|)k/(2k+1), the subgraph Gs contains
O(n1+1/(2k+1)(k|S|)k/(2k+1)) edges.

Proof. To bound the size of Gs we recall that in the first phase we have inserted O(n1+β)
edges. Let 0 ≤ ji ≤ k be the index of a path ρji

i bought for a given i. We claim, that any
cluster C contributes to value(ρji

i) of at most |S|(2k+ 3) bought paths. This holds because
when for ui ∈ S a supported path is bought the distance between ui and C is at most 2k+2
greater than the distance between ui and C in G: otherwise one could shorten ρji

i by more
than 2k, obtaining a contradiction with Invariant (i). Therefore the total number of edges
added during the second phase is upper bounded by

∑z
i=1 cost(ρji

i) ≤
∑z
i=1 3γvalue(ρji

i) ≤
3γ(2k+3)|S|n1−β , since each cluster C ∈ C supports at most |S|(2k+3) bought paths. The
claim follows. J

The proof of Theorem 4 follows from Lemmas 9 and 10.

5 Pairwise spanners

In this section we present our pairwise spanners for arbitrary P. We start with a near-
additive spanner (see Section 5.1) and then present a purely-additive spanner (see Section
5.2). In both cases we let P = {(s1, t1), . . . , (sN , tN)} denote the set of pairs, N = |P|.

5.1 A Near-Additive Pairwise Spanner
Our algorithm to construct the near-additive P-spanner from Theorem 1 consists of three
phases. First, we use Lemma 5 with the value of β to be determined later, obtaining a
cluster subgraph GC of G of size O(n1+β) together with a set C of at most n1−β clusters.

At the start of the second phase we set G0 := GC and consider the set of paths
{ρ1, . . . , ρN}, where ρi is a shortest path between si and ti in G. Next we iterate over
the paths ρi for i = 1, . . . , N . By cost(ρi) we denote the number of edges of ρi absent in
Gi−1, and by value(ρi) we denote the number of pairs of clusters (C1, C2) ∈ C, such that
both C1 and C2 contain at least one vertex of ρi and δρi

(C1, C2) < δGi−1(C1, C2). For a
given i if

cost(ρi) ≤
12 logn

ε

√
value(ρi),

then we buy ρi, that is we set Gi := Gi−1 ∪ ρi. Otherwise we set Gi := Gi−1.
In the third phase we add to GN the multiplicative (2 log n, 0) spanner of size O(n) given

in [15]: this way we obtain the desired spanner Gs.
In the following two lemmas we bound the stretch and size of Gs, respectively.

I Lemma 11. For each (si, ti) ∈ P, δGs
(si, ti) ≤ (1 + ε)δG(si, ti) + 4.

Proof. Clearly we can assume that the path ρi was not bought in the second phase, since
otherwise the claim trivially holds. Therefore cost(ρi) > 12 logn

ε

√
value(ρi).

Let ρi = (v0 = si, v1, . . . , v`−1, v` = ti) and let I ⊆ {0, . . . , `} be the set of all indices
j such that vj is clustered. Observe that if |I| ≤ 1, then by the missing-edge property the
whole path ρi is present in GC , and hence the claim holds. Therefore denote I = {i0, . . . , iw},
where i0 < i1 < . . . < iw and w ≥ 1. Let 0 ≤ a ≤ b ≤ w be two indices, such that via ∈ C1,
vib ∈ C2 (for some C1, C2 ∈ C), δρi

(C1, C2) ≥ δGi−1(C1, C2) and the value of b − a is
maximized. Note that such a pair of indices a, b always exists, since we can take a = b.

Let x = a + (w − b). Observe that any cluster C ∈ C contains at most 3 vertices of
VI = {vij : 0 ≤ j ≤ w}, since otherwise by the cluster-diameter property ρi would not be a

M. Cygan, F. Grandoni, and T. Kavitha 217

si tivia vib

≥ δGs(si, ti)

≤ δρi(si, via) + 2a log n ≤ δρi(via , vib) + 4 ≤ δρi(vib , ti) + 2(w − b) log n

Figure 2 Illustration of the three paths concatenation in the proof of Lemma 11.

shortest si-ti path. Therefore there are at least x/6 clusters C′ having at least one vertex
in the set {vij : 0 ≤ j < dx/2e}, and at least x/6 clusters C′′ having at least one vertex in
the set {vij : w − dx/2e < j ≤ w}. However, each of the at least (x/6)2 pairs of clusters
in C′ ×C′′ contributes to value(ρi) since the difference between indices in the corresponding
set is at least w − dx/2e+ 1− (dx/2e − 1) > w − x. Therefore w ≥ cost(ρi) > 12 logn

ε
x
6 and

hence x ≤ wε
2 logn .

The latter bound on x is sufficient to prove the claim. In fact, consider the path between
si and ti in Gs obtained by concatenating the following paths (as illustrated in Fig. 2):

A shortest path in Gs from si to via . Note that in the prefix of ρi between si and via
there are a+1 clustered nodes and hence at most a edges absent in Gi−1 (by the missing-
edge property). Since Gs contains the (2 log n, 0)-spanner added in the third phase, each
missing edge can be replaced by at path of length 2 logn. Consequently, there is a path
from si to via of length at most δρi

(si, via) + 2a log n in Gs.
A shortest path in Gs from via to vib . Let C1, C2 ∈ C be the clusters containing via and
vib respectively. We know that in Gi−1 there is a path from C1 to C2 of length at most
δρi

(via , vib), which can be extended to a path between via and vib in Gi−1 by adding at
most 4 edges (by the cluster-diameter property).
A shortest path in Gs from vib to ti. Observe that in the suffix of ρi between vib and ti
there are at most w − b edges absent in Gi−1 by the same argument as above. Hence,
thanks to the (2 log n, 0)-spanner added in the third phase, there is a path from vib to ti
of length at most δρi

(vib , ti) + (w − b)2 log n in Gs.
The resulting path is of length at most

δρi
(si, via) + 2a log n+ δρi

(via , vib) + 4 + δρi
(vib , ti) + (w − b)2 log n

= δG(si, ti) + 2x log n+ 4 ≤ (1 + ε)δG(si, ti) + 4,

where the last inequality follows from x ≤ εw
2 logn together with w ≤ δG(si, ti). J

Due to space limitation we postpone the proof of the following lemma to the full version.

I Lemma 12. For β such that n2β =
√
N logn

ε the size of Gs is O(nN1/4
√

log n/ε).

Having Lemmas 11 and 12, the proof of Theorem 1 follows.

5.2 A Purely-Additive Pairwise Spanner
In this section we describe an algorithm to compute the purely-additive P-spanner from
Theorem 2. To that aim we will combine ideas from the proofs of Theorems 1 and 4.

Our algorithm consists of the usual clustering phase (for an appropriate parameter β)
followed by a path-buying phase that we next describe.

Let C and GC be the clustering and the associated cluster graph. At the beginning of
the path-buying phase, we set G0 := GC and consider the set {ρ1, . . . , ρN}, where ρi is a

STACS’13

218 On Pairwise Spanners

shortest path between si and ti in G. Next we iterate over the paths ρi for i = 1, . . . , N .
For a given i we are going to define paths ρji , where 0 ≤ j ≤ k, maintaining the following
invariants:

(i) ρji is a path between si and ti in G of length at most δG(si, ti) + 4j,
(ii) any cluster C ∈ C contains at most three vertices of ρji ,
(iii) cost(ρji) ≤ 2n1−β/γj , where cost(ρji) is the number of edges of ρji absent in Gi−1, and

γ = (3n1−β)1/k.

Our algorithm will buy exactly one path ρji , which will ensure by Invariant (i) that in Gi the
distance between si and ti is at most δG(ui, vi) + 4k. By value(ρji) let us denote the number
of pairs of clusters C1, C2 ∈ C, such that both C1 and C2 contain at least one vertex of ρji
and δρj

i
(C1, C2) < δGi−1(C1, C2).

We set ρ0
i := ρi. Observe that for j = 0 Invariant (i) is trivially satisfied, Invariant (ii) is

satisfied by the cluster-diameter property (otherwise ρi would not be a shortest path), and
Invariant (iii) is satisfied because there are at most n1−β clusters in C and consequently by
Lemma 6, cost(ρi) ≤ 2n1−β .

Say we have constructed ρji , where j ∈ {0, . . . , k}. If

cost(ρji) ≤ 6γ
√

value(ρji) ,

then we buy the path ρji , i.e. as Gi we take the union of Gi−1 and ρji , ignore remaining
values of j and proceed with the next value of i. Otherwise (i.e., cost(ρji) > 6γ

√
value(ρji)),

we construct a path ρj+1
i as follows:

Let ρji = (v0 = si, v1, . . . , v`−1, v` = ti) and let I ⊆ {0, . . . , `} be the set of all indices
j such that vj is clustered. Observe that if |I| ≤ 1, then by the missing-edge property the
whole path ρji is present in GC , and hence it is of zero cost, which contradicts the assumption
cost(ρji) > 6γ

√
value(ρji). Therefore denote I = {i0, . . . , iw}, where i0 < i1 < . . . < iw and

w ≥ 1. Let 0 ≤ a ≤ b ≤ w be two indices, such that via ∈ C1, vib ∈ C2 (for some C1, C2 ∈ C),
δρj

i
(C1, C2) ≥ δGi−1(C1, C2) and the value of b − a is maximized. Note that such a pair of

indices a, b always exists, since we can take a = b.
Let x = a + (w − b). By Invariant (ii) there are at least x/6 clusters C′ having at least

one vertex in the set {vij : 0 ≤ j < dx/2e}, and at least x/6 clusters C′′ having at least
one vertex in the set {vij : w − dx/2e < j ≤ w}. However, each of the at least (x/6)2 pairs
of clusters in C′ × C′′ contributes to value(ρji) since the difference between indices in the
corresponding set is at least w − dx/2e+ 1− (dx/2e − 1) > w − x. Therefore

cost(ρji) > 6γ
√

value(ρji) ≥ 6γ
√(x

6

)2
= γ x ⇒ x ≤ cost(ρji)/γ. (1)

We construct the path ρj+1
i by appending the following three paths A, B, and C:

As A we take the prefix of ρji from si to via . Note that this prefix contains a+1 clustered
nodes and hence at most a edges absent in Gi−1 (by the missing-edge property of GC).
Let C1, C2 ∈ C be the clusters containing via and vib respectively. We know that in Gi−1
there is a path from C1 to C2 of length at most δρj

i
(via , vib), which can be extended to a

path B between via and vib in Gi−1 by adding at most 4 edges (by the cluster-diameter
property).
As C we take the suffix of ρji from vib to ti, which contains at most w − b edges absent
in Gi−1 by the same argument as above.

M. Cygan, F. Grandoni, and T. Kavitha 219

Observe that ρj+1
i contains at most a+ (w − b) = x edges absent in Gi−1, hence by (1) we

ensure Invariant (iii). Moreover the length of ρj+1
i is at most the length of ρji plus 4, which

ensures Invariant (i). In order to ensure Invariant (ii), as long as there exists a cluster C ∈ C
containing at least 4 vertices of ρj+1

i we let u and v be two such vertices closest to si and ti
on ρj+1

i respectively and replace the subpath of ρj+1
i between u and v (which is of length at

least three) by a path of length at most two in Gi−1 (which exists by the cluster-diameter
property).

Observe that by Invariant (iii) we have cost(ρki) ≤ 2/3, hence cost(ρki) = 0 which ensures
that we buy a path ρji for some j ≤ k. Finally, as our spanner Gs we take Gs := GN .

I Lemma 13. For each (si, ti) ∈ P, δGs
(si, ti) ≤ δG(si, ti) + 4k.

Proof. From the above discussion, Gs contains at least one path ρji between si and ti for
some 0 ≤ j ≤ k. The claim follows by Invariant (i). J

I Lemma 14. For β such that nβ = (6n1/k
√

(4k + 5)N)k/(2k+1) the size of Gs is
O(n1+1/(2k+1)(

√
(4k + 5)N)k/(2k+1)).

Proof. The clustering phase gives O(n1+β) edges, which matches the desired bound on
Gs. Let 0 ≤ ji ≤ k be the index of a path ρji

i bought for a given i. We claim, that
any pair of clusters contributes to value(ρji

i) of at most (4k + 5) bought paths. Observe,
that if a pair of clusters C1, C2 contributes to value(ρji

i), then when ρji

i is bought we have
δGi(C1, C2) ≤ δG(C1, C2) + 4k + 4, since otherwise the subpath of ρji

i between C1 and C2
might be shortened by more than 4k, contradicting Invariant (i). The total number of edges
added in the second phase is upper bounded by∑

1≤i≤N
cost(ρji

i) ≤
∑

1≤i≤N
6γ
√

value(ρji

i)

Cauchy-Schwarz
inequality
≤ 6γ

√ ∑
1≤i≤N

value(ρji

i)
√
N

≤ 6γ
√

4k + 5n1−β
√
N .

By substituting γ and β the claim follows. J

Theorem 2 follows from Lemmas 13 and 14

6 Conclusions

We considered a natural extension to the problem of computing a sparse spanner in an
undirected unweighted graph. Along with the input graph G = (V,E), a subset P ⊆ V × V
of relevant pairs of vertices is also given here and we seek a sparse subgraph H of G such
that for every pair (u, v) in P, the u-v distance δH(u, v) in the subgraph is close to the u-v
distance δG(u, v) in G. We showed sparse subgraphs H where δH(u, v) is a small additive
or near-additive stretch away from δG(u, v).

The pairwise preservers in [8] are at the same time more accurate and sparser than our
spanners for small enough values of |P|. In particular, in that range of values of |P| the
authors exploit a construction which does not seem to benefit from allowing a larger stretch.
The authors also present lower bounds on the size of any preserver, however it is unclear
whether those lower bounds extend to the case of pairwise spanners (where distances have
to be approximated rather than preserved). Obtaining sparser pairwise spanners for very
small |P|, if possible, is an interesting open problem.

STACS’13

220 On Pairwise Spanners

References
1 B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Near-linear time construction of sparse

neighborhood covers. SIAM Journal on Computing, 28(1):263-277, 1998.
2 B. Awerbuch and D. Peleg. Routing with polynomial communication-space trade-off. SIAM

Journal on Discrete Math., 5(2):151-162, 1992.
3 S. Baswana and T. Kavitha. Faster algorithms for all-pairs approximate shortest paths in

undirected graphs. SIAM Journal on Computing, 39(7):2865-2896, 2010.
4 S. Baswana, T. Kavitha, K. Mehlhorn, S. Pettie. Additive Spanners and (α, β)-Spanners.

ACM Transactions on Algorithms, 7(1): 5, 2010.
5 S. Baswana and S. Sen. A simple linear time algorithm for computing a (2k − 1)-spanner

of O(n1+1/k) size in weighted graphs. In Proc. 30th Int. Colloq. on Automata, Languages,
and Programming (ICALP), pages 384-396, 2003.

6 S. Baswana and S. Sen. Approximate distance oracles for unweighted graphs in O(n2 log n)
time. In Proc. 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 271-
280, 2004.

7 E. Cohen. Fast algorithms for constructing t-spanners and paths of stretch t. In Proc. 34th
IEEE Symp. on Foundations of Computer Science (FOCS), pages 648-658, 1993.

8 D. Coppersmith and M. Elkin. Sparse source-wise and pair-wise distance preservers. In
Proc. 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 660-669, 2005.

9 L. J. Cowen. Compact routing with minimum stretch. Journal of Algorithms, 28:170-183,
2001.

10 L. J. Cowen and C. G. Wagner. Compact roundtrip routing in directed networks. Journal
of Algorithms, 50(1):79-95, 2004.

11 D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths. SIAM Journal on
Computing, 29(5):1740-1759, 2004.

12 M. Elkin. Computing almost shortest paths. In ACM Transactions on Algorithms, 1(2):283-
323, 2005.

13 M. Elkin and D. Peleg. (1 + ε, β)-spanner construction for general graphs. SIAM Journal
on Computing, 33(3):608-631, 2004.

14 C. Gavoille, D. Peleg, S. Perennes, and R. Raz. Distance labeling in graphs. In Proc. 12th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 210-219, 2001.

15 S. Halperin and U. Zwick. Unpublished result, 1996.
16 D. Peleg. Proximity-preserving labeling schemes. Journal of Graph Theory, 33(3):167-176,

2000.
17 D. Peleg and A. A. Schaffer. Graph Spanners. Journal of Graph Theory, 13:99-116, 1989.
18 D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. SIAM Journal on

Computing, 18:740-747, 1989.
19 L. Roditty and U. Zwick. On dynamic shortest paths problems. In Proc. 12th Annual

European Symposium on Algorithms (ESA), pages 580-591, 2004.
20 L. Roditty, M. Thorup, and U. Zwick. Deterministic constructions of approximate distance

oracles and spanners. In Proc. 32nd Int. Colloq. on Automata, Languages, and Programming
(ICALP), pages 261-272, 2005.

21 M. Thorup and U. Zwick. Approximate Distance Oracles. Journal of the ACM, 52(1):1-24,
2005.

22 M. Thorup and U. Zwick. Spanners and emulators with sublinear distance errors. In Proc.
17th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 802-809, 2006.

Excluded vertex-minors for graphs of linear
rank-width at most k

Jisu Jeong1, O-joung Kwon2, and Sang-il Oum∗3

1,2,3Department of Mathematical Sciences, KAIST
291 Daehak-ro Yuseong-gu Daejeon, 305-701 South Korea

1 jjisu@kaist.ac.kr
2 ilkof@kaist.ac.kr
3 sangil@kaist.edu

Abstract
Linear rank-width is a graph width parameter, which is a variation of rank-width by restricting
its tree to a caterpillar. As a corollary of known theorems, for each k, there is a finite set Ok of
graphs such that a graph G has linear rank-width at most k if and only if no vertex-minor of G
is isomorphic to a graph in Ok. However, no attempts have been made to bound the number of
graphs in Ok for k ≥ 2. We construct, for each k, 2Ω(3k) pairwise locally non-equivalent graphs
that are excluded vertex-minors for graphs of linear rank-width at most k. Therefore the number
of graphs in Ok is at least double exponential.

1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases rank-width, linear rank-width, vertex-minor, well-quasi-ordering

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.221

1 Introduction

Linear rank-width is a width parameter of graphs motivated by rank-width of graphs by
Oum and Seymour [11]. A vertex-minor relation is a graph containment relation such that
rank-width and linear rank-width cannot increase when taking vertex-minors of a graph. Two
graphs G, H are called locally equivalent if H is a vertex-minor of G and |V (H)| = |V (G)|.
The definitions can be found in Section 2.

Oum [10] proved that for every infinite sequence G1, G2, . . . of graphs of bounded rank-
width, there exist i < j such Gi is isomorphic to a vertex-minor of Gj . As a corollary, we
immediately obtain the following theorem.

I Theorem 1 (Oum [10]). For every vertex-minor closed class C of graphs of bounded rank-
width, there is a finite list of graphs G1, G2, . . . , Gm such that a graph is in C if and only if
it does not have a vertex-minor isomorphic to Gi for some i.

Because the rank-width of a graph is less than or equal to the linear rank-width of the
graph, we deduce the following.

I Corollary 2. For a fixed k, there is a finite set Ok of graphs G1, G2, . . . , Gm such that a
graph has linear rank-width at most k if and only if it does not have a vertex-minor isomorphic
to Gi for some i ∈ {1, 2, . . . ,m}.

∗ Supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)
funded by the Ministry of Education, Science and Technology(2012-0004119).

© J. Jeong, O. Kwon, and S. Oum;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 221–232

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.221
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

222 Excluded vertex-minors for graphs of linear rank-width at most k

Figure 1 Graphs in O1.

However, Theorem 1 does not produce an explicit upper or lower bound on the number
of graphs in Ok for Corollary 2. We aim to provide a lower bound on |Ok|.

Our main result is the following.

I Theorem 3. Let k ≥ 2 be an integer. Then |Ok| ≥ 2Ω(3k). In other words, there are at
least 2Ω(3k) pairwise locally non-equivalent graphs that are vertex-minor minimal with the
property that they have linear rank-width larger than k.

When C is the set of all graphs having rank-width at most k, Theorem 1 implies that
there are finitely many graphs G1, G2, . . . , Gm such that a graph has rank-width at most k
if and only if it has no vertex-minor isomorphic to Gi for some i. Again Theorem 1 does not
provide a lower or upper bound on m for graphs of rank-width at most k. However, for the
upper bound, Oum [9] proved that |V (Gi)| ≤ (6k+1 − 1)/5 for each i. No analogous result is
known for linear rank-width.

Characterizing graphs of linear rank-width at most k in terms of forbidden vertex-minors
seems hard. So far only 1 case is known. For k = 1, Adler, Farley, and Proskurowski [1]
characterized the graphs of linear rank-width at most 1 by a set O1 of three graphs in Figure 1.
A structural characterization of graphs of linear rank-width 1 was given by Ganian [6].

There have been similar results on the number of forbidden minors for various graph width
parameters; for instance, path-width [12], linear-width [13], tree-width [8], branch-width [7],
tree-depth [5].

The paper is organized as follows. We present the definitions of linear rank-width and
vertex-minor. In Section 3, we construct a set ∆k of graphs for every non-negative integer k,
and prove that every graph in ∆k has linear rank-width k + 1 but every proper vertex-minor
has linear rank-width at most k. Roughly speaking, ∆0 = {K2} and for k ≥ 1, the set ∆k

consists of all graphs obtained from a disjoint union of three graphs in ∆k−1 by connecting
them with a triangle. In Section 4, we show that no two graphs in ∆k are locally equivalent.
At last, we show that the size of ∆k is 2Ω(3k) in Section 5, and we conclude that |Ok| ≥ 2Ω(3k).

2 Preliminaries

In this paper, graphs have no loops and parallel edges. Let G be a graph. For S ⊆ V (G),
G[S] denotes the subgraph of G induced on S. For S ⊆ V (G), NG(S) denotes the set of
vertices of V (G) \ S adjacent to a vertex in S. And for v ∈ V (G), we let NG(v) = NG({v}).
A vertex v in G is a leaf if |NG(v)| = 1. A graph G is a star if G is isomorphic to K1,n for
some n ≥ 1.

For an X × Y matrix M and subsets A ⊆ X and B ⊆ Y , M [A,B] denotes the A × B
submatrix (mi,j)i∈A,j∈B of M . If A = B, then M [A] = M [A,A] is called a principal
submatrix of M .

J. Jeong, O. Kwon, and S. Oum 223

a b

c

d
e

f

g

b a

c

d
e

f

g

Figure 2 Pivoting an edge ab.

Vertex-minors.

The local complementation at a vertex v of a graph G = (V,E) is an operation to obtain a
graph G∗v from G by replacing the subgraph G[NG(v)] with the complementary subgraph of
G[NG(v)]. The graph obtained from G by pivoting an edge uv is defined by G∧uv = G∗u∗v∗u.

To see how we obtain the resulting graph by pivoting an edge uv, let V1 = NG(u)∩NG(v),
V2 = NG(u)\NG(v)\{v}, and V3 = NG(v)\NG(u)\{u}. One can easily verify that G ∧ uv
is identical to the graph obtained from G by complementing adjacency of vertices between
distinct sets Vi and Vj , and swapping the vertices u and v [9]. See Figure 2 for an example.

A graph H is a vertex-minor of G if H can be obtained from G by applying a sequence
of vertex deletions and local complementations. A graph H is locally equivalent to G if H
can be obtained from G by applying a sequence of local complementations.

A vertex-minor H of G is elementary if |V (H)| = |V (G)| − 1. A vertex-minor H of G is
proper if |V (H)| < |V (G)|. A graph G is an excluded vertex-minor for a vertex-minor closed
set C of graphs if G /∈ C and H ∈ C for every proper vertex-minor H of G.

Linear rank-width.

The adjacency matrix of a graph G, which is a (0, 1)-matrix over the binary field, will be
denoted by A(G). The cut-rank function cutrkG : 2V → Z of a graph G = (V,E) is defined
by

cutrkG(X) = rank(A(G)[X,V \X]).

A linear layout L of G is a sequence (v1, v2, . . . , v|V (G)|) of V (G). For a linear layout
L of G and a, b ∈ V (G), we denote a ≤L b if a = b or a appears before b in L. For
two sequences L1 = (v1, v2, . . . , vn) and L2 = (w1, w2, . . . , wm), we define L1 ⊕ L2 =
(v1, v2, . . . , vn, w1, w2, . . . , wm).

The width of a linear layout L in G, denoted by lrwL(G), is defined as the maximum
over all cutrkG({w : w ≤L v}) for v ∈ V (G). The linear rank-width of G, denoted by lrw(G),
is the minimum width of all linear layouts of G. The next proposition shows the relation
between the cut-rank function and local complementation.

I Proposition 4 (Oum [9]). Let G be a graph and v ∈ V (G). Then for every X ⊆ V (G),

cutrkG(X) = cutrkG∗v(X).

By Proposition 4, lrw(G) = lrw(G ∗ v) for every v ∈ V (G). Thus, we immediately
obtain that if H is locally equivalent to G, then lrw(H) = lrw(G). And if a graph H is a
vertex-minor of a graph G, then lrw(H) ≤ lrw(G).

STACS’13

224 Excluded vertex-minors for graphs of linear rank-width at most k

Figure 3 All graphs in ∆2.

3 Excluded vertex-minors for graphs of bounded linear rank-width

To prove Theorem 3, for each non-negative integer k, we construct a set ∆k of graphs such
that every graph in ∆k has linear rank-width k + 1 but every proper vertex-minor has linear
rank-width at most k.

A delta composition G of graphs G1, G2, and G3 is a graph obtained from the disjoint
union of G1, G2, and G3 by adding a triangle v1v2v3 where vi ∈ V (Gi) for i = 1, 2, 3. We
call v1v2v3 the main triangle of G. For a non-negative integer k, we define ∆k as follows.

1. ∆0 = {K2}.
2. For i ≥ 1, ∆i is the set of all delta compositions of 3 graphs in ∆i−1.

The main theorem of this section is as follows.

I Theorem 5. Let k be a non-negative integer. Every graph in ∆k is an excluded vertex-minor
for graphs of linear rank-width at most k.

First, we prove that every graph in ∆k has linear rank-width k + 1.

I Proposition 6. Let k be a non-negative integer and G ∈ ∆k. Then G has linear rank-width
k + 1. Moreover, for w ∈ V (G), there is a linear layout of G having width k + 1 such that
the first vertex of the linear layout is w.

Proof. We use induction on k. If k = 0, then G = K2. If V (G) = {x, y}, then both (x, y)
and (y, x) are linear layouts of G having width 1. Hence, the statements are true. We may
assume that k ≥ 1. Since G ∈ ∆k, G is a delta composition of G1, G2, and G3 in ∆k−1. Let
v1v2v3 be the main triangle of G such that vi ∈ V (Gi) for i = 1, 2, 3.

We first show that lrw(G) ≥ k + 1. Suppose that G has linear rank-width at most k.
Since G1 ∈ ∆k−1, by induction hypothesis, G1 has linear rank-width k. Since lrw(G) ≥
lrw(G1) = k, G has linear rank-width k. Let L be a linear layout of G having width k. And
for a vertex v in G, we define Sv = {x ∈ V (G) : x ≤L v} and Tv = V (G) \ Sv.

Let a and b be the first and the last vertices in L such that cutrkG(Sa) = cutrkG(Sb) = k.
Without loss of generality, we may assume that {a, b} ⊆ V (G2) ∪ V (G3). We want to show
that G1 has linear rank-width at most k − 1. If it is true, then we obtain a contradiction
because lrw(G1) = k. Let LG1 be the subsequence of L whose elements are the vertices of
G1.

J. Jeong, O. Kwon, and S. Oum 225

We claim that LG1 is a linear layout of G1 having width at most k − 1. Let v ∈ V (G1).
It is sufficient to show that cutrkG1(Sv ∩ V (G1)) ≤ k − 1. Note that v 6= a and v 6= b. If
v <L a or v >L b, then

cutrkG1(Sv ∩ V (G1)) ≤ cutrkG(Sv)
≤ k − 1.

So we may assume that a <L v <L b. Note that one of Sv ∩ V (G1) and Tv ∩ V (G1) does not
have a neighbor in G \ V (G1) because v1 is the unique vertex in G1 which has a neighbor in
G \ V (G1). And since G[V (G2) ∪ V (G3)] is connected and a ∈ Sv and b /∈ Sv, there is an
edge u1u2 in G \ V (G1) such that u1 ∈ Sv and u2 /∈ Sv. So A(G)[Sv \ V (G1), Tv \ V (G1)] is
a non-zero matrix. Depending on whether v1 ∈ Sv ∩ V (G1) or v1 ∈ Tv ∩ V (G1),

cutrkG(Sv) = rank

Tv ∩ V (G1) Tv \ V (G1)()

Sv ∩ V (G1) ∗ 0
Sv \ V (G1) ∗ ∗

≥ rank (A(G)[Sv ∩ V (G1), Tv ∩ V (G1)]) + rank (A(G)[Sv \ V (G1), Tv \ V (G1)]) ,

or

cutrkG(Sv) = rank

Tv ∩ V (G1) Tv \ V (G1)()

Sv ∩ V (G1) ∗ ∗
Sv \ V (G1) 0 ∗

≥ rank (A(G)[Sv ∩ V (G1), Tv ∩ V (G1)]) + rank (A(G)[Sv \ V (G1), Tv \ V (G1)]) ,

respectively. Thus, we have

cutrkG1(Sv ∩ V (G1)) = rank (A(G)[Sv ∩ V (G1), Tv ∩ V (G1)])
≤ cutrkG(Sc)− rank (A(G)[Sv \ V (G1), Tv \ V (G1)])
≤ cutrkG(Sv)− 1 ≤ k − 1.

So LG1 is a linear layout of G1 having width at most k − 1, which is a contradiction. Hence,
lrw(G) ≥ k + 1.

Now we show that there is a linear layout of G having width k + 1 with a given starting
vertex. Let v ∈ V (G). Without loss of generality, we assume that v ∈ V (G1). By induction
hypothesis, there is a linear layout L1 of G1 having width k such that the first vertex of L1
is v. And, for j = 2, 3, there is a linear layout Lj of Gj having width k such that the first
vertex of Lj is vj . It is easy to check that L1 ⊕ L2 ⊕ L3 is a linear layout of G having width
at most k + 1. Since this linear layout starts at v, we conclude the result. J

Of course, for v ∈ V (G), there is also a linear layout having width k + 1 such that the
last vertex of the linear layout is v. Let v ∈ V (G). A vertex w, w 6= v, in G is a twin of v if
NG(w) \ v = NG(v) \ w. A twin w of v is a false twin if w is not adjacent to v. And a twin
w of v is a true twin if w is adjacent to v.

Now we prove that every elementary vertex-minor of G in ∆k has linear rank-width k.
To prove it, we will use the following lemmata.

I Lemma 7 (Bouchet [2]). Let G be a graph, v ∈ V (G), and H be a vertex-minor of G such
that V (G) \ V (H) = {v}. If w is an arbitrary neighbor of v, then H is locally equivalent to
either G \ v, G ∗ v \ v, or G ∧ vw \ v.

STACS’13

226 Excluded vertex-minors for graphs of linear rank-width at most k

I Lemma 8 (Oum [9]). Let G be a graph and vv1, vv2 ∈ E(G). Then v1v2 ∈ E(G∧ vv1) and
G ∧ vv1 ∧ v1v2 = G ∧ vv2.

I Lemma 9. Let k be a positive integer. Let G1, G2 ∈ ∆k−1, and let G3 be a graph having
linear rank-width at most k − 1. Then every delta composition of G1, G2, and G3 has linear
rank-width k. Also, if a graph is obtained from the disjoint union of G1 and G2 by adding
an edge w1w2 where w1 ∈ V (G1) and w2 ∈ V (G2), then it has linear rank-width k.

I Lemma 10. Let k be a non-negative integer. Let G ∈ ∆k, v ∈ V (G), and H be a graph
obtained from G by adding a twin w of v. Then there is a linear layout L of H having width
k + 1 such that the first vertex of L is v and the last vertex of L is w.

We are ready to prove the main combinatorial result in this paper.
I Proposition 11. Let k be a non-negative integer and G ∈ ∆k. Then every elementary
vertex-minor of G has linear rank-width k.

Proof. Note that for v ∈ V (G) and S ⊆ V (G), cutrkG\v(S \ v) ≥ cutrkG(S) − 1 because
exactly one column or one row of A(G)[S, V (G) \S] is removed. Thus by Proposition 6, if H
is an elementary vertex-minor of G, then lrw(H) ≥ lrw(G)− 1 = (k + 1)− 1 = k. Therefore,
it is sufficient to prove that every elementary vertex-minor of G in ∆k has linear rank-width
at most k.

We use induction on k. If k = 0, then G = K2 and every elementary vertex-minor of G
is isomorphic to K1, so it has linear rank-width 0. We assume that k ≥ 1. Since G ∈ ∆k,
G is a delta composition of G1, G2, and G3 in ∆k−1. Let v1v2v3 be the main triangle of
G such that vi ∈ V (Gi) for i = 1, 2, 3. Let H be an elementary vertex-minor of G and
V (G) \ V (H) = {v}. By Lemma 7, for a neighbor w of v, H is locally equivalent to one of
three graphs G \ v, G ∗ v \ v, and G ∧ vw \ v. Without loss of generality, we may assume
that v ∈ V (G1). Since G1 ∈ ∆k−1, by induction hypothesis, G1 \ v has linear rank-width at
most k − 1. Thus, by Lemma 9, G \ v has linear rank-width k. What remains to be proved
is that for a neighbor w of v, G ∗ v \ v and G ∧ vw \ v have linear rank-width at most k.

First, suppose that v 6= v1. If NG(v) = {v1}, then G ∗ v \ v = G \ v and G ∧ vv1 \ v is
isomorphic to G \ v1. Therefore, by Lemma 9, they have linear rank-width k. If v has a
neighbor w other than v1, then

(G∗v)[V (G2)∪V (G3)∪{v1}] = (G∧vw)[V (G2)∪V (G3)∪{v1}] = G[V (G2)∪V (G3)∪{v1}].

Hence, both G ∗ v \ v and G ∧ vw \ v are delta compositions of two graphs in ∆k−1 and
one graph having linear rank-width at most k − 1. Thus, by Lemma 9, they have linear
rank-width k.

v2 v3

v = v1

G[{v2, v3} ∪ V (G1)]

v2 v3

v = v1

G′1 = (G ∗ v \ v)[{v2, v3} ∪ V (G1)]

v2 v3

G′1 ∗ v2

Figure 4 The case G ∗ v \ v where v = v1.

J. Jeong, O. Kwon, and S. Oum 227

v2 v3

v = v1

G[{v2, v3} ∪ V (G1)]

v v3

v2

G′′1 ∧ v2w = (G ∧ vw \ v)[{v2, v3} ∪ V (G1)] ∧ v2w

= G[{v2, v3} ∪ V (G1)] ∧ vv2 \ v

Figure 5 The case G ∧ vw \ v where v = v1.

Now we consider v = v1. Let w be a neighbor of v in G1. By Proposition 6, there is a
linear layout LG2 of G2 having width k such that the end vertex of LG2 is v2, and there is a
linear layout LG3 of G3 having width k such that the first vertex of LG3 is v3. We denote
G′1 = (G ∗ v \ v)[{v2, v3} ∪ V (G1)] and G′′1 = (G ∧ vw \ v)[{v2, v3} ∪ V (G1)].

We first show that G ∗ v \ v has linear rank-width at most k. To prove it, we will find
a linear layout L′ of G′1 having width k such that the first vertex of L′ is v2 and the last
vertex of L′ is v3. In Figure 4, we can observe that NG1(v) = NG′

1∗v2(v2) = NG′
1∗v2(v3) and

A(G)[NG1(v)] = A(G′1 ∗ v2)[NG1(v)]. Hence, the graph G′1 ∗ v2 is isomorphic to the graph
obtained from G1 by adding a false twin of v. By Proposition 10, there is a linear layout L′
of G′1 ∗ v2 having width k such that the first vertex of L′ is v2 and the last vertex of L′ is v3.
Let LG1 be the sequence obtained from L′ by deleting v2 and v3.

We show that L = LG2 ⊕ LG1 ⊕ LG3 is a linear layout of G ∗ v \ v having width at most
k. If x ∈ V (G2) ∪ V (G3), then clearly cutrkG∗v\v({y : y ≤L x}) ≤ k. If x ∈ V (G1) \ v, then
by Proposition 4,

cutrkG∗v\v({y : y ≤L x}) = cutrkG′
1
({y : y ≤L′ x})

= cutrkG′
1∗v2({y : y ≤L′ x}) ≤ k.

Therefore, G ∗ v \ v has linear rank-width at most k.
Now we show that G ∧ vw \ v has linear rank-width at most k. By the same argument

in the previous case, it is sufficient to prove that there is a linear layout L′′ of G′′1 having
width k such that the first vertex is v2 and the last vertex is v3. We claim that G′′1 ∧ v2w =
G[{v2, v3} ∪ V (G1)] ∧ vv2 \ v. Note that

G′′1 ∧ v2w = (G ∧ vw \ v)[{v2, v3} ∪ V (G1)] ∧ v2w

= G[{v2, v3} ∪ V (G1)] ∧ vw \ v ∧ v2w

= G[{v2, v3} ∪ V (G1)] ∧ vw ∧ v2w \ v.

And by Lemma 8,

G[{v2, v3} ∪ V (G1)] ∧ vw ∧ v2w \ v = G[{v2, v3} ∪ V (G1)] ∧ vv2 \ v.

In Figure 5, we can observe that G′′1 ∧ v2w is isomorphic to the graph obtained from G1 by
adding a true twin of v. Thus, by Proposition 10, there is a linear layout L′′ of G′′1 ∧ v2w

having width k such that the first vertex of L′′ is v2 and the last vertex of L′′ is v3. Also, for
x ∈ V (G1) \ v,

cutrkG′′
1
({y : y ≤L′′ x}) = cutrkG′′

1∧vv2({y : y ≤L′′ x}) ≤ k.

STACS’13

228 Excluded vertex-minors for graphs of linear rank-width at most k

v1 v2 v3

v4 v5 v6

v7G

a b
c

d

e f

D

v1 v2 v3

v4

v5

v6

v7

a b
c

d

e f

D ∗ v2

v1 v2 v3

v4

v5

v6

v7

Figure 6 A split-decomposition D of a graph G, and D ∗ v2. The marked edges of D are depicted
as wavy edges, and the desendants of the vertex v2 in D is a and f . Note that D ∗ v2 is a split
decomposition of G ∗ v2.

Therefore, we conclude that G ∧ vw \ v has linear rank-width at most k. J

Proof of Theorem 5. Let G ∈ ∆k. By Proposition 6, G has linear rank-width k + 1. And
by Proposition 11, every elementary vertex-minor of G has linear rank-width k. So every
proper vertex-minor of G has linear rank-width at most k. Therefore, G is an excluded
vertex-minor for graphs of linear rank-width at most k. J

4 No two graphs in ∆k are locally equivalent.

In this section, we show that no two graphs in ∆k are locally equivalent.

I Theorem 12. Let k be a non-negative integer and G,H ∈ ∆k. If G and H are locally
equivalent, then G and H are isomorphic.

To prove it, we will use the canonical split-decompositions of graphs in ∆k.

Split-decomposition.
Let G be a graph. A partition (A,B) of V (G) is a split if |A| ≥ 2, |B| ≥ 2, and for every
v ∈ NG(B) and w ∈ NG(A), vw ∈ E(G). If G has no split and |V (G)| ≥ 5, then we call G a
prime graph. If G has a split (A,B), then we define a graph G′, called a simple decomposition
of G, as the graph obtained from G by deleting all edges between NG(A) and NG(B), and
adding two vertices w1,w2 and adding edges {w1w2}∪{vw1 : v ∈ NG(B)}∪{w2v : v ∈ NG(A)}.
We call w1w2 a marked edge of G′. A graph is a marked graph if it has marked edges, and for
a marked graph D, we define M(D) as the set of marked edges of D. A split-decomposition of
G is recursively defined to be either G or a marked graph obtained from a split-decomposition
D by replacing a component H of D \ M(D) with a simple decomposition of H. Two
components C1 and C2 of D \M(D) are neighbors if there exist v1 ∈ V (C1), v2 ∈ V (C2)
such that v1v2 ∈ M(D). A split-decompositon D of a graph is canonical if it satisfies the
following:

(i) each component of D \M(D) is either a prime graph or a star or a complete graph,
(ii) no two complete components are neighbors,
(iii) if two star components are neighbors, then two ends of the marked edge are both centers

or both leaves of each components.

Two split-decompositions D1 and D2 of a graph G are equivalent if there is a graph
isomorphism f from D1 to D2 such that f preserves the marked edges and f |V (G) is an
identity function. We need the following result.

J. Jeong, O. Kwon, and S. Oum 229

I Lemma 13 (Cunningham [4]). Canonical split-decompositions of a graph are equivalent.

Let D be the canonical split-decomposition of G and C(D) = {C1, C2, . . . , Cn} be the
components of D \M(D). A tree TG is a canonical tree of G if V (TG) = {vC1 , vC2 , . . . , vCn}
and vCi

is adjacent to vCj
if and only if two components Ci and Cj are neighbors in D. We

call f the canonical map from TG to D if it is the bijection from V (TG) to C(D) such that
f(vCk

) = Ck.
For v ∈ V (G) ⊆ V (D), a vertex w in D is a descendant of v if either w = v or w is

the end of a path starting from v, whose successive edges are alternatively non-marked and
marked edges, and the last edge is marked. Note that each component of D \M(D) has at
most 1 descendant of a vertex because every marked edge in D is a cut-edge. For v ∈ V (G),
we define D ∗ v as the marked graph obtained from D by replacing each component H of
D \M(D) having a descendant w of v by H ∗ w.

I Lemma 14 (Bouchet [3]). If D is a canonical split-decomposition of a graph G and
v ∈ V (G), then D ∗ v is a canonical split-decomposition of the graph G ∗ v.

By Lemma 14, if G and H are locally equivalent, then G and H have isomorphic
canonical trees. Hence, it is sufficient to prove that for G,H ∈ ∆k, if G and H have
isomorphic canonical trees, then G is isomorphic to H. To show this, we explicitly describe
the canonical decompositions of graphs in ∆k.

Clearly, K2 has itself as a canonical split-decomposition. Let k ≥ 1 and G ∈ ∆k. Note
that for a non-leaf vertex v in G, v is incident with exactly one cut-edge and meets at least
one triangles. For a non-leaf vertex v in G, let lv be the star on the vertex set V (lv) =
{v, av, bv

C1
, bv

C2
, . . . , bv

Cm
} with the center v, where v is incident with a cut-edge e and meets

trianges C1, C2, . . . , Cm. And for each triangle C in G, let tC be the triangle on the vertex set
{da

C , d
b
C , d

c
C} where V (C) = {a, b, c}. We define the graph DG as the graph obtained from the

disjoint union of all graphs in {lv : v is a non-leaf vertex in G} ∪ {tC : C is a triangle in G}
by adding the marked edge set M(DG) which consists of

(i) bv
Cd

v
C if v meets a triangle C,

(ii) avaw if vw is a cut-edge of G and both v and w are not leaves of G.

We can verify that the marked graph DG with M(DG) of the third graph G in Figure 3
is the first graph in Figure 7. In general, we can show that for G ∈ ∆k, DG with the marked
edge set M(DG) is indeed a canonical split-decomposition of G.

I Lemma 15. Let k be a non-negative integer and G ∈ ∆k. The graph DG is a canonical
split-decomposition of G with the set M(DG) of marked edges.

We can observe the following.

I Lemma 16. Let k be a non-negative integer and G ∈ ∆k. Let TG be a canonical tree of G
and f be the canonical map from TG to DG. Let B be the set of vertices of TG mapped by f
to a complete graph. Then the following are true.

(i) If v ∈ B, then NTG
(v) ∩B = ∅ and |NTG

(v)| = 3.
(ii) Every component of TG[V (TG) \B] has at most 2 vertices.
(iii) If w ∈ V (TG) \ B, then the component f(w) is a star, and the center of f(w) is a

non-leaf vertex in G, say u. Suppose that u meets m triangles in G. Then u is adjacent
with m+ 1 vertices in f(w).

STACS’13

230 Excluded vertex-minors for graphs of linear rank-width at most k

DG TG

Figure 7 The canonical split-decomposition DG and the canonical tree TG of the third graph G

in Figure 3. The black vertices in TG are the vertices mapped by the canonical map to a triangle of
DG.

I Proposition 17. Let k be a non-negative integer and G,H ∈ ∆k. If G, H have isomorphic
canonical trees, then G is isomorphic to H.

Proof. Let T be a canonical tree of both G and H. Let fG be the canonical map from T to
DG, and let BG be the set of vertices mapped by fG to a complete graph of DG. Similarly,
let fH be the canonical map from T to DH , and let BH be the set of vertices mapped by fH

to a complete graph in DH .
We first show that BG = BH . Suppose that BG 6= BH . Since G and H have the same

number of triangles, |BG| = |BH |. So we can choose v1 ∈ BG \ BH and a maximal path
P = v1v2 . . . vn in T such that

(i) P contains vertices from BG and from V (T) \BG, alternatively, and
(ii) P also contains vertices from V (T) \BH and from BH , alternatively.

Suppose vn is not a leaf. By the symmetry, we assume that vn ∈ BG and vn ∈ V (T) \BH .
Since vn ∈ BG, by Lemma 16, vn has 3 neighbors in T , which are contained in V (T) \BG.
And since vn ∈ V (T) \BH , by Lemma 16, vn has at most 1 neighbor of V (T) \BH . Hence,
there exists a vertex in (NT (vn) \ V (P)) ∩ BH , say vn+1. Thus, vn+1 ∈ V (T) \ BG and
vn+1 ∈ BH , and v1v2, . . . , vnvn+1 is also a path in T satisfying (i) and (ii). It contradicts to
the maximality of P . Thus, vn is a leaf in T . But if vn is a leaf in T , neither fG(vn) nor
fH(vn) is a triangle, so it is a contradiction. Therefore, BG = BH , and we call this set B.

Clearly, for v ∈ B, fG(v) and fH(v) are triangles. And by Lemma 16, for v ∈ V (T) \B,
the components fG(v) and fH(v) are uniquely determined by the neighbors of v in TG.
Therefore, the graphs DG and DH are isomorphic, and G is isomorphic to H. J

Proof of Theorem 12. Since G andH are locally equivalent, there is a sequence v1, v2, . . . vm

of V (G) such that G ∗ v1 ∗ v2 . . . ∗ vm = H. By Lemma 14, G and G ∗ v1 ∗ v2 . . . ∗ vm have
isomorphic canonical trees. And since G∗v1∗v2 . . .∗vm = H , by Lemma 13, G∗v1∗v2 . . .∗vm

and H have isomorphic canonical trees. Thus G and H have isomorphic canonical trees.
Since G,H ∈ ∆k, by Proposition 17, G is isomorphic to H. J

5 The size of ∆k is 2Ω(3k)

In this section, we determine the number of graphs in ∆k for each non-negative integer k.
The main theorem of this section is as follows.

I Theorem 18. Let k ≥ 2 be an integer. The size of ∆k is 2Ω(3k).

J. Jeong, O. Kwon, and S. Oum 231

For graphs G,G′ and v ∈ V (G) and v′ ∈ V (G′), two pairs (G, v) and (G′, v′) are
isomorphic if there exists a graph isomorphism φ from G to G′ such that φ(v) = v′. To prove
Theorem 18, for a positive integer k, we partition ∆k into Ak, Bk, and Ck as follows:

(i) G ∈ Ak if (G1, v1), (G2, v2), and (G3, v3) are isomorphic,
(ii) G ∈ Bk if only two of (G1, v1), (G2, v2), (G3, v3) are isomorphic,
(iii) G ∈ Ck otherwise,
where G is a delta composition of G1, G2, and G3 in ∆k−1, and v1v2v3 is the main triangle
of G such that vi ∈ V (Gi) for i = 1, 2, 3. If pk is the number of non-isomorphic pairs (G, v)
where G ∈ ∆k and v ∈ V (G), we can easily verify that

|Ak| = pk−1, |Bk| = pk−1(pk−1 − 1), |Ck| =
1
6pk−1(pk−1 − 1)(pk−1 − 2).

We will give a lower bound of pk from |Ak|, |Bk|, |Ck|, and obtain a recurrence relation.
For a graph G and v, w ∈ V (G), we denote v 'G w if (G, v) and (G,w) are isomorphic.

We consider the equivalent classes V (G)/'G. We denote [v] as an element of V (G)/'G. For
a non-negative integer k, let Pk = {(G, [v]) : G ∈ ∆k, [v] ∈ V (G)/'G} and pk = |Pk|. Then
pk is exactly the number of all non-isomorphic pairs (G, v) where G ∈ ∆k and v ∈ V (G).
It is obvious that p0 = 1, p1 = 2. And we can see that p2 = 24 in Figure 3. We need the
following lemma.

I Lemma 19. Let k be a positive integer and G ∈ ∆k.

1. If G ∈ Ak, then |V (G)/'G| ≥ 2k.
2. If G ∈ Bk, then |V (G)/'G| ≥ 2 · 2k.
3. If G ∈ Ck, then |V (G)/'G| ≥ 3 · 2k.

Proof of Theorem 18. By Lemma 19,

pk =
∑

G∈Ak∪Bk∪Ck

|V (G)/'G| ≥ 2k|Ak|+ 2 · 2k|Bk|+ 3 · 2k|Ck|.

Since |Ak| = pk−1, |Bk| = pk−1(pk−1 − 1) and |Ck| = 1
6pk−1(pk−1 − 1)(pk−1 − 2), we obtain

the following recurrence relation,

|Ak+1| = pk ≥ 2k|Ak|+ 2 · 2k|Bk|+ 3 · 2k|Ck|
≥ 2k−1|Ak|3

and |A2| = 2.
This means |Ak| = 2Ω(3k) for k ≥ 3. Because |∆2| = 4 and |∆k| ≥ |Ak| = 2Ω(3k) for

k ≥ 3, we conclude that |∆k| = 2Ω(3k) for k ≥ 2. J

Proof of Theorem 3. By Theorems 5 and 12, |Ok| ≥ |∆k|. And by Theorem 18, |∆k| ≥
2Ω(3k). Therefore, |Ok| ≥ 2Ω(3k). J

References
1 Isolde Adler, Arthur M. Farley, and Andrzej Proskurowski. Obstructions for linear

rankwidth at most 1. arXiv:1106.2533, 2011.
2 André Bouchet. Graphic presentations of isotropic systems. J. Combin. Theory Ser. B,

45(1):58–76, 1988.
3 André Bouchet. Transforming trees by successive local complementations. J. Graph Theory,

12(2):195–207, 1988.

STACS’13

232 Excluded vertex-minors for graphs of linear rank-width at most k

4 William H. Cunningham. Decomposition of directed graphs. SIAM J. Algebraic Discrete
Methods, 3(2):214–228, 1982.

5 Zdeněk Dvořák, Archontia C. Giannopoulou, and Dimitrios M. Thilikos. Forbidden graphs
for tree-depth. European J. Combin., 33(5):969–979, 2012.

6 Robert Ganian. Thread graphs, linear rank-width and their algorithmic applications. In
Combinatorial Algorithms, volume 6460 of Lecture Notes in Comput. Sci., pages 38–42.
Springer, 2011.

7 J. F. Geelen, A. M. H. Gerards, N. Robertson, and G. P. Whittle. On the excluded minors
for the matroids of branch-width k. J. Combin. Theory Ser. B, 88(2):261–265, 2003.

8 Arvind Gupta, Damon Kaller, and Thomas Shermer. On the complements of partial k-
trees. In Automata, languages and programming (Prague, 1999), volume 1644 of Lecture
Notes in Comput. Sci., pages 382–391. Springer, Berlin, 1999.

9 Sang-il Oum. Rank-width and vertex-minors. J. Combin. Theory Ser. B, 95(1):79–100,
2005.

10 Sang-il Oum. Rank-width and well-quasi-ordering. SIAM J. Discrete Math., 22(2):666–682,
2008.

11 Sang-il Oum and Paul Seymour. Approximating clique-width and branch-width. J. Combin.
Theory Ser. B, 96(4):514–528, 2006.

12 Atsushi Takahashi, Shuichi Ueno, and Yoji Kajitani. Minimal acyclic forbidden minors for
the family of graphs with bounded path-width. Discrete Math., 127(1-3):293–304, 1994.
Graph theory and applications (Hakone, 1990).

13 Dimitrios M. Thilikos. Algorithms and obstructions for linear-width and related search
parameters. Discrete Appl. Math., 105(1-3):239–271, 2000.

Recompression: a simple and powerful technique
for word equations∗

Artur Jeż

Max Planck Institute für Informatik,
Campus E1 4, DE-66123 Saarbrücken, Germany
Institute of Computer Science, University of Wrocław,
ul. Joliot-Curie 15, PL-50-383 Wrocław, Poland
aje@cs.uni.wroc.pl

Abstract
We present an application of a local recompression technique, previously developed by the author
in the context of compressed membership problems and compressed pattern matching, to word
equations. The technique is based on local modification of variables (replacing X by aX or Xa)
and replacement of pairs of letters appearing in the equation by a ‘fresh’ letter, which can be
seen as a bottom-up compression of the solution of the given word equation, to be more specific,
building an SLP (Straight-Line Programme) for the solution of the word equation.

Using this technique we give new self-contained proofs of many known results for word equa-
tions: the presented nondeterministic algorithm runs in O(n log n) space and in time polynomial
in logN and n, where N is the size of the length-minimal solution of the word equation. It can
be easily generalised to a generator of all solutions of the word equation. A further analysis of the
algorithm yields a doubly exponential upper bound on the size of the length-minimal solution.
The presented algorithm does not use exponential bound on the exponent of periodicity. Con-
versely, the analysis of the algorithm yields a new proof of the exponential bound on exponent
of periodicity. For O(1) variables with arbitrary many appearances it works in linear space.

1998 ACM Subject Classification F.4.3 Formal Languages: Decision problems, F.4.2 Grammars
and Other Rewriting Systems, F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Word equations, exponent of periodicity, string unification

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.233

1 Introduction

The problem of word equations is one of the most intriguing in computer science: given
words U and V , consisting of letters (from Γ) and variables (from X) we are to check the
satisfiability, i.e. decide, whether there is a substitution for variables that turns this formal
equation into an equality of strings of letters. It is useful to think of a solution S as a
homomorphism S : Γ ∪ X → Γ∗, which is an identity on Γ. In the more general problem of
solving the equation, we are to give representation of all solutions of the equation.

The satisfiability problem was solved by Makanin [10] (a more accessible presentation is
due to Diekert [2]). The proposed algorithm MakSAT transforms equations and large part of
Makanin’s work consists of proving that this procedure in fact terminates. While terminating,
MakSAT complexity is high and it was gradually improved: by Jaffar and independently
Schulz to 4-NEXPTIME [4, 17] Kościelski and Pacholski to 3-NEXPTIME [7], by Diekert to

∗ This work was partially supported by NCN grant number DEC-2011/01/D/ST6/07164, 2011–2014.

© Artur Jeż;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 233–244

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.233
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

234 Recompression: a simple and powerful technique for word equations

2-EXPSPACE (unpublished, see notes in [2]) and by Gutiérrez to EXPSPACE [3]. On the
other hand, only a (simple) NP-hardness is known and it is widely believed that indeed this
problem is in NP.

One of the key factors in the proof of termination, as well in later estimations of the
complexity of the algorithm, was the upper bound on exponent of periodicity of the solution:
the exponent of periodicity of a word w is the largest p such that w = w1u

pw2 for some
u 6= ε. The original proof of Makanin gave a doubly exponential bound on the exponent
of periodicity of any length-minimal solution of word equations. Later it was shown by
Kościelski and Pacholski that it is at most exponential and that this bound is tight [7].

A major independent step in the field was done by Plandowski and Rytter [15], who for the
first time applied the compression to the solutions of the word equations. They showed that
LZ-compressed representation of length-minimal (of size N) is O(poly(logN,n))-size. This
yielded a new, very simple to both state and analyse, algorithm for word equations satisfiability,
which works in (nondeterministic) polynomial in terms of logN and n. Unfortunately, at
that time the only bound on N followed from the original Makanin’s algorithm, and it was
triply exponential; this gave a 2-NEXPTIME algorithm.

Later, Plandowski gave a doubly-exponential upper bound on the size of the minimal
solution [12], which immediately yielded a NEXPTIME algorithm PlaSAT2EXP. This upper
bound was obtained by an analysis of the minimal solution using so-called D-factorisations.

Soon after an algorithm PlaSAT with a PSPACE upper-bound was given by Plandowski [13].
This algorithm starts with a trivial equation e = e and has a set of operations that can
be performed on the equation. The rewriting rules are simple and the algorithm is easy to
understand, moreover it is obvious that they preserve satisfiability. However, the proof of
completeness (i.e. that they properly generate all satisfiable equations) is involved. It is
based on usage of exponential expressions, which can be seen as a very simple compression,
and on indexed factorisations of words, which extend D-factorisations.

All mentioned algorithms check satisfiability and can be modified to return some solution
of the word equation, but they do not solve it in the sense that they do not provide a
representation of all solutions. This was fully resolved by Plandowski [14], who gave an
algorithm PlaSolve, which runs in PSPACEand generates a compact representation of all
finite solutions of a word equation. This algorithm uses an improved version of PlaSAT,
the PlaSATimp, as subprocedure. The representation of the solutions is a directed multigraph,
whose nodes are labelled with expressions and edges define substitutions for constants and
variables. Such representation reduces many properties of word equations to reachability
in graphs (which were exponentially larger), for instance the problem of finiteness of set of
solutions is shown to be in PSPACE.

Our contribution
We present an application of a simple technique of local recompression developed by the
author and successfully applied to problems related with compressed data [5, 6]. The idea
of the technique is easily explained in terms of solutions of the equations rather than the
equations themselves: consider a solution S(U) = S(V) of the equation U = V . In one phase
we first list all pairs of different letters ab that appear as substrings in S(U) and S(V). For
a fixed pair ab of this kind we greedily replace all appearances of ab in S(U) and S(V) by a
‘fresh’ letter c. (A slightly more complicated action is performed for pairs aa, for now we
ignore this case to streamline the presentation of the main idea). There are possible conflicts
between such replacements for different types of pairs (consider string aba, in which we try
to replace both pairs ab and ba), we resolve them by introducing some arbitrary order on

A. Jeż 235

types of pairs and performing the replacement for one type of pair at a time, according to
the order. When all such pairs are replaced, we obtain another equal pair of strings S′(U ′)
and S′(V ′) (note that the equation U = V may have changed, say into U ′ = V ′). Then we
iterate the process. In each phase the strings are shortened by a constant factor, hence after
O(logN) phases we obtain constant-length strings. The original equation is solvable if and
only if the obtained strings are the same.

The problematic part is that the operations are performed on the solutions, which can
be large. If we simply guess the solution and then perform the compressions, the running
time is polynomial in N . Instead we perform the compression directly on the equation (the
recompression): the pairs ab appearing in the solution are identified using only the equation
and the compression of the solution is two-fold: the pairs ab from U and V are replaced
explicitly and the pairs fully within some S(X) are replaced implicitly, by changing S (which
is not stored). However, not all pairs of letters can be compressed in this way, as some
of them appear on the ‘crossing’ between a variable and a constant: consider for instance
S(X) = ab, a string of symbols Xc and a compression of a pair bc. This is resolved by local
decompression: when trying to compress the pair bc in the example above we first replace
X by Xb (implicitly changing S(X) from ab to a), obtaining the string of symbols Xbc, in
which the pair bc can be easily compressed.

I Example 1. Consider an equation aXca = abY a with a solution S(X) = baba and
S(Y) = abac. In the first phase, the algorithm wants to compress the pairs ab, ca, ac, ba,
say in this order. To compress ab, it replaces X with bX, thus changing the substitution
into S(X) = aba. After compression we obtain equation a′Xca = a′Y a. Notice, that this
implicitly changed to solution into S(X) = a′a and S(Y) = a′ac. To compress ca (into
c′), we replace Y by Y c, thus implicitly changing the substitution into S(Y) = a′a. Then,
we obtain the equation a′Xc′ = a′Y c′ with a solution S(X) = a′a and S(Y) = a′a. The
remaining pairs no longer appear in the equations, and so we can proceed to the next phase.

Using the technique of local recompression we give a (nondeterministic) algorithm for
testing satisfiability of word equations that works in time O(logNpoly(n)) and in O(n log n)
space; PlaSAT stored equation of quadratic length and used cubic space for auxiliary com-
putation. Furthermore, for O(1) variables a more careful analysis yields that the space
consumption (calculated in bits) is O(n), thus showing that this case is context-sensitive.

The presented algorithm and its analysis are stand-alone, as they do not assume any
(non-trivial) properties of the solutions of word equations. To the contrary, the presented
algorithm supplies an easy proof of doubly-exponential upper bound of Plandowski [12] on
lengths of length-minimal solutions as well as giving a new proof of exponential exponent of
periodicity (though slightly weaker than the one presented by Kościelski and Pacholski [7]).

The presented method can be used as a subprocedure in an algorithm generating a
representation of all solutions, similarly as PlaSATimp in PlaSolve. The representation
provided by our algorithm is similar to representation provided by PlaSolve, i.e. a directed
multigraph with edges representing substitutions.

Comparison with previous approaches to word equations
The presented method and the obtained algorithm is independent from all previously known
algorithms for word equations, i.e. from original MakSAT and its variants, from PlaRytSAT
(and its variant PlaSAT2EXP), from PSPACE algorithm PlaSAT as well as its modification
PlaSATimp. It can be somehow compared with the LZ-based PlaRytSAT [15]. The key
difference is that Plandowski and Rytter showed that a length-minimal solution has a short

STACS’13

236 Recompression: a simple and powerful technique for word equations

LZ-representation and then explicitly guessed and verified it. Thus their solution is ‘global’
and based on solutions’ properties. The novelty of the here proposed method is that it does
not use properties of the solutions and that it is very ‘local’, as it does not try to build the
solution in one go and modifies the equations and variables locally.

The presented algorithm uses a limited variant of exponent of periodicity, in which the
strings in question are repetitions of the same letter. In such a case the bound on such
restricted exponent of periodicity easily reduces to a bound on minimal solutions of a system
of linear Diophantine equations, which are well known. This again makes the presented
algorithm somehow similar to PlaRytSAT, which does not use the exponent of periodicity
bound.

Related techniques

While the presented method of recompression is relatively new, some of its ideas and
inspirations go quite back. It was developed in order to deal with fully compressed membership
problem for NFA and the previous work on this topic by Mathissen and Lohrey [9] already
implemented the idea of replacing strings with fresh letters as well as modifications of the
instance so that this is possible. Furthermore they treated maximal blocks of a single letter
in a proper way. However, the replacement was not iterated, and the newly introduced letters
could not be further compressed.

The idea of replacing short strings by a fresh letter and iterating this procedure was used
by Mehlhorn et. al [11] in their work on data structure for equality tests for dynamic strings
(cf. also an improved implementation of a similar data structure by Alstrup, Brodal and
Rauhe [1]). In particular their method can be straightforwardly applied to equality testing for
SLPs, yielding a nearly quadratic algorithm (as observed by Gawrychowski). However, the
inside technical details of the construction make it problematic to extend: while this method
can be used to build ‘canonical’ SLPs for the text and the pattern, there is no apparent way
to control how these SLPs look like and how do they encode the strings.

A similar technique, based on replacement of pairs and blocks of the same letter was
proposed by Sakamoto [16] in the context of constructing a smallest SLP generating a given
word. His algorithm was inspired by a practical grammar-based compression algorithm
RePair [8]. It possessed the important features of the method: iterated replacement, and
ignoring letters recently introduced. However, the analysis that stressed the modification of
the variables (nonterminals, in there considered case of grammars) was not introduced and it
was done in a different way.

2 Main notions and techniques: local compression

By Γ we denote the set of letters appearing in the equation U = V or are used for represent-
ation of compressed strings, X denotes a set of variables. The equation is written as U = V ,
where U, V ∈ (Γ ∪ X)∗. By |U |, |V | we denote the length of U and V , n denotes the length
of the input equation, nv is the number of appearances of variables in the input.

A substitution is a morphism S : X ∪ Γ → Γ∗, such that S(a) = a for every a ∈ Γ,
substitution is naturally extended to (X ∪ Γ)∗. A solution of an equation U = V is a
substitution S, such that S(U) = S(V); a solution S is a length-minimal, if for every solution
S′ it holds that |S(U)| ≤ |S′(U)|.

A. Jeż 237

Operations
In essence, the presented technique is based on performing two operations on S(U) and S(V),
the first one is pair compression of ab: For two different letters ab appearing in S(U) replace
each of ab in S(U) and S(V) by a fresh letter c.

The compression of pair aa is ambiguous, we compress maximal blocks instead: For a
letter a ∈ Γ we say that a` is a a’s maximal block of length ` (for a solution S), if a` appears
in S(U) and this appearance cannot be extended by a letter a to the right, neither to the
left. We refer to a’s `-block for shortness. The second operation is block compression for a:
For a letter a appearing in S(U) and for each maximal block a` replace all a`s in S(U) and
S(V) by a fresh letter a`.

The lengths of the maximal blocks can be upper bounded using the well-known exponential
bound on exponent of periodicity:

I Lemma 2 (Exponent of periodicity bound [7]). If solution S is length-minimal and w` for
w 6= ε is a substring of S(U), then ` ≤ 2cn for some constant 0 < c < 2.

I Remark. WordEqSat introduces new letters to the instance, replacing pairs of letters or
maximal blocks of one letter. We insist that these new symbols are called and treated as
letters. On the other hand, we can think of them as non-terminals of a context-free grammar:
if c replaced ab, then this corresponds to a production c→ ab, similarly, a` → a`. In this way
we can think that WordEqSat builds a context-free grammar generating S(U) as a unique
word in the language.

Types of pairs and blocks
Both pair compression and block compression shorten S(U) (and S(V)). On the other hand,
sometimes it is hard to perform these operations: for instance, if we are to compress a pair
ab and aX appears in U , moreover, S(X) begins with b, then the compression is problematic,
as we need to somehow modify S(X). The following definition allows distinguishing between
pairs (blocks) that are easy to compress and those that are not.

I Definition 3 (cf. [5, 6]). Given an equation U = V and a substitution S and a substring
u ∈ Γ+ of S(U) (or S(V)) we say that this appearance of u is explicit, if it comes from
substring u of U (or V , respectively); implicit, if it comes (wholly) from S(X) for some
variable X; crossing otherwise. A string u is crossing (with respect to S) if it has a crossing
appearance and non-crossing otherwise.

We say that a pair of ab is a crossing pair (with respect to S), if ab has a crossing
appearance. Otherwise, a pair is non-crossing (with respect to S). Unless explicitly stated,
we consider crossing/non-crossing pairs ab in which a 6= b. Similarly, a letter a ∈ Γ has a
crossing block (with respect to S), if there is a block of a which has a crossing appearance.

Compression of noncrossing pairs is easy, so is block compression when a has no crossing
block. In other cases, the compression seems difficult.

We say that a` is visible in S, if there is an appearance of the a’s `-block that is explicit
or crossing or it is a prefix or suffix of some S(X).

I Lemma 4 (cf. [15, Lemma 6]). Let S be a length-minimal solution of U = V .
If ab is a substring of S(U), where a 6= b, then ab is an explicit pair or a crossing pair.
If ak is a maximal block in S(U) then a has an explicit appearance in U or V and there
is a visible appearance of ak.

STACS’13

238 Recompression: a simple and powerful technique for word equations

Compression of noncrossing pairs and blocks
Intuitively, when ab is non-crossing, each of its appearance in S(U) is either explicit or
implicit. Thus, to perform the pair compression of ab on S(U) it is enough to separately
replace each explicit pair ab in U and change each ab in S(X) for each variable X. The latter
is of course done implicitly (as S(X) is not written down anywhere).

Algorithm 1 PairCompNCr(a, b) Pair compression for a non-crossing pair
1: let c ∈ Γ be an unused letter
2: replace each explicit ab in U and V by c

Similarly when none block of a has a crossing appearance, the a’s blocks compression
consists simply of replacing explicit a blocks.

Algorithm 2 BlockCompNCr(a) Block compression for a letter a with no crossing block
1: for each explicit a’s `-block appearing in U or V do
2: let a` ∈ Γ be an unused letter
3: replace every explicit a’s `-block appearing in U or V by a`

Preserving satisfiability and unsatisfiability
We say that a nondeterministic procedure preserves unsatisfiability, when given a unsat-
isfiable word equation U = V it cannot transform it to a satisfiable one, regardless of
the nondeterministic choices; such a procedure preserves satisfiability, if given a satisfiable
equation U = V for some nondeterministic choices it returns a satisfiable equation U ′ = V ′.

A procedure that preserves satisfiability implements pair compression of a pair ab for
a solution S of an equation U = V for some nondeterministic choices it returns equation
U ′ = V ′ with a solution S′, such that S′(U ′) is obtained from S(U) by replacing each ab by
c; similarly we say that a procedure implements blocks compression for a.

I Lemma 5. PairCompNCr(a, b) preserves the unsatisfiability; for each solution S, if ab is a
non-crossing pair for S in an equation U = V then it preserves satisfiability and implements
the pair compression of ab, .

BlockCompNCr(a) preserves unsatisfiability; for each solution S, if a has no crossing
blocks in U = V (for S) it preserves satisfiability and implements a’s block compression.

Crossing pairs and blocks compression
The presented algorithms cannot be directly applied to crossing pairs or to compression of
a’s blocks that have crossing appearances. To fix this, we modify the instance: if a pair ab is
crossing because there is a variable X such that S(X) = bw for some word w and a is to the
left of X, it is enough to left-pop b from S(X): we replace each X with bX and implicitly
change S, so that S(X) = w; similar action is applied to variables Y ending with a and with
b to the right (right-popping a from S(X)). Afterwards, ab is non-crossing with respect to S.

This idea can be employed much more efficiently: consider a partition of Γ into Γ` and
Γr. The ‘left-popping’ from each variable a letter from Γr and ‘right-popping’ a letter from
Γ` guarantees that each pair ab ∈ Γ`Γr is non-crossing. Since pairs from Γ`Γr do not overlap,
after the preprocessing they can be compressed in parallel.

A. Jeż 239

Algorithm 3 Pop(Γ`,Γr)
1: for X ∈ X do
2: let b be the first letter of S(X) . Guess
3: if b ∈ Γr then
4: replace each X in U and V by bX . Implicitly change S(X) = bw to S(X) = w

5: if S(X) = ε then . Guess
6: remove X from the equation
7: . Perform a symmetric action for the last letter

I Lemma 6. Pop(Γ`,Γr) preserves satisfiability and unsatisfiability.
Furthermore, if S is a solution of U = V then for all nondeterministic choices the obtained

U ′ = V ′ has a solution S′ such that S′(U ′) = S(U) and for some nondeterministic choices
each pair ab from Γ`Γr is non-crossing (with regard to S′).

Algorithm 4 PairComp(Γ`,Γr)
1: run Pop(Γ`,Γr)
2: for ab ∈ Γ`Γr do
3: run PairCompNCr(a, b)

I Lemma 7. PairComp(Γ`,Γr) preserves satisfiability and unsatisfiability and for each
solution it implements the pair compression of each pair ab ∈ Γ`Γr.

The problems with crossing blocks can be solved in a similar fashion: a has a crossing
block, if aa is a crossing pair. So we ‘left-pop’ a from X until the first letter of S(X) is
different than a, we do the same with the ending letter b. This can be alternatively seen
as removing the whole a-prefix (b-suffix, respectively) from X: suppose that S(X) = a`wbr,
where w does not start with a nor end with b. Then we replace each X by a`Xbr implicitly
changing the solution to S(X) = w. This eliminates crossing blocks with respect to S.

Algorithm 5 CutPrefSuff Cutting prefixes and suffixes
1: for X ∈ X do
2: let a, b be the first and last letter of S(X)
3: guess `X ≥ 1, rX ≥ 0 . S(X) = a`XwbrX , w does not begin with a nor end with b
4: replace each X in U and V by a`XXbrX . a`X , brX is stored in a compressed form
5: . implicitly change S(X) = a`XwbrX to S(X) = w

6: if S(X) = ε then . Guess
7: remove X from the equation

I Lemma 8. CutPrefSuff preserves unsatisfiability and satisfiability. For a solution S of
U = V and appropriate nondeterministic choices it returns an equation U ′ = V ′ that has a
solution S′ such that S(U) = S′(U ′) and U ′ = V ′ has no crossing blocks with respect to S′.

The procedure CutPrefSuff allows defining a procedure BlockComp that compresses
maximal blocks of all letters, regardless of whether they have crossing blocks or not.

STACS’13

240 Recompression: a simple and powerful technique for word equations

Algorithm 6 BlockComp
1: run CutPrefSuff
2: for each letter a ∈ Γ do
3: BlockCompNCr(a)

I Lemma 9. BlockComp preserves unsatisfiability and satisfiability and implements the block
compression (for all letters a).

3 Main algorithm, its time and space consumption, solutions’ size

Now, the algorithm for testing satisfiability of word equations can be conveniently stated.
We refer to one iteration of the main loop in WordEqSat as one phase.

Algorithm 7 WordEqSat Checking the satisfiability of a word equation
1: while |U | > 1 or |V | > 1 do
2: run BlockComp
3: L ← the set of letters present in U or V
4: for i← 1 . . 2 do . One to compress the equation, one the solution
5: guess partition of L into L1 and L2, run PairComp(L1,L2)
6: Solve the problem naively . With sides of length 1, the problem is trivial

The somehow peculiar double iteration of line 5 is for technical reasons: in one of the
iterations we make sure that the solution is compressed, in the other that the equation
representation is compressed, see Lemma 11.

I Theorem 10. WordEqSat nondeterministically verifies the satisfiability of word equations.
It can verify an existence of a length-minimal solution of length N in O(poly(n) logN) time
and O(n log n) space. For appropriate choices, the stored equation has length O(n).

The correctness of WordEqSat follows from the fact that its subprocedures preserve
satisfiability and unsatisfiability, which was shown in the previous section.

The lemma below formally states the idea that the solutions are compressed and it is a
technical foundation for proofs of space and time consumption bounds.

I Lemma 11. Let U = V has a solution S. For appropriate nondeterministic choices the
equation U ′ = V ′ obtained at the end of the phase has a solution S′ such that i) at least
1/6 of letters in U or V are compressed in U ′ or V ′; ii) at least 1/6 of letters in S(U) are
compressed in S′(U ′).

Proof. We show the claim for S(U) and then comment how the proof applies to U . Divide
S(U) into three-letter segments. We prove that for some partition into L1 and L2, in at
least halve of these segments one of the letters in them is compressed, which shows the
claim. Consider any such segment, let it be abc. If any of those letters is the same as
its neighbouring letters, then by Lemma 9 for some nondeterministic choices BlockComp
implements the compression of blocks, and so this letter is compressed and we are done.

So suppose that none of these letters is the same as its neighbouring letters, in particular,
they are not compressed by BlockComp. Consider a random partition of L into L1 and
L2, each letter goes to one part with probability 1/2. There is a compression inside abc if
ab ∈ L1L2 or bc ∈ L1L2. Each of those events has probability 1/4 and they are disjoint,

A. Jeż 241

hence the compression appears with probability at least 1/2. So regardless of the case, with
probability 1/2 at least one of letters in abc is compressed. There are |S(U)|/3 three-letter
segments. The expected number of segments in which at least one letter is compressed is
thus at least |S(U)|/6, so for some partition at least |S(U)|/6 letters are compressed.

Concerning U , the analysis is similar: we consider segments in U and V instead of S(U)
and S(V). This corresponds to the second partition of L to L1 and L2. J

Lemma 11 is enough to show the bound on used memory: on one hand the new letters
are introduced to the equations by Pop and CutPrefSuff, and their total number is O(nv)
per phase. This increases the lengths of U and V by O(nv). On the other hand U and V
are shortened by a constant factor; this yields a linear bound on |U ′| and |V ′|. Moreover,
Lemma 11 yields that for some choices there are O(logN) phases.

4 Other results

4.1 Theoretical properties
Using the approach of recompression we give (alternative and often simpler) proofs of a
doubly-exponential bound on the size of the length-minimal solution and an exponential
bound on the periodicity bound.

4.1.1 Double exponential bound on minimal solutions
The running time of WordEqSat is polynomial in n and logN and it is easy to also lower-bound
it in terms of logN . On the other hand the length of the stored equations is O(n), which
yields that there are exponentially (in n) many different configurations. Comparing those
two bounds yields a doubly exponential bound on N .

4.1.2 Exponential bound on exponent of periodicity
For a word w the exponent of periodicity per(w) is the maximal k such that uk is a substring
of w, for some u ∈ Γ+; Γ-exponent of periodicity perΓ(w) restricts the choice of u to Γ. This
notion is naturally transferred to equations: For an equation U = V , define the exponent
of periodicity as maxS [per(S(U))], where the maximum is taken over all length-minimal
solutions S of U = V ; define the Γ-exponent of periodicity of U = V in a similar way.

An exponential upper bound on Γ-exponent of periodicity of an equation is easy to obtain.
Fix a solution S, for each variable X define `X (rX): the length of maximal prefix (suffix,
respectively) of S(X) that is a block of the same letter. From Lemma 4 it follows that each
length of maximal block can be expressed in terms of {`X , rX}X∈X and constants. We define
a different solution S′ which is obtained by altering {`X , rX}X∈X . To guarantee that such a
S′ is indeed a solution we require that if two maximal blocks in S(U) are of the same length,
they have the same length in S′(U) as well. Such a condition boils down to an equality of
two expressions using {`X , rX}X∈X and constants. When we treat {`X , rX}X∈X as variables,
we obtain a system of linear Diophantine equations. Each solution of this system defines
a solution of U = V , in particular, length-minimal solutions come from minimal (in an
appropriate sense) solutions of such Diophantine systems, which are known to be at most
exponential.

To show a similar bound in the case of exponent of periodicity, we investigate, how it can
be changed by subprocedures of WordEqSat. On one hand, if the exponent of periodicity is
equal to Γ-exponent of periodicity then it is at most exponential. We show that when it is

STACS’13

242 Recompression: a simple and powerful technique for word equations

not then each subprocedure of WordEqSat can modify it at most by a constant. Hence, the
upper bound on the exponent of periodicity is at most the sum of number of subprocedures
and the Γ-exponent of periodicity, which are both at most exponential.

4.2 Linear space for O(1) variables
The length of the word equation kept by WordEqSat is linear. However, the letters in this
equation can be all different, even if the input equation is over two letters. Hence the
(nondeterministic) space usage is O(n log n) bits. For O(1) variables (and unbounded number
of appearances) we improve the bit consumption to only constant larger than the input.

The main obstacle is the encoding of letters introduced by WordEqSat, we give a more
suitable one. Consider string of explicit letters between two consecutive variables X and
Y in U = V . During WordEqSat the XwY will be changed to Xw(1)Y , Xw(2)Y , . . . Each
w(i) can be partitioned into 3 substrings x(i)v(i)y(i), where the letters in v(i) represent solely
the letters from w, while each letter in x(i) (y(i)) represent also some letter popped at some
point from X (Y , respectively). We encode v(i) using only a constant time more bits than w:
roughly, we represent letters as trees and when merging a and b into c, the tree of c has the
tree of a as a left subtree and a tree of b as a right subtree.

On the other hand, the letters in x(i) and y(i) depend solely on XwY , so we simply
encode them as (XwY)1, (XwY)2, . . . , (XwY)(|x(i)|+ |y(i)|), where (XwY) is encoded as
the corresponding fragment of the input and the numbers are encoded in binary. Note, that
in this way different appearances of the same letter a may get the same code: in such case
we collect the codes for a and add the information that they all represent the same letter.

It might be that |x(i)| + |y(i)| is non-constant: WordEqSat guarantees that the length
of the whole |U |+ |V | is O(n), but some fragments may become large. However, for O(1)
variables we can enforce that in one phase WordEqSat compresses each pair of consecutive
letters. In this way a stronger variant of Lemma 11 yields that each of |x(i)|+ |y(i)| is O(1).
Let LinWordEqSat denote the such modified WordEqSat.

I Theorem 12. LinWordEqSat preserves unsatisfiability and satisfiability. For k variables, it
runs in (nondeterministic) O(mkck) space, for some constant c, where m is the size of the
input measured in bits.

4.3 Representation of all solutions
Plandowski [14] gave an algorithm that generated a finite, graph-like representation of all
solutions of a word equations. It is based on the idea that PlaSAT not only preserves
satisfiability and unsatisfiability, but it in some sense operates on the solutions: when it
transforms U = V to U ′ = V ′ then solutions of U ′ = V ′ correspond to solutions of U = V .
Moreover, each solution of U = V can be represented in this way for some U ′ = V ′. Hence,
all solutions can be represented as a graph as follows: nodes are labelled with equations of the
form U = V and a directed edge leads from U = V to U ′ = V ′ if for some nondeterministic
choices the former equation is transformed into the latter by PlaSAT. Furthermore, the
edge describes, how the solutions of U ′ = V ′ can be changed into the solutions of U = V .
In this process PlaSAT is used to establish the existence of the edge and the operations
that are associated with this edge. Since WordEqSat runs in PSPACE, such generation of
labelled vertices and edges can also be performed in PSPACE, furthermore the description of
a vertex (edge) is of polynomial size, so iteration over all vertices (edges, respectively) can
be implemented in PSPACE. We describe how to employ WordEqSat in a similar procedure.

A. Jeż 243

I Theorem 13 (cf. [14]). The graph representation of all solutions of an equation U = V

can be constructed in PSPACE. The size of the constructed graph is at most exponential.

Transforming the solutions

As a first step we define precisely what does it mean that a subprocedure transforms the
solutions. We use a notion of an operator, which is simply a function taking and returning
a substitution. Then given a (nondeterministic) procedure transforming the equation U = V

we say that this procedure transforms the solutions, if based on the nondeterministic choices
and the input equation we can define a family of operators H such that

for any solution S of U = V there are some nondeterministic choices that lead to an
equation U ′ = V ′ such that S = H[S′] for some solution S′ of the equation U ′ = V ′ and
some operator H ∈ H;
for every solution S′ of the obtained equation U ′ = V ′ and for every operator H ∈ H the
H[S′] is a solution of U = V .

Intuitively, in this way all solutions of an equation U = V can be represented using the
solutions of the possible outcome equations. We say that that H is the corresponding family
of inverse operators. In many cases, H = {H}, in such case we call H the corresponding
inverse operator.

The lemmata showing that subprocedures of WordEqSat preserve satisfiability can be
strengthened to show that they in fact transform the solutions and the appropriate family of
inverse operators can be given.

Representation of solutions

The set of solutions will be represented by a directed graph G: the vertices of G are labelled
with equations U = V that appear during the run of WordEqSat; furthermore, we require
that the length of U = V is at most cn and it has at most nv appearances of variables,
for some constant c. There is an edge from U = V to U ′ = V ′ if and only if for some
nondeterministic choices WordEqSat transforms U = V to U ′ = V ′; such an edge is labelled
with the corresponding family of inverse operators, which can be in one of the following
forms: H replaces c in each S(X) by ab; H appends (prepends) a`X to S(X); for each k

replace each ak in all S(X) by ak. Note that in the last type of operators, the ak is just a
naming convention, a priori we do not know, which letter is going to be replaced. So, the
operators in H need to specify, which letters in U ′ = V ′ are being replaced with a blocks and
the lengths of the respective blocks. As such lengths are potentially unbounded, H can be
infinite. However, using approach similar to the one presented in Section 4.1.2, the respective
lengths can be represented compactly by a system of linear Diophantine equations, and so
the description remains polynomial.

In order to generate the graph representation we need to be able to decide whether:
a given equation U = V labels a node in G; given two equations U = V and U ′ = V ′ and
H whether there is an edge from U = V to U ′ = V ′ labelled with H. WordEqSat can be
naturally used to answer such queries. Thus the construction of G is easy: We iterate over
all equations U = V of length at most cn, for a fixed U = V we check whether it labels a
node in G. If so, we output it. We then perform a similar iteration for edges: for each pair of
equations U = V and U ′ = V ′ and family of inverse operators H we verify, whether there is
an edge from U = V to U ′ = V ′ labelled with H. If so, we output the appropriate edge.

STACS’13

244 Recompression: a simple and powerful technique for word equations

Acknowledgements I would like to thank P. Gawrychowski for initiating my interest in
compressed membership problems, which eventually led to this work and for pointing to
relevant literature [9, 11]; J. Karhumäki, for his question, whether the techniques of local
recompression can be applied to the word equations; W. Plandowski for his comments and
suggestions on the manuscript and questions concerning the space consumption that led
to linear space algorithm for O(1) variables; anonymous referees, who pointed out several
shortcomings and mistakes.

References
1 Stephen Alstrup, Gerth Stolting Brodal, and Theis Rauhe. Pattern matching in dynamic

texts. In SODA, pages 819–828, 2000.
2 Volker Diekert. Makanin’s algorithm. In M. Lothaire, editor, Algebraic Combinatorics on

Words, chapter 12, pages 342–390. Cambridge University Press, 2002.
3 Claudio Gutiérrez. Satisfiability of word equations with constants is in exponential space.

In FOCS, pages 112–119. IEEE Computer Society, 1998.
4 Joxan Jaffar. Minimal and complete word unification. J. ACM, 37(1):47–85, 1990.
5 Artur Jeż. Compressed membership for NFA (DFA) with compressed labels is in NP (P). In

Christoph Dürr and Thomas Wilke, editors, STACS, volume 14 of LIPIcs, pages 136–147.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

6 Artur Jeż. Faster fully compressed pattern matching by recompression. In Artur Czumaj,
Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer, editors, ICALP, volume 7391 of
LNCS, pages 533–544. Springer, 2012.

7 Antoni Kościelski and Leszek Pacholski. Complexity of Makanin’s algorithm. J. ACM,
43(4):670–684, 1996.

8 N. Jesper Larsson and Alistair Moffat. Offline dictionary-based compression. In Data
Compression Conference, pages 296–305. IEEE Computer Society, 1999.

9 Markus Lohrey and Christian Mathissen. Compressed membership in automata with com-
pressed labels. In Alexander S. Kulikov and Nikolay K. Vereshchagin, editors, CSR, volume
6651 of LNCS, pages 275–288. Springer, 2011.

10 G. S. Makanin. The problem of solvability of equations in a free semigroup. Matematicheskii
Sbornik, 2(103):147–236, 1977. (in Russian).

11 Kurt Mehlhorn, R. Sundar, and Christian Uhrig. Maintaining dynamic sequences under
equality tests in polylogarithmic time. Algorithmica, 17(2):183–198, 1997.

12 Wojciech Plandowski. Satisfiability of word equations with constants is in NEXPTIME. In
STOC, pages 721–725, 1999.

13 Wojciech Plandowski. Satisfiability of word equations with constants is in PSPACE.
J. ACM, 51(3):483–496, 2004.

14 Wojciech Plandowski. An efficient algorithm for solving word equations. In Jon M. Klein-
berg, editor, STOC, pages 467–476. ACM, 2006.

15 Wojciech Plandowski and Wojciech Rytter. Application of Lempel-Ziv encodings to the
solution of words equations. In Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel,
editors, ICALP, volume 1443 of LNCS, pages 731–742. Springer, 1998.

16 Hiroshi Sakamoto. A fully linear-time approximation algorithm for grammar-based com-
pression. J. Discrete Algorithms, 3(2-4):416–430, 2005.

17 Klaus U. Schulz. Makanin’s algorithm for word equations — two improvements and a
generalization. In Klaus U. Schulz, editor, IWWERT, volume 572 of LNCS, pages 85–150.
Springer, 1990.

Fast Algorithms for Abelian Periods in Words and
Greatest Common Divisor Queries
Tomasz Kociumaka1, Jakub Radoszewski1, and Wojciech Rytter∗1,2

1 Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland
[kociumaka,jrad,rytter]@mimuw.edu.pl

2 Faculty of Mathematics and Computer Science,
Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland

Abstract
We present efficient algorithms computing all Abelian periods of two types in a word. Regular
Abelian periods are computed in O(n log log n) randomized time which improves over the best
previously known algorithm by almost a factor of n. The other algorithm, for full Abelian periods,
works in O(n) time. As a tool we develop an O(n) time construction of a data structure that
allows O(1) time gcd(i, j) queries for all 1 ≤ i, j ≤ n, this is a result of independent interest.

1998 ACM Subject Classification E.1 Data Structures, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases Abelian period, greatest common divisor

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.245

1 Introduction

The area of Abelian stringology was initiated by Erdös who posed a question about the
smallest alphabet size for which there exists an infinite Abelian-square-free word, see [11]. An
example of such a word over five-letter alphabet was given by Pleasants [18] and afterwards
the optimal example over four-letter alphabet was shown by Keränen [16]. Quite recently
there have been several results on Abelian complexity in words [2, 8, 9, 10] and partial
words [3, 4] and on Abelian pattern matching [5, 17]. Abelian periods were first defined and
studied by Constantinescu and Ilie [6].

We say that two words are commutatively equivalent, if one can be obtained from the
other by permuting its symbols. This relation can be conveniently described using Parikh
vectors, which show frequency of each symbol of the alphabet in a word: x and y are
commutatively equivalent if and only if the Parikh vectors P(x) and P(y) are equal.

Let w be a non-empty word of length n over an alphabet Σ = {1, . . . ,m}. We assume
that m ≤ n, but if m is polynomially bounded, i.e. m = nO(1), the letters of w can be
renumbered in O(n) time so that m ≤ n. Let P(w) be an array such that P(w)[c] equals
to the number of occurrences of the symbol c ∈ Σ in w. Let us denote by w[i . . j] the
factor wi . . . wj and by Pi,j the Parikh vector P(w[i . . j]). For two vectors Q1, Q2 we write
Q1 ≤ Q2 if Q1[c] ≤ Q2[c] for each coordinate c.

An integer q is called an Abelian period of w if for k =
⌊

n
q

⌋
P1,q = Pq+1,2q = . . . = P(k−1)q+1,kq and Pkq+1,n ≤ P1,q.

∗ The author is supported by grant no. N206 566740 of the National Science Centre.

© T. Kociumaka, J. Radoszewski, and W. Rytter;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 245–256

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.245
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

246 Fast Algorithms for Abelian Periods and GCD Queries

An Abelian period is called full if it is a divisor of n. A pair (q, i) is called a weak
Abelian period of w if q is an Abelian period of w[i + 1 . . n] and P1,i ≤ Pi+1,i+q. For
example, the word ababacabaabcbaab has full Abelian periods 8 and 16, Abelian periods
6, 8, 9, 10, 11, 12, 13, 14, 15, 16 and its shortest weak period is (5, 3).

Fici et al. [13] gave an O(n log log n) time algorithm for full Abelian periods and an O(n2)
time algorithm for Abelian periods. An O(n2m) time algorithm for weak Abelian periods
was developed in [12] and it was recently improved to O(n2) time [7].

Our results. We present an O(n) time deterministic algorithm finding all full Abelian
periods. We also give an algorithm finding all Abelian periods, which comes in two variants:
an O(n log log n + n logm) time deterministic and an O(n log log n) time randomized. All
algorithms run on O(n) space in the standard word-RAMmodel with Ω(log n) word size. The
randomized algorithm is Monte Carlo and returns the correct answer with high probability,
i.e. for each c > 0 the parameters can be set so that the probability of error is at most 1

nc .
As a tool we develop a data structure that after O(n) preprocessing time computes

gcd(i, j) for any i, j ∈ {1, . . . , n} in O(1) time, which might be of its own interest. We are
not aware of any solutions to this problem besides the folklore ones: preprocessing all answers
(O(n2) preprocessing, O(1) queries), using Euclid’s algorithm (no preprocessing, O(log n)
queries) or prime factorization (O(n) preprocessing [14], queries in time proportional to the
number of distinct prime factors, which is O(log n

log log n)).

The structure of the paper. Our algorithms use several non-trivial number-theoretic
results, which are presented in the next two sections. The data structure for gcd-queries is
developed in Section 2 and the tools specific to Abelian periods are described in Section 3.
Then in Section 4 we introduce the proportionality relation on Parikh vectors, which provides
a convenient characterization of Abelian periods in a string. Further properties of this
relation are explored in Section 5. In particular we reduce efficient testing of this relation
to a problem of equality of members of certain vector sequences, which potentially being
of Θ(nm) total size, admit an O(n)-sized representation. Deterministic and randomized
constructions of an efficient data structure for the vector equality problem (based on such
representations) are proposed in Section 6. Finally in Section 7 we conclude with our main
algorithms for Abelian periods and full Abelian periods.

2 Greatest Common Divisor queries

The key idea behind our data structure is an observation that gcd-queries are easy when
one of the arguments is prime or both arguments are small enough for the precomputed
answers to be used. We exploit this fact by reducing each query to a constant number of
such special-case queries. In order to achieve this we define a special decomposition of an
integer k > 0 as a triple (k1, k2, k3) such that k = k1 · k2 · k3 and

ki ≤
√
k or ki ∈ Primes for i = 1, 2, 3.

I Example 1. (2, 64, 64) is a special decomposition of 8192. (1, 18, 479), (2, 9, 479) and
(3, 6, 479) are up to permutations all special decompositions of 8622.

Let us introduce an operation ⊗ such that (k1, k2, k3) ⊗ p results by multiplying the
smallest of ki’s by p. For example, (8, 2, 4) ⊗ 7 = (8, 14, 4). For an integer ` > 1, let
MinDiv[`] denote the least prime divisor of k.

I Fact 2. Let ` > 1 be an integer, p = MinDiv[`] and k = `/p. If (k1, k2, k3) is a special
decomposition of k then (k1, k2, k3)⊗ p is a special decomposition of `.

T. Kociumaka, J. Radoszewski, and W. Rytter 247

Proof. Assume that k1 ≤ k2 ≤ k3. If k1 = 1 then k1 · p = p is prime. Otherwise, k1
is a divisor of ` and by the definition of p we have p ≤ k1. Therefore: (k1p)2 = k2

1p
2 ≤

k3
1p ≤ k1k2k3p = `. Consequently k1p ≤

√
` and in both cases (k1p, k2, k3) is a special

decomposition of `. J

Fact 2 allows computing special decompositions provided that the values MinDiv[k] can
be computed efficiently. This is, however, a by-product of a linear time prime number sieve
of Gries and Misra [14].

I Lemma 3 ([14], Section 5). The values MinDiv[k] for all k ∈ {2, . . . , n} can be computed
in O(n) time.

I Theorem 4. After O(n) time preprocessing, given any k, ` ∈ {1, . . . , n} the value gcd(k, `)
can be computed in constant time.

Proof. In the preprocessing phase we compute in O(n) time two tables:
(a) a Gcd-small[i, j] table such that Gcd-small[i, j] = gcd(i, j) for all i, j ∈ {1, . . . , b

√
nc};

(b) a Decomp[k] table such that Decomp[k] is a special decomposition of k for each k ≤ n.
The Gcd-small table is filled using elementary steps in Euclid’s subtraction algorithm

and the Decomp table is computed according to Fact 2.

Algorithm Preprocessing(n)
for i := 1 to

⌊√
n
⌋

do
Gcd-small[i, i] := i;

for i := 1 to
⌊√

n
⌋

do
for j := 1 to i− 1 do

Gcd-small[i, j] := Gcd-small[i− j, j];
Gcd-small[j, i] := Gcd-small[i− j, j];

Decomp[1] := (1, 1, 1);
for i := 2 to n do

p := MinDiv[i];
Decomp[i] := Decomp[i/p]⊗ p;

return (Gcd-small,Decomp);

Algorithm Query(k, `)
(x1, x2, x3) := Decomp[k];
(y1, y2, y3) := Decomp[`];
g := 1;
foreach i, j ∈ {1, 2, 3} do

if max(xi, yj) ≤
√
n then

d := Gcd-small[xi, yj];
else if xi = yj then d := xi;
else d := 1;
g := g · d;
xi := xi/d; yj := yj/d;

return g;

The algorithm Query(k, `) computes gcd(k, `) using special decompositions (x1, x2, x3)
and (y1, y2, y3) of k and ` respectively. The values xi and yj are altered during the execution
of the algorithm, but remain prime or bounded by

√
n. In each step we have d = gcd(xi, yj);

if xi, yj ≤
√
n then Gcd-small table is used and otherwise the gcd can be greater than 1 only

if xi = yj ∈ Primes. We maintain an invariant that k = x1x2x3 · g and ` = y1y2y3 · g. At
the end gcd(xi, yj) = 1 holds for all i, j ∈ {1, 2, 3} and consequently g = gcd(k, `). J

3 Number-theoretic tools for Abelian periods

Now we introduce two abstract filter operations and show how to perform them efficiently.
For integers n, k > 0 let Mult(k, n) be the set of multiples of k not exceeding n, i.e.

Mult(k, n) = {m · k : m ∈ Z+,m · k ≤ n}.

Also denote Div(n) = {d ∈ Z+ : d | n}, the set of divisors of n.

I Lemma 5. Let n be a positive integer and A ⊆ {1, . . . , n}. There exists an O(n) time
algorithm that computes the set

FILTER1 (A,n) = {d ∈ Div(n) : Mult(d, n) ⊆ A}.

STACS’13

248 Fast Algorithms for Abelian Periods and GCD Queries

Proof. Let A′ = {1, . . . , n} \A. Observe that for d ∈ Div(n)

d /∈ FILTER1 (A,n) ⇐⇒ ∃j∈A′ d | j.

Moreover, for d ∈ Div(n) and j ∈ {1, . . . , n} we have

d | j ⇐⇒ d | d′, where d′ = gcd(j, n).

These observations lead to the following algorithm.

Algorithm FILTER1 (A,n)
D := Div(n); X := Div(n);
foreach j ∈ A′ do

D := D \ {gcd(j, n)};
foreach d, d′ ∈ Div(n) do

if d | d′ and d′ /∈ D then
X := X \ {d};

return X;

We use O(1) time gcd queries from Theorem 4. The number of pairs (d, d′) is o(n), since
|Div(n)| = o(nε) for any ε > 0, see [1]. Consequently, the algorithm runs in O(n) time. J

I Lemma 6. Let ≈ be an arbitrary equivalence relation on {k0, k0 + 1, . . . , n} which can be
tested in constant time. Then, there exists an O(n log log n) time algorithm that computes
the set:

FILTER2 (≈) = {k ∈ {k0, . . . , n} : ∀i∈Mult(k,n) i ≈ k}.

Proof. In the algorithm we use the following observation, which holds for k ∈ {k0, . . . , n}:

k ∈ FILTER2 (≈) ⇐⇒ ∀ p∈Primes : k·p≤n (k ≈ k · p ∧ k · p ∈ FILTER2 (≈)). (1)

The (⇒) part of the equivalence is obvious. For the proof of the (⇐) part consider any k
satisfying the right hand side of (1) and any integer ` ≥ 2 such that k · ` ≤ n. We need to
show that k ≈ k · `. Let p be a prime divisor of `. By the right hand side, we have k ≈ k · p,
and since k · p ∈ FILTER2 (≈), we get k · p ≈ k · p · (`/p) = k · `.

The following algorithm uses (1) for k decreasing from n/2 to k0 to compute FILTER2 (≈).
It uses an invariant Y = {k0, . . . , k} ∪ (FILTER2 (≈) ∩ {k + 1, . . . , n}) while checking the
right hand side of (1) for k.

Algorithm FILTER2 (≈)
Y := {k0, . . . , n};
for k := n/2 downto k0 do

foreach p ∈ Primes, p · k ≤ n do
(?) if k · p 6≈ k or k · p 6∈ Y then

Y := Y \ {k};
return Y ;

In the algorithm we assume to have an ordered list of primes up to n. It can be computed in
O(n) time, see [14]. For a fixed p ∈ Primes the instruction (?) is called for at most n

p values
of k. The total number of operations performed by the algorithm is thus O(n log log n) due
to the following well-known fact from number theory, see [1]:∑

p∈Primes, p≤n

1
p = O(log log n). J

T. Kociumaka, J. Radoszewski, and W. Rytter 249

4 Characterization of Abelian periods by proportionality relation

Let w be a word of length n. Let Pi = P(w[1 . . i]). Two positions i, j ∈ {1, . . . , n} are called
proportional, which we denote i ∼ j, if Pi[k] = c · Pj [k] for each k, where c is a real number
independent of k. Note that ∼ is an equivalence relation, see also Figure 1.

a
b

a
b

b

a a a b

a b

a

a P3

P9

Figure 1 Here P3 = (2, 1) (the word aba) and P9 = (6, 3) (the word abaabbaaa), hence 3 ∼ 9.
In other words, the points P3 and P9 lie on the same line originating from (0, 0).

I Definition 7. An integer k is called a candidate (as a potential Abelian period) if i ∼ k

for each i ∈ Mult(k, n), or equivalently k ∼ 2k ∼ 3k ∼ . . .

Define the following tail table (assume min ∅ =∞):

tail[i] = min{j : Pi,n ≤ Pi−j,i−1}.

I Example 8. For the Fibonacci word Fib = abaababaabaababaababa of length 21, the first
ten elements of the table tail[i] are ∞, the remaining eleven elements are:

i 11 12 13 14 15 16 17 18 19 20 21
Fib[i] a a b a b a a b a b a

tail[i] ∞ 10 11 8 8 7 5 5 3 2 2

The following lemma is proved (implicitly) in [7].

I Lemma 9. Let w be a word of length n. The values tail[i] for 1 ≤ i ≤ n can be computed
in O(n) time.

The notions of a candidate and the tail table let us formulate a condition for a given integer
to be an Abelian period or a full Abelian period of w.

0̄

P10

P20

P30

u = P37

v

Figure 2 Illustration of Fact 10b. The word u = baaabbbaaabbbbaaaaaaaaabbaababbaaaaab

of length 37 has an Abelian period 10. We have 10 ∼ 20 ∼ 30 and P31,37 is dominated by the
period (P10), i.e. the graph of the word ends within the rectangle marked in the figure, the point v
dominates the point u.

STACS’13

250 Fast Algorithms for Abelian Periods and GCD Queries

I Fact 10. Let w be a word of length n. A positive integer q ≤ n is:
(a) a full Abelian period of w if and only if q | n and q is a candidate;
(b) an Abelian period of w if and only if q is a candidate and Pkq+1,n ≤ P(k−1)q+1,kq for

k =
⌊

n
q

⌋
, which is equivalent to tail[kq + 1] ≤ q (see Fig. 2).

5 Efficient implementation of the proportionality relation

Denote by s = LeastFreq(w), a least frequent letter of w. Let q0 be the position of the first
occurrence of s in w. For i ∈ {q0, . . . , n} let γi = Pi/Pi[s]. Vectors γi are introduced in
order to deal with vector equality instead of vector proportionality.

I Lemma 11. If i, j ∈ {q0, . . . , n} then i ∼ j is equivalent to γi = γj.

Proof. (⇒) If i ∼ j then the vectors Pi and Pj are proportional. Multiplying any of them
by a constant only changes the proportionality ratio. Hence, Pi/Pi[s] and Pj/Pj [s] are
proportional. The denominators of both fractions are positive, since i, j ≥ q0. However, the
s-th components of γi and γj are 1, consequently these vectors are equal.

(⇐) Pi/Pi[s] = Pj/Pj [s] means that Pi and Pj are proportional, so that i ∼ j. J

I Example 12. Consider the word w = acbaabacaacb for which the alphabet is of size 3,
LeastFreq(w) = b and q0 = 3. We have:

γ3 = (1, 1, 1), γ4 = (2, 1, 1), γ5 = (3, 1, 1), γ6 = (3
2 , 1,

1
2), γ7 = (2, 1, 1

2),
γ8 = (2, 1, 1), γ9 = (5

2 , 1, 1), γ10 = (3, 1, 1), γ11 = (3, 1, 3
2), γ12 = (2, 1, 1),

We conclude that γ4 = γ8 = γ12 and γ5 = γ10 and consequently 4 ∼ 8 ∼ 12 and 5 ∼ 10.

Let us formally define a natural way to store a sequence of vectors with a small total
Hamming distance between consecutive elements, like Pi or, as we prove in Lemma 15, γi.

I Definition 13. Given a vector v, consider an elementary operation of the form “v[j] := x”
that changes the j-th component of v to x. Let ū1, . . . , ūk be a sequence of vectors of the
same dimension, and let ξ = (σ1, . . . , σr) be a sequence of elementary operations. We say
that ξ is a diff-representation of ū1, . . . , ūk if (ūi)k

i=1 is a subsequence of the sequence (v̄j)r
j=0,

where v̄j = σj(. . . (σ2(σ1(0̄))) . . .).

I Example 14. Let ξ be the sequence: v[1] := 1, v[2] := 2, v[1] := 4, v[3] := 1, v[4] := 3,
v[3] := 0, v[1] := 1, v[2] := 0, v[4] := 0, v[1] := 3, v[2] := 2, v[1] := 2, v[4] := 1.
This sequence is schematically presented as the top rectangle in Fig. 3. The sequence of
vectors produced by the sequence ξ, starting from 0̄, is:

(0, 0, 0, 0), (1, 0, 0, 0), (1, 2, 0, 0), (4, 2, 0, 0), (4, 2, 1, 0), (4, 2, 1, 3), (4, 2, 0, 3),
(1, 2, 0, 3), (1, 0, 0, 3), (1, 0, 0, 0), (3, 0, 0, 0), (3, 2, 0, 0), (2, 2, 0, 0), (2, 2, 0, 1).

Hence ξ is a diff-representation of the above vector sequence as well as all its subsequences.

I Lemma 15. (a)
∑

distH(γi+1, γi) ≤ 2n, where distH is the Hamming distance.
(b) An O(n)-sized diff-representation of (γi)n

i=q0
can be computed in O(n) time.

Proof. To prove (a) observe that Pi differs from Pi−1 only at the coordinate corresponding
to w[i]. If w[i] 6= s, the same holds for γi and γi−1. If w[i] = s, vectors γi and γi−1 may
differ on all coordinates, so m operations might be necessary, but s occurs at most n

m times.
As a direct consequence of (a), the sequence (γi)n

i=q0
admits a diff-representation with

at most 2n+m operations in total. It can be computed by an algorithm that apart from γi

maintains Pi in order to compute the new values of the changing coordinates of γi. J

T. Kociumaka, J. Radoszewski, and W. Rytter 251

I Lemma 16. For a word w of length n, the equivalence class of n under ∼ can be computed
in O(n) time.

Proof. Observe that if k ∼ n then k ≥ q0. Indeed, if k ∼ n, then Pk is proportional to Pn,
so all letters occurring in w also occur in w[1 . . . k]. This lets us use the characterization
of Lemma 11 and a diff-representation provided by Lemma 15 to reduce the task to the
following problem with δi = γi − γn.

I Claim 17. Given a diff-representation of the vector sequence δq0 , . . . , δn we can decide for
which i vector δi is equal to 0̄ in O(m+ r) time, where m is the size of the vectors and r is
the size of the representation.

The solution simply maintains δi and the number of non-zero coordinates of δi. J

The main tool for proportionality queries is a data structure for the following problem.

I Problem 1 (Integer vector equality). Assume we are given a diff-representation ξ of
a vector sequence (ūi)k

i=1. Let m be the dimension of the vectors and r be the size of the
representation. Assume the vectors have integer components of absolute value (m + r)O(1).
Preprocess ξ to answer queries of the form: “Is ūi = ūj?” for i, j ∈ {1, . . . , k}.

In Section 6 we show that after O(m + r logm) time deterministic or O(m + r) time
randomized preprocessing these queries can be answered in constant time. In the latter
case, with a small probability we can get false positive answers.

Note that the next lemma can be used for testing proportionality only for i, j ≥ q0. In
other words, it allows testing ∼ |{q0,...,n}, the restriction of ∼ to {q0, . . . , n}.

I Lemma 18. Let w be a word of length n over an alphabet of size m. There exists a data
structure of O(n) size which for given i, j ∈ {q0, . . . , n} decides whether i ∼ j in constant
time. It can be constructed by an O(n logm) time deterministic or an O(n) time randomized
algorithm (Monte Carlo, correct with high probability).

Proof. By Lemma 11, to answer the proportionality-queries it suffices to efficiently compare
the vectors γi, which, by Lemma 15, admit a diff-representation of size O(n). Problem 1
requires integer values, so we split γ into two sequences α and β, of numerators and denom-
inators respectively. We need to store the fractions in a reduced form so that comparing
numerators and denominators can be used to compare fractions. Thus we set

αi[j] = Pi[j]/d and βi[j] = Pi[s]/d,

where d = gcd(Pi[j],Pi[s]) can be computed in O(1) time using a single gcd-query of Theo-
rem 4, since the values of Pi are non-negative integers up to n. Consequently the values of α
and β are also positive integers not exceeding n. This allows using a solution to Problem 1
given in Theorem 28, so that the whole algorithm runs in the desired O(n logm) and O(n)
time, respectively, using O(n) space. J

6 Vector equality in diff-representation

Recall that in the integer vector equality problem we are given a diff-representation of a
vector sequence (ūi)k

i=1, i.e. a sequence ξ of elementary operations σ1, σ2, . . . , σr on a vector
of dimension m. Each σi is of the form: set the j-th component to some value x. We assume
that x is an integer of magnitude (m + r)O(1). Let v̄0 = 0̄ and for 1 ≤ i ≤ r let v̄i be
the vector obtained from v̄i−1 by performing σi. Our task is answering queries of the form

STACS’13

252 Fast Algorithms for Abelian Periods and GCD Queries

“Is ūi = ūj?” but it reduces to answering equality queries of the form “Is v̄i = v̄j?”, since
(ūi)k

i=1 is a subsequence of (v̄i)r
i=0 by definition of the diff-representation.

I Definition 19. A function H : {0, . . . , r} → {0, . . . , `} is called an `-naming for ξ if
H(i) = H(j) holds if and only if v̄i = v̄j .

In order to answer the equality queries we construct an `-naming with ` = (m + r)O(1).
Integers of this magnitude can be stored in O(1) space, so this suffices to answer the equality
queries in constant time.

6.1 Deterministic construction of a naming function
Let ξ = (σ1, . . . , σr) be a sequence of operations on a vector of dimension m. Let A =
{1, . . . ,m} be the set of coordinates. For any B ⊆ A, let selectB [i] be the index of the ith
operation concerning B in ξ. Moreover, let rankB [i], where i ∈ {0, . . . , r}, be the number of
operations concerning coordinates in B among σ1, . . . , σi and let rB = rankB [r].

I Definition 20. Let ξ be a sequence of operations, A be the set of coordinates and B ⊆ A.
Let h : {0, . . . , rB} → Z be a function. Then define:

Squeeze(ξ,B) = ξB where ξB [i] = ξ[selectB [i]],

Expand(ξ,B, h) = ηB where ηB [i] = h(rankB [i]).

In other words, the squeeze operation produces a subsequence ξB of ξ consisting of operations
concerning B. The expand operation is in some sense an inverse of the squeeze operation,
it propagates the values of h from the domain B to the full domain A.

I Example 21. Let ξ be the sequence from Example 14, here A = {1, 2, 3, 4}. Let B = {1, 2}
and assume HB = [0, 1, 2, 6, 2, 1, 4, 5, 3]. Then (see also Fig. 3):

Expand(ξ,B,HB) = (0, 1, 2, 6, 6, 6, 6, 2, 1, 1, 4, 5, 3, 3).

For a pair of sequences η′, η′′, denote by Align(η′, η′′) the sequence of pairs η such that
η[i] = (η′[i], η′′[i]) for each i. Moreover, for a sequence η of r + 1 pairs of integers, denote
by Renumber(η) a sequence H of r + 1 integers in the range {0, . . . , r} such that η[i] < η[j]
if and only if H[i] < H[j] for any i, j ∈ {0, . . . , r}.

The recursive construction of a naming function for ξ is based on the following fact.

I Fact 22. Let ξ be a sequence of elementary operations, A = B ∪ C (B ∩ C = ∅) be the
set of coordinates, HB be an rB-naming function for ξB and HC an rC-naming function for
ξC . Additionally, let

ηB = Expand(ξ,B,HB), ηC = Expand(ξ, C,HC), H = Renumber(Align(ηB , ηC))

Then H is an r-naming function for ξ.

The algorithm makes an additional assumption about the sequence ξ.

I Definition 23. We say that a sequence of operations ξ is normalized if for each operation
v[j] := x we have x ∈ {0, . . . , r{j}}, where (as defined above) r{j} is the number of operations
in ξ concerning the jth coordinate.

T. Kociumaka, J. Radoszewski, and W. Rytter 253

If for each operation v[j] := x the value x is of magnitude (m+ r)O(1), then normalizing the
sequence ξ, i.e., constructing a normalized sequence with the same answers to all equality
queries, takes O(m + r) time. This is done using a radix sort of triples (j, x, i) and by
mapping the values x corresponding to the same coordinate j to consecutive integers.

I Lemma 24. Let ξ be a normalized sequence of r operations on a vector of dimension m.
An r-naming for ξ can be deterministically constructed in O(r logm) time.

Proof. If the dimension of vectors is 1 (that is, |A| = 1), the single components of the
vectors v̄i already constitute an r-naming. This is due to the fact that ξ is normalized.

For larger |A|, the algorithm uses Fact 22, see the pseudocode below and Figure 3.

Algorithm ComputeH (ξ)
if ξ is empty then return 0̄;
if |A| = 1 then compute H naively;
Split A into two halves B, C;
ξB := Squeeze(ξ,B); ξC := Squeeze(ξ, C);
HB := ComputeH (ξB); HC := ComputeH (ξC);
ηB := Expand(ξ,B,HB); ηC := Expand(ξ, C,HC);
return Renumber(Align(ηB , ηC));

0
0
0
0 1

2
4

1
3

0

1
0

0

3
2

2

1

input = ξ
B

C

split & squeeze

0
0 1

2
4 1

0
3

2
2

ξB 0
0 1

3
0

0 1
ξC

recursive calls
0 1 2 6 2 1 4 5 3HB 0 3 4 2 0 1 HC

expand

0 1 2 6 6 6 6 2 1 1 4 5 3 3ηB

0 0 0 0 3 4 2 2 2 0 0 0 0 1 ηC

align

0 1 2 6 6 6 6 2 1 1 4 5 3 3
0 0 0 0 3 4 2 2 2 0 0 0 0 1

η

renumber
0 1 3 9 11 12 10 4 2 1 7 8 5 6H output

Figure 3 A schematic diagram of performance of algorithm ComputeH . The columns correspond
to elementary operations and the rows correspond to coordinates of the vectors.

Let us analyze the complexity of a single recursive step of the algorithm. Tables rank
and select are computed in O(r) time, hence both squeezing and expanding are performed
in O(r) time. Renumbering, implemented using radix sort and bucket sort, also runs in
O(r) time, since the values of HB and HC are positive integers bounded by r. Hence, the
recursive step takes O(r) time.

STACS’13

254 Fast Algorithms for Abelian Periods and GCD Queries

We obtain the following recursive formula for T (r,m), an upper bound on the execution
time of the algorithm for a sequence of r operations on a vector of length m:

T (r, 1) = O(r), T (0,m) = O(1)
T (r,m) = T (r1, bm/2c) + T (r2, dm/2e) +O(r) where r1 + r2 = r.

A solution to this recurrence yields T (r,m) = O(r logm). J

6.2 Randomized construction of a naming function
Our randomized construction is based on fingerprints, see [15]. Let us fix a prime number
p. For a vector v̄ = (v1, v2, . . . , vm) we introduce a polynomial over the field Zp:

Qv̄(x) = v1 + v2x+ v3x
2 + . . .+ vmx

m−1 ∈ Zp[x].

Let us choose x0 ∈ Zp uniformly at random. Clearly, if v̄ = v̄′ then Qv̄(x0) = Qv̄′(x0). The
following lemma states that the converse is true with high probability.

I Lemma 25. Let v̄ 6= v̄′ be vectors in {0, . . . , n}m. Let p > n be a prime number and let
x0 ∈ Zp be chosen uniformly at random. Then

P (Qv̄(x0) = Qv̄′(x0)) ≤ m
p .

Proof. Note that, since p > n, R(x) = Qv̄(x) −Qv̄′(x) ∈ Zp[x] is a non-zero polynomial of
degree ≤ m, hence it has at most m roots. Consequently, x0 is a root of R with probability
bounded by m/p. J

I Lemma 26. Let v̄1, . . . , v̄r be vectors in {0, . . . , n}m. Let p > max(n, (m + r)c+3) be
a prime number, where c is a positive constant, and let x0 ∈ Zp be chosen uniformly at
random. Then H(i) = Qv̄i(x0) is a naming function with probability at least 1− 1

(m+r)c .

Proof. Assume that H is not a naming function. This means that there exist i, j such that
H(i) = H(j) despite v̄i 6= v̄j . Hence, by the union bound and Lemma 25 we obtain the
conclusion of the lemma:

P(H is not a naming) ≤
∑

i,j : v̄i 6=v̄j

P (H(i) = H(j)) ≤
∑

i,j : v̄i 6=v̄j

m
p ≤

mr2

p ≤ 1
(m+r)c . J

I Lemma 27. Let ξ be a sequence of r operations on a vector of dimension m with values
of magnitude n = (m + r)O(1). There exists a randomized O(m + r) time algorithm that
constructs a function H which is a k-naming for ξ with high probability for k = (m+ r)O(1).

Proof. Assume all values in ξ are bounded by (m+ r)c′ . Let c ≥ c′. Let us choose a prime
p such that (m + r)3+c < p < 2(m + r)3+c. Moreover let x0 ∈ Zp be chosen uniformly at
random.

Then we set H(i) = Qv̄i(x0). By Lemma 26, this is a naming function with probability
at least 1− 1

(m+r)c .
If we know all powers xj

0 mod p for j ∈ {1, . . . ,m}, then we can compute H(i) from
H(i− 1) (a single operation) in constant time. Thus H(i) for all 1 ≤ i ≤ r can be computed
in O(m+ r) time. J

With a naming function stored in an array, answering equality queries is straightforward.
In the randomized version, there is a small chance that H is not a naming function, which
makes the queries Monte Carlo (with one-sided error). Nevertheless, the answers are correct
with high probability. Thus we obtain the following result.

T. Kociumaka, J. Radoszewski, and W. Rytter 255

I Theorem 28. The integer vector equality problem can be solved in O(n) space and:
(a) in O(m+ r logm) time deterministically or
(b) in O(m+ r) time using a Monte Carlo algorithm (with one-sided error, correct w.h.p.).

7 Two main algorithms

In this section we combine our tools to develop efficient algorithms computing all Abelian
periods of two types.

I Theorem 29. Let w be a word of length n over the alphabet {1, . . . ,m}. Full Abelian
periods of w can be computed in O(n) time.

Proof. Full Abelian periods are computed using the characterization given by Fact 10a.
Recall that FILTER1 ([n]∼, n) = {d | n : Mult(d, n) ⊆ [n]∼} = {d | n : Mult(d, n) ⊆ [d]∼}.

Algorithm Full Abelian periods
Compute the data structure for answering gcd queries; {Theorem 4}
A := {k : k ∼ n}; {Lemma 16}
K := FILTER1 (A,n); {Lemma 5}
return K;

The algorithms from Lemmas 5 and 16 take O(n) time. Hence, the whole algorithm works
in linear time. J

I Theorem 30. Let w be a word of length n over the alphabet {1, . . . ,m}. There exist an
O(n log log n+n logm) time deterministic and an O(n log log n) time randomized algorithm
that compute all Abelian periods of w. Both algorithms require O(n) space.

Proof. Abelian periods are computed using the characterization given by Fact 10b. Recall
that Lemma 18 allows testing ∼ |{q0,...,n}, the restriction of ∼ to {q0, . . . , n}, only. Never-
theless all Abelian periods of w are at least q0 and thus it suffices to initialize Y to the set
of candidates greater than or equal to q0, that is the set

{k ∈ {q0, . . . , n} : Mult(k, n) ⊆ [k]∼} = FILTER2 (∼ |{q0,...,n}).

Algorithm Abelian periods
Compute the data structure for answering gcd queries; {Theorem 4}
Prepare data structure to answer in O(1) time proportionality-queries; {Lemma 18}
Compute table tail; {Lemma 9}
Y := FILTER2 (∼ |{q0,...,n}); {Lemma 6}
K := ∅;
foreach q ∈ Y do

j := q ·
⌊

n
q

⌋
+ 1;

if tail[j] < q then K := K ∪ {q};
return K;

The deterministic version of the algorithm from Lemma 18 runs in O(n logm) time and the
randomized version runs in O(n) time. The algorithm from Lemma 6 runs in O(n log log n)
time and all the remaining algorithms (see Theorem 4, Lemma 9) run in linear time. This
implies the required complexity of the Abelian periods’ computation. J

STACS’13

256 Fast Algorithms for Abelian Periods and GCD Queries

References
1 Tom M. Apostol. Introduction to Analytic Number Theory. Undergraduate Texts in Math-

ematics. Springer, 1976.
2 Sergey V. Avgustinovich, Amy Glen, Bjarni V. Halldórsson, and Sergey Kitaev. On shortest

crucial words avoiding Abelian powers. Discrete Applied Mathematics, 158(6):605–607,
2010.

3 Francine Blanchet-Sadri, Jane I. Kim, Robert Mercas, William Severa, and Sean Simmons.
Abelian square-free partial words. In Adrian Horia Dediu, Henning Fernau, and Carlos
Martín-Vide, editors, LATA, volume 6031 of Lecture Notes in Computer Science, pages
94–105. Springer, 2010.

4 Francine Blanchet-Sadri and Sean Simmons. Avoiding Abelian powers in partial words. In
Giancarlo Mauri and Alberto Leporati, editors, Developments in Language Theory, volume
6795 of Lecture Notes in Computer Science, pages 70–81. Springer, 2011.

5 Peter Burcsi, Ferdinando Cicalese, Gabriele Fici, and Zsuzsanna Lipták. Algorithms for
jumbled pattern matching in strings. Int. J. Found. Comput. Sci., 23(2):357–374, 2012.

6 Sorin Constantinescu and Lucian Ilie. Fine and Wilf’s theorem for Abelian periods. Bulletin
of the EATCS, 89:167–170, 2006.

7 Maxime Crochemore, Costas Iliopoulos, Tomasz Kociumaka, Marcin Kubica, Jakub Pa-
chocki, Jakub Radoszewski, Wojciech Rytter, Wojciech Tyczyński, and Tomasz Waleń. A
note on efficient computation of all Abelian periods in a string. Information Processing
Letters, 113(3):74–77, 2013.

8 James D. Currie and Ali Aberkane. A cyclic binary morphism avoiding Abelian fourth
powers. Theor. Comput. Sci., 410(1):44–52, 2009.

9 James D. Currie and Terry I. Visentin. Long binary patterns are Abelian 2-avoidable.
Theor. Comput. Sci., 409(3):432–437, 2008.

10 Michael Domaratzki and Narad Rampersad. Abelian primitive words. Int. J. Found.
Comput. Sci., 23(5):1021–1034, 2012.

11 P. Erdös. Some unsolved problems. Hungarian Academy of Sciences Mat. Kutató Intézet
Közl., 6:221–254, 1961.

12 Gabriele Fici, Thierry Lecroq, Arnaud Lefebvre, and Élise Prieur-Gaston. Computing
Abelian periods in words. In Jan Holub and Jan Žďárek, editors, Proceedings of the Prague
Stringology Conference 2011, pages 184–196, Czech Technical University in Prague, Czech
Republic, 2011.

13 Gabriele Fici, Thierry Lecroq, Arnaud Lefebvre, Elise Prieur-Gaston, and William Smyth.
Quasi-linear time computation of the abelian periods of a word. In Jan Holub and Jan
Žďárek, editors, Proceedings of the Prague Stringology Conference 2012, pages 103–110,
Czech Technical University in Prague, Czech Republic, 2012.

14 David Gries and Jayadev Misra. A linear sieve algorithm for finding prime numbers.
Commun. ACM, 21(12):999–1003, December 1978.

15 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, 1987.

16 Veikko Keränen. Abelian squares are avoidable on 4 letters. In Werner Kuich, editor,
ICALP, volume 623 of Lecture Notes in Computer Science, pages 41–52. Springer, 1992.

17 Tanaeem M. Moosa and M. Sohel Rahman. Indexing permutations for binary strings. Inf.
Process. Lett., 110(18-19):795–798, 2010.

18 P. A. Pleasants. Non-repetitive sequences. Proc. Cambridge Phil. Soc., 68:267–274, 1970.

Finding Pseudo-repetitions
Paweł Gawrychowski∗1, Florin Manea†2, Robert Mercaş‡3, Dirk
Nowotka§2, and Cătălin Tiseanu4

1 Max-Planck-Institut für Informatik,
Saarbrücken, Germany, gawry@cs.uni.wroc.pl

2 Christian-Albrechts-Universität zu Kiel, Institut für Informatik,
D-24098 Kiel, Germany, {flm,dn}@informatik.uni-kiel.de

3 Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik,
PSF 4120, D-39016 Magdeburg, Germany, robertmercas@gmail.com

4 University of Maryland at College Park, Computer Science Department,
A.V. Williams Bldg., College Park, MD 20742, USA, ctiseanu@umd.edu

Abstract
Pseudo-repetitions are a natural generalization of the classical notion of repetitions in sequences.
We solve fundamental algorithmic questions on pseudo-repetitions by application of insightful
combinatorial results on words. More precisely, we efficiently decide whether a word is a pseudo-
repetition and find all the pseudo-repetitive factors of a word.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Stringology, Pattern matching, Repetition, Pseudo-repetition

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.257

1 Introduction

The notions of repetition and primitivity are fundamental concepts on sequences used in a
number of fields, among them being stringology and algebraic coding theory. A word is a
repetition (or power) if it equals a repeated catenation of one of its prefixes. We consider
a more general concept here, namely pseudo-repetitions in words. A word w is a pseudo-
repetition if it equals a repeated catenation of one of its proper prefixes t and its image f(t)
under some morphism or antimorphism (for short “anti-/morphism”) f , thus w ∈ t{t, f(t)}+.

Pseudo-repetitions, introduced in a restricted form by Czeizler et al. [3], lacked so far a well-
developed algorithmic part. Given that the motivation for studying these objects originates
from bioinformatics, where efficient algorithms are crucial, producing such tools seems not
only natural but even necessary. This work is aimed to fill this gap. We investigate the
following two basic algorithmic problems: decide whether a word w is a pseudo-repetition for
an anti-/morphism f and find all k-powers of pseudo-repetitions occurring as factors in a word
w, for an f as above; in these problems w is given as input, while f , although of unrestricted
form, is fixed, thus not a part of the input. We establish algorithms and complexity bounds
for these problems for various types of anti-/morphisms thereby improving significantly the
results from [2]. Apart from the application of standard stringology tools, like suffix arrays,
we extend the toolbox by nontrivial applications of results from combinatorics on words.

∗ Paweł Gawrychowski is supported by the NCN grant 2011/01/D/ST6/07164.
† Florin Manea is supported by the DFG grants 582014 and 596676.
‡ Robert Mercaş is supported by the Alexander von Humboldt Foundation.
§ Dirk Nowotka is supported by the DFG Heisenberg grant 590179.

© P. Gawrychowski, F. Manea, R. Mercaş, D. Nowotka, C. Tiseanu;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 257–268

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.257
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

258 Finding Pseudo-repetitions

Background and Motivation. The motivation of introducing pseudo-repetition and pseudo-
primitivity in [3] originated from the field of computational biology, namely the facts that
the Watson-Crick complement can be formalized as an antimorphic involution and both a
single-stranded DNA and its complement (or its image through such an involution) basically
encode the same information. Until now, pseudo-repetitions were considered only in the
cases of involutions, following the original motivation, and the results obtained were mostly
of combinatoric nature (e.g., generalizations of the Fine and Wilf theorem - see, e.g., [3, 8]).

A natural extension of these concepts is to consider anti-/morphisms in general, which is
done in this paper. Considering that the notion of repetition is central in combinatorics of
words and the plethora of applications that this concept has (see [7]), the study of pseudo-
repetitions seems even more attractive, at least from a theoretical point of view. While the
biological motivation seems appropriate only for the case of antimorphic involutions, the
general problem of identifying pseudo-repetitions can be seen as a formalization of scenarios
where we are interested in identifying sequences having a hidden repetitive structure. Indeed,
as each pseudo-repetition is an iterated catenation of a factor and its encoding through some
simple function, such words have an intrinsic, yet not obvious, repetitive structure.

Some Basic Concepts. For more detailed definitions we refer to [7].
Let V be a finite alphabet; V ∗ denotes the set of all words over V and V k the set of all

words of length k. The length of a word w ∈ V ∗ is denoted by |w|. The empty word is denoted
by λ. We denote by alph(w) the alphabet of all letters that occur in w. A word u ∈ V ∗ is
a factor of v ∈ V ∗ if v = xuy, for some x, y ∈ V ∗; we say that u is a prefix of v, if x = λ,
and a suffix of v, if y = λ. We denote by w[i] the symbol at position i in w, and by w[i..j]
the factor of w starting at position i and ending at position j, consisting of the catenation
of the symbols w[i], . . . , w[j], where 1 ≤ i ≤ j ≤ n; we define w[i..j] = λ if i > j. Also, we
write w = u−1v when v = uw. The powers of a word w are defined recursively by w0 = λ

and wn = wwn−1 for n ≥ 1. If w cannot be expressed as a nontrivial power of another word,
then w is primitive. A period of a word w over V is a positive integer p such that w[i] = w[j]
for all i and j with i ≡ j (mod p). By per(w) we denote the smallest period of w.

The following classical result is extensively used in our investigation:

I Theorem 1 (Fine and Wilf [4]). Let u and v be in V ∗. If two words α ∈ u{u, v}+ and
β ∈ v{u, v}+ have a common prefix of length greater than or equal to |u|+ |v| − gcd(|u|, |v|),
then u and v are powers of a common word of length gcd(|u|, |v|).

A function f : V ∗ → V ∗ is a morphism if f(xy) = f(x)f(y) for all x, y ∈ V ∗; f is an
antimorphism if f(xy) = f(y)f(x) for all x, y ∈ V ∗. In order to define a morphism or an
antimorphism it is enough to give the definitions of f(a) for all a ∈ V . An anti-/morphism
f : V ∗ → V ∗ is an involution if f2(a) = a for all a ∈ V . We say that f is uniform if there
exists a number k with f(a) ∈ V k for all a ∈ V ; if k = 1 then f is called literal. If f(a) = λ

for some a ∈ V , then f is called erasing, otherwise non-erasing.
We say that a word w is an f -repetition, or, alternatively, an f -power, if w is in t{t, f(t)}+,

for some prefix t of w. If w is not an f -power, then w is f-primitive. As an example, the
word ACGTAC is primitive from the classical point of view (i.e., 1-primitive, where 1 is
the identical anti-/morphism) as well as f -primitive for the morphic involution f defined by
f(A) = T , f(C) = G, f(T) = A, and f(G) = C. However, for the antimorphic involution
f(A) = T and f(C) = G (which is, in fact, a formalization of the Watson-Crick complement,
from biology), we get that ACGTAC = AC · f(AC) ·AC, thus, it is an f -repetition.

Finally, the computational model we use to design and analyse our algorithms is the
standard unit-cost RAM (Random Access Machine) with logarithmic word size, which is
generally used in the analysis of algorithms.

P. Gawrychowski, F. Manea, R. Mercaş, D. Nowotka, C. Tiseanu 259

2 Algorithmic problems

In the upcoming algorithmic problems, we assume that the words we process are sequences
of integers (called letters, for simplicity). In general, if the input word has length n then we
assume its letters are in {1, . . . , n}, so each letter fits in a single memory-word. This is a
common assumption in algorithmics on words (see, e.g., the discussion in [6]).

In the first problem, which seems to us the most interesting one in the general context of
pseudo-repetitions, we approach the fundamental problem of deciding whether a word is an
f -repetition, for a fixed anti-/morphism f .

I Problem 1. Let f : V ∗ → V ∗ be an anti-/morphism. Given w ∈ V ∗, decide whether this
word is an f -repetition.

We solve this problem in the general case of erasing anti-/morphisms in O(n lg n) time.
However, in the particular case of uniform anti-/morphisms we obtain an optimal solution
running in linear time. The latter covers the biologically motivated case of involutions
from [3]. This optimal result seems interesting to us, as it shows that pseudo-repetitions
can be detected as fast as repetitions, if the way we encode the repeated factor (i.e., the
function f) is simple enough, yet not the identity. We also extend our results to a more
general form of Problem 1, testing whether w ∈ {t, f(t)}+ for a proper factor t of w. Except
for the most general case (of erasing anti-/morphisms), where we solve this problem in
O(n1+ 1

lg lgn lg n) time, we preserve the same time complexity as we obtained for Problem 1.
Two other natural algorithmic problems are related to the fundamental combinatorial

property of freeness of words, in the context of pseudo-repetitions. More precisely, we are
interested in identifying the factors of a word which are pseudo-repetitions.

I Problem 2. Let f : V ∗ → V ∗ be an anti-/morphism and w ∈ V ∗ a given word.
(1) Enumerate all (i, j, `), 1 ≤ i, j, ` ≤ |w|, such that there exists t with w[i..j] ∈ {t, f(t)}`.
(2) Given k, enumerate all (i, j), 1 ≤ i, j ≤ |w|, so there exists t with w[i..j] ∈ {t, f(t)}k.

Question (2) was originally considered in [2], while the first one is its natural generalisation.
Our approach to question (1) is based on constructing data structures which enable us to
retrieve in constant time the answer to queries rep(i, j, `): “Is there t ∈ V ∗ such that
w[i..j] ∈ {t, f(t)}`?”, for 1 ≤ i ≤ j ≤ n and 1 ≤ ` ≤ n, where n = |w|. For unrestricted f ,
one can produce such data structures in O(n3.5) time. When f is non-erasing, the time taken
to construct them is O(n3), while when f is a literal anti-/morphism we can do it in time
O(n2). Once we have these structures, we can identify in Θ(n3) time, in the general case, all
the triples (i, j, `) such that w[i..j] ∈ {t, f(t)}`, answering (1) in O(n3.5) time. Similarly, for
f non-erasing (respectively, literal) we answer question (1) in Θ(n3) (respectively, Θ(n2 lg n))
time and show that there are input words on which every algorithm solving this question has a
running time asymptotically equal to ours (including the preprocessing time). Unfortunately,
the time bound obtained for most general case is not tight.

Exactly the same data structures are used in the simplest case of literal anti-/morphisms
to answer the more particular question (2). We obtain an algorithm that outputs in O(n2)
time, for given w and k, all pairs (i, j) such that w[i..j] ∈ {t, f(t)}k; this time bound is shown
to be tight. Taking advantage of the fact that k is given as input (so fixed throughout the
algorithm) we can refine our solution for question (1) in order to get a Θ(n2)-time solution
of question (2) for f non-erasing, again a tight bound, and a O(n2k)-time solution for the
general case. Our results improve significantly the algorithmic results reported in [2].

STACS’13

260 Finding Pseudo-repetitions

2.1 Prerequisites
We begin this section by presenting several number theoretic properties. Lemma 2 is used in
the time complexity analysis of our algorithms, while Lemma 3 and its corollary are utilised
in the solutions of Problem 2. Given two natural numbers k and n, we write k | n if k
divides n. We denote by d(n) the number of divisors of n and by σ(n) their sum.

I Lemma 2. Let n be a natural number. The following statements hold:
(1)

∑
1≤`≤n d(`) ∈ Θ(n lg n),

∑
1≤`≤n d(`) ≥ n lg n, d(n) ∈ o(nε) for all ε > 0 (see [1]); (2)

σ(n) ∈ O(n lg lg n) (see [1]); (3)
∑

1≤`≤n(n− `+ 1)d(`) ∈ Θ(n2 lg n). J

I Lemma 3. Let n be a natural number. We can compute in O(n3) time a three dimensional
array T [k][m][`], with 1 ≤ k,m, ` ≤ n, where T [k][m][`] = 1 if and only if there exists a
divisor s of ` and the numbers k1 and k2 such that k1 + k2 = k and k1s+ k2sm = `. J

I Corollary 4. Let R be a fixed natural constant, and n and k be given natural numbers.
We can compute in O(n lg n) time a matrix Tk[m][`] with 1 ≤ m ≤ R and 1 ≤ ` ≤ n, where
Tk[m][`] = 1 if and only if there exists a divisor s of ` and the numbers k1 and k2 such that
k1 + k2 = k and k1s+ k2sm = `. The constant hidden by the O-notation depends on R. J

We briefly present the data structures we use. For a word u with |u| = n over V ⊆
{1, . . . , n} we can build in linear time a suffix array structure as well as data structures
allowing us to return in constant time the answer to queries “How long is the longest common
prefix of u[i..n] and u[j..n]?”, denoted LCPref (u[i..n], u[j..n]). For more details, see [5, 6],
and the references therein. Also, for u and an anti-/morphism f , we compute an array
len with n elements defined as len[i] = |f(u[1..i])|, for 1 ≤ i ≤ n. For f non-erasing we
also compute an array inv, having |f(u)| elements, such that inv[i] = j if len[j] = i and
inv[i] = −1 otherwise. These computations are done in O(n) time. Note the following result:

I Lemma 5. Let w ∈ V ∗ be a word of length n. We compute the values per[i], the period of
w[1..i], for all i ∈ {1, . . . , n} in linear time O(n). Also, we compute the values per[i][j], the
period of w[i..j], for all i, j ∈ {1, . . . , n} in quadratic time O(n2). J

Next we show an important property of pseudo-repetitions, for non-erasing morphisms.

I Lemma 6. Let f be a non-erasing anti-/morphism, and x, y, z be words over V such that
f(x) = f(z) = y. If {x, y}∗x{x, y}∗ ∩ {z, y}∗z{z, y}∗ 6= ∅ then x = z.

Proof. We sketch the proof only for the case when f is a morphism; a similar argument works
for antimorphisms. If {x, y}∗x{x, y}∗ ∩ {z, y}∗z{z, y}∗ 6= ∅ then we may assume without
losing generality there exists w such that w = xw′, w′ ∈ {x, y}∗, and w ∈ {z, y}∗z{z, y}∗.

If z is a prefix of w, as f(x) = f(z) and f is non-erasing, we get easily that x = z.
Assume now that w = yzw′′ with w′′ ∈ {z, y}∗. It is not hard to see that from |x| ≤ |y|

and w = xw′ we obtain that |x| is a period of y, and, thus, y = x`u where ` > 0 and u is a
prefix of x. If y and x are powers of the same word v, then x = vk1 , y = vk2 and u = vk3 , so
z is also a power of v. Since f(x) = f(z) we conclude again that x = z. Further, assume
that x and y are not powers of the same word. Hence, u is a proper prefix of x, i.e., x = uv

for u 6= λ 6= v. Consequently, w′ has a prefix of the form xpy, with p ≥ 0, and it follows that
after the first |y| symbols of w both the factor vu and the factor z occur (as vu occurs after
the first |y| − |x| symbols of w′). Since |vu| = |x| we get easily that z = vu. So, |z| = |x|,
y = f(z) = f(vu) = f(v)f(u) and y = f(x) = f(u)f(v). It follows that y is a power of
a primitive word t. By an involved case analysis, it follows that x is a power of the same
primitive word as y, a contradiction.

P. Gawrychowski, F. Manea, R. Mercaş, D. Nowotka, C. Tiseanu 261

In the case when w = yyzw′′ for some w′′ ∈ {z, y}∗, we can apply Theorem 1 to the
prefix of length 2|y| of w (which is a prefix of a word from x{x, y}∗, as well) and obtain that
x and y are powers of the same word. Once again, we obtain that z = x. J

The next lemmas provide insights to the combinatorial properties of f -repetitions, for f a
general morphism, and are utilised in showing the soundness and efficiency of our algorithms.
When using them, we take x to be the shorter and y the longer of the words t and f(t).

I Lemma 7. Let x and y be words over V such that x and y are not powers of the same
word. If w ∈ {x, y}∗ then there exists a unique decomposition of w in factors from {x, y}. J

I Lemma 8. Let x, y ∈ V + and w ∈ {x, y}∗ \ {x}∗ be words such that |x| ≤ |y| and
x and y are not powers of the same word. Let M = max{p | xp is a prefix of w} and
N = max{p | xp is a prefix of y}. Then M ≥ N . Moreover, if M = N then w ∈ y{x, y}∗
holds, while if M > N then either it is the case that w ∈ xM−Ny{x, y}∗ \ xM−N−1yxV ∗, or
we have w ∈ xM−N−1y{x, y}+ \ xM−NyV ∗ and N > 0. J

2.2 Solution of Problem 1
§A general solution. We first assume that f is a morphism and let n = |w|. We construct in
linear time the word x = wf(w) of length m = n+ |f(w)| (which is in O(n)); note that the
length of x (hence, the constant hidden by the O-notation) depends on the fixed morphism f .
Moreover, we build in O(n) time data structures enabling us to answer LCPref queries for x.

Using these data structures, Algorithm 1 tests whether w is an f -repetition or not.

Algorithm 1 Test(w, f): decides whether w is an f -repetition

1: Test whether there exists a word x such that w = xk, with k ≥ 2. If yes, then we halt
and decide that w is an f -repetition. Otherwise, go to step 2.
{If the result of the test is positive we decide that w is an f -repetition, as repetitions can
be seen as trivial f -repetitions. The algorithm continues for w primitive.}

2: for t = w[1..i], such that i < n, len[i] ≥ 1, t and f(t) are not powers of some x ∈ V ∗ do
3: Set x = t and y = f(t) if i ≤ len[i] or x = f(t) and y = t, otherwise;
4: Set s = i+ 1, `′i = |y|, `′′i = |x|; {We have `′i = max{len[i], i} and `′′i = min{i, len[i]}}
5: If s = n+ 1 halt and decide that w is an f -repetition;
6: Compute M = max{p | xp is a prefix of w[s..n]}, N = max{p | xp is a prefix of y};
7: If w[s..n] = xM , set s = n+ 1, go to step 5;{If w[s..n] ∈ {x}+ then w ∈ t{t, f(t)}∗}
8: If xM−Ny occurs at position s, set s = (M −N)`′′i + `′i, go to step 5;
9: IfM > N and xM−N−1yx occurs at position s, set s = (M−N−1)`′′i +`′i, go to step 5;

{By Lemma 8, w[s..n] should have either xM−Ny or xM−N−1yx as prefix. By Lemma 8,
if xM−N−1yx occurs at position s, we shall check whether w[s..n] ∈ xM−N−1y{x, y}+.}
{If none of the above holds, we get that w[s..n] /∈ {t, f(t)}+, so w /∈ t{t, f(t)}+.}

10: end for
11: Halt and decide that w is not an f -repetition.

Following the comments inserted in its description, it is not hard to see that Algorithm 1
is sound. In the following, we compute its complexity. The step where we test whether w
is a repetition takes O(n) time, as it can be done by locating the occurrences of w in ww.
Further, note that the computation in each of the steps 6−9 of the algorithm can be executed
in constant time using the data structures we already constructed. Indeed, for some s ≤ n,
we can compute the largest ` such that w[s..`] is a power of x in constant time as follows. In

STACS’13

262 Finding Pseudo-repetitions

the worst case, ` = s− 1, or, in other words, w[s..`] = λ, when x does not occur at position s.
Otherwise, ` is the largest number less than or equal to LCPref (w[s..n], w[s+ |x|..n]) such
that `− s+ 1 is divisible by |x|. This strategy is used in step 6 to compute M and N . The
verification from step 7 takes clearly constant time: we just check whether n− s+ 1 = M |x|.
Moreover, step 8 and 9 can also be implemented in constant time using LCPref queries;
indeed, we know that xM−N occurs at position s, and then we just have to check whether y
occurs at position s+ (M −N)|x| by a LCPref query, for step 8, or, respectively, whether yx
occurs at position s+(M−N−1)|x| by two LCPref queries, for step 9. Further, the iterative
process in steps 3 − 9 is executed for each prefix w[1..i] of w, and during each iteration
the algorithm makes at most O(b n`′

i
c) steps, as s can take at most b n`′

i
c different values (in

the cycle defined by the “go to” instruction from step 8). Since `′i ≥ i, the overall time
complexity of the algorithm is upper bounded by O(

∑
1≤i≤nb

n
i c). Thus, the time complexity

of Algorithm 1 is O(n lg n). As a side note, in the case when f is erasing, w ∈ t{t, f(t)}+ for
some t with f(t) = λ if and only if w ∈ {t}+, that is, w is a repetition. Hence, we run the
iterative process starting in step 2 only for prefixes w[1..i] with len[i] ≥ 1.

The case when f is an antimorphism is similar. We take x = wf(w), build the same data
structures, and proceed just as in the former case. As the single difference, now we have
w[s+ 1..s+ len[i]] = f(w[1..i]) iff LCPref (s+ 1,m− len[i] + 1) = len[i], where m = |x|.

When f is uniform we can easily obtain a more efficient algorithm. In this case, |t|
divides n, so we only need to run the iterative instruction for the prefixes w[1..i] of w with
i | n. Hence, the total running time of the algorithm is, in this case, upper bounded by
O(

∑
i|n

n
i) ∈ O(n lg lg n), by Lemma 2.

§A linear time solution for the case when f is uniform. We can obtain an even faster solution
for Problem 1 for the case when f is uniform by using some more intricate precomputed data
structures in order to speed-up Algorithm 1. To this end, we analyse again the computation
performed by Algorithm 1 on an input word w.

The main phase of the algorithm is the following. For a prefix t = w[1..i] of w with i | n
we run a cycle (steps 5−9) that extends iteratively a prefix w[1..s−1], where s ≥ i+1, of the
word w such that the newly obtained prefix is in t{t, f(t)}∗. However, at each iteration the
prefix is extended with a word of the form tkf(t), with k ≥ 0. As k can be actually equal to 0,
we can only say that the number of iterations of the cycle is upper bounded by n

|f(t)| ≤
n
|t| .

Here we plug in our speed-up strategy: we try to extend the prefix in each of the iterations
of the cycle from steps 5− 9 with a word that belongs to {t, f(t)}α for some fixed number
α that depends on n, but not on t. In this way, we upper bound the number of iterations
of the cycle by n

α|t| , and the overall complexity of the algorithm by O(n lg lgn
α). Finally, in

order to obtain an algorithm solving Problem 1 in linear time, we choose α = dlg lg ne.
Let R = |f(a)|, for a ∈ alph(w); as f is uniform, the definition of R does not depend on the

choice of a from V , and we also have R = |f(u)|
|u| , ∀u ∈ V ∗. Let rt = max{` | t` prefix of f(t)}.

Clearly, rt ≤ R and we can assume without losing generality that α > R. Indeed, this holds
for n > 22R , which is the case when we want to optimise Algorithm 1; for smaller n the
algorithm runs in constant time O(1), as n lg lg n ≤ R22R and R is constant (f being fixed).

It only remains to show how we can implement efficiently the above mentioned extension
of the prefix. First, note that there exists a constant C such that (lgn)4(lg lgn)2

n ≤ C for all n.
Therefore, running the original form of Algorithm 1 for the prefixes t of w with |t| > n

(lgn)2 lg lgn
and |t| | n (that is, at most (lg n)2 lg lg n prefixes) takes O(n) time. Therefore, from now on,
we only consider prefixes t such that |t| | n, |t| < n

(lgn)2 lg lgn , and, assuming that the input
word is not a repetition, t and f(t) are not powers of the same word.

P. Gawrychowski, F. Manea, R. Mercaş, D. Nowotka, C. Tiseanu 263

Now consider a prefix t, as above. There are 2α ∈ O(lg n) words in {t, f(t)}α. Every such
word can be encoded by a bit-string of length α: each occurrence of t is encoded by 0 and an
occurrence of f(t) by 1. Denote these bit-strings v1, . . . , v2α , and let vi be the word encoded
by vi, for all 1 ≤ i ≤ 2α. Further, for a bit-string v` we can determine by binary search
two values b` and e` such that all the suffixes contained in the suffix array of w between the
positions b` and e` have the word v`trt as a prefix. From Theorem 1, applied for two strings
vit

rt and vjtrt with i 6= j, and the facts that t and f(t) are not powers of the same word and
rt is the maximal power of t occurring as a prefix of f(t), we get that the intervals [bi, ei] and
[bj , ej] are disjoint. The time needed to compute these values for each ` is O(lg n lg lg n), as
a comparison between the word v`trt and a suffix of w can be done in O(lg lg n) by looking
at the encoding v` and the string trt (a prefix of f(t)) and, consequently, comparing only the
factors of length |t| and |f(t)| of v`trt with those of the words from the suffix array. Thus,
the time needed to compute b` and e` for all ` is O((lg n)2 lg lg n). Next, we construct a
set Et containing the values e` ordered increasingly, while keeping track for each e` of the
corresponding values of ` and b`. Note that Et contains O(lg n) integers from {1, . . . , n}.

We need one more result before concluding this preprocessing phase. We want to store a
static set S ⊆ {1, . . . , n} so that finding the successor in S of a given x ∈ {1, . . . , n} takes
constant time. Thus, we use a static d-ary tree of depth 2, where d = dn0.5e, so that the whole
tree has n leaves corresponding to different values of x. We mark all leaves corresponding to
the elements of S, and remove all nodes with no marked leaf in the corresponding subtree.
At each remaining inner node v we store a table of length d where for each child of v
(both remaining and already removed) we store the successor of the rightmost leaf in its
corresponding subtree. The total size of the structure is O(|S|n0.5) and we can construct
it in the same time if we start with an empty S and add its elements one-by-one, creating
new inner nodes when necessary. Furthermore, using the tables we can find the successor of
any x in O(1) time by traversing the path from the root of the tree towards x as long as the
nodes exist and taking the minimum of the successors stored for these nodes. If we store
each Et in this way the query time is constant and the total construction time and space is
in O(d(n)n0.5 lg n) ⊆ O(n), where the final upper bound follows from Lemma 2.

By the previously given explanations, this entire preprocessing takes linear time. We now
use it to solve in linear time Problem 1.

Assume now that we run step 5 of the algorithm for some prefix t of w as above and the
word w[s..n] with s ≤ n− (α+ rt)|t|+ 1. There is at most one ` such that the index is of
w[s..n] in the suffix array of w is between b` and e` (that is, v`trt is a prefix of w[s..n]). This
` can be found, if it exists, in O(1) using the precomputed data structures (i.e., the sets Et,
organised as described above): return the value ` such that e` is the minimal element of Et
greater than or equal to is and b` ≤ is. Then, we repeat the procedure for the word w[s′..n]
where w[s..s′−1] = v`, but only if n−s′+1 ≥ (α+rt)|t| or s′ = n+1. If n−s′+1 ≤ (α+rt)|t|
we run the processing of the original algorithm. Clearly, this process takes O(nαt + 2α) steps
for each t, so the complete algorithm runs in O(n) time. We only have to show that it works
correctly, i.e., it decides whether w ∈ t{t, f(t)}+. The soundness is proven by the following
remark. If w[s..n] starts with vjtrt for some j ≤ 2α, then it is enough to consider in the next
iteration only the word w[s+ |vj |..n], and no other word w[s+ |vk|..n] where k ≤ 2α such
that vk is also a prefix of w[s..n]. Indeed, if there exists vk leading to a solution, we get a
contradiction with either the fact that rt is the maximal power of t occurring as a prefix of
f(t), or with the fact that t and f(t) are not powers of the same word.

To conclude, this implementation of Algorithm 1 runs in optimal linear time for f uniform.

STACS’13

264 Finding Pseudo-repetitions

§Summary. We were able to show the following theorem.

I Theorem 9. Let f : V ∗ → V ∗ be an anti-/morphism. Given w ∈ V ∗, one can decide
whether w ∈ t{t, f(t)}+ in O(n lg n) time. If f is uniform we only need O(n) time. J

The more general problem of testing whether there exists t with w ∈ {t, f(t)}{t, f(t)}+

for f a fixed anti-/morphism is also worth considering. Solving this problem seems to
require a different strategy than the one in Algorithm 1. There we take prefixes t of w,
which determine uniquely f(t), and check whether w ∈ t{t, f(t)}∗. Here, a prefix y does not
determine uniquely, in general, a factor x such that f(x) = y, so more possibilities have to be
considered when checking whether there exists t such that w ∈ f(t){t, f(t)}∗. However, the
cases of f non-erasing and uniform anti-/morphisms have solutions based on results in the
line of Lemmas 6 and 7, leading to similar complexities as for Problem 1. The case of erasing
anti-/morphisms is solved by a more involved algorithm, based on both combinatorics on
words and number theoretic insights.

I Theorem 10. Let f : V ∗ → V ∗ be an anti-/morphism. Given w ∈ V ∗, we decide whether
w ∈ {t, f(t)}{t, f(t)}+ in O(n1+ 1

lg lgn lg n) time. If f is non-erasing we solve the problem in
O(n lg n) time, while when f is uniform we only need O(n) time. J

2.3 Solution of Problem 2
Recall that our approach to solve the first question of Problem 2 is based on constructing,
for the input word w, data structures that enable us to obtain in constant time the answer
to queries rep(i, j, `): “Is there t ∈ V ∗ such that w[i..j] ∈ {t, f(t)}`?”, for all 1 ≤ i ≤ j ≤ |w|
and 1 ≤ ` ≤ |w|. Moreover, a solution for the second question is derived directly from this
strategy: we only need to construct similar data structures, that allow us to answer, this
time, queries rep(i, j, `) for a single `, given as input of the problem together with w.

§The case of erasing morphisms. We start by presenting the solution of the first question
of the problem. Given an arbitrary anti-/morphism f and a word w of length n, we can
construct the aforementioned data structures in O(n3.5) time. More precisely, we construct
an oracle-structure that already contains the answers to every possible query.

We only give an informal description of our construction. Assume that |w| = n. The idea
is to compute the n×n×n three dimensional array M such that M [i][j][k] = 1 if there exists
a word t with w[i..j] ∈ {t, f(t)}k, and M [i][j][k] = 0, otherwise. We proceed as follows.

Let i be a position in w. We first consider the prefixes t of w[i..n] such that t and f(t)
are not powers of the same word. Note that, for such a prefix t of w[i..n], with t 6= λ 6= f(t),
and j > i there is at most one number k such that w[i..j] ∈ t{t, f(t)}k−1. The set of
these prefixes is partitioned in n0.5 + 1 sets Si,δ = {t | |f(t)| = δ}, for 1 ≤ δ ≤ n0.5, and
Si = {t | |f(t)| > n0.5}; note that some of these sets may actually be empty. Further, for
each δ we compute fi,δ = max{k | xk is a suffix of w[1..i], |x| = δ}.

We first deal with the case when t ∈ Si, for 1 ≤ i ≤ n. We compute for each j the
number k such that w[i..j] ∈ t{t, f(t)}k−1; this can be done in constant time (for each j)
using LCPref -queries, as in the previous algorithms. More precisely, for some j we only
need to look at the corresponding value for j − |t| and j − |f(t)|, increase them with 1 (if
they are defined) and store as the value corresponding to j the one obtained from j − |t| if t
occurs as a suffix of w[i..j] or the one corresponding to j − |f(t)| if f(t) occurs as a suffix
of w[i..j] (due to Lemma 7, at most one case holds); if none of these values was defined, or
neither t nor f(t) occurs as a suffix of w[i..j], the value corresponding to j remains undefined.

P. Gawrychowski, F. Manea, R. Mercaş, D. Nowotka, C. Tiseanu 265

This entire process takes linear time. Then, for j such that w[i..j] ∈ t{t, f(t)}k−1 and all
k′ ∈ {0, 1, . . . , fi,δ}, where δ = |f(t)|, we set M [i− k′δ][j][k + k′] = 1. It is not hard to see
that for δ > n0.5 we have fi,δ < n0.5, so the process described above takes O(n0.5) time
for each j. Now, we repeat the process for all i ∈ {1, . . . , n} and all prefixes t from Si and
discover all the factors w[i′..j′] and numbers k such that {f(t), t}k, with |f(t)| > n0.5. The
time needed to do the computations described above is O(n3.5).

Further, we consider the case of the words of the sets Si,δ, for some fixed δ < n0.5 and
all 1 ≤ i ≤ n. For each i, for each t in Si,δ, and for each j we compute and put the pairs
(i, k) such that w[i..j] ∈ t{t, f(t)}k−1 in a list Rδj . This takes roughly O(n3) time. Note that
the number of elements of the list Rδj is also bounded by n2, as for each i we have a unique
decomposition of w[i..j] in k parts, starting with a prefix t.

Now, for each j (and, recall, that δ is fixed), we build an n×n matrix T δj , initially with all
the entries set to 0. Now we partition this matrix in diagonal arrays obtained as follows: for
` from 1 to n and for p from 1 to n, if the element T δj [`][p] is not stored already in a diagonal
array, we construct a new diagonal array that stores the elements T δj [`][p], T δj [`− δ][p+ 1], . . .
T δj [`− dδ][p+ d], for 0 ≤ d < `

δ . While constructing this matrix we can keep track for each
element of the array it belongs to. This procedure takes, clearly, O(n2) time. These arrays
partition the elements of the matrix T δj so the total number of their elements is n2.

To continue, for each element (i, k) of the list Rδj , we check in which diagonal array (i, k)
is and memorise that we should mark (i.e., set to 1) in this array the consecutive elements
T δj [i][k], T δj [i− δ][k + 1], . . . , T δj [i− fi,δδ][k + fi,δ]. This, again, can be done in O(n2) time,
as we only need to memorise the first and the last of these elements (called, in the following,
margins). When we are done we have to mark rd groups of consecutive elements in each
diagonal array d, where

∑
d rd ∈ O(n2). To do the marking we sort the margins of the groups

associated with each diagonal array, with the counting sort algorithm, and then traverse each
array, keeping track of how many groups contain each of its elements, and mark the elements
appearing in at least one group. Sorting the lists of intervals takes O(

∑
d rd) = O(n2) time,

and, thus, the marking takes O(n2) time in total. Once the elements of all groups are marked,
for all i and k we set M [i][j][k] = 1 if and only if T δj [i][k] = 1.

The overall complexity of the computation described above for a fixed δ is O(n3). As we
iterate through all δ ≤ n0.5, we get that this case requires O(n3.5), as well. Now, we know all
triples (i, j, k) such that w[i..j] ∈ {t, f(t)}k and t and f(t) are not powers of the same word.

Further, we consider the case of triples (i, j, k) such that w[i..j] ∈ {t, f(t)}k, where t and
f(t) are powers of the same word. By Lemma 5 we compute in O(n2) time the periods of all
the factors w[i..j] of w and of the factors f(w[i..j]) of f(w). We also compute in cubic time
the array T from Lemma 3. Now we can check in constant time using LCPref queries whether
per(t) = p, p | |t|, and f(w[i..i+p−1]) is a power of w[i..i+p−1] (i.e., t and f(t) are powers
of the same word). If this is the case, we compute m = |f(w[i..i+p−1])|

p and set M [i][j][k] = 1
if and only if T [k][m][j − i+ 1] = 1. Indeed, M [i][j][k] = 1 if and only if there exists s, k1, k2
such that s | j − i+ 1, k1 + k2 = k, and w[i..j] = ((w[i..i+ p− 1])s)k1(f((w[i..i+ p− 1])s))k2 ,
that is, sk1 + smk2 = j − i+ 1, which is equivalent to T [k][m][j − i+ 1] = 1

There is a simple case that remained to be discussed. If f(w[i..j]) = ε, thenM [i][j][k] = 1,
for all k ≥ 1. Identifying and memorising all such factors takes O(n3) time.

By the above case analysis, we conclude that we can compute all the non-zero entries of
the matrix M in O(n3.5) time. The answer to rep(i, j, k) is given by the entry M [i][j][k].

Finally, we consider the case when we search f -repetitions with k factors, for a fixed
k. This time, we compute a two dimensional matrix Mk such that Mk[i][j] = M [i][j][k],
defined previously. Fortunately, Mk can be computed much quicker than the whole matrix M .

STACS’13

266 Finding Pseudo-repetitions

According to Corollary 4 the case of t and f(t) being factors of the same word can be
implemented in quadratic time (the constant R from the statement of the corollary can be
taken as the maximum length of f(a), for all letters a ∈ alph(w)). Further, when t and f(t)
are not periods of the same word we just need to compute, for each i, t and j the number k′
such that w[i..j] ∈ t{t, f(t)}k′−1 and check (in constant time) whether f(t)k−k′ is a suffix of
w[1..i]; if all these hold, we get that Mk[i][j] = 1. However, note that we do not need to go
through all the possible values of j. Indeed, we first generate all the prefixes of w[i..n] that
have the form t` with ` ≤ k and see if one of them is longer than |t|+ |f(t)|. If yes, we try to
extend the longest such prefix with t or f(t) iteratively until we use k factors t or f(t) in
the constructed word. By Lemma 7 we obtain in this process only O(k) such words, and
these are exactly the prefixes of w[i..n] that can be expressed as the catenation of at most k
factors t and f(t); in other words, this process provides a set that contains all the values j for
which Mk[i][j] = 1. According to these, the whole process of computing the non-zero entries
of the matrix M ′ takes O(n2 · k) time. Note that the answer to a query rep(i, j, k) is given
by Mk[i][j]; as we already mentioned, we only ask queries for the value k given as input.

§The case of non-erasing morphisms. For f non-erasing, the oracle matrix M described
previously can be computed in O(n3) time, where |w| = n. Initially, we set M [i][j][k] = 0,
for i, j, k ∈ {1, . . . , n}.

As in the case of erasing morphisms, by Lemma 5 we compute (and store) in quadratic
time the periods of all the factors w[i..j] of w and of the factors f(w[i..j]) of f(w). We also
compute in cubic time the array T from Lemma 3.

First we analyse the simplest case. We can check in constant time using LCPref queries
whether per(w[i..j]) = p, p | (j− i+1), and f(w[i..i+p−1]) is a power of w[i..i+p−1]. If so,
we compute m = |f(w[i..i+p−1])|

p and set M [i][j][k] = 1 if and only of T [k][m][j − i+ 1] = 1.
Further we present the more complicated cases.
First, let i be a number from {1, . . . , n}. We want to detect the factors w[i..j] that belong

to t{t, f(t)}k−1 for some prefix t of w[i..n] such that t and f(t) are not powers of the same
word (this case was already covered) and k ≥ 2. To do this we try all the possible prefixes t
of w[i..n]. Once we choose such a t = w[i..`] we set M [i][`][1] = 1. Further, starting from the
pair (`, 1), we compute, by backtracking, all the pairs (m, e) such that w[i..m] ∈ t{t, f(t)}e−1;
basically, from the pair (m, e) we obtain the pairs (m+ |t|, e+ 1) if w[m+ 1..m+ |t|] = t and
the pair (m+ |f(t)|, e+ 1) if w[m+ 1..m+ |f(t)|] = f(t). By Lemma 7 we obtain exactly
one pair of the form (m, ·) (as there is an unique decomposition of w[i..m] into factors t and
f(t) as long as t and f(t) are not powers of the same word). Therefore, computing all these
pairs takes linear time. Further, if we obtained the pair (m, k) we set M [i][m][k] = 1.

The whole process just described can be clearly implemented in O(n3) time. At this
point we know all the possible triples (i, j, k) such that w[i..j] ∈ t{t, f(t)}k−1 for some t. It
remains to find also the triples (i, j, k) such that w[i..j] ∈ f(t){t, f(t)}k−1 for some t.

In this case, for each i ∈ {1, . . . , n} we go through all the prefixes y = w[i..`] of w[i..n]
and assume that y = f(t). Further, we compute a set of pairs (m, e) such that w[i..m] = ye;
this can be done easily in linear time, using LCPref -queries. Now, for each of these pairs,
say (m, e), we try to find a factor t = w[m + 1..m′] such that f(t) = y and t and y

are not powers of the same word. Once we found such a factor t (which can be done in
constant time using LCPref queries and the array inv) we store the pair (m+ |t|, e+ 1) and
starting from this pair we compute, as in the previous case, all the pairs (m′′, e′) such that
w[m+ 1..m′′] ∈ t{t, y}e′−e−1. The key remark regarding this process is that, by Lemma 6, no
two pairs having the first component equal to m′′ are obtained for a fixed i. As the number

P. Gawrychowski, F. Manea, R. Mercaş, D. Nowotka, C. Tiseanu 267

of values that m′′ may take is upper bounded by n, the entire computation of these pairs
takes O(n) time. Once this is completed, we set M [i][m][k] = 1 for each (m, k) obtained.

In this way we identified all the triples (i, j, k) such that w[i..j] ∈ {t, f(t)}k, for some t,
in cubic time and stored in the array M the answers to all the possible rep-queries.

Now, consider the case when we search f -repetitions with k factors, for a given k and f
non-erasing. The computation goes on exactly as in the case of general morphisms with the
only difference that when we consider the prefix t of a word w[i..n] we can restrict our search
to the prefixes t shorter than n

k . Thus, the overall complexity of computing the entries of the
matrix Mk decreases to O(n · nk · k) = O(n2) time. Again, the answers to a query rep(i, j, k)
for the given value k is given by the entry Mk[i][j] of the matrix Mk.

§The case of literal morphisms. In the case when f is literal, we are able to construct faster
some data structures enabling us to answer rep queries. More precisely, we do not need
to construct the entire oracle structure, but only some less complex matrix allowing us to
retrieve in constant time the answers to our queries. To this end, we first create for the word
wf(w) the same data structures as in the initial solution of Problem 1. Further, we define
an n × n matrix M such that for 1 ≤ i, d ≤ n the element M [i][d] = (j, i1, i2) stores the
beginning index of the longest word w[j..i] contained in {t, f(t)}+ for some word t of length
d, as well as the last occurrences w[i1..i1 + |t| − 1] of t and w[i2..i2 + |f(t)| − 1] of f(t) in
w[j..i], such that d divides both i− i1 + 1 and i− i2 + 1. If there exist t and t′ with t 6= t′ and
w[j..i] ∈ {t, f(t)}k ∩ {t′, f(t′)}k, we have t = f(t′) and f(t) = t′; in this case, M [i][d] equals
(j, i1, i2) if i1 > i2 or (j, i2, i1), otherwise. The array M can be computed in O(n2) time by
dynamic programming. Intuitively, M [i][d] is obtained in constant time from M [i − d][d]
using LCPref queries on wf(w).

The matrix M helps us answer rep-queries in constant time. Indeed, the answer to a
query rep(i, j, k) is yes if and only if k | j − i + 1 and the first component of the triple
M [j][j−i+1

k] is lower than or equal to i, and no, otherwise.

§Solving Problem 2. We now give the final solutions for the two questions of Problem 2.
Let us begin with the first question. It is straightforward how one can use the computed

data structures to identify, given a word w of length n, the triples (i, j, k) such that the
factor w[i..j] is in {t, f(t)}k for some t. Indeed, we return the solution-set comprising all
the triples (i, j, k) for which the answer to rep(i, j, k) is yes. The time needed to do so is
Θ(n3) (without the preprocessing), as we go through all possible triples (i, j, k) and check
whether rep(i, j, k) returns yes or no. Furthermore, any algorithm solving this problem needs
Ω(n3) operations in the worst case. Take, for instance, the non-erasing uniform morphism f

defined by f(a) = aa and w = an. It follows that w[i..j] is in {a, f(a)}k, for all i and j with
b(j − i+ 1)/2c ≤ k ≤ j − i+ 1; hence, for these w and f we have Θ(n3) triples (i, j, k) in the
solution set of our problem.

For f a literal anti-/morphism, we propose a Θ(n2 lg n) algorithm solving the discussed
problem. Using the Sieve of Eratosthenes, we compute in O(n lg n) time the lists of divisors
for all numbers ` with 1 ≤ ` ≤ n. Further, for each pair (i, i + ` − 1) with ` ≥ 1 and
all d | ` we check whether rep(i, i + ` − 1, d) returns yes. If so, the triple (i, i + ` − 1, d)
is one of those we were looking for. Clearly, the algorithm is correct. Its complexity
is O(n lg n) + Θ(

∑
1≤`≤n(n − ` + 1)d(`)). Following Lemma 2, the overall complexity of

this algorithm is Θ(n2 lg n). Moreover, any algorithm solving this problem does Ω(n2 lg n)
operations in the worst case: for w = an and the anti-/morphism f(a) = a, a correct
algorithm returns exactly

∑
1≤`≤n(n− `+ 1)d(`) ∈ Θ(n2 lg n) triples. This proves our claim.

STACS’13

268 Finding Pseudo-repetitions

In the case of the second question of our problem, we proceed as follows. Recall that, in
this case, we are given both a word w and a number k. To identify the pairs (i, j) such that
the factor w[i..j] is in {t, f(t)}k for some t we just have to go through all the possible values
for i and j and check the answer of the query rep(i, j, k). Clearly, this takes Θ(n2) time. The
preprocessing, in which the data structures needed to answer rep queries are built, takes in
the more efficient case of non-erasing morphisms O(n2) time, as well; in the general case, the
preprocessing takes O(n2k) time, and this is more than the time needed to actually answer
all the queries. This improves in a more general framework the results reported in [2], where
the same problem was solved in time O(n2 lg n). Finally, note that the bounds obtained for
non-erasing morphisms are tight, since all the factors of length k` of w = an are equal to
(a`)k, thus being solutions to our problem, no matter what anti-/morphism f is used. Hence,
the number of elements in the solution-set of question (2) of Problem 2 for w is in Θ(n2).

§Summary. Before concluding this section, recall that the key idea in our approach is to
solve both parts of Problem 2 using rep queries. In order to assert the efficiency of this
method note that, once data structures allowing us to answer such queries are constructed,
our algorithms solve the two parts of Problem 2 efficiently. In particular, no other algorithm
solving any of the two questions of Problem 2 can run faster than ours (excluding the
preprocessing part), in the worst case. Hence, in general, a faster preprocessing part yields a
faster complete solution for the problem. However, in the case of non-erasing and, respectively,
literal anti-/morphisms (which includes the biologically motivated case of involutions) the
preprocessing is as time-consuming as the part where we use the data structures we previously
constructed to actually solve the questions of the problem. Thus, the time bounds obtained
in these cases are tight.

I Theorem 11. Let f : V ∗ → V ∗ be an anti-/morphism and w ∈ V ∗ a given word, |w| = n.
(1) One can identify in time O(n3.5) the triples (i, j, k) with w[i..j] ∈ {t, f(t)}k, for a proper
factor t of w[i..j].
(2) One can identify in time O(n2k) the pairs (i, j) such that w[i..j] ∈ {t, f(t)}k for a proper
factor t of w[i..j], when k is also given as input.
For a non-erasing f we solve (1) in Θ(n3) time and (2) in Θ(n2) time. For a literal f we
solve (1) in Θ(n2 lg n) time and (2) in Θ(n2) time.

References
1 T. M. Apostol. Introduction to analytic number theory. Springer, 1976.
2 E. Chiniforooshan, L. Kari, and Z. Xu. Pseudopower avoidance. Fundam. Informat.,

114(1):55–72, 2012.
3 E. Czeizler, L. Kari, and S. Seki. On a special class of primitive words. Theoret. Comput.

Sci., 411:617–630, 2010.
4 N. J. Fine and H. S. Wilf. Uniqueness theorem for periodic functions. Proc. of the American

Mathemat. Soc., 16:109–114, 1965.
5 D. Gusfield. Algorithms on strings, trees, and sequences: computer science and computa-

tional biology. Cambridge University Press, New York, NY, USA, 1997.
6 J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear work suffix array construction. J.

ACM, 53:918–936, 2006.
7 M. Lothaire. Combinatorics on Words. Cambridge University Press, 1997.
8 F. Manea, R. Mercas, and D. Nowotka. Fine and Wilf’s theorem and pseudo-repetitions.

In MFCS, volume 7464 of LNCS, pages 668–680. Springer, 2012.

Algorithms for Designing Pop-Up Cards
Zachary Abel∗1, Erik D. Demaine†‡2, Martin L. Demaine2, Sarah
Eisenstat‡2, Anna Lubiw§3, André Schulz¶4, Diane L. Souvaine‖5,
Giovanni Viglietta6, and Andrew Winslow‖5

1 MIT Department of Mathematics, 77 Massachusetts Ave., Cambridge, MA
02139, USA, zabel@math.mit.edu

2 MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St.,
Cambridge, MA 02139, USA, {edemaine,mdemaine,seisenst}@mit.edu

3 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada, alubiw@uwaterloo.ca

4 Institut für Mathematsche Logik und Grundlagenforschung, Universität
Münster, andre.schulz@uni-muenster.de

5 Department of Computer Science, Tufts University, Medford, MA 02155,
USA, {dls,awinslow}@cs.tufts.edu

6 School of Computer Science, Carleton University, Ottawa ON, Canada
viglietta@gmail.com

Abstract
We prove that every simple polygon can be made as a (2D) pop-up card/book that opens

to any desired angle between 0 and 360◦. More precisely, given a simple polygon attached to
the two walls of the open pop-up, our polynomial-time algorithm subdivides the polygon into
a single-degree-of-freedom linkage structure, such that closing the pop-up flattens the linkage
without collision. This result solves an open problem of Hara and Sugihara from 2009. We also
show how to obtain a more efficient construction for the special case of orthogonal polygons, and
how to make 3D orthogonal polyhedra, from pop-ups that open to 90◦, 180◦, 270◦, or 360◦.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases geometric folding, linkages, universality

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.269

1 Introduction

Pop-up books have been entertaining children with their playful mechanics since their mass
production in the 1970s. But the history of pop-ups is much older [27], and they were
originally used for scientific and historical illustrations. The earliest known example of a
“movable book” is Matthew Paris’s Chronica Majora (c. 1250), which uses turnable disks
(volvelle) to represent a calendar and uses flaps to illustrate maps. A more recent scientific
example is George Spratt’s Obstetric Tables (1850), which uses flaps to illustrate procedures
for delivering babies. Dean & Sons’ Little Red Riding Hood (1850) is the first known movable
book where a flat page rises into a 3D scene, though here it was actuated by pulling a string.

∗ Supported in part by an NSF Graduate Research Fellowship.
† Supported in part by NSF ODISSEI grant EFRI-1240383 and Expedition grant CCF-1138967.
‡ Supported in part by NSF grant CCF-1161626 and DARPA/AFOSR grant FA9550-12-1-0423.
§ Supported by the Natural Sciences and Engineering Research Council of Canada.
¶ Supported in part by the German Research Foundation (DFG) under grant SCHU 2458/1-1.
‖ Supported in part by National Science Foundation grants CCF-0830734 and CBET-0941538.

© Zachary Abel et al.;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 269–280

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

zabel@math.mit.edu
{edemaine,mdemaine,seisenst}@mit.edu
alubiw@uwaterloo.ca
andre.schulz@uni-muenster.de
{dls,awinslow}@cs.tufts.edu
viglietta@gmail.com
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.269
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

270 Algorithms for Designing Pop-Up Cards

The first known examples of self-erecting pop-ups, where the rise into 3D is actuated by
opening the page, are a card promoting the Trinity Buildings in New York City (c. 1908),
and S. Louis Girand’s Bookano Book (c. 1930s). Modern pop-ups have taken these principles
to new heights, often employing linkage-like mechanisms to form elaborate 3D shapes and
motions; some good guides for designing pop-ups are [1, 3, 5, 20]. In recent years, pop-up
books have risen to an art form with such art books as Bataille’s ABC3D [2], Carter’s series
of dot/spot books [4], and Pelhem’s poetic pop-up book [26]. One striking form of pop-ups is
origamic architecture, which form buildings and other geometric structures, and are usually
made by cutting a single sheet of card stock. A few examples of origamic architecture books
are [7, 8, 32]; see [11] for a thorough bibliography.

Our results. This paper investigates the computational geometry of pop-ups, in particular,
algorithmic design of pop-ups. We achieve three main results:

1. Any 2D n-gon (extruded orthogonally into 3D) can be popped up by opening a book to
a specified angle θ with 0 < θ ≤ 360◦, using a construction of complexity O(n2).

2. Any orthogonal n-gon (extruded orthogonally into 3D) can be popped up by opening a
book to a specified angle θ ∈ {90◦, 180◦, 270◦, 360◦}, using a construction of complex-
ity Θ(n).

3. Any orthogonal polyhedron can be popped up by opening a book to a specified orthogonal
angle θ ∈ {90◦, 180◦, 270◦, 360◦}, using a construction of complexity O(n3).

All of our constructions use rigid flat polygonal pieces to form single-degree-of-freedom
linkage structures, which uniquely and deterministically unfold from the flat state to the
open state, while avoiding collision.

Related work. Our results solve an open problem of Hara and Sugihara [14], who gave an
algorithmic construction for arbitrary polygons, but with no guarantees of collision avoidance
(and indeed the construction sometimes requires collisions). In another result in computa-
tional geometry, Uehara and Teramoto [31] proved that pop-ups with creases that can fold
both mountain and valley are NP-hard to open or close.

In computer graphics, Mitani et al. [23, 24] showed how to automatically design pop-ups
within a common class of 90◦ origamic architecture, in which the surface is monotone (hit
only once) in the view direction. This work led to Tama Software’s Pop-Up Card Designer
[30]. Li et al. [22] developed a software system for converting a given 3D model into one
that fits within this class. Several other systems enable designing and simulating pop-ups by
composing standard pop-up gadgets, including Glassner’s [12, 13], Popup Workshop [16, 15],
Okamura and Igarashi’s [25], and Iizuka et al.’s [19].

Geometric pop-ups have also been studied for specific examples of polyhedra. The first
such example is a rhombic dodecahedron of the second type [10]. Other examples include
the dodecahedron [29] and other Platonic solids [17, 6, 21]. These types of pop-ups are
typically not attached to pages of a book, however.

Applications. Pop-ups have potential practical applications as well. Nano and micro fabri-
cation technology are well-established for patterning 2D sheets, but remain in their infancy
for 3D surfaces. Pop-ups offer a way to transform patterned 2D sheets into 3D surfaces.
This idea was recently explored in the context of MEMS [18], where Hui et al. manufactured
a 1.8mm-tall 3D model of the UC Berkeley Campanile clock tower using pop-ups.

Z. Abel et al. 271

2 Models of Pop-Ups

(a) The desired pop-
up card.

(b) Cross-section
perpendicular to the
spine.

(c) The contents of
the cross-section.

Figure 1 Three views of a desired 3D structure, before the
creases and extra paper have been added to make it pop up.

Our basic model is of a book
with planar front and back cov-
ers which, when opened to a
desired angle θ, pops up a 3D
paper construction made from
pieces of stiff paper that are
folded and glued to each other
and to the covers. (We will not
deal with the more restrictive
model of origamic architecture
where one piece of paper is cut
and folded but not glued.)

Given a desired 3D structure, we aim to design a book that pops up the structure
by adding creases and extra pieces of paper. Adding creases may be necessary to let the
structure fold up when the book is closed. Adding extra paper may be necessary to make
the structure pop up into the correct shape when the book is opened.

(a) A common joint.

(b) A flap.

(c) A sliceform.

Figure 2 The
three types of joints
used in this paper.

Until Section 5, we consider a restricted version of the problem
that arises when all fold lines and all gluing lines are parallel to the
spine, as in Figure 1. In this case, a cross-section of the 3D structure
in a plane perpendicular to the spine yields a 2D pop-up: the pop-up
structure forms a planar linkage composed of rigid bars (line segments)
connected at joints. A joint is a point where bars intersect, usually at
an endpoint of at least one of the bars. We distinguish three kinds of
joints:

Common joints: Two or more bars are linked at one of their endpoints.
Flaps: A bar contains a joint in its interior, where an endpoint of

another bar is linked. The location of the joint at the interior of
the first bar is fixed.

Sliceforms: A joint (called a sliceform) can be formed by the intersec-
tion X of two bars. The intersection point X cannot shift along
the bars, but the two bars can change their angle at X (scissors-like). Notice that we do
not consider the two edges crossing if they are linked by a sliceform.

To distinguish the different joints in figures, we use a dot (•) for common joints and endpoints
of edges, an empty circle (◦) for flaps, and a cross (×) for sliceforms.

Figure 3 Simulating
sliceforms.

The common joint is sufficient to simulate the other joint types.
A flap can be simulated by forming a zero-area triangle among the
three collinear points. A sliceform can be simulated by common
joints and flaps as illustrated in Figure 3.

In the 2D case, we want to construct a linkage L with one
degree of freedom that unfolds to the desired polygon P . During
the folding motion we require that no bars cross, and that the order
of the bars emanating from a joint is preserved. Let the vertices of
P be v1, v2, . . . , vn labelled in counter-clockwise order. The edge
incident to vi and vi+1 is named ei, and the edge between vn and
v1 is named en. We assume that P is contained in one of the two

STACS’13

272 Algorithms for Designing Pop-Up Cards

wedges bounded by the rays −−→v1v2 and −−→v1vn. The angle of the wedge containing P is called
the opening angle, and the union of the rays −−→v1v2 and −−→v1vn is called the cover. We require
L to have the following properties:

1. In one configuration of L, the boundary of L coincides with P . We call this the open
configuration. The linkage L contains the edges e1 and en of P as bars. If a joint of L
coincides with a vertex vi in the open configuration, we name it pi.

2. In one configuration of L that can be reached from the open configuration, all edges are
collinear and p1 is an endpoint of the union of the edges of L. This configuration is called
the closed configuration.

3. There is a unique motion that transforms the open configuration into the closed config-
uration. During this motion, L is contained inside the wedge defined by the cover and
the opening angle decreases continuously. We refer to this motion as the closing motion.
Every configuration of L obtained during the closing motion is called an intermediate
configuration. The open configuration might have several joints that are opened 180◦.
In order to specify the folding uniquely, we prescribe for every such ambiguity the way
the vertex moves during the folding motion. Collinear points in the open configuration
appear naturally in pop-up structures. In the real world the folding motion at these
points is prescribed by the creasing of the paper.

The combinatorial complexity of a 2D pop-up is equal to the number of joints in the pop-up.

3 Orthogonal Polygon Pop-Ups

In this section, we assume the polygon P is orthogonal, i.e., every edge of P is either
horizontal or vertical. Under this assumption, we show how to construct a pop-up linkage
L for the polygon P with combinatorial complexity linear in n. The techniques we use in
this section are based on a particular type of motion:
I Definition 1. A shear is a motion of a linkage that leaves parallel edges parallel.
In Section 3.1, we explain how to construct pop-ups for polygons with opening angle 90◦,
also known as 90◦ pop-ups. In Section 3.2, we extend this result to larger opening angles.

3.1 90◦ Pop-Ups
To construct 90◦ pop-ups, we use a process called h-superimposing. As a first step we split
P into stripes such that (i) each stripe is an axis-aligned rectangle, (ii) the left and right
boundary edges of a stripe are a part of the boundary of P , and (iii) the union of any two
stripes is not a rectangle. We obtain such a decomposition by extending all horizontal edges
of P horizontally as long as they lie in P . See Figure 4a for an illustration. Two stripes are
adjacent if they (partially) share an edge.

Let L1 be the linkage obtained by extending all horizontal edges as long as they lie within
P . The newly introduced degree-3 vertices become flaps. An example of this is depicted in
Figure 4b. This intermediate linkage may have more than one degree of freedom: any pair
of adjacent stripes that do not share a vertical bar can shear independently. To handle this,
note that for any pair of adjacent stripes, there must be at least one vertical line passing
through the (strict) interior of both stripes. We call this a bracing line for the stripe pair.
The subset of the line contained in the stripe pair is called a bracing segment. For each
pair of adjacent stripes that do not share a vertical bar, we add a bracing segment to the
linkage, creating a sliceform joint where the segment intersects with the boundary between

Z. Abel et al. 273

(a) The stripes induced by ex-
tending all edges horizontally.

(b) The intermediate linkage,
with too many degrees of free-
dom.

(c) The final linkage, with
bracing segments to enforce a
single shear motion.

Figure 4 The result of h-superimposing an orthogonal polygon.

the stripes. See Figure 4c for an example. Let L2 be the linkage resulting from the addition
of the bracing segments.
I Theorem 1. The linkage L2 obtained by h-superimposing defines a pop-up fold for the or-
thogonal polygon P with 90◦ opening angle. The motion of L2 is a shear. The combinatorial
complexity of L2 is O(n).
All omitted proofs may be found in the full version of this paper.

3.2 180◦, 270◦, and 360◦ Pop-Ups

2

2

OA B

G

L

R

F E

D CM

M ′

1 1

1

1
2

1
2

1 1

1 1

(a) The open configuration.

O

A B

GL

R

(b) An intermediate con-
figuration.

Figure 5 The reflec-
tor gadget that helps to
“reflect” two shearing mo-
tions.

This section is devoted to constructing pop-up folds with larger
opening angles. We reduce this problem to the 90◦ pop-up sce-
nario by introducing a linkage (called a reflector gadget) that al-
lows us to reflect a shear. The open configuration of the gadget is
constructed as shown in Figure 5a. Figure 5b depicts an interme-
diate configuration.
I Lemma 1. The reflector gadget has one degree of freedom. Its
closing motion has the following properties:

1. the vertical line segments in the open configuration remain
vertical during the induced motion,

2. the boundary of the gadget is symmetric with respect to a line
of reflection running through OM , and

3. the linkage folds to a line without introducing any crossings in
an intermediate configuration.

We use the properties of the reflector to combine two 90◦ pop-
ups to create a pop-up with larger opening angle. We discuss 180◦
pop-ups first. In this case both cover edges lie on a line through p1.
To guide our construction we add a bisector s of the cover edges
that runs through p1. Furthermore, we add two lines parallel to s
such that the induced stripe contains s and does not contain any
point of P except those lying on s. This stripe is called S. The
edges that “appear” when intersecting P with the boundary of S
are added to the linkage L. We “fill” each rectangle obtained by
intersecting P with S with a reflector gadget. The components of
P \S are turned into a linkage by h-superimposing as discussed in
Section 3.1, so that every component of P \S supports a shearing
motion. The shearing motions are linked by the reflector gadgets, so the combined linkage
L has one degree of freedom. By the properties of the reflector, the left and right side of

STACS’13

274 Algorithms for Designing Pop-Up Cards

(a) (b)

Figure 6 A 180◦ pop-up fold constructed
with the help of reflector gadgets. (a) The open
configuration. (b) An intermediate configura-
tion.

(a) (b)

Figure 7 (a) A polygon with opening angle
270◦. The induced connected components are
drawn with different shades of grey. (b) The
pop-up linkage. The reflector gadgets have to
be inserted at the crossed regions.

s perform a shear and both parts of P stay on their own side, relative to s. Hence it is
impossible for L to self-intersect. Notice that we can always make the stripe S thin enough
that the rectangles of P ∩ S are not “too wide” for the reflector gadgets. See Figure 6 for
an example. We conclude with:

I Theorem 2. The method described above constructs a pop-up fold for the polygon P with
opening angle 180◦. The combinatorial complexity of the linkage is O(n).

In order to realize 270◦ and 360◦ folds we extend the 180◦ construction as follows. We
split P into pieces by cutting it along the horizontal and vertical lines through p1. We then
turn each connected component of the split polygon into a 90◦ linkage, by adding bars and
joints as discussed in Theorem 1. Then each piece of the polygon will be constrained to move
in a shear motion, but different pieces will not necessarily move together. To synchronize the
pieces, we use reflector gadgets to connect them. To generate the space for the gadgets, we
add bars that sandwich the horizontal and vertical lines through p1, thereby creating vertical
and horizontal strips in which the reflector gadgets can be placed. Because no gadgets lie
inside the intersection of the vertical and horizontal strip, no two reflector gadgets interfere.
Figure 7 shows an example of an 270◦ fold. We conclude with the following theorem:

I Theorem 3. The method described above constructs a pop-up fold for the polygon P with
opening angle 270◦ or 360◦. The combinatorial complexity of the linkage is O(n).

4 General Polygon Pop-Ups

In this section we provide a different method for constructing pop-ups of polygons. This
method works for all simple P (not necessarily orthogonal), but has a higher asymptotic
complexity of O(n2). Before giving the construction, we provide a key geometric lemma
about the non-crossing of nested “V-fold” linkages.

4.1 Nested V-folds
We define an outward V-fold as the single-degree-of-freedom linkage formed by a (weakly)
convex quadrilateral ABCD with AB + BC = AD + DC. (This was called a V-fold in
[14].) Such a linkage folds flat as the opening angle ∠BAD decreases to zero. If, in the
open configuration, the angle at C is 180◦ and the angle at A is less than 180◦ (i.e. the
quadrilateral is a nontrivial triangle with C on side BD), we call this linkage a flat outward
V-fold. Similarly, the linkage formed by a (weakly) non-convex quadrilateral ABCD with

Z. Abel et al. 275

AB − BC = AD − DC has one degree of freedom and folds flat without overlap, and is
called an inward V-fold. If the angle at C is 180◦ and the angle at A is less than 180◦ it is
a flat inward V-fold.
I Theorem 4. (a) Let ABCD and AB′C ′D′ be flat outward V-folds on the same rays with
4BAD ⊂ 4B′AD′, where we may have B = B′ or D = D′. Then these linkages do not
cross during the closing motions. In fact, they do not touch at all, except at the closing
configuration and possibly at the endpoints B = B′ or D = D′ if either equality holds.

(b) The same statement holds with “outward” replaced by “inward”.

4.2 The General Pop-Up Construction: The Method
We may now describe the construction for pop-ups of general polygons. As in Section 2,
we wish to construct a one-degree-of-freedom linkage L contained in simple polygon P =
v1v2 · · · vn, where P is contained in the wedge formed by rays v1v2 and v1vn. We sometimes
refer to the crease point v1 as O. The opening angle θ of the original configuration, namely
the angle of polygon P at vertex O, may take any value 0 < θ ≤ 360◦.

First we discuss the general strategy and provide a linkage L1 that has a pop-up motion
for polygon P but has more than one degree of freedom. Later we brace the linkage to
remove the excess flexibility.

We first subdivide the wedge around O containing P by rays starting at O, where there
is one such ray through each vertex of P and additional rays are inserted so that consecutive
rays form acute angles. Suppose r1, . . . , rt are these rays in order around O = v1, starting
at r1 = −−→Ov2 and ending at rt = −−→Ovn. The region of the plane between rays ri and ri+1
is the ith wedge, Wi. We subdivide polygon P by these rays: any positive length segment
of a ray ri contained in P or its boundary is inserted as a single bar in linkage L1 and is
called a wall segment. Notice that edges of P may be wall segments. Also, by slight abuse
of terminology, a positive length subsegment of a wall segment is also called a wall segment.
Any isolated points on ri ∩ P are necessarily vertices of P and are called wall points.

The rays ri subdivide P into a number of triangles and quadrilaterals, called cells. Each
cell has two wall portions on consecutive rays: at least one of these is a wall segment, and
the other may be a wall segment or point. A cell that has two wall segments is called an
internal cell, and those with a wall point are ear cells. Two cells are adjacent if they share a
wall segment. By adding at most one new ray for each ear cell, (and renumbering the rays
as necessary), we may assume that each ear cell is adjacent to a unique interior cell.

The rays ri also subdivide the boundary of P into segments. On each such segment AB
that is not a wall segment (which implies A and B are on consecutive rays), insert a joint
C at the point that would make OACB an outward V-fold at O, i.e., C is the unique point
on AB with OA+AC = OB +BC. This linkage L1 serves our first stated purpose:
I Lemma 2. The linkage L1, constructed from P by adding wall segments and extra bound-
ary vertices as described here, can be continuously folded flat without overlap.

Proof. Let φi be the angle of wedge Wi, i.e., the angle between rays ri and ri+1 at O. Con-
sider any continuous rotation of rays r1, . . . , rt around O such that all angles φ1, . . . , φt−1
decrease monotonically to 0. Let each wall portion on ray ri rotate around O to stay on ray
ri, and for each boundary portion ACB of P within wedge Wi, let ACB fold outward as
would the outward V-fold OACB. Then path ACB remains inside wedge Wi throughout
the motion, and therefore does not interact with portions of P in different wedges. Further-
more, by Theorem 4, the various boundary portions in wedge Wi do not touch each other
throughout the motion. It follows that this is indeed a continuous planar motion of L1. J

STACS’13

276 Algorithms for Designing Pop-Up Cards

The rest of the construction shows how to add additional support to L1 to turn it into a
one-degree-of-freedom linkage whose motion has the form described in the proof of Lemma 2.
We cut down the freedoms of L1 in several steps, given in the next three subsections.

4.3 Constraining Wall Segments to Rotations

A BC

D E
FG H

P

Q

R

S

Figure 8 Rotation gadget.

For two segments PQ and RS whose lines intersect at a
point O, consider the rotation gadget as illustrated in Fig-
ure 8. (When we apply this below, PQ and RS will be wall
segments, and O will be the crease point.) This linkage is
specified as follows: AB ‖ DE are any two segments not
sharing an endpoint with PQ or RS with AB closer to O
than DE; C is chosen on AB so that OA+AC = OB+BC,
and the 180◦ angle at C is declared to fold outward, with F
on DE chosen similarly; G and H are chosen so that both
DACG and CBEH are parallelograms.

I Lemma 3. The linkage illustrated in Figure 8 has one degree of freedom. If PQ and point
O are held fixed in the plane, then in the unique motion, segment RS rotates rigidly around
point O from its starting position to a closed configuration where PQ and RS are collinear.

I Lemma 4. Let L2 be the linkage derived from L1 as follows: for every internal cell, attach
a rotator gadget inside the cell connecting (internal subintervals of) the wall segments. Then
the motions of L2 correspond exactly to those motions of L1 where wall segments only rotate
around O, and planar motions of L1 extend (uniquely) to planar motions of L2.

4.4 Synchronizing Wall Segments

Pi−1

Qi−1

Pi

Qi

Pi+1

Qi+1

A

B

O

CL

DL
EL FL

GL

HL IL CR

DR

ER
FR

GR

HR

IR

Figure 9 Synchronizing gadget.

We next show how to synchronize the
wall segments to ensure that all wall
segments originally on ray ri remain on
a single ray through O throughout any
continuous motion. Let φ1, . . . , φt−1
be the initial angles of the wedges
W1, . . . ,Wt−1. For an internal cell
ABCD with AB ⊂ ri and CD ⊂ ri+1,
we know that any motion of L2 rotates
AB and CD around O, and we define
the angle of the cell at any time as the
angle between rays OAB and OCD.

I Definition 2. For each 1 ≤ i ≤ t − 2,
construct a linkage Mi with two adja-
cent flat V-folds as follows. Points A,D,B,E,C are collinear, and connected in order (with
B a flap on bar DE), and point O connects to A, B, and C. Angle OBA is 90◦, ∠AOB = φi,
and ∠BOC = φi+1. Finally, if i is even then OADB is an outward flat V-fold and OBEC is
an inward flat V-fold, and if i is odd then OADB is chosen outward and OBEC is inward.

I Lemma 5. The linkage Mi defined as above has a single degree of freedom and folds from
the initial configuration to a flat one without overlap. Furthermore, there is a continuous,
strictly increasing, and invertible function mi : [0, φi] → [0, φi+1] such that mi(∠AOB) =
∠BOC during this motion.

Z. Abel et al. 277

Inductively define Φ1(s) = s and Φi(s) = mi−1(Φi−1(s)); these will control the rates
at which internal cells’ angles change. Specifically, fix an internal cell X1Y1Y2X2 with two
wall segments X1Y1 and X2Y2 such that X1Y1 ⊂ r1 and X2Y2 ⊂ r2 initially. (We may have
X1 = X2 = O.) Let s be a variable representing the angle of cell X1Y1Y2X2 during any
motion. We will brace L2 to a new linkage so that every internal cell initially in Wi will
have angle Φi(s) during the motion.

To do this, we make the following additions to L2 to form a new linkage L3: For ev-
ery pair of adjacent internal cells with wall segments Pi−1Qi−1 ⊂ ri−1, PiQi ⊂ ri, and
Pi+1Qi+1 ⊂ ri+1 (note that PiQi need not be a maximal wall segment for either cell), at-
tach a synchronizing gadget as shown in Figure 9. The full version of this paper provides a
more detailed description of this process.
I Lemma 6. Define L3 as the linkage constructed from L2 by inserting a synchronizing
gadget between every pair of adjacent internal cells as described above. Then the contin-
uous motions of L3 correspond to those motions of L2 such that the angle of any internal
cell originally in wedge Wi is now Φi(s), where s represents the (changing) angle of cell
X1Y1Y2X2. Furthermore, planar motions of L2 induce planar motions of L3.

4.5 Constraining Ear Cells
The configurations of all internal cells in L3 are determined by s = ∠Y1OY2. The only
unwanted degrees of freedom of L3 must therefore come from the ear cells, which have not
yet been modified. In this section we constrain these to produce the final linkage L.

Consider an ear cell with wall segment PiQi ∈ ri and wall point Vi+1 ∈ ri+1, say. This
is adjacent to a unique interior cell, with wall segment Pi−1Qi−1 along ri−1. To constrain
ear cell PiQiPi+1, we simply add two synchronization gadgets centered on PiQi that both
connect to Vi+1 ∈ ri+1 and some point Vi−1 ∈ Pi−1Qi−1. Adding these synchronization
gadgets for each ear cell produces the final linkage L:
I Theorem 5. The linkage L obtained from L3 by adding two synchronization gadgets to
each ear cell is a pop-up for the polygon P . Its boundary is connected and forms the polygon
P in its opened configuration, and there are O(n2) total bars in the linkage.

5 Orthogonal Polyhedra Pop-Ups

In this section, we apply some of the techniques of 2D pop-up folds to the design of 3D pop-
up structures that take the shape of orthogonal polyhedra. We first show how to construct
pop-ups with an opening angle of 90◦, then extend the construction to larger opening angles.

5.1 3D Pop-Up Model
In the 3D case, we model a pop-up using a model similar to rigid origami. A structure
in rigid origami is composed of infinitely thin rigid sheets of paper, each in the shape of a
simple polygon, connected using hinged joints. If two or more sheets are joined at a hinge
and one is held fixed, then the only possible motion for the other sheet(s) is rotation around
the hinge. A fold or a crease in a pop-up is equivalent to a hinge connecting two sheets. A
flap in a pop-up corresponds to attaching the edge of one sheet to the center of another.

Let P be a simple polyhedron with n vertices v1, . . . , vn. We select one edge e in P to
be the spine of the pop-up. Let f1 and f2 be the faces adjacent to e. The opening angle of
the pop-up is the measure of the dihedral angle between f1 and f2. The cover of the pop-up
consists of the union of two halfplanes. The first halfplane in the cover is the half of the

STACS’13

278 Algorithms for Designing Pop-Up Cards

supporting plane of f1 that contains f1 and has the extension of e as its boundary. The half
of the cover containing f2 is defined similarly.

A rigid-origami structure L is a 3D pop-up for P if it has an open configuration, a closed
configuration, and a unique folding motion from open to closed, all defined analogously to
the configurations of a 2D pop-up. The combinatorial complexity of the 3D pop-up L is
equal to the number of hinges.

Note that unlike in the 2D case, it is not sufficient to add more paper and more creases.
By the Bellows Theorem [28, 9], if we treat a polyhedron as a linkage where each face is rigid
and faces must rotate around edges, then all motions preserve the volume of the polyhedron.
Hence, we cannot fold the polyhedron flat unless we cut the boundary of the polyhedron.

5.2 Scaffold Pop-Ups
Suppose we have a simple orthogonal polyhedron P with an opening angle of 90◦. Without
loss of generality, we may assume that e lies along the z-axis, and that f1 lies in the positive x
section of the xz plane. Suppose further that f2 lies in the positive y section of the yz plane.
Let x1, . . . , xn be the sorted x-coordinates of all vertices in P . Similarly, let y1, . . . , yn be the
sorted y-coordinates and let z1, . . . , zn be the sorted z-coordinates. Then grid cell (i, j, k)
is the rectangular box [xi, xi+1]× [yj , yj+1]× [zk, zk+1]. By construction, the polyhedron P
is the union of a face-connected subset R of grid cells. The scaffold of P is the union of all
faces f of cells in R such that f is parallel to the spine.

The grid slice Gk consists of the union of all grid cells (i, j, k), not necessarily contained
in P . Let the slice scaffold Sk be the intersection of the scaffold with Gk. The slice scaffold
contains no faces perpendicular to the z-axis, and every cross section perpendicular to the
z-axis is the same. Hence, the problem of constructing a pop-up for Sk is purely 2D.

To construct a pop-up for Sk with the correct shear motion, we must somehow combine
faces of Sk into larger rigid sheets. If an edge borders exactly three faces, then the two
coplanar faces can be fused into a rigid sheet, with the third face added as a flap. Suppose
instead that we have an edge with x and y coordinates (xi, yj) bordering exactly four faces.
If (i+ j) is even, then we rigidify the pair of faces perpendicular to the x-axis; otherwise, we
rigidify the pair of faces perpendicular to the y-axis. This construction means that the four
sheets adjacent to a given grid cell are arrayed in a pinwheel pattern. This ensures that the
shear motion of one cell must be the same as the shear of all adjacent cells.

Suppose that we use this construction to make a pop-up-like structure for each slice,
which we will call a pinwheel slice. Place all pinwheel slices side-by-side so that the initial
position takes the shape of the scaffold. Call the result of this process the sliced pinwheel
scaffold. Unfortunately, the sliced pinwheel scaffold has too many degrees of freedom: each
slice scaffold is disconnected from its neighbors, and even within a single slice the scaffold
may be disconnected.

Given any pair r1, r2 ∈ R of adjacent cells in adjacent slices, we wish to cause any motions
of the sheets around r1 to affect the sheets around r2. For each such pair r1, r2, we fuse each of
the four sheets that surround r1 in the initial configuration with the corresponding coplanar
sheet around r2, to create four larger rigid sheets in the initial opening configuration. Call
the result of this fusing the pinwheel scaffold of P .

I Lemma 7. The pinwheel scaffold of a polyhedron P is a pop-up for the scaffold of P . The
pinwheel scaffold has complexity O(n3).

The pinwheel scaffold has a number of faces parallel to the spine. All such faces are
contained within P when the scaffolding is open, and all faces on the boundary of P that

Z. Abel et al. 279

are parallel to the spine also exist in the scaffolding (although they may be subdivided).
The only missing pieces are the faces of P that are perpendicular to the spine.

5.3 Additional Faces
To add those pieces to the pinwheel scaffold, we first subdivide the faces using our rectilinear
grid so that the sheets we wish to add to the pinwheel scaffold are faces of the grid cells. We
must attach each such sheet to the sheets in the scaffold that form the adjacent grid cell.

There are four potential hinges that we could use to attach the new face to the scaf-
fold. The hinges we choose to use are the hinge parallel to the x-axis with the smallest
y-coordinate, and the hinge parallel to the y-axis with the smallest x-coordinate. By con-
struction, the angle between these two hinges will grow smaller as the pinwheel scaffold
folds. Therefore, if we attach the new face using these hinges, it is sufficient to add a crease
to the new sheet emanating from the intersection of the two hinges at a 45◦ angle. For
consistency, we make each crease constructed in this fashion fold in the positive z-direction.
We call the resulting rigid origami structure the draped scaffold.

I Theorem 6. The draped scaffold of P is a pop-up for P with complexity O(n3).

The draped scaffold may be used to construct 90◦ pop-ups in 3D. By combining this
structure with a reflector gadget as in Section 3.2, we can extend our construction to handle
larger multiples of 90◦. See the full version for details.

6 Conclusion and Open Problems

In this paper, we demonstrate techniques for designing 2D pop-ups for general polygons,
and 3D pop-ups for orthogonal polyhedra. The most obvious open question is whether there
is a way to construct 3D pop-ups for general polyhedra. Another question to consider is
which 2D or 3D shapes are constructible using a single sheet of material with no gluing, as
in most origamic architecture.

References
1 Carol Barton. The Pocket Paper Engineer: How to Make Pop-Ups Step-by-Step. Popular

Kinetics Press, Glen Echo, Maryland, 2005–2008. Two volumes.
2 Marion Bataille. ABC3D. Roaring Brook Press, 2008.
3 Duncan Birmingham. Pop-Up Design and Paper Mechanics: How to Make Folding Paper

Sculpture. Guild of Master Craftsman Publications, 2010.
4 David A. Carter. One Red Dot: A Pop-up Book for Children of All Ages. Little Simon,

2005. Other books include Blue 2 (2006) and 600 Black Spots (2007).
5 David A. Carter and James Diaz. The Elements of Pop-Up. Little Simon, New York, 1999.
6 David Cassell. Pop-up polyhedra. Mathematics in School, 17(1):24–27, January 1988.
7 Masahiro Chatani. Key to Origamic Architecture. Shokokusha, 1985.
8 Masahiro Chatani. Pattern Sheets of Origamic Architecture. Books Nippan, 1986. Two

volumes.
9 R. Connelly, I. Sabitov, and A. Walz. The bellows conjecture. Beiträge Algebra Geom,

38(1):1–10, 1997.
10 John Lodge Cowley. Solid Geometry. London, 1752.
11 Evermore Origamic Architecture. Pop-up card books. http://www.evermore.com/oa/

books.php3, 2011.

STACS’13

http://www.evermore.com/oa/books.php3
http://www.evermore.com/oa/books.php3

280 Algorithms for Designing Pop-Up Cards

12 Andrew Glassner. Interactive pop-up card design, part 1. IEEE Computer Graphics and
Applications, 22(1):79–86, 2002.

13 Andrew Glassner. Interactive pop-up card design, part 2. IEEE Computer Graphics and
Applications, 22(2):74–85, 2002.

14 Takuya Hara and Kokichi Sugihara. Computer-aided design of pop-up books with two-
dimensional v-fold structures. In Abstracts from the 7th Japan Conference on Computa-
tional Geometry and Graphs, Kanazawa, Japan, November 2009.

15 Susan Hendrix. Popup workshop. http://l3d.cs.colorado.edu/~ctg/projects/
popups/, 2007.

16 Susan L. Hendrix and Michael A. Eisenberg. Computer-assisted pop-up design for children:
computationally enriched paper engineering. Advanced Technology for Learning, 3(2), April
2006.

17 Peter Hilton and Jean Pedersen. Constructing pop-up polyhedra. In Build Your Own
Polyhedra, chapter 7, pages 101–105. Addison-Wesley, 1994. Based on an article “Pop-up
Polyhedra” by Jean Pedersen, California Mathematics, April 1983, pages 37–41.

18 Elliot E. Hui, Roger T. Howe, and M. Steven Rodgers. Single-step assembly of complex
3-D microstructures. In Proceedings of the 13th Annual International Conference on Micro
Electro Mechanical Systems, pages 602–607, January 2000.

19 Satoshi Iizuka, Yuki Endo, Jun Mitani, Yoshihiro Kanamori, and Yukio Fukui. An inter-
active design system for pop-up cards with a physical simulation. The Visual Computer,
27(6):605–612, 2011. Proceedings of Computer Graphics International 2011.

20 Paul Jackson. The Pop-Up Book: Step-by-Step Instructions for Creating Over 100 Original
Paper Projects. Holt Paperbacks, 1993.

21 Scott Johnson and Hans Walser. Pop-up polyhedra. The Mathematical Gazette,
81(492):364–380, 1997.

22 Xian-Ying Li, Chao-Hui Shen, Shi-Sheng Huang, Tao Ju, and Shi-Min Hu. Popup: Auto-
matic paper architectures from 3D models. ACM Transactions on Graphics, 29(4):Article
111, 2010. Proceedings of SIGGRAPH 2010.

23 Jun Mitani and Hiromasa Suzuki. Computer aided design for origamic architecture models
with polygonal representation. In Proceedings of Computer Graphics International, pages
93–99, 2004.

24 Jun Mitani, Hiromasa Suzuki, and Hiroshi Uno. Computer aided design for origamic
architecture models with voxel data structure. Transactions of Information Processing
Society of Japan, 44(5):1372–1379, 2003.

25 Sosuke Okamura and Takeo Igarashi. An assistant interface to design and produce a pop-
up card. International Journal of Creative Interfaces and Computer Graphics, 1(2):40–50,
2010.

26 David Pelham. Trail: Paper Poetry Pop-Up. Little Simon, 2007.
27 Ellen G. K. Rubin. A history of pop-up and movable books: 700 years of paper engineering.

Public lecture, November 10 2010. http://www.youtube.com/watch?v=iDJJOaZ1myM.
28 I. Kh. Sabitov. On the problem of the invariance of the volume of a deformable polyhedron.

Uspekhi Mat. Nauk, 50(2(302)):223–224, 1995.
29 Hugo Steinhaus. Mathematical Snapshots, pages 196–198. Oxford University Press, 1950.

Republished by Dover Publications, 1999.
30 Tama Software. Pop-up card designer. http://www.tamasoft.co.jp/craft/popupcard_

en/, 2007. Pro version, http://www.tamasoft.co.jp/craft/popupcard-pro_en/, 2008.
31 Ryuhei Uehara and Sachio Teramoto. The complexity of a pop-up book. In Proceedings

of the 18th Annual Canadian Conference on Computational Geometry, Ontario, Canada,
August 2006.

32 Diego Uribe. Fractal Cuts. Tarquin, 1994.

http://l3d.cs.colorado.edu/~ctg/projects/popups/
http://l3d.cs.colorado.edu/~ctg/projects/popups/
http://www.youtube.com/watch?v=iDJJOaZ1myM
http://www.tamasoft.co.jp/craft/popupcard_en/
http://www.tamasoft.co.jp/craft/popupcard_en/
http://www.tamasoft.co.jp/craft/popupcard-pro_en/

Space-Time Trade-offs for Stack-Based
Algorithms
Luis Barba1, Matias Korman∗2, Stefan Langerman1, Rodrigo I.
Silveira†2, and Kunihiko Sadakane3

1 Université Libre de Bruxelles (ULB), Brussels, Belgium.
{lbarbafl,stefan.langerman}@ulb.ac.be

2 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
{matias.korman,rodrigo.silveira}@upc.edu

3 National Institute of Informatics (NII), Tokyo, Japan.
sada@nii.ac.jp

Abstract
In memory-constrained algorithms we have read-only access to the input, and the number of
additional variables is limited. In this paper we introduce the compressed stack technique, a
method that allows to transform algorithms whose space bottleneck is a stack into memory-
constrained algorithms. Given an algorithm A that runs in O(n) time using a stack of length Θ(n),
we can modify it so that it runs in O(n2/2s) time using a workspace of O(s) variables (for any s ∈
o(log n)) or O(n log n/ log p) time using O(p log n/ log p) variables (for any 2 ≤ p ≤ n). We also
show how the technique can be applied to solve various geometric problems, namely computing
the convex hull of a simple polygon, a triangulation of a monotone polygon, the shortest path
between two points inside a monotone polygon, 1-dimensional pyramid approximation of a 1-
dimensional vector, and the visibility profile of a point inside a simple polygon. Our approach
exceeds or matches the best-known results for these problems in constant-workspace models
(when they exist), and gives a trade-off between the size of the workspace and running time. To
the best of our knowledge, this is the first general framework for obtaining memory-constrained
algorithms.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases space-time trade-off, constant workspace, stack algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.281

1 Introduction

The amount of resources available to computers is continuing to grow exponentially year
after year. Many algorithms are nowadays developed with little or no regard to the amount
of memory used. However, with the appearance of specialized devices, there has been a
renewed interest in algorithms that use as little memory as possible.

Moreover, even if we can afford large amounts of memory, it might be preferable to limit
the number of writing operations. For instance, writing into flash memory is a relatively

∗ M.K. was supported by the Secretary for Universities and Research of the Ministry of Economy and
Knowledge of the Government of Catalonia and the European Union and was partially supported by the
ESF EUROCORES programme EuroGIGA - ComPoSe IP04 - MICINN Project EUI-EURC-2011-4306.
† R.I.S. was supported by the FP7 Marie Curie Actions Individual Fellowship PIEF-GA-2009-251235 and
was partially supported by the ESF EUROCORES programme EuroGIGA - ComPoSe IP04 - MICINN
Project EUI-EURC-2011-4306.

© L. Barba, M. Korman, S. Langerman, R. I. Silveira, and K. Sadakane;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 281–292

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.281
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

282 Space-Time Trade-offs for Stack-Based Algorithms

slow and costly operation, which also reduces the lifetime of the memory. Write-access to
removable memory devices might also be limited for technical or security reasons. Whenever
several concurrent algorithms are working on the same data, write operations also become
problematic due to concurrency problems. A possible way to deal with these situations is
considering algorithms that do not modify the input, and use as few variables as possible.

Several different memory-constrained models exist in the literature. In most of them the
input is considered to be in some kind of read-only data structure. In addition to the input,
the algorithm is allowed to use a small amount of variables to solve the problem. In this
paper, we look for space-time trade-off algorithms; that is, we devise algorithms that are
allowed to use up to s additional variables (for any parameter s ≤ n). Naturally, our aim is
that the running time of the algorithm decreases as s grows.

Many problems have been considered under this framework. In virtually all of the results,
either an unconstrained algorithm is transformed to memory-constrained environments, or a
new algorithm is created. Regardless of the type, the algorithm is usually an ad-hoc method
tailored for the particular problem. In this paper, we take a different approach: we present a
simple yet general approach to construct memory-constrained algorithms. Specifically, we
present a method that transforms a class of algorithms whose space bottleneck is a stack into
memory-constrained algorithms. In addition to being simple, our approach has the advantage
of being able to work in a black-box fashion: provided that some simple requirements are
met, our technique can be applied to any stack-based algorithm without knowing specifics
details of their inner workings.

Stack Algorithms. One of the main algorithmic techniques in computational geometry
is the incremental approach. At each step, a new element of the input is considered and
some internal structure is updated in order to maintain a partial solution to the problem,
which in the end will result in the final output. We here focus on stack algorithms, that
is, incremental algorithms where the internal structure is a stack (and possibly O(1) extra
variables). A more precise definition is given in Section 2.

We show how to transform any such algorithm into an algorithm that works in memory-
constrained environments. The main idea behind our approach is to avoid storing the
stack explicitly, reconstructing it whenever needed. The running time of our approach
depends on the size of the workspace. Specifically, it runs in O(n log n/ log p) time and uses
O(p log n/ log p) variables (for any 2 ≤ p ≤ n). In particular, when p = nε the technique
gives a linear-time algorithm that uses only O(nε/ε) variables (for any ε > 0).

If only o(log n) space is available, we must restrict the class of algorithms considered
slightly. We say that a stack algorithm is green1 if, without using the stack, it is possible to
reconstruct its top stack element in linear time (this will be formalized in Section 4.2). We
show how to transform any green stack algorithm into one that runs in O(n2/2s) time using
O(s) variables for any s ∈ o(log n).

Our techniques are conceptually very simple, and can be used with any (green) stack
algorithm in an essentially black-box fashion. We only need to replace the stack data structure
with the compressed data structure explained in Section 4.1, and create one or two additional
operations for reconstructing elements in the stack. To the best of our knowledge, this is the
first general framework for obtaining memory-constrained algorithms.

Applications. The technique is applicable, among others, to the following well-known
and fundamental geometric problems (illustrated in Fig. 1). More details about these
problems are presented in Section 5.

1 or environmentally friendly.

L. Barba, M. Korman, S. Langerman, R. I. Silveira, and K. Sadakane 283

Convex hull of a simple polygon The convex hull problem has already been studied in
memory-constrained environments. Brönnimann and Chan [8] modified the method of
Lee [17] so as to obtain several linear-time algorithms using memory-reduced workspaces.
However, their model of computation allows in-place rearranging (and sometimes modi-
fying) the vertices of the input and therefore does not fit in the memory constrained
model considered here. In our model, the well-known gift wrapping or Jarvis march
algorithm [15], reports the convex hull of a set of points (or a simple polygon) in O(nh̄)
time using O(1) variables, where h̄ is the number of vertices on the convex hull. In the
same model, Chan and Chen [9] showed how to compute the upper hull of a sorted set of
n points in linear time using O(nε) extra variables for any fixed ε > 0.

Triangulation of a monotone polygon The memory-constrained version of this problem was
studied by Asano et al. [3]. In that paper, the authors give an algorithm that triangulates
mountains (a subclass of monotone polygons in which one of the chains is a segment).
Combining this result with a trapezoidal decomposition, they give a method to triangulate
a planar straight-line graph. Both operations run in quadratic-time in an O(1)-workspace.

Shortest path computation Without memory restrictions, the shortest path between two
points in a simple polygon can be computed in O(n) time [14]. Asano et al. [4] gave an
O(n2) algorithm for solving this problem with O(1)-workspace, which later was extended
to O(s)-workspaces [3]. Their algorithm starts with a (possibly quadratic) preprocessing
phase that consists in repeatedly triangulating P, and storing O(s) edges that partition
P into O(s) subpieces of size O(n/s) each. Once the polygon is triangulated, they
compute the geodesic between the two points in O(n2/s) time by navigating through the
sub-polygons. Our triangulation algorithm removes the preprocessing overhead of Asano
et al. when restricted to monotone polygons.

Optimal 1-dimensional pyramid approximation Given an n-dimensional vector f =
(x1, . . . , xn), find a unimodal vector φ = (y1, . . . , yn) that minimizes the squared L2-
distance ||f − φ||2 =

∑n
i=1(xi − yi)2. Linear-time algorithms for the problem exist [10],

but up to now it had not been studied for memory-constrained settings.
Visibility polygon (or profile) of a point in a simple polygon Asano et al. [4] asked for a

sub-quadratic algorithm for this problem in O(1)-workspaces. Barba et al. [6] provided
a space-time trade-off algorithm that runs in O(nr

2s + n log2 r) time (or O(nr
2s + n log r)

randomized expected time) using O(s) variables (where s ∈ O(log r), and r is the number
of reflex vertices of P). Parallel to this research, De et al. [11] proposed an O(n) time
algorithm using O(

√
n) variables.

We show in Section 5 that there exist green algorithms for all of the above applications
(except for the shortest path computation), hence our technique results in new algorithms
that run in O(n2/s) time for an O(s)-workspace (for s ∈ o(log n)) or O(n log n/ log p) time
using O(p log n/ log p) variables (for any 2 ≤ p ≤ n). In particular, when p = n1/ε, they
run in linear-time using O(nε) variables (for any constant ε > 0). The running time of the
trade-off matches or exceeds the best known algorithms throughout its space range. Due to
lack of space, many proofs have been deferred to the full version

2 Preliminaries

Given its importance, a significant amount of research has focused on memory-constrained
algorithms, some of them dating back to the 1980s [20]. In this paper, we use a generalization
of the constant-workspace model, introduced by Asano et al. [4, 5]. In this model, the input
of the problem is in a read-only data structure. In addition to the input, an algorithm

STACS’13

284 Space-Time Trade-offs for Stack-Based Algorithms

s
t

(c) (d)

qPP

CH(P)

(e)(a) (b)

Figure 1 Applications of the compressed stack, from left to right: convex hull of a simple
polygon, triangulation of a monotone polygon, shortest path computation between two points inside
a monotone polygon, optimal 1-d pyramid approximation, and visibility polygon of a point q ∈ P.

can only use a constant number of additional variables to compute the solution. Implicit
storage consumption required by recursive calls is also considered part of the workspace. In
complexity theory, the constant-work space model has been studied under the name of log
space algorithms [2]. In this paper, we are interested in allowing more than a constant number
of workspace variables. Therefore, we say that an algorithm is an s-workspace algorithm if it
uses a total of O(s) variables during its execution. We aim for an algorithm whose running
time decreases as s grows, effectively obtaining a space-time trade-off. Since the size of the
output can be larger than our allowed space s, the solution is not stored but reported in a
write-only memory.

In the usual constant-workspace model, one is allowed to perform random access to any
of the values of the input in constant time. The technique presented in this paper does
not make use of such random access. Thus, unless the algorithm being adapted specifically
needs it, our technique works in a more constrained model in which, given a pointer to a
specific input value, we can either access it, or move the pointer to the previous or next input
value. This is the case in which, for example, the input values are given in a doubly-linked
list. We follow this model of computation and allow scanning the input as many times as
necessary. Our model is particularly interesting when the input data cannot be modified,
write operations are much more expensive than read operation, or whenever several programs
need to access the same data concurrently.

Stack Algorithms
Let A be a deterministic algorithm that uses a stack, and possibly other data structures
DS of total size O(1). We assume that A uses a generalized stack structure that can access
the last k elements that have been pushed into the stack (for some constant k). That is, in
addition to the standard push and pop operations, we can execute top(i) to obtain the
i-th topmost element (for well-definedness purposes, this operation will return ∅ if either the
stack does not have i elements or i > k).

We say that an algorithm is a stack algorithm if it follows the scheme in Algorithm 1.
Notice that the scheme focuses on how the stack is handled, thus other operations could
be present in A, provided that the treatment of the stack is unaltered. For simplicity of
exposition, we assume that only values of the input are pushed (see line 7 of Algorithm 1).
In the general case one could push a tuple whose identifier is a. We allow this fact provided
that the tuple has size O(1). Essentially, our technique consists in replacing the O(n)-space
stack of A by a compressed stack which uses less space. As we will see in Section 4.1, most
of the time of our compressed stack structure is spent on computing the top element of the
stack after a pop has been executed. For the case in which only o(log n) space is available,
we must add one requirement to the algorithm. We require the existence of a GetTop
operation that, given an input value a ∈ I and a consecutive interval I ′ ⊆ I of the input,

L. Barba, M. Korman, S. Langerman, R. I. Silveira, and K. Sadakane 285

Algorithm 1 Basic scheme of a stack algorithm
1: Initialize stack and auxiliary data structure DS with O(1) elements from I
2: for all subsequent input a ∈ I do
3: while some-condition(a,DS ,stack.top(1),. . . , stack.top(k)) do
4: stack.pop()
5: end while
6: if another-condition(a,DS ,stack.top(1),. . . , stack.top(k)) then
7: stack.push(a)
8: end if
9: end for

10: Report(stack)

computes the (k + 1)-th topmost element of the stack, provided that it belongs to I ′. This
operation should run in O(|I ′|) time using O(s) variables. Whenever such operation exists,
we say that A is green. Notice that this procedure need not be used by A. In fact, in Section
5 we give a list of green algorithms, but none of them uses their corresponding GetTop
operations. Full details on this operation are given in Section 4.2.

3 Compressed stack technique for Θ(
√

n)-workspaces

As a warm-up, we first show how to reduce the working space to O(
√
n) variables without

increasing the asymptotic running time. Let a1, . . . , an ∈ I be the values of the input, in
the order in which they are treated by A. In order to avoid explicitly storing the stack, we
virtually subdivide the values of I into blocks B1, . . . , Bp, such that each block Bi contains
n/p consecutive values.2 In this section we take p =

√
n. Then the size of each block will be

n/p = p =
√
n. Note that, since we scan the values of I in order, we always know to which

block the current value belongs to. Naturally, the stack can contain elements of different
blocks. However, by the scheme of the algorithm, we know that all elements of one block
will be consecutively pushed into the stack. We virtually group the elements in the stack
according to the block that they belong to. At any point during the execution, we explicitly
store the elements of the top two blocks in the stack. For the remaining blocks (if any), we
store the first and last elements that were pushed into the stack. We say that these blocks
are stored in compressed format.

For any input value a, we define the context of a as the content of the auxiliary data
structure DS right after a has been treated. Note that the context occupies O(1) space in
total. For each block, regardless if we store it explicitly or in compressed format, we also
store the context of the first element that was pushed into the stack.

It follows that for most blocks we only have the topmost and bottommost elements that
we pushed into the stack (denoted at and ab, respectively), but there could possibly be many
more elements that we have not stored. For this reason, at some point during the execution
of the algorithm we will need to reconstruct the missing elements in the compressed blocks
of the stack. In order to do so we introduce a Reconstruct operation. Given at, ab and
the context of ab, Reconstruct explicitly recreates all elements between ab and at that
existed in the stack right after at was processed.

2 For simplicity of exposition, we assume that n is a power of p.

STACS’13

286 Space-Time Trade-offs for Stack-Based Algorithms

a1a17 a5. . .

Figure 2 Push operation: the top row has the 25 input values partitioned into blocks of size 5
(white points indicate values that will be pushed during the execution of the algorithm; black points
are those that will be discarded). The middle and bottom rows show the situation of the compressed
stack before and after a17 has been pushed into the stack. Block F is depicted in dark gray, S in
light gray, and the remaining compressed blocks with a diagonal stripe pattern.

I Lemma 1. Reconstruct runs in O(m) time and uses O(m) variables, where m is the
number of elements in the input between ab and at.

Each time we invoke procedure Reconstruct, we do so with the first and last elements
that were pushed into the stack of the corresponding block. In particular, we have the
context of ab stored, hence we can correctly invoke the procedure. Also note that we have
m ≤ n/p = p =

√
n, hence this operation does not use any additional space. In order

to obtain the desired running time, we must make sure that not too many unnecessary
reconstructions are done. At any point of the execution, let F and S be the first and second
topmost blocks in the stack, respectively. Recall that these are the only two blocks that are
stored explicitly. Moreover, they are the latest blocks that we have visited and contained
input values in the stack. There are two cases to consider whenever a value a is pushed:
if a belongs to F , it is added normally to the stack in constant time. Otherwise, we must
create a new block containing only a. As a result, block F will become a new block only
containing a, S will be the previous F , and we must compress the former S (see Fig. 2).
All these operations can be done in constant space by smartly reusing pointers. The pop
operation is similar: as long as the current block F contains at least one element, the pop is
executed as usual. If F is empty, we pop values from S instead. If after a pop operation
the block S becomes empty, we pick the first compressed block from the stack (if any) and
reconstruct it in full. Recall that we can do so in O(

√
n) time using O(

√
n) variables using

Lemma 1. The reconstructed block becomes the new S (and F remains empty).

I Theorem 2. The compressed stack technique can be used to transform A into an algorithm
that runs in O(n) time and uses O(

√
n) variables.

Proof. The general workings of A remain unchanged, hence the difference in the running
time (if any) will be due to push and pop operations. In most cases these operations only
need a constant number of operations. The only situation in which an operation takes more
than constant time is when pop is performed and block S becomes empty. In this situation,
we must pay O(

√
n) time to reconstruct another block from the stack.

Recall that A scans the values of I in order: if at some point in the execution we push
an element a belonging to a block Bi, we know that no element of block Bj (for some j < i)
will afterwards be pushed into the stack. In particular, whenever the pop operation takes
O(
√
n) time, we know that no element of the block associated to S is pushed (nor will be

again be) into the stack. Thus, the cost of the reconstruction operation can be charged
to that block. No block can be charged twice, hence at most O(n/p) reconstructions are
done. Since each reconstruction needs O(p) time, the total time spent reconstructing blocks
is bounded by O(n). Regarding space use, at any point of the execution we keep at most
two blocks in explicit form and the others compressed. The two top blocks need O(p) space

L. Barba, M. Korman, S. Langerman, R. I. Silveira, and K. Sadakane 287

26–3

input elements processed so far

∅∅

∅ ∅

57–55

57–55

{57, 56, 55} {44}

44–44 39–3742–41

30–3044–37∅Level 1

Level 2

Level 3

a1a3a26a30 . . .
a36.

a54. . .
a44a81 a57

Figure 3 A compressed stack for n = 81, p = 3 (thus h = 3). The compression levels are depicted
from top to bottom (for clarity, the blocks of the same level are not equally-sized). Color notation
for points and blocks is as in Fig. 2. Compressed blocks contain the indices corresponding to the
first and last element inside the block (or three pairs if the block is partially compressed); explicitly
stored blocks contain a list of the pushed elements.

whereas the remaining at most p− 2 blocks need O(1) space each. Hence the space needed is
2(n/p) + p×O(1), which equals O(

√
n) if p =

√
n. J

4 Compressed stack technique

In this section we present our compressed stack technique in full generality. For simplicity of
exposition we describe it for the case in which A only accesses the topmost element of the
stack (that is, k = 1). In the full version we explain how to extend the algorithm for larger
values of k. We first present the technique for Ω(log n)-workspaces. Afterwards, we discuss
the modifications needed for it to work on o(log n)-workspaces.

4.1 For Ω(log n)-workspaces
In this section we generalize the above approach to the general case in which we partition
the input into p blocks for any parameter 2 ≤ p ≤ n (the exact value of p will be determined
by the user). Similarly to the previous case, we virtually decompose the input into p blocks
of size n/p each. Instead of explicitly storing the top two non-empty blocks, we further
subdivide them into into p sub-blocks. This process is then repeated for h := logp n− 1 levels
until the last level, where the blocks are explicitly stored.3

We consider three different levels of compression: a block is either stored (i) explicitly if
it is stored in full, (ii) compressed if only the first and last elements of the block are stored,
or (iii) partially-compressed, if the block is subdivided into p smaller sub-blocks, and only
the first and last element of each sub-block are stored. Analogously to the previous section,
for each block in either compressed or semi-compressed format we store the context right
after the first value of that block was pushed into the stack.

During the execution of the algorithm, the first level of compression will contain p blocks,
with the top two partially compressed and the rest compressed. The i-th level of compression
(for 1 < i < h) will consist of two blocks of size n/pi−1 that are partially compressed. Thus
each block is further subdivided into p sub-blocks of size n/pi each. The first two non-empty
sub-blocks are given to a lower level. In the lower level, the process continues recursively
by further dividing the given sub-blocks. This process repeats until the h-th level, in which

3 For simplicity in the explanation, we assume that our workspace is large enough to store the whole
recursion. We note that this approach can be adapted for the case in which we have a workspace of
c log n variables (for any c > 0). Details will be given in the full version of the paper.

STACS’13

288 Space-Time Trade-offs for Stack-Based Algorithms

the block size is n/ph = n/plogp n−1 = p, and is explicitly stored. Thus, in all but the lowest
level, the top two blocks, denoted Fi and Si for level i, are partially-compressed (whereas in
the last level they are stored explicitly). See Fig. 3 for an illustration. Note that we allow
blocks Fi to be empty, but blocks Si can only be empty when the stack is empty.

I Lemma 3. The compressed stack structure uses O(p log n/ log p) space.

Proof. At the first level of the stack we have p blocks. The first two are partially-compressed
and need O(p) space each, whereas the remaining blocks are compressed, and need O(1)
space each. Since the topmost level can have at most p blocks, the total amount of space
needed at the first level is bounded by O(p).

At other levels of compression, we only keep two partially-compressed blocks (or two
explicitly stored blocks for the lowest level). Regardless of the level in which it belongs to,
each block needs O(p) space. Since the total number of levels is h, the algorithm will never
use more than O(ph) space to store the compressed stack. J

Push operation. A push can be treated in each level i ≤ h independently. First notice
that by the way in which values of I are pushed, the new value a either belongs to Fi or it
is the first pushed element of a new block. In the first case, we register the change to Fi

directly by updating the top value of the appropriate sub-block of Fi (or adding it to the list
of elements if i = h). If the value to push does not belong to Fi we must create a new block,
which will contain only a (and, if i = 1, we must compress the old Si). Since we are creating
a block, we also store the context of a in the block. As in Section 3, these operations can be
done in constant time for a single level.

Pop operation. This operation starts at the bottommost level h, and it is then
transmitted to levels above. Naturally, we must first remove the top element of Fh (unless
Fh = ∅ in which case we must pop from Sh instead). In the simplest case, the block from
which we popped has at least one more element. If this holds, no block is destroyed and the
structure of the stack will not be affected. Note that we know which element of the stack will
become the new top (since we have it explicitly stored). Thus, we need only transmit the
new top of the stack to levels above. In those levels, we need only update the top element of
the corresponding sub-block. The more complex situation happens when the pop operation
emptied either Fh or Sh. In the former case, we transmit the information to a level above.
In this level we mark the sub-block as empty and, if this results in an empty block, we again
transmit the information to a level above, and so on. During this procedure several blocks
Fi may become empty, but no block of type Sj will do so (since Fi is always included in
Fi−1). Note that this is no problem, since in general we allow blocks Fi to be empty.

Finally, it remains to consider the case in which the pop operation results in block Sh

becoming empty. First, we transmit this information to level above, which might also result
in an empty block, and so on. We stop at a level i in which block Si is empty (in which
either i = 1 or Si−1 is not empty). We now must invoke the reconstruction procedure to
obtain blocks Sj for all j ≥ i. To reconstruct Si we obtain from one level higher (i− 1) the
first and last elements that correspond to the next non-empty sub-block after Sh. Recall
that at level i− 1 we keep two blocks (of size n/pi−1) in partially-compressed format. Hence,
the values we need will be explicitly stored (since, by definition of i, block Si−1 will not
empty after the pop is executed). If i = 1 and we reached the highest level, we pick the first
compressed block and reconstruct that one instead. In either case, the first and last elements
of the block to reconstruct are always known. Once Si is reconstructed, we can proceed to
reconstruct Si+1, and so on until we reconstruct Sh.

L. Barba, M. Korman, S. Langerman, R. I. Silveira, and K. Sadakane 289

Block Reconstruction. This operation is invoked when a block in the i-th level of
compression needs to be reconstructed. We are given the first and last elements of that block
that were pushed into the stack, denoted ab and at, respectively, as well as the context right
after ab was inserted. Our aim is to obtain all stack elements between ab and at right after
at was pushed into the stack. This information should be in either explicit format (if i = h)
or in partially-compressed format (if i < h). To reconstruct the block we use our algorithm
recursively. The base case (i.e., if i = h) is handled with Lemma 1. For larger blocks, we
execute A with the compressed data structure for a smaller size input (from ab to at).

I Lemma 4. Reconstruct runs in O(m) time and uses O(p logm/ log p) space, where m
is the number of elements between ab and at.

I Theorem 5. Any stack algorithm can be adapted so that, for any parameter 2 ≤ p ≤ n, it
solves the same problem in O(n log n/ log p) time using O(p log n/ log p) variables.

4.2 For o(log n)-workspaces
The previous technique can be used provided that the workspace is of size at least Ω(log n).
In the following we adapt it for smaller workspaces. From now on, we assume that A is
green. The condition for an algorithm A to be green is to have a GetTop operation. The
general idea of this operation is the following: imagine that A is treating value a and at some
point in time it pops the top element of the stack (denoted by t). Instead of reconstructing,
we will invoke procedure GetTop to find the new top element of the stack (denoted by
`). This operation must scan I until ` is found. Although we do not know exactly where
` lies, we will use the information in our compressed stack to guide this operation. Hence,
for efficiency reasons, we restrict the procedure to look within a given interval. That is,
procedure GetTop receives three parameters: (i) the input value a that is generating the
pop, (ii) two input values t, b ∈ I, such that t is the current element at the top of the stack
(i.e., the one that needs to be popped), and b 6= t is another element that is in the stack, and
(iii) the context information right before b was pushed into the stack. GetTop must report
the pair (`,Context(`)) in O(m) time and O(s) variables, where m is the number of input
values between b and t in I. Since b is in the stack and b 6= t, the value ` must always exist.

We apply the block partition strategy of the previous section, with p = 2 for s levels
(recall that s is our allowed workspace). The only difference in the data structure occurs at
the lowermost level, where each block has size n/2s. Although we would like to store the
blocks of the lowest level explicitly, the size of a single block is too large to fit into memory (if
s ∈ o(log n), we have n/2s ∈ ω(s)). Instead, the blocks of the bottommost level are stored in
compressed format. Recall that we store the context of the first element that is pushed into
any block. Additionally, we store the context of stack.top(1) (i.e. the top of the stack).

Push operations are handled exactly as in Section 4.1 (taking into account that the last
level is now in compressed format): at each level it suffices to update the topmost element of
Fi, or create a new block containing the new input value (if it belongs to a new block).

Pop operations are also handled in a similar fashion as in Section 4.1. In most cases, we
must remove one element from Fs, unless the block is empty. In that case, we pop from Ss.
If both are empty, we pop from Fs−1, and so on. This process ends when either F1 ∪ S1 = ∅
(so the stack becomes empty after the pop) or we reach a block Bi of level i that does not
become empty after the pop. As in Section 4.1 all blocks Si of level i < s that become empty
must be reconstructed. This is done recursively using Reconstruct. The only difference is
at the bottommost level, where instead of reconstructing we use GetTop with the top and
bottom element of the block to obtain the new top element of the stack.

STACS’13

290 Space-Time Trade-offs for Stack-Based Algorithms

I Lemma 6. The space used by a pop operation in o(log n)-workspaces is O(s). Moreover,
the total time spent in all pop operations is O(n2/2s).

As in Ω(log n)-workspaces, the time bottleneck of the algorithm is given by the Pop operation,
hence we obtain the following bounds.

I Theorem 7. Any green stack algorithm can be adapted so that it solves the same problem
in O(n2/2s) time in an O(s)-workspace (for any s ∈ o(log n)).

5 Applications

In this section we show how our technique can be applied to several well-known geometric
problems. For each problem we present an existing algorithm that is a (green) stack algorithm,
where our technique can be applied to produce a space-time trade-off.

5.1 Convex hull of a simple polygon
Computing convex hulls is a fundamental problem in computational geometry, used as an
intermediate step to solve many other geometric problems. For the particular case of a
simple polygon P (Fig. 1(a)), there exist several algorithms in the literature that compute
the convex hull of P in linear time (see the survey by Aloupis [1]). Among these, we highlight
the one of Lee [17] that is green.

I Lemma 8. Lee’s algorithm for computing the convex hull of a simple polygon [17] is green.

I Theorem 9. The convex hull of a simple polygon can be reported in O(n log n/ log p) time
using O(p log n/ log p) additional variables (for any parameter 2 ≤ p ≤ n), or O(n2/2s) time
using O(s) additional variables (for any parameter s ∈ o(log n)).

5.2 Triangulation of a monotone polygon
A simple polygon is called monotone with respect to a line ` if for any line `′ perpendicular
to `, the intersection of `′ and the polygon is connected. In our context, the goal is to
report the diagonal edges of a triangulation of the given monotone polygon (see Fig. 1 (b)).
Monotone polygons are a well-studied class of polygons because they are easier to handle
than general polygons, can be used to model (polygonal) function graphs, and often can be
used as stepping stones to solve problems on simple polygons (after subdividing them into
monotone pieces). It is well-known that a monotone polygon can be triangulated in linear
time using linear space [13].

I Lemma 10. Garey et al.’s algorithm for triangulating a monotone polygon [13] is green.

I Theorem 11. A triangulation of a monotone polygon of n vertices can be reported in
O(n log n/ log p) time using O(p log n/ log p) additional variables (for any parameter 2 ≤ p ≤
n), or O(n2/2s) time using O(s) additional variables (for any parameter s ∈ o(log n)).

The only previous work on polygon triangulation in memory-constrained environment
is due to Asano et al. [3]. In that paper, the authors give an algorithm that triangulates
mountains (a subclass of monotone polygons in which one of the chains is a segment).
Combining that result with a trapezoidal decomposition, they give a method to triangulate a
planar straight-line graph. Both operations run in quadratic time in an O(1)-workspace. Our
method speeds up the first half of their algorithm, hence if one were to obtain a time-space
trade-off for computing the trapezoidal decomposition, we would instantly obtain a similar
result for triangulating any polygon.

L. Barba, M. Korman, S. Langerman, R. I. Silveira, and K. Sadakane 291

5.3 The shortest path between two points in a monotone polygon
Shortest path computation is another fundamental problem in computational geometry with
many variations, especially queries restricted within a bounded region (see [18] for a survey).
Given a polygon P, and two points p, q ∈ P, their geodesic is defined as the shortest path
that connects p and q among all the paths that stay within P (Fig. 1(c)). It is easy to verify
that, whenever P is a simple polygon, the geodesic always exists and is unique. The length
of that path is called the geodesic distance.

Asano et al. [3,4] gave an O(n2/s) algorithm for solving this problem in O(s)-workspaces,
provided that we allow an O(n2)-time preprocessing. This preprocessing phase essentially
consists in repeatedly triangulating P, and storing O(s) edges that partition P into O(s)
subpieces of size O(n/s) each. Theorem 11 allows us to remove the preprocessing overhead
of Asano et al. when P is a monotone polygon.

I Theorem 12. Given a monotone polygon P of size n and points p, q ∈ P, we can compute
the geodesic that connects them in O(n2/s)-time in an O(s)-workspace (for any s ≤ n).

5.4 Optimal 1-dimensional pyramid
A vector φ = (y1, . . . , yn) is called unimodal if y1 ≤ y2 ≤ · · · yk and yk ≥ yk+1 ≥ · · · yn

for some 1 ≤ k ≤ n. The 1-D optimal pyramid problem [10] is defined as follows. Given
an n-dimensional vector f = (x1, . . . , xn), find a unimodal vector φ = (y1, . . . , yn) that
minimizes the squared L2-distance ||f − φ||2 =

∑n
i=1(xi − yi)2 (Fig. 1(d)). This problem has

several applications in the fields of computer vision [7] and data mining [12,19]. Although
the linear-time algorithm of Chun et al. [10] does not exactly fit into our scheme, it can be
modified so that our approach can be used as well.

I Theorem 13. The 1-D optimal pyramid for an n-dimensional vector can be computed in
O(n log n/ log p) time using O(p log n/ log p) additional variables (for any parameter 2 ≤ p ≤
n), or O(n2/2s) time using O(s) additional variables (for any s ∈ o(log n)).

5.5 Visibility profile in a simple polygon
In the visibility profile (or polygon) problem we are given a simple polygon P, and a point
q ∈ P from where the visibility profile needs to be computed. A point p ∈ P is visible (with
respect to q) if and only if pq ⊂ P , where pq denotes the segment connecting points p and q.
The set of points visible from q is denoted by VisP(q) and is called the visibility profile (or
polygon) of q (see Fig. 1(e)). Visibility computations arise naturally in many areas, such as
computer graphics and geographic information systems, and have been widely studied in
computational geometry. Among several linear-time algorithms, we are interested in the
method of Joe and Simpson [16] since it can be easily shown that it is green.

I Lemma 14. Joe and Simpson’s algorithm for computing the visibility profile [16] is green.

I Theorem 15. The visibility profile of a point q with respect to P can be reported in
O(n log n/ log p) time using O(p log n/ log p) additional variables (for any 2 ≤ p ≤ n), or
O(n2/2s) time using O(s) additional variables (for any s ∈ o(log n)).

6 Conclusions

In this paper we have shown how to transform any stack algorithm so as to work in memory-
constrained models, and presented several concrete applications where it can be applied.

STACS’13

292 Space-Time Trade-offs for Stack-Based Algorithms

Moreover, for many applications the technique can be applied in a black box fashion without
altering the specifics of the algorithm. In addition, since the technique is rather simple to
implement, we believe it can be useful in practice. A natural open problem is extending
this approach to other data structures (e.g. trees), which would allow many other useful
algorithms to work in memory-constrained workspaces.

References
1 G. Aloupis. A history of linear-time convex hull algorithms for simple polygons.

http://cgm.cs.mcgill.ca/∼athens/cs601/.
2 S. Arora and B. Barak. Computational Complexity - A Modern Approach. Cambridge

University Press, 2009.
3 T. Asano, K. Buchin, M. Buchin, M. Korman, W. Mulzer, G. Rote, and A. Schulz. Memory-

constrained algorithms for simple polygons. CoRR, abs/1112.5904, 2011.
4 T. Asano, W. Mulzer, G. Rote, and Y. Wang. Constant-work-space algorithms for geometric

problems. Journal of Computational Geometry, 2(1):46–68, 2011.
5 T. Asano, W. Mulzer, and Y. Wang. Constant-work-space algorithms for shortest paths in

trees and simple polygons. J. Graph Algorithms Appl., 15(5):569–586, 2011.
6 L. Barba, M. Korman, S. Langerman, and R. I. Silveira. Computing the visibility polygon

using few variables. In ISAAC, pages 70–79, 2011.
7 I. Bloch. Unifying quantitative, semi-quantitative and qualitative spatial relation knowledge

representations using mathematical morphology. In TFCV, pages 153–164, 2003.
8 H. Brönnimann and T. M. Chan. Space-efficient algorithms for computing the convex hull of

a simple polygonal line in linear time. Computational Geometry: Theory and Applications,
34(2):75–82, 2006.

9 T. M. Chan and E. Y. Chen. Multi-pass geometric algorithms. Discrete & Computational
Geometry, 37(1):79–102, 2007.

10 J. Chun, K. Sadakane, and T. Tokuyama. Linear time algorithm for approximating a curve
by a single-peaked curve. Algorithmica, 44(2):103–115, 2006.

11 M. De, A. Maheshwari, and S. C. Nandy. Space-efficient algorithms for visibility problems
in simple polygon. CoRR, abs/1204.2634, 2012.

12 T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining with optimized
two-dimensional association rules. ACM Transactions on Database Systems, 26(2):179–213,
June 2001.

13 M. R. Garey, David S. Johnson, Franco P. Preparata, and Robert Endre Tarjan. Triangu-
lating a simple polygon. Information Processing Letters, 7(4):175–179, 1978.

14 L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon. Journal
of Computer and System Sciences, 39(2):126–152, October 1989.

15 R.A. Jarvis. On the identification of the convex hull of a finite set of points in the plane.
Information Processing Letters, 2(1):18 – 21, 1973.

16 B. Joe and R. B. Simpson. Corrections to Lee’s visibility polygon algorithm. BIT Numerical
Mathematics, 27:458–473, 1987.

17 D. T. Lee. On finding the convex hull of a simple polygon. International Journal of Parallel
Programming, 12(2):87–98, 1983.

18 J. S. B. Mitchell. Shortest paths and networks. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, pages 607–642. 2nd edition, 2004.

19 Y. Morimoto, T. Fukuda, S. Morishita, and T. Tokuyama. Implementation and evaluation
of decision trees with range and region splitting. Constraints, 2:401–427, 1997.

20 J. I. Munro and M. Paterson. Selection and sorting with limited storage. Theoretical
Computer Science, 12:315–323, 1980.

L1 Shortest Path Queries among Polygonal
Obstacles in the Plane
Danny Z. Chen∗1 and Haitao Wang†2

1 Department of Computer Science and Engineering
University of Notre Dame, Notre Dame, IN 46556, USA
dchen@cse.nd.edu

2 Department of Computer Science, Utah State University
Logan, UT 84322, USA
haitao.wang@usu.edu

Abstract
Given a point s and a set of h pairwise disjoint polygonal obstacles with a total of n vertices
in the plane, after the free space is triangulated, we present an O(n + h log h) time and O(n)
space algorithm for building a data structure (called shortest path map) of size O(n) such that
for any query point t, the length of the L1 shortest obstacle-avoiding path from s to t can be
reported in O(log n) time and the actual path can be found in additional time proportional to the
number of edges of the path. Previously, the best algorithm computes such a shortest path map
in O(n log n) time and O(n) space. In addition, our techniques also yield an improved algorithm
for computing the L1 geodesic Voronoi diagram of m point sites among the obstacles.

1998 ACM Subject Classification F.2 Analysis of algorithms and problem complexity

Keywords and phrases computational geometry, shortest path queries, shortest paths among
obstacles, L1/L∞/rectilinear metric, shortest path maps, geodesic Voronoi diagrams

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.293

1 Introduction

Given a point s and a set of h pairwise disjoint polygonal obstacles, P = {P1, P2, . . . , Ph},
with a total of n vertices in the plane, where s is considered as a special point obstacle,
the plane minus the interior of the obstacles is called the free space of P. Two obstacles
are pairwise disjoint if they do not intersect in their interior. The L1 shortest path query
problem, denoted by L1-SPQ, is to compute a data structure (called shortest path map or
SPM for short) with s as the source point such that for any query point t, an L1 shortest
obstacle-avoiding path from s to t can be obtained efficiently. Note that such a path can
have any polygonal segments but the length of each segment of the path is measured by the
L1 metric. Unless otherwise stated, all SPMs mentioned in this paper have the following
performances: for any query point t, the length of the L1 shortest path from s to t can be
reported in O(log n) time and the actual path can be found in additional time proportional
to the number of edges of the path.

We also study the L1 geodesic Voronoi diagram problem, denoted by L1-GVD: Given an
obstacle set P and a set of m point sites in the free space, compute the geodesic Voronoi
diagram for the m point sites under the L1 distance metric among the obstacles in P.

∗ The research of Chen was supported in part by NSF under Grants CCF-0916606 and CCF-1217906.
† Corresponding author.

© Danny Z. Chen and Haitao Wang;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 293–304

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.293
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

294 L1 Shortest Path Queries among Polygonal Obstacles in the Plane

r3

r2

r1

d

c

r3

r2

r1 VD(r)1

d

c

2VD(r)

3VD(r)

(b)(a)

P

Figure 1 (a) Three weighted point sites (r1, r2, r3) and a simple polygon P with an open edge cd.
The goal is to compute the L1 geodesic Voronoi diagram in P for the three sites which influence P only
through the edge cd. (b) Illustrating a possible solution: P is partitioned into three Voronoi regions
VD(ri) for each ri, 1 ≤ i ≤ 3.

Computing L1 shortest paths has been studied extensively (e.g., see [5, 8, 15, 18, 19, 21]).
Mitchell [18, 19] builds an SPM in O(n log n) time and O(n) space, which is optimal when
h = Θ(n) because finding an L1 shortest path has a lower bound of Ω(n+ h log h) on the
running time [9]. Throughout this paper, let T refer to the time for triangulating the free
space of P and let ε > 0 be any arbitrarily small constant. It is known that T = O(n log n)
and T = O(n+ h log1+ε h) [1]. Recently, Chen and Wang gave an algorithm that can find a
single shortest path in O(T +n+h log h) time and O(n) space [5]. However, the algorithm in
[5] cannot construct an SPM, which is left as an open problem in [5]. For L1-GVD, Mitchell’s
algorithm [18, 19] can be extended to solve it in O((n+m) log(n+m)) time.

1.1 Our Results
In this paper, we answer the open problem in [5] by presenting an algorithm that builds an
SPM of size O(n) in O(n+ h log h) time and O(n) space after the free space is triangulated
in O(T) time. Hence, the running time of the overall algorithm is O(T + n+ h log h). If the
triangulation can be done optimally (i.e., T = O(n+ h log h)), then our algorithm matches
the Ω(n+ h log h) time lower bound [9]. In addition, it is easy to see that given an SPM, we
can add h− 1 segments in the free space to connect the obstacles in P together to obtain a
single simple polygon and then triangulate the free space, in totally O(n) time [1, 2]. This
shows that the problem L1-SPQ is solvable in Θ(T) time, i.e., building an SPM is equivalent
to triangulating the free space of P in terms of the running time.

As Mitchell’s algorithm [18, 19], our techniques can also be extended to solve the L1-GVD
problem in O(T ′ + (m + h) log(m + h))) time, where T ′ is the time for triangulating the
free space of P with the m point sites and T ′ = min{O((n + m) log(n + m)), O(n + (m +
h) log1+ε(m+ h))} [1]. Our new algorithm is faster than Mitchell’s O((n+m) log(n+m))
time solution for sufficiently small m and h (e.g., when m+ h = O(n1−ε)).

It is well known that with solutions in L1 version, the same problems in the rectilinear
version and L∞ version can be solved immediately [18, 19]. Hence, our results also hold for
the rectilinear version and the L∞ version of the problems.

A challenging subproblem we need to solve is a special case of the (additively) weighted
L1 geodesic Voronoi diagram problem on a simple polygon P : The weighted point sites all
lie outside P and influence P through an (open) edge (e.g., see Fig. 1). Our main effort of
this paper is to solve this problem in O(n′ +m′) time, where n′ is the number of vertices of
P and m′ is the number of sites. This problem is interesting in its own right.

This subproblem may not look “challenging” at all as it can be solved by many existing
techniques, e.g., the continuous Dijkstra paradigm [18, 19], the sweeping algorithm [11], and
divide-and-conquer [20]. However, all these methods would lead to an O((n′+m′) log(n′+m′))

D.Z. Chen and H. Wang 295

Figure 2 Illustrating a triangulation of the
free space among two obstacles and the corridors
(with red solid curves). There are two junction
triangles indicated by the large dots inside them,
connected by three solid (red) curves. Remov-
ing the two junction triangles results in three
corridors.

x

b e

f

a

y

b e

f

a

P j

P jc

d

z

d

bay(cd)

canal(x,y)

P i

P i

Figure 3 Illustrating an open hourglass (left) and a
closed hourglass (right) with a corridor path connecting
the apices x and y of the two funnels. The dashed
segments are diagonals. The paths π(a, b) and π(e, f)
are shown with thick solid curves. A bay bay(cd) with
gate cd (left) and a canal canal(x, y) with gates xd and
yz (right) are also indicated.

time solution, and consequently, the overall time for building an SPM would be O(n log n).
Our linear time algorithm can be viewed as an incremental approach. Incremental approaches
have been widely used in geometric algorithms, and normally they can result in good
randomized algorithms. Incremental approaches have also been used for constructing Voronoi
diagrams, which usually take quadratic time. Our result demonstrates that incremental
approaches are able to yield optimal deterministic solutions for building Voronoi diagrams.
The new techniques we provide here should be generalized to solving other related problems.

For simplicity of discussion, as in [18, 19], we assume no two obstacle vertices lie on the
same horizontal or vertical line. Henceforth, unless otherwise stated, a shortest path refers
to an L1 shortest path and a length is in the L1 metric.

In the following, in Section 2, we review some geometric structures. In Section 3, we
outline our algorithm for computing an SPM. Particularly, our algorithm for solving the
challenging subproblem is in Section 4. Due to the space limit, many details (including the
algorithm for L1-GVD) are omited and can be found in the full version of this paper [6].

2 Preliminaries

In this section, we review some geometric structures of P, i.e., the corridors, ocean, bays,
and canals, which have been used previously, e.g., [5, 7, 16].

For simplicity, we assume all obstacles are contained in a rectangle R (see Fig. 2). We
also view R as an obstacle in P . Let F be the free space inside R. We compute an arbitrary
triangulation of F , denoted by Tri(F), in O(T) time.

Let G(F) be the (planar) dual graph of Tri(F). As shown in [16], based on G(F), we
compute a 3-regular graph, denoted by G3 (the degree of every node in G3 is three), possibly
with loops and multi-edges, as follows. First, remove every degree-one node from G(F) along
with its incident edge; repeat this process until no degree-one node remains. Second, remove
every degree-two node from G(F) and replace its two incident edges by a single edge; repeat
this process until no degree-two node remains. The resulting graph is G3 (see Fig. 2), which
has O(h) faces, O(h) nodes, and O(h) edges [16]. Each node of G3 corresponds to a triangle
in Tri(F), which is called a junction triangle (see Fig. 2). The removal of all junction triangles
from Tri(F) results in O(h) corridors, each of which corresponds to one edge of G3.

The boundary of a corridor C consists of four parts (see Fig. 3): (1) A boundary portion
of an obstacle Pi ∈ P , from a point a to a point b; (2) a diagonal of a junction triangle from

STACS’13

296 L1 Shortest Path Queries among Polygonal Obstacles in the Plane

b to a boundary point e on an obstacle Pj ∈ P (Pi = Pj is possible); (3) a boundary portion
of the obstacle Pj from e to a point f ; (4) a diagonal of a junction triangle from f to a.
Let π(a, b) (resp., π(e, f)) be the shortest path from a to b (resp., e to f) inside C. The
region HC bounded by π(a, b), π(e, f), and the two diagonals be and fa is called an hourglass,
which is open if π(a, b) ∩ π(e, f) = ∅ and closed otherwise (see Fig. 3). If HC is open, then
π(a, b) and π(e, f) are called sides of HC ; otherwise HC consists of two “funnels” and a path
πC = π(a, b) ∩ π(e, f) joining the two apices of the two funnels, called the corridor path of C.
The two funnel apices connected by the corridor path are called the corridor path terminals.

LetM be the union of all O(h) junction triangles, open hourglasses, and funnels. We
callM the ocean. Denote by SPM(F) the SPM we want to compute on the free space F
(with respect to the source point s), and denote by SPM(M) the portion of SPM(F) inM.
After the free space is triangulated in O(T) time, the algorithm in [5] computes SPM(M) of
size O(n) in O(n + h log h) time and O(n) space, based on the following observation: For
any point t ∈M, there exists a shortest s-t path π(s, t) in F such that π(s, t) is inM but
possibly contains some corridor paths. Our task in this paper is to compute the portion
of SPM(F) in the space F \M, in additional O(n) time. Below, we partition the space
F \M into two types of regions: bays and canals. Consider the hourglass HC of a corridor
C. Depending on whether HC is open or closed, there are two cases.

If HC is open (see Fig. 3), then HC has two sides. Let S1(HC) be an arbitrary side of
HC . The obstacle vertices on S1(HC) all lie on the same obstacle, say P ∈ P . Let c and d be
any two adjacent vertices on S1(HC) such that the line segment cd is not an edge of P (see
the left figure in Fig. 3, with P = Pj). The region enclosed by cd and a boundary portion
of P between c and d is called the bay of cd and P , denoted by bay(cd), which is a simple
polygon. We call cd the bay gate of bay(cd), which is a common edge of bay(cd) andM.

If the hourglass HC is closed, then let x and y be the two apices of its two funnels.
Consider two adjacent vertices c and d on a side of a funnel such that the line segment cd is
not an obstacle edge. If neither c nor d is a funnel apex, then c and d must both lie on the
same obstacle and the segment cd also defines a bay with that obstacle. However, if either
c or d is a funnel apex, say, x = c, then x and d may lie on different obstacles. If they lie
on the same obstacle, then they also define a bay; otherwise, we call xd the canal gate at x
(see Fig. 3). Similarly, there is also a canal gate at the other funnel apex y, say yz. Let Pi
and Pj be the two obstacles bounding the hourglass HC . The obstacle-free region enclosed
by Pi, Pj , and the two canal gates xd and yz that contain the corridor path of HC is called
the canal of HC , denoted by canal(x, y), which is a simple polygon. Similarly, the two canal
gates are common edges of the canal andM.

Clearly, all the bays and canals together constitute the space F \M. Note that bays and
canals are connected withM only through their gates.

3 The Algorithm Outline

Our task is to compute SPM(F). To this end, again, SPM(M) has already been computed
in [5], our task in this paper is to compute the portion of SPM(F) in F \M, i.e., all bays
and canals, or in other words, compute an SPM for each bay/canal. More intuitively, we
“expand” SPM(M) to all bays/canals through their gates, in additional O(n) time.

Recall that an SPM is a partition of the free space into many cells; each cell C has a
root point r such that for any point p in C, a shortest path from the source point s to p
consists of the line segment pr and a shortest path from s to r. Further, pr is in C (i.e., C is
a star-shaped polygon with r in the kernel). Refer to [18, 19] for more details on SPM.

D.Z. Chen and H. Wang 297

We discuss the bays first. Consider a bay bay(cd). Since its gate cd is also an edge ofM,
cd is adjacent to some cells in SPM(M). If cd is in a single cell C(r) of SPM(M) with r
as the root, then each point in bay(cd) has a shortest path to s via r. Thus, to construct
an SPM for bay(cd), it suffices to compute an SPM on bay(cd) with respect to the point
r, which can be done in linear time (in terms of the number of vertices of bay(cd)) since
bay(cd) is a simple polygon1. Note that although r may not be a point in bay(cd), we can,
for example, connect r to both c and d with two line segments to form a new simple polygon
that contains bay(cd).

If the gate cd is not contained in a single cell of SPM(M), then cd intersects multiple
cells in SPM(M). When computing an SPM for bay(cd), we must consider the roots of all
such cells and each root has an additive weight that is the length of its shortest path to s.
In this case, multiple vertices of SPM(M) (i.e., the intersections of the boundaries of the
cells of SPM(M) with cd) may lie in the interior of cd. We call the vertices of SPM(M) on
cd (including its endpoints c and d) the SPM(M) vertices. Later in Section 4, we give an
algorithm for the following result.

I Theorem 1. For a bay of n′ vertices with m′ SPM(M) vertices on its gate, an SPM of
size O(n′ +m′) for the bay can be computed in O(n′ +m′) time.

Since a canal has two gates which are also edges ofM, multiple SPM(M) vertices may
lie on both its gates. Later in Section 5, we give an algorithm for the following Theorem 2,
which uses the algorithm for Theorem 1 as a main procedure.

I Theorem 2. For a canal of n′ vertices with totally m′ SPM(M) vertices on its two gates,
an SPM of size O(n′ +m′) can be computed in O(n′ +m′) time.

By Theorems 1 and 2, the total time for computing the SPMs for all bays and canals is
linear in terms of the total sum of the numbers of obstacle vertices of all bays and canals
(which is O(n)) and the total number of the SPM(M) vertices on the gates of all bays and
canals (which is also O(n) since the size of SPM(M) is O(n)). We hence conclude that after
SPM(M) is obtained, an SPM for F can be computed in additional O(n) time. Together
with a planar point location data structure [10, 17], we have the following result.

I Theorem 3. After the free space F is triangulated in O(T) time, an SPM(F) of size O(n)
can be built in O(n+ h log h) time and O(n) space.

4 Expanding the SPM(M) into a Bay (a Sketch)

In this section, we sketch our algorithm for Theorem 1, and all details can be found in [6].
Consider a bay bay(cd) with gate cd (see Fig. 3). Denote by n′ the number of vertices of

bay(cd). Let SPM(bay(cd)) be an SPM for bay(cd) that we seek to compute. If cd lies in a
single cell of SPM(M), we have shown SPM(bay(cd)) can be computed in O(n′) time. This
section focuses on the case when cd is not contained in a single cell of SPM(M). Denote
by m′ the number of SPM(M) vertices on cd. Our task is to compute SPM(bay(cd)) in
O(n′ +m′) time. Let R be the set of roots of the cells of SPM(M) that intersect with cd.

To obtain SPM(bay(cd)), we first compute, for each r ∈ R, the Voronoi region VD(r)
inside bay(cd) such that for any point t ∈ VD(r), there is a shortest s-t path going through

1 As the Euclidean shortest path between two points in a simple polygon is also an L1 shortest path [13],
a Euclidean SPM [12] in a simple polygon is also an L1 one.

STACS’13

298 L1 Shortest Path Queries among Polygonal Obstacles in the Plane

r; we then compute an SPM on VD(r) with respect to the single point r, which can be done
in linear time since VD(r) is a simple polygon. Thus, the key is to decompose bay(cd) into
Voronoi regions for the roots of R (which is the challenging subproblem mentioned in Section
1.1). Denote by VD(bay(cd)) this Voronoi diagram decomposition of bay(cd). We aim to
compute VD(bay(cd)) in O(n′ +m′) time.

Without loss of generality (W.l.o.g.), assume that cd is positive-sloped, bay(cd) is on
the right of cd, and the vertex c is higher than d (e.g., bay(cd) = P in Fig. 1). Let
R = {r1, r2, . . . , rk} be the set of roots of the cells of SPM(M) that intersect with cd in the
order from c to d along cd. Note that R may be a multi-set, i.e., two roots ri and rj with
i 6= j may refer to the same physical point; but this is not important to our algorithm (e.g.,
we can view each ri as a physical copy of the same root). Let c = v0, v1, . . . , vk = d be the
SPM(M) vertices on cd ordered from c to d (thus m′ = k + 1). Hence, for each 1 ≤ i ≤ k,
the segment vi−1vi is on the boundary of the cell C(ri) of SPM(M). To obtain VD(bay(cd)),
for each ri ∈ R, we need to compute the Voronoi region VD(ri).

Our algorithm can be viewed as an incremental one, i.e., it considers the roots in R

one by one. It is commonly known that incremental approaches can construct Voronoi
diagrams in quadratic time, or may give good randomized results. In contrast, our algorithm
is deterministic and takes only linear time. The success of it hinges on that we can find
an order of the roots in R such that by following this order to consider the roots in R

incrementally, we are able to compute VD(bay(cd)) in linear time. The order is nothing
but that of the indices of the roots in R we have defined. With this order, the algorithm is
conceptually simple. However, it is quite challenging to argue its correctness and achieve a
linear time implementation. Our strategy is to show that the algorithm implicitly maintains
a number of invariants that assure the correctness of the algorithm. For this purpose, we
discover many observations that capture some essential properties of this L1 problem.

4.1 Algorithm Overview
To compute VD(bay(cd)), it turns out that we need to deal with the interactions between some
horizontal and vertical rays, each of which belongs to the bisector of two roots in R. Further,
considering the roots in R incrementally is equivalent to considering the corresponding rays
incrementally. We process these rays in a certain order (e.g., as to be proved, their origins
somehow form a staircase structure). For each ray considered, if it is vertical, then it is easy
(it eventually leads to a ray shooting operation), and its processing does not introduce any
new ray. But, if it is horizontal, then the situation is more complicated since its processing
may introduce many new horizontal rays and (at most) one vertical ray, also in a certain
order along a staircase structure (in addition to causing a ray shooting operation). A stack
is used to store certain vertical rays that need to be further processed.

The algorithm needs to perform ray shooting operations for some vertical and horizontal
rays. Although there are known data structures for ray shooting queries [3, 4, 12, 14], they
are not efficient enough for a linear time implementation of the entire algorithm. Based on
observations, we use the horizontal visibility map and vertical visibility map of bay(cd) [2].
More specifically, we prove that all vertical ray shootings are in a “nice” sorted order (called
target-sorted). With this property, all vertical ray shootings are performed in totally linear
time by using the vertical visibility map of bay(cd). The horizontal visibility map is used
to guide the overall process of the algorithm. During the algorithm, we march into the bay
and the horizontal visibility map allows us to keep track of our current position (i.e., in a
trapezoid of the map that contains our current position). The horizontal visibility map also
allows each horizontal ray shooting to be done in O(1) time. In addition, in the preprocessing

D.Z. Chen and H. Wang 299

p1
p1p1

p2 p2
p2

(1) (2) (3)

Figure 4 The L1 bisector B(p1, p2) of two weighted points
p1 and p2. In (3), an entire quadrant (the shaded area) is
B(p1, p2), but we choose B(p1, p2) to be the vertical (solid
thick) half-line.

ri−1

B’M(ri−1,ri)

ri

vi−1

bay(cd)
ρi−1

c

d

Figure 5 Illustrating the definition
of ρi−1.

of the algorithm, we also need to perform some other ray shootings (for rays of slope −1);
our linear time solution for this also hinges on the target-sorted property of such rays.

Our algorithm is conceptually simple. The only data structures we need are linked lists,
a stack, and the horizontal and vertical visibility maps. Again, it is much more difficult
to argue the correctness of the algorithm, making the presentation of this paper lengthy,
technically complicated, or even tedious, for which we ask for the reader’s patience.

Below, we sketch how our algorithm works, and the proof of its correctness is omitted.
We may also use some terminology of natural meaning without definitions (their formal
definitions are can also be found in [6].

4.2 The Algorithm
Each root ri ∈ R can be viewed as an additively weighted point whose weight is the length
of an L1 shortest path from s to ri. For any two weighted points p1 and p2 with weights w1
and w2, respectively, their bisector B(p1, p2) can be an entire quadrant of the plane (e.g.,
see Fig. 4); in this case, as in [18, 19], we choose a vertical half-line as the bisector. Denote
by Rec(p1, p2) the rectangle with p1 and p2 as its two diagonal vertices. Thus, as illustrated
in Fig. 4, B(p1, p2) consists of three portions, two rays whose origins are on the boundary of
Rec(p1, p2) and an open line segment (called middle segment and denoted by BM (p1, p2))
in Rec(p1, p2) connecting the origins the two rays; further each ray is either horizontal or
vertical and the middle segment is of slope 1 or −1.

For any pair of consecutive roots ri−1 and ri in R for 2 ≤ i ≤ k, since vi−1 is on the
common boundary of the cells C(ri−1) and C(ri), vi−1 lies on the bisector B(ri−1, ri) of ri−1
and ri. But vi−1 may lie on either a ray or the middle segment of B(ri−1, ri). If vi−1 lies on
a ray of B(ri−1, ri), let ρi−1 denote the ray; otherwise, vi−1 partitions BM (ri−1, ri) into two
portions and one portion (denoted by B′M (ri−1, ri)) intersects the interior of bay(cd), and
we let ρi−1 be the ray of B(ri−1, ri) connecting to B′M (ri−1, ri) (see Fig. 5). In either case,
ρi−1 is either vertically going south (downwards) or horizontally going east (rightwards). (If
BM (ri−1, ri) does not intersect cd, we let B′M (ri−1, ri) = ∅.) Further, if vi−1 ∈ BM (ri−1, ri),
BM (ri−1, ri) must be (−1)-sloped [6]. Denote by or(ρ) the origin of a ray ρ. We can prove
that the origins or(ρ1), or(ρ2), . . . , or(ρk−1) follow the order from northeast to southwest [6].

Let ∂ denote the boundary of bay(cd) excluding cd. The algorithm first determines for
each 2 ≤ i ≤ k whether B′M (ri−1, ri) intersects ∂, which is done by a set of (−1)-sloped ray
shootings. If, say B′M (ri−1, ri), intersects ∂ at a point p such that vi−1p is inside bay(cd),
then vi−1p partitions bay(cd) into two simple polygons bay1 and bay2 such that bay1 contains
cvi−1 as an edge (see Fig. 6). We show (in [6]) that vi−1p must appear in VD(bay(cd)) (which
means that vi−1p lies on some cell boundaries of VD(bay(cd))) and the original problem of
computing VD(bay(cd)) on bay(cd) and R can be broken into two subproblems of computing

STACS’13

300 L1 Shortest Path Queries among Polygonal Obstacles in the Plane

vi−1

ri

ri−1

bay2

B(ri−1 ,r i) bay1

p

d

c

Figure 6 BM (ri−1, ri) inter-
sects both cd (at vi−1) and ∂ (at
p). The line segment vi−1p divides
bay(cd) into bay1 and bay2.

r2

r1

v1
ρ1

bay1

tp()ρ1

ρ2

d

c

p=

Figure 7 Illustrating an ex-
ample of ρ1 being horizontal.

vi ρi

VD(r)t

rt

ρ ’

tp()ρip=

ρtp()

ρ’

d

c

ρ

z=tp()

Figure 8 The target points of
all rays in S (whose rays are all ver-
tical) are before p = tp(ρi). The
ray ρ is at the top of S and ρ′ is
at the bottom of S.

VD(bay1) on bay1 and {r1, . . . , ri−1} and computing VD(bay2) on bay2 and {ri, . . . , rk}. The
above procedure is done in the preprocessing of the algorithm, where all (−1)-sloped ray
shootings are solved in totally O(n′+k) time. Thus, we only need to focus on each individual
subproblem. W.l.o.g., we assume the original problem is one subproblem (i.e., no B′M (ri−1, ri)
intersects ∂). We can show that each B′M (ri−1, ri) appears in VD(bay(cd)) [6]. To compute
VD(bay(cd)), essentially we need to handle the interactions of all rays ρ1, . . . , ρk−1. Let
Ψ = {ρ1, . . . , ρk−1}. Considering the roots in R incrementally is equivalent to considering
the corresponding rays in Ψ incrementally. Specifically, our algorithm processes the rays in
Ψ from ρ1 to ρk−1 incrementally. Recall that each ρi ∈ Ψ is either vertically going south or
horizontally going east. We use a stack S to store certain vertical rays and S = ∅ initially.
As will be seen later, some rays in S may not be in Ψ. For a ray ρ with its origin in bay(cd),
the point on ∂ hit first by ρ is called the target point of ρ, denoted by tp(ρ).

Our algorithm maintains a number of invariants, and the next paragraph lists a subset of
them that are related to our discussion in this section. The complete list of invariants (as
well as the argument why our algorithm implicitly maintains them) are in [6].

Let ρ̂ be the next ray to be considered by the algorithm. Assume S 6= ∅. Invariants: (a)
All rays in S are vertically going south. (b) The origins of all rays in S from top to bottom
are ordered from southwest to northeast. (c) The origin of ρ̂ is to the southwest of the origin
of the ray at the top of S. (d) Suppose ρ̂ is on a bisector B(rj , ri) with j < i and the ray
at the top of S is on a bisector B(rt, rt′) with t < t′; then j = t′. (e) For each ray ρ′′ in
S ∪ {ρ̂}, suppose ρ′′ lies on a bisector B(rj′ , ri′) of two roots rj′ and ri′ with j′ < i′; then
the portion of the boundary of the Voronoi region VD(ri′) (resp., VD(rj′)) from vi′−1 (resp.,
vj′) to the origin or(ρ′′) of ρ′′ has already been computed. (f) The target points of all rays
in S from bottom to top are ordered clockwise on ∂, i.e., from c to d (this property is called
“target-sorted”).

Consider the first ray ρ1. If ρ1 is vertical, we push it on S and continue to consider
the ray ρ2 ∈ Ψ. If ρ1 is horizontal, we find the target point p = tp(ρ1) of ρ1 (i.e., the first
point on ∂ hit by ρ1) by performing a horizontal ray shooting. Then, B′M (r1, r2) and or(ρ1)p
together partition bay(cd) into two simple polygons, one of which contains cv1 as an edge
and we denote it by bay1 (see Fig. 7). We show that bay1 is the Voronoi region of r1, i.e.,
VD(r1) = bay1. We then continue to consider the ray ρ2 ∈ Ψ.

Now consider a general step of the algorithm, which processes a ray ρi ∈ Ψ. If ρi is
vertical, we simply push ρi on the top of the stack S and continue to consider the next ray
ρi+1 ∈ Ψ. Below, we discuss the case when ρi is horizontal. Let p = tp(ρi) be the target
point of ρi. If S = ∅, then as in the case of ρ1, the Voronoi region VD(ri) is determined
immediately (note that ρi ∈ B(ri, ri+1)), and we continue to consider ρi+1. Below, we assume

D.Z. Chen and H. Wang 301

tp()ρip=vi

ρi
ri+1

vj

vi−1

rj

p1

1q

ri

VD(r)i

p’1

��
��
��
��

��

����

c

d

ρ

Figure 9 Illustrating an example that the ray ρ at
the top of S intersects ρi (at p1) before hitting ∂.

tp()ρip=vi

ρi
ri+1

vj

vi−1

rj

p1

1q

ri

VD(r)i

p’1

��
��
��
��

��

����

c

ρd

z

bay’

Figure 10 Illustrating an example that
B′M (rj , ri+1) (= p1p′1) intersects ∂ (first at z).

S 6= ∅. For any two points a and b on ∂ with a lying in the portion of ∂ from the vertex
c clockwise to b, we say a is before b or b is after a. Suppose ρ is the ray on the top of S.
By Invariant (b), ρ is the leftmost ray in S. If the target point tp(ρ) is before p, then by
Invariants (f), ρi does not intersect any vertical ray in S before they hit ∂ (see Fig. 8). We
then perform a splitting procedure on the rays in S, as follows.

Let ρ′ be the ray at the bottom of S and z = tp(ρ′) (see Fig. 8). Suppose ρ′ is on a
bisector, say B(rt, rt′) for some t < t′. By Invariant (e), the boundary portion of VD(rt)
between vt and the origin or(ρ′) has been computed. The concatenation of the segment
or(ρ′)z and the above boundary portion of VD(rt) splits the current region of bay(cd) that
needs to be further decomposed for computing VD(bay(cd)) into two simple polygons. The
one containing vt−1vt is the Voronoi region VD(rt). We then continue to process the second
bottom ray in S in a similar fashion. This splitting procedure stops once all rays in S are
processed. The target points of all rays in S are found by vertical ray shootings, which is
done by a scanning procedure that basically scans a portion of ∂. Finally, we pop all rays out
of S. We then continue to consider the next ray ρi+1 ∈ Ψ.

If tp(ρ) is after p, then ρi intersects ρ before they hit ∂ (e.g., see Fig. 9). Suppose ρ is
on B(rj , rj′) with j < j′. Recall ρi ∈ B(ri, ri+1). By Invariant (d), j′ = i, and the Voronoi
region VD(ri) can be determined immediately [6]. Let p1 be the intersection of ρi and ρ
(see Fig. 9). Let q1 be the intersection of the vertical line through rj and the horizontal line
through ri+1. We show (in [6]) that q1 must be to the southeast of p1. The line of slope −1
through p1 intersects the boundary of the rectangle Rec(p1, q1) at two points: One is p1 and
denote the other one by p′1 (see Fig. 9). We show that p1p′1 ⊆ B(rj , ri+1) and p1p′1 ∩ bay(cd)
appears in VD(bay(cd)). Depending on whether p1p′1 intersects ∂, there are two cases.

If p1p′1 intersects ∂, let z be the first intersection point (see Fig. 10). Similarly as before,
the line segment p1z appears in VD(bay(cd)) and partitions the current region of bay(cd)
that needs further decomposition for computing VD(bay(cd)) into two simple polygons; one
of them, say bay′, contains the point p. Then, the Voronoi regions of the roots that define
the rays in S form a decomposition of bay′, and we use a procedure similar to the splitting
procedure discussed earlier to compute this decomposition of bay′, i.e., consider the rays in
S from bottom to top. Finally, we pop all rays out of S, and continue with the next ray
ρi+1 ∈ Ψ.

If p1p′1 does not intersect ∂, then depending on whether p′1 is on the bottom edge or the
right edge of the rectangle Rec(p1, q1), there are further two subcases. In either subcase, we
first pop ρ out of S. If p′1 is on the bottom edge, then let ρ∗i be the vertical ray originating
at p′1 and going south (see Fig. 11). We call ρ∗i the termination vertical ray of ρi. We push

STACS’13

302 L1 Shortest Path Queries among Polygonal Obstacles in the Plane

tp()ρip=vi

ρi
ri+1

vj

vi−1

rj

p1

1q

ri

VD(r)i

p’1

ρ*
i

��
��
��
��

��

����

c

d

ρ

’ρ

Figure 11 Illustrating an example that the point
p′1 (= or(ρ∗i)) is on the bottom edge of Rec(p1, q1).

tp()ρip=vi
ri+1

vj

vi−1ri

VD(r)i

ρi
p1

rj

1q

p’1
��
��
��
��

��

��

c

d

ρ

’ρ

ρi1

Figure 12 Illustrating an example that the point
p′1 (= or(ρi1)) is on the right edge of Rec(p1, q1).

ρ∗i on the top of S. We then continue to consider the next ray ρi+1 ∈ Ψ. If p′1 is on the right
edge of Rec(p1, q1), then let ρi1 be the horizontal ray originating at p′1 and going east (see
Fig. 12). We call ρi1 a successor horizontal ray of ρi. The ray ρi1 (not ρi+1) is the next
ray that will be considered by the algorithm. Note that ρi1 6∈ Ψ. We then continue with
processing ρi1. We should mention that although our discussion above is on a ray ρi in Ψ,
the processing for (the horizontal) ρi1 is very similar to the case when ρi ∈ Ψ is horizontal.
In particular, there may also be a termination vertical ray or a successor horizontal ray
generated after processing ρi1. Thus, the processing of a horizontal ray ρi ∈ Ψ may lead to
generating multiple successor horizontal rays but at most one termination vertical ray, i.e., a
successor horizontal ray may generate another successor horizontal ray (e.g., see Fig. 13),
but a termination vertical ray does not generate another ray.

We have discussed all possible cases for processing a ray. The algorithm finishes when
the Voronoi regions for all roots in R are computed.

ri+1

ri

vi 1p

p2

q1 q2

p’2

i
ρ

1p’

d

c

i2
ρ

ρ ρ ’

ρ
i1

Figure 13 Illustrating the first two successor
horizontal rays ρi1 and ρi2 of a horizontal ray ρi ∈ Ψ.

Figure 14 Illustrating the horizontal visibility
map of a simple polygon.

The running time of the algorithm is O(n′ +m′) (recall m′ = k + 1 and n′ is the number
of vertices in bay(cd)). For the implementation, in the preprocessing we also compute a
horizontal visibility map HM(bay(cd)) (see Fig. 14) and a vertical visibility map VM(bay(cd))
[2]. We do not overlap the two maps. In the main algorithm, we use HM(bay(cd)) to guide
the computation, i.e., we keep track of which trapezoid of HM(bay(cd)) we are in during
the algorithm. This allows each horizontal ray shooting to be performed in constant time.
We also use HM(bay(cd)) to compute the first intersection point of p1p′1 and ∂ (i.e., the
point z in Fig. 10). To conduct the vertical ray shootings (i.e., for the rays in S), we utilize
the vertical map VM(bay(cd)) and a scanning procedure. Further, with Invariant (f), we

D.Z. Chen and H. Wang 303

can show that the target points of the vertical rays in the entire algorithm that we need to
compute are ordered on ∂ from c to d (i.e., the target-sorted property). In addition, we use
a reference point p∗ to help implement the vertical ray shootings. The reference point p∗,
which is at c (resp., d) at the beginning (resp., end) of the algorithm, always moves (forward)
on ∂ from c to d during the algorithm but it never moves backward. These components
together perform all vertical ray shootings in totally O(n′ +m′) time. Note that although
there are known data structures for general ray shootings [3, 4, 12, 14], they are not efficient
enough for our purpose. Also note that although the processing of a horizontal ray ρi in
Ψ may produce multiple successor horizontal rays, we can show that the total number of
horizontal rays in the entire algorithm is at most k and that of vertical rays is also at most k.

5 Expanding SPM(M) into a Canal (a Sketch)

We sketch the idea of computing an SPM for a canal, say canal(x, y). The details are in [6].
A main difference than the bay case is that a canal has two gates, say xd and yz (e.g., see
Fig. 3). Let R1 (resp., R2) be the set of roots whose cells in SPM(M) intersect xd (resp., yz).
Let VD(canal(x, y), R1) denote the weighted Voronoi diagram of canal(x, y) with respect to
R1, i.e., we treat canal(x, y) as a bay with the gate xd. Define VD(canal(x, y), R2) similarly.

We first compute VD(canal(x, y), R1) and VD(canal(x, y), R2) by our algorithm for a
bay in Section 4. We then find a “dividing curve” γ in canal(x, y) that divides canal(x, y)
into two simple polygons C1 and C2, such that each point in C1 (resp., C2) has a shortest
path from s via a root in R1 (resp., R2). We apply our algorithm for a bay on C1 and R1
to compute the weighted Voronoi diagram of C1 with respect to R1, i.e., VD(C1, R1). We
similarly compute VD(C2, R2). It is easy to see that SPM(canal(x, y)) is a concatenation of
VD(C1, R1) and VD(C2, R2). It remains to compute the dividing curve γ.

To compute γ, we first determine a point p∗ ∈ γ (e.g., with the help of the corridor
path). Then, we trace γ out from p∗ by traversing the cells of VD(canal(x, y), R1) and
VD(canal(x, y), R2), which is similar to the merge procedure of the divide-and-conquer
Voronoi diagram algorithm [20].

References
1 R. Bar-Yehuda and B. Chazelle. Triangulating disjoint Jordan chains. International Journal

of Computational Geometry and Applications, 4(4):475–481, 1994.
2 B. Chazelle. Triangulating a simple polygon in linear time. Discrete and Computational

Geometry, 6:485–524, 1991.
3 B. Chazelle, H. Edelsbrunner, M. Grigni, L. Gribas, J. Hershberger, M. Sharir, and

J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algorithmica,
12(1):54–68, 1994.

4 B. Chazelle and L. Guibas. Visibility and intersection problems in plane geometry. Discrete
and Computational Geometry, 4:551–589, 1989.

5 D.Z. Chen and H. Wang. A nearly optimal algorithm for finding L1 shortest paths among
polygonal obstacles in the plane. In Proc. of the 19th European Symposium on Algorithms,
pages 481–492, 2011.

6 D.Z. Chen and H. Wang. Computing L1 shortest paths among polygonal obstacles in the
plane. arXiv:1202.5715v1, 2012.

7 D.Z. Chen and H. Wang. Computing the visibility polygon of an island in a polygonal
domain. In Proc. of the 39th International Colloquium on Automata, Languages and Pro-
gramming, pages 218–229, 2012.

STACS’13

304 L1 Shortest Path Queries among Polygonal Obstacles in the Plane

8 K. Clarkson, S. Kapoor, and P. Vaidya. Rectilinear shortest paths through polygonal
obstacles in O(n log2 n) time. In Proc. of the 3rd Annual Symposium on Computational
Geometry, pages 251–257, 1987.

9 P.J. de Rezende, D.T. Lee, and Y.F. Wu. Rectilinear shortest paths in the presence of
rectangular barriers. Discrete and Computational Geometry, 4:41–53, 1989.

10 H. Edelsbrunner, L. Guibas, and J. Stolfi. Optimal point location in a monotone subdivision.
SIAM Journal on Computing, 15(2):317–340, 1986.

11 S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153–174, 1987.
12 L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R.E. Tarjan. Linear-time algorithms

for visibility and shortest path problems inside triangulated simple polygons. Algorithmica,
2(1-4):209–233, 1987.

13 J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy
class. Computational Geometry: Theory and Applications, 4(2):63–97, 1994.

14 J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray, take a
walk. Journal of Algorithms, 18(3):403–431, 1995.

15 R. Inkulu and S. Kapoor. Planar rectilinear shortest path computation using corridors.
Computational Geometry: Theory and Applications, 42(9):873–884, 2009.

16 S. Kapoor, S.N. Maheshwari, and J.S.B. Mitchell. An efficient algorithm for Euclidean
shortest paths among polygonal obstacles in the plane. Discrete and Computational Geo-
metry, 18(4):377–383, 1997.

17 D. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing,
12(1):28–35, 1983.

18 J.S.B. Mitchell. An optimal algorithm for shortest rectilinear paths among obstacles. Ab-
stracts of the 1st Canadian Conference on Computational Geometry, 1989.

19 J.S.B. Mitchell. L1 shortest paths among polygonal obstacles in the plane. Algorithmica,
8(1):55–88, 1992.

20 M.I. Shamos and D. Hoey. Closest-point problems. In Proc. of the 16th Annual Symposium
on Foundations of Computer Science, pages 151–162, 1975.

21 P. Widmayer. On graphs preserving rectilinear shortest paths in the presence of obstacles.
Annals of Operations Research, 33(7):557–575, 1991.

Quantifier Alternation in Two-Variable First-Order
Logic with Successor Is Decidable∗

Manfred Kufleitner and Alexander Lauser

University of Stuttgart, FMI, Germany
{kufleitner,lauser}@fmi.uni-stuttgart.de

Abstract
We consider the quantifier alternation hierarchy within two-variable first-order logic FO2[<, suc]
over finite words with linear order and binary successor predicate. We give a single identity
of omega-terms for each level of this hierarchy. This shows that for a given regular language
and a non-negative integer m it is decidable whether the language is definable by a formula in
FO2[<, suc] which has at most m quantifier alternations. We also consider the alternation hier-
archy of unary temporal logic TL[X,F,Y,P] defined by the maximal number of nested negations.
This hierarchy coincides with the FO2[<, suc] quantifier alternation hierarchy.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.4.3 Formal Languages.

Keywords and phrases automata theory, semigroups, regular languages, first-order logic

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.305

1 Introduction

Around 1960, Büchi, Elgot and Trakhtenbrot independently showed that monadic second-
order logic (MSO) over finite words defines the class of regular languages [2, 6, 33]. Since then
numerous fragments of MSO have been considered. A theoretical motivation for fragments is
the study of the rich structure within the regular languages. For this purpose, fragments
form the basis of a descriptive complexity theory: The simpler the formula for defining a
language is, the simpler this language is. From a practical point of view, simpler fragments
often lead to more efficient algorithms for decision problems such as satisfiability.

The most prominent fragment of MSO is first-order logic FO. The atomic predicates
of FO are the unary predicate λ(x) = a stating that position x is labeled by the letter a,
and the binary predicates x = y and x < y with the natural interpretation. The successor
predicate suc(x, y) is easily definable in FO by saying that x < y and that there is no
position between x and y. McNaughton and Papert showed that a language is FO-definable
if and only if it is star-free [18]. Combined with Schützenberger’s characterization of star-free
languages in terms of finite aperiodic monoids [21], it follows that a language is FO-definable
if and only if its syntactic monoid is aperiodic. The latter property is decidable and one
can thus effectively check whether a regular language (given e.g. by a nondeterministic
automaton or an MSO formula) is definable in FO. The two most famous hierarchies
within FO are the Straubing-Thérien hierarchy and Brzozowski’s dot-depth hierarchy. The
Straubing-Thérien hierarchy coincides with the quantifier alternation inside FO without the
successor predicate [25, 29], and Brzozowski’s dot-depth hierarchy is captured by quantifier
alternation including the successor predicate [3]; see also [20, 31]. Here, quantifier alternation
is defined in terms of blocks of quantifiers for formulae in prenex normal form. Note that

∗ The authors were supported by the German Research Foundation (DFG) under grant DI 435/5-1.

© M. Kufleitner and A. Lauser;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 305–316

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.305
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

306 Quantifier Alternation in FO2 with Successor Is Decidable

by introducing new variables, every formula is equivalent to a formula in prenex normal
form. Deciding membership of level m for these hierarchies is one of the most challenging
open problems in automata theory. To date only the very first levels (i.e., m = 1) of both
hierarchies are known to be decidable [9, 24].

By Kamp’s Theorem, first-order logic FO3 with only three different names for the
variables and full first-order logic FO have the same expressive power [8]. However, two
variables are not sufficient for defining all first-order definable languages. The fragment
FO2[<] without successor predicate has a huge number of different characterizations; see
e.g. [5, 28]. One of them is the variety DA of finite monoids [22]; cf. [30]. For quantifier
alternation inside FO2 one cannot readily rely on prenex normal forms. However, in FO2

negations can be moved towards the atomic formulae, and hence every formula is equivalent
to a negation-free counterpart. The fragment FO2

m consists of all FO2-formulae whose
negation-free counterpart has at most m blocks of quantifiers on each path of the parse
tree. Kufleitner and Weil have shown that for every m ≥ 1 it is decidable whether a given
regular language is definable in FO2

m[<] without successor predicate [16]. They have given
an effective algebraic characterization in terms of levels of the Trotter-Weil hierarchy of
finite monoids [34]; see also [15]. In addition, restrictions of many other characterizations of
the FO2[<]-definable languages admit algebraic counterparts within this hierarchy [12, 17].
The proof of Kufleitner and Weil’s characterization of FO2

m[<] relies on a combinatorial
tool known under the terms ranker [35] and turtle program [23]. A connection between
FO2

m[<] and rankers was established by Weis and Immerman [35] and further exploited by
Kufleitner and Weil [17]. Straubing has given another algebraic characterization of FO2

m[<]
in terms of weakly iterated block products of J -trivial monoids [27]. Recently, Krebs and
Straubing [10] were able to use this characterization for giving identities of omega-terms for
FO2

m[<], thereby obtaining another effective characterization of FO2
m[<].

In this paper, we consider the quantifier alternation hierarchy inside FO2[<, suc] with
successor predicate. The logic FO2[<, suc] is strictly more expressive than FO2[<] without
successor. Thérien and Wilke [30] have given an algebraic characterization of FO2[<, suc]
which, by a previous result of Almeida, is known to coincide with the decidable variety LDA
of finite semigroups [1]; see also [4]. For every m ≥ 2 we give a single identity of omega-terms
such that a language is definable in FO2

m[<, suc] if and only if its syntactic semigroup satisfies
this identity. It is thus decidable whether a given regular language is FO2

m[<, suc]-definable.
Our proof is by induction on m with Knast’s Theorem on dot-depth one [9] as base case.

For m = 1, there is a small difference between the availability and the absence of min- and
max-predicates; this is identical to the situation for dot-depth one [11]. The main ingredients
of our proof are (i) string rewriting techniques, (ii) combinatorial properties of LDA, and
(iii) relativization techniques for FO2

m. As a byproduct, we show that quantifier alternation
in FO2[<, suc] coincides with alternation in unary temporal logic TL[X,F,Y,P] where the
latter is based on the nesting depth of negations. This last property can also be seen using a
translation from FO2 to unary temporal logic by Etessami, Vardi, and Wilke [7].

Missing proofs can be found in the technical report [14].

2 Preliminaries

Throughout, A denotes a finite alphabet. The set of all finite words is A∗ and the set of all
finite, nonempty words is A+. Let u = a1 · · · an with ai ∈ A. The set of positions of u is
pos(u) = {1, . . . , n} and its length is |u| = n. If I is an interval, then u[I] denotes the factor
of u covered by the interval of positions pos(u)∩ I. If I = [i; j], then u[i; j] is an abbreviation

M. Kufleitner and A. Lauser 307

for u[I]. In particular, if 1 ≤ i ≤ j ≤ n, then u[i; j] = ai · · · aj . The k-factor alphabet is
alphk(u) = {ai · · · ai+k−1 ∈ Ak | 1 ≤ i ≤ n− k + 1}

First-Order Logic. We consider first-order logic over finite words with order and successor
predicates. Atomic first-order formulae are > for true, ⊥ for false, label predicates λ(x) = a

with a ∈ A, comparisons x = y, x < y and successor suc(x, y) as well as minimum min(x)
and maximum max(x). Here x and y are variables ranging over positions of a word which
forms a model as a labeled, linearly ordered set of positions. Formulae can be composed
by the usual Boolean connectives, i.e., if ϕ and ψ are first-order formulae, then so are the
disjunction ϕ ∨ ψ, the conjunction ϕ ∧ ψ, and the negation ¬ϕ. Moreover, formulae can be
composed by existential quantification ∃xϕ and universal quantification ∀xϕ. The semantics
is as usual; see e.g. [13, 32]. We use the notation ϕ(x1, . . . , xn) to indicate that at most the
variables x1, . . . , xn occur freely in ϕ. We write u |= ϕ(i1, . . . , in) for u ∈ A∗ and positions
ij ∈ pos(u) if ϕ is true over u with xj being interpreted by ij . A formula without free
variables is a sentence and in this case we simply write u |= ϕ. For any class F of first-order
formulae, F [C] is the restriction to formulae in F which, apart from >, ⊥, label predicates,
and equality, only use predicates in C ⊆ {<, suc,min,max}.

The fragment FO2 = FO2[<, suc,min,max] of first-order logic contains all formulae
which use at most two different names for variables, say x and y. For FO2-formulae ϕ(x)
with free variable x we stipulate the convention that ϕ(y) is the FO2-formula obtained by
interchanging x and y. Using De Morgan’s laws and the usual dualities between existential
and universal quantifiers, one can see that every formula in FO2 is equivalent to a formula
with negations only applied to atomic formulae. We call such formulae negation-free (since
negations could be eliminated by adding negative predicates to an extended signature). The
fragment FO2

m consists of all formulae in FO2 with quantifier alternation depth at most m,
i.e., formulae such that the negation-free counterpart has at most m blocks of quantifiers
on every path of the parse tree. Therefore, if we drop the two-variable restriction, every
FO2

m-formula admits a prenex normal form with m blocks of quantifiers. In other words
negation-free formulae in FO2

m have at most m − 1 alternations of nested existential and
universal quantifiers. Note that FO2

m is closed under negation. The fragment FO2
m,n contains

all formulae in FO2
m with quantifier depth at most n.

Unary Temporal Logic. Unary temporal logic TL[X,F,Y,P] consists of all formulae built
from > for true, ⊥ for false, labels a with a ∈ A, compositions using Boolean connectives
as in first-order logic, and temporal modalities Xϕ, Fϕ, Yϕ, and Pϕ for ϕ ∈ TL[X,F,Y,P].
Formulae of unary temporal logic are interpreted over a word relative to a current position.
The semantics is declared by the following FO2-formulae in one free variable: We let
a(x) ≡

(
λ(x) = a

)
and

(Xϕ)(x) ≡ ∃y
(
suc(x, y) ∧ ϕ(y)

)
, (Fϕ)(x) ≡ ∃y

(
x ≤ y ∧ ϕ(y)

)
,

(Yϕ)(x) ≡ ∃y
(
suc(y, x) ∧ ϕ(y)

)
, (Pϕ)(x) ≡ ∃y

(
y ≤ x ∧ ϕ(y)

)
.

Here and in the sequel, ≡ means syntactic equality. We often use this symbol instead of
equality in order to avoid confusion with the symbol = occurring in atomic predicates. The
formulae for the remaining constructs are as usual. The modalities X (neXt) and F (Future)
are called future modalities whereas the modalities Y (Yesterday) and P (Past) are called
past modalities. In order to define u |= ϕ without a distinguished position in u, we start
evaluation in front (position 0) for future modalities and after (position |u|+ 1) the word u

STACS’13

308 Quantifier Alternation in FO2 with Successor Is Decidable

for past modalities. More formally, for a word u ∈ A∗ we define u 6|= a and

u |= Xϕ if and only if u |= ϕ(1), u |= Fϕ if and only if u |= Fϕ(1),
u |= Yϕ if and only if u |= ϕ(|u|), u |= Pϕ if and only if u |= Pϕ(|u|).

Boolean connectives and atomic formulae > and ⊥ are defined as usual. For example, the
formula X a ∧ Y b defines the language aA∗b. Let TLm[X,F,Y,P] be the fragment of unary
temporal logic consisting of the Boolean combinations of formulae with at most m− 1 nested
negations. Let TLm,n[X,F,Y,P] consist of all formulae in TLm[X,F,Y,P] with operator
depth at most n, i.e., there are at most n nested temporal modalities. For a formula ϕ in
first-order logic or in unary temporal logic, let L(ϕ) = {u ∈ A+ | u |= ϕ} be the language
defined by ϕ.

Algebra. Let S be a finite semigroup. An element x ∈ S is idempotent if x2 = x. The set
of all idempotents of S is denoted E(S). For every finite semigroup S there exists an integer
ω ≥ 1 such that each ω-power is idempotent in S. Green’s relations are an important concept
in the structure theory of finite semigroups: For x, y ∈ S let x ≤R y if x = y or x ∈ yS and
symmetrically let x ≤L y if x = y or x ∈ Sy. For G ∈ {R,L} let x G y if both x ≤G y and
y ≤G x; and let x <G y if x ≤G y but not y ≤G x. We also view S as an alphabet and write
u ∈ S+ for a word with letters from S. For words u, v ∈ S+ we say that a relation u G v
“holds in S”, if the relation is satisfied after evaluating u and v in S. We use this frequently
for equality and Green’s relations. All semigroups in this paper are nonempty.

Classes of finite semigroups are often defined by identities of omega-terms. An omega-term
over a set of variables Σ is defined inductively. Every x ∈ Σ is an omega-term, and if u
and v are omega-terms, then so are uv and uω. A finite semigroup S satisfies the identity
u = v if for each homomorphism h : Σ+ → S we have h(u) = h(v). Here, h is extended to
omega-terms by letting h(uω) be the idempotent generated by h(u).

For every e ∈ E(S) the set eSe forms the so-called local monoid at e. A semigroup S
belongs to LDA if every local monoid eSe satisfies (xy)ωx(xy)ω = (xy)ω. This is equivalent
to saying that we have (exeye)ωexe(exeye)ω = (exeye)ω in S for all x, y ∈ S and all
e ∈ E(S). Note that if S is in LDA and if e ∈ E(S) and x, y ∈ eSe then, (xy)ω =
(xy)ω−1x(yx)ωy = (xy)ω−1x(yx)ωy(yx)ωy = (xy)2ωy(xy)ω = (xy)ωy(xy)ω. Thus despite its
asymmetric definition, LDA is left-right-symmetric.

A homomorphism h : A+ → S to a finite semigroup S recognizes a language L ⊆ A+

if h−1(h(L)) = L. A semigroup S recognizes L ⊆ A+ if there exists a homomorphism
h : A+ → S which recognizes L. For u, v ∈ A+ let u ≡L v if puq ∈ L is equivalent to pvq ∈ L
for all p, q ∈ A∗. The relation ≡L over A+ is a congruence and the semigroup A+/≡L, also
denoted by Synt(L) and called the syntactic semigroup of L, is the unique minimal semigroup
recognizing L. Moreover, it is effectively computable (e.g. from an automaton for L); cf. [19].

3 Alternation within Two-Variable First-Order Logic with Successor

We define classes Wm of finite semigroups which will yield an algebraic characterization
of FO2

m[<, suc]. To this end, we inductively define sequences of omega-terms Um,Vm with
variables e, f ,xi, yi, s, t, pi, qi. For m = 1 we define U1 = (eωsfωx1e

ω)ωs(fωy1e
ωtfω)ω and

V1 = (eωsfωx1e
ω)ωt(fωy1e

ωtfω)ω and for m ≥ 2

Um = (pmUm−1qmxm)ωpmUm−1qm(ympmUm−1qm)ω,

Vm = (pmUm−1qmxm)ωpmVm−1qm(ympmUm−1qm)ω.

M. Kufleitner and A. Lauser 309

By definition, a semigroup is in Wm if it satisfies the identity Um = Vm. The class W1
is Knast’s algebraic characterization of dot-depth one [9]. The only difference between U1
and V1 is the central variable in U1 being s and in V1 being t. Intuitively, this difference is
hidden more and more in Um and Vm with increasing m.

The following result is the main contribution of this paper. The remainder of this section
is dedicated to its proof.

I Theorem 1. Let m ≥ 2 and let L ⊆ A+. The following assertions are equivalent:
1. L is definable in FO2

m[<, suc].
2. L is definable in TLm[X,F,Y,P].
3. Synt(L) ∈Wm.

Before turning to the proof of Theorem 1 we record the following decidability corollary.
For m = 1 it relies on a characterization of two-sided ideals inside dot-depth one [11].

I Corollary 2. For every positive integer m one can decide whether a given regular language
L ⊆ A+ is definable in FO2

m[<, suc]. J

We start with the hard part of the proof of Theorem 1, i.e., with the implication from (3)
to (1). This is essentially Proposition 13 whose proof requires some preparatory work:
We first show that every Wm is contained in LDA (Lemma 3) which allows us to use a
combinatorial property of LDA (given in Lemma 6). Then a relativization technique for
FO2

m (Lemma 7) is used for defining a congruence ≈m,n (Definition 8) as a tool for FO2
m.

The connection between this congruence and FO2
m is established by Lemma 10. Using

a string rewriting system, a special factorization (given in Lemma 12) finally leads to an
inductive scheme to prove Proposition 13.

In the proof of Theorem 1 at the very end of this section we sketch how to show the
reverse implication as well as how to incorporate unary temporal logic.

I Lemma 3. For all m ≥ 1 we have Wm ⊆ LDA.

Proof. Let S be a finite semigroup and let ω ≥ 1 be an integer such that xω is idempotent
for all x ∈ S. Let x, y ∈ S and let e ∈ S be idempotent. Setting e1 = f1 = s = e, x1 = xey,
y1 = x, t = y we get U1 = (exeye)ω in S and V1 = (exeye)ωeye(exeye)ω in S. Setting
all other variables occurring in Um or in Vm to be e, we see Um = (exeye)ω in S and
Vm = (exeye)ωeye(exeye)ω in S. Thus if S ∈ Wm and e ∈ E(S), then eSe satisfies the
identity (xy)ω = (xy)ωy(xy)ω, i.e., S ∈ LDA. J

The next lemma is an intermediate result for Lemma 5 and Lemma 6 both of which yield
important combinatorial properties of semigroups in LDA.

I Lemma 4. Let S ∈ LDA, let x, y, z ∈ S, and let e ∈ E(S).
1. If xe R ye in S, then xe R xez if and only if ye R yez.
2. If ex L ey in S, then ex L zex if and only if ey L zey.

Proof. Since LDA is left-right symmetric, it suffices to show (1). Suppose xe R xez.
Since ye R xe R xez there exist s, t such that xe = yes and ye = xezt. We get ye =
ye(esezte). Pumping the factor in the parentheses and using LDA yields ye = ye(esezte)ω =
ye(esezte)ωezte(esezte)ω ∈ yezS. J

I Lemma 5. Let S ∈ LDA, let u, v ∈ S+, let s, t ∈ S∗ with alph|S|+1(vs) = alph|S|+1(vt)
and |v| ≥ |S|.

STACS’13

310 Quantifier Alternation in FO2 with Successor Is Decidable

1. If u R uv in S, then u R uvs in S if and only if u R uvt in S.
2. If u L vu in S, then u L svu in S if and only if u L tvu in S.

Proof. Since LDA is left-right symmetric, it suffices to show (1). Assume u R uv R uvs

in S. We want to show u R uvt in S. This is trivial if t is the empty word. Otherwise we
factorize vt = pwz such that |w| < |wz| = |S|+ 1 with w = we in S for some idempotent e
of S. Note that every sequence x1, . . . , x|S| ∈ S has a prefix which admits an idempotent
stabilizer, i.e., there exists i ∈ {1, . . . , |S|} and e ∈ E(S) such that x1 · · ·xi = x1 · · ·xie in S;
see e.g. [11, Lemma 1] for a proof of this claim. Since vs and vt have the same factors
of length |S| + 1, we find a factorization vs = s1wzs2. Let x = us1w and y = upw. By
induction u R y and thus xe = x R y = ye in S. Moreover, xe R xez and by Lemma 4 we
see ye R yez in S. This implies the claim. J

Choosing s to be the empty word and t = a immediately yields the following consequence.

I Lemma 6. Let S ∈ LDA, let u, v ∈ S+, let a ∈ S and let |v| ≥ |S|.
1. If u R uv >R uva in S, then alph|S|+1(v) 6= alph|S|+1(va).
2. If u L vu >L avu in S, then alph|S|+1(v) 6= alph|S|+1(av). J

The next lemma gives the main combinatorial properties of FO2
m[<, suc] for our purpose,

namely relativizations of formulae to certain factors of deterministic factorizations.

I Lemma 7. Let ϕ ∈ FO2[<, suc] and let v, w ∈ A+.
1. There exist formulae 〈ϕ〉<Xw and 〈ϕ〉>Xw such that for all u = u1wu2 with a unique

occurrence of the factor w in the prefix u1w:

u |= 〈ϕ〉<Xw(i, j) iff u1 |= ϕ(i, j) for all 1 ≤ i, j ≤ |u1|,
u |= 〈ϕ〉>Xw(i, j) iff u2 |= ϕ(i− |u1w| , j − |u1w|) for all |u1w| < i, j ≤ |u|.

2. There exist formulae 〈ϕ〉<Yv and 〈ϕ〉>Yv such that for all u = u1vu2 with a unique
occurrence of the factor v in the suffix vu2:

u |= 〈ϕ〉<Yv(i, j) iff u1 |= ϕ(i, j) for all 1 ≤ i, j ≤ |u1|,
u |= 〈ϕ〉>Yv(i, j) iff u2 |= ϕ(i− |u1v| , j − |u1v|) for all |u1v| < i, j ≤ |u|.

3. There exists a formula 〈ϕ〉[v;w] such that for all u = u1vu2wu3 with a unique occurrence
of the factor v in vu2wu3 and a unique occurrence of the factor w in u1vu2w:

u |= 〈ϕ〉[v;w](i, j) iff u2 |= ϕ(i− |u1v| , j − |u1v|) for all |u1v| < i, j ≤ |u1vu2|.

Moreover, if ϕ ∈ FO2
m,n[<, suc], then

1. 〈ϕ〉<Xw ∈ FO2
m+1,n+|w|[<, suc] and 〈ϕ〉>Xw ∈ FO2

m,n+|w|[<, suc],
2. 〈ϕ〉<Yv ∈ FO2

m,n+|v|[<, suc] and 〈ϕ〉>Yv ∈ FO2
m+1,n+|v|[<, suc], and

3. 〈ϕ〉[v;w] ∈ FO2
m+1,n+N [<, suc] for N = max {|v| , |w|}. J

The relativization of the previous lemma leads to the congruence in the following definition.
This congruence is our tool for the combinatorics of FO2

m in the subsequent proofs.

I Definition 8. Let u, v ∈ A∗. For m,n ≥ 0 we let u ≈m,0 v and u ≈0,n v. For n ≥ 1 let
u ≈1,n v if u and v are contained in the same monomials w1A

+w2 · · ·A+w` with wi ∈ A+

and |w1 · · ·w`| ≤ n. For m ≥ 2 and n ≥ 1 let u ≈m,n v if alphk(u) = alphk(v) and
prefk(u) = prefk(v) and suffk(u) = suffk(v) for all k ≤ n, and all of the following hold:

M. Kufleitner and A. Lauser 311

1. if u = u1wu2 and v = v1wv2 with 1 ≤ |w| ≤ n such that the factor w has a unique
occurrence in the prefixes u1w and v1w, then u1 ≈m−1,n−|w| v1 and u2 ≈m,n−|w| v2,

2. if u = u1wu2 and v = v1wv2 with 1 ≤ |w| ≤ n such that the factor w has a unique
occurrence in the suffixes wu2 and wv2, then u1 ≈m,n−|w| v1 and u2 ≈m−1,n−|w| v2,

3. if u = u1wu2w
′u3 and v = v1wv2w

′v3 with |ww′| ≤ n such that the factor w has a unique
occurrence in the suffixes wu2w

′u3 and wv2w
′v3 and such that the factor w′ has a unique

occurrence in the prefixes u1wu2w
′ and v1wv2w

′, then u2 ≈m−1,n−|ww′| v2. J

An elementary verification shows that ≈m,n is a congruence. Since this fact is not used in
this paper, we do not record it as lemma. The following is also straightforward.

I Lemma 9. If m,n ≥ 1 and u, v ∈ A∗ with u ≈m,n v, then u ≈m−1,n v and u ≈m,n−1 v. J

The next lemma connects FO2
m,n with the combinatorial properties captured by ≈m,n.

For u, v ∈ A∗ let u ≡1,n v if u and v model the same formulae in FO2
1,n[<, suc,min,max].

For m ≥ 2 and u, v ∈ A∗ let u ≡m,n v if u and v model the same formulae in FO2
m,n[<, suc].

We have to include min and max predicates at level 1 for technical reasons.

I Lemma 10. If m,n ≥ 0 and u, v ∈ A∗ with u ≡m,n+1 v, then u ≈m,n v. J

In other words the previous lemma shows that ≡m,n+1 is a refinement of ≈m,n. In
particular, ≈m,n has finite index. The next lemma is an auxiliary statement used in the
proof of Lemma 12. It says that ≈1,n equivalence of u and v allows order comparison for
certain factors in the words u and v.

I Lemma 11. Let u, v ∈ A+ and consider factorizations u = x1u1 · · ·xkuk = u′1y1 · · ·u′`y`

and v = x1v1 · · ·xkvk = v′1y1 · · · v′`y` with k, ` ≥ 1 and u′1, v′1, uk, vk ∈ A∗ and xi, yi ∈ A+

such that
x1u1 · · ·xk is the shortest prefix of u contained in x1A

+x2 · · ·A+xk and
x1v1 · · ·xk is the shortest prefix of v contained in x1A

+x2 · · ·A+xk,
y1 · · ·u′`y` is the shortest suffix of u contained in y1A

+y2 · · ·A+y` and
y1 · · · v′`y` is the shortest suffix of v contained in y1A

+y2 · · ·A+y`.
Let ∆u = |u| − |x1u1 · · ·uk−1| − |u′2 · · ·u′`y`| and let ∆v = |v| − |x1v1 · · · vk−1| − |v′2 · · · v′`y`|.
If u ≈1,n v for n = |x1 · · ·xk| + |y1 · · · y`|, then the relative order of the occurrences of xk

and y1 is the same in u and v, i.e., one of the following conditions applies:
1. ∆u > |xky1| and ∆v > |xky1|.
2. ∆u < 0 and ∆v < 0.
3. ∆u = ∆v. J

The main combinatorial ingredient for the implication from Wm to FO2
m is the factoriza-

tion in the following lemma. It combines properties of LDA and ≈m,n.

I Lemma 12. Let S ∈ LDA, let m ≥ 2, let N = 2 |S|2 and let u, v ∈ S+ such that
u ≈m,n+N v. Then there exist factorizations u = w0s1w1 · · · s`w` and v = w0t1w1 · · · t`w`

with wi, si, ti ∈ S+ and |w0 · · ·w`| ≤ N such that for all 1 ≤ i ≤ ` the following hold:
1. si ≈m−1,n ti,
2. w0s1 · · ·wi−1 R w0s1 · · ·wi−1si in S,
3. wi · · · t`w` L tiwi · · · t`w` in S.

Proof. Let X ′ = {1} ∪ {i ∈ pos(u) | 1 < i ≤ |u| , u[1; i− 1] >R u[1; i] in S} be the set of
positions of u which cause an R-descent when reading u from left to right. Let X be the

STACS’13

312 Quantifier Alternation in FO2 with Successor Is Decidable

set of positions j such that there exists i ∈ X ′ with 0 ≤ i− j ≤ |S|, i.e., we include all |S|
positions to the left of each i ∈ X ′. Let Y ′ and Y be defined left-right symmetrically on v,
i.e., Y ′ = {|v|} ∪ {i ∈ pos(v) | 1 < i ≤ |v| , v[i− 1; |v|] >L u[i; |v|] in S} and Y is the set of
positions j such that 0 ≤ j − i ≤ |S| for some i ∈ Y ′. Let X = X1 ∪ · · · ∪Xk with Xi 6= ∅
being maximal subsets of consecutive positions of X such that all positions of Xi are smaller
than all positions of Xi+1. Symmetrically, let Y = Y1 ∪ · · · ∪ Yk′ with Yi 6= ∅ being maximal
subsets of consecutive positions of Y such that all positions of Yi are smaller than all positions
of Yi+1.

Let xi = u[Xi] and yi = u[Yi] be the factors of u and v covered by the positions of Xi

and Yi, respectively. By construction and Lemma 6 (1), we see that u[1; max(Xi)] is the
shortest prefix of u which is contained in x1S

+x2 · · ·S+xi. Symmetrically, v[min(Yi); |v|] is
the shortest suffix of v which is contained in yiS

+yi+1 · · ·S+yk′ by Lemma 6 (2). We use
these properties to transfer the positions of X to v and the positions of Y to u. Specifically we
let Y ′′ = Y ′′1 ∪ · · · ∪ Y ′′k′ be such that each Y ′′i is an interval of positions of u with u[Y ′′i] = yi

and u[min(Y ′′i); |u|] is the shortest suffix of u which is contained in yiS
+yi+1 · · ·S+yk′ . And

we let X = X ′′1 ∪· · ·∪X ′′k be such that each X ′′i is an interval of positions of v with v[X ′′i] = xi

and v[1; max(X ′′i)] is the shortest prefix of v which is contained in x1S
+x2 · · ·S+xi. Note

that u ∈ S∗y1S
+y2 · · ·S+yk′ and v ∈ x1S

+x2 · · ·S+xkS
∗ because u ≈m,n+N v.

Now, consider the factorization u = w0s1w1 · · · s`w` with si ∈ S+ such that the wi are the
factors covered by maximal subsets of consecutive positions in X∪Y ′′. Intuitively, this means
that we merge overlapping and adjacent factors xi and yj in u. Lemma 11 shows that the
relative order of those concrete occurrences of xi and yj is the same in v as in u. Therefore,
if we consider the factorization of v which is covered by maximal subsets of consecutive
positions in X ′′ ∪ Y , then we end up with the same factors in the same order, i.e., we have
v = w0t1w1 · · · t`w` for some ti ∈ S+. Since the R-class and the L-class can descend at most
|S| − 1 times, we have |X ′ ∪ Y ′| ≤ 2 |S| and thus |w0 · · ·w`| ≤ |X ∪ Y ′′| ≤ 2 |S|2. Moreover,
by construction every R-descent when reading prefixes of u as well as every L-descent when
reading suffixes of v is covered by some factor wi showing (2) and (3).

It remains to show si ≈m−1,n ti for all i. An intermediate step is the following claim.
Claim. If skwk · · · s`w` ≈m,n+N tkwk · · · t`w` for some N ≥ |wk · · ·w`|, then si ≈m−1,n ti
for all i ∈ {k, . . . , `}.
The proof of this claim is by induction on ` − k. Every wi either arises from some xj or
some yj or both. Therefore, the wi’s inherit the properties of the corresponding xj ’s and
yj ’s of being the first occurrence (respectively being the last occurrence). If there is no wi

arising from an xj , then every wi has a unique occurrence in wisi+1 as well as in witi+1.
Thus si ≈m−1,n ti for all i by an (`− k)-fold application of condition (2) in the definition
of ≈m,n (from right to left). For i = k this uses Lemma 9.

Fix the first wi which arises from an xj . We have sj ≈m−1,n tj for all j > i by condition (1)
in the definition of ≈m,n and induction. If i = k, then sk ≈m−1,n tk again by condition (1)
in the definition of ≈m,n. Assume therefore i > k in the sequel. Let h ≥ i be minimal
such that wh arises from some yj ; note that w` arises from yk′ . By a repeated application
of condition (2) in the definition of ≈m,n we get that skwk · · · sh ≈m,n+N ′ tkwk · · · th for
N ′ = |wk · · ·wh−1|. Now wi−1 has a unique occurrence in each of the words wi−1si · · · sh

and wi−1ti · · · th. Therefore, by repeatedly applying condition (2) in the definition of ≈m,n

we see that sj ≈m−1,n tj for all k ≤ j < i. If h > i, then by condition (3) in the definition
of ≈m,n we see that si ≈m−1,n ti; and if h = i, then this follows from condition (2) in the
definition of ≈m,n. This concludes the proof of the claim.

Now by condition (1) in the definition of ≈m,n, we see s1w1 · · · s`w` ≈m,n+N ′ t1w1 · · · t`w`

M. Kufleitner and A. Lauser 313

for N ′ = N − |w0| and the above claim yields sj ≈m−1,n tj for all 1 ≤ j ≤ `. J

The following proposition essentially shows how to pass from Wm to FO2
m[<, suc]. The

key to its proof is a string rewriting system which enables induction on the parameter m.
Intuitively we consider the maximal quotient of a semigroup in Wm contained in Wm−1.
Since the latter is given by an omega-identity, this quotient can be described by a string
rewriting system. A single rewriting step of this system corresponds to one application of
the omega-identity for Wm−1 and can be lifted to Wm relatively easily.

I Proposition 13. For every S ∈ Wm with m ≥ 1 there exists n ≥ 1 such that u ≈m,n v

implies u = v in S for all u, v ∈ S+.

Proof. We perform an induction on m. By Knast’s Theorem [9], if L is recognized by a semi-
group S ∈W1, then the language L is a Boolean combination of monomials w1A

+w2 · · ·A+w`.
Choosing n ≥ 1 such that for all these monomials we have |w1 · · ·w`| ≤ n yields the claim
for m = 1.

Let ω > |S| be an integer such xω is idempotent in S for all x ∈ S. Consider the
relation → on S+ given by s → t if s = t in S or if s = pum−1q and t = pvm−1q for some
p, q ∈ S∗ and some xi, e, yi, f, pi, qi, z, z

′ ∈ S+ such that u1 = (eωzfωx1e
ω)ωz(fωy1e

ωz′fω)ω

and v1 = (eωzfωx1e
ω)ωz′(fωy1e

ωz′fω)ω and for i ≥ 2 we have

ui = (piui−1qixi)ωpiui−1qi(yipiui−1qi)ω, vi = (piui−1qixi)ωpivi−1qi(yipiui−1qi)ω.

Let ∗↔ be the reflexive, symmetric and transitive closure of→. The relation ∗↔ is a congruence
of finite index (since S+/ ∗↔ is a quotient of S). Moreover xω ∗↔ x2ω for all x ∈ S+ and
S+/ ∗↔ ∈Wm−1.

Claim 1. Let u, s, t ∈ S+. If s→ t, then u R us in S if and only if u R ut in S.

Assume without restriction that s 6= t in S. We have alph|S|+1(s) = alph|S|+1(t) by
construction of um−1 and vm−1. Note that by choice of ω, in particular both words have the
same prefix and the same suffix of length |S|+ 1. Lemma 5 yields Claim 1.

Claim 2. Let u, v, s, t ∈ S+ with s ∗↔ t. If u R us and v L tv in S, then usv = utv in S.

Since s ∗↔ t, there exists k ≥ 0 and w0, . . . , wk ∈ S+ such that s = w0 and wk = t and such
that either wi−1 → wi or wi → wi−1 for each 1 ≤ i ≤ k. Claim 1 and its left-right dual, yield
that u R uwi and v L wiv in S for all i. It therefore suffices to show the claim for s→ t. The
claim is trivial if s = t in S. Otherwise suppose s = pmum−1qm and t = pmvm−1qm. Since
u R us in S, there exists xm ∈ S such that u = usxm in S. Since v L tv in S, the left-right
dual of Claim 1 implies v L sv in S. Hence, there exists ym ∈ S such that v = ymsv in S.
Now u = u(pmum−1qmxm)ω in S and v = (ympmum−1qm)ωv in S and with S ∈Wm we see

usv = u(pmum−1qmxm)ωpmum−1qm(ympmum−1qm)ωv

= u(pmum−1qmxm)ωpmvm−1qm(ympmum−1qm)ωv = utv in S,

thus establishing Claim 2.
Since S+/ ∗↔ ∈ Wm−1, by induction there exists n ≥ 1 such that s ≈m−1,n t implies

s ∗↔ t for all s, t ∈ S+. Let u, v ∈ S+ and suppose u ≈m,n+N v for N = 2 |S|2. Let
u = w0s1w1 · · · s`w` and v = w0t1w1 · · · t`w` be the factorizations given by Lemma 12; in par-
ticular si ≈m−1,n ti and w0s1 · · ·wi−1 R w0s1 · · ·wi−1si in S and wi · · · t`w` L tiwi · · · t`w`.
By choice of n we have si

∗↔ ti for all i and repeated application of Claim 2 yields the

STACS’13

314 Quantifier Alternation in FO2 with Successor Is Decidable

following chain of identities valid in S:

v = w0t1w1t2 · · · t`−1w`−1t`w`

= w0s1w1t2 · · · t`−1w`−1t`w`

= w0s1w1s2 · · · t`−1w`−1t`w`

...
= w0s1w1s2 · · · s`−1w`−1t`w`

= w0s1w1s2 · · · s`−1w`−1s`w` = u.

This concludes the proof. J

We are now ready to prove Theorem 1.

Proof of Theorem 1. We shall first show “(3)⇒ (1)”. Afterwards we sketch the proof for
the implications “(1)⇒ (3)” and “(1)⇒ (2)”; note that the implication “(2)⇒ (1)” is trivial
because the semantics of temporal logic formulae is given by two-variable first-order formulae
with quantifier alternations originating in negations. We refer to the technical report [14] for
full proofs.

“(3)⇒ (1)”: Suppose S ∈Wm and the homomorphism h : A+ → S recognizes L ⊆ A+.
Combining Proposition 13 and Lemma 10, we see that there exists an integer n ≥ 1 such that
u ≡m,n v for u, v ∈ S+ implies u = v in S. Now if u ≡m,n v for u, v ∈ A+, then h(u) = h(v).
Thus, by specifying the ≡m,n-classes of A+ which are contained in L, we obtain a formula
ϕ ∈ FO2

m,n[<, suc] such that L(ϕ) = h−1(h(L)) = L. Note that the syntactic semigroup
of L recognizes L.

Sketch of “(1)⇒ (3)”: The overall proof scheme is reminiscent of a recent proof of Straub-
ing [27] which shows that FO2

m[<]-definable languages are recognized by a monoids in the
so-called weakly iterated two-sided semidirect product ((J∗∗J)∗∗J) · · ·∗∗J where J appears n
times. To avoid technical notation our formulation is not in terms of semidirect products,
however. More concretely we show that formulae in FO2

m up to a certain quantifier depth
are unable to disprove the defining identity of Wm; this yields a recognizing semigroup of L
and thus the claim since the syntactic semigroup is a divisor of any semigroup recognizing L.
To this end, an extended alphabet is used to annotate every position by certain information
about sequences of factors occurring in the prefix ending and the suffix starting at this
position. This allows to reduce the alternation depth of formulae by replacing so-called
innermost quantified blocks by alphabet information. Induction then yields the claim. The
most technical part of this step is to enable induction by showing that certain central factors
of the annotated identities for Wm are obtained from the identities for Wm−1 over the
extended alphabet.

Sketch of “(1)⇒ (2)”: This can be seen using the construction in [7, proof of Theorem 1]
by means of which Etessami, Vardi, and Wilke showed that FO2 coincides with TL[X,F,Y,P];
their statement does not involve the alternation depth explicitly, though. Roughly speaking,
for every formula in FO2

m with one free variable an equivalent formula in TLm[X,F,Y,P] is
constructed. The idea is to split up quantifier with respect to the order type. For example,
the quantifier ∃xϕ is equivalent to the disjunction

(∃x < y − 1: ϕ) ∨ (∃x = y − 1: ϕ) ∨ (∃x = y : ϕ) ∨ (∃x = y + 1: ϕ) ∨ (∃x > y + 1: ϕ).

In addition, we make explicit the label of the variable x and use syntactic bookkeeping to keep
track of the label and the order type. Under the condition that these information be correct,

M. Kufleitner and A. Lauser 315

induction yields temporal logic formula for the subformula ϕ. Now this presupposition can
be ensured using the modalities X, F, Y, and P. For example, the subformula in the first
parentheses would be YYPϕ′ where ϕ′ is the formula for ϕ with respect to the label and the
order type x < y − 1 which is obtained by induction. J

Conclusion

We showed that quantifier alternation for the logic FO2[<, suc] is decidable by giving a single
identity of omega-terms for each level FO2

m[<, suc]. The key ingredient in our proof is a
rewriting technique which allows us to apply induction on m.

There is an algebraic construction V 7→ V ∗D in terms of wreath products, see e.g. [26].
For most logical fragments F , whenever F corresponds to a variety of finite monoids V,
then the fragment F ′ obtained from F by adding successor predicates corresponds to the
semigroup variety V ∗D. This is also the case for FO2

m[<] and FO2
m[<, suc]. Therefore,

if Vm is the variety of finite monoids corresponding to FO2
m[<], then our result implies

Vm ∗D = Wm.
In general, decidability of V is not preserved by the operation V 7→ V ∗ D, but a

particularly nice situation occurs if V ∗D = LV. Here, a semigroup S is in LV if all local
monoids of S are in V. For example the variety DA satisfies DA ∗D = LDA, see [1, 4]. For
W1 however, Knast has given an example showing V1 ∗D 6= LV1. In view of this example,
we conjecture that Vm ∗D 6= LVm for all m ≥ 1.

Acknowledgments. We thank the anonymous referees for their suggestions which helped
to improve the presentation of the paper.

References
1 J. Almeida. A syntactical proof of locality of DA. Int. J. Algebra Comput., 6(2):165–177,

1996.
2 J. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen

Math., 6:66–92, 1960.
3 R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. J. Comput. Syst. Sci.,

5(1):1–16, 1971.
4 A. Costa and A. P. Escada. Some operators that preserve the locality of a pseudovariety

of semigroups. Technical Report 11–37 DMUC, University of Coimbra, 2011.
5 V. Diekert, P. Gastin, and M. Kufleitner. A survey on small fragments of first-order logic

over finite words. Int. J. Found. Comput. Sci., 19(3):513–548, 2008. Special issue DLT
2007.

6 C. C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.
Amer. Math. Soc., 98:21–51, 1961.

7 K. Etessami, M. Y. Vardi, and Th. Wilke. First-order logic with two variables and unary
temporal logic. Inf. Comput., 179(2):279–295, 2002.

8 J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of
California, 1968.

9 R. Knast. A semigroup characterization of dot-depth one languages. RAIRO, Inf. Théor.,
17(4):321–330, 1983.

10 A. Krebs and H. Straubing. An effective characterization of the alternation hierarchy in two-
variable logic. In FSTTCS 2012, Proceedings, volume 18 of LIPIcs, pages 86–98. Dagstuhl
Publishing, 2012.

STACS’13

316 Quantifier Alternation in FO2 with Successor Is Decidable

11 M. Kufleitner and A. Lauser. Around dot-depth one. Int. J. Found. Comput. Sci.,
23(6):1323–1339, 2012.

12 M. Kufleitner and A. Lauser. The join levels of the Trotter-Weil hierarchy are decidable.
In MFCS 2012, Proceedings, volume 7464 of LNCS, pages 603–614. Springer, 2012.

13 M. Kufleitner and A. Lauser. Lattices of logical fragments over words. In ICALP 2012,
Proceedings Part II, volume 7392 of LNCS, pages 275–286. Springer, 2012.

14 M. Kufleitner and A. Lauser. Quantifier alternation in two-variable first-order logic with
successor is decidable. CoRR, arXiv:1212.6500 [cs.LO], 2012.

15 M. Kufleitner and P. Weil. On the lattice of sub-pseudovarieties of DA. Semigroup Forum,
81:243–254, 2010.

16 M. Kufleitner and P. Weil. The FO2 alternation hierarchy is decidable. In CSL 2012,
Proceedings, volume 16 of LIPIcs, pages 426–439. Dagstuhl Publishing, 2012.

17 M. Kufleitner and P. Weil. On logical hierarchies within FO2-definable languages. Log.
Methods Comput. Sci., 8:1–30, 2012.

18 R. McNaughton and S. Papert. Counter-Free Automata. The MIT Press, 1971.
19 J.-É. Pin. Varieties of Formal Languages. North Oxford Academic, 1986.
20 J.-É. Pin and P. Weil. Polynomial closure and unambiguous product. Theory Comput.

Syst., 30(4):383–422, 1997.
21 M. P. Schützenberger. On finite monoids having only trivial subgroups. Inf. Control,

8:190–194, 1965.
22 M. P. Schützenberger. Sur le produit de concaténation non ambigu. Semigroup Forum,

13:47–75, 1976.
23 Th. Schwentick, D. Thérien, and H. Vollmer. Partially-ordered two-way automata: A new

characterization of DA. In DLT 2001, Proceedings, volume 2295 of LNCS, pages 239–250.
Springer, 2002.

24 I. Simon. Piecewise testable events. In Autom. Theor. Form. Lang., 2nd GI Conf., vol-
ume 33 of LNCS, pages 214–222. Springer, 1975.

25 H. Straubing. A generalization of the Schützenberger product of finite monoids. Theor.
Comput. Sci., 13:137–150, 1981.

26 H. Straubing. Finite semigroup varieties of the form V∗D. J. Pure Appl. Algebra, 36(1):53–
94, 1985.

27 H. Straubing. Algebraic characterization of the alternation hierarchy in FO2[<] on finite
words. In CSL 2011, Proceedings, volume 12 of LIPIcs, pages 525–537. Dagstuhl Publishing,
2011.

28 P. Tesson and D. Thérien. Diamonds are forever: The variety DA. In Semigroups, Algo-
rithms, Automata and Languages 2001, Proceedings, pages 475–500. World Scientific, 2002.

29 D. Thérien. Classification of finite monoids: The language approach. Theor. Comput. Sci.,
14(2):195–208, 1981.

30 D. Thérien and Th. Wilke. Over words, two variables are as powerful as one quantifier
alternation. In STOC 1998, Proceedings, pages 234–240. ACM Press, 1998.

31 W. Thomas. Classifying regular events in symbolic logic. J. Comput. Syst. Sci., 25:360–376,
1982.

32 W. Thomas. Languages, automata and logic. In Handbook of Formal Languages, volume 3,
pages 389–455. Springer, 1997.

33 B. A. Trakhtenbrot. Finite automata and logic of monadic predicates (in Russian). Dokl.
Akad. Nauk SSSR, 140:326–329, 1961.

34 P. Trotter and P. Weil. The lattice of pseudovarieties of idempotent semigroups and a
non-regular analogue. Algebra Univers., 37(4):491–526, 1997.

35 Ph. Weis and N. Immerman. Structure theorem and strict alternation hierarchy for FO2

on words. Log. Methods Comput. Sci., 5:1–23, 2009.

FO2 with one transitive relation is decidable
Wiesław Szwast1 and Lidia Tendera∗1

1 Institute of Mathematics and Informatics,
Opole University, Oleska 48, 45-052 Opole, Poland
[szwast,tendera]@math.uni.opole.pl

Abstract
We show that the satisfiability problem for the two-variable first-order logic, FO2, over transitive
structures when only one relation is required to be transitive, is decidable. The result is optimal,
as FO2 over structures with two transitive relations, or with one transitive and one equivalence
relation, are known to be undecidable, so in fact, our result completes the classification of FO2-
logics over transitive structures with respect to decidability. We show that the satisfiability
problem is in 2-NExpTime. Decidability of the finite satisfiability problem remains open.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.1 Mathematical Logic,
F.4.3 Formal Languages

Keywords and phrases classical decision problem, two-variable first-order logic, decidability,
computational complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.317

1 Introduction

FO2 is the restriction of the classical first-order logic over relational signatures to formulae
with at most two distinct variables. It is well-known that FO2 enjoys the finite model
property [20], and its satisfiability (hence also finite satisfiability) problem is NExpTime-
complete [5].

One particular drawback of FO2 is that it can neither express transitivity of a binary
relation nor say that a binary relation is a partial (or linear) order, or an equivalence
relation. These natural properties are important for practical applications, thus research has
started to investigate FO2 over restricted classes of structures in which some distinguished
binary symbols are required to be interpreted as transitive relations, orders, equivalences,
etc. The idea comes from modal correspondence theory, where various conditions on the
accessibility relations allow to restrict the class of Kripke structures considered, e.g. to
transitive structures for the modal logic K4 or equivalence structures for the modal logic S5.
Orderings, on the other hand, are very natural when considering temporal logics, where they
model time flow, but they also are used in different scenarios, e.g. in databases or description
logics, to compare objects with respect to some parameters.

Unfortunately, the remarkably robust decidability of modal logics and its various exten-
sions towards greater expressibility does not transfer immediately to extensions of FO2, and
the picture for FO2 is more complex and to some extent less understood. It appeared that
both the satisfiability and the finite satisfiability problems for FO2 are undecidable in the
presence of several equivalence or several transitive relations [6, 7]. These results were later

∗ Lidia Tendera would like to acknowledge the support of Polish Ministry of Science and Higher Education
grant N N206 37133.

© Wiesław Szwast and Lidia Tendera;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 317–328

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.317
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

318 FO2 with one transitive relation is decidable

strengthened: FO2 is undecidable in the presence of two transitive relations [11, 9], three
equivalence relations [15], one transitive and one equivalence relation [17], or three linear
orders [12].

On the positive side it is known that FO2 with one or two equivalence relations is
decidable [16, 17, 14]. The same holds for FO2 with one linear order [22]. The intriguing
questions left open by this research was the case of FO2 with one transitive relation and
FO2 with two linear orders.

In this paper we answer the first question positively: we prove that the satisfiability
problem for the extension of FO2 where exactly one binary relation is required to be trans-
itive, FO2

T , is decidable in 2-NExpTime. The result completes the classification of variants
of FO2 over transitive structures with respect to decidability.

For the special case of two linear orders, ExpSpace-completeness of finite satisfiability
is shown, subject to certain restrictions on signatures, in [24]. (The case of unrestricted
signatures, and decidability of the general satisfiability problem are currently open.)

It is also worth to compare the above results with results concerning GF2 i.e. the two-
variable restriction of the guarded fragment GF [1] where quantifiers are guarded by atoms.
GF+TG is the restriction of GF2 with transitive relations where the transitive relation
symbols are allowed to appear only in guards. As shown in [26] undecidability of FO2 with
transitivity transfers to GF2 with transitivity; however, GF+TG is decidable irrespective
of the number of transitive symbols. Moreover, as noted in [11], the decision procedure
developed for GF2+TG can be applied to GF2 with one transitive relation that is allowed
to appear also outside guards, giving 2-ExpTime-completeness of the latter fragment.

Also of note in this context is the interpretation of FO2 over data words and data trees
that appear e.g. in verification and XML processing. Decidability of FO2 over data words
with one additional equivalence relation was shown in [3]. For more results related to FO2

over data words or data trees see e.g. [18, 24, 4, 21, 2].
It makes sense to also consider more expressive systems in which we may refer to the

transitive closure of some relation. In fact, relatively few decidable fragments of first-order
logic with transitive closure are known. One exception is the logic GF2 with a transitive
closure operator applied to binary symbols appearing only in guards [19]. This fragment
captures the two-variable guarded fragment with transitive guards, GF2+TG, preserving its
complexity [27, 10]. Also decidable is the satisfiability problem for the logic ∃∀(DTC+[E]),
i.e. the prefix class ∃∀ extended by the positive deterministic transitive closure operator of
one binary relation, which is shown to enjoy the exponential model property [8]. Recently,
it has been shown that the satisfiability problem for the two-variable universal fragment of
first-order logic with constants remains decidable when extended by the transitive closure
of a single binary relation [13]. Whether the same holds for full FO2 is open.

Expressive power of FO2
T . As has already been mentioned, FO2 has the finite model

property. Adding one transitive relation to GF2 (even restricted only to guards) we can
write infinity axioms, however models for this logic still enjoy the so called tree-like property,
i.e. new elements required by ∀∃-conjuncts can be added independently. Below we give an
example of an infinity axiom in FO2

T that enforces models where in some triples all elements
depend on each other.

We use the transitive relation symbol T and two unary symbols P andQ. It is not difficult
to formalize the following statements by an FO2

T formula: (a) T is strictly antisymmetric.
(b) Elements of P form one infinite chain. (c) Elements of Q are incomparable. (d) Every
element of P has an incomparable element in Q. (e) Every element of Q is smaller than
some element in P .

W. Szwast and L. Tendera 319

P . . . ◦ // ◦ // ◦ // ◦ // ◦ // ◦ . . .

Q . . . •

??

•

??

•

??

•

??

•

??

• . . .

Figure 1 A model satisfying (a)-(e). Arrows depict elements related by T . Lines connect elements
required by (d), not connected by T .

In any model satisfying (a)-(e) there is an infinite chain of elements in P that induces an
infinite antichain of elements in Q (see Figure 1). Note also, that it suffices that the unique
transitive relation is supposed to be a partial ordering.
Outline of the proof. Models for our logic, taking into account the interpretation of
the transitive relation, can obviously be seen as partitioned into cliques. As usually for
two-variable logics, we first establish a “Scott-type” normal form for FO2

T : ∀∀ ∧
∧
∀∃,

allowing us to restrict the nesting of quantifiers to depth two, as well as to concentrate
on the ∀∃-conjuncts demanding “witnesses” for all elements in a model. The form of the
∀∃-conjuncts enables to distinguish witnesses required inside cliques (i.e. realizing a 2-type
containing both T (x, y) and T (y, x), see Section 2 for a precise definition) from witnesses
outside cliques. We also establish a small clique property for FO2

T (practically the same as in
[15]), allowing us to restrict attention to models with cliques exponentially bounded in the
size of the signature. Further constructions proceed on levels of cliques rather than individual
elements. (An alternative approach would be to consider first the satisfiability problem over
an antisymmetric relation T and then reduce the general problem to the aforementioned one
taking into account the bound on the clique sizes.)

Crucial to our argument is this property: any infinitely satisfiable sentence has an infinite
narrow model, i.e. a model whose universe can be partitioned into segments (i.e. sets of
cliques) S0, S1, . . ., each of doubly exponential size, such that every element in

⋃j−1
i=0 Si

requiring a witness outside its clique has the witness either in S0 or in Sj (so, in every
Sk, k ≥ j, Def. 16). This immediately implies that, when needed, every single segment Sj

(j > 0) can be removed from the structure, to yield a model with new properties.
To prove existence of narrow models, we first make some useful observations. In partic-

ular, we show that a single clique can be duplicated, provided its type called splice appears
at least twice in a model (Claim 7). The property is used to show the main technical result
(Claim 10 and Corollary 11). Next, the idea is generalized in Lemma 13 to show that for
any finite subset F of elements, the model can be extended by a fixed number of cliques
(depending only on the signature, and not depending on the cardinality of F) providing all
required witnesses for elements from F .

As the main result of the paper, we show that from any narrow model we can build
a canonical model where every two segments of the infinite partition (except the first) are
isomorphic and they are connected using at most two distinct similarity types (Def. 19). In
fact, these constructions can be seen as an application of the infinite Ramsey theorem [23],
where segments of the models are considered to be nodes in a colored graph, and similarity
types of pairs of segments are colors of edges.

The above properties suffice to obtain the 2-NExpTime decision procedure for the sat-
isfiability problem for FO2

T given in Theorem 21 and Corollary 22. We note however that
the best lower bound coming from GF2+TG is 2-ExpTime, thus our result leaves a gap in
complexity. We also note that our decision procedure cannot be straightforwardly general-
ized to solve the finite satisfiability problem for FO2

T and to the best of our knowledge, the
latter problem remains open (see Outlook for some discussion).

STACS’13

320 FO2 with one transitive relation is decidable

2 Preliminaries

We denote by FO2 the two-variable fragment of first-order logic (with equality) over re-
lational signatures. By FO2

T we understand the set of FO2
T -formulas over any signature

σ = σ0 ∪ {T}, where T is a distinguished binary predicate. The semantics for FO2
T is as for

FO2, subject to the restriction that T is always interpreted as a transitive relation.
In this paper, σ-structures are denoted by Gothic capital letters and their universes

by corresponding Latin capitals. Where a structure is clear from context, we frequently
equivocate between predicates and their realizations, thus writing, for example, R in place
of the technically correct RA. If A is a σ-structure and B ⊆ A, then A � B denotes the
substructure of A with the universe B.

An (atomic and proper) k-type (over a given signature) is a maximal consistent set of
atoms or negated atoms over k distinct variables not containing equality atoms xi = xj

with i 6= j. If β(x, y) is a 2-type over variables x and y, then β � x (respectively, β � y)
denotes the unique 1-type that is obtained from β by removing atoms with the variable y
(respectively, the variable x). We denote by α the set of all 1-types and by β the set of all
2-types (over a given signature). Note that |α| and |β| are bounded exponentially in the
size of the signature. We often identify a type with the conjunction of all its elements.

For a given σ-structure A and a ∈ A we say that a realizes a 1-type α if α is the unique
1-type such that A |= α[a]. We denote by tpA(a) the 1-type realized by a. Similarly, for
distinct a, b ∈ A, we denote by tpA(a, b) the unique 2-type realized by the pair a, b, i.e. the
2-type β such that A |= β[a, b]. In general, for finite B,C ⊆ A, B ∩ C = ∅, by tpA(B,C)
we denote the similarity type of the substructure A � (B ∪ C) (or, in other words, its
card(B ∪ C)-type).

Assume A is a σ-structure and B,C ⊆ A. We denote by αA (respectively, αA[B]) the
set of all 1-types realized in A (respectively, realized in A � B), and by βA (respectively,
βA[B]) the set of all 2-types realized in A (respectively, realized in A � B). We denote by
βA[a,B] the set of all 2-types tpA(a, b) with b ∈ B, and by βA[B,C] the set of all 2-types
tpA(b, c) with b ∈ B, c ∈ C.

Let γ be a σ-sentence of the form ∀x ∃y ψ(x, y) and a ∈ A. We say that an element
b ∈ A is a γ-witness for a in the structure A if A |= ψ(a, b); b is a proper γ-witness, if b is a
γ-witness and a 6= b.

Scott normal form. As with FO2, so too with FO2
T , analysis is facilitated by the availab-

ility of normal forms.

I Definition 1. An FO2-sentence Ψ is in Scott normal form if it is of the following form:
∀x∀y ψ0(x, y)∧

∧M
i=1 ∀x∃y ψi(x, y), where every ψi is quantifier-free and includes unary and

binary predicate letters only.

Without loss of generality we suppose that for i ≥ 1, ψi(x, y) entails x 6= y (replacing
ψi(x, y) with (ψi(x, y) ∨ ψi(x, x)) ∧ x 6= y, which is sound over all structures with at least
two elements).

Two formulas are said to be strongly equisatisfiable if they are satisfiable over the same
universe. The following Lemma is typical for two-variable logics.

I Lemma 2 ([25, 5]). For every formula ϕ ∈ FO2 one can compute in polynomial time a
strongly equisatisfiable normal form formula ψ ∈ FO2 over a new signature whose length is
linear in the length of ϕ.

Suppose the signature σ consists of predicates of arity at most 2. To define a σ-structure
A, it suffices to specify the 1-types and 2-types realized by elements and pairs of elements

W. Szwast and L. Tendera 321

from the universe A. In the presence of a transitive relation, we classify 2-types according
to the transitive connection between x and y. And so, we distinguish β→, β←, β↔ and β−

such that β = β→ ∪̇ β← ∪̇ β↔ ∪̇ β− and for instance: β ∈ β→ iff (T (x, y)∧¬T (y, x)) ∈ β,
β ∈ β↔ iff (T (x, y) ∧ T (y, x)) ∈ β, etc.

For a quantifier-free formula ϕ(x, y) we use superscripts →, ←, ↔ and − to define new
formulas that explicitly specify the transitive connection between x and y. For instance, for
a quantifier-free formula ϕ(x, y) ∈ FO2

T we let ϕ→(x, y) := ϕ(x, y) ∧ T (x, y) ∧ ¬T (y, x).
This conversion of FO2

T -formulae leads to the the following variant of the Scott normal
form:

∀x∀y ψ0∧
m∧

i=1
γi ∧

m∧
i=1

δi (1)

where γi = ∀x∃y ψdi
i (x, y) with di ∈ {→,← ,− }, and δi = ∀x∃y ψ↔

i (x, y).
For a fixed sentence Ψ in normal form (1) we often write γi ∈ Ψ to indicate that γi is a

conjunct of Ψ of the form ∀x∃y ψdi
i (x, y).

I Lemma 3. Let ϕ be an FO2
T -formula over a signature τ . We can compute, in polynomial

time, a strongly equisatisfiable FO2
T -formula in normal form, over a signature σ consisting

of τ together with a number of additional unary and binary predicates.

Sketch. We employ the standard technique of renaming subformulas familiar from [25] and
[5], noting that any formula ∃yψ is logically equivalent to ∃yψ→∨∃yψ←∨∃yψ↔∨∃yψ−. J

The following trivial observation will be very useful in the paper.

I Proposition 4. Assume A is a σ-structure and Ψ is a FO2
T -sentence over σ in normal

form (1). Then A |= Ψ if and only if
(a) for every a ∈ A, for every γi (1 ≤ i ≤ m) there is a γi-witness for a in A,
(b) for every a ∈ A, for every δi (1 ≤ i ≤ m) there is a δi-witness for a in A,
(c) for every a, b ∈ A, tpA(a, b) |= ψ0,
(d) TA is transitive in A.

A small clique property for FO2
T . Let A be a σ-structure. A subset B of A is called

T -connected if β[B] ⊆ β↔[A]. Maximal T -connected subsets of A are called cliques. Note
that if β[a,A] ∩ β↔[A] = ∅, for some a ∈ A, then {a} is a clique. We prove the following
small clique property.

I Lemma 5. Let Ψ be a satisfiable FO2
T -sentence in normal form, over a signature σ. Then

there exists a model of Ψ in which the size of each clique is bounded exponentially in |σ|.

We first show how to replace a single clique in models of normal-form FO2
T -sentences by

an equivalent small one. The idea is not new, it was used in [27] to show that T -cliques in
models of GF2+TG can be replaced by appropriate small structures called T -petals (Lemma
17). Later, in [16] it was proved that for any structure A and its substructure B, one may
replace B by an alternative structure B′ of a bounded size in such a way that the obtained
structure A′ and the original structure A satisfy exactly the same normal form FO2 formulas.
Due to space limitations, a precise statement of the latter lemma and the proof of the small
clique model property will appear in the full version of the paper.

STACS’13

322 FO2 with one transitive relation is decidable

3 Splices and duplicability

In the remainder of the paper we fix a relational signature σ and assume Ψ is an FO2
T -

sentence in normal form (1). By Lemma 5, we may already assume (and we do so) that
models of Ψ have the small clique property. In the next two sections we assume that Ψ is
satisfiable and, if not stated otherwise, A |= Ψ.

In this section we analyze properties of models of Ψ on the level of cliques rather than
individual elements. We give here the key technical argument of the paper (Corollary 11).
It says, roughly speaking, that if A |= Ψ and elements of a finite subset F of the universe
A have their γi-witnesses in several “similar” cliques then A can be extended by one new
clique, where all the elements of F have their γi-witnesses.

First, we need to introduce some new notions and notation. For a ∈ A denote by ClA(a)
the unique clique C ⊆ A with a ∈ C. When F ⊆ A, denote ClA(F) = {ClA(a) : a ∈ F}
and finally, ClA = ClA(A). Note that whenever B ∈ ClA, and a ∈ A is an element outside
the clique B, then the 2-types between a and any element b ∈ B belong to the same subset
of β, i.e. either to β→, β← or β−. So, we might speak about elements of A connected with
the clique B using “directed” edges. Similarly, we can identify cliques connected with B

using “incoming” and “outgoing” edges.

I Definition 6. Let A be a σ-structure and let B ∈ ClA. Define:
InA(B) def= {tpA(C) : C ∈ ClA and β[C,B] ⊆ β→},
OutA(B) def= {tpA(C) : C ∈ ClA and β[C,B] ⊆ β←},
spA(B) = 〈tpA(B), InA(B), OutA(B)〉,
SpA = {spA(B) : B ∈ ClA}. Elements of SpA are called A-splices.

Splices define cliques reachable from a given clique via T .
We say that two cliques B,B′ ∈ ClA realize the same splice, written B ≡A B′, if

spA(B) = spA(B′). When A is understood we often omit the superscript in ≡A and write
≡. Note that ≡A is an equivalence relation on ClA. Moreover, if we have an a priori upper
bound on the size of cliques in ClA, then ClA/≡ is finite (and of bounded cardinality).

Additionally, we distinguish the set K(A) of unique cliques in A: K(A) = {B ∈ ClA :
card([B]≡) = 1} and the corresponding subset K(A) of the universe of A, that consists of
the elements of the unique cliques: K(A) =

⋃
B∈K(A) B.

Our task is now to show that any model of Ψ containing a non-unique clique B can be
extended into a new model of Ψ by adding a copy of B. The copy of B is added in such
a way that it also provides, for all conjuncts of the form γi, all the witnesses for elements
outside the two cliques that have been provided by B. This property will be explored later,
when new models will be constructed by removing segments (i.e. sets of cliques) from given
ones.

For every γi ∈ Ψ (recall γi = ∀x∃y ψdi
i (x, y) with di ∈ {→,← ,− }) and for every a ∈ A

we define WA
i (a) as the set of all proper γi-witnesses for a in A:

WA
i (a) def= {b ∈ A : A |= ψi(a, b), b 6= a}.

Similarly, for every γi ∈ Ψ and for every F ⊆ A we define WA
i (F) def=

⋃
a∈F W

A
i (a).

The following claim states that every non-unique clique in a given model can be properly
duplicated, as informally described above.

I Claim 7 (Duplicability). Assume A |= Ψ, B1 ∈ ClA and B1 6∈ K(A). There is an extension
A′ of A by one new clique D such that
1. A′ |= Ψ,

W. Szwast and L. Tendera 323

2. for every conjunct γi of Ψ, for every a ∈ A we have:
B1 ∩WA

i (a) 6= ∅ iff D ∩WA′

i (a) 6= ∅, and
3. spA′(D) = spA

′(B1) = spA(B1).

Proof. Let A |= Ψ, B1 ∈ ClA. Since B1 6∈ K(A), there exists B2 ∈ ClA, B2 6= B1 such that
spA(B2) = spA(B1). Assume D is a duplicate of A � B1, D ∩ A = ∅, f1 : D 7→ B1 and
f2 : D 7→ B2 are appropriate isomorphism functions. Let A′ be an extension of A with the
universe A∪̇D such that:

tpA
′(d, b) def= tpA(b, f2(d)), for every b ∈ B1, d ∈ D (note that β[d,B1] = β[B1, f2(d)]

and so β[D,B1] = β[B1, B2]),
tpA

′(d, a) def= tpA(f1(d), a), for every a ∈ A \ (B1 ∪D), d ∈ D (note that β[d,A \ B1] =
β[f1(d), A \B1] and so β[D,A \B1] = β[B1, A \B1]).

To see that A′ |= Ψ one can show that conditions (a)–(d) of Proposition 4 hold for A′. J

Using the above claim we may build saturated models in the following sense.

I Definition 8. Assume A |= Ψ. We say that A is witness-saturated, if A has the small
clique property and for every a ∈ A, for every γi ∈ Ψ (1 ≤ i ≤ m)

Wi(a) ⊆ K(A) or Wi(a) is infinite.

Note that if a witness-saturated model A is finite then A = K(A). By Lemma 5 and by
iterative application of Claim 7 we get the following.

I Lemma 9 (Saturated model). Every satisfiable normal form sentence Ψ has a countable
witness-saturated model. Additionally, if A is witness-saturated, then the extension A′ given
by Claim 7 is also witness-saturated.

The above Lemma is essential for the proof of the key technical tool for the paper,
Corollary 11, given below. It says that when several elements a1, a2, . . . , an of a model
A have γi-witnesses in several distinguished cliques that realize the same splice, one can
extend the model A by a single clique D (realizing the same splice) in which a1, a2, . . . , an

have their γi-witnesses. The proof is based on a more subtle (than in Claim 7) analysis of
models of a normal form sentence Ψ given in Claim 10. In the Claim note that whenever
β(C1, C2) ∈ β← then β(C2, C1) 6∈ β←.

I Claim 10. Assume A is countable witness-saturated and γi ∈ Ψ. Let C1, C2, B1, B2 ∈ ClA,
β(C1, C2) 6∈ β←, B1 6= B2, B1 ∩Wi(C1) 6= ∅, B2 ∩Wi(C2) 6= ∅, C1 6∈ K(A), C1 ≡ C2 and
B1 ≡ B2. Then, there exists an extension A1 of A by at least one clique D such that
(i) A1 |= Ψ and A1 is witness-saturated,
(ii) for every a ∈ A: if B1 ∩WA

i (a) 6= ∅ then D ∩WA1
i (a) 6= ∅,

(iii) for every a ∈ C2: if B2 ∩WA
i (a) 6= ∅ then D ∩WA1

i (a) 6= ∅,
(iv) spA1(D) = spA1(B1) = spA(B1).

Proof. We have several cases. In each case we add a duplicate D of the clique B1 where
both C1 and C2 will get their γi-witnesses. We sketch only one of the interesting cases.
Case 1. β[C1, B1] ⊆ β− and β[C1, C2] ⊆ β→ ∪ β−. In this case C1 6= C2 and γi =
∀x∃y ψ−i (x, y). So, β[C1, B1] ⊆ β− and β[C2, B2] ⊆ β−.
Subcase 1.a. β[C1, C2] ∈ β→, β[B1, B2] ⊆ β−, β[C1, B2] ⊆ β→ and β[B1, C2] ∈ β→.

The construction proceeds in four steps.
Step 1 (copying of B1). Let A′ be the witness saturated extension of A by one new clique D
– a duplicate of the clique B1 given by Claim 7 and Lemma 9. Observe that all conditions
(i)–(iv) hold in A′ except (iii) since by construction of A′ βA′

[C2, D] = βA[C2, B1] ⊆ β←.

STACS’13

324 FO2 with one transitive relation is decidable

Step 2 (modification of tpA′(C2, D)). To ensure that (iii) holds, a new structure A2 is built
by defining tpA2(C2, D) def= tpA

′(C2, B2).
Step 3 (transitivity correction). To ensure that T is transitive we construct a structure A3:
for every X ∈ ClA2 , if β[D,X] ⊆ β→ and β[X,C2] ⊆ β→ then replace tpA2(D,X) by
tpA2(B2, X). One can observe that β[X,B2] ⊆ β−, so T is transitive in A3.
Step 4 (γj-witness in X correction). Let X ∈ ClA2 be such that the type tpA2(D,X) is
changed in Step 3. We show that then there is a clique X2 ∈ ClA3 such that tpA3(X2) =
tpA3(X) and βA3 [D,X2] ⊆ β→. For, observe that tpA3(X) ∈ OutA3(B1) and so tpA3(X) ∈
OutA3(B2) since B1 ≡ B2. Let X1 ∈ ClA3 , tpA3(X1) = tpA3(X) and β[B2, X1] ⊆ β→.
Since β[C1, B2] ⊆ β→ we have β[C1, X1] ⊆ β→ and so tpA3(X1) ∈ OutA3(C1). Hence, since
C1 ≡ C2 there exist X2 ∈ ClA3 such that tpA3(X2) = tpA3(X1) and β[C2, X2] ⊆ β→. Since
β[B1, C2] ⊆ β→, so β[B1, X2] ⊆ β→, and hence, by construction of A′, β[D,X2] ⊆ β→.
To obtain the required model A1 replace tpA3(D,X2) by tpA2(D,X) (= tpA(B1, X)).

Correctness proof of the above construction, as well as other cases, will appear in the
full version of the paper. J

I Corollary 11. Assume A is countable witness-saturated, γi ∈ Ψ and X ∈ SpA. Let
F ⊆ A \ K(A) be a finite set such that for every a ∈ F there is b ∈ WA

i (a) such that
b 6∈ K(A) and sp(ClA(b)) = X. Then, there exists an extension A′ of A by at least one
clique D such that
(i) A′ |= Ψ and A′ is witness-saturated,
(ii) D ∩WA′

i (a) 6= ∅, for every a ∈ F ,
(iii) spA′(D) = X.

Proof. Let F = {a1, a2, . . . , ap}, where a1 denotes an element of F such that for every
a ∈ F \ {a1}, tpA(a1, a) 6∈ β←. (Note that a1 can always be found since F is finite and T
is transitive in A.) We iteratively apply Claim 10. Denote A1 = A and for k = 2, 3, . . . , p
let Ak and Dk be the extension of Ak−1

1 by at least one clique Dk given by Claim 10 for
a1 and ak. Obviously, for every k (2 ≤ k ≤ p) we have Dk ∩WA′

i (a) 6= ∅, for every a ∈
{a1, a2, . . . , ak}. J

4 Canonical models

In this section we analyze properties of models of Ψ on the level of segments which consist
of several cliques, and constitute a partition S0, S1, . . . of the universe of a model. Every
segment Sj has a fixed (doubly exponential) size and is meant to contain all γi-witnesses
for elements from earlier segments S0, S1, . . . , Sj−1. On this level of abstraction cliques and
splices of a model become less important.

I Definition 12. A finite subset S ⊂ A is a segment in A if ClA(a) ⊆ S for every a ∈ S.

In the following we reserve the letter S (possibly decorated) to denote segments. Define
s = |Sp(σ)| and denote by h the bound of the size of each clique in a small-clique σ-structure,
given by Lemma 5. Note that s is doubly exponential and h is exponential in |σ|.

We first prove a generalization of Corollary 11. It says, roughly speaking, that if A |= Ψ
and F is a finite subset of A, then it is possible to extend A by a segment of fixed cardinality
in which all elements of F have their γi-witnesses, for every i (1 ≤ i ≤ m).

I Lemma 13 (Witnesses compression). Assume A is a countable witness-saturated model of
Ψ and F ⊆ A \K(A) is finite. There is a witness-saturated extension A′ of A by a segment
S such that

W. Szwast and L. Tendera 325

1. A′ |= Ψ,
2. |S| ≤ m · s · h,
3. for every γi ∈ Ψ, for every a ∈ F , if WA

i (a) \K(A) 6= ∅, then WA′

i (a) ∩ S 6= ∅.

Proof. First, for given i (1 ≤ i ≤ m) and X ∈ SpA let FX
i ⊆ S be a maximal subset of F

such that for every a ∈ FX
i there is b ∈ WA

i (a) such that b 6∈ K(A) and sp(ClA(b)) = X.
Now, for every i (1 ≤ i ≤ m) and for every X ∈ SpA iteratively apply Corollary 11 for FX

i

and denote each new clique added in the process by DX
i . Let S be the segment consisting

of elements of the new cliques: S def=
⋃

1≤i≤m

⋃
X∈SpA DX

i .

Condition (i) of Lemma 11 implies that A′ |= Ψ. Obviously, |S| ≤ m · s ·h. To show that
condition 3 of our lemma holds, assume γi ∈ Ψ, a ∈ F and there exists b ∈WA

i (a) such that
b 6∈ K(A). So a ∈ FX

i , where X = sp(ClA(b)). By condition (ii) of Lemma 11 we obtain
DX

i ∩WA′

i (a) 6= ∅, and so, WA′

i (a) ∩ S 6= ∅. J

I Definition 14. A segment S A is redundant in A, if for every a ∈ A \ S and for every
γi ∈ Ψ we have: WA

i (a) ∩ S 6= ∅ implies there exists c ∈ A \ S such that c ∈WA
i (a).

I Claim 15. If A |= Ψ and S A is redundant in A, then A � (A \ S) |= Ψ.

Proof. Every subgraph of a transitive graph is also transitive. Conditions (a)–(c) of Pro-
position 4 obviously hold for A � (A \ S). J

I Definition 16. A model A of Ψ is narrow if there is an infinite partition PA = {S0, S1, . . .}
of the universe A such that:
1. K(A) ⊂ S0, |S0| ≤ (m+ 1) · s · h,
2. |Sj | ≤ m · s · h, for every j ≥ 1,
3. for every j ≥ 0, for every e ∈

⋃j
k=0 Sk and for every γi ∈ Ψ,

if WA
i (e) ∩ S0 = ∅, then WA

i (e) ∩ Sj+1 6= ∅.

I Lemma 17. Every infinitely satisfiable sentence Ψ has a narrow model.

Proof. Assume A is an infinite witness-saturated model of Ψ that exists by Lemma 13. For
γi ∈ Ψ and a ∈ A denote by γ̄i(a) an arbitrarily chosen element b ∈WA

i (a). Define A0 = A

and S0 = K(A) ∪
⋃

a∈K(A) Cl
A(γ̄i(a)).

Now, for j = 0, 1, 2, . . . define:
Aj+1 = A′j , where A′j is the extension of Aj given by Lemma 13 for F =

⋃j
k=0 Sk,

Sj+1 = B, where B is the finite set given by Lemma 13; B extends Aj to Aj+1 in such
a way, that:

Aj+1 |= Ψ,
|B| ≤ m · s · h,
for every γi ∈ Ψ, for every a ∈ F , if WA

i (a) \K(Aj) 6= ∅, then WAj+1
i (a) ∩B 6= ∅.

Now, define A′ = (
⋃∞

k=0 Ak) �
⋃∞

k=0 Sk. By Claim 15 and Lemma 13, it is easy to see, that
A′ is a narrow model of Ψ with partition PA′ = {S0, S1, . . .}. J

I Definition 18. Assume A is a σ-structure, x, y ∈ N+ and B,B′, C, C ′ are finite subsets
of A with fixed orderings: B = {b1 < . . . < bx}, B′ = {b′1 < . . . < b′y}, C = {c1 < . . . < cx},
C ′ = {c′1 < . . . , c′y} such that B ∩B′ = ∅, C ∩ C ′ = ∅.
A connection type of B and B′ in A is the structure 〈B,B′〉 def= A � (B∪B′). Two connection
types 〈B,B′〉 and 〈C,C ′〉 are the same connection types in A, denoted 〈B,B′〉 ∼=A 〈C,C ′〉,
if the function f : B ∪B′ 7→ C ∪C ′ defined by f(bj) = cj and f(b′j) = c′j is an isomorphism
of 〈B,B′〉 and 〈C,C ′〉.

STACS’13

326 FO2 with one transitive relation is decidable

I Definition 19. Assume A is a narrow model of Ψ and PA = {S0, S1, . . .} is any partition
satisfying conditions 1-3 of Definition 16. We say that A is canonical if for every j, k ∈ N+,

0 < j < k, we have 〈Sj , S0〉 ∼=A 〈S1, S0〉, and 〈Sk, Sj〉 ∼=A 〈S2, S1〉.

I Lemma 20. Every infinitely satisfiable sentence Ψ has a canonical model.

Proof. Let A be a narrow model of Ψ with partition PA = {S0, S1, . . .} given by Definition
16. Additionally, assume that in every segment Sj , j ≥ 0, there is a fixed linear ordering.

Observe first that for every p > 0, Sp is redundant in A. For, assume (cf. Definition 14)
b ∈ Sp, a ∈ A\Sp and b ∈WA

i (a). Assume a ∈ Sq and take j ∈ N+ such that j > max{p, q}.
By Definition 16, we have that if WA

i (a) ∩ S0 = ∅, then WA
i (a) ∩ Sj+1 6= ∅. So, there is

c ∈ S0 ∪ Sj+1 such that c ∈ WA
i (a). Similarly, for every infinite V ⊂ N+, the segment⋃

j∈N+\V Sj is redundant in A and, by Claim 15, A �
⋃

j∈V ∪{0} Sj |= Ψ.
To construct the canonical model we first find an infinite set V ⊂ N+ such that for every

j, l ∈ V , j 6= l, 〈Sl, S0〉 ∼=A 〈Sj , S0〉. Observe that the set V does exist (by the infinite
Ramsey theorem, there are infinitely many segments in PA and only a finite number of
similarity types).

Secondly, we find an infinite set W ⊆ V such that for every i, j, k, l ∈W with i < j and
k < l we have 〈Sj , Si〉 ∼=A 〈Sl, Sk〉. (Again, W exists by the infinite Ramsey theorem).

Finally, we define A′ = A �
⋃

j∈W∪{0} Sj . By Claim 15, A′ |= Ψ. Obviously, A′ is
canonical with partition PA′ = {Sj : j ∈ N+, j = #p}, where #p is the position number of
p ∈W ∪ {0}. J

5 Decidability and complexity

From Lemma 20 we get immediately the following theorem.

I Theorem 21. An FO2
T -sentence Ψ is satisfiable if and only if there exist a σ-structure A

and S0, S1, S2, S3 ⊆ A, such that:
1. |A| ≤ (4m+ 1) · s · h,
2. either S1 = S2 = S3 = ∅, or {S0, S1, S2, S3} is a partition of A and then

a. 〈S1, S0〉 ∼=A 〈S2, S0〉 ∼=A 〈S3, S0〉,
b. 〈S2, S1〉 ∼=A 〈S3, S2〉 ∼=A 〈S3, S1〉,

3. for every a, b ∈ A, tpA(a, b) |= ψ0,
4. TA is transitive in A,
5. for every j = 0, 1, 2, for every e ∈ Sj and for every γi ∈ Ψ,

if WA
i (e) ∩ S0 = ∅, then WA

i (e) ∩ Sj+1 6= ∅.

Proof. (⇒) There are two cases. Either Ψ has only finite models and then, by Lemma 9,
Ψ has a witness-saturated model A with A = K(A). In this case, we put S0 = A and S1 =
S2 = S3 = ∅. Or, Ψ has infinite models, and then, by Lemma 20, Ψ has a canonical model
A′ with partition PA′ = {S0, S1, . . .}. In this case, we define A

def= A′ � (S0∪̇S1∪̇S2∪̇S3).
Note that in either case |S0| ≤ s · h+m · s · h = (m+ 1) · s · h.
(⇐) Define a structure A′ such that A′ def= S0 ∪̇ S1 ∪̇ S2 ∪̇ S3 ∪̇

⋃̇∞
j=4 Sj and, for every

j, k ∈ N+ (0 < j < k) : 〈Sj , S0〉 ∼=A′
〈S1, S0〉 and 〈Sk, Sj〉 ∼=A′

〈S2, S1〉. It is obvious that
A′ satisfies conditions (a)–(c) of Proposition 4. To show that T is transitive in A′ it suffices to
prove that for every j, k, l (0 ≤ j ≤ k ≤ l), TA′�(Sj∪Sk∪Sl) is transitive in A′ � (Sj ∪Sk ∪Sl).
The latter condition can be easily verified; hence, A′ |= Ψ. J

I Corollary 22. SAT(FO2
T) ∈ 2 -NExpTime.

W. Szwast and L. Tendera 327

Proof. To check whether a given FO2
T sentence Ψ is satisfiable we follow Theorem 21 and

we obtain a nondeterministic double exponential time procedure, as described below.
1. Guess a σ-structure A of cardinality |A| ≤ (4m+ 1) · s · h and partition

PA = {S0,S1, S2, S3};
2. Guess enumerations of every segment S0,S1, S2, S3;
3. If not:

a. 〈S1, S0〉 ∼=A 〈S2, S0〉 ∼=A 〈S3, S0〉 and
b. 〈S2, S1〉 ∼=A 〈S3, S2〉 ∼=A 〈S3, S1〉

then reject;
4. For every a, b ∈ A, if tpA(a, b) 6|= ψ0 then reject;
5. For every a, b, c ∈ A, if not (TA(a, b) ∧ TA(b, c)⇒ TA(a, c)) then reject;
6. For every j = 0, 1, 2, for every e ∈ Sj , for every γi ∈ Ψ such that WA

i (e) ∩ S0 = ∅
if WA

i (e) ∩ Sj+1 = ∅ then reject;
7. Accept; J

6 Outlook

Since the finite model property fails for FO2
T , an interesting question is whether the finite

satisfiability problem is also decidable. Immediately from Lemma 17 we have the following
observation.

I Corollary 23. An FO2
T -sentence Ψ is satisfiable if and only if

Ψ has a model of cardinality ≤ s · h, or Ψ has an infinite model.
The s · h bound on the size of the finite model of Ψ depends on the number of different
σ-splices and the size of cliques in a structure with the small clique property. Unfortunately,
this observation does not suffice to answer the finite satisfiability problem, as in general, one
can imagine that a finite model contains several realizations of the same splice. So, to the
best of our knowledge, the finite satisfiability problem for FO2

T remains open. We believe
that the latter problem is decidable; however, we suppose that an essential extension of the
above approach is required to get the proof.

We also note that the 2-NExpTime bound for the satisfiability problem leaves a gap
in complexity, as the best lower bound coming from the two-variable guarded logic with
transitive guards is 2-ExpTime [10]. We believe that the upper bound proved in our paper
can be improved; however, as FO2

T does not enjoy the tree-like property, standard techniques
using alternating machines cannot be applied directly.

Acknowledgements The authors acknowledge insightful comments from the anonymous
referees that helped to improve the presentation and simplify some proofs in Section 4.

References
1 H. Andréka, J. van Benthem, and I. Németi. Modal languages and bounded fragments of

predicate logic. J. Philos. Logic, 27:217–274, 1998.
2 M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic

on data trees and xml reasoning. In Proc. of PODS-06, pages 10–19, New York, NY, USA,
2006. ACM.

3 M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic
on words with data. In LICS-06, pages 7–16, 2006.

4 C. David, L. Libkin, and Tony Tan. On the satisfiability of two-variable logic over data
words. In Christian G. Fermüller and Andrei Voronkov, editors, LPAR (Yogyakarta),
volume 6397 of Lecture Notes in Computer Science, pages 248–262. Springer, 2010.

STACS’13

328 FO2 with one transitive relation is decidable

5 E. Grädel, P. Kolaitis, and M. Vardi. On the decision problem for two-variable first-order
logic. Bull. of Symb. Logic, 3(1):53–69, 1997.

6 E. Grädel and M. Otto. On Logics with Two Variables. Theoretical Computer Science,
224:73–113, 1999.

7 E. Grädel, M. Otto, and E. Rosen. Undecidability results on two-variable logics. Arch.
Math. Log., 38(4-5):313–354, 1999.

8 N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, and G. Yorsh. The boundary
between decidability and undecidability for transitive-closure logics. In CSL, pages 160–
174, 2004.

9 Y. Kazakov. Saturation-based decision procedures for extensions of the guarded fragment.
PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, 2006.

10 E. Kieroński. The two-variable guarded fragment with transitive guards is
2EXPTIME-Hard. In Proc. of FOSSACS, volume LNCS 2620, pages 299–312, 2003.

11 E. Kieroński. Results on the guarded fragment with equivalence or transitive relations. In
Computer Science Logic, volume 3634, pages 309–324. Springer Verlag, 2005.

12 E. Kieroński. Decidability issues for two-variable logics with several linear orders. In
CSL-11, pages 337–351, 2011.

13 E. Kieroński and J. Michaliszyn. Two-variable universal logic with transitive closure. In
CSL-12, LIPIcs, pages 337–351, 2012.

14 E. Kieroński, J. Michaliszyn, I. Pratt-Hartmann, and L. Tendera. Two-variable first-order
logic with equivalence closure. In Proc. of LICS2012, pages 431–440. IEEE, 2012.

15 E. Kieroński and M. Otto. Small substructures and decidability issues for first-order logic
with two variables. In Proc. of LICS2005, pages 448–457, 2005.

16 E. Kieroński and M. Otto. Small substructures and decidability issues for first-order logic
with two variables. Journal of Symbolic Logic, 77 (3):729–765, 2012.

17 E. Kieroński and L. Tendera. On finite satisfiability of two-variable first-order logic with
equivalence relations. In Proc. of LICS2009, pages 123–132, 2009.

18 A. Manuel. Two variables and two successors. In Petr Hlinený and Antonín Kucera, editors,
MFCS, volume 6281 of Lecture Notes in Computer Science, pages 513–524. Springer, 2010.

19 J. Michaliszyn. Decidability of the guarded fragment with the transitive closure. In Proc.
of ICALP2009, pages 261–272, 2009.

20 M. Mortimer. On languages with two variables. Zeitschr. f. Logik und Grundlagen d. Math.,
21:135–140, 1975.

21 M. Niewerth and T. Schwentick. Two-variable logic and key constraints on data words. In
Tova Milo, editor, ICDT, pages 138–149. ACM, 2011.

22 M. Otto. Two-variable first-order logic over ordered domains. Journal of Symbolic Logic,
66:685–702, 2001.

23 F. Ramsey. On a problem of formal logic. Proc. London Math. Soc. series 2, 30:264–286,
1930.

24 T. Schwentick and T. Zeume. Two-variable logic with two order relations - (extended
abstract). In CSL, pages 499–513, 2010.

25 D. Scott. A decision method for validity of sentences in two variables. J. Symb. Logic,
27:477, 1962.

26 W. Szwast and L. Tendera. On the decision problem for the guarded fragment with trans-
itivity. In Proc. of LICS2001, pages 147–156, 2001.

27 W. Szwast and L. Tendera. The guarded fragment with transitive guards. Annals of Pure
and Applied Logic, 128:227–276, 2004.

Two-variable first order logic with modular
predicates over words∗

Luc Dartois1 and Charles Paperman1

1 LIAFA, Université Paris-Diderot and CNRS,

Case 7014, 75205 Paris Cedex 13, France

luc.dartois,charles.paperman@liafa.univ-paris-diderot.fr

Abstract

We consider first order formulae over the signature consisting of the symbols of the alpha-

bet, the symbol < (interpreted as a linear order) and the set MOD of modular numerical

predicates. We study the expressive power of FO2[<,MOD], the two-variable first order logic

over this signature, interpreted over finite words. We give an algebraic characterization of

the corresponding regular languages in terms of their syntactic morphisms and we also give

simple unambiguous regular expressions for them. It follows that one can decide whether a

given regular language is captured by FO2[<,MOD]. Our proofs rely on a combination of

arguments from semigroup theory (stamps), model theory (Ehrenfeucht-Fräıssé games) and

combinatorics.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases First order logic, automata theory, semigroup, modular predicates

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.329

Following the pioneering work of Büchi [3], McNaughton and Papert [11] and Thomas

[21], the study of the expressive power of fragments of first order logic has grown up to an

important topic of automata theory. Part of the main results for finite words are summarized

in the table below. They are concerned with the signature [<] (the ”sequential calculus” first

considered by Büchi) and [<,MOD], where MOD stands for the set of modular predicates.

The fragments of interest include Σ1, the set of existential formulae, its Boolean closure

BΣ1, the set FO of first order formulae and its restriction FO2 to two-variable formulae.

As shown in the table below, all the corresponding fragments are already known to be

decidable except for the class FO2[<,MOD], which is the topic of this paper.

Σ1 BΣ1 FO2 FO

[<] Decidable Decidable Decidable Decidable

[12, 21] [17, 21] [20] [11, 15]

[<,MOD] Decidable Decidable Decidable Decidable

[4] [4] New result [18, 2]

We also give an algebraic characterization of FO2[<,MOD] (Theorem 6), a description

of the corresponding languages as unambiguous regular expressions (Proposition 31) and

∗ The authors are supported by the project ANR 2010 BLAN 0202 02 FREC, the second author is
supported by Fondation CFM.

© Luc Dartois and Charles Paperman;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 329–340

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

luc.dartois, charles.paperman@liafa.univ-paris-diderot.fr
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.329
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

330 Two-variable first order logic with modular predicates over words

an equivalent definition in terms of a suitable variant of temporal logic (Proposition 30).

Our algebraic characterization QDA = FO2[<,MOD] can be viewed as an extension of

two known results (a) QA = FO[<,MOD] proved in [2, 18] and (b) DA = FO2[<] proved

in [5, 20]. However, it is not easy to extend the proofs of these equalities to our case. For

instance, the proof of (a) makes use of the successor relation, which is not expressible in

FO2[<]. Therefore our proof is closer to the proof of (b) but some technical difficulties still

have to be worked out (See Section 5).

1 Preliminaries

1.1 Words and logic

Let A be a finite alphabet. We denote by A∗ the set of all finite words over A and 1 the

empty word. Given a word u = a0 · · · an−1 of length n, we denote by α(u) the set of letters

of A occurring in u. We associate to u the relational structure Mu = {[0, n − 1], σ}, where

[i, j] is the set of integers between i and j and σ is the truth table of the predicates over u.

Basic examples of predicates are the binary predicate <, which is the usual order on integers,

and (a)a∈A that are disjoint monadic predicates marking the positions of the letters over

the structure. For instance, if u = aabbab, then a = {0, 1, 4} and b = {2, 3, 5}. We also

consider the modular predicate MODd
i , which holds at all positions equal to i modulo d,

and the 0-ary predicate Dd
i which is true if the word has length equals to i modulo d. For

u = aabbab, we have MOD2
0 = {0, 2, 4}, and D3

1 is false whereas D3
0 is true. We denote by

MOD the set of these modular predicates.

First order formulae are interpreted on words in the usual way (see [18]). For instance

the formula ∃x ∃y ∃z a(x)∧ b(y)∧ a(z)∧ x < y ∧ y < z defines the language A∗aA∗bA∗aA∗.

In this article, we focus on the first order formulae containing only two different vari-

ables. The subsequent logic is denoted by FO2[<]. For instance the two-variable formula

∃x ∃y a(x) ∧ b(y) ∧ x < y ∧ (∃x ∧ a(x) ∧ y < x) also defines the language A∗aA∗bA∗aA∗ of

the previous example. The first order logic with the order predicate can be enriched with

modular predicates. We denote by FO[<,MOD] (resp. FO2[<,MOD]) the logic built with

the same atomic propositions that FO[<] (resp. FO2[<]) except that we allow the modular

predicates. For instance the formula ∃x ∃y ∃z a(x)∧MOD2
0(x)∧ b(y)∧ a(z)∧x < y∧ y < z

defines the language (A2)∗aA∗bA∗aA∗.
Note that if required by context, we will specify the alphabet, denoting it between par-

entheses. For instance FO[<](B∗) denotes the set of the languages of B∗ definable by a

formula of FO[<].

1.2 Algebraic notions

We recall in this section the algebraic notions used in this paper.

1.2.1 Semigroups and recognizable languages

We refer to [13] for the standard definitions of semigroup theory. A semigroup is a set

equipped with a binary associative operation, which we will denote multiplicatively. A

monoid is a semigroup with a neutral element 1. Given a semigroup S, we denote by S1

either S if S is already a monoid or the monoid obtained by adding a neutral element 1 to

S otherwise. Recall that a monoid M divides another monoid N if M is a quotient of a

submonoid of N . This defines a partial order on finite monoids.

L. Dartois and C. Paperman 331

A stamp is a surjective monoid morphism from A∗ onto a finite monoid. A language

L is recognized by a finite monoid M if there exists a stamp ϕ : A∗ → M and a subset

P of M such that L = ϕ−1(P). A language is recognizable if it is recognized by a finite

monoid. Kleene’s theorem states that the set of recognizable languages is exactly the set of

rational (or regular) languages. The syntactic congruence of a regular language L of A∗ is

the equivalence relation ≡L defined as follow:

u ≡L v if and only if for all w,w′ ∈ A∗, wuw′ ∈ L⇔ wvw′ ∈ L.

The monoid A∗/≡L is the syntactic monoid of L and the morphism ϕ : A∗ → A∗/≡L is the

syntactic stamp.

1.2.2 Stability index, stable semigroup, stable automaton

For a stamp ϕ : A∗ → M , the set ϕ(A) is an element of the powerset monoid of M .

As such it has an idempotent power. The stability index of a stamp is the least positive

integer s such that ϕ(As) = ϕ(A2s). This set is therefore a semigroup called the stable

semigroup of ϕ. Stable semigroups are strongly related to stable automata, defined as follows.

Let A = (Q,A, ·) be a deterministic automaton and let k be a positive integer. The k-

automaton of A is the deterministic automaton Ak = (Q,Ak, ·k) where q ·k (a1a2 · · · ak) =
(· · · (q ·a1) ·a2) · · ·) ·ak). Note that if M is the transition monoid of A, and Mk the transition

monoid of Ak, then Mk is the submonoid of M generated by the image elements of words

of length k in M .

I Definition 1. Let A = (Q,B, ·) be a deterministic automaton. We say that A is stable if

for any two-letter word, there exists a letter that has the same action over the set Q, and

conversely for any letter of B, there exists a word of B2 that has the same action over Q.

As shown in the next proposition, this definition is a compatible translation of the stable

semigroup for an automaton.

I Proposition 2. Let A be a deterministic automaton. Then, there is an integer k such that

the associated k-automaton is stable.

The least k which satisfies this proposition is called the stability index of the automaton.

It is equal to the stability index of the associated stamp.

1.2.3 Stamps and varieties

A (pseudo) variety of (finite) monoids is a class of monoids closed under division and finite

products. According to Eilenberg [6], a variety of languages V is a class of languages closed

under finite union, intersection and complementation, and closed under inverse of monoid

morphism. This means that, for any monoid morphism ϕ : A∗ → B∗, X ∈ V(B∗) implies

ϕ−1(X) ∈ V(A∗). Furthermore Eilenberg [6] proved that there is a one-to-one correspond-

ence between varieties of monoids and varieties of languages.

The class of languages FO2[<,MOD] is not closed under inverse morphisms, and the Ei-

lenberg’s varieties theory does not apply. Still, this class is closed under inverse of length-

multiplying morphisms (shortened as lm-morphisms), and an algebraic characterization can

be obtained by considering a more general framework : the theory of C-varieties independ-

ently introduced by Esik and Ito [7] and Straubing [19] and developed by Pin and Straub-

ing [14].

S TAC S ’ 1 3

332 Two-variable first order logic with modular predicates over words

Let us now recall the notion of variety of stamps. A morphism α : A∗ → B∗ is length-

multiplying if there exists an integer n such that for any letter a of A, ϕ(a) is a word of

Bn. Given two stamps ϕ : A∗ → M and ψ : A∗ → N , the product stamp is the stamp

η : A∗ → M ×N defined by η(a) = (ϕ(a), ψ(a)). A stamp ϕ : A∗ → M lm-divides another

stamp ψ : B∗ → N if and only if there exists a pair (α, β) such that α is a lm-morphism

from A∗ to B∗, β : N → M is a partial onto monoid morphism and ϕ = β ◦ ψ ◦ α. The

couple (α, β) is called an lm-division.

Then a lm-variety of stamps is a class of stamps containing the trivial stamp and closed

under lm-division and finite product. Note that if V is a variety of monoids, then the class

of all stamps whose image is a monoid in V forms a lm-variety of stamps, also denoted V.

Moreover, given a lm-variety of stamps V, the class V of all languages recognized by a stamp

in V is a lm-variety of languages. The correspondence V → V is one-to-one and onto [19].

These notions are very useful to decide membership problems for regular languages. Let us

recall a few examples.

I Example 3. A monoid M is aperiodic if there exists an integer n such that for any x ∈M ,

xn = xn+1. It has been proved by Schützenberger [15] and McNaughton and Papert [11]

that the class of aperiodic monoids forms a variety called A and the corresponding variety of

languages is exactly the first-order definable languages, with the order and letter predicates.

I Example 4. Let DA be the variety of monoids satisfying the equation

(xy)ω = (xy)ωx(xy)ω where ω is the idempotent power of the monoid. Alternatively DA is

the variety of monoids whose regular D-classes are aperiodic semigroups. The corresponding

variety of languages DA is the class of FO2[<]-definable languages [20] or equivalently the

unambiguous star-free languages [16].

I Example 5. Given a variety V, the set of all stamps whose stable semigroup is in V forms

a lm-variety of stamps denoted by QV. A language L has its syntactic stamp in QV if

and only if there is an automaton A recognizing L and a positive integer k such that the

k-automaton of A has its transition monoid in V. Straubing proved in [18] that a language

is definable in FO[<,MOD] if and only if its syntactic stamp belongs to the lm-variety of

stamps QA. We always denote by QV the lm-variety of languages associated to QV.

2 Main result

Our main result extends the algebraic characterization of FO2[<]-definable languages by

Thérien and Wilke [20] to FO2[<,MOD]-definable languages. The next theorem states that

the languages definable in FO2[<,MOD] are exactly the languages whose syntactic stamp

is in QDA.

I Theorem 6. FO2[<,MOD] = QDA

Given a regular language (given by a regular expression or by some finite automaton), one

can effectively compute the stable semigroup of its syntactic stamp. Since membership in

DA is decidable we get the following corollary.

I Corollary 7. Given a regular language L, one can decide whether L is FO2[<,MOD]-
definable.

In Section 3 we will give intuition of the power of the modular predicates. The first

inclusion FO2[<,MOD] ⊆ QDA will be proved in Section 4, using general arguments on

automata and logic. The second inclusion is proved in Section 5, using Ehrenfeucht-Fräıssé

games and algebraic tools. We will extend our main result to several other characterizations

in Section 6.

L. Dartois and C. Paperman 333

3 FO2[<] over an enriched alphabet

Given an integer d > 1, let us denote by FO2[<,MODd] the fragment of FO2[<,MOD]
restricted to congruences modulo d. For a given language, this restriction does not lead to

any loss of generality.

I Lemma 8. Let L be a language of FO2[<,MOD]. Then there exists an integer d such

that L is in FO2[<,MODd].

We now fix a positive integer d.

I Definition 9 (Enriched alphabet). Let A be an alphabet. We call the set Ad = A× (Z/dZ)
the enriched alphabet of A, and we denote by π : A∗d → A∗ the projection defined by

π(a, i) = a for each (a, i) ∈ Ad.

For example, the word (a, 2)(b, 1)(b, 2)(a, 0) is an enriched word of abba for d = 3. We

say that abba is the underlying word of (a, 2)(b, 1)(b, 2)(a, 0).

I Definition 10 (Well-formed words). A word (a0, i0)(a1, i1) · · · (an, in) of Ad is well-formed

if for 0 6 j 6 n, ij ≡ j mod d. We denote by K the set of all well-formed words of A∗d.

I Definition 11. For a word u = a0a1 · · · an ∈ A∗, the word u = (a0, 0)(a1, 1) · · · (ai, i mod
d) · · · (an, n mod d) is called the well-formed word attached to u.

I Remark. On well-formed structures, the projection π is a one-to-one application.

The enriched word (a, 0)(b, 1)(b, 2)(a, 0) is a well-formed word for d = 3. Thanks to the

previous remark, it is the unique well-formed word having the word abba as underlying word.

I Remark. The operation u→ u is not a morphism. Indeed, if |u| 6≡ 0 mod d then uv 6= uv.

Thus we define the k-shift operation, denoted by uk, which maps the word u = u0 · · ·un

to the enriched word (u0, k mod d)(u1, k + 1 mod d) · · · (un, n + k mod d). Note that, if

|u| ≡ k mod d, then uv = u vk.

I Proposition 12. Let d be a positive integer. Then

FO2[<,MODd](A∗) = π(FO2[<](A∗d) ∩K).

The proof relies on a syntactic transformation of the formulae. We replace MODd
i by a

conjunction of enriched letters predicates. This can be done in the opposite direction as

well, as we consider only well-formed words.

We recall (see [10]) that two words are separated by a formula of FO2[<] with quantifier

depth n if and only if Spoiler wins the n rounds Ehrenfeucht-Fräıssé game with two coloured

pebbles. Thus one can state, in light of Proposition 12, the following assertion:

I Proposition 13. Let u, v be words of A∗. Then there exists a formula of FO2[<,MODd] of

quantifier depth n that separates them if, and only if, Spoiler wins the n rounds Ehrenfeucht-

Fräıssé game for FO2[<] over the well-formed pair (u, v).

4 The inclusion FO2[<, MOD] ⊆ QDA

In this section, we prove one direction of the main theorem, using the enriched alphabet and

the well-formed words. Let us first study the language K of well-formed words.

S TAC S ’ 1 3

334 Two-variable first order logic with modular predicates over words

−0

1

2

3

0 1 2 3 −
(a, 0) 1 − − − −
(a, 1) − 2 − − −
(a, 2) − − 3 − −
(a, 3) − − − 0 −

(a, 0) (a, 1)

(a, 2)(a, 3)

(a, i), i 6= 0

(a, i)
i 6= 1

(a, i), i 6= 2

(a, i)
i 6= 3

Figure 1 Minimal automaton and transition monoid of K (for d = 4).

Consider the semigroup Bd = (Z/dZ×Z/dZ)∪{⊥} where ⊥ is a zero of Bd and for all (i, j)
and (k, `) in Z/dZ× Z/dZ,

(i, j)(k, `) =
{

(i, `) if j = k

⊥ otherwise.

The monoid B1
d is the transition monoid of the minimal automaton of K for d > 2. Let us

denote by J1 the variety of idempotent and commutative monoids.

I Proposition 14. The set of all well-formed words is recognized by a stamp in QJ1.

I Lemma 15. Let L be a language of DA(A∗d). Then the language L ∩K is in QDA(A∗d).

Proof. This comes from the fact that L ∈ DA(A∗d) ⊆ QDA(A∗d), and K ∈ QJ 1(A∗d) ⊆
QDA(A∗d). J

Now, we can use the previous result on well-formed words over modular predicates and

prove the inclusion FO2[<,MOD] ⊆ QDA.

I Theorem 16. The syntactic stamp of a FO2[<,MOD]-definable language belongs to QDA.

As suggested by one the referees, this result can be proved by using Ehrenfeucht-Fräıssé

games. The proof given below relies on finite automata and could easily be modified to

recover the inclusion FO[<,MOD] ⊆ QA [18] and similar results for other fragments of

logic.

Proof. Let L be a regular language definable in FO2[<,MOD](A∗). Then by Lemma 8,

there exists an integer d such that L is defined in FO2[<,MODd](A∗). By Proposition 12,

there exists a formula ϕ in FO2[<](A∗d) such that, L = π(L′) with L′ = L(ϕ) ∩ K. Since

FO2[<] = DA (see [20]), and thanks to Lemma 15, the language L′ is in QDA(A∗d). Let

A′ = (Q,Ad, ·, i, F) be its minimal trim deterministic automaton. Since π is one-to-one,

the automaton π(A′), obtained by dropping the integer component on the transitions of A′,
recognizes L. As A′ is trim and recognizes only well-formed words, the labels of all the

outgoing edges from a given state have the same second component. For 0 6 i < d, let

Qi = {q ∈ Q | there exists a ∈ A such that q · (a, i) is defined }

and let QE be the set of all states of fanout 0. Then Q is a disjoint union of the sets Qi

(0 6 i < d) and QE . Observing that a word of length k can only send a state of Qi to

L. Dartois and C. Paperman 335

a state of Qi+k mod d ∪ QE , the transition function of the d-automaton A′d is a subset of⋃
06i<d

(
Qi×Ad

d× (Qi ∪QE)
)
. Then each set Qi induces a monoid Mi, which is a submonoid

of the transition monoid of A′d. Now, going back to the projected d-automaton π(A′)d,

one can see that the action of a word u ∈ Ad on the set Qi is the action of the word

(u0, i) · · · (ud, i− 1) on Qi in the automaton A′d, described in Mi.

Q0 . . . Qi . . . Qd−1

(a, 0) Q1 − − − −
...

...
. . .

...
...

...

(a, i) − − Qi+1 − −
...

...
...

...
. . .

...

(a, d− 1) − − − − Q0

Q0 . . . Qi . . . Qd−1

a Q1 . . . Qi+1 . . . Q0

Q0 . . . Qi . . . Qd−1

u Q0 − − − −
...

...
. . .

...
...

...

ui − − Qi − −
...

...
...

...
. . .

...

ud−1 − − − − Qd−1

Q0 . . . Qi . . . Qd−1

u Q0 . . . Qi . . . Qd−1

A′ π(A′)

A′d π(A′)d

π

π

d-Automaton d-Automaton

Figure 2 Transitions monoids.

Thus the full action of the word u over Q is described in each Mi, and hence the transition

monoid of π(A′)d is a submonoid of the product monoid
d∏

i=0
Mi (full picture on Figure 2).

Finally, as DA is a variety and A′d has its transition monoid in DA, each submonoid Mi is

also in DA and so is the transition monoid of π(A′)d. We can conclude as L is recognized

by an automaton whose d-automata has its transition monoid in DA. J

5 The inclusion QDA ⊆ FO2[<, MOD]

We now come to the second part of the proof of Theorem 6. We first enrich the congruences

defined in [20] to take the modular predicates into account.

5.1 Congruence and syntactic operations over FO2[<, MOD]
I Definition 17. Let u ∈ A∗ be a word, and let a ∈ A be a letter of u. We call left a-

decomposition of u the unique triple (u0, a, u1) such that u = u0au1 and u0 does not contain

any a. We define the right decomposition in a symmetrical way.

We recall the definition of the congruence ≡n on A∗ from [20].

I Definition 18. [20] Let u, v ∈ A∗ be words. Then we have u ≡0 v.

Moreover, u ≡n v if and only if the following conditions hold:

1. α(u) = α(v), the two words have the same alphabet,

2. For each a occurring in u, if (u0, a, u1) is the left a-decomposition of u and (v0, a, v1)
that of v, then u0 ≡n v0 and u1 ≡n−1 v1,

3. For each a occurring in u, if (u0, a, u1) is the right a-decomposition of u and (v0, a, v1)
that of v, then u0 ≡n−1 v0 and u1 ≡n v1.

S TAC S ’ 1 3

336 Two-variable first order logic with modular predicates over words

The termination of these inductive definitions has to be verified. Let suppose that u ≡n v

for some words u and v and some positive integer n. Then, thanks to the first condition, the

parameter n+ |α(u)| is equal to n+ |α(v)|. For any left or right decomposition we decompose

the words in two parts for which the parameter strictly decreases.

I Proposition 19. [20] The relation ≡nis a congruence.

This definition can be extended to the enriched alphabet and well-formed words as fol-

lows. We say that u ≡d
n v if and only if u ≡n v.

I Lemma 20. Let n, d be two positive integers, and u and v two words such that u ≡d
n v.

Then the following statements hold:

1. if u is the empty word, then so is v,

2. |u| ≡ |v| mod d,

3. if u = u0au1, v = v0bv1 with |u0a| ≡ |v0b| mod d and |u1| < d, |v1| < d, then a = b,

u1 = v1 and u0 ≡d
n−1 v0,

4. if u = u0au1, v = v0bv1 with |u0| < d, |v0| < d and |au1| ≡ |bv1| mod d, then a = b,

u0 = v0 and u1 ≡d
n−1 v1,

5. for any word w, uw ≡d
n vw and wu ≡d

n wv.

I Corollary 21. The relation ≡d
n is a congruence on A∗.

We will now connect our congruence to the logic FO2[<,MODd] through the

Ehrenfeucht-Fräıssé games for FO2[<](A∗d) (cf. Proposition 13).

I Theorem 22. Let u, v ∈ A∗ be words. If u 6≡d
n v then there is a formula of FO2[<,MODd]

of quantifier depth at most n+ |α(u)| that separates u from v.

The proof makes use of Ehrenfeucht-Fräıssé games following the arguments of [20].

5.2 Congruence and algebraic operations over QDA

We now define a slightly modified version of the Green’s preorders adapted to the stable

semigroup. Let h : A∗ →M be a stamp and let S be its stable semigroup. For any elements

x and y in M let us write:

x 6Rst y if and only if xM ∩ S ⊆ yM ∩ S
x 6Lst

y if and only if Mx ∩ S ⊆My ∩ S
x 6Hst

y if and only if x 6Rst
y and x 6Lst

y.

We also extend our definitions to modified versions of the Green’s relations.

xRst y if and only if x 6Rst
y and y 6Rst

x

xLst y if and only if x 6Lst
y and y 6Lst

x

xHst y if and only if x 6Hst
y and y 6Hst

x

We say that the stamp h is length faithful if h−1(S1) = (Ad)∗. This notion is shown to

be necessary in the next lemma and does not involve a loss of generality, as shown in the

proof of Corollary 29.

I Lemma 23. Let h : A∗ →M be a stamp and let S be its stable semigroup. If h is length

faithful, then the restriction of 6Rst
(resp. 6Lst

) to S is the usual Green relation 6R (resp.

6L) over S.

L. Dartois and C. Paperman 337

Proof. Let x be an element of S, and y an element of M such that xy is in S. Then, since

h is length faithful, h−1(xy) is contained in (Ad)∗. Moreover, as x belongs to S, we also

have h−1(x) ⊆ (Ad)∗. Thus for any word u such that h(u) = x, and any word v such that

h(v) = y, we have |u| ≡ |uv| ≡ 0 mod d, so |v| ≡ 0 mod d. Therefore y is an element of S.

This proves that for any x in S, xM ∩S = xS, and consequently for any x, y in S, x 6Rst
y

if and only if x 6R y in the Green relation over S.

The result for the 6Lst
relation is obtained with a symmetric proof. J

I Corollary 24. Let h : A∗ →M be a length faithful stamp of QDA. Then, the restriction

of the Hst-classes to S are trivial.

We also define the Rst-decomposition :

I Definition 25. Let u be a word and let h : A∗ → M be a stamp. We call the Rst-

decomposition of u the tuple (u0, a1, u1, . . . , as, us) such that u = u0a1u1 · · · asus and:

1. |u0a1u1 · · · aiui| ≡ 0 mod d for all 0 6 i < s

2. h(u0a1u1 · · ·ui−1ai) >Rst
h(u0 · · ·uiai+1)

3. For every prefix v of ui of length multiple of d, h(u0 · · ·ui−1ai)Rst h(u0 · · · aiv)
4. For every prefix v and v′ of u0 of length multiple of d, h(v)Rst h(v′)

The positions occurring in the Rst-decomposition are the first positions multiple of d

after falling in the 6Rst
-order. The two next lemmas will link our congruence ≡n

d to the

Rst-decomposition of the lm-morphisms of QDA.

I Lemma 26. Let h : A∗ → M be a length faithful stamp in QDA, let S be its stable

semigroup. Let u ∈ S and a, x ∈M . If ax ∈ S, then uaxRst u implies uaxaRst u.

Proof. The elements u and uax are Rst-equivalent and h is length faithful. So thanks

to Lemma 23 there is an element t of S such that u = uaxt. By iteration, we obtain

u = u(axt)ω. But S belongs to DA, hence it satisfies the equation (xy)ωx(xy)ω = (xy)ω.

Thus, (axt)ωax(axt)ω = (axt)ω, then u = u(axt)ωax(axt)ω. Shall we rewrite this last

equation, we finally get u = uaxa(xt(axt)ω−1). And finally u ∈ uaxaM ∩ S, proving that

uRst uaxa. J

I Corollary 27. Let h : A∗ → M be a length faithful stamp in QDA and let u be a word.

Then if (u0, a1, u1, . . . , as, us) is the Rst-decomposition of u then (ai+1, 0) 6∈ α(aiui) for

i < s.

Proof. Let (u0, a1, u1, . . . , as, us) be the Rst-decomposition of u. Suppose now that there

exists i such that (ai+1, 0) ∈ α(aiui) for i < s. Then, thanks to the preceding Lemma,

h(aiuiai+1)Rst h(aiui) which is in contradiction with the definition of theRst-decomposition

of u. J

We now have all the tools to prove the following theorem.

I Theorem 28. Let h : A∗ →M be a length faithful stamp of QDA and let d be its stability

index. Then there exists an integer n such that for every words u and v, u ≡d
n v implies

h(u) = h(v).

Proof. Thanks to Lemma 20, if two words are equivalent for the congruence ≡d
n+1, then

their suffixes of length smaller than d are equal and the associated prefixes are equivalent for

the congruence ≡d
n. Therefore it is sufficient to prove the result for words of length multiple

of d.

S TAC S ’ 1 3

338 Two-variable first order logic with modular predicates over words

Let u and v be two words of length multiple of d, and an integer n > |α(u)||S| such that

u ≡d
n v. Let us prove by induction on |α(u)| that h(u) = h(v). If |α(u)| = 0, then u = v = 1.

Consider the result to be true up to the rank k − 1 and let u be such that |α(u)| = k.

We write (u0, a1, u1, . . . , a`, u`) the Rst-decomposition of u. One can remark that ` 6 |S|,
as each ai makes the word go down in the Rst-classes, whose number is bounded by the

size of S. Using the preceding corollary, (ui, ai+1, ui+1 · · ·u`) is a left decomposition of

xi = ui · · ·u` for i < `. As u ≡d
n v, there also exists a decomposition (v0, a1, . . . , a`, v`) of

v such that aiui ≡d
n−i aivi where (ai+1, 0) 6∈ α(aiui) and hence |α(aiui)| 6 |α(u)| − 1. As

i < `, we have n − i > (k − 1)|S| > |α(aiui)||S|. Using the induction hypothesis, for i < `,

h(aiui) = h(aivi). And hence h(u)Rst h(u1 · · · a`) = h(v1 · · · a`) >Rst
h(v). Symmetrically,

we obtain that h(v) >Rst h(u) and thus h(u)Rst h(v). Using the left/right symmetry, we

also get that h(v)Lst h(u) and hence h(v)Hst h(u). By Corollary 24, the Hst-classes are

trivial in QDA over words of length multiple of d and hence h(u) = h(v). J

I Corollary 29. QDA ⊆ FO2[<,MOD]

Proof. Let η : A∗ → M be the syntactic stamp of L and S be the stable semigroup of η.

Assume that η is in QDA. We claim that the morphism h : A∗ → M × Z/dZ defined, for

all words u, by h(u) = (η(u), |u| mod d) is length faithful. Indeed, the stable semigroup of

h is equal to S × {0} and h−1(S × {0}) = (Ad)∗.
By Theorem 28, there exists an integer n such that the congruence ≡d

n is thinner than

the congruence induced by h which is itself thinner than the syntactic congruence of L.

Therefore L is a finite union of ≡d
n- classes, each of them being, according to Theorem 22,

definable by a formula of FO2[<,MODd] of quantifier-depth at most n+ |A|d. J

6 Other characterizations

Several other characterizations of DA are known (see [5] for a survey). For example, consider

the fragment TL[Xa, Ya] of the linear temporal logic defined inductively as follow:

ϕ ≡ > | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xaϕ | Yaϕ.

The unary operator Xa stands for neXt a, and Ya stands for Yesterday a. For a word u and

one of its positions x, we have (u, x) |= Xaϕ if ϕ is true at the next a after x. We say that the

word u satisfiesXaϕ if (u,−1) |= Xaϕ. Symmetrically, we say that u satisfies Yaϕ if (u, |u|) |=
Yaϕ. It is a well known fact that the fragment TL[Xa, Ya] has the same expressiveness power

as the variety DA. Therefore, it is natural to look at TL[Xr mod d
a , Y r mod d

a], where each

predicate Xr mod d
a is defined as follows. For a word u and one of its position x, we have

(u, x) |= Xr mod d
a ϕ if ϕ is true at the next a whose position is equal to r modulo d. As in

Proposition 12 we can transfer a modular information from the predicates to the letters by

changing the size of the alphabet.

I Proposition 30. Let d be a non-zero integer. Then,

TL[Xr mod d
a , Y r mod d

a](A∗) = π(TL[X(a,r mod d), Y(a,r mod d)](A∗d) ∩K).

In [16], Schützenberger defined the monomials as the set of languages of the form

B∗0a1B
∗
1 · · · anB

∗
n, with ai ∈ A and Bi ⊆ A. A monomial L is said to be unambiguous if for

every word u in L, there exists only one decomposition u = u0a1u1 · · · anun with α(ui) ⊆ Bi.

Finally, Schützenberger proved in [16] that a language is in DA if and only if it is a disjoint

L. Dartois and C. Paperman 339

union of unambiguous monomials. We now give a similar definition adapted to the modular

predicates. We define the modular monomials as the languages of the form

(A0
0 · · ·A0

d−1)∗a1(A1
0 · · ·A1

d−1)∗ · · · an(An
0 · · ·An

d−1)∗

with d an integer, Ai
k ⊆ A and ai ∈ A.

I Proposition 31. A language L is in QDA(A∗) if and only if L is a disjoint union of

unambiguous modular monomials.

Proof. We know by Theorem 6 and Proposition 12 that a language L is in QDA(A∗) if

and only if there exists an integer d such that L is the projection of a set of well-formed

words of a language L′ in DA(A∗d). Then L′ is a disjoint union of unambiguous monomi-

als. As the projection over well-formed words preserves disjoint union, it suffices to show

that each unambiguous monomial projects into a disjoint union of modular monomials. Let

B∗0b1B
∗
1 · · · bnB

∗
n be an enriched unambiguous monomial with bi = (ai, ri). Then the pro-

jection of its well-formed words is the rational expression

(A0
0 · · ·A0

d−1)∗A0
0 · · ·A0

r1
a1(A1

i+1 · · ·A1
i)∗A1

i+1 · · ·A1
r2
a2 · · ·

with Ai
j = {a | (a, j) ∈ Bi}, which can be rewritten as a disjoint union of unambiguous

modular monomials. J

7 Conclusion

Our main results can now be summarized in a single statement, a consequence of Propositions

12, 30, 31 and Theorem 6.

I Theorem 32. Let L be a regular language. Then, the following assertions are equivalent:

L has its syntactic stamp in QDA,

L is definable in FO2[<,MOD],
L is definable in TL[Xr mod d

a , Y r mod d
a],

L is a disjoint union of unambiguous modular monomials.

Our results are an instance of a more general problem: given a fragment F of FO, what is

the expressive power of F[<,MOD]. In particular, if F[<] has an algebraic characterization,

is there also a natural algebraic description of F[<,MOD]? Further if F[<] is decidable,

does it imply that F[<,MOD] is also decidable?

These questions are related to non-trivial questions of semigroup theory [1]. There is some

hope that, for some sufficiently well-behaved fragment, F[<] corresponds to some variety of

monoids V and that F[<,MOD] corresponds to the semidirect product V ∗MOD where

MOD denotes the variety of all stamps onto a cyclic group. This is the case for instance

for the fragment Σ1 and BΣ1, as shown in [4]. The decidability of V ∗MOD (given that

of V) leads to another series of problems. When V ∗MOD is equal to QV the decidability

follows immediately but this is not always the case. For instance, BΣ1[<] corresponds to

the variety J but BΣ1[<,MOD] does not correspond to QJ and more sophisticated tools

using derived categories have to be used [22]. Another possible route would be to follow a

model theoretic approach as in [8, 9].

Acknowledgements We would like to thank the anonymous referees for very useful sug-

gestions and Olivier Carton and Jean-Éric Pin for their helpful advice.

S TAC S ’ 1 3

340 Two-variable first order logic with modular predicates over words

References

1 J. Almeida, Hyperdecidable pseudovarieties and the calculation of semidirect products,

Internat. J. Algebra Comput. 9,3-4 (1999), 241–261.

2 D. A. M. Barrington, K. Compton, H. Straubing and D. Thérien, Regular lan-

guages in NC1, J. Comput. System Sci. 44,3 (1992), 478–499.

3 J. R. Büchi, Weak second-order arithmetic and finite automata, Z. Math. Logik Grundla-

gen Math. 6 (1960), 66–92.

4 L. Chaubard, J.-É. Pin and H. Straubing, First order formulas with modular pre-

dicates, in 21st Annual IEEE Symposium on Logic in Computer Science (LICS 2006),

pp. 211–220, IEEE, 2006.

5 V. Diekert, P. Gastin and M. Kufleitner, A survey on small fragments of first-order

logic over finite words, Internat. J. Found. Comput. Sci. 19,3 (2008), 513–548.

6 S. Eilenberg, Automata, languages, and machines. Vol. B, Academic Press [Harcourt

Brace Jovanovich Publishers], New York, 1976. With two chapters by Bret Tilson, Pure

and Applied Mathematics, Vol. 59.

7 Z. Ésik and M. Ito, Temporal logic with cyclic counting and the degree of aperiodicity

of finite automata, Acta Cybernet. 16,1 (2003), 1–28.

8 C. Glasser and H. Schmitz, The Boolean structure of dot-depth one, J. Autom. Lang.

Comb. 6,4 (2001), 437–452. 2nd Workshop on Descriptional Complexity of Automata,

Grammars and Related Structures (London, ON, 2000).

9 C. Glasser, H. Schmitz and V. Selivanov, Efficient algorithms for membership in

Boolean hierarchies of regular languages, in STACS 2008, pp. 337–348, LIPIcs. Leibniz

Int. Proc. Inform. vol. 1, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2008.

10 N. Immerman, Upper and lower bounds for first order expressibility, J. Comput. System

Sci. 25,1 (1982), 76–98.

11 R. McNaughton and S. Papert, Counter-free automata, The M.I.T. Press, Cam-

bridge, Mass.-London, 1971.

12 D. Perrin and J.-É. Pin, First-order logic and star-free sets, J. Comput. System Sci.

32,3 (1986), 393–406.

13 J.-É. Pin, Syntactic semigroups, in Handbook of formal languages, Vol. 1, pp. 679–746,

Springer, Berlin, 1997.

14 J.-É. Pin and H. Straubing, Some results on C-varieties, Theor. Inform. Appl. 39,1

(2005), 239–262.

15 M. P. Schützenberger, On finite monoids having only trivial subgroups, Information

and Control 8 (1965), 190–194.

16 M. P. Schützenberger, Sur le produit de concaténation non ambigu, Semigroup Forum

13,1 (1976/77), 47–75.

17 I. Simon, Piecewise testable events, in Automata theory and formal languages (Second

GI Conf., Kaiserslautern, 1975), pp. 214–222., Lect. Notes Comp. Sci. vol. 33, Springer,

Berlin, 1975.

18 H. Straubing, Finite automata, formal logic, and circuit complexity, Birkhäuser Boston

Inc., Boston, MA, 1994.

19 H. Straubing, On logical descriptions of regular languages, in LATIN 2002: Theoretical

informatics, pp. 528–538, Lect. Notes Comp. Sci. vol. 2286, Springer, Berlin, 2002.

20 D. Thérien and T. Wilke, Over words, two variables are as powerful as one quantifier

alternation, in STOC ’98 (Dallas, TX), pp. 234–240, ACM, New York, 1999.

21 W. Thomas, Classifying regular events in symbolic logic, J. Comput. System Sci. 25,3

(1982), 360–376.

22 B. Tilson, Categories as algebra: an essential ingredient in the theory of monoids, J.

Pure Appl. Algebra 48,1-2 (1987), 83–198.

Abusing the Tutte Matrix: An Algebraic Instance
Compression for the K-set-cycle Problem
Magnus Wahlström1

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
wahl@mpi-inf.mpg.de

Abstract
We give an algebraic, determinant-based algorithm for the K-Cycle problem, i.e., the prob-
lem of finding a cycle through a set of specified elements. Our approach gives a simple FPT
algorithm for the problem, matching the O∗(2|K|) running time of the algorithm of Björklund et
al. (SODA, 2012). Furthermore, our approach is open for treatment by classical algebraic tools
(e.g., Gaussian elimination), and we show that it leads to a polynomial compression of the prob-
lem, i.e., a polynomial-time reduction of the K-Cycle problem into an algebraic problem with
coding size O(|K|3). This is surprising, as several related problems (e.g., k-Cycle and the Dis-
joint Paths problem) are known not to admit such a reduction unless the polynomial hierarchy
collapses. Furthermore, despite the result, we are not aware of any witness for the K-Cycle
problem of size polynomial in |K|+ log n, which seems (for now) to separate the notions of poly-
nomial compression and polynomial kernelization (as a polynomial kernelization for a problem
in NP necessarily implies a small witness).

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Parameterized complexity; graph theory; kernelization; algebraic al-
gorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.341

1 Introduction

Parameterized complexity [19, 21] is one of the major approaches for dealing with NP-hard
problems. In this setting, the input is associated with a parameter k, usually (but not
exclusively) either a parameter related to the solution size, or a structural parameter such as
treewidth; the fundamental assumption is that problems with a smaller parameter value will
be easier than general instances. The critical notion is that of an FPT algorithm, which runs
in time f(k) ·poly(n) for some f(k) where poly(n) is independent of k, i.e., the combinatorial
explosion is confined to the parameter k. This notion has lead to a large number of interesting
algorithmic principles; for some surveys, see, e.g., the Festschrift of Mike Fellows [7].

One of the most vibrant parts of parameterized complexity in recent years is the subfield
of kernelization. A kernelization is one of the basic approaches for creating FPT algorithms:
It is an algorithm which runs in time polynomial in both k and n, which reduces the size of
the instance (e.g., via reduction rules such as “remove a vertex shown not to be required
by the solution”) if the size is larger than some f(k). Additionally, beyond being a design
paradigm for FPT algorithms, it has been observed that the notion can be a good way to
formalize effective instance simplification, e.g., preprocessing with a performance guarantee.
A polynomial kernel, then, is a polynomial-time procedure which takes an input instance,
with parameter k, and produces an output instance of size at most poly(k), regardless of
the value of n, without changing the problem status. Great interest has been taken in

© Magnus Wahlström;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 341–352

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.341
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

342 An Algebraic Instance Compression for the K-set-cycle Problem

recent years in the question of which problems (and which problem parameterizations) admit
polynomial kernels. This was sparked by the creation of a lower bounds framework by
Bodlaender et al. [8] and Fortnow and Santhanam [23]. These results provided a way to
exclude the existence of a polynomial kernel, under the hypothesis that the polynomial
hierarchy does not collapse. Later refinements and applications of this framework can be
found in, e.g., [17, 10, 16, 25, 20, 18, 14]. Significant progress has also been made on the
positive side; for a few examples, see [9, 40, 22]. A recent trend, relevant to the current paper,
is the application of algebraic tools to kernelization, e.g., [29, 30]. (See related work, below.)

Sometimes, the results found by these investigations can be quite surprising. As an
example, consider the problems Vertex Cover (find a set of at most k vertices in a graph
which covers all edges, i.e., a vertex cover of size at most k) and Connected Vertex Cover
(find a vertex cover of size at most k which additionally is connected). The former is one of
the most well-studied problems in theoretical computer science. In terms of parameterized
complexity, it can be solved in time O∗(2k) by a very simple algorithm, and in time O∗(1.28k)
by more involved means [12]. It has a simple 2-approximation, and a kernel of 2k vertices
by the famous Nemhauser-Trotter theorem [36]. On the other hand, if the vertex cover
is required to be connected, then the problem still has a simple greedy 2-approximation,
an O∗(2k)-time FPT algorithm [15], and, as shown by Dom et al. [18], no polynomial kernel
unless the polynomial hierarchy collapses.

As another example, consider the following three problems. Given a graph G, find (a)
a cycle with at least k vertices (the k-Cycle problem); (b) a cycle passing through every
element of a given set K, |K| = k (the K-Cycle problem); or (c) a cycle passing through
every element of K, which furthermore passes the elements in a specified order (which we
may dub the Ordered K-Cycle problem). Which of these seem more or less general?
Which, if any, seems most likely do admit efficient instance simplification?

Let us make a quick review of known FPT and kernelization results for these problems.
All are NP-hard; in the first two problems, setting k = n yields the Hamiltonian Cycle
problem. The k-Cycle problem is closely related to k-Path (the problem of finding a path
of length at least k), and there is by now a variety of interesting techniques that can be used
to solve it in 2O(k)poly(n) time, from the seminal color-coding technique of Alon et al. [2], via
the multilinear detection of Koutis [28] (see also Williams [43]), to the recent O∗(1.66n)-time
Hamiltonian Cycle algorithm of Björklund [3], which was adapted to a parameterized
setting in [5]. Ordered K-Cycle is equivalent to the well-known problem Disjoint Paths,
where the input is k pairs of vertices (si, ti), and the question is if we can connect all pairs
with pairwise vertex-disjoint paths. This problem seems much more challenging. Robertson
and Seymour, in the context of the graph minors programme, showed that it is FPT; more
specifically, that it can be solved in time O(n3) for every fixed k [37]. Kawarabayashi et
al. improved this to O(n2) for every fixed k [27]. However, the algorithms are in both cases
very involved, and the dependency of the running time on k is hard to pin down exactly, but
at the very least multiply exponential. As for polynomial kernelization, both are infeasible:
k-Path and k-Cycle were among the first problems to which the lower bounds framework
was applied, and Disjoint Paths was addressed in [11]. In both cases, the conclusion is that
neither problem allows a polynomial kernelization (or even a polynomial-time compression
into size poly(k)) unless the polynomial hierarchy collapses.

The K-Cycle problem, in turn, may intuitively seem to be closer in nature to the latter
problem than the former – e.g., it is a terminal connectivity problem, parameterized by the
number of terminals, and there is no obvious relation between the parameter and the size
of the solution. Indeed, the problem can be solved via applications of the Disjoint Paths

M. Wahlström 343

algorithm, and Kawarabayashi solved the problem in time 22k10

poly(n) using graph minors-
type graph structural reasoning [26]. However, recently, Björklund et al. [6] solved K-Cycle
using an approach much closer to those of the cited k-Path algorithms: they define a large
polynomial, which can be evaluated in 2k · poly(n) time, and which, when evaluated over a
field of characteristic two, is non-zero if and only if the instance is positive. The result then
follows from an application of the Schwartz-Zippel lemma. (In fact, they solved the more
general variant of finding a shortest K-cycle.) For kernelization, the status of K-Cycle is
so far unknown, but there are several factors – the lack of a small witness, the status of the
related problems given above, the apparent difficulty of the problem – which would suggest
that the answer should be negative (i.e., that K-Cycle should have no polynomial kernel).
As the present paper shows, this conclusion may well be mistaken.

Our results. We give an alternative algebraic algorithm for the K-cycle problem, also
with a running time of O∗(2O(k)), by encoding the problem into a variant of the Tutte matrix.
More concretely, given G and K we construct a matrix MG over GF(2`), whose entries are
polynomials, and show that G has a K-cycle if and only if the determinant polynomial of MG

contains a certain type of term. Further minor modifications of the matrix yield an algorithm
with running time O∗(2k), and a matrix structure such that careful application of partial
random evaluation and Gaussian elimination can reduce MG to a matrix A with total coding
length O(k3), such that it can be decided from the determinant polynomial of A whether G
has a K-cycle. All in all, this yields a randomized polynomial compression of K-Cycle into
space O(k3). The construction, and all proofs, are simple, and we need only basic arguments
about determinants and cycle covers to complete them.

We note that our approach so far fails to provide a polynomial kernel, in the strict sense;
the reason being that the output is an instance of a different problem (of deciding a particular
property of detA) which is not known to be in NP, while a kernelization requires that the
output is an instance of the same problem. This is closely related to the issue of the witness
size required for K-Cycle; we are not aware of a witness for either K-Cycle or for our
artificial algebraic output problem, of size poly(k + log n). We consider these results quite
surprising.

Related work. The Tutte matrix (see Section 2) is a skew-symmetric matrix of indeterm-
inates, created from the adjacency matrix of a graph G, which is non-singular if and only
if G has a perfect matching [41]. This can be used to determine the size of a maximum
matching in randomized time O(nω) [32, 34], where ω < 2.3727 is the matrix multiplication
exponent [42, 39, 13]. Mucha and Sankowski [34] showed how to find a maximum matching
in the same time. Geelen [24] gave a deterministic polynomial-time procedure which finds
a maximum rank evaluation of the Tutte matrix (which does not lead to a competitive
deterministic matching algorithm, but may be of interest for the general question of remov-
ing randomness due to applications of Schwartz-Zippel). For non-algebraic algorithms for
matching, Micali and Vazirani [33] gave an algorithm that finds a maximum matching in
general graphs in time O(m

√
n).

Algebraic FPT algorithms, beyond those cited for k-Path above, have been used by, e.g.,
Lokshtanov and Nederlof [31] and Cygan et al. [14]. See also Nederlof’s PhD thesis [35].
More specifically, algorithms based around determinant computations have been used by
Björklund [4, 3]. However, we argue that the approach of the present paper leads to
significantly simpler algorithms and correctness proofs than before. Algebraically based
kernelizations, in particular using tools of matroid theory, have been given in [29, 30].

STACS’13

344 An Algebraic Instance Compression for the K-set-cycle Problem

Related to the present work, it is interesting to note that the result of [29] was a pure
compression, albeit within NP (the problem Odd Cycle Transversal was encoded into
matroid, represented by a matrix of total coding length poly(k)), while [30] gave graph-based
reduction rules, significantly broadening the applicability of the tools. A similar improvement
on the tools of the present work would be highly interesting.

Organization. We review some basic definitions in the next section, then Section 3 gives, in
turn, a very simple O∗(4k)-time for K-Cycle; an improvement to an O∗(2k)-time algorithm;
and the Gaussian polynomial compression.

2 Preliminaries

Parameterized complexity. A parameterized problem is a language Q ⊆ Σ∗ × N; the
second component of instances (x, k) is called the parameter (cf. [19]). A parameterized
problem is fixed-parameter tractable (FPT) if there is an algorithm A and a computable
function f : N → N such that A decides (x, k) ∈ Q in time f(k)|x|O(1). A kernelization
of Q is a polynomial-time computable mapping K : Σ∗ ×N→ Σ∗ ×N : (x, k) 7→ (x′, k′) such
that (x, k) ∈ Q if and only if (x′, k′) ∈ Q and with |x′|, k′ ≤ h(k) where h is a computable
function; h is called the size of the kernel and K is a polynomial kernelization if h(k) is
polynomially bounded. A polynomial compression is a polynomial kernelization relaxed so
that the output may be an instance of a (fixed) different language than the input language.
This has also been called bikernel [1] and generalized kernelization [8]).

The Tutte matrix. Let G = (V,E) be a simple undirected graph with V = {v1, . . . , vn}.
The Tutte matrix AG is the n× n matrix of indeterminates such that

AG(i, j) =

xij if vivj ∈ E and i < j,
−xji if vivj ∈ E and i > j,
0 otherwise,

where xij are distinct commuting variables. Tutte [41] showed that detAG 6= 0 (viewed as a
polynomial) if and only if G has a perfect matching. Lovasz [32] showed the applications of
this type of result to randomized algorithms.

Determinants and cycle covers. We recall a few basic facts. Let D = (V,E) be a directed
graph, which may contain loops. A cycle cover of D is a set C ⊆ E of arcs such that every
vertex in D has in- and out-degree exactly one in C. We allow loops to be present in the
cycle cover. For an undirected simple graph G, which again may contain loops, an oriented
cycle cover of G is a cycle cover of the bidirectional graph corresponding to G. (Note that
this implies that loops and isolated edges are permitted in the cycle cover, corresponding to
cycles of length one respectively two.)

Let A be an n× n matrix over a field of characteristic two. Then the determinant and
the permanent of A coincide:

detA = perm(A) =
∑
σ∈Sn

n∏
i=1

A(i, σ(i)), (1)

where Sn is the set of all permutations of [n]. Let D be a directed graph on vertex
set V = {v1, . . . , vn} such that vivj ∈ E(D) if and only if A(i, j) 6= 0 (where vivi denotes

M. Wahlström 345

a loop on the vertex vi). There is a well-known bijection between terms of the naïve
summation (1) of the determinant and cycle covers of D, as follows.

I Proposition 1. Let D = (V,E) and A be as above. For a permutation σ ∈ Sn, let Cσ =
{vivσ(i) : i ∈ [n]}. If Cσ ⊆ E, then Cσ is a cycle cover of D; furthermore, this describes a
bijection between cycle covers of D and non-zero terms in the summation (1).

Let C be a simple cycle in a cycle cover Cσ. We call C reversible if the cycle has length
at least three and for every edge vivj ∈ C, we have A(i, j) = A(j, i); further, we call Cσ
reversible if it contains at least one reversible cycle. A critical observation, both in previous
and present work, is that reversible cycle covers cancel in (1).

I Proposition 2. If (1) is computed over a field of characteristic two, then the terms
corresponding to reversible cycle covers cancel each other.

Proof. Let Cσ be a reversible cycle cover, and let C be the first reversible cycle of Cσ, counted
by vertex incidence (i.e., the cycles of Cσ are sorted according to the number of the earliest
incident vertex). Let C′ = Cσ′ be the cycle cover resulting from reversing C. Then this
operation creates a fix-point-free involution among the reversible cycle covers. Further,
as the terms of (1) corresponding to σ and σ′ are identical by definition, all terms of (1)
corresponding to reversible cycle covers will cancel each other out. J

Thus, when reasoning about the surviving terms of detA, we only need to concern
ourselves with non-reversible cycle covers. (In particular, if A = AG is the Tutte matrix of
a graph G over a field of characteristic two, then every cycle of length more than two is
reversible, and there are no cycles of length one; thus the non-reversible cycle covers are
exactly the perfect matchings of G.)

Schwartz-Zippel. We also recall the Schwartz-Zippel lemma.

I Lemma 1 (Schwartz-Zippel [38, 44]). Let P (x1, . . . , xn) be a multivariate polynomial of
total degree at most d over a field F, and assume that P is not identically zero. Pick r1, . . . , rn
uniformly at random from F. Then Pr(P (r1, . . . , rn) = 0) ≤ d/|F |.

We will use this mostly, though not exclusively, for the case that P is the determinant of
a matrix over GF(2`).

Detecting monomials in a polynomial. Our final generic ingredient is an application of
inclusion-exclusion to finding certain monomials in a polynomial over a field of characteristic
two. For a polynomial P and a monomial m, we let P (m) denote the coefficient of m in P .
We need a way to extract from P only those monomials divided by a certain term.

I Lemma 2. Let P (x1, . . . , xn) be a polynomial over a field of characteristic two, and T ⊆ [n]
a set of target indices. For a set I ⊆ [n], define P−I(x1, . . . , xn) = P (y1, . . . , yn) where yi = 0
for i ∈ I and yi = xi otherwise. Define

Q(x1, . . . , xn) =
∑
I⊆T

P−I(x1, . . . , xn).

Then for any monomial m such that t :=
∏
i∈T xi divides m we have Q(m) = P (m), and for

every other monomial we have Q(m) = 0.

STACS’13

346 An Algebraic Instance Compression for the K-set-cycle Problem

Proof. Consider a monomialm with non-zero coefficient in P . Observe first that for every I ⊆
[n], we have P−I(m) = P (m) if no variable xi with i ∈ I occurs in m, and P−I(m) = 0
otherwise. Now, if t divides m, then out of the 2|T | evaluations, the monomial m occurs in
exactly one (namely, I = ∅). Thus, Q(m) = P (m). If t does not divide m, let J = {i ∈ I :
xi does not divide m}, and observe that P−I(m) = P (m) for every I ⊆ J . Since J 6= ∅, this
is an even number of occurrences of the same monomial with the same coefficient, which
implies that they sum to zero. Applying this argument individually to every monomial in P
accounts for all occurrences of monomials in the sum defining Q; the result follows. J

We remark that we do not require P to be multilinear (although we do require T to be a
set rather than a multiset).

3 An Algebraic FPT Algorithm

We now give our algorithm and compression for K-Cycle. Let us first fix a definition.

I Definition 3. For a vertex v ∈ V , a v-cycle is a cycle that passes through v. For a set
T ⊆ V , a T -cycle is a cycle that passes through all vertices of T . In both cases, the cycle
may pass through further vertices, but this is not required.

The problem is then formally defined as follows.

K-Cycle
Input: A graph G = (V,E); a set K ⊆ V of terminal vertices
Parameter: k := |K|
Question: Is there a K-cycle in G?

We will show two algebraic FPT algorithms for this problem, giving two ways of encoding
it into the determinant of a matrix. We then show how this implies a polynomial compression
via Gaussian elimination, into space O(k3).

3.1 Graph preprocessing

We begin with a simple preprocessing of the graph (reducing the terminals to degree two).

I Lemma 4. Let (G,K) be an instance of K-Cycle with |K| > 1. We can reduce (G,K)
to an equivalent instance (G′,K ′), |K ′| = |K|, where d(v) = 2 for every v ∈ K ′, and where
K ′ is an independent set with no common neighbours.

Proof. We assume that K is an independent set in G (by subdividing edges within K, if
necessary). Construct G′ from G by replacing every terminal v ∈ K by two non-adjacent
copies v′, v′′ (with neighbourhoods identical to that of v). Create a new vertex v with
N(v) = {v′, v′′}. The new terminal set K ′ consists of these new vertices v.

It is easy to show that this reduction maintains the solution status. On the one hand,
for any K-cycle in G, we may replace each portion u− v − w of the cycle, with v ∈ K and
hence u,w /∈ K, by a path u − v′ − v − v′′ − w, hitting the new terminal v. On the other
hand, any K ′-cycle in G′ must pass through both neighbours v′, v′′ of each terminal v ∈ K ′,
and these neighbours are distinct for all terminals. Thus if each segment v′ − v − v′′ of the
K ′-cycle in G′ is contracted into v, we get a valid K-cycle in G. J

M. Wahlström 347

The requirement that |K| > 1 comes from the consideration of whether a single edge uv
should be considered a K-cycle with K = {u} (but the case |K| = 1 is in either case easily
solvable in polynomial time).

For the rest of the paper, for convenience, we will let G = (V,E) be a graph, on vertex
set V = {v1, . . . , vn} and terminal set K = {v1, . . . , vk}, to which the above reduction has
already been applied. We also assume N(vi) = {vk+2i−1, vk+2i} for i ∈ [k].

3.2 Matrix construction
We now show the matrix which will encode the existence of a K-cycle. We begin with a
more intuitive construction, that implies a running time of O∗(4k), then modify it to arrive
at the O∗(2k)-time algorithm and polynomial compression.

Given a graph G, reduced as per the previous subsection, we define the matrix AG as
follows. We start from the Tutte matrix AG of G (although, as the field is of characteristic
two, we will not observe the signs), and adjust so that A(i, i) = 1 for i > 3k (effectively adding
self-loops to all vertices except N [K]). Finally, we orient the edges incident to v1 to make v1-
cycles non-reversible: let A(1, k + 1) and A(k + 2, 1) be unmodified, but set A(1, k + 2) =
A(k + 1, 1) = 0. This can be done safely, as any K-cycle of G can be oriented in either
direction.

Let MG denote the resulting matrix. We can detect a K-cycle in G as follows.

I Theorem 5. Let T = {xi,k+2i−1, xi,k+2i : i ∈ [k]} and t =
∏
x∈T x. Then G has a K-

cycle if and only if detMG, viewed as a polynomial, contains a monomial m with non-zero
coefficient such that t divides m.

Proof. Recall the summation (1) and the notion of a reversible cycle from Section 2. We
claim a one-to-one correspondence between non-zero monomials of detMG and non-reversible
cycle covers.

This follows from basic observations, but we prove it for completeness. Since (1) is already
in sum-product form, every non-zero monomial of detMG corresponds to a non-empty set
of summands from (1). By Prop. 2, we get the same result if we restrict ourselves to those
summands corresponding to non-reversible cycle covers. We show that two summands,
corresponding to distinct non-reversible cycle covers C, C′, always produce distinct monomials:
if C and C′ use distinct sets of underlying undirected, non-loop edges, then the claim is clear,
and the set of loop edges of a cycle cover is a function of the set of non-loop edges. In
the remaining case, C′ must be attainable by a reorientation of C. However, there are by
construction only three types of non-reversible cycles: loops, isolated edges, and v1-cycles,
where a v1-cycle cannot be reversed, and loops and isolated cycles are invariant under reversal.
Thus C and C′ must produce distinct monomials.

The result is now simple. First, if C is a K-cycle in G, then it contributes all factors in t,
and by padding C using self-loops we produce a non-reversible cycle cover, which produces
a non-zero monomial of detMG. On the other hand, if a non-zero monomial in detMG

contains the factor xi,k+2i−1xi,k+2i, then in the corresponding cycle cover, the v1-cycle most
also pass through vi, as such a factor cannot be contributed by loops and isolated edges. By
induction, if a non-zero monomial in detMG is divided by t, then the corresponding cycle
cover contains a v1-cycle which passes through every vertex of K, i.e., a K-cycle. J

As |T | = 2k, this implies an O(22k)-time randomized algorithm for the problem,
via Lemma 2 and by evaluating the resulting polynomial Q randomly over GF(2`) for ` =
Ω(log n). We will improve this in two ways: by introducing a modification which will let us

STACS’13

348 An Algebraic Instance Compression for the K-set-cycle Problem

match the O∗(2k) running time of [6], and by showing how to use Gaussian elimination and
partial random evaluation to produce a polynomial compression.

3.3 A 2k Algorithm
We now show a different way to determine the existence of a K-cycle from MG. Let an
orientation of MG be the result of, for every vi ∈ K, i > 1, either setting A(k + 2i− 1, i) =
A(i, k + 2i) = 0 or A(k + 2i, i) = A(i, k + 2i− 1) = 0, i.e., orienting the edges incident to vi
either as v′i → vi → v′′i or as v′i ← vi ← v′′i . We claim the following.

I Theorem 6. Let Q′ be the sum of detM ′G over all 2k−1 orientations M ′G of MG. Then G
has a K-cycle if and only if Q′ is not identically zero.

Proof. Let M ′G be an arbitrary orientation of MG. As in Theorem 5, monomials of detM ′G
correspond to non-reversible cycle covers, but now, every cycle incident on some vi ∈ K
counts as non-reversible (and again, attempting to reverse such a cycle produces a zero-term).
On the other hand, if two orientations M ′G and M ′′G contain non-reversible cycle covers C′
and C′′ such that C′′ can be obtained by reorienting C′, then C′ and C′′ contribute identical
monomials to the sum, and their contribution may cancel. Thus, let C∗ be an unoriented
cycle cover, such that every cycle in C∗ is either a loop, an isolated edge, or a cycle incident
on K, and such that K is covered entirely by the latter type of cycles. We will count the
number of contributions of orientations of C∗ to the sum.

For this, simply observe that in a single cycle C of C∗, as soon as the orientation of at least
one vertex of C has been determined, the direction taken through every other vertex of C
is fixed as a consequence. Thus, if C∗ contains a K-cycle C, then only one orientation M ′G
is possible, as the vertex v1 enforces a direction already in MG. On the other hand, if C∗
contains at least two cycles incident on K, then all cycles not incident on v1 may be oriented
arbitrarily, making for an even number of orientations, each one of which contributes the
same monomial to the sum.

Thus non-zero monomials of Q′ correspond to K-cycles in G, as promised. J

This construction brings our algorithm closer in spirit to the determinant sums of
Björklund [4, 3], or the algebraic FPT algorithms of Cygan et al. [15]. However, as the next
subsection shows, by bringing the algorithm back into the structure of deciding properties of
the determinant polynomial of a single matrix, we get a randomized polynomial compression
for K-Cycle via Gaussian elimination.

3.4 Polynomial Compression
Now, we finally show how to use the above for a polynomial compression of the K-Cycle
problem.

We describe one final modification of the matrix MG. For every vi ∈ K, i > 1, we
introduce a new variable ai, and multiply A(k+2i−1, i) and A(i, k+2i) by ai, and A(k+2i, i)
and A(i, k+ 2i− 1) by 1− ai. Observe that this implies that the algorithm of Theorem 6 can
be executed by iteratively setting each ai to either 1 or 0, and computing the determinant
each time. Strictly speaking, each individual determinant computation would then seem
to require a fresh dose of randomness, via the Schwartz-Zippel evaluation step, making the
approach inappropriate for kernelization. We show that it is possible to perform this in the
alternate direction, first randomly evaluating every variable xe for e ∈ E(G), then performing
Gaussian elimination into a compressed output, and finally (at some future time) performing
the 2k−1 assignments to the variables ai and computing the resulting determinants.

M. Wahlström 349

I Theorem 7. The K-Cycle problem has a randomized polynomial compression of size
O(k3).

Proof. We get the result in two steps, first showing that we can randomly evaluate the
variables x while leaving a as indeterminates, then applying Gaussian elimination to produce
a smaller matrix with the same determinant (viewed as a polynomial in a).

Let P (x,a) be the determinant polynomial of MG. Define Q(x) to be the sum over
the 2k−1 instantiations of a necessary to emulate the algorithm of Theorem 6; observe
that Q(x) is a polynomial of degree n, and that Q(x) is identically zero if and only if G has
no K-cycle. Thus, again by Schwartz-Zippel, we may instantiate x randomly from GF(2`),
and with probability at least n/2` the resulting values are such that the 2k−1-sized evaluation
of Q(x) would return non-zero. Picking ` = Θ(log n) is sufficient for this step to succeed
with polynomial probability in n (and with ` = Θ(log n + k), we get a failure rate still
polynomial in n, but exponentially small in k). Note that by standard observations we may
assume k ≥ log n, as otherwise the O∗(2k)-algorithm runs in polynomial time.

Now, observe that we only need to know the existence of the polynomial Q for the above
correctness argument. Thus, by replacing x randomly by values from GF(2`), we get a
matrix M ′ with mostly concrete values, and indeterminates in the top-left 3k × 3k corner,
such that preserving detM ′ is sufficient (up to the failure probability in the previous step)
for preserving the information of whether G has a K-cycle.

Next, recall that row and column operations preserve the determinant of a matrix exactly.
We show that we can reduce M ′ to a blocks form

M ′ =
(
A 0
0 C

)
,

where C is a matrix without indeterminates. Thus we will have detM ′ = (detA)(detC)
where detC is a constant.

This is easy. For sets R,C ⊆ [n], let M [R,C] denote the induced submatrix of M with
rows R and columns C. Observe that the submatrix MG[[3k+1, n], [3k+1, n]] is non-singular,
as the diagonal contributes the term 1 to the determinant and every other term will contain
at least one indeterminate. Thus (up to the failure probability), M ′[[3k + 1, n], [3k + 1, n]]
is non-singular, and can be reduced to diagonal form with a non-zero diagonal, without
introducing any new indeterminate entries in M ′. Now we can use further row and column
operations to reduce M ′[[1, 3k], [3k + 1, n]] and M ′[[3k + 1, n], [1, 3k]] to all-zero matrices
(thereby modifying the contents of M ′[[1, 3k], [1, 3k]], but not M ′[[3k + 1, n], [3k + 1, n]]).
This creates the desired blocks form, and every step preserves the determinant precisely and
is performed without further failure probability or growth of the individual entries (since we
are working over a finite field).

Finally, we consider the resulting contents of the matrix A. Initially, the entries of M ′(i, j)
for i, j ≤ 3k are either constants, or expressions ai · c + c′ for some constants c, c′. Every
further row or column operation that modifies these entries adds some concrete value c′ to
the entry, meaning that we can maintain these entries in the form ai · c+ c′ where c, c′ are
concrete values from GF(2`); thus the coding length remains O(`) bits per entry. We then
multiply one arbitrary row of A by detC, which again only has the effect of modifying the
values c, c′. This gives us a 3k × 3k matrix A′, with entries encoded into O(`) = O(k) bits,
such that detA′ = detM ′, where M ′ is the matrix produced by randomly instantiating x
in MG. J

Finally, we remark that, unusually, the output problem is not trivially in NP (as it is
a question about the outcome of an exponentially large computation). Thus in terms of

STACS’13

350 An Algebraic Instance Compression for the K-set-cycle Problem

parameterized complexity, we do not strictly speaking get a polynomial kernel, as we know
of no way of getting back from the matrix A′ above to an instance of K-Cycle.

4 Conclusions

We have shown an alternate algebraic algorithm for the K-Cycle problem, recasting the
original problem into a question about the existence of certain terms in the determinant
polynomial of a matrix with indeterminate entries. By careful application of partial evaluation
and Gaussian elimination, we have shown that this leads to a polynomial compression of a K-
Cycle instance into space O(|K|3). This partially answers the question of the kernelizability
of K-Cycle, in a perhaps surprising direction.

Although we are not able to produce a proper kernel, since we are not able to get back to
an instance of the K-Cycle problem, such kernel-like polynomial compressions have been
previously considered in parameterized complexity [1], and in fact all existing frameworks
for excluding polynomial kernelization (e.g., [23, 20]) also exclude polynomial compressions.
Thus, for the sake of a smooth theory, we hope that the K-Cycle problem can also be
shown to have a polynomial kernel (e.g., a compression within NP).

Another interesting improvement would be a more direct kernel, e.g., based on reduction
rules which make direct modifications to G and K. The tools required for finding such rules
may well have further applications (perhaps analogously to the two previous works [29, 30]).

It would also be interesting to consider further related problems, perhaps starting with
the problems of finding a shortest K-cycle, and a K-cycle with a prescribed parity, as these
problems can also be solved by the approach in [6]. While it seems that our algorithm can
be adapted for this setting, it is not clear to us at the moment whether this can be done in a
way that allows for a polynomial compression.

Acknowledgements The author is grateful to Thore Husfeldt and Stefan Kratsch for
rewarding discussions, and to an anonymous reviewer for suggesting improvements to the
paper.

References
1 N. Alon, G. Gutin, E. Kim, S. Szeider, and A. Yeo. Solving MAX-r-SAT above a tight

lower bound. Algorithmica, pages 1–18, 2010.
2 N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
3 A. Björklund. Determinant sums for undirected hamiltonicity. In FOCS, pages 173–182,

2010.
4 A. Björklund. Exact covers via determinants. In STACS, pages 95–106, 2010.
5 A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Narrow sieves for parameterized

paths and packings. CoRR, arXiv:1007.1161, 2010.
6 A. Björklund, T. Husfeldt, and N. Taslaman. Shortest cycle through specified elements. In

SODA, pages 1747–1753, 2012.
7 H. L. Bodlaender, R. Downey, F. V. Fomin, and D. Marx, editors. The Multivariate Al-

gorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows on the Occasion
of His 60th Birthday, volume 7370 of Lecture Notes in Computer Science. Springer, 2012.

8 H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without
polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.

9 H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. M.
Thilikos. (Meta) kernelization. In FOCS, pages 629–638, 2009.

M. Wahlström 351

10 H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Cross-composition: A new technique
for kernelization lower bounds. In STACS, pages 165–176, 2011.

11 H. L. Bodlaender, S. Thomassé, and A. Yeo. Kernel bounds for disjoint cycles and disjoint
paths. Theor. Comput. Sci., 412(35):4570–4578, 2011.

12 J. Chen, I. A. Kanj, and G. Xia. Improved upper bounds for vertex cover. Theor. Comput.
Sci., 411(40-42):3736–3756, 2010.

13 D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J.
Symb. Comput., 9(3):251–280, 1990.

14 M. Cygan, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and M. Wahlström. Clique cover and
graph separation: New incompressibility results. In ICALP (1), pages 254–265, 2012.

15 M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and J. O. Wo-
jtaszczyk. Solving connectivity problems parameterized by treewidth in single exponential
time. In FOCS, pages 150–159, 2011.

16 H. Dell and D. Marx. Kernelization of packing problems. In SODA, pages 68–81, 2012.
17 H. Dell and D. van Melkebeek. Satisfiability allows no nontrivial sparsification unless the

polynomial-time hierarchy collapses. In STOC, pages 251–260, 2010.
18 M. Dom, D. Lokshtanov, and S. Saurabh. Incompressibility through colors and IDs. In

ICALP (1), pages 378–389, 2009.
19 R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, November 1998.
20 A. Drucker. New limits to classical and quantum instance compression. In FOCS, pages

609–618, 2012.
21 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, March 2006.
22 F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality and kernels.

In M. Charikar, editor, SODA, pages 503–510. SIAM, 2010.
23 L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs for

NP. J. Comput. Syst. Sci., 77(1):91–106, 2011.
24 J. F. Geelen. An algebraic matching algorithm. Combinatorica, 20(1):61–70, 2000.
25 D. Hermelin and X. Wu. Weak compositions and their applications to polynomial lower

bounds for kernelization. In SODA, pages 104–113, 2012.
26 K. Kawarabayashi. An improved algorithm for finding cycles through elements. In IPCO,

pages 374–384, 2008.
27 K. Kawarabayashi, Y. Kobayashi, and B. A. Reed. The disjoint paths problem in quadratic

time. J. Comb. Theory, Ser. B, 102(2):424–435, 2012.
28 I. Koutis. Faster algebraic algorithms for path and packing problems. In ICALP (1), pages

575–586, 2008.
29 S. Kratsch and M. Wahlström. Compression via matroids: a randomized polynomial kernel

for odd cycle transversal. In SODA, pages 94–103, 2012.
30 S. Kratsch and M. Wahlström. Representative sets and irrelevant vertices: new tools for

kernelization. In FOCS, pages 450–459, 2012.
31 D. Lokshtanov and J. Nederlof. Saving space by algebraization. In STOC, pages 321–330,

2010.
32 L. Lovász. On determinants, matchings, and random algorithms. In FCT, pages 565–574,

1979.
33 S. Micali and V. V. Vazirani. An O(

√
|V ||E|) algorithm for finding maximum matching in

general graphs. In FOCS, pages 17–27, 1980.
34 M. Mucha and P. Sankowski. Maximum matchings via Gaussian elimination. In FOCS,

pages 248–255, 2004.
35 J. Nederlof. Space and Time Efficient Structural Improvements of Dynamic Program-

ming Algorithms. PhD thesis, University of Bergen, Norway, 2011. Available at
http://folk.uib.no/jne061/PhDthesisJesper.pdf.

STACS’13

352 An Algebraic Instance Compression for the K-set-cycle Problem

36 G. Nemhauser and L. Trotter. Vertex packing: structural properties and algorithms. Math-
ematical Programming, 8:232–248, 1975.

37 N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem. J.
Comb. Theory, Ser. B, 63(1):65–110, 1995.

38 J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, 1980.

39 A. Stothers. On the Complexity of Matrix Multiplication. PhD thesis, University of Edin-
burgh, 2010.

40 S. Thomassé. A 4k2 kernel for feedback vertex set. ACM Transactions on Algorithms, 6(2),
2010.

41 W. T. Tutte. The factorization of linear graphs. J. London Math. Soc., s1-22(2):107–111,
1947.

42 V. Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In
STOC, pages 887–898, 2012.

43 R. Williams. Finding paths of length k in O∗(2k) time. Inf. Process. Lett., 109(6):315–318,
2009.

44 R. E. Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Algebraic
Computation (EUROSAM), pages 216–226, 1979.

Subexponential-Time Parameterized Algorithm for
Steiner Tree on Planar Graphs∗

Marcin Pilipczuk1, Michał Pilipczuk2, Piotr Sankowski3, and Erik
Jan van Leeuwen4

1,3 Institute of Informatics, University of Warsaw, Poland
{malcin,sank}@mimuw.edu.pl

2 Department of Informatics, University of Bergen, Norway
michal.pilipczuk@ii.uib.no

4 Department of Computer, Control, and Management Engineering, Sapienza
University of Rome, Italy
E.J.van.Leeuwen@dis.uniroma1.it

Abstract
The well-known bidimensionality theory provides a method for designing fast, subexponential-
time parameterized algorithms for a vast number of NP-hard problems on sparse graph classes
such as planar graphs, bounded genus graphs, or, more generally, graphs with a fixed excluded
minor. However, in order to apply the bidimensionality framework the considered problem needs
to fulfill a special density property. Some well-known problems do not have this property, unfortu-
nately, with probably the most prominent and important example being the Steiner Tree prob-
lem. Hence the question whether a subexponential-time parameterized algorithm for Steiner
Tree on planar graphs exists has remained open. In this paper, we answer this question posit-
ively and develop an algorithm running in O(2O((k log k)2/3) n) time and polynomial space, where
k is the size of the Steiner tree and n is the number of vertices of the graph. Our algorithm does
not rely on tools from bidimensionality theory or graph minors theory, apart from Baker’s clas-
sical approach. Instead, we introduce new tools and concepts to the study of the parameterized
complexity of problems on sparse graphs.

1998 ACM Subject Classification G.2.2 Graphs Algorithms

Keywords and phrases planar graph, Steiner tree, subexponential-time algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.353

1 Introduction

It is widely believed that no NP-hard problem can be solved in polynomial time. Interestingly,
it turns out that NP-hard problems differ greatly in their exact exponential-time complexity.
A majority of NP-complete problems admits algorithms that run in single-exponential time
with respect to the natural parameters of the problem (see Section 2 for formal definitions of
parameterized complexity). In many cases it is known that going below exponential time
would violate the so-called Exponential Time Hypothesis [17]. However, a limited set of
problems admits subexponential-time algorithms, which are significantly more efficient than
the ‘standard’ exponential-time algorithms.

∗ The second author is supported by the ERC grant “Rigorous Theory of Preprocessing” no. 267959,
whereas the remaining authors are partially supported by the ERC grant PAAl no. 259515. Additionally,
the first and third authors acknowledge the support of the Foundation for Polish Science.

© Marcin Pilipczuk, Michał Pilipczuk, Piotr Sankowski, Erik Jan van Leeuwen;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 353–364

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.353
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

354 Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs

The main source of subexponential-time algorithms in parameterized complexity is the
theory of bidimensionality. This framework applies to sparse graph classes, such as planar
graphs and graphs with a fixed excluded minor. Without going into technical details, the
framework provides subexponential-time parameterized algorithms [8] and linear kernels [14]
for problems that fulfill a special density property. The problems that fall into this category
include Dominating Set, Vertex Cover, and Feedback Vertex Set.

However, for some well-known problems the bidimensionality framework fails, with
probably the most prominent and important example being the Steiner Tree problem. In
this problem we are given a n-vertex graph G, an integer k, and a set of terminals S ⊆ V (G).
We are to find a tree T in G with at most k edges such that S ⊆ V (T). The computational
complexity of the Steiner Tree problem on general graphs is by now fully understood. It
has a parameterized algorithm working in O(2|S|nO(1)) time, which is tight under Strong
Exponential Time Hypothesis [21, 7], and it is unlikely to admit a polynomial kernel [10]
(i.e., a polynomial-time preprocessing algorithm reducing the instance size to |S|O(1)). It has
a constant-factor approximation algorithm [6], but is APX-hard [3]. On the other hand, on
planar graphs, the problem is known to be NP-hard [18, 15] and to possess an EPTAS [5].
It has remained unclear, however, whether topological assumptions on the graph (such as
planarity) could speed up parameterized algorithms or provide a polynomial kernel.

In this work, we aim to bridge this gap by providing the first known subexponential-time
parameterized algorithm for Steiner Tree on planar graphs. The algorithm is parameterized
by the size k of the tree. We call this problem Planar Steiner Tree. Tazari [22] showed
that this problem admits an O(2O(

√
k log n) nO(1))-time algorithm by applying Baker’s classical

approach [1]. He explicitly posed the question whether a subexponential-time parameterized
algorithm for Planar Steiner Tree exists. We answer this question positively and develop
an algorithm running in O(2O((k log k)2/3) n) time and polynomial space.

Our approach starts with the observation that to obtain a subexponential-time para-
meterized algorithm for Planar Steiner Tree it suffices to give a subexponential kernel
and apply Tazari’s algorithm to it. That is, we only need to develop an algorithm that
reduces the size of the graph to be subexponential in k. To achieve this goal, we take a path
that differs significantly from previous approaches, which were based on bidimensionality
theory and which relied on some sort of grid minor theorem. Instead, we bring the strip and
brick decomposition (developed by Klein and Borradaile et al. [19, 5] to obtain the EPTAS
for Steiner Tree on planar graphs) to the parameterized setting. Roughly speaking, we
partition the graph into a polynomial (in k) number of bricks, each of polynomial perimeter,
such that within each brick the interaction between the solution and the perimeter of the
brick is bounded sublinearly in k. Then the number of partial solutions within a brick is
subexponential. We can restrict the graph to contain only the partial solutions, and thus
obtain a graph of subexponential size. However, we were not able to obtain a true subexpo-
nential kernel for the problem. Our decomposition algorithm instead relies on branching, and
in fact we obtain a subexponential number of subexponential kernels for the input instance.

We believe that our approach, which brings significantly new techniques to the paramet-
erized complexity community, is of independent interest and will inspire further research on
subexponential-time algorithms on sparse graph classes.

2 Preliminaries

For the standard graph notation used throughout this paper, we refer to [9]. We additionally
need the following notation. If C is a simple cycle in a planar graph with fixed embedding,

M. Pilipczuk, M. Pilipczuk, O. Sankowski, and E. J. v. Leeuwen 355

then C[x, y] denotes the unique counter-clockwise path on C between x and y. When we
refer to an order of vertices on a cycle, we mean their counter-clockwise order along the cycle.
For a path or a cycle X, |X| denotes the length of X in terms of the number of its edges.

2.1 Parameterized complexity
Parameterized complexity aims at explaining time and space complexities of various, usually
NP-hard problems with the help of multivariate analysis. Instead of looking at the instance
only from the side of the classical input size measure, we seek relevant parameters that are
responsible for the exponential blow-up in the complexity of an algorithm. These parameters
generally correspond to natural aspects of the input instance, such as the solution size or
some structural parameter of the input graph. In other words, we try to distinguish easy
and hard instances of an NP-hard problem by introducing an appropriate measure.

Formally, an instance comes with an integer parameter k. A parameterized problem Q then
is a subset of Σ∗ ×N for some finite alphabet Σ. We say that the problem is fixed-parameter
tractable (FPT) if there exists an algorithm solving any instance (x, k) in time f(k) poly(|x|),
for some computable (usually exponential) function f . It is known that a problem is FPT if
and only if it is kernelizable: a kernelization algorithm for a problem Q takes an instance (x, k)
and in time polynomial in |x|+ k produces an equivalent instance (x′, k′) (i.e., (x, k) ∈ Q
if and only if (x′, k′) ∈ Q) such that |x′|+ k′ ≤ g(k) for some computable function g. The
function g is the size of the kernel, and if it is polynomial (linear), then we say that Q admits
a polynomial (linear) kernel. For more detailed expositions, see e.g. [11, 13].

3 Bricks and strip decompositions

In this section, we recall the decomposition framework of Klein and Borradaile et al. [19, 5]
and modify it to suit our purposes. The original framework operates on weighted graphs
and uses approximate distances, as it was designed to be the main tool in an approximation
algorithm (the EPTAS for Planar Steiner Tree). However, for our parameterized
algorithm it is crucial to use exact distances between vertices. At the same time, we may
use the fact that our graphs are unweighted. With this in mind, we develop a modified
framework.

Let (G,S, k) be a Planar Steiner Tree instance. We start by manipulating the graph
in such a way that all terminals lie on the outer face, in a similar manner as in the work of
Borradaile et al. [5]. Intuitively, we find an approximate Steiner tree along which we cut the
graph open and then make the resulting face the outer face (see Figure 1). Formally, we first
compute an approximate Steiner tree Tapx connecting S. We could use an O(n log n)-time
2-approximation algorithm [20, 23, 24] for this. However, since we aim for a linear dependency
on n in the running time, we take a different approach. We compute a breadth-first search
tree from a fixed terminal, and iteratively remove any nonterminal leafs from this tree. This
takes linear time. The resulting tree is a (minimal) Steiner tree connecting S, which we use
as Tapx. Note that the distance in Tapx between any two terminals must be at most k, or we
may return NO. Hence we verify that Tapx has at most k2 edges; otherwise, we return NO.

Given the tree Tapx, we cut the plane open along the tree, duplicating every edge of Tapx.
Let Ĝ be the resulting graph. From here on, we fix a plane embedding of Ĝ that has the
interior of the tree Tapx as the outer face (see Figure 1). Observe that now the terminals S
lie only on the outer face. Moreover, each vertex or edge of Ĝ can be mapped to a vertex or
edge in G; we denote this map by π : V (Ĝ)∪E(Ĝ)→ V (G)∪E(G). Note that only vertices
and edges of Tapx possibly appear more than once in the domain of this map.

STACS’13

356 Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs

Tapx

G Ĝ

Figure 1 Construction of the cut-open graph Ĝ.

We can now proceed with the basic notion of a brick. We call a vertex or edge of a plane
graph enclosed by a closed walk of that graph if it is contained in a bounded Jordan region
defined by the Jordan curve which the walk induces in the plane embedding.

I Definition 1. A brick H is the subgraph of Ĝ enclosed by a simple cycle of Ĝ. This cycle
is called the perimeter of the brick and denoted by ∂H.

We will also use the term perimeter to refer to the length of the perimeter of a brick H.
By intH we denote the set of edges enclosed by ∂H, i.e., intH = E(H) \ E(∂H). Observe
that although π(∂H) may not always be a simple cycle in G, it is still a closed walk without
self-crossings. Moreover, intH is isomorphic to the part of G on one of the sides of π(∂H).
Finally, observe that Ĝ itself is a brick with the Eulerian tour of Tapx as its perimeter.

The algorithm of this paper continuously decomposes bricks into smaller bricks. Here,
a decomposition of a brick H is a collection of bricks inside H such that every face inside
H belongs to exactly one of these bricks. Any brick produced by the algorithm will be
immediately decomposed further into a particular type of bricks, called strips.

I Definition 2. A brick H is called a strip if ∂H can be partitioned into two paths R and
B (called the red and blue paths below), such that

B is the shortest path (in H) between its endpoints,
every proper subpath of R is the shortest path (in H) between its endpoints.

The second condition is equivalent to saying that if R = r1, . . . , r|R|, then r2, . . . , r|R| is a
shortest path between r2 and r|R| and r1, . . . , r|R|−1 is a shortest path between r1 and r|R|−1.
Observe that R and B share no edges, but do share two vertices of ∂H. All algorithms in
the paper will construct and maintain R and B for each strip.

Klein [19] showed that, given a n-vertex brick H , one can decompose it into strips in time
polynomial in n. We need a slightly different result for our unweighted, parameterized case.

I Lemma 3. There exists an O(|∂H|2 n)-time algorithm that, given a brick H, decomposes
it into at most |∂H| strips of perimeter at most |∂H| each.

Proof. To prove the lemma it is sufficient to show an algorithm that in O(|∂H|n) time
decomposes the brick H into a strip H0 and a number of bricks H1, H2, . . . ,Hr, such that
the sum of the perimeters of all bricks H1, H2, . . . ,Hr is strictly smaller than |∂H|. We may
then recursively decompose the bricks H1, H2, . . . ,Hr. The decrease in the total length of
the perimeters yields the bound on the total number of strips in the obtained decomposition
via a trivial induction, and also proves the claimed running time bound.

We say that an ordered pair of vertices (x, y) ∈ V (∂H)× V (∂H) is cuttable if ∂H [x, y] is
not a shortest path between x and y in H . A cuttable pair (x, y) is minimal if there does not

M. Pilipczuk, M. Pilipczuk, O. Sankowski, and E. J. v. Leeuwen 357

H

y

x

z3

z2
z1

H0

H3

H2

H1

Figure 2 Step of the decomposition algorithm of Lemma 3. A brick H is decomposed into a strip
H0 and bricks H1, H2 and H3. The dashed path is the path P .

exist another cuttable pair (x′, y′) with ∂H[x′, y′] being a proper subpath of ∂H[x, y]. Note
that a cuttable pair always exists in a brick H: since ∂H is a simple cycle, |∂H| ≥ 3 and
a pair (x, y) is cuttable whenever ∂H[y, x] consists of a single edge. Therefore a minimal
cuttable pair always exists. Moreover, we can find such a pair in O(|∂H|n) time using a
breadth-first search for each vertex of ∂H.

Let (x, y) be a minimal cuttable pair in H and let P be a shortest path from x to y in H .
We claim that P does not contain any vertex from the interior of the path ∂H [x, y]. Indeed,
if z would be such a vertex, then a subpath of P from x to z or a subpath of P from z to y
would witness that (x, z) or (z, y) is a cuttable pair, contradicting the minimality of (x, y).

We infer that ∂H[x, y] ∪ P is a simple cycle in H, and let H0 be the part of H enclosed
by ∂H [x, y] ∪ P (see Figure 2). Since P is a shortest path between x and y, |P | ≤ |∂H [y, x]|
and we infer that |∂H0| ≤ |∂H|. Moreover, the choice of P and the pair (x, y) implies that
H0 is a strip, with the blue path being the path P and the red path being ∂H[x, y].

Let x = z0, z1, z2, . . . , zq = y be vertices of V (P) ∩ V (∂H) in the order in which they
appear on the path P (see Figure 2). We claim that they appear in the reverse order on the
path ∂H[y, x], that is, on the path ∂H[y, x] the vertex zi is closer than zj is to x whenever
i < j. Assume otherwise, and let i be the smallest index such that zi+1 is closer to x than zi

on the path ∂H [y, x]. Clearly i ≥ 1. As P is a shortest path between x and y, P is a simple
path, the vertices zj are distinct, and the subpath of P from x to zi separates zi+1 from y in
the graph H . Therefore the subpath of P from x to zi intersects the subpath from zi+1 to y,
a contradiction to the fact that P is a simple path.

For 1 ≤ i < q, consider a closed walk Pi in H that consists of a subpath of P from
zi−1 to zi and of ∂H[zi, zi−1]. Note that Pi is a simple cycle unless it is of length 2. Let
H1, H2, . . . ,Hr be the set of all bricks enclosed by the paths Pi that are simple cycles (see
Figure 2). From the previous claim we infer that H0, H1, H2, . . . ,Hr is a decomposition of H
into r + 1 bricks. Moreover,

∑r
i=1 |∂Hi| ≤ |P |+ |∂H [y, x]| < |∂H [x, y]|+ |∂H [y, x]| = |∂H|.

This finishes the proof of the lemma. J

If the algorithm of Lemma 3 is applied to a brick H, then a strip of the decomposition
containing a vertex or edge of ∂H has that vertex or edge on its perimeter. In particular, if
we apply the algorithm to the brick Ĝ, then no terminal will lie in the interior of a strip.

STACS’13

358 Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs

4 A subexponential-time parameterized algorithm

We now show how to use strip decompositions to give a subexponential-time parameterized
algorithm for Planar Steiner Tree.

4.1 Light strip decompositions
In this section, we formally define what we mean by the interaction of a Steiner tree with
a decomposition of Ĝ into strips. Moreover, we show that if we know that this interaction
is bounded sublinearly in k, then we can indeed find a Steiner tree of size at most k in
subexponential time. Throughout, let (G,S, k) be an instance of Planar Steiner Tree
and assume that it is a YES-instance. We will also assume that we have constructed the
cut-open graph Ĝ as described before. Furthermore, we call a Steiner tree T ⊆ E(G) optimal
if the terminals in S are connected by T , |T | ≤ k, and |T | is minimum.

As a first step, we project trees in G onto Ĝ. This can be done in a natural way using
the mapping π. Somewhat abusing notation, given a tree T in G, we say that an edge e
of Ĝ belongs to T if π(e) ∈ T . Note that this projection of T onto Ĝ may no longer be
connected, and some edges of the tree may be duplicated if they coincide with the edges of
Tapx. However, inside a brick the tree T should behave similarly in G and in Ĝ, because the
interiors of bricks are isomorphic in G and Ĝ.

Using this projection, we can formally define the interaction between an optimal Steiner
tree and a decomposition of Ĝ into strips.

I Definition 4. Let T be an optimal Steiner tree, let H be a strip in some strip decomposition
of Ĝ, and let v ∈ V (∂H). We say that v is a portal for T if v is incident to an edge e that
belongs both to the interior of H and to T (formally, e ∈ intH and π(e) ∈ T).

The number of portals of strips allows a distinction between light and heavy strips of a strip
decomposition of Ĝ. The threshold is based on a number p = p(k) = k2/3/ log1/3 k. We
choose to represent it symbolically in order to expose the nature of the trade-offs made in
the design of the algorithm. We implicitly use that p = o(k) and that p, k/p = ω(1).

I Definition 5. Let T be an optimal Steiner tree and let H be a strip in some strip
decomposition of Ĝ. A strip H is called light with respect to T if ∂H contains at most k/p
portals for T . Otherwise, H is called heavy with respect to T .

We call a strip decomposition of Ĝ light if all its strips are light with respect to some
optimal Steiner tree T . The next lemma shows that knowing a light strip decomposition of a
particular type allows the instance to be solved.

I Lemma 6. There exists an algorithm which takes as input an instance (G,S, k) of the
Planar Steiner Tree problem together with the tree Tapx, the graph Ĝ, and a strip
decomposition D of Ĝ such that (i) D consists of at most O(k2p) strips of perimeter at most
O(k2) each, and (ii) no terminal is in the interior of a strip of D, and which outputs either
nothing or a solution of size at most k. Moreover, if (G,S, k) is a YES instance and D is
light, then it returns a solution of size at most k. The algorithm runs in O(2O(

√
(k2 log k)/p) n)

time and polynomial space.

Proof. The algorithm starts by marking the set of edges that it will be allowed to use. First,
we mark all the perimeters of all the strips in the decomposition D. As there are at most
O(k2p) strips of perimeter at most O(k2) each, this procedure marks at most O(k4p) edges

M. Pilipczuk, M. Pilipczuk, O. Sankowski, and E. J. v. Leeuwen 359

in total. Second, we iteratively consider all strips H ∈ D. For every strip H, consider each
set X ⊆ V (∂H) of cardinality at most k/p. We then compute an optimal Steiner tree in
H connecting X. This is an instance of the Planar Steiner Tree problem where all
terminals lie on the outer face. Erickson et al. [12, p. 661] proved that such instances can
be solved in O(`3 n + `2 n log n) time, where ` is the number of terminals. However, as
noted by Borradaile et al. [5, p. 3], this running time can be trimmed to O(`3 n). Hence in
O(kO(1) |H|) time we can compute an optimal Steiner tree in H connecting X. If the cost of
this tree does not exceed k, then we mark its edges. Note that the number of edges marked
in this manner is at most O(k2p) · k/p ·

(O(k2)
k/p

)
· k = O(kO(k/p)). Hence, the total number of

edges marked is O(kO(k/p)).
Observe that this marking of Ĝ immediately implies a marking of G using the mapping

π. We now delete all the unmarked edges of G as well as any nonterminals that become
isolated, and apply the algorithm of Tazari [22] to the remaining instance. The graph of this
instance has O(kO(k/p)) vertices. Hence Tazari’s algorithm runs in O(2O(

√
k log kO(k/p))) =

O(2O(
√

(k2 log k)/p)) time and polynomial space. If Tazari’s algorithm finds a solution, then it
is a solution of size at most k and we output it; otherwise, we output nothing. The marking
procedure takes O(kO(k/p) n) ≤ O(2O(

√
(k2 log k)/p) n) time and polynomial space as well.

It remains to prove that if (G,S, k) is a YES instance and every strip of D is light with
respect to an optimal Steiner tree T , then there exists an optimal solution T ′ that uses only
the marked edges. Consider a strip H ∈ D and let C1, C2, . . . , C` be the components of the
forest T ∩ intH. Each component Ci is a Steiner tree connecting incident portals. As the
number of portals incident to Ci is bounded by k/p, |Ci| ≤ k, and the interiors of the bricks
are isomorphic in G and Ĝ, we have marked some optimal Steiner tree C ′i connecting the
same portals at non-greater cost. Replace each component Ci with C ′i, and perform such
replacements in all the strips of D, thus obtaining a tree T ′. Clearly, T ′ is still a solution, it
is not more expensive than T , and it only uses marked edges. J

It remains to find a light strip decomposition that is required by the lemma.

4.2 A branching algorithm to obtain a light strip decomposition
In this section, we develop a branching algorithm that outputs many strip decompositions,
one of which is light. It was observed before that Ĝ is a brick, which can thus be decomposed
into strips using Lemma 3. This gives an initial strip decomposition where no terminal is in
the interior of a strip. However, we cannot guarantee that this decomposition is light. The
idea is therefore to guess a strip which is heavy with respect to some optimal Steiner tree,
and then to partition it into two simpler bricks, which are subsequently decomposed again
into strips using Lemma 3. Since we have no way of knowing which strips might be heavy or
what a good partition is, we apply branching and try all possibilities. Our analysis shows
that after branching a certain amount of times, we find a light strip decomposition in one of
the branches. We now present a formal description of this algorithmic intuition.

The main analytical tool to measure the progress of the algorithm is the following potential
function. For a strip decomposition D of Ĝ and an optimal solution T , let

Φ(D, T) =

4 ·
∑

H∈H(D,T)

|intH ∩ π−1(T)|
k/p

− |H(D, T)|.

Here H(D, T) is the set of strips from D that are heavy with respect to T . Note that the
potential is always nonnegative, as heavy strips each contain more than k/p portals for T

STACS’13

360 Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs

R

B

r

b

Figure 3 The split asserted by the statement of Lemma 7. The red dashed lines indicate the
partition into portal components. The dashed path represents a path of length at most k between r

and b, which must exist because r and b belong to the same portal component.

and thus their interiors each contain more than k/(2p) edges of T . Moreover, Φ(D, T) ≤ 4p
for any decomposition D and any solution T . Finally, if Φ(D, T) = 0 for some decomposition
D and some solution T , then all the strips of D are light with respect to T . The potential
function enables the definition of an extremal solution for a strip decomposition D: let T (D)
denote an optimal solution that minimizes Φ(D, T (D)).

We are now ready formalize the partition of a heavy strip (see Figure 3 for an illustration).

I Lemma 7. Let (G,S, k) be an instance of Planar Steiner Tree and let H be a strip
in some strip decomposition D of Ĝ not containing terminals in the interior, with R and B
being the red and blue paths of ∂H, respectively. Assume that (G,S, k) is a YES-instance
and assume furthermore that H is heavy with respect to T (D). Let ` ≥ k/p be the number of
portals in H for solution T (D). Then there exist vertices r ∈ V (R) and b ∈ V (B) such that
(i) there exists a path in H between r and b that avoids ∂H apart from the endpoints and

has length at most k,
(ii) for every such path P , the bricks with perimeters ∂H[r, b] ∪ P and ∂H[b, r] ∪ P both

contain at least `/2− 2 portals for T (D).

Proof. Let F be the forest induced in T (D) by the internal edges of the strip, i.e., F =
T (D) ∩ intH. We say that two edges e1, e2 ∈ F are in the same portal component of F if
some endpoint of e1 can be connected to some endpoint of e2 by a path in F traversing
only vertices not from V (∂H). Observe that this path can have length 0, but then its only
vertex cannot belong to V (∂H). We observe that this relation is an equivalence relation.
Note that the partition of the edges of F into portal components can be more refined than a
partition into connected components, as edges from F incident to the same portal are all in
different portal components. We say that a portal v is incident to a portal component C if v
is incident to an edge from C.
Claim 1. Every portal component C is incident to a portal belonging to V (R) and to a
portal belonging to V (B).

Assume first that C is incident only to portals from V (R). Let r1 and r2 be the first and
the last portal on R that are incident to C, in counter-clockwise direction on ∂H. As C is
not incident to portals from V (B) and the endpoints of R belong to V (B), we have that r1
and r2 lie in the interior of R. From the definition of a strip, we know that ∂H[r1, r2] is a
shortest path between r1 and r2. We infer that in T we can substitute the portal component
C with the path ∂H[r1, r2], thus creating a solution with non-greater cost (as C contains
some path from r1 to r2) and with strictly smaller potential. This contradicts the properties
of T (D). The argument that C must be incident to a portal from V (B) is analogous. This
settles Claim 1.

M. Pilipczuk, M. Pilipczuk, O. Sankowski, and E. J. v. Leeuwen 361

Using Claim 1, we prove the claimed existence of the vertices r and b. Let r1, r2, . . . , rt

be the portals on R, in clockwise direction on ∂H, and let b1, b2, . . . , bs be the portals on
B, in counter-clockwise direction on ∂H. Note that possibly r1 = b1 or rt = bs. For indices
i ∈ {1, 2, . . . , t} and j ∈ {1, 2, . . . , s}, let f(i, j) be the number of portals in the interior of the
path ∂H[ri, bj], i.e., f(i, j) = |{r1, . . . , ri−1} ∪ {b1, . . . , bj−1}|. Let (i0, j0) be such a pair for
which (a) ri0 and bj0 are incident to the same portal component C, and (b) f(i0, j0) ≤ `/2−1
but is maximum. By Claim 1, we infer that r1 and b1 are always incident to the same portal
component and that f(1, 1) = 0. Hence, such a pair (i0, j0) is well defined. Let r = ri0 and
b = bj0 . As r and b are incident to the same portal component, property (i) is satisfied. To
prove property (ii), we need the following claim:
Claim 2. f(i0, j0) ≥ `/2− 2.

Assume otherwise, i.e. f(i0, j0) ≤ `/2− 3. If i0 = t and j0 = s, then f(i0, j0) ≥ `− 2 >
`/2− 3, a contradiction. If i0 < t and ri0+1 is incident to the same portal component as r
and b, then we have that f(i0 + 1, j0) ≤ `/2− 1, which is a contradiction with the choice of
(i0, j0). An analogous contradiction occurs if j0 < s and bj0+1 is incident to the same portal
component as r and b. Now note that if i0 = t and j0 < s, then by Claim 1 portal bj0+1 is
incident to the same portal component as r and b, which, as observed, gives a contradiction.
Similarly we exclude the case when j0 = s and i0 < t. Therefore i0 < t, j0 < s, and both ri0+1
and bj0+1 do not belong to the same portal component as r and b. By Claim 1, ri0+1 and
bj0+1 are incident to the same portal component. As f(i0 +1, j0 +1) ≤ f(i0, j0)+2 ≤ `/2−1,
this contradicts the choice of (i0, j0) and settles Claim 2.

We now prove that property (ii) is satisfied. Let P be any path in H between r and b
that avoids ∂H apart from the endpoints. Consider the brick with perimeter ∂H[r, b] ∪ P
and observe that all the portals in the interior of ∂H[r, b] are still portals in this brick. As
f(i0, j0) ≥ `/2− 2, this brick has at least `/2− 2 portals. Similarly, all the portals in the
interior of ∂H[b, r] are still portals in the brick with perimeter ∂H[b, r] ∪ P . Hence, this
brick also has at least `− f(i0, j0)− 2 ≥ `− (`/2− 1)− 2 ≥ `/2− 2 portals. J

Note that `/2− 2 = ω(1), so we can assume that vertices r, b given by Lemma 7 are distinct
from each other. Hence, the obtained decomposition is non-degenerate.

Using Lemma 7, we can give the branching strategy.

I Lemma 8. There exists an algorithm that, given an instance (G,S, k) of Planar Steiner
Tree, the tree Tapx, and the graph Ĝ, in time O(kO(p) n) outputs a sequence D1,D2, . . . ,Dt

of strip decompositions of Ĝ such that the following properties hold:
(i) t = kO(p);
(ii) each decomposition consists of at most O(k2p) strips of perimeter at most O(k2) each,

and no terminal lies in the interior of any strip;
(iii) if (G,S, k) is a YES-instance, then there is a decomposition Di such that all the strips of

Di are light with respect to T (Di).
The working space of the algorithm, excluding the output decompositions, is polynomial.

Proof. We follow a recursive branching procedure. At depth d of the recursive procedure
we maintain a strip decomposition D with following properties: D consists of at most
O(dk(d+ k)) strips of perimeter at most 2k2 + dk each, and no terminal lies in the interior
of any strip. Moreover, at depth d we branch into at most O(dk3(d+ k)3) branches. Finally,
we show that it suffices to run the branching to a depth of at most 8p. Hence, as p = o(k),
the total number of produced decompositions is bounded by t = kO(p).

STACS’13

362 Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs

First, we need to provide a starting decomposition at the 0-th level of the recursion. We
start with a single brick Ĝ — that is, the entire graph Ĝ with its outer face (the Euler
tour of Tapx) as the perimeter. Recall that the size of Tapx is bounded by k2, and thus the
perimeter of Ĝ is at most 2k2. We apply Lemma 3 to this brick in order to obtain some
strip decomposition D0 of Ĝ. This decomposition consists of at most 2k2 strips, each having
perimeter at most 2k2. As all the terminals lie on the perimeter of Ĝ, no terminal lies inside
any strip of D0. This decomposition is the initial one for the branching procedure.

We now describe the operations performed on level d of the recursion. We do the following:
output the current decomposition D as the next Di;
branch on each H, r, b, where H is a strip of D with R,B being the red and the blue path
of ∂H, respectively, and r ∈ V (R), b ∈ V (B) are vertices that can be connected via a
path P (chosen arbitrarily) of length at most k that avoids ∂H apart from the endpoints.
For each such H , r, b, divide H into bricks with perimeters ∂H [r, b]∪P and ∂H [b, r]∪P ,
and apply Lemma 3 to decompose both bricks into strips. Proceed with the in total
O(dk(d+ k) · (k(d+ k))2) obtained decompositions to the next level of the recursion.

Observe that if |∂H| ≤ 2k2 +dk, then both bricks created in the initial division have perimeter
at most 2k2 + (d + 1)k, as |P | ≤ k. Applying Lemma 3 cannot create strips with longer
perimeter, and increases the number of strips in the decomposition by at most 4k2 +2(d+1)k.
Hence, the O(dk(d+ k)) bound on the number of strips on level d of the recursion holds. As
all the obtained decompositions only refine the initial one, in all the subcases no terminal
will lie inside any strip.

We now analyse the running time of the algorithm. Note that finding the path P for
a given strip H and vertices r ∈ V (R), b ∈ V (B) boils down to finding a shortest path in
an appropriate subgraph of the graph Ĝ, which can be done in O(n) time. As we output
O(kO(p)) decompositions, the bound on the running time follows.

It remains to prove that if we perform 8p levels of the branching procedure, then property
(iii) will hold. We do this by examining the change of the potential Φ(D, T (D)) during the
branching procedure.
Claim 1. Let D be the decomposition at some step of the branching procedure, such that
strip H ∈ D, where R,B are the red and blue paths of ∂H, respectively, is heavy with
respect to T (D). Let r ∈ V (R) and b ∈ V (B) be the vertices whose existence is asserted by
Lemma 7. Then in the branch of H, r, and b the potential decreases by at least 1/2.

Let D′ be the strip decomposition after performing the aforementioned branching.
We prove a slightly stronger claim, namely that Φ(D′, T (D)) ≤ Φ(D, T (D)) − 1/2. As
Φ(D′, T (D′)) ≤ Φ(D′, T (D)) by the definition of T (D′), this implies Claim 1.

We consider three cases. First assume that all the strips created when constructing D′
from D are in fact light with respect to T (D). Then the first term in the potential function
decreases by at least 2, as every heavy brick has more than k/(2p) edges from T (D) in the
interior, while the second term increases by 1. Hence the potential decreases by at least 1.

Second, assume that exactly one created strip H0 is heavy. Without loss of generality
assume that this strip was obtained while decomposing the brick with perimeter ∂H [r, b]∪P .
By Lemma 7, the brick with perimeter ∂H [b, r] ∪ P has at least k/(2p)− 2 ≥ k/(4p) portals;
here we use the bound k ≥ 8p that holds for large enough k due to p = o(k). Hence, it
has at least k/(8p) edges from T (D) in the interior. Therefore, the brick with perimeter
∂H[r, b] ∪ P has at least k/(8p) edges from T (D) fewer in the interior than H. The strip
H0 can only have fewer edges from T (D) in the interior, so the first term of the potential
function decreases by at least 1/2. As the second term is unchanged, this settles this case.

Finally, assume that at least two created strips are heavy. Then the first term of the

M. Pilipczuk, M. Pilipczuk, O. Sankowski, and E. J. v. Leeuwen 363

potential function cannot increase, as every edge of T (D) in the interior of the created heavy
strips was already in the interior of the heavy strip H , while the second term decreases by at
least 1. Hence the potential decreases by at least 1 in this case. This settles Claim 1.

Since the potential initially is at most 4p, and Claim 1 proves that the potential decreases
by at least 1/2 in one of the branches, it suffices to branch to at most 8p levels deep to
ensure that we find a decomposition Di for which Φ(Di, T (Di)) = 0. As observed before, this
implies that all strips of Di are light with respect to T (Di). This proves property (iii). J

We are ready to prove the main result of this paper.

I Theorem 9. The Planar Steiner Tree problem can be solved in O(2O((k log k)2/3) n)
time and polynomial space.

Proof. We start by constructing the approximate solution Tapx and the graph Ĝ in O(n)
time. Then, we run the algorithm given by Lemma 8 and to each output decomposi-
tion we apply Lemma 6. The correctness of the algorithm follows from property (iii) in
the statement of Lemma 8, while the claim on the running time follows from the fact
that to at most O(kO(p)) = O(2O((k log k)2/3)) instances we apply an algorithm running
in O(2O(

√
(k2 log k)/p) n) = O(2O((k log k)2/3) n) time. The polynomial space bound can be

achieved by applying Lemma 6 to each output decomposition once it is fully constructed. J

5 Conclusions and open problems

Although our result positively answers the question whether a subexponential-time paramet-
erized algorithm for Planar Steiner Tree exists, it raises many new open questions.

We first ask whether our algorithm can be improved. We can show that Planar Steiner
Tree cannot have a O(2o(

√
k) nO(1))-time algorithm unless the Exponential Time Hypothesis

is false, using the standard NP-hardness reduction from Connected Vertex Cover. It
seems reasonable to think that the right upper bound is O(2O(

√
k) nO(1)). Such an algorithm

— up to a logarithmic factor in the exponent — follows immediately if Planar Steiner
Tree would admit a polynomial kernel. We conjecture that such a kernel indeed exists.

Apart from the parameterization by the size of the tree investigated in this paper, there
is a second natural parameterization of the Steiner Tree problem, namely by |S|, the
number of terminals. Recall that on general graphs the O(2|S|nO(1))-time algorithm due to
Nederlof [21] is probably optimal [7]. Our techniques seem to break down on this stronger
parameterization. Does Planar Steiner Tree admit a subexponential-time algorithm
with respect to the number of terminals in the instance?

Another interesting direction is to try to generalize our algorithm to the closely related
Planar Steiner Forest problem. With a bit of simple preprocessing, we can obtain an
analogue of the approximate tree Tapx and construct the cut-open graph Ĝ. Using this graph,
we may perform the same branching procedure as in Lemma 8, and obtain a subexponential
number of subexponential kernels for this problem. However, the last step of the algorithm —
Tazari’s algorithm [22] based on Baker’s approach [1] — breaks down, as Steiner Forest
is NP-hard on graphs of treewidth 3 [2, 16]. Thus, one needs significantly new ideas to turn
a subexponential kernel into a subexponential algorithm for this problem.

Last but not least, we mention that Borradaile et al. [4] did some work on lifting the
brick and strip decomposition to graphs of bounded genus. It may therefore be interesting
whether our algorithm can also be extended to such graphs.

Acknowledgments
The authors thank Fedor Fomin, M.S. Ramanujan, and Marek Cygan for helpful discussions.

STACS’13

364 Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs

References
1 B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J.

ACM, 41(1):153–180, 1994.
2 M. Bateni, M. T. Hajiaghayi, and D. Marx. Approximation schemes for Steiner forest on

planar graphs and graphs of bounded treewidth. J. ACM, 58(5):21, 2011.
3 M. W. Bern and P. E. Plassmann. The Steiner problem with edge lengths 1 and 2. Inf.

Process. Lett., 32(4):171–176, 1989.
4 G. Borradaile, E. D. Demaine, and S. Tazari. Polynomial-time approximation schemes for

subset-connectivity problems in bounded-genus graphs. In STACS, pages 171–182, 2009.
5 G. Borradaile, P. N. Klein, and C. Mathieu. An O(n log n) approximation scheme for

Steiner tree in planar graphs. ACM Transactions on Algorithms, 5(3), 2009.
6 J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. An improved LP-based approximation

for Steiner tree. In L. J. Schulman, editor, STOC, pages 583–592. ACM, 2010.
7 M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Paturi, S. Saur-

abh, and M. Wahlström. On problems as hard as CNF-SAT. In IEEE Conference on
Computational Complexity, pages 74–84. IEEE, 2012.

8 E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Subexponential
parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM,
52(6):866–893, 2005.

9 R. Diestel. Graph Theory. Springer, 2005.
10 M. Dom, D. Lokshtanov, and S. Saurabh. Incompressibility through colors and IDs. In

ICALP (1), pages 378–389, 2009.
11 R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
12 R. E. Erickson, C. L. Monma, and A. F. J. Veinott. Send-and-split method for minimum-

concave-cost network flows. Mathematics of Operations Research, 12(4):pp. 634–664, 1987.
13 J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer

Science. Springer, 2006.
14 F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality and kernels.

In M. Charikar, editor, SODA, pages 503–510. SIAM, 2010.
15 M. R. Garey and D. S. Johnson. The Rectilinear Steiner Tree problem is NP complete.

SIAM Journal of Applied Mathematics, 32:826–834, 1977.
16 E. Gassner. The Steiner forest problem revisited. J. Discrete Algorithms, 8(2):154–163,

2010.
17 R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-

plexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.
18 R. Karp. On the computational complexity of combinatorial problems. Networks, 5:45–68,

1975.
19 P. N. Klein. A subset spanner for planar graphs, with application to Subset TSP. In J. M.

Kleinberg, editor, STOC, pages 749–756. ACM, 2006.
20 K. Mehlhorn. A faster approximation algorithm for the Steiner problem in graphs. Inf.

Process. Lett., 27(3):125–128, 1988.
21 J. Nederlof. Fast polynomial-space algorithms using Möbius inversion: Improving on Steiner

Tree and related problems. In ICALP (1), pages 713–725, 2009.
22 S. Tazari. Faster approximation schemes and parameterized algorithms on H-minor-free

and odd-minor-free graphs. In MFCS, pages 641–652, 2010.
23 P. Widmayer. On approximation algorithms for Steiner’s problem in graphs. In G. Tinhofer

and G. Schmidt, editors, WG, volume 246 of LNCS, pages 17–28. Springer, 1986.
24 Y.-F. Wu, P. Widmayer, and C. K. Wong. A faster approximation algorithm for the Steiner

problem in graphs. Acta Inf., 23(2):223–229, 1986.

The arithmetic complexity of tensor contractions
Florent Capelli1,2, Arnaud Durand2, and Stefan Mengel∗3

1 ENS Lyon, France
florent.capelli@ens-lyon.fr

2 IMJ UMR 7586 - Logique
Université Paris Diderot F-75205 Paris, France
durand@logique.jussieu.fr

3 Institute of Mathematics
University of Paderborn D-33098 Paderborn, Germany
smengel@mail.uni-paderborn.de

Abstract
We investigate the algebraic complexity of tensor calulus. We consider a generalization of iterated
matrix product to tensors and show that the resulting formulas exactly capture VP, the class of
polynomial families efficiently computable by arithmetic circuits. This gives a natural and robust
characterization of this complexity class that despite its naturalness is not very well understood
so far.

1998 ACM Subject Classification F.1.3 [Computation by abstract devices]: Complexity Meas-
ures and Classes — Relations among complexity measures

Keywords and phrases algebraic complexity, arithmetic circuits, tensor calculus

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.365

1 Introduction

The question of which polynomials can be computed by polynomial size arithmetic circuits
is one of the central questions of algebraic complexity. It was first brought up explicitly
by Valiant [11] who formulated a complexity theory in this setting with its own complexity
classes and notions of completeness. Efficient computation in Valiant’s model is formalized
by the complexity class VP which consists of families of polynomials that can be computed by
arithmetic circuits of polynomial size. Despite recent efforts relating VP to logically defined
classes of polynomial families [9, 4], this class is not very well understood. This is reflected
in the low number of helpful alternative characterizations and the conspicuous absence of
any known natural complete problem.

Consequently, most progress in arithmetic circuit complexity has not been achieved
by considering arithmetic circuits directly, but instead by considering the somewhat more
restricted model of arithmetic branching programs (see e.g. [7, 11, 10, 5]). Arithmetic
branching programs are widely conjectured to have expressivity strictly between that of
arithmetic formulas and circuits, but have so far been better to handle with known proof
techniques. One of the nice properties of branching programs that has often played a crucial
role is that they can equivalently be seen as computing a specified entry of the iterated
product of a polynomial number of matrices.

∗ Partially supported by DFG grants BU 1371/2-2 and BU 1371/3-1 and the [European Community’s]
Seventh Framework Programme [FP7/2007-2013] under grant agreement n° 238381.

© F. Capelli, A. Durand, and S. Mengel;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 365–376

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.365
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

366 The arithmetic complexity of tensor contractions

We extend this view on branching programs by going from matrices to higher dimen-
sional tensors. Consequently, we also go from matrix product to the generalized notion of
contraction of tensors. It turns out that generalizing iterated matrix product to iterated
tensor contractions does increase the expressive power of the model and that the resulting
tensor formulas capture exactly VP. This characterization of VP turns out to be fairly robust
in the sense that one can add different restrictions on the dimensions of the tensors without
changing the expressive power of the model at all.

This is not the first time that the complexity of tensor calculus is studied. Damm, Holzer
and McKenzie [3] and later Beaudry and Holzer [1] have characterized different boolean
complexity classes by formulas having matrices as inputs and using addition, matrix product
and tensor product as operations. Malod [6] adapted these formulas to the arithmetic circuit
setting and showed characterizations for most arithmetic circuit classes. One difference
between these results and those in our paper is that in [3, 6, 1] tensors are always encoded
as matrices, i.e. the tensor product is expressed as the Kronecker product of two matrices.
Another difference is that both the characterization of VP obtained in [6] and the similar
characterization of LOGCFL (the Boolean analogon of VP) from [3] require an additional
restriction, called tameness on the size of matrices computed at each gate of the formula.
This restriction permits to control the growth of the intermediate objects in the computation
but may seem not very natural. In this present work, working directly with tensors instead
of a matrix representation makes such a restriction unnecessary and a more direct connection
between VP and tensor calculus is established.

2 Preliminaries

Below, K is a field and bold letters denote tuples when there is no ambiguity on their length.

2.1 Arithmetic circuits
We will use the well known model of arithmetic circuits to measure the complexity of
polynomials. In this section we give some definitions and well known properties of arithmetic
circuits (see e.g. [2, 7] for more on the subject).

An arithmetic circuit is a directed acyclic graph with vertices of indegree 0 or 2 called
gates. The gates of indegree 0 are called the inputs and are labeled with elements of K or
variables. The gates of indegree 2, called computation gates, are labeled with operations
of the field (+ and ×). The polynomial computed by a gate is defined inductively. The
polynomial computed by an input gate is the one corresponding to its label. The polynomial
computed by a computation gate is the sum or the product of the polynomials computed
by its children. We assume that there exists a distinguished gate called the output. The
polynomial computed by an arithmetic circuit is the one computed by its output gate. The
size of a circuit C, denoted by |C|, is the number of vertices of its underlying DAG.

An arithmetic circuit C is said to be skew if for each ×-gate at least one of its children is
an input of the circuit. A circuit is said to be multiplicatively disjoint if for each ×-gate, its
two input subcircuits are disjoint.

A family (fn)n∈N of polynomials is in VP if there exists a family of multiplicatively
disjoint circuits (Cn)n∈N and a polynomial P such that for all n ∈ N, Cn computes fn and
|Cn| ≤ P (n). The family (fn) is in VPws if the Cn are skew.
I Remark. Originally, VP was defined as families of polynomials that can be computed
by polynomial size circuits and have polynomially bounded degree. As shown in [7] the
definition given here is equivalent to the original one. We prefer this one here because the

F. Capelli, A. Durand, and S. Mengel 367

semantic condition on the degree is harder to deal with than multiplicatively disjointness
which is more syntactic.

In the following, we will simulate arithmetic circuits by formulas computing tensors. We
use the notion of parse trees of a circuit (see [7] for more details and bibliographical references
on this notion). For a multiplicatively disjoint circuit C, we define its parse trees inductively.
A parse tree T of C is a subgraph of C constructed as follows:

Add the output of C to T
For every gate v added to T do the following:

If v is a +-gate, add exactly one of its children to T .
If v is a ×-gate, add both of its children to T .

As C is multiplicatively disjoint, a parse tree of C is a tree. The monomial m(T) computed
by a parse tree T is the product of the labels of its leaves. The polynomial computed by C
is the sum of the monomials of all parse trees of C.

2.2 Tensors
In this paper, we interpret tensors as multidimensional arrays. Their algebraic nature is not
studied here. A good introduction to multilinear algebra and tensors can be found in [8].

Let n1, . . . , nk be k positive integers. A k-dimensional tensor T of order (n1, . . . , nk) is a
mapping T : [n1]× . . .× [nk]→ K. For i1 ∈ [n1], . . . , ik ∈ [nk], we denote by T [i1, . . . , ik] the
value of the mapping on the point (i1, . . . , ik). We call these values entries of T . We denote
by D(T) the domain of T . Obviously D(T) = [n1]× . . .× [nk]. We also denote by dim(T)
(equal to k, here), the dimension of T . The size of a tensor T , denote by ‖T‖, is the number
of entries, i.e. ‖T‖ =

∏k
i=1 ni, where T is of order (n1, . . . , nk). The maximal order of T ,

denote by maxorder(T) is maxi∈[k] ni. In the following, we also call matrices (resp. vectors),
tensors of dimension 2 (resp. 1).

I Definition 1 (Contraction). Let T be a k-dimensional tensor of order (n1, . . . , nk) and
G an l-dimensional tensor of order (m1, . . . ,ml) with k, l ≥ 1. If nk = m1, we denote
by T ∗ G the contraction of T and G on the dimensions k and 1 which is a tensor of
order (n1, . . . , nk−1,m2, . . . ,ml) defined as (T ∗ G)[e1, e2] =

∑nk

i=1 T [e1, i]G[i, e2] for all
e1 ∈ [n1]× . . .× [nk−1] and e2 ∈ [m2]× . . .× [ml].

I Remark. Obviously, contraction is a direct generalization of the matrix product. Indeed, if
both T and G are matrices, then T ∗G is the ordinary matrix product.

I Proposition 2. Let T , G, H be tensors with dim(G) ≥ 2 such that T ∗ (G ∗ H) and
(T ∗G) ∗H are both well defined. Then, T ∗ (G ∗H) = (T ∗G) ∗H.

Proof. By direct consequence of the associativity of the ordinary matrix product. For a
tensor T of dimension k ≥ 2 and order (n1, . . . , nk), and a tuple e of length k − 2 we define
the n1 × nk matrix Te := (T [i, e, j])i∈[n1],j∈[nk]. Then by associativity of matrix product:

∀e1, e2, e3 : Te1 ∗ (Ge2 ∗He3) = (Te1 ∗Ge2) ∗He3 .

Hence, the claim follows when dim(T) ≥ 2 and dim(H) ≥ 2. For dim(T) = 1 or dim(H) = 1
the argument is similar. J

I Observation 3. If G is a vector, then the equality of Proposition 2 may not be true anymore.
For example((

0 1
0 0

)
∗
(

0
1

))
∗
(

1 0
0 0

)
=
(

1
0

)
6=
(

0
0

)
=
(

0 1
0 0

)
∗
((

0
1

)
∗
(

1 0
0 0

))
.

STACS’13

368 The arithmetic complexity of tensor contractions

where the input
(

0
1

)
is a 1-dimensional tensor T of order (2) such that T [1] = 0 and T [2] = 1.

I Definition 4. A {∗}-formula F is a labeled, ordered, rooted binary tree whose the leaves,
called the inputs, are labeled by tensors whose entries are elements of K or variables and the
other nodes are labeled by ∗. The tensor Tv computed by a node v is defined inductively:

If v is a leaf then Tv := label(v).
If v is labeled by ∗ and has left child v1 and right child v2 then Tv := Fv1 ∗ Fv2 .

A {∗}-formula computes the tensor computed by its root.

I Remark. In general, there may be a dimension mismatch in some contractions in an
{∗}-formula and thus the tensor computed by it may not be well-defined. However, detecting
such {∗}-formulas is easy and thus we only consider formulas in which no such problems
occur.

As the entries of the input tensors are constants of K or variables, each entry of a tensor
computed by a gate is a polynomial of K[X1, . . . , Xn]. This is why it makes sense to compare
the computational power of {∗}-formulas and arithmetic circuits defined in the last section.
Moreover, of all the polynomials computed in the output of a {∗}-formula we will mostly
only be interested in one single polynomial. Thus we assume that the output tensor has
only one single entry, i.e. the tensor is indeed a scalar. Observe that this form can always
be achieved by contracting with vectors. We say that the scalar polynomial computed by a
{∗}-formula is the polynomial computed by it.

I Definition 5. The size of a {∗}-formula F , denoted by |F |, is the number of ∗-gates plus
the size of the inputs, i.e. |F | := |{v | label(v) = ∗}|+

∑
T :T input of F ‖T‖. The dimension

of F , denoted by dim(F) is the dimension of the tensor computed by F . The maximal
dimension of F , denoted by maxdim(F) is the maximal dimension of the tensors computed
at the gates of F , i.e. maxdim(F) := maxv: gate in F (dim(Tv)). The input dimension of F is
maxv:v input of F dim(Tv).

We will often mix the notations for tensors and for tensor formulas. For example, if F is
a tensor formula computing the tensor T , we will speak of the order of F instead of T and
write F [e] instead of T [e]. Moreover, given two different formulas F and F ′, we will write
F ' F ′ if they compute the same tensor.

3 From arithmetic circuits to {∗}-formulas

We describe how a family of polynomials in VP can be simulated by a family of {∗}-formulas
of polynomial size and maximal dimension 3. Our proof is inspired by a proof from [9] where
it is shown that polynomials in VP can be represented by bounded treewidth CSPs.

I Theorem 6. Let (fn) ∈ VP. There exists a family of {∗}-formulas (Fn) of maximal
dimension 3 and polynomial size such that Fn computes fn for all n.

We use the following observation from [9] which can be proved by combining results from
Malod and Portier [7] and Valiant et al. [12].

I Proposition 7. Let f be computed by an arithmetic circuit C of size s. Then there is an
arithmetic circuit C ′ of size sO(1) that also computes f such that all parse trees of C ′ are
isomorphic to a common tree T .

Theorem 6 follows direcly from Proposition 7 and the following lemma:

F. Capelli, A. Durand, and S. Mengel 369

I Lemma 8. Let C be an arithmetic circuit computing the polynomial f whose parse trees
are all isomorphic to a common parse tree T . Then there exists a {∗}-formula F of maximal
dimension 3 and of size 9|C|3|T | that computes f .

Proof. We construct a tensor formula along the tree T which contains the sum of all
monomials of fn in its entries. We denote by V (T) (resp. V (C)) the vertices of T (resp. C).
For s ∈ V (T), we call Ts the subtree of T rooted in s. We define a partial parse tree rooted
in s to be a function p : V (Ts)→ V (C) respecting the following conditions for all t ∈ V (Ts):
1. If t is a leaf, then p(t) is an input of C.
2. If t has one child t1, p(t) is a +-gate and p(t1) is a child of p(t) in C.
3. If t has two children t1 and t2, then

a. p(t) is a ×-gate,
b. p(t1) is the left child of p(t), and
c. p(t2) is the right child of p(t).

We call these conditions the parse tree conditions. It is easy to see that when s is the
root of T (and thus Ts = T) and p : V (T)→ V (C), then p(V (T)) is the vertex set of a parse
tree of C if and only if p is a partial parse tree rooted in s.

If p is a partial parse tree rooted in s ∈ V (T), we define the monomial m(p) computed
by p by m(p) :=

∏
t∈leaf(Ts) label(p(t)). Observe that this is well defined as p respects, in

particular, the first parse tree condition and thus p(t) for t ∈ leaf(Ts) is always an input of C.
If p does not respect the parse tree conditions, we set m(p) = 0. With this notation we have

f =
∑

p:V (T)→V (C)

m(p).

We index the vertices of C : V (C) = {v1, . . . , vr} with r = |C|. We denote by E the
tensor of dimension 1 and order (r) such that for all i ≤ r, E[i] = 1 and by δi,j the Kronecker
function which equals 1 if i = j and 0 otherwise. We construct by induction along the
structure of T a {∗}-formula Fs for each s ∈ T . The formula Fs has dimension 2, order
(r, r), size at most 9r3|Ts| and maximal dimension 3. Furthermore, for all i, j ≤ r:

Fs[i, j] = δi,j

∑
p:V (Ts)→V (C)

p(s)=vi

m(p).

Observing f = E ∗ Fs ∗E when s is the root of T completes the proof. We now describe the
inductive construction of Fs. Several cases occur:

s is a leaf: In this case Ts consists only of the leaf s. The partial parse trees of Ts are
functions p : {s} → V (C) and m(p) = label(p(s)) if p(s) is a input of C and m(p) = 0
otherwise. Then Fs consists of a r × r input matrix I such that for all i, j ≤ r,

I[i, j] =
{
δi,j label(vj) if vj is an input
0 otherwise.

Obviously, Fs is of size r ≤ 9r3, of maximal dimension 2 and I[i, j] = δi,j

∑
p:{s}→V (C)

p(s)=vi

m(p).
s has one child s1: We start with an observation on functions p : V (Ts)→ V (C). Let p1
be the restriction of p on V (Ts1). If p is a partial parse tree, then p1 is one, too, because it
fulfills the parse tree conditions for all t ∈ V (Ts1) ⊆ V (Ts). Moreover, m(p) = m(p1) because
the leaves in p and in p1 are the same. In addition, if p is not a partial parse tree then

STACS’13

370 The arithmetic complexity of tensor contractions

either p violates a parse tree condition for t ∈ Ts1 . In that case, p1 is not a partial parse
tree and then m(p) = m(p1) = 0,
or p(s) is not a +-gate,
or p(s) is a +-gate but p(s1) is not a child of p(s).

We encode these conditions in a tensor of dimension 3 and order (r, r, r) defined as

M [i, j, k] :=
{
δj,k if vj is +-gate and vi is a child of vj

0 otherwise.

Let Fs := E ∗ (Fs1 ∗M). Formula Fs is of maximal dimension 3, dimension 2 and order
(r, r). We have |Fs| ≤ 9r3(|Ts| − 1) + r3 + 2 + ‖E‖ ≤ 9r3|Ts| and

Fs[j, k] =
r∑

i=1
(

r∑
p=1

Fs1 [i, p]M [p, j, k])

= δj,k

r∑
i=1

(
∑

p1:V (Ts1)→V (C)
p1(s1)=vi

m(p1)M [i, j, j]).

Let p be a function p : V (Ts)→ V (C) such that p(s1) = vi and p(s) = vj . Let p1 be its
restriction on V (Ts1). We have m(p) = m(p1)M [i, j, j], because

if p is a partial parse tree then M [i, j, j] = 1 and thus m(p1)M [i, j, j] = m(p1) = m(p),
if vj is not a +-gate then m(p) = 0 and also m(p1)M [i, j, j] = 0 because M [i, j, j] = 0,
if p1(s1) = vi is not a child of vj = p(s) then m(p) = 0. Since M [i, j, j] = 0, we have
m(p) = 0 = m(p1)M [i, j, j].

This part of the proof is completed by remarking that, in each case

Fs[j, k] = δj,k

r∑
i=1

∑
p1:V (Ts1)→V (C)

p1(s1)=vi

m(p1)M [i, j, k] = δj,k

∑
p:V (Ts)→V (C)

p(s)=vj

m(p).

s has two children, s1 (left child) and s2 (right child): As above, we encode the
parse tree conditions in tensors of dimension 3 and contract them correctly to compute the
desired result. This time there are two different tensors: one encoding the condition 3.b and
one for 3.c. Let ML and MR be the two following (r, r, r) tensors:

ML[i, j, k] =
{
δj,k if vj is a ×-gate and vi is the left child of vj

0 otherwise,

MR[i, j, k] =
{
δj,k if vj is a ×-gate and vi is the right child of vj

0 otherwise.
Let Fs be the formula of maximal dimension 3, dimension 2 and order (r, r) defined as

Fs = (E ∗ (Fs1 ∗ML)) ∗ (E ∗ (Fs2 ∗MR)).

We have |Fs| = |Fs1 |+ ‖ML‖+ ‖MR‖+ |Fs2 |+ 5 + 2‖E‖ ≤ 9r3|Ts|. In addition:

Fs[i, j] =
r∑

k=1
((

r∑
a=1

Fs1 [a, a]ML[a, i, k])× (
r∑

b=1
Fs2 [b, b]MR[b, k, j]))

= δi,j

r∑
a,b=1

Fs1 [a, a]ML[a, i, i]Fs2 [b, b]MR[b, i, i]

= δi,j

r∑
a,b=1

∑
p1:V (Ts1)→V (C)

p1(s1)=va

∑
p2:V (Ts2)→V (C)

p2(s2)=vb

m(p1)m(p2)ML[a, i, i]MR[b, i, i]

.

F. Capelli, A. Durand, and S. Mengel 371

Similarly as before, let p : V (Ts)→ V (C) such that p(s) = vi, p(s1) = va and p(s2) = vb.
We denote by p1 (resp. p2) the restriction of p on V (Ts1) (resp. V (Ts2)) and show that

m(p) = ML[a, i, i]MR[b, i, i]m(p1)m(p2)

by studying the possible cases:
If p is a partial parse tree then p1 and p2 are, too. Moreover, since s has two children,
p(s) = vi is necessarily a ×-gate, va its left child and vb its right child. It follows that
ML[a, i, i] = MR[b, i, i] = 1 and

m(p) =
∏

l∈leaf(Ts)

label(l) =
∏

l∈leaf(Ts1)

label(l)
∏

l∈leaf(Ts2)

label(l) = m(p1)m(p2).

If p is not a partial parse tree then three cases can occur: If p1 (resp. p2) is not a partial
parse tree, then m(p1) = 0 (resp. m(p2) = 0). If vi is not a ×-gate, then ML[a, i, i] = 0.
Finally, if va (resp. vb) is not the left (resp. right) child of vi, then ML[a, i, i] = 0 (resp.
MR[b, i, i] = 0). In all those cases, ML[a, i, i]MR[b, i, i]m(p1)m(p2) = 0 = m(p).

This completes the proof. J

4 From {∗}-formulas to arithmetic circuits

In this section we will show that the polynomials computed by polynomial size {∗}-formulas
can also be computed by polynomial size arithmetic circuits. We start by first proving this
for formulas with bounded maximal dimension. Then we extend this result by showing that
any {∗}-formula can be transformed into an equivalent one with bounded maximal dimension
without increasing the size.

4.1 Formulas with bounded maximal dimension
I Proposition 9. Let F be a {∗}-formula of maximal dimension k, dimension l ≤ k and order
(n1, . . . , nl). Let n := maxT :T input of F (maxorder(T)). Then there exists a multiplicatively
disjoint circuit C of size at most 2nk+1|F | such that for all e ∈ D(F) there exists a gate ve
in C computing F [e].

Proof. If F is an input, let C be the circuit having
∏l

i=1 ni inputs, each one labeled with an
entry of F . The size of C is

∏l
i=1 ni ≤ nk.

If F = G ∗H , by induction we have circuits CG and CH with the desired properties for G
and H. The dimension of F is less than k and for e ∈ D(F), F [e] =

∑m
i=1 G[e1, i]H[i, e2]

with m ≤ n.
Each G[e1, i] and H[i, e2] is computed by a gate of CG and CH ,respectively, so we can

compute F [e] by adding at most 2n gates (m ×-gates and m − 1 +-gates). As there are
at most nk entries in F , we can compute all of them with a circuit C by adding at most
2n× nk gates to CH ∪ CG.

The circuit C is multiplicatively disjoint since each ×-gate receives one of its input from
CG and the other one from CH . Also |C| = |CG|+ |CH |+ 2nk+1 ≤ 2nk+1|F |. J

I Corollary 10. Let (Fn) be a family of {∗}-formulas of polynomial size and of maximal
dimension k computing a family (fn) of polynomials. Then (fn) is in VP.

STACS’13

372 The arithmetic complexity of tensor contractions

4.2 Unbounded maximal dimension
Since the size of the circuit constructed in the previous section is exponential in k :=
maxdim(F), we cannot apply the results from there directly if k is not bounded by a
constant. Somewhat surprisingly we will see in this section that one does not gain any
expressivity by letting intermediate dimensions of formulas grow arbitrarily. Thus bounding
maxdim(F) is not a restriction of the computational power of {∗}-formulas.

I Definition 11. A {∗}-formula F of dimension k and input dimension p is said to be tame
if maxdim(F) ≤ max(k, p).

I Definition 12. A {∗}-formula F is said to be totally tame if each subformula of F is tame.

Let us remark again that also in [3] and [6] there is a notion of tameness that prevents
intermediate results from growing too much during the computation. It turns out that in
those papers tameness plays a crucial role: Tame formulas can be evaluated efficiently while
general formulas are hard to evaluate in the respective models. We will see that in our setting
tameness is not a restriction at all. Indeed, any {∗}-formula can be turned into an equivalent
totally tame formula without any increase of its size. Thus totally tame and general formulas
have the same expressive power in our setting which is a striking difference to the setting
from [3] and [6]. We start with the following lemma:

I Lemma 13. Let F be a totally tame formula with dim(F) = k and input dimension p. For
all totally tame formulas E of dimension 1 and input dimension at most p, there exist totally
tame formulas Gr and Gl of size |F ∗ E| = |E ∗ F | = |F |+ |E|+ 1 such that Gr ' F ∗ E
and Gl ' E ∗ F .

Proof. We only show the construction of Gr; the construction of Gl is completely analogous.
We proceed by induction on F .

If F is an input, then maxdim(F) = dim(F) = p. Let E be any totally tame formula of
dimension 1 and input dimension at most p. We set Gr := F ∗E. Clearly, k = dim(Gr) = p−1.
Furthermore, maxdim(Gr) = max(p− 1,maxdim(F),maxdim(E)) ≤ p because E has input
dimension at most p and is totally tame. Thus Gr is totally tame.

Let now F = F1 ∗ F2. Let k1 := dim(F1) and k2 := dim(F2). Let E be a totally tame
formula of dimension 1 and input dimension at most p.

If dim(F2) = 1, we claim that Gr = F ∗E is totally tame. Indeed, since dim(F2) = 1, we
have dim(F) = k1 − 1. But F is by assumption tame, so k1 = dim(F1) ≤ max(k1 − 1, p).
Hence k1 ≤ p and dim(F) ≤ p. Thus all intermediate results of Gr have dimension at
most p, so Gr is tame. But then it is also totally tame, because its subformulas are totally
tame by assumption.
If dim(F2) = 2, we have p ≥ 2 obviously and dim(F) = dim(F1). F2 is a subformula of F ,
so it is totally tame, too. Furthermore, F2 ∗ E is of dimension 1 and it is also totally
tame since 2 ≤ p. Moreover, by Proposition 2 we have F ∗ E ' F1 ∗ (F2 ∗ E). Applying
the induction hypothesis on F1 and (F2 ∗ E) gives the desired Gr.
If dim(F2) > 2, by Proposition 2 we have F ∗ E ' F1 ∗ (F2 ∗ E). We first apply the
induction hypothesis on F2 and E to construct a totally tame formula G′ computing
F2 ∗ E. Finally Gr := F1 ∗G′ is totally tame since F1 and G′ are totally tame and F is
of dimension k = k1 + k2 − 2 ≥ max(k1, k2 − 1).

J

We now prove the main proposition of this section.

F. Capelli, A. Durand, and S. Mengel 373

I Proposition 14. For every {∗}-formula F there exists a totally tame {∗}-formula F ′ such
that F ′ ' F and |F | = |F ′|.

Proof. The proof is by induction on F . If F is an input then it is trivially totally tame as
the dimension of F is equal to the input dimension of F . So we set F ′ := F .

If F = F1 ∗F2 then several cases can occur depending on the dimension of F1 and F2. We
denote by k, k1, k2 the dimensions of F , F1 and F2 respectively. We recall that k = k1 +k2−2.

If both k1 and k2 are different from 1. Then F ′ = F ′1 ∗ F ′2 is totally tame since k ≥
max(k1, k2)
If k1 = 1 or k2 = 1, we use Lemma 13 on F ′1 and F ′2 to construct F ′ of size |F |, totally
tame, computing F1 ∗ F2.

J

Combining Proposition 14 and Corollary 10 we get the following theorem:

I Theorem 15. Let (Fn) be a family of {∗}-formulas of polynomial size and input dimension
p (independent of n) computing a family of polynomials (fn). Then (fn) is in VP.

Proof. Applying Proposition 14 on (Fn) gives a family (F ′n) computing (fn) such that (F ′n)
is tame. Then the maximal dimension of F ′n is p (because Fn is scalar, thus of dimension 1)
and applying Corollary 10 proves the claim. J

4.3 Unbounded input dimension
While we got rid of the restriction on the maximum dimension of {∗}-formulas in the last
section, we still have a bound on the dimension of the inputs in Theorem 15. In this section we
will show that this bound is not necessary to have containment of the computed polynomials
in VP. We will show that inputs having “big” dimension can be computed by polynomial size
{∗}-formulas of input dimension 3. We can then use this to eliminate inputs of dimension
more than 3 in {∗}-formulas. Applying Theorem 15 we conclude that the only restriction on
{∗}-formulas that we need to ensure containment in VP is the polynomial size bound.

I Proposition 16. Let T be a r-dimensional tensor of order (n1, . . . , nr). Let L := ‖T‖ =∏r
i=1 ni be the number of entries in T . Then there is a {∗}-formula F of size r+ 1 +L3 + 2L

and input dimension 3 computing T .

Proof (sketch). Choose an arbitrary bijection B : [L]→ [n1]× . . .× [nr]. Let furthermore
Bi : [L] → [ni] for i ≤ r be the projection of B onto the i-th coordinate. We define the
3-dimensional tensors Ti of order (L, ni, L) by

T1[m, k, n] =
{
T [B(m)] if m = n and B1(m) = k

0 otherwise.
and, for 2 ≤ i ≤ r,

Ti[m, k, n] =
{

1 if m = n and Bi(m) = k

0 otherwise.
By induction one can show that for the tensor P = T1 ∗ . . . ∗ Tr, P [m, k1, . . . , kr, n] =

T [k1, . . . , kr] holds if m = n and B(m) = (k1, . . . , kr) and P [m, k1, . . . , kr, n] = 0 hold
otherwise. Hence T = E ∗ P ∗ E where E is a vector of order L filled with 1. J

The following theorem is a direct consequence of Proposition 16 and Theorem 15.

I Theorem 17. Let (Fn) be a family of {∗}-formulas of polynomial size computing a family
of polynomials (fn). Then fn is in VP.

STACS’13

374 The arithmetic complexity of tensor contractions

5 The power of contracting with vectors

In this section we will make a finer examination of where exactly the additional power
originates when going from iterated matrix product of [7] to tensor contractions. We will see
that this additional expressivity crucially depends on the possiblity of contracting tensors on
more than two of their dimensions. We will show that when we prevent this possibility by
disallowing contractions with vectors – which are used in the proof of Theorem 6 to “collapse”
dimensions not needed anymore so that we can access other dimensions to contract on – the
expressivity of {∗}-formulas drops to that of iterated matrix product.

Observe that we cannot assume that {∗}-formulas compute scalars in this setting, because
we cannot decrease the dimension of the tensors computed by a formula. Also we cannot
compute all entries of the output at the same time efficiently, because there might be
exponentially many such entries. But we will see in the following Proposition that we can
compute each individual entry of the output more efficiently than in the general setting
where contraction with tensors is allowed.

I Proposition 18. Let F be a {∗}-formula of order (n1, . . . , nk) whose inputs are all of
dimension at least 2. Then for all e ∈ D(F) there exists a skew arithmetic circuit C of size
at most 2n3|F | where n := maxT : T input of F (maxorder(T)) computing F [e].

Proof. By Proposition 2 we can write F as A1 ∗ (A2 ∗ (A3 ∗ . . .∗An)). The proof then follows
easily by induction: We do the same construction as in Theorem 10 but this time we only
have n2 entries and at each ∗-gate, one side is an input, resulting in a skew circuit. J

The case of Proposition 18 exactly corresponds to the characterization of VPws by Malod
and Portier [7] by n products of matrices of size n × n. Thus Proposition 18 naturally
generalizes this result and the real new power seen in Theorem 6 must come from the use
of vectors in the products. As we have seen in the proof of Proposition 18 it is crucial that
vectors are the only case which breaks the associativity of Proposition 2. So what looked like
a not very important edge case in Observation 3 plays a surprisingly important role for the
expressivity of {∗}-formulas.

6 The ∗i,j operators

The ∗-operator contracts tensors only in a very specific way: It always only contracts on the
last dimension of one tensor and the first dimension of the other one. It is thus natural to
ask if this is a restriction of the computational power of the formulas. In this section we will
see that it is indeed not. If we allow free choice of the dimensions to contract on during a
contraction this does not make the resulting polynomials harder to compute. To formalize
this we give the following definition of a contraction ∗i,j .

I Definition 19. Let T be a k-dimensional tensor of order (n1, . . . , nk) and G a l-dimensional
tensor of order (m1, . . . ,ml) with k, l ≥ 1. When ni = mj for i ≤ k and j ≤ l, we denote by
T ∗i,j G the contraction of T and G on the dimensions i and j the (k + l − 2)-dimensional
tensor of order (n1, . . . , ni−1, ni+1, . . . , nk,m1, . . . ,mj−1,mj+1, . . . ,ml) defined as

(T ∗i,j G)[e1, e2, e3, e4] =
ni∑

r=1
T [e1, r, e2]G[e3, r, e4]

for all e1 ∈ [n1] × . . . × [ni−1], e2 ∈ [ni+1] × . . . × [nk], e3 ∈ [m1] × . . . × [mj−1] and
e4 ∈ [mj+1]× . . .× [ml].
{∗i,j}-formulas are defined in complete analogy to {∗}-formulas.

F. Capelli, A. Durand, and S. Mengel 375

It turns out that {∗i,j}-formulas cannot compute more than {∗}-formulas, so the free
choice of the dimensions to meld on does not change much.

I Theorem 20. Let (Fn) be a family of {∗i,j}-formulas of polynomial size computing a
family of polynomials (fn). Then (fn) is in VP.

The proof of Theorem 20 follows a similar approach as that of Theorem 17. Let us
sketch some key steps here: If we bound the maximal dimension of {∗i,j}-formulas by a
constant k, it is easy to see that the proof of Theorem 10 can be adapted to {∗i,j}-formulas
in a straightforward way. The main complication is then turning general {∗i,j}-formulas
into totally tame ones. ∗i,j is not associative anymore, and this makes a straightforward
translation of the proof of Proposition 14 tricky. These problems can be solved by the
observation that the crucial steps in the process of making a formula tame are those where a
{∗i,j}-formula is multiplied by a tensor of dimension 1. But for such contractions we can
give explicit formulas for different cases that may occur, so again every {∗i,j}-formula has
an equivalent tame {∗i,j}-formula. Combining this with Proposition 16 completes the proof.

7 Conclusion

We have shown that one can get a robust characterization of VP by formulas with tensors as
input and tensor contraction as the only operation. This generalizes the known character-
ization of VPws by iterated matrix product by Malod and Portier [7]. In some aspects the
situation in our setting is more subtle, though. We remarked that vectors and in general
breaking associativity plays a crucial role if we want to characterize VP. Also, unlike for
iterated matrix product we have to make a choice if we take ∗i,j or ∗ as our basic operation.
It is easy to check that using the equivalence to ∗i,j for matrix product would merely be
transposing the matrix, so it clearly does not change the expressivity of the model. But
fortunately also in our setting, the choice of ∗i,j or ∗ does not influence the complexity of
the computed polynomials.

Unfortunately, unlike for iterated matrix product our characterization seemingly does not
directly lead to a characterization of VP by something similar to branching programs. We
still think that such a characterization is highly desirable, because the branching program
characterization of VPws has been the source of important insights in arithmetic circuit
complexity. Thus we believe that a similar characterization of VP might lead to a better
understanding of VP, a class that is arguably not very well understood, yet.

Let us quickly discuss several extensions to the results in this paper that we had to leave
out for lack of space: First, analyzing the proofs of Section 4 a little more carefully one can
see that our results remain true if one does not measure the size of a tensor as the number of
its entries but as the number of its nonzero entries. This makes it possible to allow inputs of
large dimension and large order.

Also, it seems plausible and straightforward to generalize our results to arbitrary semi-
rings in the style of Damm, Holzer and McKenzie [3]. Choosing different semi-rings one would
then probably get characterizations of classes like LOGCFL and its counting, mod-counting
and gap-versions. The main new consideration would be the treatment of uniformity in these
settings which appears to be possible with a more refined analysis of our proofs.

Finally, for tensors there are other natural operations to perform on them like addition or
tensor product. It is natural to ask, if adding such operations does change the complexity of
the resulting polynomials. While it is straightforward to see that adding only tensor product
as an operation does not increase the expressivity of {∗}-formulas, we could so far not answer
the corresponding question for addition. Therefore, we leave this as an open question.

STACS’13

376 The arithmetic complexity of tensor contractions

Acknowledgements

We thank Yann Strozecki for a detailed and helpful feedback on an early version of this paper.
We also thank Hervé Fournier, Guillaume Malod and Sylvain Perifel for helpful discussions.

References
1 Martin Beaudry and Markus Holzer. The complexity of tensor circuit evaluation. Compu-

tational Complexity, 16(1):60–111, 2007.
2 P. Bürgisser. Completeness and reduction in algebraic complexity theory, volume 7. Springer

Verlag, 2000.
3 C. Damm, M. Holzer, and P. McKenzie. The complexity of tensor calculus. Computational

Complexity, 11(1-2):54–89, 2002.
4 A. Durand and S. Mengel. The Complexity of Weighted Counting for Acyclic Conjunctive

Queries. Arxiv preprint arXiv:1110.4201, 2011.
5 P. Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theoretical Computer

Science, 448(0):56 – 65, 2012.
6 G. Malod. Circuits arithmétiques et calculs tensoriels. Journal of the Institute of Mathem-

atics of Jussieu, 7:869–893, 2005.
7 G. Malod and N. Portier. Characterizing Valiant’s algebraic complexity classes. Journal

of complexity, 24(1):16–38, 2008.
8 M. Marcus. Finite dimensional multilinear algebra, volume 1. M. Dekker, 1973.
9 S. Mengel. Characterizing Arithmetic Circuit Classes by Constraint Satisfaction Problems

- (Extended Abstract). In ICALP (1), pages 700–711, 2011.
10 N. Nisan. Lower bounds for non-commutative computation. In Proceedings of the twenty-

third annual ACM symposium on Theory of computing, pages 410–418. ACM, 1991.
11 L.G. Valiant. Completeness classes in algebra. In Proceedings of the eleventh annual ACM

symposium on Theory of computing, pages 249–261. ACM, 1979.
12 L.G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation of poly-

nomials using few processors. SIAM Journal on Computing, 12:641, 1983.

Search versus Decision for Election Manipulation
Problems∗

Edith Hemaspaandra1, Lane A. Hemaspaandra2, and
Curtis Menton2

1 Department of Computer Science, RIT, Rochester, NY 14623, USA
2 Dept. of Computer Science, Univ. of Rochester, Rochester, NY 14627, USA

Abstract
Most theoretical definitions about the complexity of manipulating elections focus on the decision
problem of recognizing which instances can be successfully manipulated, rather than the search
problem of finding the successful manipulative actions. Since the latter is a far more natural goal
for manipulators, that definitional focus may be misguided if these two complexities can differ.
Our main result is that they probably do differ: If integer factoring is hard, then for election
manipulation, election bribery, and some types of election control, there are election systems
for which recognizing which instances can be successfully manipulated is in polynomial time but
producing the successful manipulations cannot be done in polynomial time.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes; F.2.2 Nonnumerical
Algorithms and Problems

Keywords and phrases Search vs. decision; application of structural complexity theory

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.377

1 Introduction

Elections are such a ubiquitous model for human and electronic collective decision-making—
and during the past few decades, with the rise of computers, multiagent systems, and
the internet, elections have become important even in many “modern” challenges such as
collaborative filtering/recommender systems, planning, and reducing web spam—that much
work has been devoted to studying how to manipulate elections. However, the broad stream
of theoretical work on the computational complexity of manipulative attacks on elections
(see the surveys [15,12]) is largely centered on the complexity of the decision versions: Given
an instance, determining whether there exists a successful manipulation (typically, ensuring
that a given candidate wins, or ensuring that a given candidate does not win) of the given
sort.

As a running example that we will use in this introduction, consider unweighted noncoali-
tion (i.e., a single manipulator) manipulation, which was central in one of the seminal papers
on manipulation ([1], see also [2]). For this problem, relative to some fixed election system,
the inputs are the candidate set, the voter set consisting of a collection of nonmanipulative
voters (whose preferences are each typically expressed by each voter as a preference ballot,
e.g., Gore > Nader > Bush), and a single manipulative voter who has not yet set her vote
but who has a “preferred” candidate p. And the question is: Does there exist a preference

∗ Supported by grants NSF-CCF-{0915792,1101452,1101479} and ARC-DP110101792, and two Humboldt
Foundation Bessel Research Awards. Work done in part while visiting the University of Düsseldorf.

© Edith Hemaspaandra, Lane A. Hemaspaandra, and Curtis Menton;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 377–388

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.377
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

378 Search versus Decision for Election Manipulation Problems

(vote) the manipulative voter can cast that will make p win the election? This is typically
viewed as a decision (language) problem, namely, as the set of all instances for which the
answer to that question is “Yes.”

Of course, what a manipulator might most want is not to know a successful manipulation
exists (a decision problem), but rather to know what specific action (what vote, bribe, etc.)
to take to achieve success (a search problem). For the case of our unweighted noncoalition
manipulation example, the search version would be a function that takes the same input
as the decision version but then either outputs that no successful strategic vote for the
manipulative voter exists or, if a successful vote does exist, outputs a successful vote—one
that makes p win.

This paper studies whether these two goals’ achievability can differ: whether decision
versions of election problems can be easy yet their search versions intractable.

Virtually all papers in this area, to prove polynomial-time results for deciding when
manipulative actions can succeed, actually give polynomial-time algorithms to produce
the successful action. So one might suspect that perhaps that is always the case. For
manipulation, bribery, and some types of control, we prove otherwise, under a complexity-
theoretic hypothesis that is widely believed true. Our main contributions are:

If P 6= NP ∩ coNP, then for each of manipulation (including in particular the case of
our running example, unweighted noncoalition manipulation), bribery, and certain types
of partition-control, there exist election systems for which there are polynomial-time
algorithms to determine whether each given instance has a successful manipulative action,
but no polynomial-time algorithm can exist that given an instance that is manipulable
provides the successful manipulation. (It is widely believed in cryptography that integer
factoring is hard. It is well known that if integer factoring is hard then P 6= NP ∩ coNP.)
Informally put, the situation is that the frustrated world of polynomial-time computation
will have to say things such as, “I can totally guarantee you that there are strategic
votes you can cast to make Barack Obama win in the given electoral setting, but I
have no idea what those votes are.” We show that this bizarre setting can even occur
in extremely simple cases, such as unweighted noncoalition (i.e., where we have just a
single manipulative voter) manipulation. It follows immediately from our results that if
P 6= NP ∩ coNP then for each of the above-mentioned manipulative actions there exists
an election system in which the search problem does not polynomial-time Turing reduce
to the decision problem.
To the best of our knowledge, this is the first result separating, even conditionally, search
from decision in the setting of computational social choice (see [7,26])—an area whose core
definitions on election manipulative-actions, which date back twenty years, are framed in
terms of decision problems.
To the best of our knowledge, our proof is the first time the complexity-theoretic Borodin-
Demers Theorem, from the 1970s, has found application in an applied domain.
In contrast, we show that for all the standard types of election-control actions based on
adding or deleting voters or candidates, and for some of the standard election-control
actions based on partitioning, the search problem (finding how to succeed) polynomial-
time Turing reduces to the decision problem (knowing when one can succeed). It follows
that, for these manipulative actions and for every election system, the bizarre type of
behavior mentioned earlier cannot occur: Easy recognition of instances where success is
possible implies polynomial-time algorithms for how to achieve success.
While proving this, we notice that two pairs of control attacks assumed to differ in fact
are identical problems, namely, for every election system, destructive control by partition

E. Hemaspaandra, L. A. Hemaspaandra, and C. Menton 379

of candidates and destructive control by run-off partition of candidates are the same set
in both the standard tie-breaking cases (ties-eliminate and ties-promote); this reduces by
two the number of distinct, standard control types. This is the first collapse of standard
control types that we are aware of.
Regarding the results of the first bullet point above, which, when P 6= NP ∩ coNP make
decision easy but search hard, one might worry that search may be only infrequently
hard. We address this by, as Theorem 9, constructing manipulative-action problems
whose search versions are just as often hard as are those problems in NP∩ coNP that have
the highest density of hardness, give or take a slight degree of flexibility. These results
provide a transference of density-of-hardness from a class to a particular type of concrete
problem.

Given that P 6= NP ∩ coNP suffices to for some systems make the natural problem to
care about (the search version) hard even as the problem that has been the theoretical
literature’s central definition (the decision version) declares the problem easy, we suggest
that in definition and problem framing it may now be good to more energetically stress the
importance of the search versions of election manipulation problems.

2 Preliminaries

An election will consist of a set C of candidates and a (multi)set V of voters (who for us
will be given just as their preferences). For all the cases discussed in this paper, each voter’s
preferences will be a tie-free linear ordering of the candidates. We assume each vote is
input distinctly (i.e., the voters’ preferences come in as separate ballots; but it would be
cheating for us to use the order of that input list within our proofs). So a typical election
might be C = {Alice,Bob,Carol} and the voter (multi)set might be V = {(Carol > Bob >
Alice), (Bob > Alice > Carol)}. Most familiar election systems, such as plurality-rule
elections, don’t care about voter names; our constructions never need to use voter names,
and so like most papers we don’t have voter names in V .

Election systems, or voting systems, map from an election instance (C, V) to a set of
winners (i.e., to a set W , ∅ ⊆W ⊆ C). (Pure social choice papers often definitionally exclude
the case W = ∅, but like most papers on computational social choice we allow it.)

For each fixed election system E , one can define the election winner problem as follows
(see [3]).

Name: E-winner, or the winner problem for E .
Given: Election (C, V) and candidate p ∈ C.
Question: Is p a winner of the election (C, V) under election system E?

This is actually, in the way universally accepted in computer science, describing a set, i.e.,
a language. That set is the set of all triples 〈C, V, p〉 such that the answer to the question is
“Yes.”

We now briefly present the key definitions for the three most commonly studied types
of manipulative actions: manipulation, bribery, and control. These three types were first
studied, respectively, by Bartholdi, Orlin, Tovey, and Trick [2,1], Faliszewski, Hemaspaandra,
and Hemaspaandra [11], and Bartholdi, Tovey, and Trick [4] for the “constructive” cases,
i.e., where the goal is to make a particular candidate be a winner.1 The “destructive” cases,

1 We say “be a winner” as this entire paper will focus on that notion, known as the nonunique-winner

STACS’13

380 Search versus Decision for Election Manipulation Problems

where the goal is to ensure that a particular candidate is not a winner, were introduced
by Conitzer, Sandholm, and Lang [8] for manipulation, by Faliszewski, Hemaspaandra and
Hemaspaandra for [11] for bribery, and by Hemaspaandra, Hemaspaandra and Rothe [20] for
control.

The manipulation problem is defined as follows, and models whether a coalition of
strategic voters can make a certain candidate win.

Name: E-unweighted coalition manipulation, or the unweighted coalition manipulation
problem for E ; for short, the manipulation problem for E .

Given: Candidate set C, nonmanipulative voter set V1 (as a collection of preference ballots
each with preferences over C), manipulative voter set V2 (since we don’t have names, this
will be input as a unary string, 1k, to indicate the number, k, of manipulative voters),
and a candidate p ∈ C.

Question: Is there some choice of preferences for the manipulative voters such that p is a
winner in the election in system E with candidates C and with both the nonmanipulative
and the manipulative voters voting?

This again is a decision problem consisting of the set of all inputs yielding the answer
“Yes.” However, there is a very natural search problem associated with this, which we will
call manipulation search, i.e., finding the successful action. In particular, a function f solves
the manipulation search problem (for a given election system) if on all inputs where the
Question’s answer is “No” (i.e., all inputs not in the set that is the decision version) the
function indicates in some clear way (e.g., by outputting -1) that manipulation is not possible,
and on each input that belongs to the decision version, f specifies settings to the preferences
of the manipulative voters in such a way that those result in p being a winner in the election
(C, V1 ∪ V2). If some solution for the manipulation search problem is a polynomial-time
computable function, we will say that the manipulation search problem is polynomial-time
computable.

One can also define “weighted” coalition manipulation, where each manipulative and
nonmanipulative voter has a weight (how many times her vote counts). Our results on
manipulation all will hold for that case too. But it is more interesting that the results hold
even in the unweighted case—and indeed, our proofs establish that they hold even when the
number of manipulative voters is limited to being at most one.

Unlike manipulation, in bribery all voters have initial preferences. In the simplest model of
bribery, voters are unweighted and each has unit cost to bribe. (By varying these parameters,
[11] obtained three other models: unweighted, priced; weighted, unpriced; and weighted,
priced. Our results on bribery hold in all four models.) This problem models whether having
the ability to reshape (bribe) the preferences of a number of voters allows one to make a
given candidate win.

Name: E-bribery, or the bribery problem for E .
Given: Election (C, V), candidate p ∈ C, and integer b ≥ 0.
Question: Does there exist some collection of at most b voters, and a way of setting their

votes, so that in the election under E in which those votes are thus set and the other
voters cast the votes the input specified for them, p is a winner?

model (i.e., allowing ties). That model has broadly been the one previous papers favored (except the
earliest work on control, but we feel that for control too this model is the more natural one).

E. Hemaspaandra, L. A. Hemaspaandra, and C. Menton 381

Again, this is and should be viewed as a decision problem—as a set. It has the natural
search version, which we will call bribery search.

Finally, we come to election control, the most varied, the most difficult to describe, but
in our opinion the most interesting of the three most studied types of manipulative attacks
on elections. Control asks whether by various adjustments to the participation and structure
of an election, a given candidate can be made a winner. A natural set of control actions was
specified in [4], the seminal paper on control, and we adopt that set, very slightly modified—as
is now done in most papers—to treat adding of candidates symmetrically with the other
add/delete types (as suggested by [14]) and to be clear in the “partition” cases about how
first-round ties are handled (following [20]). Those control types are adding candidates,
deleting candidates, adding voters, deleting voters, partition of voters, run-off partition of
candidates, and partition of candidates. These loosely model many real-life settings, ranging
from get-out-the-vote drives, to voter suppression, to having a culling “primary” round, to
encouraging (or discouraging) “spoiler” candidates (see [14] for discussion of how these model
various real-life scenarios). Each of the three partition control types is two control types—one
(denoted by a TP—“ties promote”—modifier) for the model in which if a first-round election
has multiple winners they all move forward to the second round, and one (denoted by a
TE—“ties eliminate”—modifier) for the model in which one moves forward from a first-round
election only if one is the unique winner of that contest.

Due to space limitations, we define here only the control type for which we include a proof
sketch of our main result. The other control types are each defined in the intuitively natural
way, and their full definitions can be found in the TR version [19], which also contains proofs
of all our results.

I Definition 1. Let E be an election system. In the control by run-off partition of candidates
problem for E , in the TP or TE tie-handling rule model, we are given an election (C, V) and
a candidate p ∈ C. Is there a partition of C into C1 and C2 such that p is a winner of the
two-stage election where the winners of subelection (C1, V) that survive the tie-handling rule
compete against the winners of subelection (C2, V) that survive the tie-handling rule? Each
subelection (in both stages) is conducted using election system E .2

Control problems are decision problems, i.e., sets. And they have the obvious search
versions, which we will refer to in ways analogous to those we mentioned earlier regarding
manipulation.

All the manipulation, bribery, and control problems defined so far are about trying
to make a certain candidate be a winner. We will henceforward when mentioning these
problems always add the word “constructive,” to indicate that the problem is about making
the specified candidate be a winner. As alluded to earlier, for every problem we have defined
there is a “destructive” version, where the question is whether one can ensure that the
specified candidate is not a winner. Both the constructive and destructive problems have
both decision and search versions, in the obvious way.

A (decision or search) problem A is said to polynomial-time Turing reduce (≤pT -reduce)
to a decision problem B if there is a machine M such that (a) MB runs in polynomial time
(relative to the length of its input), and (b) if A is a decision problem then the language

2 When speaking of an election, (C′, V ′), we always implicitly mean that each vote in V ′ is passed to
the election system only as the version of itself restricted to the candidates in C′. This is the normal
approach in defining control types, but we stress it because if we did not follow this approach, we might
cheat in some of our constructions and use parts of a vote regarding candidates not in the election to
pass/control information.

STACS’13

382 Search versus Decision for Election Manipulation Problems

Table 1 Results summary. Key: “S ≤ D” is shorthand for: For each election system E ,
the named constructive or destructive manipulative action has the property that its search version
polynomial-time Turing reduces to its decision version. (Note that this implies that it is impossible
for its decision version to be polynomial-time computable but its search version not to be polynomial-
time computable.) “S 6≤ D” is shorthand for: If P 6= NP ∩ coNP, then there exists an election
system E , having a polynomial-time winner problem, such that the named constructive or destructive
manipulative action’s decision problem is in polynomial time but its search problem is not in
polynomial time. (Note that this implies that if P 6= NP ∩ coNP, then there is an election system E
such that for the named constructive or destructive manipulative action, search does not polynomial-
time Turing reduce to decision.)

Manipulative Action Constructive Destructive

bribery S 6≤ D S 6≤ D
control by adding voters S ≤ D S ≤ D
control by deleting voters S ≤ D S ≤ D

control by partition of voters, ties promote S 6≤ D S 6≤ D
control by partition of voters, ties eliminate S 6≤ D S 6≤ D

control by adding candidates S ≤ D S ≤ D
control by deleting candidates S ≤ D S ≤ D

control by partition of candidates, ties promote S 6≤ D S ≤ D
control by partition of candidates, ties eliminate S 6≤ D S ≤ D

control by run-off partition of candidates, ties promote S 6≤ D S ≤ D
control by run-off partition of candidates, ties eliminate S 6≤ D S ≤ D

control by unlimited adding of candidates S ≤ D S ≤ D
manipulation S 6≤ D S 6≤ D

accepted by MB is A, and if A is a search problem then MB computes a function that is a
solution of the search problem (MB means machine M given a unit-cost subroutine testing
membership in B); this is the standard definition of polynomial-time Turing reductions,
which along with polynomial-time many-one reductions are the central ways computer science
links and compares the complexity of problems. For example, if we say that E-manipulation
search polynomial-time Turing reduces to E-manipulation, that means that given an instance
of the E-manipulation problem (but being interested in getting an action, i.e., we are doing
the search version), we can in polynomial time, given access to an oracle for the set E-
manipulation, correctly either state that successful manipulation is impossible or output a
successful manipulation. We move directly on to the presentation of our results, and then
provide a discussion of related work.

3 Results

The tightly related goals of this paper are to determine for which manipulative actions
(a) for all election systems, search (polynomial-time Turing) reduces to decision,
and to determine for which manipulative actions
(b) there exists some election system E , whose winner problem is in P, for which the decision

version of the manipulative action is in P yet the search version of the decision problem
is not polynomial-time computable (i.e., no polynomial-time function solves the search
version).

These are related, as “(a)” implies “NOT (b).”

E. Hemaspaandra, L. A. Hemaspaandra, and C. Menton 383

For manipulation, bribery, and every standard type of control, we in effect strongly
resolve this. That is, for some, we prove (a)—which of course implies NOT (b) (in fact, it
implies even that “NOT (b′),” where (b′) is (b) with the “winner problem in P” requirement
removed). And for all the others we prove, under the complexity-theoretic assumption
P 6= NP ∩ coNP, that (b) holds—which of course implies NOT (a). The more striking group
of cases is the latter collection—manipulative actions for which for some election system
with an easy (i.e., polynomial-time) winner problem we can easily (i.e., in polynomial time)
for a given setting determine whether a successful attack exists, and yet there can exist no
polynomial-time algorithm to always tell us what the successful attack action (that we know
exists!) is.

In the process of proving the latter group of cases we will do even more than promised
above. We will not only show that P 6= NP ∩ coNP implies (b), but we also will characterize
(b), for each of those manipulative actions, as being equivalent to the right-hand side condition
of the so-called Borodin-Demers Theorem from computational complexity theory (i.e., the
“then” part of Theorem 4 below). So, although we need a rich variety of complex election
schemes and tricky coding schemes to prove our results, from those results and that work we
establish that twelve different instances of whether (b) holds are, deep down, the same issue.

In the process of proving the other group of cases we will note that two pairs of control
types that have always been viewed as distinct in fact pairwise collapse: viewed as sets,
they are the exact same set. So all previous papers that gave separate proofs for the two
elements of a collapsing pair were proving the same result twice. To be fair to earlier papers
it is important to mention that of the two pairs that we show to collapse (in the nonunique
winner model), only one of those pairs collapses in the unique winner model; that itself is
also a new result.

3.1 Cases When the Manipulative-Action Decision Problem Is Easy
but Its Search Problem Is Hard

Our main result, showing that if P 6= NP ∩ coNP then there are easy election systems (i.e.,
having a polynomial-time winner problem) whose manipulative-action decision problem is
easy but whose manipulative-action search problem is hard, is the following.

I Theorem 2. If P 6= NP ∩ coNP, then for each manipulative action A marked “S 6≤ D”
in Table 1, there exists an election system E (which may differ based on A), whose winner
problem is in polynomial time, such that the A-decision problem for E is in P but the A-search
problem for E is not polynomial-time computable.

I Corollary 3. If P 6= NP ∩ coNP, then for each of the manipulative actions A covered by
Theorem 2, A-search for E does not polynomial-time Turing reduce to A-decision for E.

Let us present the idea behind the proof of Theorem 2, focusing in particular as an
example on constructive control by run-off partition of candidates in the ties-promote model.
So, let us use the statement’s hypothesis, and assume that P 6= NP ∩ coNP holds. We
invoke a complexity-theoretic result known as the Borodin-Demers Theorem. To the best of
our knowledge, the Borodin-Demers Theorem has never before been applied in the study
of elections, computational social choice, multiagent systems, or for that matter anywhere
outside of computational complexity theory.

I Theorem 4 ([6], see [18,25] for the form used here). If P 6= NP ∩ coNP then there is a set
B so (1) B ∈ P, (2) B ⊆ SAT, and (3) no P machine can find solutions for all formulas in

STACS’13

384 Search versus Decision for Election Manipulation Problems

B (that is, for no polynomial-time computable function g do we have (∀f)[f ∈ B ⇒ g(f) is
a satisfying assignment of f]).

So we have something quite striking: A set of boolean formulas that are easily recognized
as being satisfiable but for which it is not in general easy to find how they can be satisfied,
i.e., every polynomial-time machine fails on some of them (indeed, on infinitely many, as
otherwise one could finitely patch). (The Borodin-Demers Theorem certainly does not say
that if P 6= NP ∩ coNP then search does not reduce to decision for SAT; it is well-known
that for SAT—and indeed for any NP-complete problem—search ≤pT -reduces to decision.
However, we will use Borodin-Demers as a tool to show that in certain election settings
search does not reduce to decision if P 6= NP ∩ coNP.) Our goal, of course, is to shoehorn
the set B into the world of election manipulation for a variety of manipulative actions. Of
course, each manipulative action comes with its own form and definition, and so for many
such shoehorning is essentially impossible—as we show in Section 3.2. But for others, we
can do this, sometimes smoothly and sometimes through extreme, difficult contortions. The
difficulty is that the structure of many electoral manipulations, and our goal to realize a
separation with respect even to some election system with a polynomial-time winner problem,
very much ties our hands. And in fact, even for our results here, the different manipulative
actions have enormously differing proofs, as each proof must be tailored to the manipulative
action.

Nonetheless, the general approach is clear and shared, although the implementations and
constructions differ wildly. The general approach is given a set B from the Borodin-Demers
result, we must build an election system E , whose winner problem is in P, such that for our
manipulative action the decision problem is in P but the search problem is not polynomial-
time computable. To do this, our election system E will clearly need to be very much attuned
to B. It typically will be interpreting voters, candidates, collections of voters, and collections
of candidates as variously trying to specify a Borodin-Demers “puzzle”—i.e., an obviously
satisfiable formula (a string x ∈ B), and it also will interpret some similar things about its
input as trying to propose solutions to that puzzle.

To really explain how this works in practice would require going through the actual proofs
(which we provide in [19]). But to give an idea of the flavor, let us speak here in a high-level,
handwaving way about a specific example (that is neither our hardest nor our easiest case),
namely constructive control by run-off partition of candidates in the ties-promote model.
Proof (sketch, for the just-mentioned case): Our scheme here is to hope—although
other inputs won’t trip us up—that our input consists of two almost-copies of a Borodin-
Demers puzzle x, namely that part of our input is x0 and x1, x ∈ B. In particular, we’ll
hope that the lexicographically two smallest candidates have those strings as their names.
Suppose that the obviously satisfiable formula x (for concreteness of this sketch) is 1000 bits
long and has 27 variables. Then we will hope to have exactly 2 · 27 = 54 other candidates,
who will all form a lexicographically contiguous segment starting at, say 05·1000, i.e., the first
of the 54 candidates is named 05000, the second is named 049991, the third is named 0499810,
and so on. Now, we’ll interpret these strings as 27 pairs—the first two, the next two, and so
on. And we’ll set up our election system so that it will try to ensure that exactly one of each
pair goes on one side of the partition in any partition that will lead to victory of x0. The
election system if it sees in its candidate set x0, x ∈ B, will compute the size and number
of variables of x, will see if it has the right collection of other candidates to indicate it has
precisely one from each of the 27 pairs, will then interpret the low-order bit of each of those
pair-choices as the ith bit of a guessed satisfying assignment for x, and if that assignment
does satisfy x, will make x0 the one and only winner. Also, the election system when its

E. Hemaspaandra, L. A. Hemaspaandra, and C. Menton 385

input contains x1, x ∈ B, will check that it also has precisely one candidate from each of the
27 pairs (and no candidates other than those and x1), and if so x1 and only x1 will win—it
does not in this case do any satisfiability check. A third and final case in which we will have
a winner is if the candidate set is {x0, x1}, x ∈ B, in which case x0 and only x0 will win.
And these three cases are the only ways to win.

Now, recall that run-off partition splits the candidates into two groups for primary
elections and then runs the winners of those against each other. If the input set is of just
the dream-case form we have described, and we ask whether x0 can by run-off partition,
ties-promote, be made a winner of the overall election, the answer is obviously “Yes,” as
x ∈ B is satisfiable and so the partition that puts into one side of the partition x0 and
precisely a set of one-per-pair candidates encoding a satisfying assignment and puts the rest
on the other side will have x0 win its first-round contest, will have x1 win its first-round
contest, and will have x0 win the second-round contest between x0 and x1.

But it is possible to see that if we have a polynomial-time algorithm for the search problem
of how to make x0 win, that on the special input we just described, any search-problem
output, i.e., any successful partition, will immediately make clear a satisfying assignment of x,
as the election system in fact will force that. So if we had a search-problem polynomial-time
algorithm, the third property (the one about no FP function always yielding solutions)
of the Borodin-Demers set B would be violated. So search for our election system is not
polynomial-time computable.

But our election system clearly does have a P winner problem—it is just three simple
cases to check. So all that remains is to show that the decision problem for this control type
is in P. Note that we need a P algorithm that works for all inputs—not just inputs so nice
as to have our dream-case format. However, when one carefully checks everything, with the
system very clearly specified, one can see that this holds also (see our full version of this
paper [19]). This is the part that causes a large part of the complexity of the election system;
for example, the simpler system without the x1 requirement will fail this requirement. q

Now, Theorem 2 gives twelve cases where P 6= NP ∩ coNP implies the existence of a
P-winner problem election system where for a particular manipulative action decision is easy
but search is hard. It is natural to wonder whether the converses of some or all of these
twelve results hold. We note that either all of the converses hold or none do, and which of
those cases holds is identical to a long-open issue in complexity theory, namely, whether the
converse of the Borodin-Demers Theorem holds. Let us call the three-part right-hand side
of the Borodin-Demers Theorem the “Borodin-Demers Condition.” We claim the following
result.

I Theorem 5. For each of the twelve manipulative actions A referred to in Theorem 2, the
following two conditions are equivalent:

The Borodin-Demers Condition holds.
There exists an election system E, with a polynomial-time winner problem, such that the
A decision problem for E is in P but the A search problem for E is not polynomial-time
computable.

Finally, one might worry, given the broad interest recently in how often NP-hard election
manipulation problems are hard (e.g., [17]), that although Theorem 2’s conclusion says that
decision is easy while search is hard, the hardness for search that it speaks of is a worst-case
notion of hardness, and so perhaps the hard instances form a very sparse set. This is a
natural worry, but to partially address it we will as Theorem 9 prove that if even one set A
in NP ∩ coNP is frequently hard, then all of our search cases are (in a certain sense) almost
as frequently hard as that set A.

STACS’13

386 Search versus Decision for Election Manipulation Problems

3.2 Cases Where Search Reduces to Decision
This section’s main result states that for many manipulative actions search polynomial-time
Turing reduces to decision.

I Theorem 6. For each manipulative action A marked “S ≤ D” in Table 1, and for each
election system E, the A search problem for E polynomial-time Turing reduces to the A
decision problem for E.

Thus the behavior displayed in Theorem 2 is impossible for all of the above manipulative
actions, even if Theorem 2’s “winner problem in P” requirement is dropped.

I Corollary 7. For each of the manipulative actions A referred to in Theorem 6, for no
election system E can it be the case that the A decision problem for E is in P but the A
search problem for E is not polynomial-time computable.

The proofs can be found in [19]. But we mention that important to establishing the
four cases with the most interesting proofs, and an interesting result in its own right, is
the following. We show that two pairs of control types which in previous papers have been
assumed to be distinct, are in fact identical.

I Theorem 8. 1. DC-RPC-TP = DC-PC-TP (i.e., viewed as decision problems, destruct-
ive control by run-off partition of candidates in the ties-promote model is exactly the
same problem—the same set—as is destructive control by partition of candidates in the
ties-promote model).

2. DC-RPC-TE = DC-PC-TE.

4 Related Work, Frequency of Hardness, and Open Directions

Although to the best of our knowledge search versus decision has not previously been a focus
area in the long line of work on the complexity of manipulative attacks, the detailed analysis
of the complexity of attacks on particular systems has been a focus area. For example,
detailed classifications of the complexities of constructive and destructive control actions
on specific systems can be found in such work as [14,10,9,5,24]. These papers are about
specific systems. In contrast, our “search reduces to decision” results hold for all systems.
Our “if P 6= NP ∩ coNP” results on the other hand use that complexity-theoretic hypothesis
to build specific systems that make decision easy while making search hard.

Existing papers that give polynomial-time attack algorithms against specific systems
typically do so by (at least implicitly) finding a polynomial-time solution to the search
problem. Probably the definition most related to the interests of this paper is the definition
of “certifiably vulnerable” of Hemaspaandra, Hemaspaandra, and Rothe [20], which captures
the notion of demanding that an attack provide a successful action when one exists. That
paper actually adds an “optimality” twist to that notion, but subsequent papers (e.g., [13,
16]) when using the notion of certifiability take it to mean providing some successful action
when one exists, rather than the “smallest in size/effort/cost” such action.

Our search reduces to decision results of course hold on all inputs. But our “P 6=
NP ∩ coNP”-induced results put decision versions in P while ensuring that their search
versions are not polynomial-time computable. That latter part is a worst-case claim. However,
by a detailed look at the properties of (and length-stretching in, and injectivity of reductions
related to) the proofs of both the Borodin-Demers Theorem and Theorem 2, we can prove
(see [19]) the following result, that says that we can construct manipulative-action problems

E. Hemaspaandra, L. A. Hemaspaandra, and C. Menton 387

within Theorem 2 whose search versions are just as often hard as are those problems in
NP ∩ coNP (such as, potentially, problems related to factoring) that have the highest density
of hardness, give or take an ε of flexibility. Speaking more broadly, although our paper
speaks in terms of keeping search algorithms out of polynomial time, its proof infrastructure
is enough to strongly address the issue of how often failure occurs—or at least to strongly
link that to the open issue of how densely hard sets in NP ∩ coNP can be.

I Theorem 9. If f is any nondecreasing function, and for some set A ∈ NP ∩ coNP it
holds that every polynomial-time membership-in-A-testing algorithm errs, at infinitely many
lengths n (respectively, at almost every length n), on at least f(n) of the strings up to that
length, then for each manipulative action (that appears in our P 6= NP ∩ coNP theorems)
there will exist an ε > 0 and an election system having a polynomial-time winner problem
such that each search algorithm for that manipulative action with respect to that election
system will err, at infinitely many lengths n (respectively, at almost every length n), on at
least f(nε) of the strings up to that length, but the decision problem will be in P.

As a concrete example, if some set in NP ∩ coNP causes, for some ε > 0, 2nε errors up to
length n at infinitely many lengths, by each P algorithm, then in our theorems we can, for
some ε̃ > 0, have our search problems for infinitely many lengths make each polynomial-time
solver err 2nε̃ times up to that length.

There is far too large a literature exploring the many aspects of search versus decision
to cite it all here, but as an indication of how broad the literature is we mention a paper
related to search versus decision as it interacts with parallelism [22] and a paper related to
P-selectivity and self-reducibility [21]. Of course, the present paper is looking at concrete
cases of search versus decision, in the context of manipulative actions on elections.

Does P 6= NP∩ coNP hold? There are a number of problems that are known to belong to
NP∩coNP yet that despite intense effort have not been shown to belong to P. Such problems
include important questions about lattice problems, stochastic games, parity games, and
factoring. Regarding factoring, it is well known that if P = NP∩ coNP then integer factoring
is in polynomial time; this is to many people very strong evidence that P 6= NP ∩ coNP
(see [23]). Note that, thus, if one believes factoring is hard, then by our results one must also
believe that search and decision differ in complexity for many types of manipulative attack.
The natural lesson to draw is that in framing definitions and questions, heightened attention
should in the future be given to search versions.

The problems mentioned in the previous paragraph are relevant to the most pressing open
direction: Can one find existing—or build new but still highly natural—election systems for
which, for some of the attacks we’ve discussed, the decision problem is in P but the search
problem seems not to be in P? Note that since decision reduces to search, system-attack pairs
known to have poly-time search algorithms or NP-hard decision problems are not reasonable
possibilities here. Rather, the most attractive approach would be to find or more likely build
natural election systems whose definitions involve seemingly NP-intermediate problems, such
as factoring, lattice problems, and graph isomorphism.
Acknowledgments We are grateful to the STACS 2013 referees for helpful comments.

References
1 J. Bartholdi, III and J. Orlin. Single transferable vote resists strategic voting. Social Choice

and Welfare, 8(4):341–354, 1991.
2 J. Bartholdi, III, C. Tovey, and M. Trick. The computational difficulty of manipulating an

election. Social Choice and Welfare, 6(3):227–241, 1989.

STACS’13

388 Search versus Decision for Election Manipulation Problems

3 J. Bartholdi, III, C. Tovey, and M. Trick. Voting schemes for which it can be difficult to
tell who won the election. Social Choice and Welfare, 6(2):157–165, 1989.

4 J. Bartholdi, III, C. Tovey, and M. Trick. How hard is it to control an election? Mathem-
atical and Computer Modeling, 16(8/9):27–40, 1992.

5 D. Baumeister, G. Erdélyi, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Computa-
tional aspects of approval voting. In Handbook of Approval Voting. Springer, 2010.

6 A. Borodin and A. Demers. Some comments on functional self-reducibility and the NP
hierarchy. Technical Report TR 76-284, Dept. of Comp. Sci., Cornell Univ., July 1976.

7 Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A short introduction to computational
social choice. In Proc. of SOFSOM-07, pages 51–69. Springer-Verlag LNCS #4362.

8 V. Conitzer, T. Sandholm, and J. Lang. When are elections with few candidates hard to
manipulate? JACM, 54(3):1–33, 2007.

9 G. Erdélyi, L. Piras, and J. Rothe. The complexity of voter partition in Bucklin and fallback
voting: Solving three open problems. In Proc. of AAMAS-11, pages 837–844.

10 G. Erdélyi and J. Rothe. Control complexity in fallback voting. In CATS-10, pages 39–48.
11 P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. How hard is bribery in elections?

JAIR, 35:485–532, 2009.
12 P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. Using complexity to protect

elections. Communications of the ACM, 53(11):74–82, 2010.
13 P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. Multimode control attacks on

elections. JAIR, 40:305–351, 2011.
14 P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Llull and Copeland

voting computationally resist bribery and constructive control. JAIR, 35:275–341, 2009.
15 P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. A richer understanding

of the complexity of election systems. In S. Ravi and S. Shukla, editors, Fundamental
Problems in Computing, pages 375–406. Springer, 2009.

16 P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. The shield that never
was: Societies with single-peaked preferences are more open to manipulation and control.
Inf. and Comp., 209(2):89–107, 2011.

17 E. Friedgut, G. Kalai, and N. Nisan. Elections can be manipulated often. In Proc. of
FOCS-08, pages 243–249.

18 L. Hemachandra. Counting in Structural Complexity Theory. PhD thesis, Cornell Univer-
sity, Ithaca, NY, 1987. Available as Cornell CSD Technical Report TR87-840.

19 E. Hemaspaandra, L. Hemaspaandra, and C. Menton. Search versus decision for election
manipulation problems. Technical Report arXiv:1202.6641 [cs.GT], arXiv.org, February
2012. Revised, March 2012.

20 E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Anyone but him: The complexity of
precluding an alternative. Artificial Intelligence, 171(5–6):255–285, 2007.

21 E. Hemaspaandra, A. Naik, M. Ogihara, and A. Selman. P-selective sets and reducing
search to decision vs. self-reducibility. JCSS, 53(2):194–209, 1996.

22 R. Karp, E. Upfal, and A. Wigderson. The complexity of parallel search. JCSS, 36(1):225–
253, 1988.

23 S. Kintali. NP int. coNP. kintali.wordpress.com/2010/06/06/np-intersect-conp/.
24 C. Menton. Normalized range voting broadly resists control. ToCS. To appear.
25 J. Rothe. Complexity of certificates, heuristics, and counting types, with applications to

cryptography and circuit theory. Habilitation, Friedrich-Schiller-Universität Jena, 1999.
26 J. Rothe, D. Baumeister, C. Lindner, and I. Rothe. Einführung in Computational Social

Choice. Spektrum Akademischer Verlag, 2011.

kintali.wordpress.com/2010/06/06/np-intersect-conp/

Improved Bounds for Online Preemptive Matching
Leah Epstein1, Asaf Levin2, Danny Segev3, and Oren Weimann4

1 Department of Mathematics, University of Haifa
Haifa 31905, Israel. Email: lea@math.haifa.ac.il

2 Faculty of Industrial Engineering and Management, The Technion
Haifa 32000, Israel. Email: levinas@ie.technion.ac.il

3 Department of Statistics, University of Haifa
Haifa 31905, Israel. Email: segevd@stat.haifa.ac.il

4 Department of Computer Science, University of Haifa
Haifa 31905, Israel. Email: oren@cs.haifa.ac.il

Abstract
When designing a preemptive online algorithm for the maximum matching problem, we wish to
maintain a valid matching M while edges of the underlying graph are presented one after the
other. When presented with an edge e, the algorithm should decide whether to augment the
matching M by adding e (in which case e may be removed later on) or to keep M in its current
form without adding e (in which case e is lost for good). The objective is to eventually hold a
matching M with maximum weight.

The main contribution of this paper is to establish new lower and upper bounds on the
competitive ratio achievable by preemptive online algorithms:

We provide a lower bound of 1 + ln 2 ≈ 1.693 on the competitive ratio of any randomized
algorithm for the maximum cardinality matching problem, thus improving on the currently
best known bound of e/(e− 1) ≈ 1.581 due to Karp, Vazirani, and Vazirani [STOC’90].
We devise a randomized algorithm that achieves an expected competitive ratio of 5.356 for
maximum weight matching. This finding demonstrates the power of randomization in this
context, showing how to beat the tight bound of 3+2

√
2 ≈ 5.828 for deterministic algorithms,

obtained by combining the 5.828 upper bound of McGregor [APPROX’05] and the recent
5.828 lower bound of Varadaraja [ICALP’11].

1998 ACM Subject Classification F.2.2. Nonnumerical algorithms and problems

Keywords and phrases Online algorithms, matching, lower bound

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.389

1 Introduction

In the maximum matching problem, we are given an undirected graph G = (V,E) whose
edges have non-negative weights associated with them. A set of edges M ⊆ E is called
a matching when no two of them share a common vertex. The objective is to compute a
matching of maximum total weight. Due to its wide real-life applicability, as well as to its
appealing theoretical nature, this computational setting has received a great deal of attention
from various communities such as computer science, mathematics, operations research, and
economics (see Schrijver’s book [13] and references therein for a comprehensive overview of
classic work).

As can only be expected, the algorithmic research revolving around maximum matching
has deviated from studying the traditional (offline) setting to other models. In particular,
the online setting has been extensively studied over the last few decades [4, 6, 7, 8, 9, 10, 11].

© Leah Epstein, Asaf Levin, Danny Segev, and Oren Weimann;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 389–399

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.389
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

390 Improved Bounds for Online Preemptive Matching

Here, the edges (along with their weights) are presented one by one to the algorithm, which
is required to keep a valid matching at all times. In other words, once an edge e is presented,
the algorithm must decide whether to add it to M or not. However, e may be added only
if the resulting set of edges M ∪ {e} remains a valid matching. The online setting has two
fundamental models, depending on whether the acceptance of an edge is permanent or not.

In the non-preemptive model, the decision of whether or not to add any given edge to M
is irrevocable, i.e., once an edge is added to the set M of previously accepted edges it can
never be removed. The final matching thus consists of all edges that were ever accepted. Alas,
in this model, simple examples demonstrate that the competitive ratio of any (deterministic
or randomized) algorithm exceeds any function of the number of vertices, meaning that no
competitive algorithm exists (see for example [6]). That being said, in the unweighted case
(where all edge weights are equal, which is also called the maximum cardinality matching
problem), a greedy approach that accepts an edge whenever possible has a competitive ratio
of 2. For deterministic algorithms, this ratio is actually best possible, as shown by Karp,
Vazirani, and Vazirani [9].

In the preemptive model, the algorithm is given more freedom by being able to regret on
(retrospectively) bad decisions, in the sense that we are now allowed to remove previously
accepted edges from the current matching at any point in time; this event is called preemption.
Nevertheless, an edge that was either rejected or preempted cannot be re-inserted to the
matching later on. As opposed to the non-preemptive model, with this extra freedom
competitive algorithms do exist. Specifically, a deterministic algorithm that was proposed by
Feigenbaum et al. [7] attains a competitive ratio of 6. Later on, McGregor [11] improved on
this finding, by tweaking it into achieving a ratio of 3 + 2

√
2 ≈ 5.828. On the other hand,

Epstein et al. [6] established a lower bound of 4.967 for any deterministic algorithm, which
has recently been improved by Varadaraja [3] to 3 + 2

√
2 ≈ 5.828.

The upper bound of McGregor and the lower bound of Varadaraja establish a tight bound
of 5.828 on the competitive ratio of any deterministic algorithm in the preemptive model. For
randomized algorithms, the currently best lower bound of e/(e− 1) ≈ 1.581 can be inferred
from the work of Karp et al. [9] on a similar model. Their worst-case example, which will be
discussed later, actually works for the unweighted case.

1.1 Our results
The main contribution of this paper is to establish new lower and upper bounds on the
competitive ratio of randomized algorithms in the preemptive model. Our findings, along
with some technical comments, can be briefly summarized as follows.

A lower bound for unweighted graphs. We provide a lower bound of 1 + ln 2 ≈ 1.693
on the competitive ratio of any randomized algorithm for the maximum cardinality matching
problem, thus improving on the currently best known bound of e/(e − 1) ≈ 1.581 due to
Karp et al. [9] in a similar model. It is worth pointing out that the latter has originally
been proven to be best possible for bipartite graphs1, and quite surprisingly, it turns out
that our construction results in a bipartite graph as well. At first glance, this seems to be
a contradiction. However, in the model studied by Karp et al., the edges adjacent to each
vertex of one (fixed) part of the partition are all revealed simultaneously. On the other hand,
in our construction, the sequence of arriving edges no longer follows this restriction. This
bound is given in Section 2.

1 Specifically, the authors also proposed the well-known ranking algorithm, whose competitive ratio
exactly matches the lower bound of e/(e− 1).

L. Epstein, A. Levin, D. Segev, and O. Weimann 391

An upper bound for weighted graphs. As previously mentioned, when arriving edges
are accompanied by non-negative weights, there is a tight bound of 3 + 2

√
2 ≈ 5.828 on the

competitive ratio of any deterministic algorithm [11, 3]. An interesting open question is
whether randomization offers any advantage in this context. We answer this question in the
affirmative, by devising a randomized preemptive algorithm that beats the aforementioned
bound, and achieves a competitive ratio of θ ≈ 5.356, where θ is the unique solution to
2(ln θ + 1) = θ over (2,∞). This bound is given in Section 3.

1.2 Related work
What seems to have ignited renewed interest in the preemptive online model is the in-
vestigation of maximum matching in the semi-streaming model, which was introduced by
Muthukrishnan [12]. In this model, the algorithm is allowed to use only O(n · polylog(n))
space at all times but is not required to hold a valid matching. The possibility to keep in
memory any set of edges (not only a matching) is what gives this model its added strength.
In particular, an edge may be re-inserted to M , even if it has previously been removed, as
long as this edge was kept in memory.

Epstein et al. [6] observed that the semi-streaming algorithms of Feigenbaum et al. [7]
and McGregor [11] can actually be viewed as preemptive online algorithms in disguise.
Nevertheless, the semi-streaming model is not as strict as the preemptive online model. In
particular, the currently best semi-streaming algorithm for maximum weighted matching
is that of Epstein et al. whose competitive ratio is 4.91. This improved on a ratio of 5.585
due to Zelke [16]. Both of these algorithms are not preemptive online, as the former may
simultaneously hold Ω(log n) matchings in memory (arguing that their union contains a
good matching), while the latter keeps several additional edges for each edge in the current
matching. When the semi-streaming algorithm is allowed to make a constant number of
passes over the input stream, several algorithms of smaller approximation ratios were designed
by McGregor [11] and Ahn and Guha [1, 2].

2 A Lower Bound for Randomized Algorithms

In this section, we establish a lower bound of 1 + ln 2 ≈ 1.693 on the competitive ratio of any
randomized algorithm in the preemptive online setting.

2.1 The general idea
Prior to delving into technical details, we provide a high-level description of how our
construction works, along with some intuitive explanations. For ease of presentation, we use
Yao’s principle for profit maximization problems [14, 5]. That is, to prove a lower bound
of C on the achievable (randomized) competitive ratio, we define a probability distribution
on a class of inputs such that any deterministic algorithm (evaluated on this probability
distribution) must have a competitive ratio of at least C.

Consider a fixed deterministic online algorithm ALG. In what follows, the underlying
graph will be comprised of L layers (or vertical columns), each consisting of 2n vertices (see
Figure 1). It is instructive to think of L and n as very large integers. With this structure in
place, the input sequence starts with a random set of edges connecting vertices in layer 1 to
vertices in layer 2. As soon as this sequence terminates, a new one begins, with a random
set of edges between layers 2 and 3, then between layers 3 and 4, so on and so forth. The
edges between adjacent layers ` and `+ 1 are revealed in 2n rounds: In each round, all the

STACS’13

392 Improved Bounds for Online Preemptive Matching

edges connecting a vertex u in layer ` to its neighbors in layer `+ 1 are revealed one after
the other. The following properties are satisfied:

����

����

����

��
��
��
��

��

��

�
�
�
�

��

��

��
��
��
��

��
��
��
��

��
��
��
��
����

����

��

�
�
�
�

�
�
�
�

�
�
�
�
��

��
��
��
��

�
�
�
�

�
�
�
�
��

��

����

��
��
��
��

��
��
��
��

��
��
��
��
����

�
�
�
�

�
�
�
�

��

�
�
�
�
��

��
��
��
��

����

����

��
��
��
��
��
��
��
��

��������

��

��

�
�
�
�

����

��
��
��
��

����

����

�
�
�
�

����

��

������

������

������

��

��
��
��
��

��

����

��

�
�
�
�

��

����

��

��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

layer ℓ layer ℓ+ 1 layer Llayer 1 layer 2

blocked

blocked

free

2n
Rℓ

n roots

Figure 1 The layered graph used for the lower bound

Property 1: No preemption from previous layers. Once ALG picks a subset of edges
between layers ` and `+ 1, there is no motivation to preempt any of them when we proceed
to subsequent layers. This property is already achieved by the above description, regardless
of any particular randomization method we suggest, simply due to the fact that edges are
revealed layer by layer. To see this, note that if ALG preempts such edge, say (u, v), then
either the vertex v is eventually left unmatched, meaning that we have just lost (u, v) and
gained nothing. Or, the vertex v is matched to a vertex in layer ` + 2, meaning that the
number of edges in the current matching remains unchanged, and we have just made things
worse further down the road by (tentatively) matching a vertex in layer `+ 2.

Property 2: No preemption from previous rounds. Recall that the edges between
adjacent layers ` and `+ 1 are revealed in 2n rounds. Consider some particular round, where
all the edges connecting a vertex u in layer ` to its neighbors in layer `+ 1 are revealed one
after the other. Once this round terminates, ALG can hold a single edge (u, v) for some v in
layer `+ 1. From this point on, there is no motivation to ever preempt (u, v). To verify this,
note that if ALG preempts (u, v), it has two options:

Leave v unmatched to other vertices in layer `, meaning that we have just lost (u, v) and
gained nothing, since the only possible reason to preempt this edge is to match between
v and vertices in layer `+ 2, but there is no motivation to do so (by Property 1).
Match v to some other vertex in layer `, which leaves us at exactly the same situation
when proceeding to the next layer (i.e., v is still matched).

From Properties 1 and 2 it may seem that preemptions do not occur at all. However,
this is certainly not the case, as preemptions can occur within a round: While the edges
connecting a vertex u in layer ` to all its neighbors in layer ` + 1 are revealed, ALG may
preempt a previously chosen edge (u, v) in favor of a different one (u, v′).

L. Epstein, A. Levin, D. Segev, and O. Weimann 393

The bottom line. The preceding discussion will allow us to argue that ALG picks edges in
a very particular way. In fact, we are able to explicitly write the expected cardinality of the
computed matching up to lower order terms, which evaluates to 1

1+ln 2 · (L− 1)n+ o(Ln).
On the other hand, in any realization of the randomized construction, we will show that
there exists a feasible matching of cardinality (L− 1)n. These observations will lead to the
next theorem.

I Theorem 2.1. The competitive ratio of any randomized preemptive online algorithm for
maximum cardinality matching is at least 1 + ln 2.

2.2 The randomized construction
In each layer 1 ≤ ` ≤ L − 1, we will designate n out of its 2n vertices as being roots,
collectively forming the set R`. These roots are a-priori unknown, and will be determined as
soon as the random sequence of edges between layers `− 1 and ` terminates. This holds true
for any layer other than the first, in which R1 is defined by picking n arbitrary vertices. Once
the set of roots R` is determined, we linearly order R` by picking a random permutation of
these roots, such that each of the n! possible permutation is equally likely. For any r ∈ R`,
the (random) location of r in this permutation is denoted by L(r).

Revealing the edges. With these definitions in place, we can now explain how the edges
between layers ` and ` + 1 are revealed. We say that a root in R` is free when it has not
been matched to some vertex in the preceding layer, `− 1; otherwise, this root is said to be
blocked.

Based on the order determined earlier, we pick the first root r and introduce edges
connecting it to all 2n vertices in layer `+ 1, which are initially colored white. If r is blocked,
none of these edges is picked by ALG (Property 1). Otherwise, r is free and one of the newly
presented edges will be picked, and will not be preempted in the future (Properties 1 and 2).
We now choose a (random) vertex in layer `+ 1, which is picked uniformly at random, and
color it black. The second root in the linear ordering is then connected to all 2n− 1 white
vertices in layer `+ 1, the same logic as to when this root is matched also applies here, and
out of these 2n− 1 white vertices one is randomly chosen to be colored black. This process
continues for n iterations, until all roots in R` have been considered2. We still have to define
a set of roots R`+1 for the next layer, and these will be the n white vertices remaining in
layer `+ 1.

2.3 Analysis
Having explained how our construction works, we proceed by noting that the specific random
process according to which edges are revealed can be used to derive two basic observations,
comparing what can be achieved with and without knowing the input sequence in advance.
These observation are summarized in the next lemma.

I Lemma 2.2. For 1 ≤ ` ≤ L− 1, let F` be a random variable that stands for the number of
free roots in R`. Then,
1. ALG computes a matching of expected cardinality

∑L−1
`=1 E[F`].

2. The maximum cardinality of a matching is (L− 1)n.

2 In particular, a free root must be connected to at least two unmatched vertices in layer ` + 1. This
follows by observing that in iteration i, the current root is connected to 2n− (i− 1) vertices, out of
which at most i − 1 have previously been matched, so the number of unmatched vertices is at least
2n− 2(i− 1) ≥ 2.

STACS’13

394 Improved Bounds for Online Preemptive Matching

Proof. During the random process in which edges between layers ` and `+ 1 are revealed, we
have argued in Section 2.2 that ALG expands the matching it holds just before this process
begins by adding a new edge for every free root. In other words, if F` out of n roots in R` are
free, ALG will add exactly F` edges to the matching, and these will not be preempted later
on (Property 1). Therefore, evaluating the expected cardinality of the computed matching
translates into evaluating the expectation of

∑L−1
`=1 F`. On the other hand, the maximum

cardinality of a matching in the resulting instance is (L− 1)n, obtained by picking, for every
layer `, a matching of size n between the roots R` and the black vertices in layer `+ 1. A
matching of this nature necessarily exists since the first root can be matched to the first
vertex being colored black, the second root to the second vertex being colored black, and so
on. J

Recursively computing E[F`]. In what follows, we derive a recursive formula that ties
between the expected number of free roots in successive layers, showing that E[F`+1] is close
to being a linear function of E[F`]. For this purpose, we look into the question of how free
roots (or equivalently, blocked roots) are created, and argue that the random permutation
by which roots are processed leads to a large fraction of the next-layer roots being blocked
(in expectation).

I Lemma 2.3. There exists a layer-independent constant c > 0, such that for every 1 ≤ ` ≤
L− 1,

|E [F`+1]− n+ ln 2 · E [F`]| ≤ c .

Proof. Let B`+1 be the number of blocked roots in R`+1. Since E[F`+1] = n − E[B`+1],
and E[B`+1] = E[E[B`+1|F`]], it is sufficient to prove that |E[E[B`+1|F`]]− ln 2 · E[F`]| ≤ c,
for a fixed value c > 0, independent of `. To this end, we will show that |E[B`+1|F` =
K]− ln 2 ·K| ≤ c, i.e., given that there are K free roots in layer `, the expected number of
blocked roots in layer `+ 1 is ln 2 ·K, up to some additive constant.

Let r1, . . . , rK be the collection of free roots in R`, indexed in some arbitrary order. The
important observation is that blocked roots in layer `+ 1 are created only when they are
matched to one of r1, . . . , rK , and once this happens, survive the random recoloring step
in all subsequent iterations as white vertices. For example, if some free root r in layer ` is
matched to v in layer `+ 1, and there are still p remaining iterations (excluding the current
one), then v becomes a blocked root (at some time) with probability n

n+p+1 , since out of the
n+ p+ 1 current white vertices, every subset of n vertices has equal probability to be the set
of vertices that remain white.

Note that, for every 1 ≤ k ≤ K, the location L(rk) in the random permutation is one of
1, . . . , n, with equal probabilities to all values. Therefore, letting Ik be an indicator variable
for the event where the vertex in layer `+ 1 to which rk is matched survives all subsequent
recoloring steps as a white vertex, we have

E [Ik|F` = K] = Pr [Ik = 1|F` = K] =
n∑
p=1

1
n
· n

n+ p
= H2n −Hn = ln 2 + λn ,

such that |λn| = Θ
(1
n

)
. The last equation holds since |Ht − ln t| = γ +O(1

t), where γ is the
Euler-Mascheroni constant [15]. The lemma follows by observing that

E [B`+1|F` = K] = E
[

K∑
k=1

Ik

∣∣∣∣∣F` = k

]
=

K∑
k=1

E [Ik|F` = k] = ln 2 ·K +Kλn

and |Kλn| = Θ(1). J

L. Epstein, A. Levin, D. Segev, and O. Weimann 395

Concluding the proof of Theorem 2.1. Recall that by Lemma 2.3, we have E[F`+1] +
ln 2 · E[F`] ≤ n+ c for 1 ≤ ` ≤ L− 1. Summing these inequalities over all values of ` gives

L−1∑
`=1

E [F`+1] + ln 2 ·
L−1∑
`=1

E [F`] ≤ (L− 1)n+ (L− 1)c .

Since FL ≥ 0 and F1 = n, we have

L−1∑
`=1

E [F`+1]+ ln 2 ·
L−1∑
`=1

E [F`] ≥ (1+ ln 2) ·
L−1∑
`=1

E [F`]+FL−F1 ≥ (1+ ln 2) ·
L−1∑
`=1

E [F`]−n .

Consequently, by Lemma 2.2 the expected cardinality of the matching computed by ALG is

L−1∑
`=1

E [F`] ≤
1

1 + ln 2 · (Ln+ (L− 1)c) .

On the other hand, the maximum cardinality of a matching in the resulting instance is
(L − 1)n, implying that the asymptotic competitive ratio of ALG (when L and n tend to
infinity) is 1 + ln 2. Theorem 2.1 then follows.

3 A Randomized Algorithm

In this section, we show that by employing randomization, the lower bound of 3+2
√

2 ≈ 5.828
on the performance of any deterministic algorithm can be beaten. In particular, by making
use of randomized geometric rounding (see, for instance, [6]), our algorithm achieves an
expected competitive ratio of roughly 5.356.

3.1 The algorithm
Parameters. In what follows, we utilize two real-valued parameters: A base θ > 1, and a
shifting value φ > 0. The base θ will be optimized later on, so that the resulting competitive
ratio of our algorithm is made as small as possible. In contrast, the shifting value φ will not
be fixed; instead, it will be a random variable whose value is chosen to be θτ , where τ is
uniformly distributed over the interval (0, 1].

Weight classes and rounded weights. We define weight classes of edges in the following
way. Let w(e) denote the (non-negative) weight of an edge e. For every i ∈ Z, we let the
weight class Wi be the collection of edges whose weight is in the interval [φθi, φθi+1). Once
an edge e is presented, we round down its original weight w(e) to the lower endpoint of the
weight class it belongs to, thereby obtaining its rounded weight w̃(e). In other words, letting
i be the unique integer for which w(e) ∈ [φθi, φθi+1), we set w̃(e) = φθi. In the remainder
of this section, the latter notation will be extended to matchings, so that w(M) and w̃(M)
will stand for the original weight and rounded weight, respectively, of a matching M . In
addition, for a maximum weight matchingM∗, we denote OPT = w(M∗) and ÕPT = w̃(M∗).
Moreover, let ÕPTτ denote the profit of a maximum weight matching for the weight function
w̃ (resulting from a particular choice of τ).

Maintaining a matching online. The algorithm keeps a tentative matching M , which
is initialized prior to reading the input sequence as M = ∅. Upon the arrival of a newly-
presented edge e = (u, v), we proceed as follows. Let X(M, e) denote the set of edges in
the matching M that have a common endpoint with e, that is, edges that have u or v as

STACS’13

396 Improved Bounds for Online Preemptive Matching

an endpoint. Clearly, there could be at most two such edges. If every edge e′ ∈ X(M, e)
satisfies w̃(e′) < w̃(e) then e is inserted into M while the edges in X(M, e) are preempted,
i.e., we set M ← (M \X(M, e)) ∪ {e}. Otherwise, M remains unchanged.

3.2 Analysis
We begin by accounting for the extent to which the weight of each edge is rounded. More
specifically, the next lemma shows how to evaluate the ratio between the expected rounded
weight of any edge3 to its original weight in terms of the base θ. Subsequently, this allows us
to bound the ratio between the OPT and ÕPT.

I Lemma 3.1. For every edge e, we have Eτ [w̃(e)/w(e)] = θ−1
θ ln θ .

Proof. We denote by w̃τ (e) the value w̃(e) for a given choice of τ . Let p be an integer and
let 0 < α ≤ 1 be such that w(e) = θp+α is satisfied. By our definition of the weight classes
{Wi}i∈Z, it follows that the rounded weight w̃τ (e) is determined by:

w̃τ (e) =
{
θp+τ if τ ≤ α
θp+τ−1 if τ > α

Therefore, the ratio between the expected rounded weight of e to its original weight is

Eτ
[
w̃(e)
w(e)

]
=

α∫
0

θp+τ

θp+α
dτ +

1∫
α

θp+τ−1

θp+α
dτ = 1

ln θ ·
(

1
θα

(θα − 1) + 1
θα+1 (θ − θα)

)
= θ − 1
θ ln θ .

J

I Lemma 3.2. The expected rounded weight of the optimal matching M∗ satisfies Eτ [ÕPT] =
θ−1
θ ln θOPT. Also, for any realization of the random variable τ , we have OPT < θ · ÕPTτ .

Proof. It is easy to verify that, due to linearity of expectation, the first claim follows from
separately applying Lemma 3.1 on every edge of the optimal matching M∗, and summing
over all edges. On the other hand, the second claim holds since, regardless of the choice of
τ , for any edge e (in particular, those in M∗) we have w̃(e)/w(e) > 1/θ, as the lower and
upper endpoints of each weight class differ by a factor of at most θ. J

Up until now we have merely discussed how the expected weight of the optimal matching
M∗ depends on the geometric rounding procedure. We now move on to describe the technical
crux in our analysis, where the online matching computed by the algorithm is compared
against the rounded weight of M∗.

I Lemma 3.3. For any given value of τ , the profit of the algorithm is at least θ−2
2θ−2 ÕPT.

Proof. We consider how the algorithm operates for an arbitrary choice of the variable τ . For
this purpose, consider an optimal solution M̃ for the “rounded” instance, i.e., a maximum
weight matching with respect to the rounded weights w̃(·). Clearly, w̃(M̃) ≥ w̃(M∗) = ÕPT,
as M∗ is an optimal matching for the original weights, but not necessarily for the rounded
weights.

We associate every edge of M̃ with an edge in the matching M that is being held by the
algorithm upon termination, possibly using a single edge in M as a target for several edges

3 Note that the expectation Eτ [·] is taken over the random choice of the variable τ .

L. Epstein, A. Levin, D. Segev, and O. Weimann 397

in M̃ . The way this association will be defined later on enables us to argue that the ratio
between the total rounded weight of edges associated with any edge e ∈M and between w̃(e)
is at most 2θ−2

θ−2 . This claim immediately leads to a ratio of 2θ−2
θ−2 between ÕPT and the total

profit of the algorithm according to the rounded weights w̃(·). Since w(e) ≥ w̃(e) for every
edge e, the actual profit of the algorithm can only be higher.

For every edge e ∈ M , we create a preemption tree. The root of this tree is e, and the
children of an edge e′ are all edges that were preempted from the matching kept by the
algorithm when e′ was inserted. Note that the number of children is either 2, 1, or 0, since
any matching cannot contain more than a single edge for every endpoint of e′ (prior to the
arrival of e′). The set of edges that do not belong to any preemption tree are edges that the
algorithm never accepted, while the union of all edge sets over all trees is exactly the set of
edges that belonged to the matching at some point in time.

By definition of the algorithm, for every edge ẽ that does not belong to a tree, there exists
an edge e′ that does belong to a tree, sharing an endpoint with ẽ, such that w̃(e′) ≥ w̃(ẽ). If
for an edge ẽ ∈ M̃ such that ẽ does not belong to a tree, there exists a unique such edge e′,
then ẽ is associated with the root of the tree where e′ appears. Otherwise, one such edge e′
is chosen arbitrarily, and ẽ is associated with the root of the tree of e′ in this case as well.
For an edge ẽ ∈ M̃ that belongs to some tree, w̃ is associated with the root of the tree in
which it appears.

Next, consider a specific tree with the root e ∈M . For an edge ê of distance d[ê] from
the root, measured in number of edges, let w̃d(ê) = w̃(e)/θd[ê].
I Claim 3.4. For every edge ê in the tree, w̃(ê) ≤ w̃d(ê).

Proof. Consider the path e0, e1, e2, . . . , ed[ê], where e0 = ê, ed[ê] = e, and for every 1 ≤
i ≤ d[ê], ei is the edge whose arrival caused ei−1 to be preempted. By definition of the
algorithm, w̃(ei) > w̃(ei−1). Since our geometric rounding method guarantees that, when
rounded weights are not identical, they differ by a multiplicative factor of at least θ, it follows
that w̃(ei) ≥ θw̃(ei−1). Therefore, w̃(e) = w̃(ed[ê]) ≥ θd[ê]w̃(e0) = θd[ê]w̃(ê), or alternatively
w̃(ê) ≤ w̃d(ê). J

For a vertex v in the graph, and for every possible distance d ≥ 0, we say that v is new
for d if: (1) there is an edge of depth d in some preemption tree for which v is an endpoint;
and (2) v is not an endpoint of any edge of smaller depth. Also, The two endpoints of an
edge e ∈M are new for d = 0 and are not new for any other value of d.
I Claim 3.5. For every d > 0, there are at most 2d new vertices d. Moreover, every edge in a
tree in level d > 0 has at most one new vertex.

Proof. Since every edge has at most two children, the number of edges of depth d is at most
2d. Every such edge has a common endpoint with an edge of depth d− 1, thus there is at
most one new vertex per edge, which results in a total of at most 2d new vertices. J

I Claim 3.6. For every edge e ∈M , the total rounded weight of the edges associated with e
is at most 2θ−2

θ−2 w̃(e).

Proof. For an edge ẽ ∈ M̃ , let dmin[ẽ] be the minimum depth such that an edge of this
depth has a common vertex with ẽ. By definition, this common vertex must be new for level
dmin[ẽ]. Let ē be the edge of level dmin[ẽ] with the common vertex. Since there exists an
edge in the tree having a common endpoint with ẽ of rounded weight at least w̃(ẽ), we have
w̃(ē) ≥ w̃(ẽ). In addition, since M̃ is a matching, for every edge in the tree and every new
vertex v that edge, at most one edge of M̃ has v as an endpoint. By Claim 3.5, every edge of

STACS’13

398 Improved Bounds for Online Preemptive Matching

the tree other than e has at most one new vertex, so the total rounded weight is at most the
total rounded weight of all edges in the tree plus w̃(e). Letting T (e) denote the set of edges
in the tree rooted at e, by Claim 3.4 it follows that the total rounded weight is at most

∑
ē∈T (e)

w̃(ē) + w̃(e) ≤
∑

ē∈T (e)

w̃d(ē) + w̃(e) ≤
∞∑
d=0

2d w̃(e)
θd

+ w̃(e) ≤
(

1
1− 2/θ + 1

)
w̃(e) .

J

This completes the proof of Lemma 3.3. J

I Theorem 3.7. The algorithm achieves an expected competitive ratio of 2θ ln θ
θ−2 . This ratio

is minimized for θ∗ ≈ 5.356, where θ∗ is the unique solution to 2(ln θ + 1) = θ over (2,∞),
in which case its value is θ∗.

Proof. By Lemmas 3.2 and 3.3, we have Eτ [w(M)] ≥ θ−2
2θ−2Eτ [ÕPT] ≥ θ−2

2θ−2 ·
θ−1
θ ln θOPT =

θ−2
2θ ln θOPT. J

References
1 K. J. Ahn and S. Guha. Laminar families and metric embeddings: Non-bipartite

maximum matching problem in the semi-streaming model. Available online at:
http://arxiv.org/abs/1104.4058.

2 K. J. Ahn and S. Guha. Linear programming in the semi-streaming model with application
to the maximum matching problem. In Proceedings of the 38th International Colloquium
on Automata, Languages and Programming (ICALP), pages 526–538, 2011.

3 A. Badanidiyuru Varadaraja. Buyback problem – approximate matroid intersection with
cancellation costs. In Proceedings of the 38th International Colloquium on Automata, Lan-
guages and Programming (ICALP), pages 379–390, 2011.

4 N. Bansal, N. Buchbinder, A. Gupta, and J. Naor. An O(log2 k)-competitive algorithm
for metric bipartite matching. In Proceedings of the 15th annual European Symposium on
Algorithms (ESA), pages 522–533, 2007.

5 A. Borodin and R. El-Yaniv. On randomization in on-line computation. Information and
Computation, 150(2):244–267, 1999.

6 L. Epstein, A. Levin, J. Mestre, and D. Segev. Improved approximation guarantees for
weighted matching in the semi-streaming model. SIAM Journal on Discrete Mathematics,
25(3):1251–1265, 2011.

7 J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a
semi-streaming model. Theoretical Computer Science, 348(2-3):207–216, 2005.

8 B. Kalyanasundaram and K. Pruhs. Online weighted matching. Journal of Algorithms,
14(3):478–488, 1993.

9 R. Karp, U. Vazirani, and V. Vazirani. An optimal algorithm for on-line bipartite matching.
In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing (STOC),
pages 352–358, 1990.

10 S. Khuller, S. Mitchell, and V. Vazirani. On-line algorithms for weighted bipartite matching
and stable marriages. Theoretical Computer Science, 127(2):255–267, 1994.

11 A. McGregor. Finding graph matchings in data streams. In Proceedings of the 8th Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX), pages 170–181, 2005.

12 S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and Trends
in Theoretical Computer Science. Now Publishers Inc, 2005.

L. Epstein, A. Levin, D. Segev, and O. Weimann 399

13 A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of Algo-
rithms and Combinatorics. Springer, 2003.

14 A. C.-C. Yao. Probabilistic computations: Toward a unified measure of complexity (ex-
tended abstract). In Proceedings of the 18th Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 222–227, 1977.

15 R. M. Young. Euler’s constant. The Mathematical gazette, 75:187–190, 1991.
16 M. Zelke. Weighted matching in the semi-streaming model. Algorithmica, 62(1-2):1–20,

2012.

STACS’13

Parameterized Matching in the Streaming Model
Markus Jalsenius1, Benny Porat2, and Benjamin Sach3

1 Department of Computer Science, University of Bristol, U.K.
2 Department of Computer Science, Bar-Ilan University, Israel.
3 Department of Computer Science, University of Warwick, U.K.

Abstract
We study the problem of parameterized matching in a stream where we want to output

matches between a pattern of length m and the last m symbols of the stream before the next
symbol arrives. Parameterized matching is a natural generalisation of exact matching where an
arbitrary one-to-one relabelling of pattern symbols is allowed. We show how this problem can
be solved in constant time per arriving stream symbol and sublinear, near optimal space with
high probability. Our results are surprising and important: it has been shown that almost no
streaming pattern matching problems can be solved (not even randomised) in less than Θ(m)
space, with exact matching as the only known problem to have a sublinear, near optimal space
solution. Here we demonstrate that a similar sublinear, near optimal space solution is achievable
for an even more challenging problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Pattern matching, streaming algorithms, randomized algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.400

1 Introduction

We consider the problem of pattern matching in a stream where we want to output matches
between a pattern of length m and the last m symbols of the stream. Each answer must be
reported before the next symbol arrives. The problem we consider in this paper is known as
parameterized matching and is a natural generalisation of exact matching where an arbitrary
one-to-one relabelling of the pattern symbols is allowed (one per alignment). For example, if
the pattern is abbca then there there is a parameterized match with bddcb as we can apply
the relabelling a→b, b→d, c→c. There is however no parameterized match with bddbb.
We show how this streaming pattern matching problem can be solved in near constant time
per arriving stream symbol and sublinear, near optimal, space with high probability. The
space used is reduced even further when only a small subset of the symbols are allowed to be
relabelled. As discussed in the next section, our results demonstrate a serious push forward
in understanding what pattern matching algorithms can be solved in sublinear space.

1.1 Background
Streaming algorithms is a well studied area and specifically finding patterns in a stream is a
fundamental problem that has received increasing attention over the past few years. It was
shown in [8] that many offline algorithms can be made online (streaming) and deamortised
with a logm factor overhead in the time complexity per arriving symbol in the stream,
where m is the length of the pattern. There have also been improvements for specific
pattern matching problems but they all have one property in common: space usage is Θ(m)
words. It is not difficult to show that we in fact need as much as Θ(m) space to do pattern

© Markus Jalsenius, Benny Porat, and Benjamin Sach;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 400–411

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.400
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Jalsenius, B. Porat, and B. Sach 401

matching, unless errors are allowed. The field of pattern matching in a stream took a
significant step forwards in 2009 when it was shown to be possible to solve exact matching
using only O(logm) words of space and O(logm) time per new stream symbol [15]. This
method, which is based on fingerprints, correctly finds all matches with high probability.
The initial approach was subsequently somewhat simplified [10] and then finally improved
to run in constant time [7] within the same space requirements.

Being able to do exact matching in sublinear space raised the question of what other
streaming pattern matching problems can be solved in small space. In 2011 this question
was answered for a large set of such problems [9]. The result was rather gloomy: almost
no streaming pattern matching problems can be solved in sublinear space, not even using
randomised algorithms. An Ω(m) space lower bound was given for L1, L2, L∞, Hamming,
edit distance and pattern matching with wildcards as well as for any algorithm that com-
putes the cross-correlation/convolution. So what other pattern matching problems could
possibly be solved in small space? It seems that the only hope to find any is by impos-
ing various restrictions on the problem definition. This was indeed done in [15] where a
solution to k-mismatch (exact matching where up to k mismatches are allowed) was given
which uses O(k2poly(logm)) time per arriving stream symbol and O(k3poly(logm)) words
of space. The solution involves multiple instances of the exact matching algorithm run in
parallel. Note that the space bound approaches Θ(m) as k increases, so the algorithm is
only interesting for sufficiently small k. Further, the space bound is very far from the known
Ω(k) lower bound. We also note that it is straightforward to show that exact matching with
k wildcards in the pattern can be solved with the k-mismatch algorithm. To our knowledge,
no other streaming pattern matching have been solved in sublinear space so far.

In this paper we present the first push forward since exact matching by giving a sublinear,
near optimal space and near constant time algorithm for parameterized matching in a stream.
This natural problem turns out to be significantly more complicated to solve than exact
matching and our results provide the first demonstration that small space and time bounds
are achievable for a more challenging problem. Note that our space bound, as opposed to
k-mismatch, is essentially optimal like for exact matching. One could easily argue that our
results are surprising, and yet again the question of what other problems are solvable in
sublinear space calls for an answer. In particular, given that restrictions to the problem
have to be made, what restrictions should one make to break the Ω(m) space barrier.

1.2 Problem definition and related work
A pattern P of length m is said to parameterized match, or p-match for short, an m length
string S if there is an injective (one-to-one) function f such that S[j] = f(P [j]) for all
j ∈ {0, . . . ,m − 1}. In our streaming setting, the pattern is known in advance and the
symbols of the stream T arrive one at a time. We use the letter i to denote the index of the
latest symbol in the stream. Our task is to output whether there is a p-match between P

and T [(i−m+ 1), i] before T [i+ 1] arrives. The mapping f may be distinct for each i.
One may view this matching problem as that of finding matches in a stream encrypted

using a substitution cipher. In offline settings, p-matching has its origin in finding duplica-
tion and plagiarism in software code although has since found numerous other applications.
Since the first introduction of the problem, a great deal of work has gone into its study in
both theoretical and practical settings (see e.g. [3, 1, 4, 5, 6, 12]). Notably, in an offline
setting, the exact p-matching problem can be solved in near linear time using a variant [1]
of the classic linear time exact matching algorithm KMP [14].

When the sublinear space algorithm for exact matching was given in [15], properties of

STACS’13

402 Parameterized Matching in the Streaming Model

the periods of strings formed a crucial part of their analysis. However, when considering
p-matching the period of a string is a much less straightforward concept than it is for ex-
act matching. For example, it is no longer true that consecutive matches must either be
separated by the period of the pattern or be at least m/2 symbols apart. This property,
which holds for exact but not p-matching, allows for an efficient encoding of the positions
of the matches. This was crucial to reducing the space requirements of the previous stream-
ing algorithms. Unfortunately, p-matches can occur at arbitrary positions in the stream,
requiring new insights. This is not the only challenge that we face.

A natural way to match two strings under parameterization is to consider their prede-
cessor strings. For a string S, the predecessor string, denoted pred(S), is a string of length
|S| such that pred(S)[j] is the distance, counted in numbers of symbols, to the previous
occurrence of the symbol S[j] in S. In other words, pred(S)[j] = d, where d is the smallest
positive value for which S[j] = S[j − d]. Whenever no such d exists, we set pred(S)[j] = 0.
As an example, if S = aababcca then pred(S) = 01022014. We can perform p-matching
offline by only considering predecessor strings using the fundamental fact [3] that two equal
length strings S and S′ p-match iff pred(S) = pred(S′). A plausible approach for our
streaming problem would now be to translate the problem of p-matching in a stream to
that of exact matching. This could be achieved by converting both pattern and stream into
their corresponding predecessor strings and maintaining fingerprints of a sliding window of
the translated input. However, consider the effect on the predecessor string, and hence its
fingerprint, of sliding a window in the stream along by one. The leftmost symbol x, say, will
move out of the window and so the predecessor value of the new leftmost occurrence of x
in the new window will need to be set to 0 and the corresponding fingerprint updated. We
cannot afford to store the positions of all characters in a Θ(m) length window.

We will show a matching algorithm that solves these problems and others we encounter
en route using minimal space and in near constant time per arriving symbol. A number of
technical innovations are required, including new uses of fingerprinting, a new compressed
encoding of the positions of potential matches, a separate deterministic algorithm designed
for prefixes of the pattern with small parameterized period as well as the deamortisation of
the entire matching process. Section 2 gives a more detailed overview of these main hurdles.

1.3 Our new results
Our main result is a fast and space efficient algorithm for the streaming p-matching problem.
It applies to dense alphabets where both the pattern and streaming text alphabets are
Σ = {0, . . . , |Σ| − 1}. Theorem 1 below is proved over the subsequent sections of this paper.
Some supporting proofs are left for the full paper due to space constraints, including the
proof of Theorem 2, which is based on communication complexity arguments.

I Theorem 1. Let the pattern have length m, the text have length n and both have alphabets
Σ = {0, . . . , |Σ| − 1}. There is a randomised algorithm for streaming p-matching that takes
O(1) worst-case time per character and uses O(|Σ| logm) words of space. The probability
that the output is correct at all text alignments is at least 1− 1/nc for any constant c.

I Theorem 2. There is a randomised space lower bound of Ω(|Σ|) bits for the streaming
p-matching problem, where Σ is the pattern alphabet.

Parameterized matching is often specified under the assumption that only some symbols
are variable (allowed to be relabelled). The mapping f we used in Section 1.2 has to reflect
this constraint. More precisely, let the pattern alphabet be partitioned into fixed symbols

M. Jalsenius, B. Porat, and B. Sach 403

Σfixed and variable symbols Π. For σ ∈ Σfixed, we require that f(σ) = σ. The result from
Theorem 1 can be extended to handle general alphabets with arbitrary fixed symbols. The
idea is to apply a suitable reduction that was given in [1] (Lemma 2.2) together with the
streaming exact matching algorithm of Breslauer and Galil [7], as well as applying a “filter”
on the text stream using a dynamic dictionary (for instance that of [2]). The dictionary is
used to map text symbols to the variable pattern symbols in Π. The proof is omitted.

I Theorem 3. Suppose Π is the set of pattern symbols that can be relabelled under p-match-
ing. All other pattern symbols are fixed. Without any constraints on the text alphabet,
there is a randomised algorithm for streaming p-matching that takes O(

√
log |Π|/ log log |Π|)

worst-case time per character and uses O(|Π| logm) words of space, where m is the length
of the pattern. The probability that the algorithm outputs correctly at all alignments of an n
length text is at least 1− 1/nc, where c is any constant.

As part of the proof of Theorem 1 we had to develop an algorithm that efficiently solves
streaming p-matching for patterns with small parameterized period. The parameterized
period (p-period) of the pattern P , denoted ρ, is the smallest positive integer such that
P [0, (m− 1− ρ)] p-matches P [ρ, m− 1]. That is, ρ is the shortest distance that P must be
slid by to p-match itself. Our algorithm is deterministic and is interesting in its own right
(see Section 4). We also provide an almost matching space lower bound (proof omitted).

I Theorem 4. Suppose the pattern and text alphabets are both Σ = {0, . . . , |Σ| − 1} and the
pattern has p-period ρ. There is a deterministic algorithm for streaming p-matching that
takes O(1) worst-case time per character and uses O(|Σ|+ ρ) words of space. Further, there
is a deterministic space lower bound of Ω(|Σ|+ ρ) bits.

1.4 Fingerprints
We will make extensive use of Rabin-Karp style fingerprints of strings which are defined as
follows. Let S be a string over the alphabet Σ. Let p > |Σ| be a prime and choose r ∈ Zp

uniformly at random. The fingerprint φ(S) is given by φ(S) def=
∑|S|−1

k=0 S[k]rk mod p. A
critical property of the fingerprint function φ is that the probability of achieving a false
positive, Pr(φ(S) = φ(S′) ∧ S 6= S′), is at most |S|/(p − 1) (see [13, 15] for proofs). Let n
denote the total length of the stream. Our randomised algorithm will make o(n2) (in fact
near linear) fingerprint comparisons in total. Therefore, by the applying the union bound,
for any constant c, we can choose p to be of size Θ(nc+3) so that with probability at least
1− 1/nc there will be no false positive matches.

As we assume the RAM model with word size Θ(log n), a fingerprint fits in a constant
number of words. We assume that all fingerprint arithmetic is performed within Zp. In
particular we will take advantage of two fingerprint operations.

	 Splitting: Given φ
(
S[0, a]

)
, φ
(
S[0, b]

)
(where b > a) and the value of r−a mod p, we

can compute φ
(
S[a+ 1, b]

)
= φ

(
S[0, b]

)
	 φ

(
S[0, a]

)
in O(1) time.

} Zeroing: Let S, S′ be two equal length strings such that S′ is identical to S except for
in positions z ∈ Z ⊆ [0, s − 1] at which S′[z] = 0. We write φ

(
S
)
} Z to denote φ

(
S′
)
.

Given φ
(
S
)
and (S[z], rz mod p) for all z ∈ Z, computing φ

(
S
)
} Z takes O(|Z|) time.

2 Overview, key properties and notation

The overall idea of our algorithm in Theorem 1 follows that of previous work on streaming
exact matching in small space, however for p-matching the situation is much more complex

STACS’13

404 Parameterized Matching in the Streaming Model

a a b ca b b c a a b bbb faeecdfadb

0 0 0 0 0 03 3 1 7 9 7 2 4 1 3 2 11 3 1 3 5 2 5 317

d

18

ed

17

f

3

aT

i′+m −̀1−1i′ i′+m`−1

1 2 3 1 3 5 2 5 30 0 030 0 0

pred(T)

pred(T [i′, i′+m`−1])

Φ`−1(i′)
Φ`(i

′)
Φ`(i

′)	 Φ`−1(i′)

Φ0
`(i
′)

Figure 1 The key fingerprints used by the randomised algorithm. Characters contributing
differently to Φ0

`(i′) and Φ`(i′) 	 Φ`−1(i′) are highlighted.

and calls for not only more involved details and methods but also a deep fundamental
understanding of the nature of p-matching. We will now describe the overall idea, introduce
some important notation and at the end of this section we will highlight key facts about
p-matching that are crucial for our solution.

The main algorithm will try to match the streaming text with various prefixes of the
pattern P . Let ΣP denote the pattern alphabet. We define δ = |ΣP| logm and let P0 denote
the shortest prefix of P that has p-period greater than 3δ (recall the definition of p-period
given above Theorem 4). We define s prefixes P` of increasing length so that |P`| = 2`|P0|
for ` ∈ {1, . . . , s − 1}, where s 6 dlogme is the largest value such that |Ps−1| 6 m/2. The
final prefix Ps has length m− 4δ. For all `, we define m` = |P`|, hence m` = 2m`−1.

In order to determine if there is a p-match between the text and a pattern prefix, we
will compare the fingerprints of their predecessor strings (recall that two strings p-match iff
their predecessor strings are the same). We will need two related (but typically distinct)
fingerprint definitions to achieve this. Figure 1 will be helpful when reading the following
definitions which are discussed in an example below. For any index i′ and ` ∈ {0, . . . , s},

Φ`(i′)
def= φ

(
pred(T [0, (i′ +m` − 1)])

)
,

Φ0
`(i′) def= φ

(
pred(T [i′, (i′ +m` − 1)])[m`−1, m` − 1]

)
.

For each ` ∈ {1, . . . , s} the main algorithm runs a process whose responsibility for finding
p-matches between the text and P` (P0 is handled separately as will be discussed later).
The process responsible for P` will ask the process responsible for P`−1 if it has found any
p-matches, and if so it will try to extend the matches to P`. As an example, suppose that
the process for P`−1 finds a match at position i′ of the text (refer to Figure 1). The process
will then store this match along with the fingerprint Φ`−1(i′) which has been built up as
new symbols arrive. The process for P` will be handed this information when the symbol
at position i′ +m` − 1 arrives. The task is now to work out if i′ is also a matching position
with P`. With the fingerprint Φ`(i′) available (built up as new symbols arrive), the process
for P` can use fingerprint arithmetics to determine if i′ is a matching position. This is one
instance where the situation becomes more tricky than one might first think.

As position i′ is a p-match with P`−1 it suffices to compare the second half of the
predecessor string of P` with the second half of the predecessor string of T [i′, i′ +m` − 1].
Fingerprints are used for this comparison. It is crucial to understand that Φ`(i′)	Φ`−1(i′)
cannot be used directly here; some predecessor values of the text might point very far back,
namely to some position before index i′. In Figure 1 we have shaded the three symbols for
which this is true and have drawn arrows indicating their predecessors. Thus, in order to

M. Jalsenius, B. Porat, and B. Sach 405

ρρ ρ ρ ρ

T

3m/2

Y︷ ︸︸ ︷ A︷ ︸︸ ︷

Figure 2 Partitioning of positions (×) at which P p-matches in a 3m/2 length substring of T .

correctly do the fingerprint comparison we need to set those positions to zero (we want the
fingerprint of the predecessor string of the text substring starting at position i′, not the
beginning of T). The fingerprint we defined as Φ0

`(i′) above is the fingerprint we want to
compare to the fingerprint of the second half of the predecessor string of P`. Using fingerprint
operations, we have from the definitions that Φ0

`(i′) =
(
Φ`(i′) 	 Φ`−1(i′)

)
} ∆`(i′), where

∆`(i′) is the set of positions that have to be set to zero. For a substring of T of length
Θ(m`−1) consider the subset of positions which occur in ∆`(i′) for at least one value of i′.
Any such position has a predecessor value greater than m`−1. By summing over all distinct
symbols we have that the size of this subset is only O(|ΣP|). Thus, we can maintain in small
space every position in a suitable length window that will ever have to be set to zero.

Let us go back to the example where the process for P`−1 had found a p-match at
position i′. The process stores i′ along with the fingerprint Φ`−1(i′). This information is
not needed by the process for P` until m`−1 text symbols later. During the arrival of these
symbols, the process for P`−1 might detect more p-matches, in fact many more matches.
Their positions and corresponding fingerprints have to be stored until needed by the process
for P`. We now have a space issue: how do we store this information in small space?
To appreciate this question, first consider exact matching. Here matches are known to be
either an exact period length apart or very far apart. The matching positions can therefore
be represented by an arithmetic progression. Further, the fingerprints associated with the
matches in an arithmetic progression can easily be stored succinctly as one can work out
each one of the fingerprints from the first one. For p-matching the situation is much more
complex: matches can occur more chaotically and, as we have seen above, fingerprints must
be updated dynamically to reflect that symbols could be mapped differently in two distinct
alignments. Handling these difficulties in small space (and small time complexity) is a main
hurdle and is one point at which our work differ significantly from all previous work on
streaming matching in small space. We cope with this space issue in the next section.

2.1 The structure of parameterized matches
First recall that an arithmetic progression is a sequence of numbers such that the (common)
difference between any two successive numbers is constant. We can specify an arithmetic
progression by its start number, the common difference and the length of the sequence. In
the next lemma we will see that the positions at which a string P of length m p-matches
a longer string of length 3m/2 can be stored in small memory: either a matching position
belongs to an arithmetic progression or it is one of relatively few positions that can be listed
explicitly in O(|ΣP|) space. The proof (consult Figure 2) is deferred to Section 5.

I Lemma 5. Let X be the set of positions at which P p-matches within an 3m/2 length
substring of T . The set X can be partitioned into two sets Y and A such that |Y | 6 6|ΣP|,
max(Y) < min(A) and A is an arithmetic progression with common difference ρ, where ρ
is the p-period of P .

The lemma is incredibly important for the algorithm as it allows us to store all partial
matches (that need to be kept in memory before being discarded) in a total of O(|ΣP| logm)

STACS’13

406 Parameterized Matching in the Streaming Model

space across all processes. The question of how to store their associated fingerprints remains,
but is nicely resolved with the corollary below that follows immediately from the proof of
Lemma 5. We can afford to store fingerprints explicitly for the positions that are identified
to belong to the set Y from Lemma 5, and for the matching positions in the arithmetic
progression A we can, as for exact matching, work out every fingerprint given the first one.

I Corollary 6. For pattern P , text T and arithmetic progression A as specified in Lemma 5,
pred(T)[(i+m− ρ), (i+m− 1)] is the same for all i ∈ A.

2.2 Deamortisation
So far we have described the overall approach but it is of course a major concern how to
carry out computations in constant time per arriving symbol. In order to deamortise the
algorithm, we run a separate process responsible for the pattern prefix P0 that uses the
deterministic algorithm of Section 4 (i.e. Theorem 4). As P0 has p-period greater than
3δ, the p-matches it outputs are at least this far apart. This enables the other processes
to operate with a small delay: process P` expects process P`−1 to hand over matches and
fingerprints with a small delay, and it will itself hand over matches and fingerprints to P`+1
with a small delay. One of the reasons for the delays is that processes operate in a round-
robin scheme – one process per arriving symbol. The process that is responsible for Ps

(which has length m−4δ) returns matches with a delay of up to 3δ arriving symbols. Hence
there is a gap of length δ in which we can work out if the whole of P matches. To do this
we have another process that runs in parallel with all other processes and explicitly checks
if any match with Ps can be extended with the remaining 4δ symbols by directly comparing
their predecessor values with the last 4δ predecessor values of the pattern. This job is spread
out over δ arriving symbols, hence matches with P are outputted in constant time.

3 The main algorithm

We are now in a position to describe the full algorithm of Theorem 1. Recall that the
algorithm will find p-matches with each of the pattern prefixes P0, . . . , Ps defined in the
previous section. If a shorter prefix fails to match at a given position then there is no need
to check matches for longer prefixes. Our algorithm runs three main processes concurrently
which we label A, B and C. The term process had a slightly different meaning in the previous
section, but hopefully this will cause no confusion. Each process takes O(1) time per arriving
symbol. Recall that both the pattern and text alphabets are ΣP = {0, . . . , |ΣP| − 1}.
Process A finds p-matches with prefix P0 which are inserted as they occur into a match
queue M0. Process B finds p-matches for prefixes P1, . . . , Ps which are inserted into the
match queues M1, . . . ,Ms, respectively. The p-matches are inserted with a delay of up to
3δ symbol arrivals after they occur. Process C finds p-matches with the whole pattern P
which are outputted in constant time as they occur as described in Section 2.2.

It is crucial for the space usage that the match queues M0,M1, . . . ,Ms will be stored in a
compressed fashion. The delay in detecting p-matches with P` in Process B is a consequence
of deamortising the work required to find a prefix match, which we spread out over Θ(δ)
arriving symbols. We can afford to spread out the work in this way because the p-period of
P`−1 is at least δ so any p-matches are at least this far apart.

Throughout this section we assume that m > 14δ so that m` − m`−1 > 3δ for ` ∈
{1, . . . , s}. If m 6 14δ, or the p-period of P is 3δ or less, we use the deterministic algorithm
presented in Section 4 to solve the problem within the required bounds.

M. Jalsenius, B. Porat, and B. Sach 407

3.1 Process A (finding matches with P0)
From the definition of P0 we have that if we remove the final character (giving the string
P [0, m0 − 2]) then its p-period is at most 3δ. The p-period of P0 itself could be much
larger. As part of process A we run the deterministic pattern matching algorithm from
Section 4 (see Theorem 4) on P [0, m0 − 2]. It returns p-matches in constant time and uses
O(|ΣP|+ 3δ) = O(|ΣP| logm) space.

In order to establish matches with the whole of P0 we handle the final character separ-
ately. If the deterministic subroutine reports a match that ends in T [i−1], when T [i] arrives
we have a p-match with P0 if and only if pred(T)[i] = pred(P0)[m0−1] (or pred(T)[i] > m0
if pred(P0)[m0 − 1] = 0). As the alphabet is of the form ΣP = {0, . . . |ΣP| − 1}, we can
compute the value of pred(T)[i] in O(1) time by maintaining an array A of length |ΣP| such
that for all σ ∈ ΣP, A[σ] gives the index of the most recent occurrence of symbol σ.

Whenever Process A finds a match with P0 at position i′ of the text, the pair (i′,Φ0(i′))
is added to a (FIFO) queue M0, which is queried by Process B when handling prefix P1.

3.2 Process B (finding matches with P1, . . . , Ps)
We split the discussion of the execution of Process B into s levels, 1, . . . , s. For each level `
the fingerprint Φ0

`(i′) is computed for each position i′ at which P`−1 p-matches. Then, as
discussed in Section 2, if Φ0

`(i′) = φ(pred(P`)[m`−1, (m` − 1)]), there is also a match with
P` at i′. The algorithm will in this case add the pair (i′,Φ`(i′)) to the queue M` which is
subject to queries by level `+1. To this end we compute Φ`(i′)	Φ`−1(i′) and ∆`(i′), where
∆`(i′) contains all the positions which should be zeroed in order to obtain Φ0

`(i′). In the
example of Figure 1, ∆`(i′) = {1, 5, 7} (the d, e and f, respectively).

In order for process B to spend only constant time per arriving symbol, all its work must
be scheduled carefully. The preparation of the ∆`(i′) values takes place as a subprocess
we name B1. Computing Φ`(i′)	 Φ`−1(i′) and establishing matches takes place in another
subprocess named B2. The two subprocesses are run in sequence for each arriving symbol.

Subprocess B1 (prepare zeroing) We use a queue D` associated with each level l which
contains the most recent O(|ΣP|) positions with predecessor the values greater than m`−1.
We will see below that ∆`(i′) is a subset of the positions in D` (adjusted to the offset i′).

Unfortunately, in the worst case, for an arriving symbol T [i], i could belong to all of the
D` queues. Since we can only afford constant time per arriving symbol, we cannot insert
i into more than a constant number of queues. The solution is to buffer arriving symbols.
When some T [i] arrives we first check whether pred(T)[i] > m0. If so, the pair (i, pred(T)[i])
is added to a buffer B to be dealt with later. Together with the pair we also store the value
ri mod p which will be needed to perform the required zeroing operations.

In addition to adding a new element to the buffer B, the Subprocess B1 will also process
elements from B. If is is currently not in the state of processing an element, it will now
start doing so by removing an element from B (unless B is empty). Call this element
(j, pred(T)[j]). Over the next s arriving symbols the Subprocess B1 will do the following.
For each of the s levels `, if pred(T)[j] > m`−1, add (j, pred(T)[j]) to the queue D`. If D`

contains more than 12|ΣP| elements, discard the oldest.

Subprocess B2 (establish matches) This subprocess schedules the work across the levels
in a round-robin fashion by only considering level ` = 1 + (i mod s) when the symbol T [i]
arrives. Potential matches may not be reported by this subprocess until up to 3δ arriving

STACS’13

408 Parameterized Matching in the Streaming Model

symbols after they occur. As P`−1 has p-period at least 3δ, the processing of potential
matches does not overlap.

The Subprocess B2 for level ` is always in one of two states: either it is checking whether
a matching position i′ for P`−1 is also a match with P`, or it is idle. If idle, level ` looks
into queue M`−1 which holds matches with P`−1. If M`−1 is non-empty, level ` removes an
element from M`−1, call this element (i′,Φ`−1(i′)), and enters the checking state. Whenever
i > i′ + m` + δ, level ` will start checking if i′ is also a matching position with P`. It
does so by first computing the fingerprint Φ`(i′) 	 Φ`−1(i′), which by definition equals(
Φ`(i′)−Φ`−1(i′)

)
r−i′−m`−1 mod p. We can ensure the fingerprint Φ`(i′) is always available

when needed by maintaining a circular buffer of the most recent Θ(δ) fingerprints of the
text. Similarly we can obtain r−i′−m`−1 mod p in O(1) time by keeping a buffer of the most
recent Θ(δ) values of r−i mod p along with r−m` mod p for all `.

Over the next at most |ΣP| arriving symbols for which Subprocess B2 is considering
level ` (i.e. those with ` = 1 + (i mod s)), Φ0

`(i′) will be computed from Φ`(i′)	Φ`−1(i′) by
stepping through the elements of the queue D`. For any element (j, pred(T)[j]) ∈ D`, we
have that (j−i′−m`−1) ∈ ∆`(i′) if and only if pred(T)[j] > j−i′. Further, as Subprocess B1
stored rj mod p with the element in D` and ri′ mod p is obtained through the circular buffer
as above, we can perform the zeroing in O(1) time.

Having computed Φ0
`(i′), we then compare it to φ(pred(P`)[m`−1, (m` − 1)]). If they

are equal, we have a p-match with P` at position i′ of the text, and the pair (i′,Φ`(i′)) is
added to the queue M`. This occurs before T [i′ +m` + 3δ] arrives.

3.3 Correctness, time and space analysis
The time and space complexity almost follow immediately from the description of our al-
gorithm, but correctness requires further attention. In particular one has to show that buffers
do not overflow, elements in queues are dealt with before being discarded and every possible
match will be found (disregarding the probabilistic error in the fingerprint comparisons).

I Lemma 7. The algorithm described above proves Theorem 1.

Proof. Coupled with the discussion in Section 2, the time and space complexity almost follow
immediately from the description. It only remains to show that, at any time, |B| 6 |ΣP|.
First observe that any symbol σ ∈ ΣT is only inserted into B when pred(T)[i] > m0 > δ

which can only happen at most once in every δ = |ΣP| logm arriving symbols. Further we
remove one element every s 6 dlogme arrivals and in particular remove the σ occurrence
after at most |B|dlogme arrivals. As B is initially empty, by induction it follows that no
symbol occurs more than once in B.

For correctness, it remains to show that we correctly obtain the positions of Φ0
`(i′) from

D`. It follows from the description that all positions of Φ0
`(i′) correspond to elements

inserted into D` at some point. However we need to prove that these elements are present
in D` while Φ0

`(i′) is calculated. Any element inserted into B during T [i′, (i′ + m` − 1)]
has cleared the buffer by the end of interval B (which has length δ) by the argument above.
Therefore any relevant element has been inserted into D` by the start of interval C, during
which we calculate Φ0

`(i′). Any element inserted into D` is at least m`−1 characters from
its predecessor. Therefore, summing over all symbols in the alphabet, there are at most
4|ΣP | positions in T [i′, (i′ + 2m` − 1)] which are inserted into D`. As D` is a FIFO queue
of size 12|Σ|, the relevant elements are still present after interval C. As commented above,
potential matches in M` are separated by more than 3δ arrivals because P`−1 has p-period
more than 3δ. They are processed within 3δ arrivals so M` does not overflow. J

M. Jalsenius, B. Porat, and B. Sach 409

4 The deterministic matching algorithm

We now describe the deterministic algorithm that solves Theorem 4. Its running time is O(1)
time per character and it uses O(|ΣP| + ρ) words of space, where ρ is the parameterized
period of P . We require that both the pattern and text alphabets are ΣP = {0, . . . , |ΣP|−1}.

We first briefly summarise the overall approach of [1] which our algorithm follows. It
resembles the classic KMP algorithm. When T [i] arrives, the overall goal is to calculate the
largest r such that P [0, r−1] p-matches T [(i−r+1), i]. A p-match occurs iff r = m. When
a new text character T [i + 1] arrives the algorithm compares pred(P)[r] to pred(T)[i + 1]
in O(1) time to determine whether P [0, r] p-matches T [(i− r + 1), i+ 1]. More precisely,
the algorithm checks whether either pred(P)[r] = pred(T)[i + 1], or pred(P)[r] = 0 ∧
pred(T)[i + 1] > r. The second case covers the possibility that the previous occurrence in
the text was outside the window. If there is a match, we set r ← r + 1 and i ← i + 1 and
continue with the next text character. If not, we shift the pattern prefix P [0, r − 1] along
by its p-period, denoted ρr−1, so that it is aligned with T [(i − r + ρr−1 + 1), i]. This is
the next candidate for a p-match. In the original algorithm, the p-periods of all prefixes are
stored in an array of length m called a prefix table.

Our main hurdle here is to store both a prefix table suitable for p-matching as well as
an encoding of the pattern in only O(|ΣP|+ ρ) space, while still allowing efficient access to
both. It is well-known that any string P can be stored in space proportional to its exact
period. In Lemma 9, which follows from Lemma 8, we show an analogous result for pred(P).

I Lemma 8. For any j ∈ [ρ] there is a constant kj such that pred(P)[j+kρ] is 0 for k < kj,
and cj for k > kj, where cj > 0 is a constant that depends on j.

I Lemma 9. The predecessor string pred(P) can be stored in O(ρ) space, where ρ is the
p-period of P . Further, for any j ∈ [m] we can recover pred(P)[j] in O(1) time.

We now explain how to store the parameterized prefix table in only O(ρ) space, in
contrast to Θ(m) space which a standard prefix table would require. The p-period ρr of
P [0, r] is, as a function of r, non-decreasing in r. This property enables us to run-length
encode the prefix table and store it as a doubly linked list with at most ρ elements, hence
using only O(ρ) space. Each element corresponds to an interval of prefix lengths with the
same p-period, and the elements are linked together in increasing order (of the common
p-period). This does not allow O(1) time random access to the p-period of any prefix, but
for our purposes it will suffice to perform sequential access. To accelerate computation we
also store a second linked list of the indices of the first occurrences of each symbol in P in
ascending order, i.e. every j such that pred(P)[j] = 0. This uses O(|ΣP|) space.

There is a crucial second advantage to compressing the prefix table which is that it allows
us to upper bound the number of prefixes of P we need to inspect when a mismatch occurs.
When a mismatch occurs in our algorithm, we repeatedly shift the pattern until a p-match
between a text suffix and pattern prefix occurs. Naively it seems that we might have to check
many prefixes within the same run. However, as a consequence of Lemma 8 we are assured
that if some prefix does not p-match, every prefix in the same run with pred(P)[j] 6= 0
will also mismatch (except possibly the longest). Therefore we can skip inspecting these
prefixes. This can be seen by observing (using Lemma 8) that for j such that ρj = ρj+1,
we have pred(P)[j − ρj] ∈ {0, pred(P)[j]}. By keeping pointers into both linked lists, it
is straightforward to find the next prefix to check in O(1) time. Whenever we perform a
pattern shift we move at least one of the pointers to the left. Therefore the total number of
pattern shifts inspected while processing T [i] is at most O(|ΣP|+ ρ). As each pointer only

STACS’13

410 Parameterized Matching in the Streaming Model

moves to the right by at most one when each T [i] arrives, an amortised time complexity of
O(1) per character follows. The space usage is O(|ΣP|+ ρ), dominated by the linked lists.

We now briefly discuss how to deamortise our solution by applying Galil’s KMP deamort-
isation argument [11]. The main idea is to restrict the algorithm to shift the pattern at most
twice when each text character arrives, giving a constant time algorithm. If we have not
finished processing T [i] by this point we accept T [i+ 1] but place it on the end of a buffer,
output ‘no match’ and continue processing T [i]. The key property is that the number of
text arrivals until the next p-match occurs is at least the length of the buffer. As we shift
the pattern up to twice during each arrival we always clear the buffer before (or as) the next
p-match occurs. Further, the size of the buffer is always O(|ΣP| + ρ). This follows from
the observation above that the number of pattern shifts required to process a single text
character is O(|ΣP|+ ρ). This concludes the algorithm of Theorem 4.

5 The proof of Lemma 5

In this section we prove the important Lemma 5. Let ileft denote an arbitrary position
in T where P p-matches. Let X be the set of positions at which P p-matches within
T [ileft, (ileft + 3m/2 − 1)]. We now prove that there exist disjoint sets Y and A with the
properties set out in the statement of the lemma.

Let α be the smallest integer such that all distinct symbols in P occur in the prefix
P [0, α]. We first show that ρ, the p-period of P is at least α/|Σ|. From the minimality of
α, we have that P [α] is the leftmost occurrence of some symbol. By the definition of the
p-period, we have that P [0, (m− 1− ρ)] p-matches P [ρ, m− 1]. Under this shift, P [α] (in
P [ρ, m− 1]) is aligned with P [α− ρ] (in P [0, (m− 1− ρ)]) . Assume that P [α− ρ] is not a
leftmost occurrence and let j be the position of the previous occurrence of P [j] = P [α− ρ].
As a p-match occurs, we have that P [j] = P [j+α] 6= P [α], contradiction. By repeating this
argument we find distinct symbols at positions α−kρ for all k > 0, implying that ρ > α/|Σ|.

We first deal with two simple cases: ρ > m/8 or α > m/4 (which implies that ρ >
m/(4|Σ|)). In these two cases the number of p-matches is easily upper bounded by 6|Σ|, so
all positions can be stored in the set Y . We therefore continue under the assumption that
α < m/4 and ρ < m/8. As ρ > α/|Σ|, there are at most (α + 1)/(α/|Σ|) 6 2|Σ| positions
from the range [ileft, ileft+α] at which P can p-match T . We can store these positions in the
set Y . Next we will show that the positions from the range [(ileft +α+1), (ileft +3m/2−1)]
at which P p-matches T can be represented by the arithmetic progression A.

First we show that ρ is an exact period (not p-period) of pred(P)[α+ 1, m− 1] (but not
necessarily the shortest period). Consider arbitrary positions P [j] and P [j−ρ] where α < j <

m−ρ. By the definition of the p-period, we have that P [ρ, m−1] p-matches P [0, (m−1−ρ)]
and hence that pred(P [ρ, m− 1]) = pred(P [0, (m− 1− ρ)]). In particular, pred(P [ρ, m−
1])[j] = pred(P [0, (m− 1− ρ)])[j] = pred(P)[j], where the second equality follows because
we take the predecessor string of a prefix of P . Also observe that pred(P [ρ, m−1])[j] either
equals 0 or pred(P)[j−ρ] by definition. Further, pred(P [0, (m−1−ρ)])[j] = pred(P)[j] 6= 0
as j > α and all leftmost occurrences are before α. This implies that pred(P [ρ, m−1])[j] 6=
0, hence, pred(P)[j − ρ] = pred(P [ρ, m− 1])[j] = pred(P [0, (m− 1− ρ)])[j] = pred(P)[j].

Recall that P p-matches T [ileft, ileft + m − 1] so pred(P) = pred(T [ileft, ileft + m −
1])] and hence ρ is an exact period of pred(T [ileft, ileft + m − 1])[α + 1, m − 1]. Let
j ∈ {α + 1, . . . ,m − 2} and observe that by definition, pred(T [ileft, ileft + m − 1])[j] ∈
{0, pred(T)[ileft + j]}. However, pred(T [ileft, (ileft +m− 1)])[j] = pred(P)[j] > 0 because
j > α and all leftmost occurrences are in P [0, α]. This implies that pred(T [ileft, (ileft+m−

M. Jalsenius, B. Porat, and B. Sach 411

1)])[j] = pred(T)[ileft + j]. As j was arbitrary, we have that pred(T)[(ileft + α+ 1), (ileft +
m − 1)] = pred(T [ileft, (ileft + m − 1)])[α + 1, m − 1] and hence ρ is an exact period of
pred(T)[(ileft + α+ 1), (ileft +m− 1)].

Let iright be the rightmost position in T [ileft, ileft + 3m/2 − 1] where P p-matches. By
the same argument as for ileft, we have that ρ is an exact period of pred(T)[(iright + α +
1), (iright +m−1)]. Thus, both pred(T)[(ileft +α+ 1), (ileft +m−1)] and pred(T)[(iright +
α+ 1), (iright +m− 1)] has an exact period of ρ. As these two strings overlap by at least ρ
characters, we have that ρ is also an exact period of pred(T)[ileft + α+ 1, iright +m− 1].

Let i ∈ {(ileft + α + 1), . . . , iright − 1} be arbitrary such that P p-matches T [i, (i +
m − 1)]. We now prove that if i + ρ < iright then P p-matches T [i + ρ, (i + ρ + m − 1)].
As p-matches must be at least ρ characters apart this is sufficient to conclude that all
remaining matches form an arithmetic progression with common difference ρ. As ρ is an
exact period of pred(T)[(ileft+α+1), (iright+m−1)], we have that pred(T)[i, (i+m−1)] =
pred(T)[i + ρ, (i + ρ + m − 1)]. By definition, this implies that pred(T [i, (i + m − 1)]) =
pred(T [i+ ρ, (i+ ρ+m− 1)]) and hence a p-match also occurs at i+ ρ.

References
1 Amihood Amir, Martin Farach, and S. Muthukrishnan. Alphabet dependence in paramet-

erized matching. IPL, 49(3):111 – 115, 1994.
2 Arne A. Andersson and Mikkel Thorup. Tight(er) worst-case bounds on dynamic searching

and priority queues. In STOC ’00, pages 335–342, 2000.
3 B. S. Baker. A theory of parameterized pattern matching: algorithms and applications. In

STOC ’93, pages 71–80, 1993.
4 Brenda S. Baker. Parameterized pattern matching by boyer-moore-type algorithms. In

SODA ’95, pages 541–550, 1995.
5 Brenda S. Baker. Parameterized pattern matching: Algorithms and applications. Journal

of Computer and System Sciences, 52(1):28 – 42, 1996.
6 Brenda S. Baker. Parameterized duplication in strings: Algorithms and an application to

software maintenance. SIAM J. on Comp., 26(5):1343–1362, 1997.
7 Dany Breslauer and Zvi Galil. Real-time streaming string-matching. In CPM ’11, pages

162–172, 2011.
8 Raphaël Clifford, Klim Efremenko, Benny Porat, and Ely Porat. A black box for online

approximate pattern matching. In CPM ’08, pages 143–151, 2008.
9 Raphaël Clifford, Markus Jalsenius, Ely Porat, and Benjamin Sach. Space lower bounds

for online pattern matching. In CPM ’11, pages 184–196, 2011.
10 F. Ergun, H. Jowhari, and M. Sağlam. Periodicity in streams. In RANDOM ’10, pages

545–559, 2010.
11 Zvi Galil. String matching in real time. Journal of the ACM, 28(1):134–149, 1981.
12 Carmit Hazay, Moshe Lewenstein, and Dina Sokol. Approximate parameterized matching.

ACM Trans. Algorithms, 3(3), 2007.
13 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.

IBM J. Res Dev, 31(2):249 –260, 1987.
14 D. E. Knuth, J. H. Morris, and V. B. Pratt. Fast pattern matching in strings. SIAM J. on

Comp., 6:323–350, 1977.
15 Benny Porat and Ely Porat. Exact and approximate pattern matching in the streaming

model. In FOCS ’09, pages 315–323, 2009.

STACS’13

Popular Matchings: Structure and Cheating
Strategies∗

Meghana Nasre1

1 University of Texas at Austin, USA.

Abstract
We consider the cheating strategies for the popular matchings problem. Let G = (A∪P , E) be a
bipartite graph where A denotes a set of agents, P denotes a set of posts and the edges in E are
ranked. Each agent ranks a subset of posts in an order of preference, possibly involving ties. A
matching M is popular if there exists no matching M ′ such that the number of agents that prefer
M ′ to M exceeds the number of agents that prefer M to M ′. Consider a centralized market where
agents submit their preferences and a central authority matches agents to posts according to the
notion of popularity. Since a popular matching need not be unique, we assume that the central
authority chooses an arbitrary popular matching. Let a1 be the sole manipulative agent who is
aware of the true preference lists of all other agents. The goal of a1 is to falsify her preference
list to get better always, that is, to improve the set of posts she gets matched to in the falsified
instance. We show that the optimal cheating strategy for a single agent to get better always can
be computed in O(m + n) time when preference lists are all strict and in O(

√
nm) time when

preference lists are allowed to contain ties. Here n = |A|+ |P| and m = |E|.
To compute the cheating strategies, we develop a switching graph characterization of the

popular matchings problem involving ties. The switching graph characterization was studied for
the case of strict lists by McDermid and Irving (J. Comb. Optim. 2011) and was open for the
case of ties. We show an O(

√
nm) time algorithm to compute the set of popular pairs using

the switching graph. These results are of independent interest and answer a part of the open
questions posed by McDermid and Irving.

1998 ACM Subject Classification G.2.1 Combinatorial algorithms G.2.2 Graph algorithms

Keywords and phrases bipartite matchings, preferences, cheating strategies

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.412

1 Introduction

We consider the cheating strategies for the popular matchings problem. Let G = (A∪P , E)
be a bipartite graph where A denotes a set of agents, P denotes a set of posts, and the
edges in E are ranked. Each agent ranks a subset of posts in an order of preference, possibly
involving ties. This ranking of posts by an agent is called the preference list of the agent.
An agent a prefers post pi to post pj if the rank of post pi is smaller than the rank of post pj

in a’s preference list. An agent a is indifferent between posts pi and pj if they have the same
rank on a’s preference list. When agents can be indifferent between posts, the preference
lists are said to contain ties, otherwise the preference lists are strict. A matching M of
G is a subset of edges, no two of which share an end point. For a matched vertex u, let
M(u) denote its partner in the matching M . An agent a prefers a matching M to another
matching M ′ if (i) a is matched in M but unmatched in M ′, or (ii) a prefers M(a) to M ′(a).

∗ This work was supported in part by NSF grant CCF-0830737.

© Meghana Nasre;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 412–423

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.412
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Nasre 413

I Definition 1. A matching M is more popular than M ′ if the number of agents that prefer
M is greater than the number of agents that prefer M ′. A matching M is popular if there
is no matching M ′ that is more popular than M .

There exist simple instances that do not admit any popular matching – however, when
an instance admits a popular matching, there may be more than one popular matching.
Abraham et al. [1] characterized the instances that admit popular matchings and gave
efficient algorithms to compute a popular matching if one exists.
Our problem. Consider a centralized matching market where each agent a ∈ A submits
a preference over a subset of posts and a central authority matches agents to posts using
the criteria of popularity. Let a1 be the sole manipulative agent who is aware of the true
preference lists of all other agents and the preference lists of a ∈ A \ {a1} remain fixed
throughout. The goal of a1 is clear: she wishes to falsify her preference list so as to improve
the post that she gets matched to as compared to the post she got when she was truthful.
Since there may be more than one popular matching in an instance, we assume that the
central authority chooses an arbitrary popular matching. Let G = (A ∪ P , E) denote the
instance where ranks on the edges represent true preferences of all the agents. Let H denote
the instance obtained by falsifying the preference list of a1 alone. We assume that G admits
a popular matching and a1 falsifies in order to create an instance H which also admits a
popular matching. Note that it may be possible for a1 to falsify her preference list such that
H does not admit any popular matching. But we do not consider such a falsification.

Agent a1 wishes to falsify her preference list to ensure that (i) every popular matching
in H matches her to a post that is at least as good as the most-preferred post that she gets
matched to in G, and (ii) some popular matching in H matches a1 to a post better than the
most-preferred post p that she gets matched to in G, assuming that p is not a1’s true first
choice post. We term this strategy of a1 as ‘better always’ strategy.

1.1 Our contributions
Let a1 be the sole manipulative agent who wishes to get better always. The optimal
strategy for a1 can be computed in O(m + n) time when preference lists are all strict
and in O(

√
nm) time when preference lists are allowed to contain ties.

To compute the cheating strategies, we develop a switching graph characterization of the
popular matchings problem involving ties. Such a characterization was studied for the
case of strict lists by McDermid and Irving [10] and it was open for the case of ties. Using
the switching graph, we show an O(

√
nm) time algorithm to compute the set of popular

pairs. An edge (a, p) ∈ E is a popular pair if there exists a popular matching M in G such
that (a, p) ∈ M . We also show that counting the total number of popular matchings
in an instance with ties is #P-Complete. The switching graph characterization is of
independent interest and answers a part of the open questions in [10].

1.2 Related work
The work in this paper is motivated by the work of Teo et al. [13] where they study the
strategic issues of the stable marriage problem [2]. The stable marriage problem is a gener-
alization of our problem where both the sides of the bipartition (usually referred to as men
and women) rank members of the opposite side in order of their preference. Teo et al. [13]
study the strategic issues of the stable marriage problem where women are required to give
complete preference lists and there is a sole manipulative woman. Further, she is aware of
the true preference lists of all the other women. Teo et al. [13] compute an optimal cheating

STACS’13

414 Popular Matchings: Structure and Cheating Strategies

strategy for a single woman under this model. Huang [4] studies the strategic issues of the
stable room-mates problem [2] under a similar model. In the same spirit, we study the
strategic issues of the popular matchings problem.

The notion of popular matchings was introduced by Gärdenfors [3] in the context of the
stable marriage [2]. Abraham et al. [1] studied the problem for one-sided preference lists
and gave a characterization of instances which admit a popular matching. Subsequent to
this result, the popular matchings problem has received a lot of attention [8] [9] [7] [5] [6].
However, to the best of our knowledge none of them is motivated by the strategic issues of
the popular matchings problem.

2 Background

We first review the following well known properties of maximum matchings in bipartite
graphs. Let G = (A∪P , E) be a bipartite graph and let M be a maximum matching in G.
The matching M defines a partition of the vertex set A∪P into three disjoint sets: a vertex
v ∈ A ∪ P is even (resp. odd) if there is an even (resp. odd) length alternating path in G

w.r.t. M from an unmatched vertex to v. A vertex v is unreachable if there is no alternating
path from an unmatched vertex to v. Denote by E , O, and U the sets of even, odd, and
unreachable vertices, respectively, in G. The following lemma is well known in matching
theory; refer [12] for a detailed exposition and proof.

I Lemma 2 ([12] Dulmage Mendelsohn). Let E, O, and U be the sets of vertices defined by
a maximum matching M in G. Then,

(a) E, O, and U are pairwise disjoint, and independent of the maximum matching M in G.
(b) In any maximum matching of G, every vertex in O is matched with a vertex in E, and

every vertex in U is matched with another vertex in U . The size of a maximum matching
is |O|+ |U|/2.

(c) No maximum matching of G contains an edge between a vertex in O and a vertex in
O ∪ U . Also, G contains no edge between a vertex in E and a vertex in E ∪ U .

We now review the characterization of the popular matchings problem from [1]. As was
done in [1], we create a unique last-resort post `(a) for each agent a. In this way, we can
assume that every agent is matched, since any unmatched agent a can be paired with `(a).
For an agent a, let f(a) be the set of rank-1 posts for a. To define s(a), let us consider the
graph G1 = (A∪P , E1) on rank-1 edges in G and let M1 be any maximum matching in G1.
Let O1, E1,U1 define the partition of vertices A∪P with respect to M1 in G1. For any agent
a, let s(a) denote the set of most preferred posts which belong to E1 by the above partition.
Abraham et al. [1] proved the following theorem.

I Theorem 3 ([1]). A matching M is popular in G iff
(1) M ∩ E1 is a maximum matching of G1 = (A ∪ P , E1), and
(2) for each agent a, M(a) ∈ {f(a) ∪ s(a)}.

The algorithm for solving the popular matching problem is as follows: each a ∈ A determines
the sets f(a) and s(a). An A-complete matching (a matching that matches all agents) which
is maximum in G1 and matches each a to a post in {f(a) ∪ s(a)} needs to be determined.
If no such matching exists, then G does not admit a popular matching. Abraham et al. [1]
gave an O(

√
nm) time algorithm to compute a popular matching in G which is presented as

Algorithm 2.1. Steps 7–11 are added by us and will be used to define the switching graph
in Section 3. Abraham et al. [1] also showed a simpler characterization in case of strict lists
which results in an O(m + n) time algorithm to return a popular matching if one exists.

M. Nasre 415

Let G′ = (A ∪ P , E′) denote the graph in which every agent a has edges incident to
{f(a) ∪ s(a)}. Step 4 of Algorithm 2.1 deletes edges from G′ which cannot be present in
any maximum matching of G1. We extend this further and in Step 9 delete edges from G′

which cannot be present in any popular matching in G. For this, let us partition the vertex
set A∪P as O2, E2 and U2 with respect to a popular matching M in G′. Since any popular
matching M is a maximum matching in G′, by Lemma 2(c), the matching M cannot contain
edges of the form O2O2 and O2U2. However, since M matches every agent, it implies that
A ∩ E2 = ∅ and P ∩ O2 = ∅. Thus, there are no O2O2 edges in G′. Hence, any edge (a, p)
deleted in Step 9 is of the form a ∈ O2 and p ∈ U2. We can now claim the following.
I Claim 4. Let a be an agent such that a ∈ U2. Then, in Step 9 of Algorithm 2.1, no
edge incident on a gets deleted. Let a be an agent such that a ∈ E1. Then, in Step 4 of
Algorithm 2.1, no edge incident on a gets deleted.

Algorithm 2.1 O(
√

nm)-time algorithm for the popular matching problem [1] (Steps 1–6).
Input: G = (A ∪ P , E).

1: Construct the graph G′ = (A∪P , E′), where E′ = {(a, p) : a ∈ A and p ∈ f(a)∪ s(a)}.
2: Construct the graph G1 = (A ∪ P , E1) and let M1 be any maximum matching in G1.
3: Partition A ∪ P as O1, E1,U1 with respect to M1 in G1.
4: Remove any edge in G′ between a node in O1 and a node in O1 ∪ U1.
5: Determine a maximum matching M in G′ by augmenting M1.
6: Return M if it is A-complete, otherwise return “no popular matching”.
7: if G admits a popular matching then
8: Partition A ∪ P as O2, E2,U2 with respect to M in G′.
9: Remove any edge in G′ between a node in O2 and a node in U2.

10: Denote the resulting graph as G′′ = (A ∪ P , E′′).
11: end if

I Definition 5. For a ∈ A, let choices(a) = {p ∈ P : (a, p) is an edge in G′′}.

3 The switching graph characterization

In this section we develop the switching graph for the popular matchings problem with ties.
In case of strict lists, McDermid and Irving [10] defined a switching graph GM = (P , EM)
as a directed graph on the posts of G and the edge set EM was determined by a popular
matching M in G. In fact, a similar graph was defined even before that by Mahdian [8]
(again for strict lists) to study existence of popular matchings in random instances.

Let G be an instance of the popular matchings problem with ties and let M be a popular
matching in G. The switching graph GM = (P , EM) is a directed weighted graph on the
posts P of G and is defined with respect to a popular matching M in G. The edge set EM is
defined using the pruned graph G′′ = (A∪ P , E′′) constructed in Step 10 of Algorithm 2.1.
There exists an edge from pi to pj (with pi 6= pj) iff for some a ∈ A, pi = M(a) and
(a, pj) ∈ E′′. The weight of an edge w(M(a), pj) is defined as:

w(M(a), pj) = 0 if a is indifferent between M(a) and pj

= −1 if a prefers M(a) to pj

= +1 if a prefers pj to M(a).

The graph GM = (P, EM) can be easily constructed in O(
√

nm) time using Algorithm 2.1.

STACS’13

416 Popular Matchings: Structure and Cheating Strategies

Consider a vertex p in GM . A post p is a sink vertex in GM if and only if p is unmatched
by M in G. This follows from observing that M(p), that is, the agent matched to p by M ,
has degree at least 2 in the graph G′. Further, any agent continues to have degree at least
2 in the graph G′′. We refer the reader to the full version [11] for a detailed proof. Let X
be a maximal weakly connected component of GM . Call X a sink component if X contains
one or more sink vertices, otherwise call X a non-sink component.

For a path T (resp. cycle C) in GM , the weight of the path w(T) (resp. w(C)) is the
sum of the weights on the edges in T (resp. C). (Whenever we refer to paths and cycles in
GM we imply directed paths and directed cycles respectively.) A path T = 〈p1, . . . , pk〉 in
GM is called a switching path if T ends in a sink vertex and w(T) = 0. Similarly, a cycle
C = 〈p1, . . . , pk, p1〉 in GM is called a switching cycle if w(C) = 0. Let AT = {ai : M(pi) =
ai, for i = 1 . . . k } and denote by M ′ = M · T the matching obtained by applying the
switching path to M , that is, for ai ∈ AT , M ′(ai) = pi+1 whereas for a /∈ AT , M ′(a) = M(a).
Similarly, for a switching cycle C, define AC = {ai : M(pi) = ai, for i = 1 . . . k } and denote
by M ′ = M · C the matching obtained by applying the switching cycle to M , that is, for
ai ∈ AC , M ′(ai) = pi+1 mod k whereas for a /∈ AC , M ′(a) = M(a).

I Example 6.

Consider an instance G where A = {a1, . . . , a7} and P = {p1, . . . , p9}. The preference lists
of the agents are shown in Figure 1(a). The preference lists can be read as follows: agent a1
ranks posts p1, p2, p3 as her rank-1, rank-2 and rank-3 posts respectively and the two posts
p6 and p7 are tied as her rank-4 posts. For every agent a, the posts which are bold denote
the set f(a), whereas the posts which are underlined denote the set s(a). The instance G

admits a popular matching; M and M ′ shown below are both popular in G.

M = {(a1, p6), (a2, p1), (a3, p8), (a4, p2), (a5, p3), (a6, p9), (a7, p4)} (1)
M ′ = {(a1, p6), (a2, p1), (a3, p8), (a4, p2), (a5, p4), (a6, p3), (a7, p5)} (2)

Figure 1(b) shows the switching graph GM with respect to the popular matching M . We
note that the edges (a4, p3) and (a1, p1) get deleted in Step 4 and Step 9 of Algorithm 2.1,
respectively. Hence the switching graph GM does not have the edges (M(a4) = p2, p3) and
(M(a1) = p6, p1) respectively. Consider the switching path T = 〈p9, p3, p4, p5〉 in GM . By
applying T to M we get M ′ = M · T (see Equation (2)) which is also popular in G.

a1 : p1 p2 p3 (p6, p7)
a2 : p1 p2 p8

a3 : p1 p8

a4 : (p2, p3) p1 p8

a5 : p3 (p2, p4)
a6 : p3 p9 p1

a7 : (p4, p5) p1

(a)

p
1

p
2

p
3

p

p

p

5

4

p
7

p
8

p
9

−1

−1
−1+1

+1 0

0

6

(b)

Figure 1 (a) Preference lists of agents {a1, . . . , a7}. The posts which are bold denote f(a) and
the posts which are underlined denote s(a). (b) Switching graph GM with respect to the popular
matching M in G.

M. Nasre 417

3.1 Some useful properties
In this section we state some useful properties of the switching graph GM (refer [11] for
proof of correctness of these properties). Recall that the vertices A ∪ P are partitioned as
O1, E1,U1 w.r.t. a maximum matching M1 in G1 (see Step 3 of Algorithm 2.1). Further, the
vertices A ∪ P are partitioned as O2, E2,U2 w.r.t. a popular matching M in G′ (see Step 8
of Algorithm 2.1).

I Property 7. All sink vertices of GM belong to the set E1.

I Property 8. Every post p belonging to a sink component has a path to a sink and hence
belongs to the set E2. Every post belonging to a non-sink component belongs to the set U2.

I Property 9. For an edge (pi, pj) in GM , the weight w(pi, pj) is determined by the partition
pi and pj belong to when vertices are partitioned as O1, E1,U1. The weight w(pi, pj) can be
determined using Table 1.

Table 1 Table shows w(pi, pj) for an edge (pi, pj) in GM . The weight is determined by the
partition of vertices as O1, E1,U1. The × denotes that such an edge is not present in GM .

HHH
HHpi

pj O1 E1 U1

O1 0 −1 ×
E1 +1 0 ×
U1 × −1 0

I Property 10. Every path T in GM has w(T) ∈ {−1, 0, +1}. Every cycle C in GM has
w(C) = 0. There exists no path T in GM ending in a sink vertex with w(T) = +1.

I Property 11. For any switching path T (or switching cycle C) in GM , the matching
M ′ = M · T (M ′ = M · C resp.) is a popular matching in G. Every popular matching M ′

in G can be obtained from M by applying to M one or more vertex disjoint switching paths
and switching cycles in each of a subset of sink components of GM together with one or
more vertex disjoint switching cycles in each of a subset of the non-sink components of GM .

Recall the definition of choices(a) for an agent as given by Definition 5. It is easy to see
that for any a ∈ A, choices(a) ⊆ {f(a) ∪ s(a)}. Further, if M is a popular matching in G,
then M(a) ∈ choices(a). We now define the notion of a tight-pair, that is, a set of agents A1
and a set of posts P1 with |A1| = |P1|. Further, for every a ∈ A1 we have choices(a) ⊆ P1.
We show that a tight-pair exists whenever there is a non-sink component in the switching
graph GM .

I Lemma 12. Let Y be a non-sink component in GM and q ∈ Y. Let,

Pq = {q} ∪ {p : q has a path to p in GM }.

Then there exists a set of agents Aq such that (i) |Aq| = |Pq|, and (ii) for every a ∈ Aq,
choices(a) ⊆ Pq.

Proof. Let Aq = {a : a = M(p) and p ∈ Pq}. Since every p ∈ Pq is matched, we note that
|Aq| = |Pq|. For any a ∈ Aq, we have M(a) ∈ Pq and note that M(a) ∈ choices(a). Further,
note that, for every p′ ∈ choices(a) \ {M(a)}, we have an edge (M(a), p′) in GM . Thus,
every such p′ also belongs to Pq. This proves that for every a ∈ Aq, choices(a) ⊆ Pq. J

STACS’13

418 Popular Matchings: Structure and Cheating Strategies

3.2 Generating popular pairs and counting popular matchings
Let G = (A ∪ P , E) be an instance of the popular matchings problem. Define

PopPairs = {(a, p) ∈ E : M is a popular matching in G and M(a) = p}. (3)

Using the switching graph defined in the previous section, it is easy to compute the set
PopPairs in G. Let GM be the switching graph with respect to a popular matching M in
G. From Property 11 we can conclude that an edge e = (a, p) is a popular pair if and only
if (i) e ∈ M or, (ii) the edge (M(a), p) belongs to some switching path in GM or, (iii) the
edge (M(a), p) belongs to some switching cycle in GM .

We note that edges satisfying condition (i) can be marked in O(
√

nm) time using Al-
gorithm 2.1 and edges satisfying conditions (ii) or (iii) can be marked in linear time in the
size of the switching graph. Thus, we conclude the following theorem (see [11] for proof).

I Theorem 13. The set of popular pairs for an instance G = (A ∪ P , E) of the popular
matchings problem with ties can be computed in O(

√
nm) time.

We now show that given an instance of the popular matchings problem with ties, the
problem of counting the number of popular matchings is #P-Complete. The result readily
follows by (i) reducing the problem of computing the number of perfect matchings in 3-
regular bipartite graphs to the popular matchings problem, and (ii) the fact that k-regular
bipartite graphs admit a perfect matching.

I Theorem 14. Given an instance G = (A ∪ P , E) of the popular matchings problem with
ties, counting the total number of popular matchings in G is #P-Complete.

4 Cheating strategies – preliminaries

In this section we set up the notation useful in formulating our cheating strategies. We
begin by partitioning the set of agents A depending on the posts that a particular agent
gets matched to when each agent is truthful, that is, in the instance G.

Af = {a : every popular matching in G matches a to one of her rank-1 posts}
As = {a : every popular matching in G matches a to one of her non-rank-1 posts}
Af/s = A \ (Af ∪ As).

The set Af/s denotes the set of agents a such that a gets matched to one of her rank-1
posts in some popular matching in G, whereas to one of her non-rank-1 posts in some other
popular matching in G. It is easy to see that the above partition can be readily obtained
once we have the set of popular pairs PopPairs (defined by Equation (3)).

Let a1 be the sole manipulative agent who is aware of the true preference lists of all other
agents. Let L = P1, P2, . . . , Pt, . . . , Pl denote the true preference list of a1 where Pi denotes
the set of i-th rank posts of a1. Since we will be working with another instance H obtained
by falsifying the preference list of a1, we now qualify the sets f(a) and s(a) for every agent
with the instance under consideration. For an agent a, let fG(a) and sG(a) denote sets
f(a) and s(a) respectively for an agent a in G. We note that fG(a1) = P1. Assume that
sG(a1) ⊆ Pt is the set of t-th ranked posts of a1, where t > 1.

Recall the strategy – better always defined for a single manipulative agent. If agent
a1 ∈ Af , then she does not have any incentive to manipulate her preference list. Thus, in
this case we are done and L is her optimal strategy. We therefore focus on a1 ∈ As ∪Af/s.
Let H denote the instance obtained by falsifying the preference list of a1 alone.

M. Nasre 419

If a1 ∈ As, then in order to get better always her goal is to force at least some popular
matching in H to match her to a post which she strictly prefers to her t-th ranked post.
If a1 ∈ Af/s, then in order to get better always her goal is to force every popular matching
in H to match her to one of her true rank-1 posts.

Denote by H � G with respect to a1 if agent a1 is better always in H. It is instructive
to consider examples in order to get intuition regarding the cheating strategies.

I Example 15.

Consider the instance G as shown in Figure 1(a) and let a5 be the manipulative agent. It
can be seen that a5 ∈ Af/s in G. Now consider the instance H where a5 alone falsifies her
preference list. The preference list of a5 in H is a strict list of length two and contains p3 as
her rank-1 post and p8 as her rank-2 post. It is easy to verify that every popular matching in
H matches a5 to p3 which is her true rank-1 post. The idea for an Af/s agent a is to choose
a post in sH(a) (here p8) to which a can never be matched in a popular matching in H. We
will show that such a post can be chosen whenever there exists a non-sink component in the
switching graph and therefore a tight-pair (in this case P1 = {p8, p1} and A1 = {a2, a3}).

I Example 16.

Consider the instance G shown in Figure 1(a) and let a1 be the manipulative agent. Every
popular matching in G matches a1 to either p6 or p7 and therefore a1 ∈ As. Let H denote
the instance where a1 falsifies her preference list. The preference list of a5 in H is a strict
list of length two and contains p3 as her rank-1 post and p8 as her rank-2 post. It can be
verified that every popular matching in H matches a1 to p3. The intuition here is that, a
post to which a1 wishes to get matched (here p3), should have a path to an unmatched post
or roughly speaking, belong to a sink component of GM . We also choose a post in sH(a1)
(in this case p8) to which a1 can never get matched in any popular matching in H.

However, in this example, this is not the best that a1 can get by falsifying. Let a1 falsify
her preference list to rank p2 as her rank-1 post and p8 as her rank-2 post. Consider the
matching M ′′ = {(a1, p2), (a2, p1), (a3, p8), (a4, p3), (a5, p4), (a6, p9), (a7, p5)} in H. It can be
verified that M ′′ is popular in H and in fact every popular matching in H matches a1 to
p2. However, our intuition that p2 should belong to a sink component does not hold. This
is because the edge (a4, p3) which got deleted in Step 4 of Algorithm 2.1 is being used after
a1 falsifies her preference list. In order to deal with such cases we will work with a modified
instance as defined in Section 4.3.

We now formalize these intuitions in the rest of the section. In the interest of space we
omit proof details and refer the reader to the full version [11].

4.1 s(a) for other agents remains unchanged
Let H denote the instance obtained by falsifying the preference list of a1 alone. Since the rest
of the agents are truthful, for every agent a ∈ A \ {a1}, we have fH(a) = fG(a). However,
since sH(a) depends on the rank-1 posts of the rest of the agents, it may be the case that
when a1 falsifies her preference list, sH(a) 6= sG(a) for an agent a ∈ A\{a1}. We claim that
if a1 falsifies her preference list only to improve the rank of the post that she gets matched
to, the rest of the agents do not change their s(a). Recall that by definition, sH(a) is the set
of most preferred posts of a which are even in the graph H1 (the graph H on rank-1 edges).
The following theorem summarizes the discussion.

I Theorem 17. Let H be an instance such that H � G w.r.t. a1. Then, (i) (E1)G ∩ P =
(E1)H ∩P and hence sH(a) = sG(a) for every a ∈ A\{a1} and, (ii) (O1)G∩A = (O1)H ∩A.

STACS’13

420 Popular Matchings: Structure and Cheating Strategies

4.2 An As agent cannot get one of her true rank-1 posts
In this section we show that if a1 ∈ As, then by falsifying her preference list alone, she
cannot get matched to one of her true rank-1 posts in any popular matching in H. We state
the result as Theorem 18 which requires the following claims. Let M be a popular matching
in G and GM denote the corresponding switching graph.

(I) If a1 ∈ As, then every post q ∈ fG(a1) belongs to a non-sink component of GM . We
further claim that the edge (M(a1), q) does not belong to any cycle in GM .

(II) Since every q ∈ fG(a1) belongs to a non-sink component of GM , using Lemma 12, we
can define a tight-pair Pq and Aq w.r.t. q. Here, Pq denotes the set of posts reachable
from q in GM whereas Aq denotes the set of agents matched to the posts in Pq. We
claim that the post M(a1) does not belong to Pq and hence a1 does not belong to Aq.

(III) From the definition of tight-pair, we know that |Aq| = |Pq| and for each a ∈ Aq,
choicesG(a) ⊆ Pq. However, we claim that the same pair of sets is tight in H, that is,
for every a ∈ Aq, choicesH(a) ⊆ Pq.

Using the above facts we prove the following theorem.

I Theorem 18. Let a1 ∈ As. Then by falsifying her preference list alone, she cannot get
matched to a post q ∈ fG(a1) in any popular matching in the falsified instance.

Proof. For contradiction assume that there exists a falsified instance H such that in a
popular matching M ′ of H, agent a1 gets matched to q ∈ fG(a1). By (I), the post q belongs
to a non-sink component of GM . Further by (III), there exists a set of agents Aq and a set
of posts Pq such that |Aq| = |Pq|, a1 /∈ Aq and for every a ∈ Aq, we have choicesH(a) ⊆ Pq.
Thus, if a1 gets matched to q in M ′, then there is at least one agent a′ ∈ Aq which does
not have a post to be matched to in choicesH(a′). This contradicts the fact that M ′ is a
popular matching in H. J

4.3 The modified instance G̃

As mentioned earlier, we need to define a modified instance, call it G̃ to develop our cheating
strategies. Recall from Example 16 that an edge which gets deleted from the graph G′ in
Step 4 of Algorithm 2.1 can be used in a popular matching in a falsified instance. Thus, we
define G̃ from the instance G which has the following properties: (i) every popular matching
in G is a popular matching in G̃ and, (ii) any edge (a, p) that gets deleted in Step 4 of
Algorithm 2.1 when run on G̃ also gets deleted in Step 4 when Algorithm 2.1 is run on H

such that H � G w.r.t. a1. However, the definition of G̃ is independent of the agent a1.
The graph G̃ is defined as follows: Let G1 be the graph on rank-1 edges of G and let

{q1, . . . , qk} be the set of unreachable posts in G1. Let us add to the instance G a dummy
agent b whose preference list is of length one and has all the unreachable posts in G1 tied
as her rank-1 posts. That is, the preference list of b can be written as (q1, . . . , qk). The
set of posts as well as the preference lists of all the agents a ∈ A remain the same as in G.
Formally, G̃ = (Ã ∪ P , Ẽ) where Ã = A ∪ {b} and Ẽ = E ∪ {(b, q1), . . . , (b, qk)} and each
(b, qi) is a rank-1 edge. By the choice of preference list of b, we note that fG̃(b) = {q1, . . . , qk}
and sG̃(b) = `(b), the unique last-resort post that we add for convenience.

We note that even after the addition of agent b, a maximum matching M1 in G1 continues
to be a maximum matching in G̃1. However, with respect to the partition of vertices on
rank-1 edges in G̃, every vertex is either odd or even in G̃1. Further, we claim that the
set of even posts in G̃1 is the same as the set of even posts in G1. Thus, we can state the
following lemma.

M. Nasre 421

I Lemma 19. For every a ∈ A, we have sG̃(a) = sG(a).

Now let M be a popular matching in G, then let M̃ denote the corresponding matching
in G̃ such that for every a ∈ A we have M̃(a) = M(a) and M̃(b) = `(b), the unique last-
resort post of b. Note that M̃ is a maximum matching on rank-1 edges in G̃ and for every
a ∈ A, we have M̃(a) ∈ {fG̃(a) ∪ sG̃(a)}. Finally, M̃(b) ∈ sG̃(b) since sG̃(b) = {`(b)}. It is
clear that M̃ satisfies both the properties of Theorem 3 and therefore is a popular matching
in G̃. We can now construct the switching graph G̃M̃ w.r.t. M̃ in G̃. With the definition of
G̃ in place, we can now state the following lemmas.

I Lemma 20. Let (a, p) be an edge which gets deleted in Step 4 of Algorithm 2.1 run on G̃.
Then (a, p) gets deleted in Step 4 when Algorithm 2.1 is run on H where H � G w.r.t. a1.

I Lemma 21. Let a ∈ A \ {a1} such that M̃(a) belongs to a non-sink component of G̃M̃ .
Let H be an instance such that H � G w.r.t. a1. Then choicesH(a) ⊆ choicesG̃(a).

5 Cheating strategies

In this section we develop an efficient characterization of the conditions under which a1 can
falsify her preference list. We formulate the strategy of a1 depending on whether a1 ∈ As

or a1 ∈ Af/s. Throughout, we assume that the true preference list of a1 is denoted by L =
P1, . . . , Pt, . . . , Pl where Pi denotes the set of i-th ranked posts of a1. Further, fG(a1) = P1
and sG(a1) ⊆ Pt. We will use the modified instance G̃ to formulate our strategies.

5.1 As agent
Let a1 ∈ As and let M be any popular matching in G and M̃ denote the corresponding
popular matching in G̃ which matches b to `(b). It follows from the definition of As that,
M(a1) = M̃(a1) ∈ sG(a1) and therefore, M(a1) ∈ Pt. We first characterize whether a1 can
get better always using the graph G̃ and the switching graph G̃M̃ .

Our cheating strategy for a1 (as shown in Figure 2) is simple: it checks if any of a1’s
i-th ranked posts p ∈ Pi where i = 2 . . . t− 1, either belongs to a sink component in G̃M̃ or
has a path to M̃(a1) in G̃M̃ . If there exists such a post p, our strategy ensures that every
popular matching in the falsified instance H matches a1 to p. We denote by Lf the falsified
preference list of a1. We now state the main theorem in this section.

1. For i = 2 . . . t− 1 check if there exists a post p ∈ Pi in a1’s preference list such that
(a) p belongs to a sink component in G̃M̃ or,
(b) p has a path to M̃(a1) in G̃M̃ .

2. If no post satisfies (a) or (b) above, then true preference list L is optimal for a1.
3. Else let p denote the most preferred post of a1 satisfying one of the above two

properties. Set post p as a1’s rank-1 post in the falsified preference list.
4. To obtain the rank-2 post for a1, let a2 be some agent such that M̃(a2) ∈ fG(a1).

Let p′ ∈ sG(a2). Set p′ as the rank-2 post of a1 in the falsified instance. Lf = p, p′.

Figure 2 Cheating strategy for a1 ∈ As.

I Theorem 22. Let a ∈ As. Then there exists a cheating strategy for a1 to get better always
if and only if there exists a post p ranked 2 . . . t− 1 on a1’s preference list satisfying either

STACS’13

422 Popular Matchings: Structure and Cheating Strategies

(a) p belongs to a sink component in G̃M̃ or,
(b) p has a path to M̃(a1) in G̃M̃ .

Proof. (Sketch) Assume that a post p satisfying one of the above two properties exists. Let
Lf = p, p′ be the falsified preference list for a1 as returned by Step 4 of Figure 2. Let H

denote the instance where a1 submits Lf and the rest of the agents are truthful. We show
that every popular matching in H matches a1 to p. The idea is to use the path starting at
p which ends in an unmatched vertex and construct another matching which matches a1 to
p. Further, to show that every popular matching matches a1 to p, we use the tight-sets Ap′

and Pp′ . Finally, to show that our strategy is optimal, from Theorem 18, we know that a1
cannot get matched to any of her true rank-1 posts. Now let q be a post which does not
satisfy any of the conditions in Theorem 22 and is more preferred by a1 than the post that
it got matched to after running the strategy in Figure 2. We show the existence of tight-sets
Aq and Pq for such a post q which implies that no popular matching in the falsified instance
can match a1 to q. Refer [11] for a full proof. J

5.2 Af/s agent
Let a1 ∈ Af/s when she submits her true preference list. In order to get better always, the
goal of a1 is to falsify her preference list such that every popular matching in the falsified
instance H matches a1 to posts in P1.

Let M be a popular matching in G such that M(a1) = p and p ∈ fG(a1). Let M̃ denote
the corresponding popular matching in G̃ which matches b to `(b). Consider the switching
graph G̃M̃ . Our strategy for a1 to get better always (as described in Figure 3) is to search
for an even post p′ in G1 which belongs to a non-sink component of G̃M̃ and further the
post p′ does not have a path T to M̃(a1) in G̃M̃ where w(T) = +1.

1. For every p′ ∈ (E1)G ∩ P check if
(a) p′ belongs to a non-sink component, say Y1, of G̃M̃ and,
(b) p′ does not have a path T to M̃(a1) in G̃M̃ such that w(T) = +1.

2. If no post satisfies both properties, declare true preference list L is optimal for a1.
3. Else set M(a1) = p and p′ as the rank-1 and rank-2 posts respectively in the falsified

preference list of a1. Lf = p, p′.

Figure 3 Cheating strategy for a1 ∈ Af/s to get better always.

I Theorem 23. Let a1 ∈ Af/s. There exists a cheating strategy for a1 to get better always
if and only if there exists a post p′ in (E1)G satisfying the following two properties

(a) p′ belongs to a non-sink component, say Y1, of G̃M̃ , and
(b) there exists no path T from p′ to M̃(a1) in G̃M̃ such that w(T) = +1.

Proof. (Sketch) Assume that a post p′ satisfying the above two properties exists. Then by
falsifying her preference list as Lf = p, p′, agent a1 can force every popular matching in H

to match a1 to p. The proof uses the existence of the tight-pair Ap′ ,Pp′ . On the other hand,
assume that no such post exists and for the sake of contradiction, there exists an instance
H such that every popular matching in H matches a1 to a post in fG(a1). In this case we
show that there exists a popular matching M ′ in H such that M ′(a1) ∈ sH(a1). Further,
sH(a1) cannot contain any of a1’s true rank-1 posts, therefore this contradicts the fact that
every popular matching in H matches a1 to one of her true rank-1 posts. J

M. Nasre 423

Using Theorem 22 and Theorem 23 we conclude the following.

I Theorem 24. The optimal falsified preference list for a single manipulative agent to get
better always can be computed in O(

√
nm) time if preference lists contain ties and in time

O(m + n) time if preference lists are all strict.

Proof. The main steps of our strategy are (i) to compute the set of popular pairs, (ii) to
construct the switching graph, (iii) run the algorithm given by Figure 2 or Figure 3 as
appropriate for the single manipulative agent. We note that we use the modified graph G̃

for computing our strategies and let ñ and m̃ denote the vertices and edges in G̃ respectively.
Clearly, ñ = n + 1 and m̃ < m + n = O(m). Once the switching graph is constructed, we
observe that the algorithms in Figure 2 and Figure 3 have checks which can be done in time
which is linear in the size of the switching graph. Thus the steps (i) and (ii) defined above
decide the complexity of our cheating strategy. In case of ties, we have shown that both the
steps can be computed in O(

√
nm) time. In case of strict lists, using the switching graph

given by McDermid and Irving [10], both the steps can be computed in O(m + n) time.
Thus we have the desired result. J

Acknowledgment: The author is grateful to Prof. Vijaya Ramachandran for useful dis-
cussions on the problem and to an anonymous reviewer for the helpful comments.

References
1 D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular Matchings. SIAM

Journal on Computing, 37(4):1030–1045, 2007.
2 D. Gale and L. Shapley. College Admissions and the Stability of Marriage. American

Mathematical Monthly, 69:9–14, 1962.
3 P. Gärdenfors. Match making: Assignments based on bilateral preferences. Behavioural

Sciences, 20:166–173, 1975.
4 C.-C. Huang. Cheating to Get Better Roommates in a Random Stable Matching. In

Proceedings of 24th Annual Symposium on Theoretical Aspects of Computer Science, pages
453–464, 2007.

5 C.-C. Huang and T. Kavitha. Near-Popular Matchings in the Roommates Problem. In
Proceedings of the 19th Annual European Symposium on Algorithms, pages 167–179, 2011.

6 T. Kavitha. Popularity vs maximum cardinality in the stable marriage setting. In Proceed-
ings of the 23rd ACM-SIAM Symposium on Discrete Algorithms, pages 123–134, 2012.

7 T. Kavitha, J. Mestre, and M. Nasre. Popular Mixed Matchings. Theoretical Computer
Science, 412(24):2679–2690, 2011.

8 M. Mahdian. Random Popular Matchings. In Proceedings of 7th ACM Conference on
Electronic Commerce, pages 238–242, 2006.

9 R. M. McCutchen. The Least-Unpopularity-Factor and Least-Unpopularity-Margin Cri-
teria for Matching Problems with One-Sided Preferences. In Proceedings of the 15th Latin
American Symposium on Theoretical Informatics, pages 593–604, 2008.

10 E. McDermid and R. W. Irving. Popular matchings: structure and algorithms. Journal of
Combinatorial Optimization, 22(3):339–358, 2011.

11 M. Nasre. Popular Matchings: Structure and Cheating Strategies. CoRR, abs/1301.0902,
2013.

12 W. R. Pulleyblank. Handbook of Combinatorics (Vol. 1), chapter Matchings and Exten-
sions, pages 179–232. MIT Press, Cambridge, MA, USA, 1995.

13 C.-P. Teo, J. Sethuraman, and W.-P. Tan. Gale-Shapley Stable Marriage Problem Revis-
ited: Strategic Issues and Applications. Management Science, 47(9):1252–1267, 2001.

STACS’13

Fooling One-Sided Quantum Protocols∗

Hartmut Klauck1 and Ronald de Wolf2

1 CQT and Nanyang Technological University
Singapore
hklauck@gmail.com

2 CWI and University of Amsterdam
Amsterdam, The Netherlands
rdewolf@cwi.nl

Abstract
We use the venerable “fooling set” method to prove new lower bounds on the quantum commu-
nication complexity of various functions. Let f : X × Y → {0, 1} be a Boolean function, fool1(f)
its maximal fooling set size among 1-inputs, Q∗1(f) its one-sided-error quantum communication
complexity with prior entanglement, and NQ(f) its nondeterministic quantum communication
complexity (without prior entanglement; this model is trivial with shared randomness or entan-
glement). Our main results are the following, where logs are to base 2:

If the maximal fooling set is “upper triangular” (which is for instance the case for the equality,
disjointness, and greater-than functions), then we have Q∗1(f) ≥ 1

2 log fool1(f)− 1
2 , which (by

superdense coding) is essentially optimal for functions like equality, disjointness, and greater-
than. No super-constant lower bound for equality seems to follow from earlier techniques.
For all f we have Q∗1(f) ≥ 1

4 log fool1(f)− 1
2 .

NQ(f) ≥ 1
2 log fool1(f) + 1. We do not know if the factor 1/2 is needed in this result, but it

cannot be replaced by 1: we give an example where NQ(f) ≈ 0.613 log fool1(f).

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Quantum computing, communication complexity, fooling set,
lower bound

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.424

1 Introduction

1.1 Background: fooling classical communication protocols
Communication complexity [20, 11] is one of the most versatile and successful computational
models we have, and lower bounds on communication complexity are one of the main sources
of lower bounds in many other areas, from circuits to data structures to data streams. One of
the simplest and most intuitive ways to prove lower bounds on communication protocols is by
exhibiting a large fooling set, which was first done in [20, 15]. Suppose Alice and Bob want
to compute some function f : X × Y → {0, 1}, given inputs x ∈ X and y ∈ Y , respectively.
A 1-fooling set for f is a set F = {(x, y)} of input pairs with the following properties:

∗ HK’s research at the Centre for Quantum Technologies is funded by the Singapore Ministry of Education
and the National Research Foundation. RdW is partially supported by a Vidi grant from the Netherlands
Organization for Scientific Research (NWO) and by the European Commission under the project QCS
(Grant No. 255961). Part of this work was done when RdW was visiting CQT, whose hospitality is
gratefully acknowledged.

© H. Klauck and R. de Wolf;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 424–433

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.424
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

H. Klauck and R. de Wolf 425

(1) If (x, y) ∈ F then f(x, y) = 1
(2) If (x, y), (x′, y′) are distinct pairs in F then f(x, y′) = 0 or f(x′, y) = 0

Note that these two conditions imply that if pairs (x, y), (x′, y′) ∈ F are distinct (i.e., differ
in at least one coordinate), then they differ in both coordinates. Hence a fooling set F forms
a bijection between |F | inputs on Alice’s side and |F | inputs on Bob’s side. Accordingly, by
renaming some of Bob’s inputs we can always assume without loss of generality that F is of
the form {(x, x)}.

To illustrate the concept of a fooling set, consider the n-bit equality function EQ, defined
on x, y ∈ {0, 1}n as EQ(x, y) = 1 iff x = y. This has a 1-fooling set F = {(x, x)} of size 2n,
since EQ(x, x) = 1 for all x and EQ(x, y) = 0 for all distinct x, y. The same fooling set also
works for the n-bit greater-than function, which is defined as GT(x, y) = 1 iff y ≥ x. The
n-bit disjointness function Disj, defined as Disj(x, y) = 1 iff |x ∧ y| = 0, also has a 1-fooling

set of size 2n, which can be seen as follows: write its communication matrix as
(

1 1
1 0

)⊗n

,

and take the anti-diagonal as the 1-fooling set. All entries on the anti-diagonal are 1 (giving
the first property) and all entries below the anti-diagonal are 0 (giving the second property).

Now consider for simplicity a deterministic protocol computing f . Suppose the last bit
of the conversation is the output bit, so both parties end up knowing the output. Consider
input pairs (x, y), (x′, y′) ∈ F . For both inputs, the first property of the fooling set says
that the correct output value is 1. Suppose, by way of contradiction, that the conversation
between Alice and Bob is the same on both input pairs. If we switch input pair (x, y) to
(x, y′) then nothing changes from Alice’s perspective (neither her input nor the conversation
changes), so the output will still be 1. Similarly, if we switch (x, y) to (x′, y) then the output
won’t change from Bob’s perspective. But by the second property of fooling sets, for at least
one of (x, y′) and (x′, y), the correct output is 0! Hence the conversations on inputs (x, y)
and (x′, y′) must have been different. Accordingly, the bigger our fooling set F is, the more
distinct conversations we must allow and hence the more bits of communication are needed.

More precisely, the communication complexity is lower bounded by log |F |+ 1. A formal
proof of this fact can be based on the notion of monochromatic rectangles. A rectangle
is a set R = A × B, where A ⊆ X and B ⊆ Y . Such a rectangle is 1-monochromatic if
f(x, y) = 1 for all (x, y) ∈ R. Note that a rectangle containing 1-inputs (x, y), (x′, y′) ∈ F
cannot be 1-monochromatic, because by the rectangle property it also contains (x, y′) and
(x′, y), at least one of which is a 0-input by fooling set property 2. Accordingly, if we
want to include F in a set of 1-rectangles, we need a separate 1-rectangle for each element
of F , so we need at least |F | different rectangles. It is well-known that a deterministic
c-bit communication protocol induces a partition of the set of all 1-inputs into 2c−1 1-
monochromatic rectangles, so the previous argument implies 2c−1 ≥ |F |; equivalently
c ≥ log |F |+ 1. In fact even nondeterministic communication complexity is lower bounded
by log |F |+ 1: a c-bit nondeterministic protocol gives rise to a cover (rather than partition)
of the set of all 1-inputs by 2c−1 1-monochromatic rectangles, and we still need a separate
rectangle for each element of F .

In contrast, a quantum communication protocol does not naturally induce a partition
or cover of the 1-inputs into rectangles1, so the above way of reasoning fails. In fact, in
contrast to the classical case, the number of monochromatic rectangles needed to partition
the 1-inputs does not provide a lower bound on exact quantum protocols, as witnessed by

1 It can be viewed as approximately producing rectangles with signs [10, Section 3].

STACS’13

426 Fooling One-Sided Quantum Protocols

the exponential separation in [4]. Nevertheless, in this paper we show how fooling sets can
still be used to lower bound quantum communication complexity. We do this in two settings:
one-sided-error quantum protocols with unlimited prior entanglement and nondeterministic
quantum protocols without entanglement. These results also imply lower bound for quantum
“Las Vegas” or “zero-error” protocols (i.e., quantum protocols that never err, but have
probability ≤ 1/2 of giving up without a result).

1.2 Our results: fooling one-sided-error quantum protocols

First, we study one-sided-error protocols: protocols that always output 0 on inputs x, y where
f(x, y) = 0, and that output 1 with probability at least 1/2 on inputs where f(x, y) = 1.
We start by getting an essentially optimal bound for the case of “upper-triangular” fooling
sets. We call a 1-fooling set F = {(x, x)} upper-triangular if there is some total ordering ‘≥’
on the x’s such that x > y implies f(x, y) = 0. In other words, the matrix M with entries
Mxy = f(x, y) is 0 below the diagonal. In Section 2 we show that if f has an upper-triangular
1-fooling set of size N , then

Q∗1(f) ≥ 1
2 logN − 1

2 .

For example, the n-bit equality, disjointness, and greater-than functions all have upper-
triangular 1-fooling sets of size 2n, and hence an n/2−1/2 lower bound on their one-sided-error
complexity Q∗1(f). We have Q∗1(f) ≤ n/2 + 1 for any Boolean function where X ⊆ {0, 1}n,
because superdense coding [2] allows Alice to send 2 classical bits using one EPR-pair and
one qubit of communication. Hence the above result is essentially tight for the functions
mentioned.2

We can extend this to a slightly weaker result for all functions stated in terms of their
(not necessarily upper-triangular) 1-fooling-set size:

Q∗1(f) ≥ 1
4 log fool1(f)− 1

2 .

Surprisingly for such basic functions as equality and disjointness, these bounds were not
known before. While it is possible to use Razborov’s technique [16] combined with results
about polynomial approximation with very small error [5] to show Q∗1(Disj) = Ω(n), no
super-constant lower bound was known for Q∗1(EQ). This gap in our knowledge was due
to the fact that other existing lower bound methods cannot give good lower bounds for
equality, as we explain now. General lower bound methods for quantum communication
complexity can be grouped into rank-based methods and methods based on approximation
norms (in particular based on the γ2-norm [14]).3 The linearity of norms makes it possible to
prove lower bounds for quantum protocols in which Alice and Bob share prior entanglement.
Rank-based methods, however, do not seem to directly apply to protocols with entanglement:
in the case of exact quantum protocols a direct sum-based construction in [6] shows that the

2 While the fooling set method gives very good bounds for these functions, it does not give good bounds
for all functions. For example, a random function will with high probability have linear quantum
communication complexity (which can be shown for instance using the discrepancy method), but only
small fooling sets. Inner product mod 2 is an example of an explicit function with this property [11,
Example 4.16].

3 Information-theoretic methods [8] have also been used to lower bound quantum communication complex-
ity. However, the notion is defined there for internal information cost, and in this case the information
cost for equality is O(1), even for classical protocols without error [3, Proposition 3.21].

H. Klauck and R. de Wolf 427

logarithm of the rank is a lower bound even in the presence of entanglement.4 In the case of
two-sided error and entanglement, Lee and Shraibman [12] show that the approximation rank
yields lower bounds by relating it to the γ2-norm. Since the communication matrix of EQ is
the identity matrix I, and γ2(I) = O(1) for I of any size, there is no hope to use a connection
between a one-sided-error version of approximation rank and the γ2-norm to establish a
large lower bound on Q∗1(EQ). Whether a one-sided-error version of approximation rank
gives lower bounds for Q∗1 remains open, but we note that the construction in [12] cannot be
adapted to the one-sided-error scenario.

So neither of the two main approaches to quantum communication complexity lower
bounds provides us with a good lower bound for Q∗1(EQ). Hence in this paper we take a
different approach. We first simulate a quantum protocol with entanglement by a game
without communication, in which Alice and Bob share entanglement, and they need to
compute a function f conditioned on postselection on their local measurements. This
approach itself is not new, and can for instance be used to show that the γ2-norm is a lower
bound, see [13]. We then analyze the impact of Alice and Bob’s measurements on the single
entangled state used in the game. The one-sided-error requirement places strong constraints
on those measurements, which we exploit to derive our lower bound in terms of fooling sets.

In a quantum Las Vegas protocol Alice and Bob compute a function f without error,
but they are allowed to give up without a result with probability 1/2. The quantum Las
Vegas communication complexity with entanglement Q∗0(f) is the minimum worst-case
communication of any protocol that computes f under these requirements.5 Quantum Las
Vegas protocols were investigated in [5, 9, 19] in the case where no prior entanglement is
available. Since Q∗0(f) ≥ max{Q∗1(f), Q∗1(¬f)} we immediately get large lower bounds on
the quantum Las Vegas complexity of Disj and EQ, and also the following general lower
bound:

Q∗0(f) ≥ 1
4 log fool(f)− 1

2 ,

where fool(f) is the standard maximum fooling set size, i.e., the maximum over the largest
1-fooling set and 0-fooling set.

1.3 Our results: fooling nondeterministic quantum protocols

As a second main result, just like in the classical world fooling sets lower bound nondetermin-
istic protocols, we show here that they also lower bound nondeterministic quantum protocols.
For our purposes, we can define a nondeterministic protocol (quantum as well as classical)
for a Boolean function f as one that has positive acceptance probability on input x, y iff
f(x, y) = 1. In other words, this is the unbounded-error version of the one-sided-error model:
the requirement of acceptance probability 0 on 0-inputs remains, but the requirement of
large acceptance probability on 1-inputs is relaxed to positive acceptance probability on
1-inputs.6 The quantum version of this model was introduced in [19], which also exhibits a

4 Footnote 2 of [6] claims such a bound for zero-error quantum protocols for equality and disjointness
without proof, but in retrospect they didn’t seem to have a proof of this.

5 It is possible to define Las Vegas protocols as protocols that never err and place bounds on expected
communication. The corresponding complexity measure is always larger or equal to the one considered
here, and is smaller than 2 times our measure.

6 Nondeterministic communication complexity (classical as well as quantum) can be exponentially less than
one-sided-error communication complexity, even if the latter is assisted by unlimited prior entanglement.
The negation of the disjointness function is an example of this.

STACS’13

428 Fooling One-Sided Quantum Protocols

total function with an exponential separation between quantum and classical nondeterministic
communication complexities.

Note that allowing unlimited prior entanglement trivializes the nondeterministic model,
for the same reason that unlimited shared randomness trivializes it in the classical case: Alice
and Bob can share a random variable r uniformly distributed over the set X of Alice’s inputs;
Alice sends a bit indicating whether x = r; if ‘yes’ then Bob outputs f(r, y) = f(x, y), and if
‘no’ then he outputs 0. Hence if we were to allow unlimited prior randomness or entanglement,
any function has nondeterministic communication complexity at most 1. Accordingly, we
will study nondeterministic protocols which don’t share anything at the start. In Section 3
we show the following lower bound on nondeterministic quantum communication complexity
in terms of fooling sets:

NQ(f) ≥ 1
2 log fool1(f) + 1.

We do not know if the factor 1/2 is needed in this result, but it cannot be replaced by 1:
in Section 3 we give an example of a function where NQ(f) ≤ log 3

log 6 log fool1(f) + 1, where
log 3/ log 6 ≈ 0.613.

2 Lower bound for one-sided bounded-error quantum protocols

We assume familiarity with communication complexity. See [11] for more details about
classical communication complexity and [18] for quantum communication complexity. Our
key lemma is based on a reasonably well-known trick to replace quantum communication by
the guessing of twice as many classical bits:

I Lemma 1. Suppose there is a quantum protocol P with inputs from X × Y and output in
{0, 1}, that uses some fixed starting state (possibly entangled) and q qubits of communication,
and where a measurement of the last qubit on the channel gives the output. Then there exists
another quantum protocol Q with a fixed starting state and no communication at all, where
Alice outputs a ∈ {0, 1} and Bob outputs b ∈ {0, 1}, such that

for all inputs x, y : Pr[Q outputs a = b = 1] = 2−2q Pr[P outputs 1].

Proof. We assume without loss of generality that P communicates exactly q qubits on all
possible inputs. By the well-known teleportation primitive [1], we can replace each qubit
of communication in P by the use of one additional EPR-pair and two classical bits of
communication. These 2 bits are the outcome of a measurement by the sending party, and
indicate which of the 4 Pauli matrices the receiving party has to apply on their end of the
EPR-pair in order to obtain the qubit that the sender wanted to send. If the bits happen to
be 00 (which happens with probability 1/4), then the right Pauli is the identity matrix, so
then they don’t need to do anything. Call the resulting 2q-bit protocol Pclas.

Protocol Q is now as follows. Alice and Bob run protocol Pclas assuming all messages
are 0-bits (so they don’t communicate anything). Alice checks if all her teleportation
measurements gave outcome 00. If not then she outputs a = 0; if yes then she outputs Pclas’s
output if she was the one supposed to output that, and otherwise she outputs a = 1. Bob
does the same from his end, outputting b ∈ {0, 1}. Note that a = b = 1 iff all q teleportation
measurements gave outcome 00 and the output of P would have been 1. The first event
happens with probability 4−q and the second event with Pr[P outputs 1]. Since these two
events are independent we can multiply their probabilities to obtain the lemma. J

H. Klauck and R. de Wolf 429

Note that the starting state of the new protocol Q is the starting state of the original
protocol P , augmented with an additional q EPR-pairs. Using the above lemma, we can
prove an essentially optimal lower bound in terms of upper-triangular 1-fooling sets:

I Theorem 2. If f : X × Y → {0, 1} has an upper-triangular 1-fooling set of size N , then
Q∗1(f) ≥ 1

2 logN − 1
2 .

Proof. We can assume without loss of generality that the fooling set is of the form {(x, x) :
x ∈ [N]}, and f(x, y) = 0 whenever x > y. Let q = Q∗1(f) and let P be a q-qubit
entanglement-assisted protocol for f . Apply Lemma 1 to this protocol to obtain a new
protocol Q without communication, where Alice outputs a ∈ {0, 1}, Bob outputs b ∈ {0, 1},
satisfying

Pr[a = b = 1] ≥ 2−2q−1 on inputs x, x
Pr[a = b = 1] = 0 on inputs x > y

Let |ψ〉 be the entangled starting state of protocol Q, which we assume to be pure without
loss of generality. On input x, Alice applies a POVM measurement with operators Ax, I−Ax

corresponding to outputs 1 and 0, respectively. Similarly Bob uses POVM elements By, I−By.
The following technical claim is the core of the proof:
I Claim 1. Let |w〉 be a bipartite state such that for all x, y ∈ [N] satisfying x > y, we have
〈w|Ax ⊗By|w〉 = 0. Then

∑
x∈[N]〈w|Ax ⊗Bx|w〉 ≤ ‖w‖2.

Proof. The proof is by induction on N . The base case N = 1 follows from the Cauchy-
Schwarz inequality and the fact that Ax ⊗Bx has operator norm ≤ 1.

For the inductive step: assume the claim holds for N , and now let x range over [N + 1].
Fix some bipartite state |w〉 such that

(*) for all x, y ∈ [N + 1] satisfying x > y, we have 〈w|Ax ⊗By|w〉 = 0.

Let supp(AN+1) denote the projection on the support of POVM element AN+1. Define
|w1〉 = (supp(AN+1) ⊗ I)|w〉, and |w2〉 = |w〉 − |w1〉. By (*), for all y ∈ [N] we have
〈w|AN+1 ⊗ By|w〉 = 0. This means that |w〉 is orthogonal to all eigenvectors |a〉 ⊗ |b〉 of
AN+1 ⊗By, which in turn implies

(**) for all y ∈ [N], (supp(AN+1)⊗By)|w〉 is the 0-vector.

Write∑
x∈[N+1]

〈w|Ax ⊗Bx|w〉 = 〈w|AN+1 ⊗BN+1|w〉+
∑

x∈[N]

〈w|Ax ⊗Bx|w〉. (1)

Since (AN+1⊗I)|w2〉 = 0, the first term on the right-hand side equals 〈w1|AN+1⊗BN+1|w1〉,
which is ≤ ‖w1‖2 by the base case.

For the second term, note that for all (not necessarily distinct) x, y ∈ [N], we have

Ax ⊗By|w1〉 = (Ax ⊗By)(supp(AN+1)⊗ I)|w〉 = (Ax ⊗ I)(supp(AN+1)⊗By)|w〉,

which is 0 because (supp(AN+1) ⊗ By)|w〉 = 0 by (**). Thus we have Ax ⊗ By|w〉 =
Ax ⊗By|w2〉, which by (*) also implies that for all x, y ∈ [N] with x > y we have 〈w2|Ax ⊗
By|w2〉 = 0. Now the second term on the right-hand side of (1) equals∑

x∈[N]

〈w2|Ax ⊗Bx|w2〉,

STACS’13

430 Fooling One-Sided Quantum Protocols

which is ≤ ‖w2‖2 by the induction hypothesis. Since |w1〉 and |w2〉 are orthogonal, the
two terms on the right-hand side of (1) together are at most ‖w1‖2 + ‖w2‖2 = ‖w‖2. This
concludes the inductive step, and hence the proof of the claim. J

Applying Claim 1 with the actual entangled state |ψ〉 used by protocol Q, we obtain

N2−2q−1 ≤
∑

x∈[N]

Pr[outcome Ax ⊗Bx when measuring |ψ〉]

=
∑

x∈[N]

〈ψ|Ax ⊗Bx|ψ〉 ≤ ‖ψ‖2 = 1.

Rearranging gives the theorem. J

I Corollary 3. The n-bit equality, disjointness and greater-than functions have Q∗1(f) ≥
n/2− 1/2.

Proof. These three functions all have upper-triangular 1-fooling sets of size 2n. J

Now we use a trick of combining two copies of the function to extend the result from
upper-triangular fooling sets to all fooling sets, at the expense of a factor of 2 in the lower
bound (we do not know if this loss is necessary). This is similar to the proof that fooling set
size is at most quadratically bigger than rank [11, Lemma 4.15]:

I Corollary 4. For all f : X × Y → {0, 1} we have Q∗1(f) ≥ 1
4 log fool1(f)− 1

2 .

Proof. Define a new function g : X2 × Y 2 → {0, 1} by g(xx′, yy′) = f(x, y)f(y′, x′). Note
the reversed role of the two inputs in the second f . Alice and Bob can compute g with
one-sided error p = 1/4 by separately computing f(x, y) and fT (x′, y′) = f(y′, x′) with
one-sided error 1/2 each, and outputting the product of the two output bits. This takes
Q∗1(f) qubits of communication for each computation, so at most 2Q∗1(f) in total.

Let {(x, x)} be a 1-fooling set for f of size N = fool1(f). Then it is easy to see
that {(xx, xx)} is a 1-fooling set for g, with the additional property that g(xx, yy) =
f(x, y)f(y, x) = 0 whenever x 6= y. Hence the communication matrix for g contains the
N ×N identity as a submatrix (i.e., the equality function). The same proof as above gives a
lower bound of 1

2 logN − 1 for one-sided-error protocols for equality that accept 1-inputs
with probability at least 1/4 (instead of at least 1/2 as above). Hence we have

1
2 logN − 1 ≤ 2Q∗1(f),

which implies the statement. J

3 Lower bound for nondeterministic quantum protocols

In this section we study nondeterministic quantum protocols. The following algebraic
characterization of nondeterministic quantum communication complexity of f is known. The
communication matrix Mf for f is the |X| × |Y | Boolean matrix Mf (x, y) = f(x, y). A
nondeterministic matrix for f is any real or complex matrix M with the same support as
Mf , i.e., such that Mx,y = 0 iff f(x, y) = 0. The nondeterministic rank of f (abbreviated to
nrank(f)) of f is the minimal rank (over the reals) among all such matrices. [19, Theorem 3.3]
shows that NQ(f) = dlog nrank(f)e+ 1.

The key to using fooling sets for nondeterministic quantum lower bounds is the following
simple lemma:

H. Klauck and R. de Wolf 431

I Lemma 5. For every function f : X × Y → {0, 1} we have nrank(f)2 ≥ fool1(f).

Proof. LetN = fool1(f). Like in the proof of Corollary 4, define g(xx′, yy′) = f(x, y)·f(y′, x′)
and observe that the communication matrix of g contains the N ×N identity matrix IN as
a submatrix. If M is a nondeterministic matrix for f , then M ⊗MT is a nondeterministic
matrix for g. Hence, choosing M of minimal rank, we have

nrank(f)2 = rank(M)2 = rank(M ⊗MT) ≥ nrank(g) ≥ nrank(IN) = N.

J

Taking logarithms and using that NQ(f) = dlog nrank(f)e+ 1, we get

I Corollary 6. NQ(f) ≥ 1
2 log fool1(f) + 1.

For example for the equality function, this shows NQ(f) ≥ n/2 + 1. However, for the
equality function we already knew NQ(f) = n+ 1 since obviously nrank(f) = 2n [19]. Hence
it is natural to ask whether the constant 1/2 in the above corollary is needed. We don’t
know, but at least we can show that it needs to be less than 1. Specifically, we give an
example where NQ(f) ≤ log 3

log 6 log fool1(f) + 1, where log 3
log 6 ≈ 0.613. Consider the following

6× 6 matrix:

1 1 0 0 0 1
0 1 0 −1 −1 0
−1 1 1 0 −1 0
−1 0 1 1 0 0

1 0 0 1 1 1
0 1 1 1 0 1

.

It is easy to see that this has rank 3. The Boolean matrix obtained by dropping the minus
signs corresponds to a communication complexity function g : [6] × [6] → {0, 1} with a
1-fooling set of size 6 (just take the diagonal). Now let f : X × Y → {0, 1} be the AND of k
independent instances of g (so |X| = |Y | = 6k). Because 1-fooling set size is multiplicative
under taking ANDs, we have fool1(f) = 6k. On the other hand, taking the k-fold tensor
product of the above rank-3 matrix gives a nondeterministic matrix for f of rank 3k. Hence
NQ(f) = dlog nrank(f)e+ 1 ≤ log 3

log 6 log fool1(f) + 1 ≈ 0.613 log fool1(f).
A simpler but slightly weaker separation can be obtained from the 3-input non-equality

function, where X = Y = [3] and the function take value 0 when the inputs x and y are
equal. This has nrank = 2 vs fool1 = 3, hence taking a k-fold AND of this gives a function
f : X × Y → {0, 1} with |X| = |Y | = 3k and nrank(f) = 2k vs fool1(f) = 3k. Taking
logarithms, we have NQ(f) ≈ 0.63 log fool1(f).

4 Conclusion and open problems

Equality and disjointness are two of the most important functions considered in communic-
ation complexity. Prior to this paper no large lower bound on the one-sided error or Las
Vegas quantum communication complexity of these functions was known for the case of
protocols with prior entanglement. In particular, for EQ previous lower bound methods were
not applicable. We have shown that the fooling set method is applicable to one-sided-error
protocols with entanglement, obtaining linear lower bounds for both functions.

It is interesting to note that for classical protocols there is essentially no need to consider
fooling sets at all: the method is completely subsumed by the rectangle bound (i.e., bounding
the size of the largest monochromatic rectangle under some distribution). However, the

STACS’13

432 Fooling One-Sided Quantum Protocols

rectangle bound does not apply to quantum protocols with one-sided error and entanglement,
nor to quantum nondeterministic communication complexity.

We conclude with some open problems:
Can we improve the factor 1/4 in Corollary 4? We believe it should be 1/2, which is
what we already showed here for upper-triangular 1-fooling sets.
Another problem is to show that the factor 1/2 in Corollary 6 is necessary. It seems hard
to come up with a matrix for which the nondeterministic rank is the square root of the
rank, as would be required by a construction along the lines of our separation at the end
of Section 3.
One further goal would be to show that classical deterministic complexity D(f) and
quantum Las Vegas complexity Q0(f) are polynomially close for all total functions. This is
a (possibly easier) variant of a general conjecture that for total functions quantum commu-
nication yields only polynomial improvements in communication complexity. Proving a lin-
ear lower bound in terms of classical nondeterministic complexity (i.e., Q0(f) = Ω(N(f)))
would settle that, since it is known that D(f) = O(N(f)2). However, an example from [19]
refutes that hope. Let f(x, y) = 0 if |x ∧ y| = 1 and f(x, y) = 1 otherwise. This function
as well as its complement have linear N(f), but NQ(f), NQ(¬f) = O(

√
n). This does

not, however, preclude a bound like Q0(f) = Ω(
√
N(f)), which would still achieve the

above goal.

Acknowledgements
We thank Harry Buhrman and Matthias Christandl (as well as an anonymous referee) for
pointing out an error in an earlier version of this paper, which we corrected here.

References
1 C. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. Wootters. Teleporting an

unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical
Review Letters, 70:1895–1899, 1993.

2 C. Bennett and S. Wiesner. Communication via one- and two-particle operators on Einstein-
Podolsky-Rosen states. Physical Review Letters, 69:2881–2884, 1992.

3 M. Braverman. Interactive information complexity. In Proceedings of 44th ACM STOC,
pages 505–524, 2012. Also ECCC report No. 123 (2011).

4 H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. classical communication and
computation. In Proceedings of 30th ACM STOC, pages 63–68, 1998. quant-ph/9802040.

5 H. Buhrman, R. Cleve, R. de Wolf, and Ch. Zalka. Bounds for small-error and zero-
error quantum algorithms. In Proceedings of 40th IEEE FOCS, pages 358–368, 1999.
cs.CC/9904019.

6 H. Buhrman and R. de Wolf. Communication complexity lower bounds by polynomials. In
Proceedings of 16th IEEE Conference on Computational Complexity, pages 120–130, 2001.
cs.CC/9910010.

7 P. Høyer and R. de Wolf. Improved quantum communication complexity bounds for dis-
jointness and equality. In Proceedings of 19th Annual Symposium on Theoretical Aspects
of Computer Science (STACS’2002), volume 2285 of Lecture Notes in Computer Science,
pages 299–310. Springer, 2002. quant-ph/0109068.

8 R. Jain, J. Radhakrishnan, and P. Sen. A lower bound for the bounded round quantum
communication complexity of set disjointness. In Proceedings of 44th IEEE FOCS, pages
220–229, 2003.

H. Klauck and R. de Wolf 433

9 H. Klauck. On quantum and probabilistic communication: Las Vegas and one-way proto-
cols. In Proceedings of 32nd ACM STOC, pages 644–651, 2000.

10 H. Klauck. Lower bounds for quantum communication complexity. SIAM Journal on
Computing, 37(1):20–46, 2007. Earlier version in FOCS’01. quant-ph/0106160.

11 E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press,
1997.

12 T. Lee and A. Shraibman. An approximation algorithm for approximation rank. In Pro-
ceedings of 24th IEEE Conference on Computational Complexity, pages 351–357, 2009.

13 T. Lee and A. Shraibman. Lower bounds in communication complexity. Foundations and
Trends in Theoretical Computer Science, 3(4):263–398, 2009.

14 N. Linial and A. Shraibman. Lower bounds in communication complexity based on fac-
torization norms. Random Struct. Algorithms, 34(3):368–394, 2009. Earlier version in
STOC’07.

15 R. J. Lipton and R. Sedgewick. Lower bounds for VLSI. In Proceedings of 13th ACM
STOC, pages 300–307, 1981.

16 A. Razborov. Quantum communication complexity of symmetric predicates. Izvestiya of
the Russian Academy of Sciences, mathematics, 67(1):159–176, 2003. quant-ph/0204025.

17 R. de Wolf. Characterization of non-deterministic quantum query and quantum communic-
ation complexity. In Proceedings of 15th IEEE Conference on Computational Complexity,
pages 271–278, 2000. cs.CC/0001014.

18 R. de Wolf. Quantum communication and complexity. Theoretical Computer Science,
287(1):337–353, 2002.

19 R. de Wolf. Nondeterministic quantum query and quantum communication complexities.
SIAM Journal on Computing, 32(3):681–699, 2003. Journal version of parts of [17] and [7].

20 A. C-C. Yao. Some complexity questions related to distributive computing. In Proceedings
of 11th ACM STOC, pages 209–213, 1979.

STACS’13

Explicit relation between all lower bound
techniques for quantum query complexity∗

Loïck Magnin1,3 and Jérémie Roland2,3

1 Centre for Quantum Technologies, National University of Singapore
Block S15, 3 Science Drive 2, Singapore 117543
loick@locc.la

2 QuIC, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles
50 av. F.D. Roosevelt - CP165/59, B-1050 Bruxelles, Belgium
jroland@ulb.ac.be

3 NEC Laboratories America
4 Independence Way, Suite 200, Princeton NJ 08540, USA

Abstract
The polynomial method and the adversary method are the two main techniques to prove lower
bounds on quantum query complexity, and they have so far been considered as unrelated ap-
proaches. Here, we show an explicit reduction from the polynomial method to the multiplicative
adversary method. The proof goes by extending the polynomial method from Boolean functions
to quantum state generation problems. In the process, the bound is even strengthened. We
then show that this extended polynomial method is a special case of the multiplicative adversary
method with an adversary matrix that is independent of the function. This new result therefore
provides insight on the reason why in some cases the adversary method is stronger than the
polynomial method. It also reveals a clear picture of the relation between the different lower
bound techniques, as it implies that all known techniques reduce to the multiplicative adversary
method.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Quantum computation, lower bound, adversary method, polynomial
method

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.434

1 Introduction

Polynomial and adversary methods. There are two main techniques to prove lower
bounds on quantum query complexity: the polynomial method [12, 20, 27], based on bounding
the degree of the function seen as a polynomial, and adversary methods [15, 2, 11, 21, 19],
based on bounding the change in a progress function from one query to the next. In its
original form [2], the adversary method bounds the additive change in the progress function,
hence we will call it additive, and the progress function is based on a matrix assigning positive
weights to pairs of inputs. The polynomial method and this original adversary method are not
comparable. Indeed, the original adversary method is limited by the “certificate complexity
barrier” [30, 29], that is, for total functions, ADV(f) ≤

√
C0(f)C1(f) where Cb(f) denotes

∗ This work was supported by ARO/NSA under grant W911NF-09-1-0569. L.M. also acknowledges the
support of the Ministry of Education and the National Research Foundation, Singapore. J.R. also
acknowledges support from the action Mandats de Retour of the Politique Scientifique Fédérale Belge
and the Belgian ARC project COPHYMA.

© Loïck Magnin and Jérémie Roland;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 434–445

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.434
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

L. Magnin and J. Roland 435

the certificate complexity of f for f(x) = b. It means that the original adversary method
cannot prove lower bounds better than Ω(N1/2) for Element Distinctness. However,
Aaronson and Shi [1] were able to prove a Ω(N2/3) lower bound using the polynomial method.
On the other hand it is known that the adversary method can sometimes give better lower
bounds than the polynomial method, in [4] Ambainis exhibits a function with polynomial
degree d and adversary bound Ω(d1.3).

Høyer, Lee and Špalek have extended the additive adversary method by allowing negative
weights in the matrix [18], and have shown that the corresponding bound, ADV±(f), breaks
the certificate complexity barrier. For simplicity, we will from now on refer to ADV±(f) as
the additive adversary bound, implicitly allowing negative weights.

Recently, a series of works [17, 7, 26, 25, 22] culminated in showing that this bound is
tight in the bounded-error case for any function. However, this fundamental result does not
answer all the questions about quantum query complexity as it suffers from two limitations.
First, in some cases it is necessary to prove bounds for very small success probabilities, a
regime where ADV±(f) might not be tight. For this reason, while the optimality of the
additive adversary bound implies that quantum query complexity satisfies a direct sum
theorem, it cannot be used to prove a strong direct product theorem, which requires to
prove nontrivial bounds for exponentially small success probabilities. Secondly, while the
proof of optimality of ADV±(f) implies that if a lower bound on the bounded-error quantum
query complexity of a function can be proved with any method, it can also be proved with
ADV±(f), this reduction is not constructive. Concretely, there are still examples of lower
bounds that can be proved using the polynomial method for which the optimal adversary
matrix is unknown, a typical example being the Collision problem [1]1.

Multiplicative adversary method. The first limitation has been overcome thanks to
the introduction of another adversary-type method. By formalizing an ad-hoc technique
proposed by Ambainis, de Wolf and Špalek [5, 10], Špalek designed a new lower bound
method which he called the multiplicative adversary method [28], as the idea is to bound the
multiplicative change in the progress function for each query. Ambainis et al. [9] later showed
that the multiplicative bound is always at least as strong as the additive one, and therefore
also characterizes bounded-error quantum query complexity. Moreover, the multiplicative
adversary method can prove better lower bounds for small success probability than the
additive adversary method, and this was used to prove a strong direct product theorem for
quantum query complexity [23].

Quantum state generation. Even when we are only interested in the quantum query
complexity of functions, it is useful to also consider state generation problems: in that case,
instead of producing the output f(x) on input x, the algorithm is required to prepare a
quantum state |mx〉. Since unitary transformations independent of x may be applied without
any query to x, a quantum state generation problem is completely defined by the Gram
matrix M =

∑
x,x′〈mx′ |mx〉|x〉〈x′|. In the special case of computing a function, M is a

Boolean matrix. Thus every algorithm can be seen as generating a Gram matrix M . If the
algorithm is allowed some error ε, then the set of Gram matrices that are acceptable outputs
for the algorithm can be bounded by a so-called output condition. Different output conditions
have been used before, for example, the original adversary method [2] was implicitly using a
condition based on the L∞ norm, while the adversary method with negative weights in [18]

1 Until very recently it was also the case for the Element Distinctness problem, whose lower bound
was proved by reduction to Collision, but a direct adversary lower bound has now been shown by
Belovs [13], and later extended to the k−Sum problem by Belovs and Špalek [14].

STACS’13

436 Explicit relation between all lower bound techniques for quantum query complexity

MADVε(f)

ADV±ε (f) xpolyε(f)

ADVε(f) d̃egε(f)≷
°

¯

¯

¬

®

®

Figure 1 Relations between the different methods to prove lower bounds for quantum query
complexity. An arrow from method A to method B implies that any lower bound that can be proved
with A can also be proved with B (i.e., B is stronger than A). A solid yellow arrow means that
the reduction is constructive, i.e., we can obtain a witness for B from a witness for A. ¬ [18] [9]
® [25, 22] ¯ [This article] ° The original additive and the polynomial methods are incomparable
[30, 29, 1, 4]

was implicitly using the factorization norm γ2. Realizing that different output conditions
could be combined with different (zero-error) lower bound methods was key to comparing the
additive and multiplicative adversary methods in [9]. More recently, Lee and Roland [23] were
able to characterize exactly the set of acceptable Gram matrices, hence providing an optimal
output condition (see Claim 4), which allowed them to prove a strong direct product theorem
for quantum query complexity. This also simplifies the study of lower bounds techniques as
it implies that the bounded-error quantum query complexity of a problem can be studied by
bounding the zero-error quantum query complexity of all Gram matrices that define valid
output states for the problem. As a consequence it is sufficient to compare the zero-error
bounds for two methods in order to compare them.

Our results. In this article, we tackle the second limitation by giving an explicit
reduction from the polynomial method to the multiplicative adversary method. In order
to do so, we introduce yet another lower bound technique for quantum query complexity,
which we call the extended polynomial method (Definition 10 and Theorem 11) as it can
be seen as an extension of the polynomial method to Gram matrices. As the degree of a
Boolean function can be stated as the maximum index of its Fourier coefficients, that is,
deg(f) = max{|S| : 〈χS , f〉 6= 0}, we define the degree of a Gram matrix by the maximum
index k such that the Gram matrix has support on a Fourier vector |χS〉 with |S| = k, that
is, deg(M) = max{|S| : 〈χS |M |χS〉 6= 0}.

For Boolean functions, the polynomial and the extended polynomial bounds are equal in
the zero-error case. However, for the approximate case, the extended polynomial method uses
the tight output condition, and is therefore possibly stronger than the polynomial method
(Theorem 13).

We also compare the extended polynomial method to the multiplicative adversary method.
More particularly, we show that in the limit c→∞, where c is the maximum multiplicative
change in the progress function for one query, the multiplicative bound tends to the extended
polynomial method (Theorem 14). This proof is constructive, i.e., we give an explicit
multiplicative adversary matrix for which we have the equality. It might come as a surprise

L. Magnin and J. Roland 437

that this matrix does not depend on the problem: it is the same adversary matrix for every
function. Let us note that it was proved in [9] that the multiplicative bound is stronger than
the additive bound in the limit c→ 1, that is, at the other end of the possible range for c.
This new result therefore completes the picture of the relations between the different lower
bound techniques in quantum query complexity (see Figure 1), and shows in particular that
all these methods reduce to the multiplicative adversary method.

Many proofs are omitted from this extended abstract and can be found in the full version
of the paper.

2 Preliminaries

2.1 Gram matrices and fidelity
I Definition 1. A density matrix ρ is a positive semidefinite matrix ρ � 0 such that
tr(ρ) = 1. A normalized Gram matrix A is a positive semidefinite matrix A � 0 such
that A ◦ I = I, where ◦ denotes the Hadamard (entry-wise) product.

Note that any positive semidefinite matrix A can be written as a Gram matrix in the broader
sense, i.e., there always exists a set of vectors {|ax〉} such that Axy = 〈ax|ay〉. Here, the
additional constraint A ◦ I = I means that we require those vectors to have norm 1. Since all
Gram matrices will be normalized in what follows, we will from now on refer to normalized
Gram matrices as simply Gram matrices.

I Definition 2. The fidelity F(ρ, σ) between two density matrices ρ and σ is defined by
F(ρ, σ) = tr

√√
ρ σ
√
ρ.

The Hadamard product fidelity FH(A,B) between two Gram matrices A and B is
defined by FH(A,B) = min|u〉:‖|u〉‖=1 F(A ◦ |u〉〈u|, B ◦ |u〉〈u|).

The notation FH and the name Hadamard product fidelity2 are new to this article,
but this quantity has been proved to be the tight output condition for the quantum query
complexity in [23] (see Claim 4 below).

2.2 Quantum query complexity
Consider a Boolean function f : {0, 1}n → {0, 1}. In the black-box model, we are interested in
computing f(x) when x is given by an oracle Ox : |i, b〉 7→ (−1)b·xi |i, b〉. We denote by Qε(f)
the quantum query complexity of f , i.e., the minimum number of queries to Ox necessary for
any algorithm to output f(x) with error at most ε (see, e.g., [16]). Note that our choice of
oracle computes the bits of x in the phase. Another variant of this model considers an oracle
that computes the bits in a register, but it can be shown that these models are equivalent.

Even when we are only interested in the quantum query complexity of functions, it is useful
to also consider state generation problems [9, 22]. In that case, instead of producing the output
f(x) on input x, the algorithm is required to prepare a quantum state |mx〉 ∈ H. Since unitary
transformations independent of x may be applied without any query to x, a quantum state
generation problem is completely defined by the Gram matrix M =

∑
x,x′〈mx′ |mx〉|x〉〈x′|.

For a quantum state generation problem specified by a Gram matrix M , we define two

2 The name is chosen by analogy to the Hadamard product trace norm γ2 (equivalent to the Hadamard
product operator norm and also called factorization norm), which for Hermitian matrices can be written
in the very similar form γ2(A) = max|u〉:‖|u〉‖≤1 ‖A ◦ |u〉〈u|‖tr.

STACS’13

438 Explicit relation between all lower bound techniques for quantum query complexity

different notions of query complexity. The coherent query complexity Qε(M) is the minimum
number of queries to the register oracle Ox necessary to generate a state |nx〉 ∈ H⊗H′ such
that <(〈nx|(|mx〉 ⊗ |0̄〉)) ≥

√
1− ε, where H′ is the workspace of the algorithm, |0̄〉 ∈ H′ is

a default state for this workspace and <(z) denotes the real part of a complex number z.
The non-coherent query complexity Qnc

ε (M) is defined similarly, except that it is enough to
prepare a state |nx〉 ∈ H ⊗ H′ such that <(〈nx|(|mx〉 ⊗ |m′x〉)) ≥

√
1− ε, for an arbitrary

set of states |m′x〉 ∈ H′ (that is, the workspace does not have to be reset to its default state).
For a Boolean function f , let us define the {1,−1}-valued function ϕ : {0, 1}n → {1,−1} :

x 7→ (−1)f(x). There are two natural quantum state generation problems associated to f , cor-
responding to the Gram matrices F =

∑
x,x′ δf(x),f(x′)|x〉〈x′| and Φ =

∑
x,x′ ϕ(x)ϕ(x′)|x′〉〈x|,

where δ is the Kronecker delta. Indeed, generating the Gram matrix F non-coherently is
exactly the same problem as computing f , and we therefore have Qε(f) = Qnc

ε (F), while
generating the Gram matrix Φ coherently corresponds to computing the function in the phase,
i.e., we need to generate the state ϕ(x)|0̄〉. The bounded-error complexities of these problems
are closely related:

I Claim 3 ([23]). Q(1−
√

1−ε)/2+ε/4(f) ≤ Qε(Φ) ≤ 2Q(1−
√

1−ε)/2(f).

This implies that to prove bounds on the bounded-error query complexity of f , it is sufficient
to prove bounds on the query complexity of the related quantum state generation problem
Φ, and this is precisely the approach that we will use in this article.

Another advantage of considering quantum state generation problems is that we can
study the bounded-error query complexity of a problem by bounding the zero-error query
complexity of all Gram matrices that define valid output states for the problem. It follows
from the following claim that this set of valid Gram matrices is characterized by the Hadamard
product fidelity:

I Claim 4 ([23]). For any Gram matrix M and any ε ≥ 0, we have

Qε(M) = min
N
{Q0(N) : FH(N,M) ≥

√
1− ε, N � 0, N ◦ I = I}.

2.3 The polynomial method
I Definition 5. For any ε ≥ 0, the approximate degree d̃egε(f) of a function f : {0, 1}n →
R is defined as d̃egε(f) = minp {deg(p) : ∀x ∈ {0, 1}n, |p(x)− f(x)| ≤ ε} , where the min-
imum is over n-variate polynomials p : Rn → R.

I Theorem 6 (Polynomial method [12]). If f is a Boolean function, then Qε(f) ≥ Ω
(

d̃egε(f)
)

.

In this article, we will use some basic Fourier analysis to relate degree of a function with
Gram matrices. For the sake of readability, we will identify a set S ⊆ {1, . . . , n} with its
characteristic vector S ∈ {0, 1}n: Si = 1 if and only if i ∈ S, and thus |S| can be either the
cardinal of the set S or the Hamming weight of the vector S.

I Definition 7. For any S ∈ {0, 1}n, let us define |χS〉 = 1√
2n

∑
x(−1)S·x|x〉. For a function

ϕ : {0, 1}n → R, define the (non-normalized) state |ϕ〉 = 1√
2n

∑
x ϕ(x)|x〉. We define the

S-th Fourier coefficient of ϕ as ϕ̂(S) = 〈χS |ϕ〉.

Let us note that the set {|χS〉}S is an orthonormal basis and that by definition, we then
have ϕ̂(S) = 1

2n

∑
x(−1)S.xϕ(x) and ϕ(x) =

∑
S(−1)S.xϕ̂(S), which are the usual Fourier

transform over the hypercube and its inverse. With these notations, we can also write the
degree of a function ϕ as deg(ϕ) = maxS{|S| : ϕ̂(S) 6= 0}.

L. Magnin and J. Roland 439

2.4 The multiplicative adversary method
Let us consider a quantum algorithm generating the Gram matrix M with error at most
ε using T queries. Let |ψtx〉 be the state of the algorithm right after the t-th query when
the input is x, and M t =

∑
x,x′〈ψtx′ |ψtx〉|x〉〈x′| be the corresponding Gram matrix. Note

that M0 = J and MT ≈ M (more precisely FH(MT ,M) ≥
√

1− ε). The basic idea of
all adversary methods is to design a Hermitian matrix W defining a progress function
W [M] = tr[WM] such that the initial value W [J] is low and the final value W [MT] is high
(or vice versa), and then to bound the maximal change in the progress function for any
oracle call. Whereas the additive method bounds the difference |W [M t+1] −W [M t]|, the
multiplicative method bounds the ratio W [M t+1]/W [M t]. In this paper we use the definition
of the multiplicative adversary method given by [23] which is a slight extension of the original
multiplicative adversary method in [28].

I Definition 8. Let M be a Gram matrix specifying a quantum state generation problem
and for all i ∈ {1, · · · , n}, Di =

∑
x,x′(−1)xi+x′

i |x〉〈x′| the action of the phase oracle on input
i. Fix c > 1. The multiplicative adversary bounds are:

MADVc
0(M) = 1

log c max
W�0

{log tr[WM] : tr[WJ] = 1, W ◦Di � cW ∀i} ,

MADVc
ε(M) = min

N

{
MADVc

0(N) : FH(N,M) ≥
√

1− ε, N � 0, N ◦ I = I
}
,

MADVε(M) = sup
c>1

MADVc
ε(M).

We call adversary matrix for MADVc
0(M) any matrix W � 0 such that tr[WJ] = 1 and

W ◦Di � cW for all i.

I Remark. Let us note that the parameter c represents the maximum multiplicative change
in the progress function that can result from one query. Since, for any matrix W � 0,
the constraint W ◦ Di � cW is always satisfied for c ≥

∥∥(W ◦Di)1/2W−1/2
∥∥2, one could

directly obtain the multiplicative bound MADV0 by optimizing over W and taking c =∥∥(W ◦Di)1/2W−1/2
∥∥2. However, it is useful to define the bound MADVc

0 for fixed c as this
can be expressed as a semidefinite program (see [23]), where the objective value is optimized
over W . The best bound on the quantum query complexity is then obtained by maximizing
the objective value over both W and c.

I Theorem 9 (Multiplicative adversary [28, 23]). For any ε ≥ 0 and any Gram matrix M ,
we have Qε(M) ≥ MADVε(M).

3 The extended polynomial method

We now extend the polynomial method from Boolean functions to Gram matrices.

I Definition 10. Let M be a Gram matrix specifying a quantum state generation problem.
The extended polynomial bounds are

xpoly0(M) = max
S
{|S| : tr [|χS〉〈χS |M] 6= 0},

xpolyε(M) = min
N

{
xpoly0(N) : FH(N,M) ≥

√
1− ε, N � 0, N ◦ I = I

}
.

I Theorem 11. For any ε ≥ 0 and any Gram matrix M , we have Qε(M) ≥ xpolyε(M).

STACS’13

440 Explicit relation between all lower bound techniques for quantum query complexity

Proof. We prove the statement for ε = 0 and the general case immediately follows from
Claim 4 and the definition of xpolyε(M). This proof actually considers the extended
polynomial method as an adversary method. Let us define the progress function

W [M t] = max
S

{
|S| : tr[|χS〉〈χS |M t] 6= 0

}
.

Since M0 = J = 2n|χ∅〉〈χ∅|, its initial value is W [M0] = 0. The final value is W [MT] =
xpoly0(M). It suffices to show that one query increases the progress function by at most one.

Let M t =
∑
iM

t
i be the Gram matrix just before the (t+ 1)-th query, where M t

i is the
reduced Gram matrix corresponding to the part of the state where bit xi is queried (see,
e.g., [9] for details). Let k = W [M t] and note that by positivity, we have tr[|χS〉〈χS |M t] = 0
if and only if tr[|χS〉〈χS |M t

i] = 0 for all i. Therefore, we also have W [M t
i] ≤ k for any i.

After the query, the Gram matrix of the algorithm will be M t+1 =
∑
iM

t
i ◦Di. Let us

observe that for any matrix A, we have A ◦Di = UiAU
†
i where Ui = U †i is the unitary matrix

Ui =
∑
x(−1)xi |x〉〈x|. In particular, |χS〉〈χS | ◦Di = |χS′〉〈χS′ | where S′ = S ∪ {i} if i 6∈ S

and S′ = S \ {i} if i ∈ S.
For all S ∈ {0, 1}n, we get:

tr
[
|χS〉〈χS |(M t

i ◦Di)
]

= tr
[
(|χS〉〈χS | ◦Di)M t

i

]
=

∑
T :|T |≤k

tr
[
(|χS〉〈χS | ◦Di)|χT 〉〈χT |M t

i

]
.

This quantity is null for all S such that |S| > k + 1, therefore the progress function can
increase by at most one per query. J

We have defined the extended polynomial method with the Fourier basis, but one might
wonder if choosing another basis could provide better bounds. It turns out that this is not
the case.

I Claim 12. Let {Πk : 0 ≤ k ≤ K} be a set of orthogonal projectors such that
1.

∑
k Πk = IC2n ,

2. tr(Π0J) = 2n,
3. ∀i ∈ {1, . . . , n}, ∀l, k such that |l − k| > 1, tr[(Πl ◦Di)Πk] = 0.
Then, for any Gram matrix M , we have Q0(M) ≥ xpoly0(M) ≥ maxk {k : tr(ΠkM) 6= 0}.

Therefore, while any set of projectors provides a lower bound on quantum query complexity,
the best bound is achieved by the extended polynomial method, which corresponds to the
special case K = n and Πk =

∑
S:|S|=k |χS〉〈χS |.

4 Relation between the polynomial and the extended polynomial
methods

In this section, we compare the strength of the polynomial and the extended polynomial
methods. Let f be a Boolean function and Φ the Gram matrix corresponding to computing
f in the phase. By definition of the extended polynomial method, we have that xpoly0(Φ) =
deg(f). However the equality is lost in the approximate case:

I Theorem 13. Let f be a Boolean function and Φ be the Gram matrix corresponding to
computing f in the phase. For any ε ≥ 0, we have xpolyε(Φ) ≥ d̃egε/2(f).

L. Magnin and J. Roland 441

Proof (sketch). Let N be a Gram matrix achieving the minimum in the definition of
xpolyε(Φ), that is, an optimal final Gram matrix of an algorithm for Φ. We first express
this Gram matrix as N =

∑
x,y〈ψx|ψy〉|y〉〈x|, where |ψx〉 =

∑
i pi(x)|i〉 is the final state

of the algorithm on input x expressed in the computational basis. By definition of the
extended polynomial bound, we then have xpolyε(Φ) = maxi(deg(pi)), where the maximum
is over polynomials satisfying the normalization constraint

∑
i pi(x)2 = 1 and the correctness

constraint (−1)f(x)<(p0(x)) ≥
√

1− ε, for all inputs x. The polynomial p0 then witnesses
that d̃egε/2(f) ≤ deg(p0) ≤ xpoly0(N). J

5 Relation with the multiplicative adversary method

In [9], it was shown that in the limit c→ 1, the multiplicative adversary bound MADVc
0(M)

is at least as strong as the additive adversary bound ADV±(M). Here, we show that the
extended polynomial bound can be obtained by taking the limit c→∞.

I Theorem 14. Let M be a Gram matrix, ε ≥ 0, T = xpolyε(M) and Π≥T =
∑

S:|S|≥T
|χS〉〈χS |.

Moreover, let δ > 0 be such that tr[Π≥TN] ≥ δ for any Gram matrix N such that FH(N,M) ≥√
1− ε. Then, for any c > 1, we have

xpolyε(M)− n− log δ
log c ≤ MADVc

ε(M) ≤ xpolyε(M) + n

log c .

In particular, in the limit c→∞, we have limc→∞MADVc
ε(M) = xpolyε(M).

I Remark. Note that such a value of δ always exists. Assume by contradiction that
tr[Π≥TN] = 0, then xpoly0(N) ≤ T − 1, however N is an ε-approximation of M that
has a polynomial bound of T .

The general idea of the proof is to consider the multiplicative adversary matrix

W = 1
2n
∑
S

c|S||χS〉〈χS |

as a multiplicative adversary matrix. The lower bound then follows from the fact that in
the limit c→∞, the value of the progress function W [M] = tr[WM] will be dominated by
the term in c|S| for the set S with the largest size |S| = k such that 〈χS |M |χS〉 6= 0, which
therefore corresponds to the degree of the matrix M . As for the upper bound, we show that
the matrix W becomes an optimal multiplicative adversary matrix in the limit c→∞. This
can be shown by observing that one oracle call can only map a Fourier basis state |χS〉 to
another Fourier basis state |χS′〉 with |S′| = |S| ± 1 which implies bounds on the elements of
any possible multiplicative adversary matrix written in the Fourier basis.

Proof. We prove it for the zero-error case, the general case follows immediately.
Consider the matrix W = 1

2n

∑
S c
|S||χS〉〈χS |. It is a valid adversary matrix for

MADVc
0(M) since tr[WJ] = 1 and W ◦Di � cW, ∀i ∈ {1, . . . , n}. This inequality follows

fromW ◦Di = 1
2n

(∑
S:i∈S c

|S|−1|χS〉〈χS |+
∑
S:i6∈S c

|S|+1|χS〉〈χS |
)
, see proof of Theorem 11.

Let W ′ be an optimal multiplicative adversary matrix for MADVc
0(M). Let us show that

tr[WM] ≤ tr[W ′M] ≤ 2n tr[WM].
The first inequality is a direct consequence of the fact that W is an adversary matrix for

MADVc
0(M) and the definition of the multiplicative adversary bound.

To prove the second inequality, let us first show by induction on k = |S| that 〈χS |W ′|χS〉 ≤
1

2n c
|S| for any set S. For k = 0, the condition tr[W ′J] = 1 is equivalent to 〈χ∅|W ′|χ∅〉 = 1

2n .

STACS’13

442 Explicit relation between all lower bound techniques for quantum query complexity

Let us fix 0 ≤ k ≤ n, and assume that ∀S such that |S| = k, we have 〈χS |W ′|χS〉 ≤ 1
2n c

k.
Let S′ be a set of size k + 1 and decompose it into S′ = S ∪ {i}. Observe first that
〈χS |W ′ ◦Di|χS〉 = 〈χS |UiW ′Ui|χS〉 = 〈χS′ |W ′|χS′〉 where Ui =

∑
x(−1)xi |x〉〈x| as defined

in the proof of Theorem 11. Hence by sandwiching W ′ ◦ Di � cW ′ with |χS〉, we get
〈χS′ |W ′|χS′〉 ≤ c〈χS |W ′|χS〉 ≤ 1

2n c
|S|+1.

We can now proceed with the rest of the proof:

tr[W ′M] =
∑
S

〈χS |W ′M |χS〉 =
∑
S,S′

〈χS |W ′|χS′〉〈χS′ |M |χS〉

≤
∑
S,S′

|〈χS |W ′|χS′〉| |〈χS′ |M |χS〉| .

We now use the property that for any positive semidefinite matrix A, |Aij | ≤
√
AiiAjj ,

tr[W ′M] ≤
(∑

S

√
〈χS |W ′|χS〉〈χS |M |χS〉

)2

.

Using the Cauchy-Schwarz inequality, we get:

tr[W ′M] ≤ 2n
∑
S

〈χS |W ′|χS〉〈χS |M |χS〉 ≤
∑
S

c|S|〈χS |M |χS〉 = 2n tr[WM].

We are now ready to conclude the proof. From tr[WM] ≤ tr[W ′M] ≤ 2n tr[WM], we
have by definition of MADVc

0(M)

log tr[WM]
log c ≤ MADVc

0(M) ≤ n+ log tr[WM]
log c .

For T = xpolyε(M), we find from the first inequality

MADVc
0(M) ≥

log 1
2n c

T tr[Π≥TM]
log c = T + log(tr[Π≥TM])− n

log c .

Similarly, from the second inequality, we have

MADVc
0(M) ≤

log
∑
S c
|S|〈χS |M |χS〉
log c ≤ T +

log
∑
S〈χS |M |χS〉
log c = T + n

log c ,

where we used the facts that 〈χS |M |χS〉 = 0 whenever |S| > T , and
∑
S〈χS |M |χS〉 =

tr[M] = 2n. J

We note that MADVc
ε(M) approaches its limiting value xpolyε(M) if c is large enough

compared to 2n/δ. In general, we cannot give a lower bound on δ in order to determine how
large c should be. However, for the special case of Boolean functions, and comparing to the
standard polynomial method, i.e., the approximate degree d̃egε(f), instead of xpolyε(M),
we can show that MADVc

ε(Φ) becomes at least as strong as d̃egε(f) as soon as c is large
compared to 2n/ε.

I Lemma 15. Let f be a Boolean function with associated phase matrix Φ. Then, for any
c > 1, we have MADVc

ε(Φ) ≥ d̃egε(f)− 2 · n−log ε
log c .

Proof. Just as in the proof of Theorem 13, we express the Gram matrix achieving the
minimum in the definition of MADVc

ε(Φ) asN =
∑
x,y〈ψx|ψy〉|y〉〈x|, where |ψx〉 =

∑
i pi(x)|i〉

is the final state of the algorithm on input x expressed in the computational basis. After

L. Magnin and J. Roland 443

relaxing the normalization condition on the states |ψx〉, we obtain that MADVc
ε(Φ) ≥

1
log c log 1

2n

∑
S c
|S| |p̂(S)|2, where p is the minimum taken over all polynomials q : {0, 1}n 7→ R

satisfying
√

1− ε ≤ (−1)f(x)q(x) ≤ 1 for any x ∈ {0, 1}n.
By definition of MADVc

ε(Φ), we can then show that similarly to the lower bound in
Theorem 14, we have MADVc

ε(Φ) ≥ T − n−log δ
log c , where in this case T = d̃egε(f) and

δ =
∑
S:|S|≥T |p̂(S)|2. It can then be shown that δ must be at least ε2

2n , otherwise truncating
the high Fourier coefficients from p would yield a polynomial witnessing that d̃egε(f) < T , a
contradiction. J

Note that a similar argument cannot be used for the extended polynomial method because
truncating the large Fourier coefficients from a Gram matrix N might yield a matrix that is
not normalized (i.e., violating the constraint N ◦ I = I).

6 Discussion and open questions

Strong connections have been known for quite some time between the approximate degree of
a function and its query complexity: they are polynomially related for all (total) functions
for classical complexity [24] as well as for quantum complexity [12]. The latter is actually
often equal to the approximate degree (at least up to a constant factor) for many functions,
including all symmetric functions and random functions. With a large number of tight
bounds proved using the polynomial method [12, 1, 3, 8] to cite only a few, this method might
even seem ubiquitous. However, it is not always tight as in some rare cases the adversary
method is known to yield better bounds. By clarifying the relation between the polynomial
and adversary bounds, this work provides some new insight on why this can be the case.

First, we showed that the polynomial method is a relaxation of a more general method
which we called the extended polynomial method. This has a particularly nice interpretation
when one wants to compute the value of a function in a register, i.e., the goal is to prepare
the state |f(x)〉.3 When error ε is allowed, measuring this register should yield outcome f(x)
with probability at least 1− ε, that is, the probability p(x) of obtaining outcome 1 should be
close to 1 when f(x) = 1 and close to 0 when f(x) = 0. While the polynomial method only
considers the degree of the probability p(x), the extended polynomial method considers the
degree of all the amplitudes in the final state of the algorithm, including the erroneous part.
In terms of Gram matrices this corresponds to relaxing the condition N ◦ I = I to N ◦ I � I.4

In general it is not known how large the gap between the polynomial and the extended
polynomial method can be. It appears to be larger by at least a factor two for some functions.
Indeed, Ambainis et al. improved the lower bound for random Boolean functions from
n/4 − o(n) using the polynomial method, to n/2 − o(n) (which is tight) by bounding the
degree of all amplitudes in the final state of the algorithm [6] (their argument can be seen as
a special case of the extended polynomial method).

3 This is the standard problem studied in most articles on quantum query complexity, even though some
recent works including this one have considered the problem of computing the function in the phase.
Recall that Claim 4 implies that both problems are equivalent.

4 Note that with the relaxed condition N ◦ I � I, the matrix N does not have to be a normalized Gram
matrix anymore, in which case the Hadamard product fidelity is not defined. However, one can use
another output condition, for example γ2(N −M) ≤

√
2ε, where γ2 denotes the Hadamard product

trace norm. These output conditions are related up to a constant [22, 23], so that it only affects the
lower bound by at most a constant factor for bounded-error query complexity.

STACS’13

444 Explicit relation between all lower bound techniques for quantum query complexity

Secondly this provides a partial answer on how the multiplicative adversary method
MADVc varies with c. Indeed, while it was already known that MADVc→1

ε (f) ≥ ADV±ε (f),
we have proved that MADVc→∞

ε (f) ≥ d̃egε(f), and in particular, MADVc→∞
0 (f) = deg(f)

in the zero-error case. This implies that the gap between MADV and MADVc→∞ can be at
least polynomially large by considering the Ambainis function [4], for which the polynomial
method fails to give a tight bound, contrary to the adversary method. This gap might be
explained by the fact that in the limit c→∞, the eigenbasis of the best adversary matrix is
restricted to be the Fourier basis, while for smaller values, other bases can provide better
bounds.

To summarize our current knowledge, the situation is the following. On the one hand,
when c tends to one, the multiplicative adversary method is tight for bounded-error ([9]) but
not for zero-error (e.g., for the OR function, there is a quadratic gap). On the other hand,
when c tends to infinity, the multiplicative method seems better for zero-error as it proves the
Ω(n) lower bound for OR, but it is not always tight (Ambainis function). As for low success
probability, it seems that taking c bounded away from one provides an advantage, as shown
in particular by the strong direct product theorems proved using the multiplicative [28, 23]
and polynomial methods [20, 27].

This leaves open a few interesting questions about the behavior of the multiplicative
adversary method. Can we say more about the dependence of MADVc on c? Can we improve
the relation MADVc→1

ε (M) ≥ ADV±ε (M) to an equality in general? Can we characterize the
set of functions for which the (extended or not) polynomial method does not provide a tight
bound? Finally, does the multiplicative adversary method characterize the quantum query
complexity, i.e., is it tight for any error?

Acknowledgements Most of this work was done at NEC Laboratories America. The authors
thank M. Rötteler, D. Gavinsky, and T. Lee for stimulating discussions; and R. de Wolf and
R. Špalek for interesting comments. They also thank R. Špalek for proposing the alternative
proof of Lemma 15 using dual polynomials.

References
1 S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element distinct-

ness problems. J. ACM, 51(4):595–605, 2004.
2 A. Ambainis. Quantum lower bounds by quantum arguments. J. Comput. Sys. Sci.,

64(4):750–767, 2002.
3 A. Ambainis. Polynomial degree and lower bounds in quantum complexity: Collision and

element distinctness with small range. Theor. Comput., 1:37–46, 2005.
4 A. Ambainis. Polynomial degree vs. quantum query complexity. J. Comput. Sys. Sci.,

72(2):220–238, 2006.
5 A. Ambainis. A new quantum lower bound method, with an application to strong direct

product theorem for quantum search. Theor. Comput., 6:1–25, 2010.
6 A. Ambainis, A. Bačkurs, J. Smotrovs, and R. de Wolf. Optimal quantum query bounds

for almost all Boolean functions. In Proc. STACS’13, 2013.
7 A. Ambainis, A. M. Childs, B. W. Reichardt, R. Špalek, and S. Zhang. Any AND-OR

formula of size N can be evaluated in time N1/2+o(1) on a quantum computer. SIAM J.
Comput., 39(6):2513–2530, 2010.

8 A. Ambainis and R. de Wolf. How low can approximate degree and quantum query com-
plexity be for total boolean functions? arXiv:1206.0717, 2012.

9 A. Ambainis, L. Magnin, M. Roetteler, and J. Roland. Symmetry-assisted adversaries for
quantum state generation. In Proc. CCC’11, pages 167–177, 2011.

L. Magnin and J. Roland 445

10 A. Ambainis, R. Špalek, and R. de Wolf. A new quantum lower bound method, with
applications to direct product theorems and time-space tradeoffs. In Proc. STOC’06, pages
618–633, 2006.

11 H. Barnum and M. Saks. A lower bound on the quantum query complexity of read-once
functions. J. Comput. Sys. Sci., 69(2):244–258, 2004.

12 R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by
polynomials. J. ACM, 48:778–797, 2001.

13 A. Belovs. Adversary lower bound for element distinctness. arXiv:1204.5074, 2012.
14 A. Belovs and R. Špalek. Adversary lower bound for the k-sum problem. In Proc. ITCS’13,

2013.
15 C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of

quantum computing. SIAM J. Comput., 26(5):1510–1523, 1997.
16 H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: A survey.

Theor. Comput. Sci., 288(1):21–43, 2002.
17 E. Farhi, J. Goldstone, and S. Gutmann. A quantum algorithm for the Hamiltonian NAND

tree. Theor. Comput., 4:169–190, 2008.
18 P. Høyer, T. Lee, and R. Špalek. Negative weights make adversaries stronger. In Proc.

STOC’07, pages 526–535, 2007.
19 P. Høyer, J. Neerbek, and Y. Shi. Quantum complexities of ordered searching, sorting, and

element distinctness. Algorithmica, 34(4):429–448, 2008.
20 H. Klauck, R. Špalek, and R. de Wolf. Quantum and classical strong direct product theor-

ems and optimal time-space tradeoffs. SIAM J. Comput., 36(5):1472–1493, 2007.
21 S. Laplante and F. Magniez. Lower bounds for randomized and quantum query complexity

using Kolmogorov arguments. SIAM J. Comput., 38(1):46–62, 2008.
22 T. Lee, R. Mittal, B. W. Reichardt, R. Špalek, and M. Szegedy. Quantum query complexity

of state conversion. In Proc. FOCS’11, pages 344–353, 2011.
23 T. Lee and J. Roland. A strong direct product theorem for quantum query complexity. In

Proc. CCC’12, pages 236 – 246, 2012.
24 N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. Comput.

Complex., 4:301–313, 1994.
25 B. W. Reichardt. Reflections for quantum query algorithms. In Proc. SODA’11, pages

560–569, 2011.
26 B. W. Reichardt and R. Špalek. Span-program-based quantum algorithm for evaluating

formulas. In Proc. STOC’08, pages 103–112, 2008.
27 A. A. Sherstov. Strong direct product theorems for quantum communication and query

complexity. In Proc. STOC’11, pages 41–50, 2011.
28 R. Špalek. The multiplicative quantum adversary. In Proc. CCC’08, pages 237–248, 2008.
29 R. Špalek and M. Szegedy. All quantum adversary methods are equivalent. Theor. Comput.,

2:1–18, 2006.
30 S. Zhang. On the power of Ambainis lower bounds. Theor. Comput. Sci., 339(2):241–256,

2005.

STACS’13

Optimal quantum query bounds for almost all
Boolean functions∗

Andris Ambainis1, Arturs Bačkurs2, Juris Smotrovs1, and Ronald
de Wolf3

1 University of Latvia
Riga, Latvia
{ambainis,Juris.Smotrovs}@lu.lv

2 MIT, Cambridge, MA
(work done while at University of Latvia)
abackurs@gmail.com

3 CWI and University of Amsterdam
Amsterdam, The Netherlands
rdewolf@cwi.nl

Abstract
We show that almost all n-bit Boolean functions have bounded-error quantum query complexity at
least n/2, up to lower-order terms. This improves over an earlier n/4 lower bound of Ambainis [1],
and shows that van Dam’s oracle interrogation [9] is essentially optimal for almost all functions.
Our proof uses the fact that the acceptance probability of a T -query algorithm can be written
as the sum of squares of degree-T polynomials.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases quantum computing, query complexity, lower bounds,
polynomial method

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.446

1 Introduction

Most known quantum algorithms have been developed in the setting of quantum query
complexity, which is the quantum generalization of the model of decision tree complexity. Here
an algorithm is charged for each “query” to the input bits, while intermediate computation is
free (see [8] for more details about this model). For certain specific functions one can obtain
large quantum-speedups in this model. For example, Grover’s algorithm [14] computes the
n-bit OR function with O(

√
n) queries, while any classical algorithm needs Ω(n) queries.

Many more such polynomial speed-ups are known, see for example [3, 18, 11, 6]. If one
considers partial functions there are even exponential speed-ups, for example [10, 20, 19, 5].
Substantial quantum speed-ups are quite rare, and exploit very specific structure in problems
that makes those problems amenable to quantum speed-ups.

On the other hand, one can also obtain a smaller speed-up that holds for almost all
Boolean functions. Classically, almost all Boolean functions f : {0, 1}n → {0, 1} have

∗ AA, AB, RdW are partially supported by the European Commission under the project QCS (Grant
No. 255961). AA and JS are partially supported by ESF project 1DP/1.1.1.2.0/09/APIA/VIAA/044.
RdW is partially supported by a Vidi grant from the Netherlands Organization for Scientific Research
(NWO).

© A. Ambainis, A. Bačkurs, J. Smotrovs, and R. de Wolf;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 446–453

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.446
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Ambainis, A. Bačkurs, J. Smotrovs, and R. de Wolf 447

bounded-error query complexity n, minus lower-order terms. This is quite intuitive: if we
have only seen 99% of the n input bits, then the restriction of a random function to the
1% remaining variables will still be roughly balanced between 0 and 1-inputs. In contrast,
van Dam [9] exhibited a beautiful quantum algorithm that recovers the complete n-bit input
x with high probability using roughly n/2 quantum queries. Briefly, his algorithm is as
follows:
1. With T = n/2 + O(

√
n log(1/ε)) and B =

∑T
i=0
(
n
i

)
being the number of y ∈ {0, 1}n

with Hamming weight |y| ≤ T , set up the n-qubit superposition 1√
B

∑
y∈{0,1}n:|y|≤T |y〉.

2. Apply the unitary |y〉 7→ (−1)x·y|y〉. We can implement this using T queries to the
input x, for all basis states |y〉 with |y| ≤ T .

3. Apply a Hadamard transform to all qubits and measure.

To see correctness of this algorithm, note that the fraction of n-bit strings y of Hamming
weight larger than T is � ε. Hence the state obtained in step 2 is very close to the state

1√
2n

∑
y∈{0,1}n(−1)x·y|y〉, whose Hadamard transform is exactly |x〉.

Since obtaining x suffices to compute f(x) for any f of our choice, van Dam’s algorithm
implies that the ε-error quantum query complexity of f is

Qε(f) ≤ n/2 +O(
√
n log(1/ε)) for all Boolean functions.

It is known that this upper bound is essentially tight for some Boolean functions. For
example, Qε(f) = dn/2e for the n-bit Parity function [4, 12]. Our goal in this paper is to
show that it is tight for almost all Boolean functions, i.e., that Qε(f) is essentially lower
bounded by n/2 for almost all f (and fixed ε). How can we prove such a lower bound?
Two general methods are known for proving quantum query lower bounds: the polynomial
method [4] and the adversary method [2, 15]. As we explain below, in their standard form
neither method is strong enough to prove our desired n/2 lower bound.

First, the adversary method in its strongest incarnation [15, Theorem 2] has the form

Qε(f) ≥ 1
2(1−

√
ε(1− ε))ADV±(f),

where the “negative-weights adversary bound” ADV±(f) is a quantity that is at most n.
Accordingly, for constant error probability ε the adversary method can only prove lower
bounds of the form cn for some c < 1/2.

Second, the polynomial method uses the fact (first proved in [13, 4]) that the acceptance
probability of a T -query algorithm can be written as a degree-2T n-variate multilinear real
polynomial p(x) of the input. If the algorithm computes f with error probability ≤ ε, then
p(x) will approximate f(x): p(x) ∈ [0, ε] for every x ∈ f−1(0) and p(x) ∈ [1− ε, 1] for every
x ∈ f−1(1). Accordingly, a lower bound of d on the ε-approximate polynomial degree degε(f)
implies a lower bound of d/2 on the ε-error quantum query complexity of f . This is how
Ambainis [1] proved the current best lower bound of roughly n/4 that holds for almost all n-
bit Boolean functions: he showed that almost all f satisfy degε(f) ≥ (1/2− o(1))n. However,
O’Donnell and Servedio [17] proved a nearly matching upper bound: degε(f) ≤ (1/2 + o(1))n
for almost all f . Hence Ambainis’s lower bound approach via approximate degree cannot be
improved to obtain our desired lower bound of n/2 on Qε(f).1 This suggests that also the
polynomial method is unable to obtain the conjectured factor 1/2 in the lower bound.

1 In fact, the unbounded-error quantum query complexity of almost all Boolean functions is only n/4 up
to lower-order terms. This follows from the degree upper bound of [17] combined with [7, Theorem 1]
and the fact that d-bit Parity can be computed with dd/2e quantum queries.

STACS’13

448 Optimal quantum query bounds for almost all Boolean functions

However, looking under the hood of the polynomial method, it actually gives a bit more
information about the acceptance probability: p(x) is not an arbitrary degree-2T polynomial,
but the sum of squares of degree-T polynomials. Using this extra information, we prove in
this paper that indeed Qε(f) ≥ n/2 up to lower-order terms for almost all f .2

Our main technical result will be a claim about certain random matrices (Claim 1 below),
which may have further applications. It says the following. Let B = {x ∈ {0, 1}n : |x| ≤ T}
be the set of strings of weight at most T , and B = |B| its size. Suppose F is a 2n × 2n
diagonal matrix with randomly chosen signs on its diagonal, and F̂ = HFH is F conjugated
with the unitary Hadamard transform. Then the principal minor of F̂ restricted to entries
in B × B has (with probability 1− o(1)) operator norm O(

√
nB1+o(1)/2n). In particular, if

T ≤ (1/2− ε)n for any fixed positive ε then with high probability this operator norm is o(1).

2 Proof

Suppose we have a quantum algorithm that uses T queries to its n-bit input x. Then by [4,
Lemma 4.1], its final state can be written as a function of the input as∑

z

αz(x)|z〉,

where z ranges over the computational basis states of the algorithm’s space, and the amplitudes
αz(x) are complex-valued multilinear n-variate polynomials of degree ≤ T . We assume
w.l.o.g. that the algorithm determines its Boolean output by measuring the first qubit of
the final state. Then the acceptance probability (as a function of input x) is the following
polynomial of degree ≤ 2T :

p(x) =
∑
z:z1=1

|αz(x)|2.

Let αz ∈ C2n denote the vector with entries αz(x). Define the following 2n × 2n matrix P :

P =
∑
z:z1=1

αzα
∗
z.

The diagonal entry Pxx of this matrix is p(x). Since P is positive semidefinite, we have3

‖P‖1 = Tr(P) =
∑

x∈{0,1}n

p(x).

With H denoting the n-qubit Hadamard transform, Hαz is proportional to the Fourier
transform α̂z, which has support only on the B =

∑T
i=0
(
n
i

)
monomials of degree ≤ T . Hence

the matrix HPH has support only on a B ×B submatrix.
It will be convenient to use +1 and −1 as the range of a Boolean function, rather than 0

and 1. Consider Boolean function f : {0, 1}n → {±1}. For s ∈ {0, 1}n, the corresponding

2 Magnin and Roland [16] independently found similar ways to strengthen the standard polynomial
method; however they do not apply their tools to the analysis of random Boolean functions.

3 We use the following matrix-analytic notation. For m ×m matrices A and A′, define inner product
〈A, A′〉 = Tr(A∗A′) =

∑
i,j

A∗ijA′ij . Note that this inner product is basis-independent: for every unitary
U we have 〈UAU∗, UA′U∗〉 = 〈A, A′〉. Let ‖A‖p denote the (unitarily invariant) Schatten p-norm of A,
which is the p-norm of the m-dimensional vector of singular values of A. In particular, ‖A‖1 is the sum
of the singular values of A, and ‖A‖∞ is its largest singular value, which is the operator norm of A. It
is easy to see that ‖A‖2

2 = Tr(A∗A) =
∑

i,j
|Aij |2, and 〈A, B〉 ≤ ‖A‖1‖B‖∞.

A. Ambainis, A. Bačkurs, J. Smotrovs, and R. de Wolf 449

Fourier coefficient of f is defined as f̂(s) = 1
2n

∑
x(−1)s·xf(x). Let F be the 2n×2n diagonal

matrix with diagonal entries f(x). Define F̂ = HFH. Then for s, t ∈ {0, 1}n, we have

F̂s,t = 〈s|HFH |t〉 = 1
2n
∑
x,y

(−1)s·x(−1)t·yFxy = 1
2n
∑
x

(−1)(s⊕t)·xf(x) = f̂(s⊕ t).

Let F̂T denote F̂ after zeroing out all s, t-entries where |s| > T and/or |t| > T . Note
that HPH doesn’t have support on the entries that are zeroed out, hence 〈HPH, F̂ 〉 =
〈HPH, F̂T 〉.

Suppose our T -query quantum algorithm computes f with worst-case error probability at
most some fixed constant ≤ ε. Output 1 means the algorithm thinks f(x) = 1, and output 0
means it thinks f(x) = −1. Then for every x ∈ {0, 1}n, 2p(x) − 1 differs from f(x) by at
most 2ε. Hence:

(1− 2ε)2n ≤ 〈2P − I, F 〉
= 2〈P, F 〉 −

∑
x

f(x)

= 2〈HPH, F̂ 〉 −
∑
x

f(x)

= 2〈HPH, F̂T 〉 −
∑
x

f(x)

≤ 2‖P‖1

∥∥∥F̂T∥∥∥
∞
−
∑
x

f(x)

= 2
∥∥∥F̂T∥∥∥

∞

∑
x

p(x)−
∑
x

f(x).

We can assume w.l.o.g. that
∑
x f(x) ≥ 0 (if this doesn’t hold for f then just take its negation,

which has the same query complexity as f). Since
∑
x p(x) ≤ 2n, we get∥∥∥F̂T∥∥∥

∞
≥ 1/2− ε. (1)

The technically hard part is to upper bound
∥∥∥F̂T∥∥∥

∞
for most f . So consider the case where

f : {0, 1}n → {±1} is a uniformly random function, meaning that the 2n values f(x) are
independent uniformly random signs. In the next subsection we show

I Claim 1. With probability 1−o(1) (over the choice of f) we have
∥∥∥F̂T∥∥∥

∞
= O

(√
nB1+o(1)

2n

)
.

Combining this with the lower bound (1), we get that B ≥ 2n−o(n). On the other hand,
a well-known upper bound on the sum of binomial coefficients is B =

∑T
i=0
(
n
i

)
≤ 2nH(T/n),

where H(q) = −q log q − (1 − q) log(1 − q) denotes the binary entropy function. Hence,
2n−o(n) ≤ 2nH(T/n) which implies T ≥ n/2− o(n). This shows that Qε(f) ≥ n/2− o(n) for
almost all f (and fixed constant ε).

2.1 Proof of Claim 1
Below, unless mentioned otherwise, probabilities and expectations will be taken over the
random choice of f . We choose T = n/2− o(n) sufficiently small that B =

∑T
i=0
(
n
i

)
= o(2n),

i.e., the o(n) term in T is taken to be ω(
√
n).

Let λi be the i-th eigenvalue of F̂T . Since F̂T is symmetric we have∥∥∥F̂T∥∥∥
∞

= max
i
|λi| = 2k

√
max
i
λ2k
i ≤ 2k

√∑
i

λ2k
i = 2k

√
Tr(F̂ 2k

T).

STACS’13

450 Optimal quantum query bounds for almost all Boolean functions

We are going to show that

E
[
Tr(F̂ 2k

T)
]

= O
(
B (B/2n)k

)
(2)

for every constant k (with a big-O constant depending on k). This means that, using
Markov’s inequality,

Pr
[∥∥∥F̂T∥∥∥

∞
> C

√
nB1+1/k/2n

]
≤ Pr

[
2k

√
Tr(F̂ 2k

T) > C
√
nB1+1/k/2n

]
= Pr

[
Tr(F̂ 2k

T) > C2knkBk+1/2nk
]

≤
E
[
Tr(F̂ 2k

T)
]

C2knkBk+1/2nk = o(1).

Since this is true for any constant k, Claim 1 follows.
So now our goal is to prove (2). Below we let each of s1, . . . , s2k range over the B n-bit

strings of weight ≤ T , and each of x1, . . . , x2k range over {0, 1}n. For simplicity we abbreviate
~s = s1, s2, . . . , s2k and ~x = x1, x2, . . . , x2k. Writing out the 2k-fold matrix product, we have

E
[
Tr(F̂ 2k

T)
]

= E

[∑
~s

f̂(s1 ⊕ s2)f̂(s2 ⊕ s3) · · · f̂(s2k ⊕ s1)
]

(3)

= 1
22nk

∑
~s

∑
~x

E
[
(−1)(s1⊕s2)·x1f(x1) · · · (−1)(s2k⊕s1)·x2kf(x2k)

]
(4)

= 1
22nk

∑
~s

∑
~x

(−1)(s1⊕s2)·x1+···+(s2k⊕s1)·x2k E [f(x1) · · · f(x2k)] . (5)

For a particular y ∈ {0, 1}n, there are as many Boolean functions having f(y) = 1 as having
f(y) = −1, independently of what is known about values of f on other inputs. Thus, if any
y occurs an odd number of times in ~x = (x1, . . . , x2k), then E[f(x1) · · · f(x2k)] = 0. So only
those summands are left where all multiplicities of distinct values among x1, . . . , x2k are even.
We call such ~x even. We have

E
[
Tr(F̂ 2k

T)
]

= 1
22nk

∑
~s

∑
~x even

(−1)
∑2k

i=1
(si⊕si+1)·xi

= 1
22nk

∑
r

∑
partition of

{1,...,2k} into even
non-empty I1,...,Ir

∑
~s

∑
x(1),...,x(r)

different

(−1)
∑r

j=1

(⊕
i∈Ij

(si⊕si+1)
)
·x(j)

(6)

where s2k+1 = s1 and the second summation is over all partitions of {1, . . . , 2k} into even-
sized non-empty parts I1, . . . , Ir with the implied condition that xi = xj iff i and j belong to
the same part. Since the number of such partitions (I1, I2, . . . , Ir) depends only on k (which
is a constant), it suffices to prove that each term in the sum is of the order O(B(B/2n)k).
We will do this by proving
I Claim 2. For any fixed m and any partition I1, . . . , Ir of {1, . . . ,m}:∑

~s

∑
x(1),...,x(r)

different

(−1)
∑r

j=1
tj(~s)·x(j)

= O(Bm−r+1 · 2nr) (7)

where tj(~s) =
⊕

i∈Ij
(si ⊕ si+1), sm+1 = s1, and the big-O constant depends on m and the

partition.

A. Ambainis, A. Bačkurs, J. Smotrovs, and R. de Wolf 451

We first show that Claim 2 implies Claim 1. In our case, m = 2k. Since B = o(2n), the
upper bound B2k−r+1 · 2nr increases when r increases. Since each partition of {1, . . . , 2k}
into even-sized non-empty parts I1, . . . , Ir must contain at least 2 elements in each Ij , we
must have r ≤ (2k)/2 = k and every term of the sum (6) is upper bounded by

1
22nkO

(
B2k−k+1 · 2nk

)
= O

(
B (B/2n)k

)
.

It remains to prove Claim 2, which we do by induction on r. If r = 1 then t1(~s) =
⊕mi=1(si ⊕ si+1) includes each si exactly twice and hence sums to the all-0 string, hence∑

~s

∑
x∈{0,1}n

(−1)t1(~s)·x =
∑
~s

∑
x∈{0,1}n

(−1)0·x = Bm · 2n.

For the inductive step, suppose Claim 2 is true for r− 1. Rewrite the left-hand side of (7) as∑
~s

∑
x(1),...,x(r)

different

(−1)
∑r

j=1
tj(~s)·x(j)

=
∑
~s

∑
x(1)

∑
x(2),...,x(r)

different

(−1)
∑r

j=1
tj(~s)·x(j)

−
∑
~s

r∑
a=2

∑
x(2),...,x(r)

different, x(1)=x(a)

(−1)
∑r

j=1
tj(~s)·x(j)

.

(8)

Let us estimate both sums of (8). Since
∑
x(1)(−1)t1(~s)x(1) equals 2n if t1(~s) = 0n, and that

sum equals 0 otherwise, the first sum of (8) equals

2n
∑

~s:t1(~s)=0

∑
x(2),...,x(r)

different

(−1)
∑r

j=2
tj(~s)·x(j)

. (9)

We now transform this sum into the form of the left-hand side of (7), with both m and r
smaller by 1 compared to their current values. After that, we will apply the induction
hypothesis.

Let ` be such that ` ∈ I1, `− 1 /∈ I1. Then t1(~s) contains s` with coefficient 1 (because
t1(~s) includes s` ⊕ s`+1 but not s`−1 ⊕ s`). We can use the condition t1(~s) = 0 to express s`
in terms of s1, . . . , s`−1 and s`+1, . . . , sm as follows:

s` = s`+1 ⊕
⊕

i∈I1:i6=`
(si ⊕ si+1). (10)

Let b be such that `− 1 ∈ Ib. Then tb(~s) contains s`−1 ⊕ s` and we can substitute (10) into
tb(~s), obtaining

tb(~s) = s`−1 ⊕ s`+1 ⊕
⊕

i∈I1:i6=`
(si ⊕ si+1)⊕

⊕
i∈Ib:i6=`−1

(si ⊕ si+1).

We can now remove the variable s` (because it was only contained in s`−1⊕ s` and s`⊕ s`+1)
and redefine Ib to be I1 ∪ Ib \ {`}. Then we get that (9) is equal to

2n
∑

s1,...,s`−1
s`+1,...,sm

∑
x(2),...,x(r)

different

(−1)
∑r

j=2
tj(~s)·x(j)

= 2n ·O
(
Bm−r+1 · 2n(r−1)

)
= O

(
Bm−r+1 · 2nr

)

with the estimate following from the induction hypothesis (with both m and r being smaller
by 1).

STACS’13

452 Optimal quantum query bounds for almost all Boolean functions

As for the second sum of (8), it is equal to

r∑
a=2

∑
~s

∑
x(2),...,x(r)

different

(−1)
∑r

j=2
t

(a)
j

(~s)·x(j)

= O
(
Bm−r+2 · 2n(r−1)

)

where t(a)
j (~s) = tj(~s) except for t(a)

a (~s) = ta(~s)⊕ t1(~s) (thus merging the partition parts I1

and Ia). We have eliminated x(1) and apply the induction hypothesis (with r being smaller
by 1 and m remaining the same). The outer sum over a introduces only a factor depending
on r ≤ m.

Since B = o(2n) we have Bm−r+2 · 2n(r−1) = o(Bm−r+1 · 2nr). Hence the bound on the
first sum in (8) is of a larger order and we have completed the proof of Claim 2.

Acknowledgement
We thank Loïck Magnin and Jérémie Roland for sending us a copy of [16].

References
1 A. Ambainis. A note on quantum black-box complexity of almost all Boolean functions.

Information Processing Letters, 71(1):5–7, 1999. quant-ph/9811080.
2 A. Ambainis. Quantum lower bounds by quantum arguments. Journal of Computer and

System Sciences, 64(4):750–767, 2002. Earlier version in STOC’00. quant-ph/0002066.
3 A. Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on Com-

puting, 37(1):210–239, 2007. Earlier version in FOCS’04. quant-ph/0311001.
4 R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds

by polynomials. Journal of the ACM, 48(4):778–797, 2001. Earlier version in FOCS’98.
quant-ph/9802049.

5 N. de Beaudrap, R. Cleve, and J. Watrous. Sharp quantum vs. classical query complexity
separations. Algorithmica, 34(4):449–461, 2002. quant-ph/0011065.

6 A. Belovs. Span programs for functions with constant-sized 1-certificates. In Proceedings
of 43rd ACM STOC, pages 77–84, 2012. arXiv:1105.4024.

7 H. Buhrman, N. Vereshchagin, and R. de Wolf. On computation and communication with
small bias. In Proceedings of 22nd IEEE Conference on Computational Complexity, pages
24–32, 2007.

8 H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: A survey.
Theoretical Computer Science, 288(1):21–43, 2002.

9 W. van Dam. Quantum oracle interrogation: Getting all information for almost half the
price. In Proceedings of 39th IEEE FOCS, pages 362–367, 1998. quant-ph/9805006.

10 D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. In Pro-
ceedings of the Royal Society of London, volume A439, pages 553–558, 1992.

11 C. Dürr, M. Heiligman, P. Høyer, and M. Mhalla. Quantum query complexity of some
graph problems. SIAM Journal on Computing, 35(6):1310–1328, 2006. Earlier version in
ICALP’04.

12 E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. A limit on the speed of quantum
computation in determining parity. Physical Review Letters, 81:5442–5444, 1998. quant-
ph/9802045.

13 L. Fortnow and J. Rogers. Complexity limitations on quantum computation. Journal of
Computer and System Sciences, 59(2):240–252, 1999. Earlier version in Complexity’98. Also
cs.CC/9811023.

A. Ambainis, A. Bačkurs, J. Smotrovs, and R. de Wolf 453

14 L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
28th ACM STOC, pages 212–219, 1996. quant-ph/9605043.

15 P. Høyer, T. Lee, and R. Špalek. Negative weights make adversaries stronger. In Proceedings
of 39th ACM STOC, pages 526–535, 2007. quant-ph/0611054.

16 L. Magnin and J. Roland. Explicit relation between all lower bound techniques for quantum
query complexity. In Proceedings of 30th International Symposium on Theoretical Aspects
of Computer Science (STACS 2013), 2013. arXiv:1209.2713.

17 R. O’Donnell and R. Servedio. Extremal properties of polynomial threshold functions.
Journal of Computer and System Sciences, 74(3):298–312, 2008. Earlier version in Com-
plexity’03.

18 M. Santha. Quantum walk based search algorithms. In Proceedings of 5th TAMC, pages
31–46, 2008. arXiv/0808.0059.

19 P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997. Earlier version
in FOCS’94. quant-ph/9508027.

20 D. Simon. On the power of quantum computation. SIAM Journal on Computing,
26(5):1474–1483, 1997. Earlier version in FOCS’94.

STACS’13

Streaming Complexity of Checking
Priority Queues∗†

Nathanaël François1 and Frédéric Magniez2

1 Univ Paris Diderot, Sorbonne Paris-Cité, LIAFA, CNRS, 75205 Paris, France
nathanael.francois@liafa.univ-paris-diderot.fr

2 CNRS, LIAFA, Univ Paris Diderot, Sorbonne Paris-Cité, 75205 Paris, France
frederic.magniez@univ-paris-diderot.fr

Abstract
This work is in the line of designing efficient checkers for testing the reliability of some massive
data structures. Given a sequential access to the insert/extract operations on such a structure,
one would like to decide, a posteriori only, if it corresponds to the evolution of a reliable structure.
In a context of massive data, one would like to minimize both the amount of reliable memory of
the checker and the number of passes on the sequence of operations.

Chu, Kannan and McGregor [9] initiated the study of checking priority queues in this setting.
They showed that the use of timestamps allows to check a priority queue with a single pass and
memory space Õ(

√
N). Later, Chakrabarti, Cormode, Kondapally and McGregor [7] removed

the use of timestamps, and proved that more passes do not help.
We show that, even in the presence of timestamps, more passes do not help, solving an open

problem of [9, 7]. On the other hand, we show that a second pass, but in reverse direction,
shrinks the memory space to Õ((logN)2), extending a phenomenon the first time observed by
Magniez, Mathieu and Nayak [15] for checking well-parenthesized expressions.

1998 ACM Subject Classification F.2.0 Analysis of Algorithms and Problem Complexity

Keywords and phrases Streaming Algorithms, Communication Complexity, Priority Queue

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.454

1 Introduction

The reliability of memory is central and becomes challenging when it is massive. In the
context of program checking [4] this problem has been addressed by Blum, Evans, Gemmell,
Kannan and Naor [3]. They designed on-line checkers that use a small amount of reliable
memory to test the behavior of some data structures. Checkers are allowed to be randomized
and to err with small error probability. In that case the error probability is not over the
inputs but over the random coins of the algorithm.

Chu, Kannan and McGregor [9] revisited this problem for priority queue data structures,
where the checker only has to detect an error after processing an entire sequence of data
accesses. This can be rephrased as a one-pass streaming recognition problem. Streaming
algorithms sequentially scan the whole input piece by piece in one sequential pass, or in a
small number of passes, while using sublinear memory space. In our context, the stream is
defined by the sequence of insertions and extractions on the priority queue. Using a streaming

∗ Full version available on http://arxiv.org/abs/1209.4971
† Supported by the French ANR Defis program under contract ANR-08-EMER-012 (QRAC project) and

by the French ANR Blanc program under contract ANR-12-BS02-005 (RDAM project)

© Nathanaël François and Frédéric Magniez;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 454–465

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.454
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

N. François and F. Magniez 455

algorithm, the objective is then to decide if the stream corresponds to a correct implementation
of a priority queue. We also consider collection data structures that implement multisets.

I Definition 1 (Collection,PQ). Let Σ0 be some alphabet. Let Σ = {ins(a), ext(a) :
a ∈ Σ0}. For w ∈ ΣN , define inductively multisets Mi by M0 = ∅, Mi = Mi−1 \ {a} if
w[i] = ext(a), and Mi = Mi−1 ∪ {a} if w[i] = ins(a).
Then w ∈ Collection(Σ0) if and only if Mn = ∅ and a ∈Mi−1 when w[i] = ext(a), for i =
1, . . . , N . Moreover, w ∈ PQ(U), for U ∈ N, if and only if w ∈ Collection({0, 1, . . . , U})
and a = max(Mi−1) when w[i] = ext(a), for i = 1, . . . , N .

Streaming algorithms were initially designed with a single pass: when a piece of the
stream has been read, it is gone for ever. This makes those algorithms of practical interest
for online context, such as network monitoring, for which first streaming algorithms were
developed [1]. Motivated by the explosion in the size of the data that algorithms are called
upon to process in everyday real-time applications, the area of streaming algorithms has
experienced tremendous growth over the last decade in many applications. In particular, a
streaming algorithm can model an external read-only memory. Examples of such applications
occur in bioinformatics for genome decoding, or in Web databases for the search of documents.
In that context, considering multi-pass streaming algorithm is relevant.

Using standard arguments one can establish that every p-pass randomized streaming algo-
rithm needs memory space Ω(N/p) for recognizing Collection. Nonetheless, Chakrabarti,
Cormode, Kondapally and McGregor [7] gave a one-pass randomized algorithm for PQ using
memory space Õ(

√
N). They also showed that several passes do not help, since any p-pass

randomized algorithm would require memory space Ω(
√
N/p). A similar lower bound was

showed independently, but using different tools, by Jain and Nayak [10]. The case of a
single pass was established previously by Magniez, Mathieu and Nayak [15] for checking the
well-formedness of parenthesis expressions, or equivalently the behavior of a stack.

A simpler variant of PQ with timestamps was in fact first studied by Chu, Kannan and
McGregor [9], where now each item is inserted to the queue with its index.

I Definition 2 (PQ-TS). Let Σ = {ins(a), ext(a) : a ∈ {0, 1, . . . , U}} × N. Let w ∈ ΣN .
Then w ∈ PQ-TS(U) if and only if w ∈ Collection(Σ), w[1, . . . , N][1] ∈ PQ(U), and
w[i][2] = i when w[i][1] = ins(a).

Nonetheless the two works [9, 7] left open problems. The lower bound of [7] was proved
only for PQ, and no significant lower bounds for PQ-TS established. Moreover, the streaming
complexity of PQ for algorithms processing the stream in both directions was not studied.

Even though recognizing PQ-TS is obviously easier than recognizing PQ, our first
contribution (Section 3) consists in showing that they both obey the same limitation, even
with multiple passes in the same direction.

I Theorem 3. Every p-pass randomized streaming algorithm recognizing PQ-TS(3N/2) with
bounded error 1/3 requires memory space Ω(

√
N/p) for inputs of length N .

As a consequence, since this lower bound uses very restricted hard instances, it models
most of possible variations. For instance, assuming that the input is in Collection and
has no duplicates is not sufficient to guarantee a faster algorithm. Theorem 3 is proved by
introducing a related communication problem with Θ(

√
N) players. Then we reduce the

number of players to 3, and prove a lower bound on the information carried by players,
leading to the desired lower bound. We are following the information cost approach taken
in [8, 17, 2, 12, 11], among other works. Recently, the information cost appeared as one of

STACS’13

456 Streaming Complexity of Checking Priority Queues

the most central notion in communication complexity [6, 5, 13]. The information cost of a
protocol is the amount of information that messages carry about players’ inputs. We adapt
this notion to suit both the nature of streaming algorithms and of our problem.

Even if our result suggests that allowing multiple passes does not help, one could also
consider the case of bidirectional passes. We believe that it is a natural relaxation of multi-
pass streaming algorithms where the stream models some external read-only memory. In
that case, we show that a second pass, but in reverse order, makes the problem of checking
PQ easy, even with no timestamps (Section 4). A similar phenomenon has been established
previously in [15] for checking the well-formedness of parenthesis expressions. Their problem
is simpler than ours, and therefore our algorithm is more general.

I Theorem 4. There is a bidirectional 2-pass randomized streaming algorithm recognizing
PQ(U) with memory space O((logN)(logU+logN)), time per processing item polylog(N,U),
and one-sided bounded error N−c, for inputs of length N and any constant c > 0.

Our algorithm uses a hierarchical data structure similar to the one introduced in [15] for
checking well-parenthesized expressions. At high level, it also behaves similarly. It performs
one pass in each direction and makes an on-line compression of past information in at most
logN hashcodes. While this compression can lose information, the compression technique
ensures that a mistake is always detected in one of the two directions. Nonetheless our
algorithm differs on two main points. First, unlike parenthesized expressions, PQ is not
symmetric. Therefore one has to design an algorithm for each pass. Second, the one-pass
algorithm for PQ [7] is technically more advanced than the one of [15]. Thus designing a
bidirectional 2-pass algorithm for PQ is more challenging.

Theorems 3 and 4 point out a strange situation but not isolated at all. Languages studied
in [9, 15, 7, 14] and in this paper have space complexity Θ(

√
Npolylog(N)) for a single pass,

Ω(
√
N/p) for p passes in the same direction, and polylog(N) for 2 passes but one in each

direction. We hope this paper makes progress in the study of that phenomenon.

2 Preliminaries

In streaming algorithms (see [16] for an introduction), a pass on an input w ∈ ΣN , for some
alphabet Σ, means that w is given as an input stream w[1], w[2], . . . , w[N], which arrives
sequentially, i.e., letter by letter in this order. For simplicity, we assume throughout this
article that the input length N is always given to the algorithm in advance. Nonetheless, all
our algorithms can be adapted to the case in which N is unknown until the end of a pass.

I Definition 5 (Streaming algorithm). A p-pass randomized streaming algorithm with space
s(N) and time t(N) is a randomized algorithm that, given w ∈ ΣN as an input stream,

performs p sequential passes on w;
maintains a memory space of size at most s(N) bits while reading w;
has running time at most t(N) per processed letter w[i];
has preprocessing and postprocessing time at most t(N).

The algorithm is bidirectional if it is allowed to access to the input in the reverse order, after
reaching the end of the input. Then p is the total number of passes in either direction.

The proof of our lower bound uses the language of communication complexity with
multi-players, and is based on information theory arguments. We consider number-in-hand
and message-passing communication protocols. Each player is given some input, and can
communicate with another player according to the rules of the protocol. Our players are

N. François and F. Magniez 457

embedded into a directed circle, so that each player can receive (resp. transmit) a message
from its unique predecessor (resp. successor). Each player send a message after receiving
one, until the end of the protocol is reached. Players have no space and time restriction.
Only the number of rounds and the size of messages are constrained.

Consider a randomized multi-player communication protocol P . We consider only two
types of random source, that we call coins. Each player has access to its own independent
source of private coins. In addition, all players share another common source of public coins.
The output of P is announced by the last player. This is therefore the last message of the
last player. We say that P is with bounded error ε when P errs with probability at most ε
over the private and public coins. The transcript Π of P is the concatenation of all messages
sent by all players, including all public coins. In particular, it contains the output of P , since
it is given by the last player. Given a subset S of players, we let ΠS be the concatenation of
all messages sent by players in S, including again all public coins.

We now remind the usual notions of entropy H and mutual information I. Let X,Y, Z be
random variables. Then H(X) = −Ex←X log Pr(X = x), H(X|Y = y) = −Ey←Y log Pr(X =
x|Y = y), H(X|Y) = Ey←Y H(X|Y = y), and I(X : Y |Z) = H(X|Z) − H(X|Y,Z). The
entropy and the mutual information are non negative and satisfy I(X : Y |Z) = I(Y : X|Z).

The mutual information between two random variables is connected to the Hellinger
distance h between their respective distribution probabilities. Given a random variable X
we also denote by X its underlying distribution.

I Proposition 6 (Average encoding). Let X,Y be random variables.
Then Ey←Y h2(X|Y =y, X) ≤ κI(X : Y), where κ = ln 2

2 .

The Hellinger distance also generalizes the cut-and-paste lemma to randomized protocols.

I Proposition 7 (Cut and paste). Let P be a 2-player randomized protocol. Let Π(x, y)
denote the random variable representing the transcript in P when Players A,B have resp.
inputs x, y. Then h(Π(x, y),Π(u, v)) = h(Π(x, v),Π(u, y)), for all pairs (x, y) and (u, v).

Last we use that the square of the Hellinger distance is convex, and the following
connection to the more convention `1-distance: h(X,Y)2 ≤ 1

2‖X − Y ‖1 ≤
√

2h(X,Y). For a
reference on these results, see [10].

3 Lower bound for PQ-TS

The proof of our lower bound consists in first translating it into a 3m-player communication
problem, for some largem; then reducing the number of players to 3 using the information cost
approach; and last studying the base case of 3 players using information theory arguments.

3.1 From streaming algorithms to communication protocols
In this section, we write a instead of ins(a) and ā instead of ext(a). Consider the following
set of hard instances of size N = (2n+ 2)m:

Raindrops(m,n) (see LHS of Figure 1)
For i = 1, 2, . . . ,m, repeat the following motif:

For j = 1, 2, . . . , n, insert either vi,j = 3(ni− j) or vi,j = 3(ni− j) + 2
Insert either ai = 3(ni−(ki−1))+1 or ai = 3(ni−ki)+1, for some ki ∈ {2, . . . , n}
Extract vi,1, vi,2, . . . , vi,ki−1, ai in decreasing order

Extract everything left in decreasing order

STACS’13

458 Streaming Complexity of Checking Priority Queues

2

5

8
9

7

9
8

7

14

17
18

23

16

23

18

16
17

14

5

2

i = 1

k = 3

i = 2

k = 3

i = 3

2

5

8
9

7

9
8

7

14

17
18

23

16

23

18

16
17

14

5

2

i = 1

i = 2

i = 3

A1 B1

A2 B2 C2

C1

Figure 1 Left: Instance of Raindrops(m, 4) with one error: 17 is extracted after 16. Insertions
ai are circled. Right: Cutting Raindrops(m, 4) into 3m pieces to make it a communication problem.
Players’ input are within each corresponding region.

Observe that such an instance is in Collection. One can compute the timestamps for
each value by maintaining only O(logN) additionnal bits. Last, there is only one potential
error in each motif that can make it outside of PQ-TS. Indeed, vi,1, vi,2, . . . , vi,ki−1, ai are
in decreasing order up to a switch between ai and vi,ki−1.

Given such an instance as a stream, an algorithm for PQ-TS must decide if an error
occurs between ai and vi,ki

, for some i. Intuitively, if the memory space is less than εn, for a
small enough constant ε > 0, then the algorithm cannot remember all the values (vi,j)j when
ai is extracted, and therefore cannot check a potential error with ai. The next opportunity is
during the last sequence of extractions. But then, the algorithm has to remember all values
(ai)i, which is again impossible if the memory space is less than εm.

In order to formalize this intuition, Lemma 8 first translates our problem into a commu-
nication one between 3m players in the same way as [15], as shown on the RHS of Figure 1.
Then we analyze its complexity using information theory arguments in Section 3.2.

Any insertion and extraction of an instance in Raindrops(m,n) can be described by its
index and a single bit. Let xi[j] ∈ {0, 1} such that vi,j = 3(ni − j) + 2xi[j]. Similarly, let
di ∈ {0, 1} such that ai = 3(ni−ki)+1+3di. For simplicity, we write x instead of (xi)1≤i≤m.
Similarly, we use the notations k and d. Then our related communication problem is:

WeakIndex(m,n)
Input for players (Ai, Bi, Ci)1≤i≤m:

Player Ai has a sequence xi ∈ {0, 1}n

Player Bi has xi[1, ki − 1], with ki ∈ {2, . . . , n} and di ∈ {0, 1}
Player Ci has xi[ki, n]

Output: fm(x,k,d) =
∨m

i=1 f(xi, ki, di), where f(x, k, d) = [(d = 0) ∧ (x[k] = 1)]
Communication settings:

One round: each player sends a message to the next player according to the
diagram A1 → B1 → A2 → · · · → Bm → Cm → Cm−1 → · · · → C1.
Multiple rounds: If there is at least one round left, C1 sends a message to A1,
and then players continue with the next round.

N. François and F. Magniez 459

I Lemma 8. Assume there is a p-pass randomized streaming algorithm for deciding if an
instance of Raindrops(n,m) is in PQ-TS(3mn) with memory space s(m,n) and bounded
error ε. Then there is a p-round randomized protocol for WeakIndex(n,m) with bounded
error ε such that each message has size at most s(m,n).

We are now ready to give the structure of the proof of Theorem 3, which has techniques
based on information theory. Define the following collapsing distribution µ0 of hard inputs
(x, k, d), encoding instances of Raindrops(1, n), where f always takes value 0. Distribution
µ0 is such that (x, k) is uniform on {0, 1}n × {2, . . . , n} and, given x, k, the bit d ∈ {0, 1} is
uniform if x[k] = 0, and d = 1 if x[k] = 1. From now on, (X,K,D) are random variables
distributed according to µ0, and (x, k, d) denote any of their values.

Then the proof of Theorem 3 consists in studying the information cost of any com-
munication protocol for WeakIndex(n,m), which is a lower bound on its communication
complexity. Using that µ0 is collapsing for f , Lemma 9 establishes a direct sum on the
information cost of WeakIndex(n,m). Then, even if f is constant on µ0, Lemma 12 lower
bounds the information cost of a single instance of WeakIndex(n, 1).

Proof of Theorem 3. Let n,N be positive integers such that N = (2n+ 2)n. Assume that
there exists a p-pass randomized algorithm that recognizes PQ-TS(3N/2), with memory
space αn and bounded error ε, for inputs of size N . Then, by Lemma 8, there a p-round
randomized protocol P for WeakIndex(n, n) such that each message has size at most αn.
By Lemma 9, one can derive from P another (p + 1)-round randomized protocol P ′ for
WeakIndex(n, 1) with bounded error ε, and transcript Π′ satisfying |Π′| ≤ 3(t + 1)αn
and max {I(D : Π′B |X,K), I(K,D : Π′C |X)} ≤ (p + 1)α. Then by Lemma 12, 3(p + 1)α ≥
(1− 2ε)/10, that is α = O(1/p), concluding the proof. J

3.2 Communication complexity lower bound
We first reduce the general problem WeakIndex(n,m) with 3m players to a single instance
of WeakIndex(n, 1) with 3 players. In order to do so we exploit the direct sum property of
the information cost. The use of a collapsing distribution where f is always 0 is crucial.

I Lemma 9. If there is a p-round randomized protocol P for WeakIndex(n,m) with bounded
error ε and messages of size at most s(m,n), then there is a (p + 1)-round randomized
protocol P ′ for WeakIndex(n, 1) with bounded error ε, and transcript P ′ satisfying |Π′| ≤
3(p+ 1)s(m,n) and max {I(D : Π′B |X,K), I(K,D : Π′C |X)} ≤ p+1

m s(m,n).

Sketch of proof. Given a protocol P , we show how to construct another protocol P ′ for any
instance (x, k, d) of WeakIndex(n, 1). In order to avoid any confusion, we denote by A, B
and C the three players of P ′, and by (Ai, Bi, Ci)i the ones of P .

Protocol P ′
Using public coins, all players generate uniformly at random j ∈ {1, . . . ,m}, and
xi ∈ {0, 1}n for i 6= j

Players A, B and C set respectively their inputs to the ones of Aj , Bj , Cj

For all i > j, Player B generates, using its private coins, uniformly at random ki ∈
{2, . . . , n}, and then it generates uniformly at random di such that f(xi, ki, di) = 0
For all i < j, Player C generates, using its private coins, uniformly at random ki ∈
{2, . . . , n}, and then it generates uniformly at random di such that f(xi, ki, di) = 0
Players A, B and C run P as follows. A simulates Aj only, B simulates Bj and
(Ai, Bi, Ci)i>j , and C simulates Cj and (Ai, Bi, Ci)i<j .

STACS’13

460 Streaming Complexity of Checking Priority Queues

Observe that A starts the protocol if j = 1, and C starts otherwise. Moreover C stops the
simulation after p rounds if j = 1, and after p+ 1 rounds otherwise. For all i 6= j, entries are
generated such that f(xi, ki, ai) = 0, therefore fm(X,k,d) = f(xj , kj , aj) = f(x, k, a), and
P ′ has the same bounded error than P .

By applying the chain rule, one can see that P ′ satisfies the required conditions of the
lemma. J

We now prove a trade-off between the bounded error of a protocol for a single instance of
WeakIndex(n, 1) and its information cost. The proof involves some of the tools of [10] but
with some additional obstacles to apply them. The inherent difficulty is due to that we have
3 players whereas the cute-and-paste property applies to 2-player protocols. Therefore we
have to group 2 players together.

Given some parameters (x, k, a) for an input of WeakIndex(n, 1), we denote by Π(x, k, a)
the random variable describing the transcript Π of our protocol. We start by two lemmas
exploiting the average encoding theorem (proofs omitted).

I Lemma 10. Let P be a randomized protocol for WeakIndex(n, 1) with transcript Π
satisfying |Π| ≤ αn and I(K,D : ΠC |X) ≤ α. Then

E
x[1,l−1],l

h2(Π(x[1, l − 1]0X[l + 1, n], l, 1),Π(x[1, l − 1]1X[l + 1, n], l, 1)) ≤ 28α,

where l ∈ [n
2 + 1, n] and x[1, l − 1] are uniformly distributed.

I Lemma 11. Let P be a randomized protocol for WeakIndex(n, 1) with transcript Π
satisfying I(D : ΠB |X,K) ≤ α. Then

E
x[1,l−1],l

h2(Π(x[1, l − 1]0X[l + 1, n], l, 0),Π(x[1, l − 1]0X[l + 1, n], l, 1)) ≤ 12α,

where l ∈ [n
2 + 1, n] and x[1, l − 1] are uniformly distributed.

We now end with the main lemma which combines both previous ones and applies the
cut-and-paste property, where Players A,C are grouped.

I Lemma 12. Let P be a randomized protocol for WeakIndex(n, 1) with bounded error
ε, and transcript Π satisfying |Π| ≤ αn and max {I(D : ΠB |X,K), I(K,D : ΠC |X)} ≤ α.
Then α ≥ (1− 2ε)/10.

Proof. Let L be a uniform integer random variable in [n
2 + 1, n]. Remind that we enforce

the output of P to be part of Π. Therefore, any player, and in particular B, can compute f
with bounded error ε given Π. Since f(x[1, l− 1]0X[l+ 1, n], l, 0) = 0 and f(x[1, l− 1]1X[l+
1, n], l, 1) = 1, the error parameter ε must satisfies

E
x[1,l−1],l

‖Π(x[1, l − 1]0X[l + 1, n], l, 0)−Π(x[1, l − 1]1X[l + 1, n], l, 0)‖1 ≥ 2(1− 2ε).

The rest of the proof consists in upper bounding the LHS by 19α.
Applying the triangle inequality and that (u + v)2 ≤ 2(u2 + v2) on the inequalities of

Lemmas 10 and 11 gives

E
x[1,l−1],l

h2(Π(x[1, l − 1]0X[l + 1, n], l, 0),Π(x[1, l − 1]1X[l + 1, n], l, 1)) ≤ 30α.

We then apply the cut-and-paste property by considering (A,C) as a single player with
transcript ΠA,C . Therefore

E
x[1,l−1],l

h2(Π(x[1, l − 1]0X[l + 1, n], l, 1),Π(x[1, l − 1]1X[l + 1, n], l, 0)) ≤ 30α.

N. François and F. Magniez 461

Combining again with the inequality from Lemma 11 gives

E
x[1,l−1],l

h2(Π(x[1, l − 1]0X[l + 1, n], l, 0),Π(x[1, l − 1]1X[l + 1, n], l, 0)) ≤ 42α.

Last, we get the requested upper bound by using the connexion between the Hellinger
distance and the `1-distance, and the convexity of the square function. J

4 Bidirectional streaming algorithm for PQ

Remember that in this section our stream is given without any timestamps. Therefore we
consider in this section only streams w of ins(a), ext(a), where a ∈ [0, U]. For the sake of
clarity, we assume for now that the stream has no duplicate. Our algorithms can be extended
to the general case, but the technical difficulties shadow the main ideas.

Up to padding we can assume that N is a power of 2: we append a sequence of
ins(a)ext(a)ins(a+ 1)ext(a+ 1) . . . of suitable length, where a is large enough so that there
is no duplicate (assuming that w is of even size, otherwise w 6∈ PQ(U)). We use O(logN)
bits of memory to store, after the first pass, the number of letters padded.

We use a hash function based on the one used by the Karp-Rabin algorithm for pattern
matching. For all this section, let p be a prime number in {max(2U+1, N c+1), . . . , 2 max(2U+
1, N c+1)}, for some fixed constant c ≥ 1. Since our hash function is linear we only define it
for single insertion/extraction as

hash(ins(a)) = αa mod p, and hash(ext(a)) = −αa mod p,

where α is a randomly chosen integer in [0, p− 1]. This is the unique source of randomness
of our algorithm. A hashcode h encodes a sequence w if h = hash(w) as a formal polynomial
in α. In that case we say that h includes w[i], for all i. Moreover w is balanced if the same
integers have been inserted and extracted. In that case it must be that h = 0. We also say
that h is balanced it it encodes a balanced sequence w. The converse is also true with high
probability by the Schwartz-Zippel lemma.

I Fact 13. Let w be some unbalanced sequence. Then Pr(hash(w) = 0) ≤ N
p ≤

1
Nc .

The forward-pass algorithm was introduced in [7], but the reverse-pass one is even simpler.
As a warming up, we start by introducing the later algorithm. In order to keep it simple to
understand, we do not optimize it fully. Last define the instruction Update(h, v) that returns
(h+ hash(v) mod p) and updates h to that value.

4.1 One-reverse-pass algorithm for PQ
Our reverse-pass algorithm decomposes the stream w into blocks. We call a valley an
extraction w[t] = ext(a) with w[t+ 1] = ins(b). A new block starts at each valley. To the
i-th block we associate a hashcode hi and an integer mi. Hashcode hi encodes all extractions
within the block and matching insertions. Integer mi is the minimum of extractions in the
block. With the values (mi)i, one can encode insertions in the correct hi if w ∈ PQ. Observe
that we use index notations for block indices and bracket notations for stream positions.

Algorithm 1 uses memory space O(r), where r is the number of valleys in w. We could
make it run with memory space O(

√
N logN) by reducing the number of valleys as in [7].

We do not need to as we use another compression in the two-pass algorithm.
We first state a crucial property of Algorithm 1, and then show that it satisfies Theorem 15,

when there is no duplicate. We remind that we process the stream from right to left.

STACS’13

462 Streaming Complexity of Checking Priority Queues

Algorithm 1 One-reverse-pass algorithm for PQ
1 m0 ← −∞; h0 ← 0; t← N ; i← 0 // i is called the block index
2 While t > 0
3 If w[t] = ins(a)
4 k ← max{j ≤ i : mj ≤ a}; // Compute the hashcode index of a

5 Update(hk, w[t])
6 Else w[t] = ext(a)
7 If w[t + 1] = ins(b) // This is a valley . We start a new block
8 i← i + 1; mi ← a; hi ← 0 // Create a new hashcode
9 Else w[t + 1] = ext(b)

10 Check(a ≥ b) // Check that extractions are well - ordered
11 Update(hi, w[t])
12 t← t− 1
13 For j = 0 to i: Check (hj = 0) // Check that hashcodes are balanced w.h.p.
14 Accept // w succeeded to all checks

I Lemma 14. Consider Algorithm 1 right after processing ins(a). Assume that ext(a) has
been already processed. Let hk, hk′ be the respective hashcodes including ext(a), ins(a). Then
k = k′ if and only if all ext(b) occurring between ext(a) and ins(a) satisfy b > a.

I Theorem 15. There is a 1-reverse-pass randomized streaming algorithm for PQ(U) with
memory space O(r(logN + logU)) and one-sided bounded error N−c, for inputs of length N
with r valleys, and any constant c > 0.

Proof. We show that Algorithm 1 suits the conditions, assuming there is no duplicate. Let
w ∈ PQ(U). Then w always passes the test at line 10. Moreover, by Lemma 14, each
insertion ins(a) is necessarily in the same hashcode than its matching extraction ext(a).
Therefore, all hashcodes equal 0 at line 13 since they are balanced. In conclusion, the
algorithm accepts w with probability 1.

Assume now that w 6∈ PQ. First we show that unbalanced w are rejected with high
probability, that is at least 1−N−c, at line 13, if they are not rejected before. Indeed, since
each w[t] is encoded in some hj , at least one hj must be unbalanced. Then by Fact 13, the
algorithm rejects w.h.p. We end the proof assuming w balanced. We remind that we process
the stream from right to left. The two remaining possible errors are: (1) ins(a) is processed
before ext(a), for some a; and (2) ext(a), ext(b), ins(a) are processed in this order with
b < a and possibly intermediate insertions/extractions. In both cases, we show that some
hashcodes are unbalanced at line 13, and therefore fail the test w.h.p by Fact 13, except if
the algorithm rejects before.

Consider case (1). Since ins(a) is processed before ext(a), there is at least one valley
between ins(a) and ext(a). Therefore ins(a) and ext(a) are encoded into different hashcodes,
that are unbalanced at line 13. Consider now case (2). Lemma 14 gives that ext(a) and
ins(a) are encoded in different hashcodes, that are again unbalanced at line 13. J

4.2 Bidirectional two-pass algorithm
Our algorithm performs one pass in each direction using Algorithms 2 and 2. We use the
hierarchical data structure of [15] in order to reduce the number of blocks. A block of size 2i

is of the form [(q − 1)2i + 1, q2i], for 1 ≤ q ≤ N/2i. Observe that, given two such blocks,
either they are disjoint or one is included in the other. We decompose dynamically the letters
of w, that have been already processed, into nested blocks of 2i letters as follows. Each new

N. François and F. Magniez 463

ext(b) ext(a)
ext(mB) ext(mC)

τ ρtB tC

ins(a): case 1 ins(a): case 2 ins(a): case 3 ins(a): case 1

ρ′ ρ′ ρ′ ρ′

B C

Figure 2 Relative positions of insertions and extractions used in the proof of Theorem 4

Algorithm 2 Pass from left to right
1 S ← [(0,−∞, 0)] // Initialization of S

2 While stream is not empty
3 Read(next letter v on stream) // See below
4 While the 2 topmost elements of S have same block size `

5 (h1, m1, `)←Pop(S); (h2, m2, `)←Pop(S)
6 Push(S,(h1 + h2 mod p, min(m1, m2), 2`)) // Merge of 2 blocks
7 Check(S = [(0,−∞, 0), (0, 0, N)])
8 Return
9

10 Function Read(v):
11 Case v = ins(a) // When reading an insertion
12 Let (h, m, `) be the first item of S from top such that a ≥ m

13 Replace (h, m, `) by (Update(h, v), m, `)
14 Push (S, (0, +∞, 1))
15 Case v = ext(a) // When reading an extraction
16 For all items (h, m, `) on S such that m > a: Check(h = 0)
17 Let (h, m, `) be the first item of S from top such that a > m

18 Replace (h, m, `) by (Update(h, v), m, `)
19 Push(S,(0, a, 1))

processed letter of w defines a new block. When two blocks have same size, they merge. All
processed blocks are pushed on a stack. Therefore, only the two topmost blocks of the stack
may potentially merge. Because the size of each block is a power of 2 and at most two blocks
have the same size (before merging), there are at most logN + 1 blocks at any time.

Moreover, since our stream size is a power of 2, all blocks eventually appear in the
hierarchical decomposition, whether we read the stream from left to right or from right to
left. In fact, if two same-sized blocks appear simultaneously in one decomposition before
merging, the same is true in the other decomposition. This point is crucial for our analysis.

Our algorithm uses the following description of a block B: its hashcode hB , the minimum
mB of its extractions, and its size `B . For the analysis, let tB be such that w[tB] = ext(mB).
Only hB can change without B being merged with another block. On the pass from right
to left, all extractions from the block and matching insertions are included in hB. On the
pass from left to right, insertions are included in the hashcode of the earliest possible block
where they could have been, and extractions are included with their matching insertions.
The minimums (mB)B are used to decide where to include values. Observe the importance
of checking hB = 0 during the execution and not at the end, when only one block is left.

When there is some ambiguity, we denote by h→B and h←B the hashcodes for the left-to-right
and right-to-left passes. Observe that mB , tB , `B are identical in both directions.

Proof of Theorem 4. We show that execution of both Algorithms 2 and 3 suits the condi-
tions, assuming no duplicates. The space constraints are satisfied because elements of S have
size O(logN + logU) and S has size O(logN). The processing time is from inspection.

STACS’13

464 Streaming Complexity of Checking Priority Queues

Algorithm 3 Pass from right to left
1 S ← []; // Initialization of S

2 While stream is not empty
3 Read(next letter v on stream) // See below
4 While the 2 topmost elements of S have same block size `

5 (h1, m1, `)←Pop(S); (h2, m2, `)←Pop(S)
6 Push(S,(h1 + h2 mod p, min(m1, m2), 2`)) // Merge of 2 blocks
7 Check(S = [(0, 0, N)])}
8 Return
9

10 Function Read(v):
11 Case v = ins(a) // When reading an insertion
12 Let (h, m, `) be the first item of S from top such that a ≥ m

13 Replace (h, m, `) by (Update(h, v), m, `)
14 Push (S, (0, +∞, 1))
15 Case v = ext(a) // When reading an extraction
16 For all items (h, m, `) on S such that m > a: Check (h = 0)
17 Push(S,(hash(v), a, 1))

As with Theorem 15, inputs in PQ(U) are accepted with probability 1, and unbalanced
inputs are rejected with high probability (at least 1−N−c). Let w 6∈ PQ be balanced. For
ease of notations, let w[−1] = ins(−∞) and w[0] = ext(−∞). Then, there are τ < ρ such
that w[τ] = ext(b), w[ρ] = ext(a), with a > b and w[t] 6= ins(a) for all τ < t < ρ.

Among the pairs (τ, ρ), consider the ones with the smallest ρ. From those, select the one
with the smallest b, with w[τ] = ext(b). Let B, C be the largest possible disjoint blocks
such that τ is in B and ρ in C. Then B and C have same size, are contiguous, and appear
simultaneously in each direction before they merge. Let ρ′ and τ ′ be such that w[ρ′] = ins(a)
and w[τ ′] = ins(b). Then w[t] is an insertion for all τ < t < ρ by minimality of ρ and b.
Indeed if w[t] = ext(c) either b > c, contradicting the minimality of b, or c > b and (τ, t),
contradicting the minimality of ρ. In particular, tC ≥ ρ and tB ≤ τ . Similarly, τ ′ < τ .

We distinguish three cases based on the position ρ′ of ins(a) (see Figure 2): ρ′ 6∈ [tB , tC],
tB < ρ′ < τ , and ρ < ρ′ < tC . These cases determine in which hashcode ins(a) is included.
We analyze Algorithms 2 and 3 when some letter is processed before blocks potentially merge.

Case 1: ρ′ 6∈ [tB , tC]. Then h→B and h←C are unbalanced respectively when w[tC] and w[tB]
are processed; therefore w.h.p. Algorithm 2 detects h→B 6= 0 or Algorithm 3 detects h←C 6= 0,
depending on whether mB > mC . The full proof is omitted because of space constraints.

Case 2: tB < ρ′ < τ . We show that when Algorithm 3 processes w[tB] = ext(mB), it
checks h←D = 0 at line 16 for some h←D including ins(a) but not ext(a). Thus it rejects w.h.p.

When w[ρ′] = ins(a) is processed on the right-to-left pass, τ ∈ B1 with B1 a block in
the stack. τ ∈ B, therefore B1 intersects B. Because B1 6⊆ B, we have B1 ⊆ B. Because
w[τ] = ext(b), we have a > b ≥ mB1 , and block B1 is eligible at line 12 of Algorithm 3,
meaning that w[ρ′] = ins(a) is included in either h←B1

or a more recent hashcode h←B2
. Since

ρ′ ∈ B, again B2 ⊆ B. Last, when Algorithm 3 processes w[tB] = ext(mB), since we are
still within B, some hashcode hB3 , with B3 ⊆ B, includes w[ρ′]. Moreover, h←B3

does not
include w[ρ] = ext(a) since ρ ∈ C and C comes before B. Last, mB3 > mB , by definition of
mB . Hence, Algorithm 3 checks h←B3

= 0 at line 16 when processing w[tB]. B3 satisfies the
conditions for D when w[tB] is processed, and Algorithm 3 rejects w.h.p.

Case 3: ρ < ρ′ < tC . The proof is the same as case 2, replacing τ , B, B1, etc.. with ρ, C,
C1, etc... and Algorithm 2 with Algorithm 3. Note that we only have a ≥ mC1 this time. J

N. François and F. Magniez 465

4.3 Generalization when duplicates occur
We maintain two additional parameters δB and CB for each block B. The difference between
the number of insertions and extractions included in hB is stored in δB . Whenever δB = 0,
we check hB = 0. The number of unmatched occurrences of ins(mB) for the left-to-right
pass (resp. ext(mB) for the right-to-left pass) is stored in CB . We can then appropriately
determine whether each ext(mB) (resp. ins(mB)) should be included in hB .

The inequality at line 12 of Algorithm 2 has to become strict instead of large, which the
proof of case 3 of the theorem longer and breaks the symmetry.

References
1 N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency

moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.
2 Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An information statistics

approach to data stream and communication complexity. Journal of Computer and System
Sciences, 68(4):702–732, 2004.

3 M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of
memories. Algorithmica, 12(2):225–244, 1994.

4 M. Blum and S. Kannan. Designing programs that check their work. Journal of the ACM,
42(1):269–291, 1995.

5 M. Braverman. Interactive information complexity. In Proc. of ACM Symp. on Theory of
Computing, pages 505–524, 2012.

6 M. Braverman and A. Rao. Information equals amortized communication. In 748-757,
editor, Proc. of IEEE Symp. on Foundations of Computer Science, 2011.

7 A. Chakrabarti, G. Cormode, R. Kondapally, and A. McGregor. Information cost tradeoffs
for augmented index and streaming language recognition. In Proc. of IEEE Symp. on
Foundations of Computer Science, pages 387–396, 2010.

8 A. Chakrabarti, Y. Shi, A. Wirth, and A. C.-C. Yao. Informational complexity and the
direct sum problem for simultaneous message complexity. In Proc. of IEEE Symp. on
Foundations of Computer Science, pages 270–278, 2001.

9 M. Chu, S. Kannan, and A. McGregor. Checking and spot-checking the correctness of
priority queues. In Proc. of Int. Colloquium on Automata, Languages and Programming,
pages 728–739, 2007.

10 R. Jain and A. Nayak. The space complexity of recognizing well-parenthesized expressions
in the streaming model: the index function revisited, 2010. ECCC Tech. Rep. TR10-071.

11 R. Jain, J. Radhakrishnan, and P. Sen. A lower bound for the bounded round quantum
communication complexity of Set Disjointness. In Proc. of IEEE Symp. on Foundations of
Computer Science, pages 220–229, 2003.

12 T. S. Jayram, Ravi Kumar, and D.Sivakumar. Two applications of information complexity.
In Proc. of ACM Symp. on Theory of Computing, pages 673–682, 2003.

13 I. Kerenidis, S. Laplante, V. Lerays, J. Roland, and D. Xiao. Lower bounds on information
complexity via zero-communication protocols and applications. In Proc. of IEEE Symp. on
Foundations of Computer Science, 2012. To appear.

14 C. Konrad and F. Magniez. Validating XML documents in the streaming model with
external memory. In Proc. of Int. Conf. on Database Theory, pages 34–45, 2012.

15 F. Magniez, C. Mathieu, and A. Nayak. Recognizing well-parenthesized expressions in the
streaming model. In Proc. of ACM Symp. on Theory of Computing, pages 261–270, 2010.

16 S. Muthukrishnan. Data Streams: Algorithms and Applications. Now Publishers Inc., 2005.
17 M. Saks and X. Sun. Space lower bounds for distance approximation in the data stream

model. In Proc. of ACM Symp. on Theory of Computing, pages 360–369, 2002.

STACS’13

Deterministic algorithms for skewed matrix
products∗

Konstantin Kutzkov

IT University of Copenhagen
Denmark
konk@itu.dk

Abstract
Recently, Pagh presented a randomized approximation algorithm for the multiplication of

real-valued matrices building upon work for detecting the most frequent items in data streams.
We continue this line of research and present new deterministic matrix multiplication algorithms.

Motivated by applications in data mining, we first consider the case of real-valued, nonneg-
ative n-by-n input matrices A and B, and show how to obtain a deterministic approximation of
the weights of individual entries, as well as the entrywise p-norm, of the product AB. The al-
gorithm is simple, space efficient and runs in one pass over the input matrices. For a user defined
b ∈ (0, n2) the algorithm runs in time O(nb+n·Sort(n)) and space O(n+b) and returns an approx-
imation of the entries of AB within an additive factor of ‖AB‖E1/b, where ‖C‖E1 =

∑
i,j |Cij |

is the entrywise 1-norm of a matrix C and Sort(n) is the time required to sort n real numbers in
linear space. Building upon a result by Berinde et al. we show that for skewed matrix products
(a common situation in many real-life applications) the algorithm is more efficient and achieves
better approximation guarantees than previously known randomized algorithms.

When the input matrices are not restricted to nonnegative entries, we present a new determin-
istic group testing algorithm detecting nonzero entries in the matrix product with large absolute
value. The algorithm is clearly outperformed by randomized matrix multiplication algorithms,
but as a byproduct we obtain the first O(n2+ε)-time deterministic algorithm for matrix products
with O(

√
n) nonzero entries.

1998 ACM Subject Classification F.2.0 Analysis of algorithms and problem complexity

Keywords and phrases approximate deterministic memory-efficient matrix multiplication

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.466

1 Introduction

The complexity of matrix multiplication is one of the fundamental problems in theoretical
computer science. Since Strassen’s sub-cubic algorithm for matrix multiplication over a
ring from the late 1960’s [33], the topic has received considerable attention, see [9] for a
historical overview on the subject. It is conjectured that matrix multiplication admits an
algorithm running in time O(n2+ε) for any ε > 0. For more than 20 years the record
holder was the algorithm by Coppersmith and Winograd [14] running in time O(n2.376).
Recently two results improving on [14] were announced. In his PhD thesis Stothers [32]
presents a refinement of the Coppersmith-Winograd algorithm running in time O(n2.3737)
and Vassilevska Williams [35] developes a general framework for obtaining a tighter upper
bound on the complexity of the Coppersmith-Winograd algorithm. The latter yields the

∗ Work supported by the Danish National Research Council under the Sapere Aude program.

© K. Kutzkov;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 466–477

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.466
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

K. Kutzkov 467

best known bound of O(n2.3727). Several algorithms computing exactly the matrix product
for special classes have been designed. For example, algorithms with running time better
than O(n2.3727) are known for Boolean matrix multiplication with sparse output [25] or for
the case when the input or output matrices are sparse [2, 34]. In a recent work Iwen and
Spencer [23] present a new class of matrices whose product can be computed in time O(n2+ε)
by a deterministic algorithm: namely when the output matrix is guaranteed to contain at
most n0.29462 non-zero entries in each column (or by symmetry row). All improved algorithms
use as a black-box the algebraic matrix multiplication algorithm which, unfortunately, is
only of theoretical importance. It uses sophisticated algebraic approaches resulting in large
constants hidden in the big-Oh notation and does not admit an efficient implementation.
This motivates the need of simple “combinatorial-like" algorithms.

Approximate matrix multiplication. The first approximation algorithm with rigorously
understood complexity by Cohen and Lewis is based on sampling [13]. For input matrices
with nonnegative entries they show a concentration around the estimate for individual entries
in the product matrix with high probability.

The amount of data to be handled has been growing at a faster rate than the available
memory in modern computers. Algorithms for massive data sets, where only sequential
access to the input is allowed, have become a major research topic in computer science in
the last decade. Drineas et al. [18] first recognized the need for memory-efficient methods
for matrix multiplication when access to single columns and rows of the input matrices
is possible. They present a randomized algorithm for approximating the product of two
matrices based on sampling. The complexity of the algorithm as well as its accuracy depend
on user-defined parameters. The algorithm is “pass-efficient" since columns and rows of the
input matrices are sequentially loaded into memory. The obtained approximation guarantees
are expressed in terms of the Frobenius norm of the input matrices and the user-defined
parameters but their method does not result in a strong guarantee for individual entries in
the output matrix. Sarlós [30] observed that instead of sampling rows and columns one can
use random projections to obtain a sketch of the matrix product. A notable difference to [18]
is that by sketching one obtains an additive error for each individual entry depending on the
2-norm of the corresponding row and column vector in the input matrices.

Recently Pagh [28] introduced a new randomized approximation algorithm. Instead of
sketching the input matrices and then multiplying the resulting smaller matrices, we treat
the product as a stream of outer products and sketch each outer product. Using Fast Fourier
Transformation in a clever way, Pagh shows how to efficiently adapt the Count-Sketch
algorithm [11] to an outer product. The algorithm runs in one pass over the input matrices
and provides approximation guarantees in terms of the Frobenius norm of their product.

Our contribution.
A new algorithm for the case where the input matrices consist of nonnegative entries only.
This is the first nontrivial deterministic approximation algorithm for the multiplication
of nonnegative matrices in a streaming setting. Motivated by practical applications, we
analyze the approximation guarantee and the algorithm complexity under the assumption
that the entries adhere to Zipfian distribution. We compare it to previously known
randomized algorithms and show that for certain natural settings it is more efficient and
achieves better approximation guarantees.
We present a new matrix multiplication algorithm for arbitrary real-valued input matrices
by adapting the group testing algorithm for streams with updates in the turnstile model

STACS’13

468 Deterministic algorithms for skewed matrix products

outlined in [27] for detecting the entries with large absolute value in matrix product. As
a byproduct we obtain the first deterministic algorithm running in O(n2+ε) steps for
matrix products with O(

√
n) nonzero entries.

Note that our algorithms easily generalize to rectangular matrix multiplication but for
the ease of presentation we consider the case of square input matrices. Also, we will state the
time complexity of our first algorithm using a function Sort(n) denoting the running time of
a linear space deterministic sorting algorithm. Clearly, Sort(n) = O(n log n) for comparison
based sorting but under some assumptions on the elements to be sorted also better bounds
are known, e.g. the O(n log log n) time integer sorting algorithm by Han [21].

2 Preliminaries

2.1 Definitions
Linear algebra. Let R+ denote the field of nonnegative real numbers. Given matrices
A,B ∈ R+

n×n we denote their product by C := AB. The ith row of a matrix A is written
as Ai,∗, the jth column as A∗,j . We use the term entry to identify a position in the matrix,
not its value. Thus, the weight of the entry (i, j) in A is the value in the ith row and jth
column, Aij , i, j ∈ [n], for [n] := {0, 1, . . . , n− 1}. When clear from the context however, we
will omit weight. For example, nonzero entries will refer to entries whose weight is different
from 0 and by heavy entries we mean entries with large weight.

The outer product of a column vector u ∈ R+
n and a row vector v ∈ R+

n is a matrix
uv ∈ R+

n×n such that uvi,j = uivj , i, j ∈ [n]. The rank of a positive real number a ∈ R+ in
a matrix A, denoted as rA(a), is the number of entries strictly smaller than a, plus 1. Note
that a does not need to be present in A.

The p-norm of a vector u ∈ Rn is ‖u‖p = (
∑n
i=1 |ui|p)

1
p for p > 0. Similarly, we define

the entrywise p-norm of a matrix A ∈ Rn×n as ‖A‖Ep := (
∑
i,j∈[n] |Ai,j |p)1/p for p ∈ N. The

case p = 2 is the Frobenius norm of A denoted as ‖A‖F . The k-residual entrywise p-norm
‖A‖Ekp is the entrywise p-norm of the matrix obtained from A after replacing the k entries
with the largest absolute values in A, ties resolved arbitrarily, with 0.

Data streaming. Our algorithms have strong connection to data streaming, therefore
we will use the respective terminology. A stream S is a sequence of N updates (i, v) for
items i ∈ I and v ∈ R. We assume I = [n]. The frequency of i is fi =

∑
(i,v)∈S v and

fS = (f0, . . . , fn−1) is the frequency vector of the stream S. The insert-only model assumes
v > 0 for all updates and in the non-strict turnstile model there are no restrictions on v and
the values in fS [27]. Similarly to matrix entries, we will also refer to the frequency of an
item i as the weight of i. Items with weight above ||f ||1/b, for a user-defined b, will be called
b-heavy hitters or just heavy hitters when b is clear from the context. Ordering the items in
S according to their absolute weight, the heaviest b items in S are called the top-b entries in S.

Skewed distributions. A common formalization of the skewness in real-life datasets
is the assumption of Zipfian distribution [36]. The elements in a given set M over N different
elements with positive weights follow Zipfian distribution with parameter z > 0 if the weight
of the element of rank i is |M |

ζ(z)iz where ζ(z) =
∑N
i=1 i

−z and |M | denotes the total weight of
elements in M . We will analyze only the case when the skew in the data is not light and
z > 1. For z > 1,

∑N
i=1 i

−z converges to a small constant. We will also use the facts that for
z > 1,

∑N
i=b+1 i

−z = O(b1−z) and for z > 1/2,
∑N
i=b+1 i

−2z = O(b1−2z).

K. Kutzkov 469

2.2 The column row method and memory efficient matrix
multiplication

The naïve algorithm for the multiplication of input matrices A,B ∈ Rn×n works by computing
the inner product of Ai,∗ and B∗,j in order to obtain ABij for all i, j ∈ [n]. An alternative
view of the approach is the column row method computing the sum of outer products∑

i∈[n] A∗,iBi,∗. While this approach does not yield a better running time, it turns out
to admit algorithmic modifications resulting in more efficient algorithms. Schnorr and
Subramanian [31] and Lingas [25] build upon the approach and obtain faster algorithms for
Boolean matrix multiplication. Assuming that A is stored as column-major ordered triples
and B as row-major ordered triples [8], the approach yields a memory efficient algorithm
since the matrix product AB can be computed in a single scan over the input matrices.
Recently, Pagh [28] presented a new randomized algorithm combining the approach with
frequent items mining algorithms [1, 11]. Inspired by this, we present another approach
to modify the column-row method building upon ideas from deterministic frequent items
mining algorithms [15, 16, 24, 26].

3 An algorithm for nonnegative matrix products

3.1 Intuition and key lemma
Recall first how the Majority algorithm [6] works. We are given a multiset M of cardinality
N and want to find a majority element, i.e. an element occurring at least N/2 + 1 times in
M . While there are two distinct objects in M we remove them from M . It is easy to see
that if there exists a majority element a, at the end only occurrences of a will be in M .

The Frequent algorithm [16, 24, 26] builds upon this simple idea and detects b-heavy
hitters in an unweighted stream S of N updates (i, 1) for items i ∈ [n]. We keep a summary of
b distinct entries together with a counter lower bounding their weight. Whenever a new item
i arrives we check whether it is already in the summary and, if so, update the corresponding
counter. Otherwise, if there is an empty slot in the summary we insert i with a counter set
to 1. In the case all b slots are occupied we decrease the weight of all items by 1 and proceed
with the next item in the stream. The last step corresponds to removing b+ 1 distinct items
from the multiset of items occurring in S and a simple argument shows that b-heavy hitters
will be in the summary after processing the stream. By returning the estimated weight of the
item in the summary and 0 for not recorded items, the weight of each item is underestimated
by at most ‖f‖1/b where f is the frequency vector of the stream. Implementing the summary
as a hash table and charging the cost of each item deletion to the cost incurred at its arrival
the expected amortized cost per item update is constant. A sophisticated approach for
decreasing the items weights in the summary leads to a worst case constant time per item
update [16, 24].

Generalizing to nonnegative matrix multiplication by the column row method is intuitive.
Assume the input matrices consist of {0,1}-valued entries only. We successively generate
the n outer products and run the Frequent algorithm on the resulting stream associating
entries with items. There are several problems to resolve: First, we want to multiply arbitrary
nonnegative matrices, thus our algorithm has to handle weighted updates. Second, we have
to consider Θ(n3) occurrences of weighted items in the stream. Third, we cannot apply any
more the amortized argument for the running time analysis since a group of b − 1 heavy
items might be followed by many lighter items causing expensive updates of the summary
and it is not obvious how to extend the deterministic approach from [16, 24] guaranteeing

STACS’13

470 Deterministic algorithms for skewed matrix products

function ComputeSummary
Require: matrices A,B ∈ R+

n×n, summary S for b entries
1: for i ∈ [n] do
2: Denote by R := A∗,i ·Bi,∗ the outer product of the ith column of A and ith row of

B

3: Find the weight wRb+1 of the entry of rank b+ 1 in R
4: Let L be the b entries in R with rank less than b+ 1, i.e. the largest b entries
5: Decrease the weight of each entry in L by wRb+1
6: for each entry e occurring in S and L do
7: add e’s weight in L to e’s weight in S
8: remove e from L
9: Find the weight wS∪Lb+1 of the entry of rank b+ 1 in S ∪ L, if any

10: Update S to contain the largest b entries in S ∪L and decrease their weight by wS∪Lb+1

function EstimateEntry
Require: Entry (i, j)

1: if (i, j) is in the summary S then
2: return the weight of (i, j) in S
3: else
4: return 0

Figure 1 A high-level pseudocode description of the algorithm. In ComputeSummary we iterate
over the n outer products and to each one of them apply Lemma 1 such that only the b heaviest
entries remain. We update the summary with the entries output by the outer product. After
processing the input matrices we can estimate the weight of an individual entry by checking the
summary.

constant time updates in the worst case.
The first issue is easily resolved by the following

I Lemma 1. Let f be the frequency vector of an insert only stream S over a domain [n].
After successively decrementing t times the weight of at least b distinct items by ∆i > 0,
1 ≤ i ≤ t, such that at each step fi ≥ 0 for all 0 ≤ i ≤ n− 1, it holds fk > 0 for all b-heavy
hitters, k ∈ [n], for all t ∈ N.

Proof. Since fi ≥ 0 for all i ∈ [n] holds, the total decrease is bounded by ‖f‖1. A decrement
of ∆i in the weight of a given item is witnessed by the same decrement in the weights of
at least b− 1 different items. Thus, we have b

∑t
i=1 ∆i ≤ ‖f‖1 which bounds the possible

decrease in the weight of a heavy hitter to ‖f‖1/b. J

In the next section we show that the specific structure of an outer product allows us to
design efficient algorithms resolving the last two issues.

3.2 The algorithm
We assume that A ∈ Rn×n+ is stored in column-major order and B ∈ Rn×n+ in row-major

order. We show how to modify the column row method in order to obtain an additive
approximation of each entry in AB in terms of the entrywise 1-norm of AB.

Essentially, we run the Frequent algorithm for the stream of n outer products: we
keep a summary S of b distinct items and for each outer product we want to update the

K. Kutzkov 471

summary with the incoming weighted entries over the domain [n]× [n]. The main difference
is that for b = o(n2) we can use the specific structure of an outer product and update the
summary in o(n2) steps. In ComputeSummary in Figure 1 for each of the n outer products
we simulate the successive application of Lemma 1 until at most b entries with weight larger
than 0 remain in the outer product. We then update S with the remaining entries.

Correctness.
I Lemma 2. Let w be the weight of an entry (i, j) in the product C = AB. After termination
of ComputeSummary for the estimated weight w of w returned by EstimateEntry,
i, j ∈ [n], holds max(w − ‖C‖E1/b, 0) ≤ w ≤ w.

Proof. The product AB equals
∑n−1
i=0 ai · bi for the columns a0, . . . , an−1 of A and the rows

b0, . . . , bn−1 of B. We consider each outer product as n2 updates for different entries over
the domain [n]× [n] in an insert only stream with positive real weights. We show how the
algorithm updates the summary for a single outer product R. First, in line 3 the algorithm
finds the entry of rank b+ 1 in R. In line 4 we decrease the weight of the b largest entries
by wRb+1 which yields the same result as the following iterative procedure: While there
are at least b+ 1 nonzero entries in R, find the entry with smallest weight wmin in R and
decrease the weight of all non-zero entries by wmin. Equivalence holds because we always
decrease the weight of an entry with the smallest weight and thus the decrease of the largest
b entries weights can never exceed wRb+1. Also, the decrease can not be smaller than wRb+1
since otherwise we would have more than b non-zero entries in the outer product. Thus, we
always decrease by the same amount the weight of at least b+ 1 different entries which by
Lemma 1 guarantees the claimed approximation error. In lines 6–10 we apply essentially
the same procedure again for the nonzero entries in the outer product and the entries in the
summary. The remaining at most b nonzero entries constitute the updated summary. J

Running time. In the following lemmas we present efficient deterministic algorithms for
the subroutines used in ComputeSummary. We concentrate how the algorithm updates
the summary for a single outer product. Before presenting our approach, we give the main
building blocks that will be used to achieve an efficient solution.
I Lemma 3. Given two sorted vectors u, v ∈ R+

n we can find the entry of rank b in the outer
product uv in time and space O(n).

Proof. First note that we can ignore all ui = 0 and vi = 0 since they will result in a row,
respectively column, in the outer product with all entries having weight 0, and clearly we do
not need to update the summary with such entries. We reduce the problem to selection of
the element of rank b in a Cartesian sum X + Y = {x+ y : x ∈ X, y ∈ Y } for sorted sets of
real numbers X and Y . Setting U = {log ui : ui ∈ u} and V = {log vi : vi ∈ v} and searching
in the Cartesian sum U + V for the element of rank b corresponds to searching for the entry
of rank b in the outer product uv, this follows from monotonicity of the log : R+\{0} → R
function. The best known deterministic algorithm for selection in a Cartesian sum of two
sorted sets [19] runs in time and space O(n). J

I Lemma 4. Given vectors u, v ∈ R+
n, with elements sorted in descending order, we can

output an implicit representation of the largest b elements from the outer product uv in a
data structure L in time and space O(n).

Proof. Assume we have found the entry of rank b as outlined in Lemma 3, let this element
be c. Let i, j be two pointers for u and v respectively. Initialize i = 0, j = n− 1. Assume

STACS’13

472 Deterministic algorithms for skewed matrix products

i is fixed. We compare c to uivj . While it is larger or equal, we move left v’s pointer by
decreasing j by 1. At the end we add the pair (i, j) to L, denoting that the entries in ith
row of uv bigger than c, and thus of rank less than b, are all (i, `) for ` ≤ j. Then we go
to the next row in uv by incrementing i and repeat the above while-loop starting with the
current value of j. When i = n or j = 0 we know that all entries smaller than c have been
found. Correctness is immediate since the product uivj is monotonically increasing with i
and decreasing with j, and thus for each row of the outer product we record the position
of the entries smaller than c in L. Both i and j are always incremented or respectively
decremented, thus the running time is linear in n. We need to explicitly store only u, v and
L, this gives the claimed space usage. J

Next we present an efficient approach for updating the summary for a given outer product
after finding the entries of rank at most b.

I Lemma 5. For a given outer product uv, u, v ∈ R+
n we update the summary S in time

O(b+ sort(n)).

Proof. We first sort the vectors u and v in decreasing order according to the values ui and
vi, respectively. Let us call the sorted vectors us and vs. Each entry in us and vs will be of
the form (val, pos) such that upos = val and vpos = val, respectively, i.e. pos will record the
position of a given value in u and v. We define the entry (i, j) in the outer product usvs as
a (valuvalv, (posu, posv)) such that usi = (valu, posu) and usj = (valv, posv). Comparing the
entries on the valuvalv values, we can assume that we compute the outer product of two
sorted vectors.

Assume we have computed the data structure L implicitly representing the largest b
entries in usvs, as shown in Lemma 4. Now we show how to update the summary with
the entries in L in time O(b+ sort(n)). We introduce a position total order on entries such
that (i1, j1) < (i2, j2) iff i1n+ j1 < i2n+ j2, i, j ∈ [n]. We will keep the entries in S in the
summary sorted according to this order. Assume we can output the b heaviest entries from a
given outer product sorted according to the position total order in L. Then in a merge-like
scan through S and L we update the entries in S ∩ L, remove those from L and obtain a
sorted data structure containing the entries from S and L in O(b) steps. The entry of rank
b+ 1 in the set L ∪ S, which has size at most 2b, can be found in O(b) by [4]. Thus, if the
entries in L are sorted according to the position total order, updating the summary will run
in O(b) steps.

We output the b heaviest entries sorted according to the position total order by the
following algorithm. Let L be implicitly given as a sorted column vector us and a sorted row
vector vs as described above, and ` ≤ n integer pairs (q, rq) denoting that in the qth row in
the outer product usvs the first rq > 0 entries have rank not more than b. Clearly, rq will
monotonically decrease as q increases. We start with q = `, namely the shortest interval,
sort the rq entries according to the position total order. We then decrease q by 1 and sort
the next rq−1 entries according to the position total order. However, we observe that due to
monotonicity rq−1 ≥ rq and all elements from vs appearing in the qth row of usvs also appear
in the (q − 1)th row. Thus, we can sort only the new rq−1 − rq elements and then merge the
result with the already sorted rq elements. We continue like this until the elements in each
row of the outer product have been sorted. Then we sort the elements in the column vector
us according to their position, keeping a pointer to the corresponding sorted subinterval of vs
for each entry in us. From this we build the set L with entries sorted according the position
total order. By setting r`+1 = 0 the running time for the ` mergings and sortings amounts
to

∑`
i=0(ri + Sort(ri − ri+1)). We can bound this sum by O(b+ Sort(n)) since

∑`
i=0 ri = b,

K. Kutzkov 473

∑`
i=0(ri − ri+1) ≤ n and

∑n−1
i=0 f(xi) ≤ f(

∑n−1
i=0 xi) for a monotonically increasing convex

function f and numbers xi, i ∈ [n], in its domain. J

3.3 Analysis of the approximation guarantee
The only remaining component is how to efficiently answer queries to the summary after
processing all outer products. We use a static dictionary with constant look-up time.
Observing that the entries are from a universe of size n2, the best known result by Ružić [29]
provides a construction in time O(b log2 log b) and space O(b). Note that b < n2, therefore
as a first result we observe that Lemmas 2 and 5 immediately yield the following
I Lemma 6. Given n × n-matrices A,B with non-negative real entries, there exists a
deterministic algorithm approximating the weight of each entry in the product C of A and
B within an additive error of ‖C‖E1/b. The algorithm runs in time O(nb+ nSort(n)) and
space O(b+ n) in one pass over the input matrices.

It was first observed by Bose et al. [5] that the Frequent algorithm guarantees tighter
estimates for items with weight significantly larger than N/b in a stream of length N and
summary of size b. Berinde et al. [3] develop a general framework for the analysis of so called
heavy-tolerant counter based algorithms and show that Frequent falls in this class.
I Lemma 7. (Bose et al, [5]) For an entry (i, j) in C = AB with weight α‖C‖E1, αb > 1,
after termination of ComputeSummary it holds Ĉij ≥ Cij − (1− α)‖C‖E1/(b− 1) where
Ĉij is the approximation of Cij returned by EstimateEntry(i, j).
I Lemma 8. (Berinde et al, [3]) ‖C‖Ek1/(b− k) is an upper bound on the underestimation
of any Cij returned by EstimateEntry(i, j) for any k ≤ b.

The above lemmas are important since they yield approximation guarantees depending
on the residual k-norm of the matrix product, thus for skewed matrix products the approx-
imation is much better than the one provided by Lemma 6.

Sparse recovery. The approximation of the matrix product C = AB in [18, 28, 30]
is analyzed in terms of the Frobenius norm of the difference of C and the obtained approxim-
ation Ĉ, i.e ‖C − Ĉ‖F . By simply creating a sparse matrix with all non-zero estimations in
the summary we obtain an approximation of C: the so called k-sparse recovery of a frequency
vector f aims at finding a vector f̂ with at most k non-zero entries such that the p-norm
‖f − f̂‖p is minimized.

As shown by Berinde et al. [3] the class of heavy-tolerant counter algorithms yields the
best known bounds for the sparse recovery in the p-norm. The following Theorem 1 follows
from Lemma 5 and their main result.
I Theorem 1. Let A,B be nonnegative n×n real matrices and C = AB their product. There
exists a one-pass approximation deterministic algorithm returning a matrix Ĉ such that
‖C − Ĉ‖Ep ≤ (1 + ε)

1
p (ε/k)1− 1

p ‖C‖Ek1. The algorithm runs in time O(n · Sort(n) + (nk)/ε)
and uses space O(n+ k/ε) for any 0 < ε < 1 and k ≥ 1.

Clearly, for k/ε = o(n2) the algorithm runs in subcubic time and subquadratic memory. In
the next paragraph we show that for skewed output matrices EstimateEntry can provably
detect the most significant entries even for modest summary sizes.

Zipfian distributions. In the full version of the paper we discuss the practical motivation
for the assumption that the entries in the product adhere to a Zipfian distribution. The
results stated below not only give a better understanding of the approximation yielded by
the algorithm, but also allow direct comparison to related work.

STACS’13

474 Deterministic algorithms for skewed matrix products

I Lemma 9. (Berinde et al, [3]) If the entries weights in the product matrix follow a Zipfian
distribution with parameter z > 1, then EstimateEntry with a summary of size b
1. approximates the weight of all entries with rank i ≤ b with additive error of (1 −

1
ζ(z)iz)‖C‖E1

b−1 .
2. estimates the weight of all entries with additive error of ε‖C‖E1 for b = O((1

ε) 1
z).

3. returns the largest k entries in the matrix product for b = O(k).
4. returns the largest k entries in a correct order for b = Ω(k(kz) 1

z).

3.4 Comparison to previous work
The randomized algorithm by Cohen and Lewis [13] for computing the product of nonnegative
matrices yields an unbiased estimator of each entry and a concentration around the expected
entry weight with high probability. However, their algorithm requires a random walk in a
bipartite graph of size Θ(n2) space and is thus not space efficient. It is difficult to compare
the bounds returned by EstimateEntry to the bounds obtained in [18, 30], but it is natural
to compare the guarantee of our estimates to the ones shown by Pagh [28].

The approximation error of the matrix estimation Ĉ in [28], ‖C − Ĉ‖F , is bounded
by (n‖C‖F)/

√
b with high probability. The running time is O(n2 log n + b log b log n) and

space usage is O(n + b log n). Our deterministic algorithm achieves an error guarantee
of (1 + ε)(ε/k)1− 1

p ‖C‖Ek1 for the approximation ‖C − Ĉ‖Ep for any p > 0. For a direct
comparison we set p = 2, k = 0 and b = d1/εe and obtain an approximation error of
‖C‖E1/

√
b which is at most (n‖C‖F)/

√
b by Cauchy-Schwarz inequality. The time and

space complexity of our algorithm is a polylogarithmic factor better. Note also that the
approximation guarantee does not depend on the dimension n as in [28].

For individual entries we achieve an error bounded by mink∈[b]‖C‖Ek1/(b− k) while [28]
shows that the error of the obtained estimates is bounded by ‖C‖Eb/κ1/

√
b for a suitably

chosen constant κ > 2.
Assuming Zipfian distribution with z > 1 the approximation error of the Frobenius

norm of the matrix product in [28] is bounded by O(nb−z‖C‖E1) with high probability. By
setting k = 0 our deterministic algorithm achieves O(‖C‖E1/

√
b) for the Frobenius norm

approximation error. For an ε‖C‖E1-approximation of individual entries both [28] and our
algorithm need a data structure, a sketch or a summary, of size O((1/ε) 1

z) but [28] needs to
run O(log n) copies of the algorithm in parallel in order to guarantee that the estimates are
correct with high probability. In the full version of the paper we show that the approximation
guarantee of our algorithm is better than the one in [28] for some real data sets exhibiting
higher skew. However, Pagh’s algorithm achieves better bounds for lighter skew when
1/2 < z < 1 and more important it is not restricted to nonnegative input matrices.

4 An algorithm for arbitrary real-valued matrices

In this section we show how to efficiently extend the deterministic streaming algorithm
sketched in [15, 27] to matrix multiplication. The algorithm in [15, 27] works for streams in
the non-strict turnstile model where updates are of the form (i, v) for an item i and v ∈ R.
We only give an overview of how it works, a thorough description will appear in the full
version of the paper.

A majority item in a stream is an item whose absolute total weight is more than half
of the absolute sum of total weights of all other items in the stream. In [15] the authors
present an elegant group testing algorithm for finding a majority item in a stream in the
non-strict turnstile model. The algorithm works by keeping a counter for each bit set to

K. Kutzkov 475

1 in the binary representation of the items and a global counter for the total weight of all
items processed so far. A new item is processed by updating the corresponding bit counters
and the global counter. Once the stream is processed, a candidate for the majority item is
constructed from the bit counters and the global counter. In a second pass we verify whether
the candidate is indeed a majority item. Assuming the items are from the domain [m], we
need O(logm) counters. In the following we will call this algorithm BinaryMajority. A
generalization of the algorithm to find the b items with nonzero weight after processing the
stream is presented in Theorem 14 in [27]. Let P be a set of suitably chosen consecutive
prime numbers and |P | denote its cardinality. Each item i ∈ [n] is distributed to p distinct
groups, depending on the value i mod p, for each prime p ∈ P . In each such group we run
BinaryMajority. The crucial observation is that for sufficiently large set of primes P , and
sufficiently big primes in P , each of the b nonzero items will be isolated in at least one group
and therefore BinaryMajority will detect it.

Generalizing to matrix multiplication again builds upon the column row method. We
treat the matrix product as a stream of n updates to the n2 entries by each outer product.
We assume that n = 2` for some ` > 0, otherwise we add less than n zero entries to each row
and column vector such that the assumption holds. We number the n2 entries of the matrix
product as 0, 1, . . . , n2 − 1 such that the entry in the position (i, j) is assigned a number
i2` + j, 0 ≤ i, j ≤ n − 1. Now observe that the number of an entry in the outer product
consists of 2` bits and the term j determines only the least significant ` bits while the term i2`
determines the most significant ` bits. In the sequence 0, 1, . . . , n2 − 1 the elements having 1
in the kth position, 0 ≤ k ≤ 2`− 1, are the ones in positions {2k + i2k+1, . . . , (i+ 1)2k+1− 1},
0 ≤ i ≤ 22`−k−1. Thus, given a column vector a of A and a row vector b of B the entries in
the outer product ab, whose numbers have the kth bit equal to 1, are uniquely determined
by the position of the contribution from either a or b. This means that in order to obtain
the total contribution from all entries with the `th bit equal to 1, we simply need to nullify
half of the entries in either a or b, and compute the sum over all entries weights in the outer
product ab. The latter can be efficiently done by computing the sum of all entries weights in
each vector and then multiplying the results. Thus, a majority candidate can be constructed
in one pass over the input matrices, O(n2 log n) steps and linear space.

For distributing the n2 entries in ab to different groups, we apply the technique presented
by Pagh [28]. Let p be a given prime number. We treat the column and row vectors a and
b as polynomials of degree p − 1: pa =

∑n−1
i=0 aix

i·n mod p and pb =
∑n−1
j=0 bjx

j mod p. pa
and pb are then multiplied by Fast Fourier Transformation in time O(p log p). The resulting
polynomial has degree 2(p− 1), thus we add the coefficients that have the same exponent
modulo p. The coefficient in front of xk, k ∈ [p], is now exactly the total sum of the entries
weights equal to k modulo p. The approach can be combined with BinaryMajority, which
yields the following

I Theorem 2. Let A,B be real n× n matrices and C = AB their product. If the absolute
weight of each of the b entries with largest absolute weight is bigger than ‖C‖Eb1, then
there exists a deterministic algorithm computing the b heaviest entries exactly in time
O(n2 + nb2 log3 n log2 b) and space O(n+ b2 log3 n log b) in two passes over the input.

I Corollary 1. Let A,B be real n× n matrices and C = AB their product. If C has at most
b nonzero entries then there exists a deterministic algorithm computing C exactly in time
O(n2 + nb2 log3 n log2 b) and space O(n+ b2 log3 n log b) in two passes over the input.

STACS’13

476 Deterministic algorithms for skewed matrix products

4.1 Zipfian distribution
For the case when the absolute values of the entries in the outer product adhere to Zipfian
distribution with parameter z > 1 we obtain the following

I Theorem 3. Let the absolute values of the entries weights in a matrix product adhere to
Zipfian distribution. Then for user-defined s > 0 and k > 0 there exists a deterministic al-
gorithm detecting the ks heaviest entries in the product in time O(s(n2 +nk

2z
z−1 log3 n log2 k))

and space O(n+ ks+ k
2z
z−1 log3 n log k) in 2s passes over the input matrices.

4.2 Comparison to previous work
The algorithm seems to be only of theoretical interest. Note that its complexity is much
worse than the one achieved by Pagh’s randomized one-pass algorithm [28]: the b non-
zero entries can be found in time O(n2 + nb log n) and space O(n + b log n) with error
probability O(1/poly(n)). Nevertheless since the best known space lower bound for finding
b non-zero elements by a deterministic algorithm is O(b log n) there seems to be potential
for improvement. For example Ganguly and Majumder [20] present improvements of the
deterministic algorithm from [27] but their techniques are not suitable for our problem.

To the best of our knowledge this is the first deterministic algorithm for computing matrix
products in time O(n2+ε) for the case when the product contains at most O(

√
n) non-zero

entries. The algorithm by Iwen and Spencer achieves this for an arguably more interesting
class of matrix products, namely those with nβ , β ≤ 0.29462, nonzero entries in each row,
but the algorithm relies on fast rectangular matrix multiplication and its simple version runs
in time O(n2+β).

Acknowledgements. I would like to thank my supervisor Rasmus Pagh and the anonymous
reviewers for valuable comments and suggestions.

References
1 N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency

moments. J. Comput. Syst. Sci, 58(1):137–147, 1999.
2 R. R. Amossen and R. Pagh. Faster join-projects and sparse matrix multiplications. ICDT

2009, 121–126.
3 R. Berinde, P. Indyk, G. Cormode, M. J. Strauss: Space-optimal heavy hitters with strong

error bounds. ACM Trans. Database Syst. 35(4): 26 (2010)
4 M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, R. E. Tarjan. Time Bounds for Selection.

J. Comput. Syst. Sci. 7(4): 448–461 (1973)
5 P. Bose, E. Kranakis, P. Morin, Y. Tang. Bounds for Frequency Estimation of Packet

Streams. SIROCCO 2003: 33–42
6 R. Boyer and S. Moore A Fast Majority Vote Algorithm U. Texas Tech report, 1982
7 S. Brin, R. Motwani, C. Silverstein. Beyond Market Baskets: Generalizing Association

Rules to Correlations. SIGMOD 1997: 265–276
8 A. Buluç. Linear Algebraic Primitives for Parallel Computing on Large Graphs. PhD thesis,

University of California, Santa Barbara.
9 P. Burgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory. Springer-

Verlag, 1997
10 A. Campagna and R. Pagh. Finding associations and computing similarity via biased pair

sampling. Knowl. Inf. Syst. 31(3): 505–526 (2012)

K. Kutzkov 477

11 M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams.
Theor. Comput. Sci, 312(1):3–15, 2004

12 E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. D. Ullman, C. Yang.
Finding Interesting Associations without Support Pruning. IEEE Trans. Knowl. Data Eng.
13(1): 64–78 (2001)

13 E. Cohen and D. D. Lewis. Approximating matrix multiplication for pattern recognition
tasks. Journal of Algorithms, 30(2):211–252, 1999

14 D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9(3):251–280, 1990

15 G. Cormode and S. Muthukrishnan. What’s hot and what’s not: Tracking most frequent
items dynamically. ACM Transactions on Database Systems, 30(1):249–278, 2005.

16 E. D. Demaine, A. López-Ortiz, J. I. Munro. Frequency Estimation of Internet Packet
Streams with Limited Space. ESA 2002: 348–360

17 S. V. Dongen. Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht,
2000

18 P. Drineas, R. Kannan, and M. W. Mahoney. Fast Monte Carlo algorithms for matrices I:
Approximating matrix multiplication. SIAM Journal on Computing, 36(1):132–157, 2006

19 G. N. Frederickson, D. B. Johnson. The Complexity of Selection and Ranking in X+Y and
Matrices with Sorted Columns. J. Comput. Syst. Sci. 24(2): 197–208 (1982)

20 S. Ganguly and A. Majumder. Deterministic k-set structure. PODS 2006: 280–289
21 Y. Han. Deterministic sorting in O(n log log n) time and linear space. J. Algorithms 50(1):

96–105 (2004)
22 J. Han, M. Kamber. Data Mining: Concepts and Techniques Morgan Kaufmann 2000
23 M. A. Iwen and C. V. Spencer. A note on compressed sensing and the complexity of matrix

multiplication. Inf. Process. Lett, 109(10):468–471, 2009
24 R. M. Karp, S. Shenker, C. H. Papadimitriou. A simple algorithm for finding frequent

elements in streams and bags. ACM Trans. Database Syst. 28: 51–55 (2003)
25 A. Lingas. A fast output-sensitive algorithm for boolean matrix multiplication. ESA 2009,

408–419.
26 J. Misra, D. Gries: Finding Repeated Elements. Sci. Comput. Program. 2(2): 143–152

(1982)
27 S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and Trends

in Theoretical Computer Science, Vol. 1, Issue 2, 2005
28 R. Pagh. Compressed Matrix Multiplication. Proceedings of ACM Innovations in Theoret-

ical Computer Science (ITCS), 2012
29 M. Ružić. Constructing Efficient Dictionaries in Close to Sorting Time. ICALP (1) 2008:

84–95
30 T. Sarlós. Improved Approximation Algorithms for Large Matrices via Random Projections.

FOCS 2006: 143–152
31 C.-P. Schnorr, C. R. Subramanian. Almost Optimal (on the average) Combinatorial Al-

gorithms for Boolean Matrix Product Witnesses, Computing the Diameter. RANDOM
1998: 218–231

32 A. J. Stothers. On the complexity of matrix multiplication. Ph.D. thesis, University of
Edinburgh, 2010

33 V. Strassen. Gaussian Elimination is not Optimal. Numer. Math. 13, 354–356, 1969
34 R. Yuster and U. Zwick. Fast sparse matrix multiplication. ACM Transactions on Al-

gorithms, 1(1):2–13, 2005.
35 V. Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. STOC

2012, 887–898
36 G. Zipf. Human Behavior and The Principle of Least Effort. Addison-Wesley, 1949

STACS’13

The Simulated Greedy Algorithm for Several
Submodular Matroid Secretary Problems
Tengyu Ma1, Bo Tang2, and Yajun Wang3

1 Princeton University∗

tengyu@cs.princeton.edu
2 University of Liverpool∗

tangbonk1@gmail.com
3 Microsoft Research Asia

yajunw@microsoft.com

Abstract
We study the matroid secretary problems with submodular valuation functions. In these prob-
lems, the elements arrive in random order. When one element arrives, we have to make an
immediate and irrevocable decision on whether to accept it or not. The set of accepted elements
must form an independent set in a predefined matroid. Our objective is to maximize the value
of the accepted elements. In this paper, we focus on the case that the valuation function is a
non-negative and monotonically non-decreasing submodular function.

We introduce a general algorithm for such submodular matroid secretary problems. In particu-
lar, we obtain constant competitive algorithms for the cases of laminar matroids and transversal
matroids. Our algorithms can be further applied to any independent set system defined by the
intersection of a constant number of laminar matroids, while still achieving constant competitive
ratios. Notice that laminar matroids generalize uniform matroids and partition matroids.

On the other hand, when the underlying valuation function is linear, our algorithm achieves
a competitive ratio of 9.6 for laminar matroids, which significantly improves the previous result.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases secretary problem, submodular function, matroid, online algorithm

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.478

1 Introduction

In the classical secretary problem [8, 11, 12], one interviewer is interviewing n candidates
for a secretary position. The candidates arrive in an online fashion and the interviewer has
to decide whether or not to hire the current candidate when he/she arrives. The goal is to
hire the best secretary. It has been shown that when the candidates are arriving in random
order, there exists an algorithm that hires the best candidate with probability 1/e, where e
is the base of the natural logarithm.

Recently, Babaioff et al. [3] formulated the matroid secretary problem. Instead of hiring
one candidate (element), in the matroid secretary problem, we seek to select a set of elements
which form an independent set in a matroid. Again, the elements arrive in random order
and the weights of the elements are revealed when they arrive. When one element arrives,
we have to make an immediate and irrevocable decision on whether to accept this element or
not. The important constraint is that the set of accepted elements must form an independent

∗ This work was done when the authors were visiting Microsoft Research Asia.

© Tengyu Ma, Bo Tang and Yajun Wang;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 478–489

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.478
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

T. Ma, B. Tang, and Y. Wang 479

set in the predefined matroid. The objective is to maximize the total weights of the selected
elements. Notice that the decision on accepting a particular element will impact our ability
in accepting future elements.

In the matroid secretary problem, the value of a set of elements is the summation of
the weights on these elements, i.e., the valuation function is linear. In some applications,
however, it is more natural to measure the quality of a set by a valuation function, which is
not necessarily linear. One set of functions widely used in the optimization community are
the submodular functions. Such functions are characterized as functions with diminishing
returns. We give the formal definition in Section 2.

For example, consider the following scenario. An advertiser is targeting a few platforms
to reach a good coverage of audience. However, the coverage from different platforms may
overlap with each other. In this case, the performance of a particular set of platforms can
only be modeled as a submodular function. Assume the advertiser has to negotiate with the
platforms one by one in an online fashion and has a hard budget limit on targeting at most
k platforms. This is exactly the matroid secretary problem with a submodular valuation
function on a uniform matroid.

We can also consider multiple arriving advertisers, while assuming platforms are available
offline. One can impose constraints both on the advertisers and platforms, e.g., each advertiser
can afford k platforms, and each platform can support at most ` advertisers. This scenario
can be modeled as an intersection of two partition matroids, with a submodular valuation
function, where the objective is to maximize the value of an overall online assignment.

In this paper, we extend the matroid secretary problem to the case with submodular
valuation functions. In other words, the weights are not directly associated with elements.
Instead, there exists an oracle to query the value of any subset of the elements we have seen.
Our objective is to accept a set of elements which are independent in a given matroid with
maximum value with respect to a submodular valuation function. We refer such problems as
submodular matroid secretary problems. We refer the original matroid secretary problems,
i.e., those with linear valuation functions, as linear matroid secretary problems.

We use the competitive analysis to measure the performance of our algorithms following
the matroid secretary problem literature. More formally, let U be the set of elements andM
be a matroid defined on U . Before the process starts, an adversary assigns a submodular
valuation function f(·) : 2|U | → R+ ∪{0}, which maps any subset of U to a non-negative real
number. After that, there is a random permutation applied to the elements to decide their
arriving order to our online algorithm. Our algorithm can only query f(·) using elements
that have been seen. In other words, the algorithm does not know f(·) before any element
arrives.

Let OPTf (M) = maxS∈M f(S) be the value of the optimal independent set. The
objective of the submodular matroid secretary problem is to find an algorithm Alg which
maximizes the following ratio:

inf
f

EP,A[f(Algf (P ,A))]
OPTf (M) , (1)

where Algf (P,A) is the solution generated by the algorithm given permutation P and the
internal randomness A of the algorithm with valuation function f(·). The expectation is
taken over all permutations and the internal randomness of the algorithm. We call the
algorithm is C-competitive, i.e., with competitive ratio C, if the ratio in Eqn.(1) is at least
1/C.

Our contributions. In this paper, we study the submodular matroid secretary problem
with submodular valuation functions that are non-negative and monotonically non-decreasing.

STACS’13

480 Algorithms for Submodular Matroid Secretary Problems

Our contribution is two-fold. First, we develop a general simulated greedy algorithm, which is
inspired by the algorithm for the linear matroid secretary problem with transversal matroids
in [6, 17]. Our algorithm is constant competitive for the submodular matroid secretary
problem with laminar matroids and transversal matroids. Our analysis can be extended
to the case that the independent set is defined as the intersection of a constant number of
laminar matroids. Notice that laminar matroids generalize uniform matroids and partition
matroids. When applying to the linear matroid secretary problem on laminar matroids, our
algorithm improves the competitive ratio from 16000

3 [15] to 9.6. Our algorithm is also much
simpler than the one in [15].

Second, our technique in analyzing submodular functions could be of independent interest.
Consider our simulated greedy algorithm for the uniform matroid case with cardinality µ.
We maintain two sets M and N , which are initially empty. In each time, we will select an
element e ∈ U \ (M ∪ N) such that fM (e) is maximized until |M | = µ, where f(·) is the
valuation function. With probability p, e is placed into M . Otherwise, i.e., with probability
1−p, e is placed into N . We develop machinery to show that E[f(N)] = Θ(E[f(M)]), despite
the fact that the elements are greedily selected with optimal marginal values against M .
This fact is not intuitive though very important in our analysis. See our result in Section 4
in more details.

Related work. The secretary problem has been studied decades ago. It is first published
in [12] and has been folklore even earlier [10]. Several results have appeared to generalize
the classical secretary problem, while assuming that the elements arrive in random order.
For example, Kleinberg [16] gave a 1 +O(1/

√
k)-competitive algorithm for selecting at most

k elements to maximize the sum of the weights. Babaioff et al. [2] provided a constant
competitive algorithm for the Knapsack secretary problem, in which each element has a
weight and a size, and the objective is to accept a set of elements whose total size is at most
a given integer such that the total weight is maximized.

Babaioff et al. [3] systematically introduced the matroid secretary problem. The objective
is to maximize the total weight of the selected elements S, which form an independent set in
a given matroid. They gave an O(log r)-competitive algorithm for a general matroid, i.e.,
the expected total weight of the elements in S is O(1/ log r) of the optimal solution, where r
is the rank of the matroid. The competitive ratio has been recently improved to O(

√
log r)

by Chakraborty et al. [5]. However, the conjecture that the matroid secretary problem
with a general matroid allows a constant competitive algorithm is still widely open, while
constant competitive algorithms have been found for various matroids: uniform/partition
matroids [2, 16], truncated partition matroids [3], graphical matroids [1, 17], transversal
matroids [6, 17], laminar matroids [15], and regular and decomposable matroids [7]. For
general matroids, Soto [19] developed a constant-competitive algorithm in random assignment
model, i.e., the weights of the elements are assigned uniformly at random. This result can be
extended to the case where the elements arrive in an adversarial order [13].

Gupta et al. [14] studied the non-monotone submodular matroid maximization problem
for both offline and online (secretary) versions. For the online (secretary) version, they
provided a O(log r)-competitive algorithm for general matroids and a constant competitive
algorithm for uniform matroids (algorithms achieving constant competitive ratios are obtained
independently by Bateni et al.[4]) and partition matroids. Feldman et al. [9] developed a
simpler algorithm with a better competitive ratio for partition matroids for monotonically
non-decreasing submodular functions.

Structure. In Section 2, we present some preliminaries and our algorithm. We then
analyze a simple stochastic process in Section 3, which serves as a building block for later

T. Ma, B. Tang, and Y. Wang 481

analysis. In Section 4, we analyze the algorithm for the cases of laminar matroids and the
intersection of constant number of laminar matroids. Due to space limitation, some of the
proofs and the analysis for the transversal matroid case are deferred to the full version [18].

2 Preliminaries

2.1 Matroids
In the matroid secretary problem, the set of accepted elements must form an independent
set defined by a given matroid.

I Definition 1 (Matroids). Let U 6= ∅ be the ground set and I be a set of subsets of U . The
systemM = (U, I) is a matroid with independent sets I if:
1. If A ⊆ B ⊆ U and B ∈ I, then A ∈ I.
2. If A,B ∈ I and |A| < |B|, there exists an element x ∈ B \A such that A ∪ {x} ∈ I.

In this paper, we work with the following two matroids.

I Definition 2 (Laminar matroids). Let U 6= ∅ be the ground set. Let F = {B1, . . . , B`} be a
family of subsets over U . F is a laminar family, if for any Bi, Bj such that |Bi| ≤ |Bj |, either
Bi ∩ Bj = ∅ or Bi ⊆ Bj . Each set Bi ∈ F is associated with capacity µ(Bi). The laminar
family F and µ(·) define a matroidM = (U, I), such that any set T ⊆ U is independent if
for all 1 ≤ i ≤ `, |T ∩Bi| ≤ µ(Bi).

In particular, each Bi defines a capacity constraint on the independent sets and a set is
independent if it satisfies all such constraints. For simplicity, we assume all Bis are distinct
and µ(Bi) < µ(Bj) if Bi ⊂ Bj . Otherwise, the capacity constraint in Bi is redundant.

I Definition 3 (Transversal matroids). Let G = (L,R,E) be an undirected bipartite graph
with left nodes L, right nodes R and edges E. In the transversal matroid defined by G, the
ground set is L and a set of left nodes S ⊆ L is independent if there exists a matching in G
such that the set of left nodes in the matching is S.

2.2 Submodular functions
In this paper, we assume the quality of the solution is measured by a submodular function.
Notice that throughout this paper, we only work with non-negative and monotonically
non-decreasing submodular functions.

I Definition 4. Let U be the ground set. Let f(·) : 2|U | → R be a function mapping any
subset of U to a real number. f(·) is a submodular function if:

∀S, T ⊆ U, f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T).

For simplicity, for any set S ⊆ U , we define its marginal function value fS(·) as follows.
For any T ⊆ U , fS(T) = f(S ∪ T)− f(S). For singletons, we also write fS(e) = fS({e}). It
is not difficult to see that fS(·) is submodular if f(·) is submodular.

2.3 The simulated greedy algorithm
Our general algorithm is based on the greedy algorithm, as in Algorithm 1.

STACS’13

482 Algorithms for Submodular Matroid Secretary Problems

Algorithm 1: GREEDY
Input: Set H ⊆ U of matroid (U, I) and function f(·)
Output: A set of elements T ⊆ H and T ∈ I
T ← ∅;
while ∃ e∗ = argmaxe∈H {fT (e) | M ∪ {e} ∈ I} do

T ← T ∪ {e}; H ← H \ {e};
end
return T ;

Algorithm 2: ONLINE
Input: Matroid (U, I) and function f(·)
Output: The set of selected elements

ALG
M, N, ALG← ∅;
m← Binom(|U |, p);
Observe the first m elements denoted by
H;
M ← GREEDY(H);
for any subsequent element e do

if GREEDY(H ∪ {e}) 6= GREEDY(H)
then

N ← N ∪ {e};
if ALG ∪ {e} ∈ I then

Accept e and
ALG← ALG ∪ {e};

end
end

end

Algorithm 3: SIMULATE
Input: Matroid (U, I) and function f(·)
Output: The set of selected elements S

H, M, N, S ← ∅;
for each element e do

Flip a coin with probability p of head;
if head, H ← H ∪ {e};

end
while ∃ e∗ = argmaxe∈U\{M∪N} {fM (e) |
M ∪ {e} ∈ I} do

if e ∈ H then M ←M ∪ {e};
else N ← N ∪ {e};

end
Prune N to produce a set of elements S ∈ I;

Our simulated greedy algorithm ONLINE works as follows. (We will discuss the name
of simulated greedy in a minute.) We observe the first m elements H without any selection,
where m is sampled from Binomial distribution Binom(n, p) for some chosen probability p.
Then we compute the greedy solution GREEDY(H). After that, for any subsequent element
e, we test that whether the greedy solution will change if e is added to H hypothetically. If
so, we mark e as a candidate and place it in N . Furthermore, if ALG∪ {e} is independent in
I for candidate e and current ALG, we accept e into ALG. (Both N and ALG are initially
empty.) The final ALG will be the output of our algorithm. Observe that maintaining set
N is not necessary because N only collects elements that has passed the greedy check and
might be accepted potentially. However, we keep the notation in the algorithm because it
corresponds to the same N in SIMULATE, which is heavily used throughout the analysis.

As we mentioned earlier, ONLINE is a generalization of the algorithms in [6, 17]. In
particular, it has been observed that a simulated random algorithm in Algorithm 3 can be
used in analyzing the performance of ONLINE. (We name ONLINE as a simulated greedy
algorithm because of the corresponding greedy algorithm which simulates the online version.)

More specifically, SIMULATE works as follows. We maintain two sets M and N which
are initially empty. In each step, we select an element e ∈ U \ (M ∪N) such that fM (e) is
maximized and M ∪ {e} ∈ I. (If no such element exists, SIMULATE terminates.) Then we
toss a biased random coin with probability p to be head, which is the same probability in
sampling m in ONLINE. If the coin is head, e is placed into M . Otherwise, e is placed into

T. Ma, B. Tang, and Y. Wang 483

N . Since N may not be an independent set in I after SIMULATE terminates, we prune N
to produce S ⊂ N such that S ∈ I. The actual pruning step might be different in different
application settings.

SIMULATE is useful in analyzing the performance of ONLINE with random arriving
elements, because, as the naming suggests, both M and N have the same joint distribution
in the two algorithms. This connection is extensively discussed in [6, 17]. For completeness,
we provide a proof in the full version [18]. We will guarantee that S in SIMULATE is
stochastically dominated by ALG in ONLINE. Since we assume f(·) is non-decreasing, in
analyzing the performance of ONLINE, we can focus on S in SIMULATE.
I Lemma 5. The sets of elements of H, M and N by SIMULATE have the same joint
distribution as the H, M and N generated by ONLINE with a random permutation of the
elements in U .

3 A simple stochastic process

In this section, we study a simple stochastic process which serves as a building block of
our analysis. We will apply this process to either the entire ground set U or some subsets
of the elements in U . Therefore, although we use the same notation for M and N in this
section, they can be viewed as the intersections between the set of elements that are under
consideration and the actual global M and N generated by the algorithm.

The simple stochastic process is defined by an underlying Bernoulli process, with an
infinite sequence of independent and identical random variables Xt ∈ {0, 1} for t ≥ 1. Each
variable Xt is a Bernoulli random variable with probability p to be 1.

Our stochastic process is parametrized by a constant µ ≥ 1. We maintain two sets M
and N , which are initially empty, as follows. Starting from t = 1, if Xt = 1, we place t into
M ; otherwise, t is placed in N . The process immediately terminates after |M | = µ.

We associate a non-negative weight wt to every time stamp t. In particular wt is a
mapping from the previous t − 1 random variables to a non-negative real number. (w1 is
constant by definition. If the process has been terminated before time t, we set wt = 0.) For
any set T ⊆ N, we define the weight as,

w(T) =
∑
t∈T

wt(X1, X2, . . . , Xt−1). (2)

Define w(∅) = 0. The following proposition shows that the total weights of M and N are
close to each other.
I Proposition 6. E[w(M)] = p

1−pE[w(N)].
Notice that after the process terminates, we have |M | = µ. On the other hand, the size

of N might be very large. Our analysis will be based on Ns that are with size at most µ.
We produce an independent set S from N by a pruning process as follows.

Pruning. More formally, to address the issue of too large Ns, we define S = N if |N | ≤ µ
and S = ∅ otherwise. Clearly, we have S ⊆ N and w(S) ≤ w(N).

We want to show that w(S) is close to w(N) in expectation. However , it is not possible
for arbitrary set of {wt}. In what follows, we impose a “decreasing weight” condition on {wt},
which always holds in our applications. This condition is crucial in building the connection
between w(S) and w(N).
I Definition 7 (Decreasing weight mappings). The set of mappings {wt} forms a sequence of
decreasing weight mappings if for any i < j and x1, x2, . . . , xi−1, xi, . . . , xj−1 we have:

wi(x1, . . . , xi−1) ≥ wj(x1, . . . , xi−1, . . . , xj−1).

STACS’13

484 Algorithms for Submodular Matroid Secretary Problems

I Proposition 8. Let β = 2e(1− p). If {wt} forms a sequence of decreasing weight mappings,
we have

E[w(N)]− E[w(S)] ≤ (µ+ 1− µβ)βµ

(1− β)2 · E[w(S)] ≤ (µ+ 1− µβ)βµ

(1− β)2 · E[w(N)]

If µ = 1, it can be improved to

E[w(N)]− E[w(S)] ≤ 1− p2

p2 E[w(S)] ≤ 1− p2

p2 E[w(N)].

We briefly discuss the intuition behind this statement. Our objective is to show that
the weight pruned from N to S is small. The random process indicates that the probability
for having a large N is exponentially decreasing on its size, e.g., by the Chernoff bound.
Therefore, the probability mass of N that is pruned is small. In terms of weight, on the
other hand, those larger Ns do have greater weights.

The condition of the decreasing weight mappings comes to rescue. In particular, in
this case, the weight of N grows roughly “linear” to its size. As the probability decreases
exponentially with the size of N , the total weight pruned can still be bounded as the
summation of a geometric sequence for those large Ns. The complete proof can be found
in [18].

4 Laminar Matroid

In this section, we study the performance of our simulated greedy algorithm SIMULATE for
the submodular matroid secretary problem with a laminar matroid. We first show that the
entire process of SIMULATE can be casted as a simple stochastic process as discussed in the
previous section. After that, we inspect the pruning stage in details. In particular, for each
Bi in the laminar matroid, we study a simple stochastic process restricted on the elements
in Bi. The loss on the entire pruning steps can be divided into losses on the Bis, which can
be bounded by Proposition 8.

Let µ be the rank of the laminar matroid. Essentially, SIMULATE will select (at most) µ
elements. We cast the SIMULATE process to the simple stochastic process with µ as follows.

In the t-th round, when the first t− 1 random coins are tossed, the current element e in
the greedy order is uniquely defined, as well as the current M and N . We define the weight
wt = fMe(e) where Me is the current elements in M .

Remark. We make two remarks regarding the connection between the two stochastic
processes. First, the original simple stochastic process terminates when |M | = µ. SIMULATE
might terminate earlier because of the limit on the number of elements. In such cases, we
assume the availability of an infinite number of dummy elements, with zero weights, which
will eventually fill up M . In particular, when any of these dummy element arrives at time t,
wt = 0 with respect to the previous random outcomes. Notice that these dummy elements
will enlarge the size of N without increasing the weights of N and S. So all conclusions
we draw in last section still hold. Second, M (as well as N and S) in the simple stochastic
process consists of time stamps, while in all processes we study later M consists of real
elements. Nevertheless, for every real element e ∈ M , we define w(e) = wt where t is the
time e appears in the greedy order of SIMULATE. Both wt and w(e) are random variables.
We have w(M) =

∑
e∈M w(e).

We extend the w(·) to elements besides those in M . In particular, w(e) = fMe
(e) for

e ∈M ∪N , i.e., e appears in the greedy order of SIMULATE, where Me is the current set
of elements in M when e appears. If e /∈M ∪N , set w(e) = 0. Notice that w(M) = f(M)

T. Ma, B. Tang, and Y. Wang 485

by definition. Furthermore, each element in the offline optimal solution has probability p in
H, i.e., a head coin is associated with it. By submodularity of f(·), the expected value of
the optimal solution in H is at least p ·OPT. On the other hand, the greedy algorithm is a
2-approximation with a matroid constraint when the valuation function is monotone and
submodular. Together with Proposition 6, we have

I Lemma 9.

E[f(M)] = E[w(M)] = p

1− pE[w(N)] ≥ p

2 ·OPT

Pruning. Notice that although M is independent, N might not be independent. We
obtain S by pruning N as follows.

S = N \

(⋃
B∈F

1|N∩B|>µ(B) · (N ∩B)
)
, (3)

where 1cond · (N ∩ B) = N ∩ B if cond is true and empty otherwise. In other words, if
one constraint Bi is violated in N , we remove all elements in Bi from N . Clearly, S is
independent. Furthermore, since ALG will be the greedy independent set of N for a random
order, it is straightforward to show that S ⊆ ALG.

Therefore, it is sufficient to bound E[f(S)]. To do that, we first provide a lower bound
for E[w(S)]. After that, we bound E[f(S)] in terms of E[w(S)].

Roadmap. Here we briefly outline our strategy in getting the two pieces of results.
To measure E[w(S)], we estimate the weight loss due to the pruning in Eqn.(3). For each
constraint Bi, we cast the stochastic process in SIMULATE in processing elements in Bi
into a simple stochastic process with µ(Bi). By invoking Proposition 8, the weight loss
w(N ∩ Bi) − w(S ∩ Bi) is 2O(µ(Bi)) · w(N ∩ Bi), which is charged to all elements in Bi
proportionally to 1e∈Nw(e) for all e ∈ Bi. The catch here is, for each element e ∈ U , the set
of {Bi} containing e has a strictly increasing {µ(Bi)} sequence. Therefore, the charges on e
form a geometric sequence which in total will not exceed a constant fraction of 1e∈N · w(e).
Since w(N) =

∑
e∈N w(e), the total weight loss is a constant fraction.

The second piece of ingredient is to make a connection between E[f(S)] and E[w(S)].
For simplicity, let us consider E[f(N)] and E[f(M)] instead to convey the idea. Recall that
w(N) =

∑
e∈N fMe

(e), where Me is the set of elements in M when e arrives. Therefore, it
is not intuitive why E[f(N)] should be large in the first place. To elaborate, we consider
function F = f(M) + 2f(N) − f(M ∪ N) during the execution of the algorithm, which
is a lower bound of 2f(N). We can view f(M) + f(N) − f(M ∪ N) as the intersection
between M and N , e.g., if f(·) is modeling a set cover. During the execution of the algorithm,
when e arrives, we have two cases: (1) fMe

(e) ≈ fNe
(e), where Me and Ne are the current

set of M and N respectively. F will grow nicely proportional to fMe
(e) in this case. (2)

fMe
(e) � fNe

(e). Notice e is placed into M with probability p, in which case F grows
proportional to fMe

(e) as well. This is because fMe∪Ne
(e) ≤ fNe

(e) � fMe
(e) due to the

submodularity of f(·). Therefore, F grows in both cases in expectation, which gives a
lower bound for E[f(N)] with respect to E[f(M)]. The analysis in bounded f(S) is more
complicated. Though the underlying idea is identical. We formally implement these two
ideas in Lemma 10 and Lemma 11.

I Lemma 10. Let β = 2e(1− p). We have

E[w(S)] ≥ (1− 2β
(1− β)3)E[w(N)].

STACS’13

486 Algorithms for Submodular Matroid Secretary Problems

Proof. Since for a fixed set of random outcomes, w(·) is a linear function. By Eqn.(3), we
have that

E[w(N)] ≤ E[w(S)] +
∑
B∈F

E[w(1|N∩B|>µ(B) · (N ∩B))].

Now we focus on the term E[w(1|N∩B|>µ(B) ·(N∩B))] and the simulated greedy algorithm
on elements in B, i.e., a particular constraint in F . We isolate B in the process by rearranging
the randomness as follows. First, for each element in U \B, we assign an independent random
coin to it, i.e., if this element appears in the algorithm, its random coin will be tossed.
For a fixed outcome of all random coins outside of B, the simulated greedy algorithm is a
simple stochastic process for the elements in B. The only difference, however, is the process
may terminate before |M ∩B| = µ(B). This can be easily remedied by appending dummy
elements as before. Recall that β = 2e(1− p). By Proposition 8, we have:

E[1|N∩B|>µ(B) · w(N ∩B)] ≤ (µ(B) + 1− µ(B)β)βµ(B)

(1− β)2 · E[w(N ∩B)]. (4)

It follows that

E[w(N)]

≤ E[w(S)] +
∑
B∈F

(µ(B) + 1− µ(B)β)βµ(B)

(1− β)2 · E[w(N ∩B)]

= E[w(S)] + 1
(1− β)2

∑
B∈F

∑
e∈U

E[(µ(B) + 1− µ(B)β)βµ(B) · w(e)1e∈B · 1e∈N]

= E[w(S)] + 1
(1− β)2

∑
e∈U

E

[
w(e)1e∈N

(∑
B∈F

(µ(B) + 1− µ(B)β)βµ(B) · 1e∈B

)]

≤ E[w(S)] + 1
(1− β)2

∑
e∈U

E[w(e)1e∈N]

∑
i≥1

(i+ 1− iβ)βi
 (5)

= E[w(S)] + 2β
(1− β)3E[w(N)]

Eqn.(5) uses the fact that the set of constrains {Bi} containing an element e has a strictly
increasing sequence of {µ(Bi)}. J

We then bound E[f(S)] as follows. For an element e, let Ne be the set of elements in
N when e appears in SIMULATE. We define g(e) = fNe

(e) if e ∈ M ∪ N and g(e) = 0
otherwise. 1

I Lemma 11. For any t > 0, let θ = 1 + (1−p)t
p . We have

E[f(S)] ≥ (1
θ
− (1− β)3

t((1− β)3 − 2β))E[w(S)]

1 We define g(e) based on Ne instead of Se, i.e., the current set of elements in S, because Se is still a
random set even all the randomness before e’s arrival is fixed.

T. Ma, B. Tang, and Y. Wang 487

Proof. Let g(S) =
∑
e∈S g(e). Since S ⊆ N , we have f(S) ≥ g(S) by the submodularity of

f(·). We inspect the function F (S,M,N) = t ·g(S)+f(M)−f(M ∪N). By the monotonicity
of f , f(S) ≥ g(S) ≥ F (S,M,N)/t.

Define ∆e = F (S′e,M ′e, N ′e) − F (Se,Me, Ne) where M ′e (resp. N ′e and S′e) is the set M
(resp. N and S) after we process element e. If e /∈ M ∪ N , define ∆e = 0. Therefore,
F (S,M,N) =

∑
e∈U ∆e. Let Re be the sub-σ-algebra encoding all randomness up to the

time e is picked in SIMULATE. Notice that Me and Ne are Re measurable. We have
Pr[e ∈M | Re] = p and Pr[e ∈ N | Re] = 1− p.

E[∆e | Re] = t · (E[g(S′)− g(S) | Re]) + (E[f(M ′)− f(M) | Re])
− (E[f(M ′ ∪N ′)− f(M ∪N) | Re])
= t · Pr[e ∈ S | Re]fNe(e) + Pr[e ∈M | Re]fMe(e)− fMe∪Ne(e)

Then we bound E[∆e | Re] by case analysis. Notice that Pr[e ∈M | Re]+Pr[e ∈ N | Re] = 1
and Pr[e ∈ N | Re] ≥ Pr[e ∈ S | Re].
Case 1: fMe(e) ≥ θ · fNe(e).

E[∆e | Re] ≥ Pr[e ∈M | Re](fMe
(e)− fMe∪Ne

(e))− Pr[e ∈ N | Re]fMe∪Ne
(e)

≥ p

1− p (1− 1
θ

) Pr[e ∈ S | Re]fMe
(e)− Pr[e ∈ N | Re]fMe

(e)

Case 2: fMe
(e) < θ · fNe

(e).

E[∆e | Re] ≥ t · Pr[e ∈ S | Re]fNe
(e)− Pr[e ∈ N | Re]fMe∪Ne

(e)

≥ t

θ
Pr[e ∈ S | Re]fMe

(e)− Pr[e ∈ N | Re]fMe
(e)

By definition of θ, we have p
1−p (1− 1

θ) = t/θ. So

E[∆e | Re] ≥
t

θ
Pr[e ∈ S | Re]fMe

(e)− Pr[e ∈ N | Re]fMe
(e)

Therefore

t · E[f(S)] ≥ E[F (S,M,N)] =
∑
e

ERe
[E[∆e | Re]]

≥
∑
e∈U

ERe
[t
θ

Pr[e ∈ S | Re]fMe
(e)− Pr[e ∈ N | Re]fMe

(e)]

= t

θ
E[w(S)]− E[w(N)] (6)

≥ t

θ
E[w(S)]− (1− β)3

(1− β)3 − 2βE[w(S)]

The last inequality is by Lemma 10. So E[f(S)] ≥ (1
θ −

(1−β)3

t((1−β)3−2β))E[w(S)] J

Combining all the results together, we have an algorithm with competitive ratio at most
211 with p = 0.9794 and t = 10.1415.

I Theorem 12. There is an online algorithm with competitive ratio at most 211 for the
submodular matroid secretary problem with laminar matroids.

STACS’13

488 Algorithms for Submodular Matroid Secretary Problems

5 Conclusion

In this paper, we develop a general algorithm for the submodular matroid secretary problems.
In particular, we obtain constant competitive algorithms for laminar matroids and transversal
matroids. Our algorithm can also handle the intersection of a constant number of laminar
matroids, which makes our algorithm more applicable. We state the results for transversal
matroids and intersection of matroids, and defer their proofs in the full version [18], where we
also analyze the algorithm for the linear matroid secretary problem with laminar matroids.

I Theorem 13. There is an online algorithm with competitive ratio at most 95 for the
submodular matroid secretary problem with transversal matroids.

I Theorem 14. For any constant k, there is an online algorithm with competitive ratio
at most 1000k(k+1)

9 for the submodular matroid secretary problem with the intersection of k
laminar matroids.

I Theorem 15. Algorithm 2 is a 9.6-competitive algorithm for the linear matroid secretary
problem with laminar matroids.

However, our algorithm does not work on general matroid case. Consider the following
simple example on graphical matroids. There is a single heavy edge (u, v) in the graph.
There is a large number of nodes K = {u1, u2, . . . , un} and edges {(u, ui), (ui, v) | ui ∈ K}.
The weight on each such edge is very small. It is easy to verify that the probability that
our algorithm will accept (u, v) is exponentially small on n. Nevertheless, our algorithm can
handle graphical matroids using the same decomposition technique [1], i.e., by reducing the
problem to a partition matroid, which is randomly selected from two constructed partition
matroids. On the other hand, it would be interesting to characterize the independent set
constraints for which our algorithm framework is constant competitive.

In the distinction between the submodular case and linear case in matroid secretary
problem, we still cannot adapt the recent O(

√
log r) competitive algorithm in [5] as well

as the constant competitive algorithm for the random assignment model in [19] previously
on the linear case. It would be interesting to close this gap. Finally, it is still widely open
whether the matroid secretary problem permits constant competitive algorithms for general
matroids.

References
1 Moshe Babaioff, Michael Dinitz, Anupam Gupta, Nicole Immorlica, and Kunal Talwar.

Secretary problems: weights and discounts. In SODA, pages 1245–1254, 2009.
2 Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. A knapsack

secretary problem with applications. In APPROX/RANDOM, pages 16–28, 2007.
3 Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids, secretary problems,

and online mechanisms. In SODA, pages 434–443, 2007.
4 Mohammad Hossein Bateni, MohammadTaghi Hajiaghayi, and Morteza Zadimoghaddam.

The submodular secretary problem and its extensions. In APPROX, pages 39–52, 2010.
5 Sourav Chakraborty and Oded Lachish. Improved competitive ratio for the matroid sec-

retary problem. In SODA, pages 1702–1712, 2012.
6 Nedialko B. Dimitrov and C. Greg Plaxton. Competitive weighted matching in transversal

matroids. In ICALP, pages 397–408, 2008.
7 Michael Dinitz and Guy Kortsarz. Matroid secretary for regular and decomposable

matroids. CoRR, abs/1207.5146, 2012.

T. Ma, B. Tang, and Y. Wang 489

8 E. B. Dynkin. Optimal choice of the stopping moment of a markov process. Dokl.Akad.Nauk
SSSR, 150:238–240, 1963.

9 Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. Improved competitive ratios for
submodular secretary problems (extended abstract). In APPROX, pages 218–229, 2011.

10 T. S. Ferguson. Who solved the secretary problem? Statistical science, pages 282–289,
1989.

11 PR Freeman. The secretary problem and its extensions: A review. International Statistical
Review, pages 189–206, 1983.

12 M. Gardner. Mathematical games column. Scientific American, 35, 1960.
13 Shayan Oveis Gharan and Jan Vondrák. On variants of the matroid secretary problem. In

ESA, pages 335–346, 2011.
14 A. Gupta, A. Roth, G. Schoenebeck, and K. Talwar. Constrained non-monotone submod-

ular maximization: Offline and secretary algorithms. In WINE, pages 246–257, 2010.
15 Sungjin Im and Yajun Wang. Secretary problems: Laminar matroid and interval scheduling.

In SODA, 2011.
16 Robert Kleinberg. A multiple-choice secretary algorithm with applications to online auc-

tions. In SODA, pages 630–631, Philadelphia, PA, USA, 2005.
17 Nitish Korula and Martin Pál. Algorithms for secretary problems on graphs and hyper-

graphs. In ICALP (2), pages 508–520, 2009.
18 T. Ma, B. Tang, and Y. Wang. The simulated greedy algorithm for several submodular

matroid secretary problems. arXiv preprint arXiv:1107.2188, 2011.
19 Jose Soto. Matroid secretary problem in the random assignment model. In SODA, pages

1275–1284, 2011.

STACS’13

Hardness of Conjugacy, Embedding and
Factorization of multidimensional Subshifts of
Finite Type∗

Emmanuel Jeandel1 and Pascal Vanier2

1 LORIA
Campus Scientifique - BP 239
54506 Vandoeuvre-les-Nancy
France
emmanuel.jeandel@loria.fr

2 Einstein Institute of Mathematics
Hebrew University
Givat Ram
Jerusalem 91904
Israel
pascal.vanier@lif.univ-mrs.fr

Abstract
Subshifts of finite type are sets of colorings of the plane defined by local constraints. They can
be seen as a discretization of continuous dynamical systems. We investigate here the hardness of
deciding factorization, conjugacy and embedding of subshifts of finite type (SFTs) in dimension
d > 1. In particular, we prove that the factorization problem is Σ0

3-complete and that the
conjugacy and embedding problems are Σ0

1-complete in the arithmetical hierarchy.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Subshifts, Computability, Factorization, Embedding, Conjugacy

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.490
A d-dimensional Subshift of Finite Type (SFT) is the set of colorings of Zd by a finite set

of colors in which a finite set of forbidden patterns never appear. One can also see them as
tilings of Zd, and in dimension 2 they are equivalent to the usual notion of tilings introduced
by Wang [13]. SFTs are a way to discretize continuous dynamical systems: if X is a compact
space and φ : X → X a continuous map, we can partition X in a finite number of parts
Σ = {1, . . . , n} and transform the orbit of a point x ∈ X into a sequence (xn)n∈N∗ , where xi

denotes the part of X in which φi(x) lies.
Conjugacy is the right notion of isomorphism between subshifts, and plays a major role in

their study: when two subshifts are conjugate they code each other and hence have the same
dynamical properties. Conjugacy is an equivalence relation and allows to separate SFTs into
equivalence classes. Deciding whether two SFTs are conjugate is called the classification
problem. It is a long standing open problem in dimension one [4], although has been proved
decidable in the particular case of one-sided SFTs on N, see [14]. It has been known for a
long time that in higher dimensions the problem is undecidable when given two SFTs, since
it can be reduced to the emptyness problem which is Σ0

1-complete [1]. However, we prove
here a slightly stronger result: even by fixing the class in advance, it is still undecidable to
decide whether some given SFT belongs to it:

∗ This work was sponsored by the ANR grant ANR-09-BLAN-0164 and the ISF grant number 1409/11.

© E. Jeandel and P. Vanier;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 490–501

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.490
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

E. Jeandel and P. Vanier 491

I Theorem 1. For any fixed X, given Y as an input, it is Σ0
1-complete to decide if X and

Y are conjugate.

An interesting open question for higher dimension that would probably help solve the one
dimensional problem would be is conjugacy of subshifts decidable when provided an oracle
answering whether or not a pattern is extensible ?. A positive answer to this question would
solve the one dimensional case, even if the SFTs are considered on N2 instead of Z2.

Factorization is the notion of surjective morphism adapted to SFTs: when X factors on
Y , then Y is a recoding of X, possibly with information loss: the dynamic of Y is “simpler”
than X’s,i.e. it can be deduced from X’s. The problem of knowing if some SFT is a factor
of another one has also been much studied. In dimension one, it is only partly solved for
the case when the entropies of the two SFTs X,Y verify h(X) > h(Y), see [3]. Factor maps
have also been studied with the hope of finding universal SFTs: SFTs that can factor on any
other and thus contain the dynamics of all of them. However it has been shown that such
SFTs do not exist, see [2, 5]. We prove here that it is harder to know if an SFT is a factor of
another than to know if it is conjugate to it.

I Theorem 2. Given two SFTs X,Y as inputs, it is Σ0
3-complete to decide if X factors onto

Y .

The last problem we will tackle is the embedding problem, that is to say: when can an
SFT be injected into some other SFT? If an SFT X can be injected into another SFT Y ,
that means that there is an SFT Z ⊆ Y such that X and Z are conjugate. In dimension 1,
this problem is also partly solved when the two SFTs X,Y are irreducible and their entropies
verify h(X) > h(Y) [8]. We prove here that the problem is Σ0

1-complete:

I Theorem 3. Given two SFTs X,Y as inputs, it is Σ0
1-complete to decide if X embeds into

Y .

The paper is organised as follows: first we give the necessary definitions and fix the
notation is section 1, after what we give the proofs of Theorems 1, 2 and 3 in Sections 2, 3
and 4 respectively.

1 Preliminary definitions

1.1 Subshifts of finite type
We give here some standard definitions and facts about multidimensional subshifts, one may
consult Lind [10] or Lind/Marcus [9] for more details.

Let Σ be a finite alphabet, its elements are called symbols, the d-dimensional full shift on
Σ is the set ΣZd of all maps (colorings) from Zd to the Σ (the colors). For v ∈ Zd, the shift
functions σv : ΣZd → ΣZd , are defined locally by σv(cx) = cx+v. The full shift equipped with
the distance d(x, y) = 2−min{‖v‖|v∈Zd,xv 6=yv} is a compact metric space on which the shift
functions act as homeomorphisms. An element of ΣZd is called a configuration.

Every closed shift-invariant (invariant by application of any σv) subset X of ΣZd is called
a subshift. An element of a subshift is called a point of this subshift.

Alternatively, subshifts can be defined with the help of forbidden patterns. A pattern is a
function p : P → Σ, where P , the support, is a finite subset of Zd. Let F be a collection of
forbidden patterns, the subset XF of ΣZd containing the configurations having nowhere a
pattern of F . More formally, XF is defined by

STACS’13

492 Hardness of Conjugacy, Embedding and Factorization of SFTs

XF =
{
x ∈ ΣZd

∣∣∣∀z ∈ Zd, ∀p ∈ F, x|z+P 6= p
}
.

In particular, a subshift is said to be a subshift of finite type (SFT) when the collection
of forbidden patterns is finite. Usually, the patterns used are blocks or r-blocks, that is they
are defined over a finite subset P of Zd of the form Br = J−r, rKd, r is called its radius. We
may assume that all patterns of F are defined with blocks of the same radius r, and say the
family F has radius r. We note rX the radius of the SFT X, the smallest r for which there
is a family F of radius r defining X.

Given a subshift X, a pattern p is said to be extensible if there exists x ∈ X in which p
appears, p is also said to be extensible to x. We also say that a pattern p1 is extensible to
a pattern p2 if p1 appears in p2. A block or pattern is said to be admissible if it does not
contain any forbidden pattern. Note that every extensible pattern is admissible but that the
converse is not necessarily true. As a matter of fact, for SFTs, it is undecidable (in Π0

1 to
be precise) in general to know whether a pattern is extensible while it is always decidable
efficiently (polytime) to know if a pattern is admissible.

As we said before, SFTs are compact spaces, this gives a link between admissible and
extensible: if a pattern appears in an increasing sequence of admissible patterns, then
it appears in a valid configuration and is thus extensible. More generally, if we have an
increasing sequence of admissible pattern, then we can extract from it a sequence converging
to some point of the SFT.

Note that instead of using the formalism of SFTs for the constructions we could have
used the formalism of Wang tiles, in which numerous results have been proved. In particular
the undecidability of knowing whether an SFT is empty. Since we will use a construction
based on Wang tiles, we review their definitions.

Wang tiles are unit squares with colored edges which may not be flipped or rotated. A
tileset T is a finite set of Wang tiles. A coloring of the plane is a mapping c : Z2 → T

assigning a Wang tile to each point of the plane. If all adjacent tiles of a coloring of the
plane have matching edges, it is called a tiling.

The set of tilings of a Wang tileset is a SFT on the alphabet formed by the tiles. Conversely,
any SFT is isomorphic to a Wang tileset. From a recursivity point of view, one can say that
SFTs and Wang tilesets are equivalent. In this paper, we will be using both terminologies
indiscriminately.

1.2 Conjugacy, Embedding and Factorization

In the rest of the paper, we will use the notation ΣX for the alphabet of the subshift X.
Let X ⊆ ΣZ2

X and Y ⊆ ΣZ2

Y be two subshifts a function F : X → Y is a block code if
there exists a finite set V = {v1, . . . , vk} ⊂ Z2, the window, and a local map f : Σ|V |X → ΣY ,
such that for any point x ∈ X and y = F (x), for all z ∈ Zd, yz = f(xz+v1 , . . . , xz+vk

). That
is to say F is defined locally. Without loss of generality, we may suppose that the window is
an r-block, r being then called the radius of F and (2r + 1) its diameter, we note rF the
radius of F .

A factorization or factor map is a surjective block code F : X → Y . When the function
is injective instead of being surjective, it is called an embedding, and we say that X embeds
into Y .

When the map F is bijective and invertible and its inverse is also a block code, the
subshifts X and Y are said to be conjugate. In the rest of the paper, we will note with the

E. Jeandel and P. Vanier 493

same symbol the local and global functions, the context making clear which one is being
used.

The entropy of a subshift X is defined as

h(X) = lim
n→∞

logEn(X)
nd

where En(X) is the number of extensible patterns of X of support J0, nKd where d is the
dimension. The entropy is a conjugacy invariant, that is to say, if X and Y are conjugate,
then h(X) = h(Y). It is in particular easy to see thanks to the entropy that the full shift on
n symbols is not conjugate to the full shift with n′ symbols when n 6= n′.

1.3 Arithmetical Hierarchy and computability
We give now some background in computability theory and in particular about the arithmetical
hierarchy. More details can be found in Rogers [12].

In computability, the arithmetical hierarchy is a classification of sets according to their
logical characterization. A set A ⊆ N is Σ0

n if there exists a total computable predicate
R such that x ∈ A ⇔ ∃y1, ∀y2, . . . , QynR(x, y1, . . . , yn), where Q is a ∀ or an ∃ depending
on the parity of n. A set A is Π0

n if there exists a total computable predicate R such that
x ∈ A⇔ ∀y1, ∃y2, . . . , QynR(x, y1, . . . , yn), where Q is a ∀ or an ∃ depending on the parity
of n. Equivalently, a set is Σ0

n iff its complement is Π0
n.

We say a set A is many-one reducible to a set B, A ≤m B if there exists a computable
function f such that for any x, f(x) ∈ A⇔ x ∈ B. Given an enumeration of Turing Machines
Mi with oracle X, the Turing jump X ′ of a set X is the set of integers i such that Mi halts
on input i. We note X(0) = X and X(n+1) = (X(n))′. In particular 0′ is the set of halting
Turing machines.

A set A is Σ0
n-hard (resp. Π0

n) iff for any Σ0
n (resp. Π0

n) set B, B ≤m A. The problem
0(n) is Σ0

n-complete. Furthermore, it is Σ0
n-complete if it is in Σ0

n. The sets in Σ0
1 are also

called recursively enumerable and the sets in Π0
1 are called the co-recursively enumerable or

effectively closed sets.

2 Conjugacy

We prove here the Σ0
1-completeness of the conjugacy problem in dimension d ≥ 2, even for a

fixed SFT. We first prove the following lemma, which is the first step to show that conjugacy
is Σ0

1 and also proves that equality is Σ0
1.

I Lemma 4. Given F,X, Y as an input, deciding if F (X) ⊆ Y is Σ0
1.

Proof. It is clear that F (X) ⊆ Y if and only if F (X) does not contain any configuration
where a forbidden patterns of Y appears. We now show that this is equivalent to the following
Σ0

1 statement: there exists a radius r > max(rF +rY , rX) such that for any admissible r-block
M of X, F (M) does not contain any forbidden pattern in its center.

We prove the result by contraposition, in both directions. Suppose there is a configuration
x ∈ X such that F (x) contains a forbidden pattern. Then for any radius r > max(rF +rY , rX),
there exists an extensible, hence admissible, pattern M of size r such that F (M) contains a
forbidden pattern in its center.

Conversely, if for any radius r > max(rF + rY , rX), there exists an admissible pattern
M of X of size r such that F (M) contains a forbidden pattern in its center, then by

STACS’13

494 Hardness of Conjugacy, Embedding and Factorization of SFTs

compactness, there exists a configuration x ∈ X such that F (x) contains a forbidden pattern
in its center. J

I Corollary 5. Given two SFTs X,Y as an input, it is Σ0
1 to decide if X = Y .

I Theorem 6. Given two SFTs X,Y as an input, it is Σ0
1 to decide whether X and Y are

conjugate.

Proof. To decide whether two SFTs X and Y are conjugate, we have to check whether
there exists two local functions F : ΣBrF

X → ΣY and G : ΣBrG

Y → ΣX such that the global
functions associated verify F|X ◦G|Y = id|Y and G|Y ◦ F|X = id|X . These functions being
local, we can guess them with a first order existential quantifier. We prove that X and Y
are conjugate if and only if the following Σ0

1 statement is true :

There exist F,G and k > max(rX + rY) + rF + rG such that F (X) ⊆ Y and
G(Y) ⊆ X and :

for all k-block b, if b is admissible for X, then G ◦ F (b)0 = b0
for all k-block b, if b is admissible for Y , then F ◦G(b)0 = b0

We only prove the statement for G ◦ F the other one being identical. The proof is by
contraposition in both directions :

Let x ∈ X be a point such that G◦F (x) 6= x, we may suppose that the difference is in 0 by
shifting. For all k, there exists an extensible pattern b of size k such that G ◦ F (x)0 6= b0.
Conversely, if there exists a sequence bk of admissible k-blocks such that G◦F (bk)0 6= (bk)0,
then by compactness we can extract a subsequence converging to some point x ∈ X which
by construction is different from its image by G ◦ F in 0.

As we have seen in Lemma 4 that checking whether F (X) ⊆ Y is Σ0
1, we have the desired

result. J

I Theorem 7. For any X, given Y as an input, it is Σ0
1-hard to decide if X and Y are

conjugate (resp. equal).

Proof. We reduce the problem from 0′, the halting problem. Given a Turing machine M we
construct a SFT YM such that YM is conjugate to X iff M halts.

Let RM be Robinson’s SFT [11] encoding computations of M : RM is empty iff M halts1.
Now take the full shift on one more symbol than X, note it F . Let YM be now the

disjoint union of X and RM × F .
If M halts, YM = X and hence is conjugate to X. In the other direction, suppose M

does not halt, then RM × F has entropy strictly greater than that of X and hence YM is not
conjugate to X. J

I Corollary 8. Given two SFTs X,Y as an input, it is Σ0
1-hard to decide if X = Y .

3 Factorization

We start with two small examples to see why factorization is more complex than conjugacy.
Here the examples are the simplest ones possible: we fix the SFT to which we factor in a
very simple way, thus making the factor map known in advance.

1 Robinson’s SFT is in dimension 2 of course, for higher dimensions, we take the rules that the symbol in
x± ei equals the symbol in x, for i > 2.

E. Jeandel and P. Vanier 495

I Theorem 9. Let Y be the SFT containing exactly one configuration, a uniform configuration.
Given X as an input, it is Π0

1-complete to know whether X factors onto Y .

Proof. In this case the factor map is forced: it has to send everything to the only symbol of
ΣY . And the problem is hence equivalent to knowing whether a SFT is not empty, which is
Π0

1-complete. J

I Theorem 10. Let Y be the empty SFT. Given X as an input, it is Σ0
1-complete to know

whether X factors onto Y .

Proof. Here any factor map is suitable, the problem is equivalent to knowing whether X is
empty, which is Σ0

1-complete. J

We study now the hardness of factorization in the general case, that is to say when two
SFTs are given as inputs and we want to know whether one is a factor of the other. We
prove here with Theorems 11 and 15 the Σ0

3-completeness of the factorization problem.

3.1 Factorization is in Σ0
3

I Theorem 11. Given two SFTs X,Y as an input, deciding whether X factors onto Y is in
Σ0

3.

Proof. The shift X factors onto Y iff there exists a factor map F , a local function, such that
F (X) = Y . This is the first existential quantifier.The result follows from the next lemma
and Lemma 4. J

I Lemma 12. Given two SFTs X,Y and a local map F as an input, deciding if Y ⊆ F (X)
is Π0

2.

Proof. We prove here that the statement Y ⊆ F (X), that is to say, for every point y ∈ Y ,
there exists a point x ∈ X such that F (x) = y, is equivalent to the following Π0

2 statement:
for any admissible pattern m of Y , if m is extensible, then F−1(m) contains an admissible
pattern. This statement is Π0

2 since checking that m is not extensible is Σ0
1, that is to say:

there exists a radius r such that all r-blocks containing m are not admissible.
We now prove the equivalence. Suppose that Y ⊆ F (X), then any extensible pattern m

of Y appears in a configuration y ∈ Y which has a preimage x ∈ X. A preimage of m being
extensible, it is also admissible. This proves the first direction.

Conversely, suppose all extensible patterns m of Y have an admissible preimage. Let y
be a point of Y , then we have an increasing sequence mi of extensible patterns converging to
y. All of them have at least one admissible preimage m′i. By compactness, we can extract
from this sequence a converging subsequence, note x its limit. By construction x is a point
of X and a preimage of y.

J

3.2 Factorization is Σ0
3-hard

To prove the hardness, we use the base construction that we introduced in [6]: we note it T .
This construction introduces a new way to put Turing machine computations in SFTs, in
particular, the base construction has exactly one point (up to shift) in which computations
may be encoded. We call this point configuration α, its schematic view is shown in Figure 2a.
The computation is encoded in the inner grid which is sparse. Each crossing between a
horizontal line and a vertical one forms a cell. The constraints are carried along the vertical

STACS’13

496 Hardness of Conjugacy, Embedding and Factorization of SFTs

and horizontal lines, so that we may view the encoding of the Turing machine as a tiling
on the grid. For each time step, the tape of the Turing machine is encoded in the NW-SE
diagonals and the size of the diagonal steadily increases in size when going north-east. At
each growth of the diagonal size, it gains two cells.

Configuration α is made of two layers: one producing the horizontal lines and the other
the vertical ones. The layer producing the vertical lines is shown in Figure 1, the vertical
lines are the black vertical lines. The configuration producing the horizontal lines is its exact
symmetric along the south-west/north-east diagonal. The key property of these layers is
that when a corner tile (the tile in the lower left corner of the first square) appears, then the
point is necessarily of this form.

In the original construction, corner tiles of the horizontal and vertical layers could only
be superimposed to each other. We just change this so that instead, the corner tile of the
vertical layer has to be at position (1,−1) relative to the corner tile of the horizontal one.
This change does not impact any of the properties of T , but simplifies a bit the proof of
Lemma 14.

Figure 1 The vertical layer of point α, the meaningful point of XT . The corner tile may be seen
on the first non all-white column: it is the lower left corner of the square.

(a)

tim
e

space

(b)

Figure 2 (a) The skeleton of configuration α. (b) How the computation is superimposed to α.

Our reduction will use two SFTs based on this construction, both of them will be feature

E. Jeandel and P. Vanier 497

a different tiling on its grid. We will say that an SFT which is basically T with a tiling on
its grid as having T -structure.

I Definition 13 (T -structure). We say an SFT X has T -structure if it is a copy of T to
which we superimposed new symbols only on the symbols representing the horizontal/vertical
lines and their crossings.

Note that an SFT may have T -structure while having no α-configuration: for instance if
you put a computation of a Turing machine that produces an error whenever it halts.

The next lemma states a very intuitive result, that will be used later, namely that if an
SFT with T -structure factors to another one, then the structure of each point is preserved
by factorization. Furthermore, it shows that the factor map can only send a cell to its
corresponding one, that is to say cell of the preimage has to be in the window of the image.

I Lemma 14. Let X,Y be two SFTs with T -structure, such that X factors onto Y . Let
r be the radius of the factor map, then any α-configuration of Y is factored on by an
α-configuration of X shifted by v, with ‖v‖∞ ≤ r.

Proof. By [6, Lemma 1], we know that non-α-configurations have at most one vertical line
and one horizontal line. And therefore that they have two uniform (same symbols everywhere)
quarter-planes and four uniform eighth-planes, as seen on Figure 3. The two north east
eighth-planes are not uniform in α. Thus they cannot be factored on α.

Figure 3 Uniform quarter- and eighth-planes in non-α-configurations.

It remains to prove the second part: that in the factoring process the α-structure is at
most shifted by the radius of the factorization. We do that by contradiction, suppose that an
α-configuration x of X is mapped to an α-configuration y of Y and shifts it by v = (vx, vy),
with ‖v‖∞ > r. Without loss of generality we may suppose that vx > r and vy > 0 and
that the vertical and horizontal corner tiles of the preimage are at positions (0, 1) and (1, 0)
respectively. We are now going to show that this is not possible.

On the horizontal layer, for all k ∈ N∗ there is a square with lower left corner at
(2k2 + k, 2k2 + k), see Figure 1. Inside this square, there are two (k − 1)× (k − 1) uniform
smaller squares, see Figure 4. This being also true for the vertical layer, these squares remain
uniform when they are superimposed. Now take k such that k > (‖v‖∞ + 2r + 1). By
hypothesis, there is a vertical line symbol t at zp = (2k2 + 2k + 1, 2k2 + k) on x, and thus
at zi = (2k2 + 2k + 1 + vx, 2k2 + k + vy) on y. We know x|zi+Br

has image t, and by what
precedes that x|zi+Br

= x|zi+(1,0)+Br
since they are both uniform, therefore, there should be

two t symbols next to eachother in y at zi and zi + (1, 0). This is impossible.
J

I Theorem 15. Given two SFTs X,Y as an input, deciding whether X factors onto Y is
Σ0

3-hard.

STACS’13

498 Hardness of Conjugacy, Embedding and Factorization of SFTs

k − 1 k − 1

k k − 1

2k

(2k2 + k, 2k2 + k)

Figure 4 For every k ∈ N∗, the square starting at position (2k2 + k, 2k2 + k) is of the form on
the right on the component producing the vertical lines (and is the symmetric along the diagonal for
the one producing the horizontal lines). We can see that there are two uniform (k − 1)× (k − 1)
squares at (2k2 + 2k + 2, 2k2 + k + 1) and (2k2 + k + 1, 2k2 + 2k + 2) respectively.

For this proof, we will reduce from the problem COFINITE, which is known to be Σ0
3-

complete, see Kozen [7]. COFINITE is the set of Turing machines which run infinitely only
on a finite set of inputs.

d
>
n n

Figure 5 Computation on input n in the SFT Z, the number of white diagonals d preceeding
the computation is strigtly greater than the input n.

Proof. Given a Turing machine M , we construct two SFTs XM and YM such that XM

factors on YM iff the set of inputs on which M does not halt is finite. We first introduce an
SFT ZM on which both will be based. It will have T structure. Above the T base, we allow
the cells of the grid to be either white or blue according to the following rules:

All cells on a NW-SE diagonal are of the same color.
A blue diagonal may follow (along direction SW-NE) a white diagonal, but not the
contrary.
A transition from white diagonal to blue may only appear when the grid grows.

We now allow computation on blue cells only. Only the diagonals after the growth of the
grid may contain computations. The Turing machine M is launched on the input formed by
the size of the first blue line (in number of cells). We forbid the machine to halt.

So for each n on which M does not halt, there is a configuration with white cells until
the first blue diagonal appears, then computation occurs inside the blue cone, see Figure 5
for a schematic view. If M halts on n, then there is no tiling where the first blue line codes
n. By compactness, there is of course a configuration with only white diagonals. If M is
total, then the only α-configuration in ZM is the one with only white diagonals.

Now from ZM , we can give XM and YM :

E. Jeandel and P. Vanier 499

XM : Let Z ′M be a copy of ZM to which we add two decorations 0 and 1 on the blue cells
only, and all blue cells in a configuration must have the same decoration. Now XM is
Z ′M to which we add a third color, red, that may only appear alone, instead of white and
blue. No computation is superimposed on red.
YM is a copy of ZM where we decorated only the horizontal corner tile with two symbols
0 and 1.

We now check that XM factors onto YM iff M does not halt on a finite set of inputs:
⇒ Suppose M does not halt on a finite set of inputs: there exists N such that M halts on

every input greater than N . The following factor map F works:
F is the identity on ZM . Note that the additional copy of T is also sent to the
component ZM .
F has a radius big enough so that when its window is centered on the corner tile, it
would cover the beginning of the computation on input N .
An α-configuration x of XM is sent on the same α-configuration y in YM . For the
decorations, when there is a computation on x, the factor map can see it and gives
the same decoration to the corner tile of y. When there is no computation, the factor
map doesn’t see a computation zone and gives decoration 0 to the corner tile. The
configuration with only white diagonals and decoration 1 of YM is factored on by the
α-configuration colored in red contained in XM .

Note that this also works when M is total.
⇐ Conversely, suppose M does not halt on an infinite set of inputs, and that there exists a

factor map F with radius r: Lemma 14 states that all α-configurations of YM are factored
on by α-configurations of XM . Now, there is an infinite number of α-configurations
with corner tile decorated with 0 (resp. 1) in YM , they all must be factored on by some
α-configuration of XM . Still by Lemma 14, the corner tile of the preimage must be in
the window of the corner tile of the image. However, there can only be a finite number of
configurations in which the symbols in this window differ. So the α-configurations of XM

factor to a finite number of α-configurations of YM with one of the decorations. This is
impossible.

Note that the construction of XM and YM from the description of M is computable and
uniform. The reduction is thus many-one. J

4 Embedding

We prove now Theorem 3 stating that the embedding problem is Σ0
1-complete. We start with

an analogue of Lemma 14 :

I Lemma 16. Let X,Y be two SFTs with T -structure, such that X embeds into Y . Let r be
the radius of the embedding, then any α-configuration of X is mapped to an α-configuration
of Y shifted by v, with ‖v‖∞ ≤ r.

Proof. First note that the uniform points of X must be mapped to uniform points of Y . So
all different uniform points, and thus all uniform patterns of support Br, have different images.
Now an α-configuration of X has arbitrarily large uniform areas, as seen in Lemma 14, see
also Figure 4. These uniform areas alternate, so their image also alternates when they are
sufficiently large. The only configurations that have growingly large alternating uniform
areas are α-configurations. So α-configurations of X are mapped to α-configurations of Y .
The proof that these mappings do not shift the T -structure by more than r is exactly the
same as in Lemma 14. J

STACS’13

500 Hardness of Conjugacy, Embedding and Factorization of SFTs

I Lemma 17. Let X and Y be two SFTs, it is Σ0
1 to check whether X embeds into Y .

Proof. To decide whether X embeds into Y , we have to check if there exists an injective
local function F : X → Y . Such a function being local, it can be guessed with a first order
existential quantifier. To check that it is an embedding, we have to check that F (X) ⊆ Y and
that for all x1, x2 ∈ X, x1 6= x2 ⇒ F (x1) 6= F (x2). We know from Lemma 4 that checking
F (X) ⊆ Y is Σ0

1. We now show that the second part is also Σ0
1 by showing that the two

following statements are equivalent.
There exist x1, x2 ∈ X such that x1 6= x2 and F (x1) = F (x2).
For all r > max(rF , rX), there exist two admissible r-blocks M1,M2 such that (M1)0 6=
(M2)0 and F (M1) = F (M2).

It is clear that the second statement is Π0
1 and that the first statement is the negation of the

definition of injectivity. Now to the proof :
Suppose there exist two different points x1, x2 ∈ X such that F (x1) 6= F (x2), we may
assume x1 and x2 differ in 0 by shifting. For all r > max(rF , rX), the central r-blocks
M1,M2 of x1, x2 are admissible and differ in 0
Suppose now that for all r > max(rF , rX) there exist two admissible r-blocks Mr

1 ,M
r
2

differing in 0 and such that F (Mr
1) = F (Mr

2). By the pigeonhole principle, there is an
infinity of Mr

1 which have the same symbol in 0 and thus of Mr
2 without this symbol in

0. Take these subsequences of Mr
1 and Mr

2 , by compactness we can extract converging
subsequences from them which converge to two points x1, x2 ∈ X with different symbols
in 0. These two points have the same image, by construction.

J

I Lemma 18. Given two SFTs X,Y as an input, deciding whether X embeds into Y is
Σ0

1-hard.

We will use a reduction from the halting problem, the set of Turing machines that halt on a
blank input, and a construction based on a T -structure, as before.

Proof. Given a Turing machine M , we construct two SFTs XM and YM such that XM

embeds into YM iff the Turing machine M halts. Both SFTs have as a base an SFT ZM with
a T -structure, in which we encode computations of M . Let us describe ZM : ZM is only T
on which we directly encode the computation of M , it may eventually reach a halting state
in which case the remaining space is given a new color, say blue. So our SFT ZM can take
two different forms : if the machine M halts, then a blue zone appears, if it does not halt,
then this zone does not appear.

Now XM is ZM for which we add a decoration to the corner tile, 0 or 1, so there are two
different grid points in any case, whether the machine M halts or not.
YM is ZM for which we add a decoration to the halting state only (it appears at most
once), there are two different grid points only when the machine M halts.

Let us check now that XM embeds into YM if and only if M halts.
⇒ When the machine M halts, XM embeds into YM : the radius of the embedding r is

the distance between the halting state and the corner, the decoration of the corner is
just translated to the halting state. All the rest remains unchanged. Note that there are
less non α-configurations in XM than in YM : these are the configurations containing an
infinite cross of black lines with a halting state on top. They have different decorations
in YM but not in XM .

⇐ When the machine M does not halt, there are two different α-configurations in XM up
to shift, while there is only one in YM , so there are two that must have the same image.

J

E. Jeandel and P. Vanier 501

References
1 Robert Berger. The Undecidability of the Domino Problem. PhD thesis, Harvard University,

1964.
2 Laurent Boyer and Guillaume Theyssier. On factor universality in symbolic spaces. In

MFCS, pages 209–220, 2010.
3 Mike Boyle. Lower entropy factors of sofic systems. Ergodic Theory and Dynamical Systems,

3:541–551, 1983.
4 Mike Boyle. Open Problems in Symbolic Dynamics. Contemporary Mathematics, 469:69–

118, 2008.
5 Michael Hochman. A note on universality in multidimensional symbolic dynamics. Discrete

and Continuous Dynamical Systems S, 2(2), 2009.
6 Emmanuel Jeandel and Pascal Vanier. Π0

1 sets and tilings. In Theory and Applications
of Models of Computation (TAMC), volume 6648 of Lecture Notes in Computer Science,
pages 230–239, 2011.

7 Dexter Kozen. Theory of Computation. Springer, New York, 2006.
8 Wolfgang Krieger. On the subsystems of topological markov chains. Ergodic Theory and

Dynamical Systems, 2(02):195–202, 1982.
9 Douglas Lind and Brian Marcus. An introduction to symbolic dynamics and coding. Cam-

bridge University Press, New York, NY, USA, 1995.
10 Douglas A. Lind. Multi-Dimensional Symbolic Dynamics. In Susan G. Williams, editor,

Symbolic Dynamics and its Applications, number 60 in Proceedings of Symposia in Applied
Mathematics, pages 61–79. American Mathematical Society, 2004.

11 Raphael M. Robinson. Undecidability and Nonperiodicity for Tilings of the Plane. Inven-
tiones Math., 12, 1971.

12 Hartley Rogers, Jr. Theory of recursive functions and effective computability. MIT Press,
Cambridge, MA, USA, 1987.

13 Hao Wang. Proving theorems by Pattern Recognition II. Bell Systems technical journal,
40:1–41, 1961.

14 R. F. Williams. Classification of subshifts of finite type. Annals of Mathematics, 98:120–153,
1973.

STACS’13

The finiteness of a group generated by a 2-letter
invertible-reversible Mealy automaton is decidable
Ines Klimann∗

Univ Paris Diderot, Sorbonne Paris Cité, LIAFA,
UMR 7089 CNRS, F-75013 Paris, France
klimann@liafa.univ-paris-diderot.fr

Abstract
We prove that a semigroup generated by a reversible two-state Mealy automaton is either finite
or free of rank 2. This fact leads to the decidability of finiteness for groups generated by two-
state or two-letter invertible-reversible Mealy automata and to the decidability of freeness for
semigroups generated by two-state invertible-reversible Mealy automata.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Mealy automata, automaton semigroups, decidability of finiteness, de-
cidability of freeness, Nerode equivalence

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.502

1 Introduction

Automaton (semi)groups — short for semigroups generated by Mealy automata and groups
generated by invertible Mealy automata — were formally introduced half a century ago (for
details, see [14, 9] and references therein). Over the years, important results have started
revealing their full potential, by contributing to important conjectures in group theory, as
Milnor problem (first example of a group of intermediate growth) or Burnside problem
(example of a very simple Mealy automaton generating an infinite torsion group).

In a way, semigroups can be classified according to their growth function: at one end
stand finite semigroups and at the other one free semigroups. Several sufficient or necessary
criteria for finiteness of automaton semigroups exist [2, 15, 9, 16, 17, 22, 4, 8, 21], but deciding
finiteness of such semigroups is still an open problem. As to freeness, it has been and it
is still a challenge: only some particular invertible Mealy automata, possibly parametrized,
have been shown to generate free groups [23, 11, 19, 24, 25]; and some Cayley automaton
semigroups have been shown to be free [22].

In this paper, we link both issues for semigroups generated by reversible two-state Mealy
automata: we prove that such semigroups are either finite or free, in this latter case the
states of the generating Mealy automaton being free generators of the semigroup, answering
a conjecture stated in [15]. On the basis of this dichotomy between finite and free semi-
groups, we prove that finiteness and freeness of the semigroup are decidable if the generating
reversible two-state Mealy automaton is also invertible. Decidability of finiteness extends by
duality to groups generated by two-letter invertible-reversible Mealy automata. The prob-
lems of deciding finiteness or freeness of automaton semigroups was raised by Grigorchuk,
Nekrashevych, and Sushchanskii [14, Problem 7.2.1(b)].

∗ The author is partially supported by ANR Project MealyM ANR-JCJC-12-JS02-012-01.

© Ines Klimann;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 502–513

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.502
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

I. Klimann 503

Specializing to two letters or states may seem to be a strong restriction, but most of the
significant examples in literature have faced this restriction: the first example of a finitely
generated group of intermediate growth, the Grigorchuk group [13, 14], is generated by a
two-letter Mealy automaton while the very smallest Mealy automaton with intermediate
growth [6] has two letters and two states; the lamplighter group [12] is generated by a two-
letter and two-state Mealy automaton; the Aleshin automaton [3, 24] gives the simplest
example of a free automaton group and has two letters. The article [7] is entirely devoted
to the study of groups generated by 3-state 2-letter invertible Mealy automata.

This paper is organized as follows. In Section 2 we define Mealy automata and automaton
(semi)groups. Basic tools to manipulate them are introduced in Section 3. Section 4 is
devoted to the dichotomy between free and finite semigroups. The decidability results are
proved in Section 5. The cornerstone of our proofs and constructions is the very classical
Nerode equivalence used to minimize automata.

2 (Semi)groups generated by Mealy automata

2.1 Mealy automata
If one forgets initial and final states, a (finite, deterministic, and complete) automaton A is
a triple

(
A,Σ, δ = (δi : A→ A)i∈Σ

)
, where the stateset A and the alphabet Σ are non-empty

finite sets, and where the δi are functions.
A Mealy automaton is a quadruple

(
A,Σ, δ = (δi : A → A)i∈Σ, ρ = (ρx : Σ → Σ)x∈A

)
,

such that both (A,Σ, δ) and (Σ, A, ρ) are automata. In other terms, a Mealy automaton is
a letter-to-letter transducer with the same input and output alphabet.

The graphical representation of a Mealy automaton is standard, see Figure 1.

x

a|a

(a) The trivial aut.

z

y

x

b|a
a|b

a|a, b|b

b|a
a|b

(b) The Aleshin automaton.

x

y

z

a|a

a|b, b|a

b|b
a|a
b|b

(c) The Baby-Aleshin aut.
Figure 1 Examples of Mealy automata: the Aleshin automaton generates the rank 3 free group [3,

24], the Baby-Aleshin automaton generates the free product Z∗32 = Z2 ∗ Z2 ∗ Z2 [19].

A Mealy automaton A = (A,Σ, δ, ρ) is invertible if the functions ρx are permutations of
Σ and reversible if the functions δi are permutations of A.

In a Mealy automaton A = (A,Σ, δ, ρ), the sets A and Σ play dual roles. So we may
consider the dual (Mealy) automaton defined by d(A) = (Σ, A, ρ, δ). Obviously, a Mealy
automaton is reversible if and only if its dual is invertible.

Considering the underlying graph of a Mealy automaton, it makes sense to look at the
connected components of a Mealy automaton. Note that a connected component of a re-
versible Mealy automaton is always strongly connected: its (δi : A→ A)i∈Σ are permutations
of a finite set and in particular they are surjective.

2.2 Automaton (semi)groups
Let A = (A,Σ, δ, ρ) be a Mealy automaton. We view A as an automaton with an input and
an output tape, thus defining mappings from input words over Σ to output words over Σ.

STACS’13

504 The finiteness of a 2-letter invertible-reversible automaton group is decidable

Formally, for x ∈ A, the map ρx : Σ∗ → Σ∗, extending ρx : Σ→ Σ, is defined by:

∀i ∈ Σ, ∀s ∈ Σ∗, ρx(is) = ρx(i)ρδi(x)(s) .

By convention, the image of the empty word is itself. The mapping ρx is length-preserving
and prefix-preserving. We say that ρx is the production function associated with (A, x) or
more briefly, if there is no ambiguity, the production function of x. For x = x1 · · ·xn ∈ An
with n > 0, set ρx : Σ∗ → Σ∗, ρx = ρxn

◦ · · · ◦ ρx1 .
Denote dually by δi : A∗ → A∗, i ∈ Σ, the production functions associated with the dual

automaton d(A). For s = s1 · · · sn ∈ Σn with n > 0, set δs : A∗ → A∗, δs = δsn
◦ · · · ◦ δs1 .

The semigroup of mappings from Σ∗ to Σ∗ generated by ρx, x ∈ A, is called the semigroup
generated by A and is denoted by 〈A〉+. When A is invertible, its production functions are
permutations on words of the same length and thus we may consider the group of mappings
from Σ∗ to Σ∗ generated by ρx, x ∈ A; it is called the group generated by A and is denoted
by 〈A〉.

An invertible Mealy automaton generates a finite group if and only if it generates a finite
semigroup [2]. A Mealy automaton generates a finite semigroup if and only if so does its
dual [19, 20, 2].

3 Basic tools

In this section, we present basic tools to manipulate Mealy automata: Nerode equivalence
and minimization of automata (§ 3.1) are classic constructions from automata theory, md-
reduction and md-triviality (§ 3.2) have been introduced in [2] to give a sufficient condition for
finiteness, portraits of automorphisms on a regular rooted tree (§ 3.3) come from geometric
group theory and tensor closures (§ 3.4) are newly introduced in order to better control the
structure of a Mealy automaton.

Let A = (A,Σ, δ, ρ) be a Mealy automaton. A convenient and natural operation is to
raise A to the power n, for some n > 0: its n-th power is the Mealy automaton

An =
(
An,Σ, (δi : An → An)i∈Σ, (ρu : Σ→ Σ)u∈An

)
.

Note that the powers of a reversible Mealy automaton are reversible.

3.1 Nerode equivalence and minimization of a Mealy automaton
Throughout this subsection, A = (A,Σ, δ, ρ) denotes a Mealy automaton.

The Nerode equivalence ≡ on A is the limit of the sequence of increasingly finer equiva-
lences (≡k) recursively defined by:

∀x, y ∈ A, x ≡0 y ⇐⇒ ρx = ρy ,

∀k > 0, x ≡k+1 y ⇐⇒
(
x ≡k y ∧ ∀i ∈ Σ, δi(x) ≡k δi(y)

)
.

Since the set A is finite, this sequence is ultimately constant; moreover if two consecutive
equivalences are equal, the sequence remains constant from this point on. The limit is
therefore computable. For every element x in A, we denote by [x] (resp. [x]k) the class of x
w.r.t. the Nerode equivalence (resp. the ≡k equivalence), called the Nerode class (resp. the
k-class) of x. Extending to the n-th power of A, we denote by [x] the Nerode class in An of
x ∈ An.

The minimization of A is the Mealy automaton m(A) = (A/≡,Σ, δ̃, ρ̃), where for every
(x, i) in A × Σ, δ̃i([x]) = [δi(x)] and ρ̃[x] = ρx. This definition is consistent with the

I. Klimann 505

standard minimization of “deterministic finite automata” where instead of considering the
mappings (ρx : Σ → Σ)x, the computation is initiated by the separation between terminal
and non-terminal states. Using the Hopcroft algorithm, the time complexity of minimization
is O(ΣA logA), see [1] – E being used here instead of #E, for a set E, to simplify notations.

Two states of a Mealy automaton belong to the same Nerode class if and only if they
represent the same element in the generated semigroup, i.e. if and only if they have the
same production function Σ∗ → Σ∗. Two words on A of the same length n are equivalent
if they belong to the same Nerode class in An. By extension, any two words on A are
equivalent if they have the same production function. The set of all words equivalent to
x ∈ A∗, regardless of their length, is denoted by JxK.

Two states of a Mealy automaton belong to the same k-class if and only if the restrictions
of their production functions to Σk → Σk are equal.

The following remarks will be useful for the rest of the paper:

I Remark 1. Let n be an integer. If each word of An is equivalent to a strictly shorter word,
then the semigroup 〈A〉+ is finite, its set of elements being {ρu,u ∈ A≤n−1}.

I Remark 2. If two words of A∗ are equivalent, so are their images under the action of each
element of 〈d(A)〉+.

3.2 md-reduction and md-triviality
The md-reduction and the md-triviality were introduced in [2] to give a sufficient but not
necessary condition of finiteness. We show in Section 5 that, in the case of a two-state or
two-letter invertible-reversible Mealy automaton, this condition is actually necessary.

A pair of dual Mealy automata is reduced if both automata are minimal. The md-
reduction of a Mealy automaton consists in minimizing the automaton or its dual until
the resulting pair of dual Mealy automata is reduced. It is well-defined: if both a Mealy
automaton and its dual automaton are non-minimal, the reduction is confluent [2].

The trivial Mealy automaton (see Figure 1(a)) generates the trivial (semi)group. If the
md-reduction of a Mealy automaton A leads to the trivial Mealy automaton, A is said to be
md-trivial. It is decidable whether a Mealy automaton is md-trivial. An md-trivial Mealy
automaton generates a finite semigroup, but in general the converse is false [2].

A priori the sequence of minimization-dualization can be arbitrarily long: the minimiza-
tion of a Mealy automaton with a minimal dual can make the dual automaton non-minimal.
Nevertheless, if the automaton has two states, the md-reduction can be shortened to mdmd.
Hence, in this particular case, the time complexity of the md-reduction is O(Σ log Σ).

3.3 Portrait of a word
Throughout this subsection, A = (A,Σ, δ, ρ) denotes an invertible Mealy automa-
ton.

The set Σ∗ can naturally be thought of as a regular rooted tree; its root is the empty word
and two words are connected if and only if they are of the form s and si, with s ∈ Σ∗, i ∈ Σ.
The set Σn is the nth level of Σ∗. A branch of the tree Σ∗ is a sequence of words (sk)k∈N
such that, for each k ∈ N, sk is of length k and is a prefix of sk+1.

An automorphism of Σ∗ is a bijective map Σ∗ → Σ∗ preserving the root and the adjacency
of the vertices. Each state x of the automaton A acts on the regular rooted tree Σ∗ by the
production rule ρx. The constructions of this subsection are directly inspired by this view

STACS’13

506 The finiteness of a 2-letter invertible-reversible automaton group is decidable

(see [19] and references therein for more details on automorphisms acting on regular rooted
trees). Denote by Aut(Σ∗) the set of automorphisms of Σ∗.

Let g be an automorphism on the regular rooted tree Σ∗. For any word s ∈ Σ∗, there
exists a unique automorphism g|s : Σ∗ → Σ∗ called a section of g and defined, for all word
t ∈ Σ∗, by g(st) = g(s)g|s(t), see [19] for more details. The portrait of g is the tree Σ∗ in
which each vertex s ∈ Σ∗ is labeled by g|s : Σ→ Σ. It is denoted by p∞(g). The permutation
of Σ associated to the empty word is the root permutation of g. A level (resp. branch) of a
portrait is the labeled level (resp. branch) of the tree.

For a given integer k, the k-portrait of g is the restriction of p∞(g) to levels 0 to k − 1
and is denoted by pk(g), it represents the action of g on the partial regular rooted tree Σ≤k.

Let u ∈ A∗. The portrait (or ∞-portrait — resp. the k-portrait) of u is the portrait
(resp. the k-portrait) of ρu: each vertex s ∈ Σ∗ is labeled by ρδs(u) : Σ → Σ. It is denoted
by p∞JuK (resp. pkJuK). This notation is completely justified by the fact that two equivalent
words have the same production function. An example is given in Figure 2.

1
3

2

5

4
6

i|j
j|i

i|i—j|j

i|j—j|i
i|jj|i

i|j
j|i

i|i—j|j

(a) An invertible Mealy automaton,

σ

id

σ σ

σ

σ σ

(b) one of its portraits: p3J1K.
Figure 2 Some portrait of a two-letter Mealy automaton; id = idΣ and σ permutes i and j.

The map from Aut(Σ∗) to the set of portraits induces a monoid structure on the set of
portraits. The neutral element of the product of portraits is the identity portrait: I∞ =
p∞(idΣ∗). The portraits of the automaton A are the portraits of the elements of 〈A〉+. The
product of two k-portraits of A can be expressed in terms of words: pkJuKpkJvK = pkJuvK.
It provides a monoid structure to the set of k-portraits of A, whose neutral element is the
identity k-portrait Ik = pk(idΣ∗).

A level of a portrait is homogeneous if all its vertices have the same label; a portrait
is homogeneous if all its levels are homogeneous: the portrait p3J1K of Figure 2(b) has
homogeneous levels 0 and 2, but is not homogeneous. For any integer k ≥ 1, the k-portrait
pk(g) is almost homogeneous if pk−1(g) and all the

(
pk−1(g|i)

)
i∈Σ are homogeneous.

An almost homogeneous (k+ 1)-portrait K is built in the following way from a homoge-
neous k-portrait J and a sequence τ = (τi)i∈Σ of permutations of Σ: the restriction of K to
levels 0 to k − 1 is J and the leaves of the subtree of the root corresponding to the letter
i ∈ Σ have all label τi. This portrait is denoted by J bτc, see Figure 3.

τi τi

i
J : homogeneous k-portrait

.

. τ = (τi)i∈Σ sequence of permutations of Σ
Figure 3 The almost homogeneous (k + 1)-portrait J bτc, τ = (τi)i∈Σ.

I Remark 3. The product of two homogeneous k-portraits is a homogeneous k-portrait.
Furthermore, if Σ = {i, j}:
the square of a homogeneous k-portrait is the identity k-portrait Ik;
the square of an almost homogeneous k-portrait whose root permutation is the identity
on Σ is the identity k-portrait;

I. Klimann 507

the square of an almost homogeneous k-portrait J bτi, τjc whose root permutation is the
permutation of i and j is the identity k-portrait if and only if τi = τj.

3.4 Tensor closure
When a Mealy automaton generates a finite semigroup, we may augment the alphabet on
which it acts to gain a better control over its structure.

Let A = (A,Σ, δ, ρ) be a Mealy automaton which generates a finite semigroup. Its tensor
closure is the Mealy automaton c(A) = (A,Ξ, δ̄, ρ̄), where Ξ = {JsK | s ∈ Σ∗} = 〈d(A)〉+
and δ̄ and ρ̄ are the natural extensions of δ and ρ:

∀x ∈ A, ∀s ∈ Σ∗, δ̄JsK(x) = δs(x) and ρ̄x(JsK) = Jρx(s)K .

A Mealy automaton is tensor closed if it is isomorphic to its tensor closure. Its dual is
then minimal.

The following remark justifies the introduction of the tensor closures:

I Remark 4. Let A be a two-state Mealy automaton which generates a finite semigroup.
Then the automaton c(A) generates a finite semigroup. If c(A) is md-trivial, then so is A.

The first result is obtained by looking at the respective dual automata which generates the
same semigroup. The second result is immediate since a two-state Mealy automaton A is
md-trivial if and only if mdmd(A) is trivial and the alphabet of dmd(A) can be injected into
the alphabet of c(A).

I Lemma 5. Let A = (A,Ξ, δ, ρ) be a two-state invertible-reversible tensor closed Mealy
automaton. The connected components of the powers of A are complete graphs.

Proof. Let k be an integer. The connected components of Ak are strongly connected by
reversibility. Hence any two words u and v in the same connected component are connected
by a path with input label in Ξ∗. The automaton A being tensor closed, any word over Ξ
is equivalent to a one-length word over Ξ and so the connected component of u and v is a
complete graph: any two states are connected by a transition. J

4 The semigroup is either free or finite

Recall that a semigroup S is free if there exists a subset X of S such that every element of
S can be written uniquely as a word over X, its rank is then the cardinality of X.
I Remark. On the other hand, a group G is free if there exists a subset X of G such that
every element of G can be written uniquely as an irreducible word over X tX−1. An
invertible automaton can generate a free semigroup and a non-free group; for example, the
dual of Aleshin automaton (see Figure 1(b)) generates a free semigroup, by Theorems 6
and 19, but not a free group: ba−1ba−1 = 1.

I Theorem 6. Let A be a reversible two-state Mealy automaton. If A admits a disconnected
power, then it generates a finite semigroup, otherwise it generates a free semigroup of rank 2
with the states of A being free generators.

Theorem 6 is a corollary of Proposition 10 and the case p = 2 in Proposition 14 below.

Let us look at the connected components of the powers of a Mealy automaton A. For
m > 0, u,v ∈ Am, and x, y ∈ A, if there exists a path from ux to vy in Am+1, then there is
a path from u to v in Am. Hence if An is disconnected, so are the Ak, for all k > n. Thus

STACS’13

508 The finiteness of a 2-letter invertible-reversible automaton group is decidable

there exists at most one integer n such that An is connected and An+1 is disconnected.
This integer is called the connection degree of A. By convention, if A is disconnected,
its connection degree is 0, and it has an infinite connection degree if no power of A is
disconnected. For a Mealy automaton, having infinite connection degree coincides with the
very classical notion of level transitivity (or spherical transitivity) for its dual [19, 14].

Note that the Baby Aleshin automaton (see Figure 1(c)) is reversible, has a connection
degree of 2, three states, and generates an infinite non-free semigroup (its generators have
order 2). So Theorem 6 and Proposition 10 do not extend to bigger stateset. However, we
conjecture that Proposition 14 extends to any stateset for invertible automata.

4.1 Finite connection degree
In this section, we prove that a reversible two-state Mealy automaton has a finite connec-
tion degree if and only if it generates a finite semigroup. This result is already known [7,
Lemma 3], but we present here a new proof; its main idea is to bound the sizes of the
connected components of the powers of A once the connection degree has passed.

I Lemma 7. Let A = (A,Σ, δ, ρ) be a reversible Mealy automaton with at least two states,
which generates a semigroup with torsion elements. Then its connection degree is finite.

Proof. Since 〈A〉+ has torsion elements, there exist a word u ∈ A+ and two integers n ≥ 0
and k > 0 such that un and un+k are equivalent: ρun = ρun+k .

Let s ∈ Σ∗, we have: δs(un+2k) = δs(un)δρun (s)(uk)δρun+k (s)(uk) =
δs(un)

(
δρun (s)(uk)

)2. Hence all the states of the connected component of un+2k have form
vw2 and A(n+2k)|u| is disconnected. J

In the reminder of this subsection, A = (A,Σ, δ, ρ) denotes a reversible two-
state Mealy automaton (A = {x, y}) with finite connection degree n. If z ∈ A is a
state of A, z̄ ∈ A denotes the other state: z 6= z̄.

I Lemma 8. Let C be a connected component of Am for some m, and let u ∈ Am be a state
of C. The connected component (in Am+1) of ux has size #C if it does not contain uy, and
2#C if it does contain uy.

Proof. Let D be the connected component of ux: v ∈ Am is a state of C if and only if there
exists z ∈ A such that vz is a state of D, hence: N ≤ #D ≤ 2N . Let v be a state of C and
z ∈ A: ux and vz are in the same connected component if and only if so are uy and vz̄.
The result follows. J

Recall that n is the connection degree of A.

I Lemma 9. For each m ≥ n, the connected components of Am have size exactly 2n.

Proof. By induction on m ≥ n. For m ∈ {n, n + 1}, the property is true (using Lemma 8
for m = n+ 1).

Assume m > n + 1. Suppose that the connected components of Am−1 and Am have
size 2n. Then let C be a connected component of Am+1 and u = u1 · · ·um+1 a state of C.
The word u• = u1 · · ·um belongs to a connected component D of Am, of size 2n by the
induction hypothesis. Hence C has size 2n or 2n+1 according to Lemma 8.

Suppose that C has size 2n+1: it means by Lemma 8 that both u and u•um+1 belong to C.
It follows that u2 · · ·umum+1 and u2 · · ·umum+1 belong to the same connected component
E of Am, of size 2n by the induction hypothesis. Hence Lemma 8 ensures the existence of a
connected component of Am−1 of size 2n−1, contradicting the induction hypothesis. J

I. Klimann 509

I Proposition 10. The connection degree of a reversible two-state Mealy automaton is finite
if and only if it generates a finite semigroup.

Proof. Let A = (A,Σ, δ, ρ) be a reversible two-state Mealy automaton. If the connection
degree of A is 0, 〈d(A)〉+ is the trivial semigroup and 〈A〉+ is finite [2].

Otherwise, let n ≥ 1 be the connection degree of A: by Lemma 9, for m ≥ n, the
connected components of Am have size 2n. These connected components are reversible
Mealy automata on the alphabet Σ. Up to state numbering, there are only a finite number
of such automata and thus there exist p < q such that m(Ap) = m(Aq). It follows by
Remark 1 that 〈A〉+ is finite.

The reciprocal property is a particular case of Lemma 7. J

4.2 Infinite connection degree
Here we prove that if a reversible p-state Mealy automaton, p prime, has infinite connection
degree, then it generates a free semigroup, the states of the automaton being free generators.
The idea is to bound the sizes of the Nerode classes in the powers of A.

For the next three lemmas, let A = (A,Σ, δ, ρ) be a reversible p-state Mealy automaton,
p prime, with infinite connection degree (A = {x1, . . . , xp}). By Lemma 7, A generates an
infinite semigroup.

I Lemma 11. There cannot exist two equivalent words of different length in A∗.

Proof. For each m, Am is connected, and so any two words of length m are mapped one
onto the other by an element of 〈d(A)〉+.

Let u and v be two equivalent words of different lengths, say |u| < |v|. Every word of
length |v| is then equivalent to a word of length |u|: if w is of length |v|, then w = δt(v)
for some t ∈ Σ∗, and, by Remark 2, w is equivalent to δt(u) of length |u|. By Remark 1,
the semigroup 〈A〉+ is finite, which is impossible. J

I Lemma 12. All the Nerode classes of a given power Am have the same size, which happens
to be a power of p.

Proof. Let u ∈ Am: [u] ⊆ Am by definition. If [u] = Am, the result is clear. Otherwise, let
v ∈ Am − [u]. Since Am is connected, u is mapped onto v by an element of 〈d(A)〉+; that
is there exists r ∈ Σ∗ such that v = δr(u).

By Remark 2, any word equivalent to u is mapped by δr onto a word equivalent to v.
Since the automaton Am is reversible, δr is a permutation of Am, hence we find #[u] = #[v].

The stateset of Am has size a power of p, where p is a prime number, and so has any
Nerode equivalence class. J

I Lemma 13. There cannot exist two equivalent words of the same length in A∗.

Proof. Let u and v be two different equivalent words of the same length n+1. Let us prove
by induction on m > n that m(Am) has at most pn states.

The automaton An+1 has pn+1 states. The words u and v are in the same Nerode class:
by Lemma 12, all Nerode classes of An+1 have at least p elements and m(An+1) has at most
pn states.

Suppose that m(Am) has at most pn states. Then, since all Nerode classes have the same
size by Lemma 12, the induction hypothesis implies that they have at least pm−n elements.
Let us look at [xm1]: it contains

xm1 ,u1,u2, . . . ,upm−n−1 ,

STACS’13

510 The finiteness of a 2-letter invertible-reversible automaton group is decidable

which are pairwise distinct. Among these words, there is at least one whose suffix in x1 is
the shortest, say u1 without loss of generality: pm−n > 1 and xm1 has the longest possible
suffix in x1. Hence [xm+1

1] contains the following pairwise distinct pm−n + 1 words

xm+1
1 ,u1x1,u2x1, . . . ,upm−n−1x1, x1u1 .

By Lemma 12, #[xm+1
1] is a power of p, so #[xm+1

1] ≥ pm+1−n. As all Nerode classes of Am+1

have the same cardinality, we can conclude that m(Am+1) has at most pm+1/pm+1−n = pn

elements, ending the induction.
Consequently, since there is only a finite number of different Mealy automata with up

to pn states, there exist k < ` such that m(Ak) and m(A`) are equal up to state numbering.
By Remark 1, the semigroup 〈A〉+ is finite, which is impossible. J

As a corollary of Lemmas 7, 11 and 13 we can state the following proposition.

I Proposition 14. Let A be a reversible p-state Mealy automaton, p prime. If the automa-
ton A has infinite connection degree, then it generates a free semigroup of rank p with the
states of A being free generators of the semigroup. The converse holds for p = 2.

5 Decidability of finiteness and of freeness

This section is devoted to the decidability of finiteness and of freeness for semigroups gen-
erated by two-state invertible-reversible Mealy automata by linking Theorem 6 and the
possible md-triviality of such an automaton.

I Lemma 15. Let A = (A,Σ, δ, ρ) be a two-state invertible-reversible automaton of finite
connection degree n. Two elements of Σ∗ which have the same action on a word of An are
equivalent.

Proof. It is sufficient to prove that idA∗ is the only element of 〈d(A)〉+ which fixes a word
of An.

If n = 0, 〈d(A)〉+ is the trivial semigroup and the result is true. Otherwise, let u ∈ An
and s ∈ Σ∗ such that u is stable by δs: δs(u) = u.

By Lemma 8, An+1 has two connected components: ux belongs to one of them and uy
to the other one. Looking forward, a connected component C of Am, for m ≥ n, originates
two connected components of Am+1: {vzv | v ∈ C, zv ∈ A} and {vzv | v ∈ C}. And
all connected component of Am+1 are built this way. Hence if two different words of the
same length m > n have the same prefix of length n, they belong to different connected
components of Am.

Let t ∈ Σ∗ satisfy ρu(s) = t, and let v,w ∈ A∗ such that t maps v onto w: δt(v) = w.
The words uv and uw belong to the same connected component:

δs(uv) = δs(u)δρu(s)(v) = uδt(v) = uw ,

and have a common prefix of length n, so they are equal. Hence: δt = idA∗ . As d(A) is
reversible, t is mapped onto s by an element of 〈A〉+ and δs = idA∗ . J

We have a similar (but weaker) result on shorter words for tensor closed Mealy au-
tomata. In the next three lemmas of this section, A = (A,Ξ, δ, ρ) denotes a tensor
closed two-state invertible-reversible automaton of finite connection degree n:
A = {x, y}. By Lemma 5, An is complete as a graph. Furthermore, a transition has a
unique label: if a transition had several labels, they would coincide on a word of An and by
Lemma 15 they actually would be the same letter of Ξ.

I. Klimann 511

I Lemma 16. Let k be an integer, 1 ≤ k ≤ n. Two elements of Ξ∗ which map a given word
of Ak into the same word have the same action on Ak.

Proof. Each word of Ξ∗ is equivalent to a letter of Ξ, hence it is sufficient to prove the result
for letters.

The Mealy automaton An has 2n states, is complete as a graph and each transition
has a unique label, so #Ξ = 2n. By hypothesis, Ξ is the set of elements of 〈d(A)〉+, so
#〈d(A)〉+ = 2n.

Let us consider the minimization of d(A), using the sequence of increasingly finer equiv-
alences (≡k) introduced in Section 3.1. Each n-class of Ξ is a singleton by Lemma 15, hence
the sequence (≡k) remains constant at least from n on. So the Nerode equivalence produces
2n equivalence classes formed uniquely by singletons, by partitioning the stateset of d(A) of
cardinality 2n in n steps, each step cutting each class of the previous one into at most two
subsets as #A = 2. Hence the equivalence ≡k cuts each (k − 1)-class into two sets of the
same cardinality: ∀k, 0 ≤ k ≤ n, ∀s ∈ Ξ, #[s]k = #[s]k−1/2 = 2n−k.

Let k, 1 ≤ k ≤ n, u ∈ Ak, and s ∈ Ξ. We have:

[s]k ⊆ {t ∈ Ξ | t(u) = s(u)} . (1)

The left set in Equation (1) has cardinality 2n−k, it is the set of elements of Ξ which coincide
with s on Ak. Since two elements of Ξ whose actions coincide on a word of An are equivalent,
the right set of Equation (1) has cardinality at most #An−k = 2n−k, and so the two sets of
Equation (1) are equal, leading to the result. J

One consequence of Lemma 16 is that an element of Ξ∗ which fixes a word of length k
on A fixes completely Ak.

Denote by id the identity of A and by σ the permutation of x and y. We can translate
Lemma 16 in terms of portraits of d(A): whenever two k-portraits of d(A) have an identical
branch, they are equal. In particular, Ik being a portrait of d(A), if a whole branch of a
k-portrait of d(A) is labeled by id, this portrait is Ik. Hence if in a k-portrait of d(A), all
vertices at level less than k − 1 are labeled by id, this portrait is either Ik or Ik−1bσ, σc.
Note that for k ≤ n, both Ik and Ik−1bσ, σc are portraits of d(A).

By Lemma 15, any element of 〈d(A)〉+ whose n-portrait is In acts trivially on A∗.
What are the possible portraits of d(A)? Since An is connected and A is tensor closed, it

is immediate that each finite sequence (πi)1≤i≤n ∈ {id, σ}n labels a branch of an n-portrait
of d(A): in An, there is a transition with input s ∈ Ξ from xn to π1(x) · · ·πn(x) and the
leftmost branch of pnJsK is labeled by π.

I Lemma 17. The portraits of d(A) are homogeneous.

Proof. Let us prove the result for k ≤ n, by induction on k ≥ 1. A 1-portrait has a unique
element, its root, and so is homogeneous.

Suppose that the `-portraits of d(A) are all homogeneous, for ` ≤ k < n. Let us consider
a letter s ∈ Ξ and S = pk+1JsK: it is almost homogeneous by the induction hypothesis.
More precisely: S = pkJsKbτ1, τ2c for τ1, τ2, some permutations of A.

First case: δs permutes x and y. We consider the following (n+ 1)-portrait K:
the restriction of K to levels 0 to (n− k − 1) is In−k,
in bottom-left of In−k, we put pk+1JsK: the root of pk+1JsK is the left child of the bottom-
left leaf of In−k (it is possible since we can choose the left branch of a portrait, applying
Lemma 16 and pk+1JsK is actually a portrait of d(A)),

STACS’13

512 The finiteness of a 2-letter invertible-reversible automaton group is decidable

it is completed to be a portrait of d(A).

The leftmost branch of K2 starts with idn. Hence by Lemma 15, K2 is the identity (n+1)-
portrait, which implies τ1 = τ2 by Remark 3 and Lemma 15, that is S is homogeneous.

Second case: δs stabilizes A. Let L be the (k + 1)-portrait whose root permutation is σ
and all other vertices are labeled by id: it is a portrait of d(A) since so are all homogeneous
(k + 1)-portraits with root permutation σ from first case. Then by multiplying S by L,
we obtain a non-homogeneous (k + 1)-portrait with root permutation σ which has to be a
portrait of d(A). That is impossible.

The proof is similar for k > n, considering the portrait pkJsK. J

I Lemma 18. The states of A are equivalent.

Proof. By Lemma 17, all the portraits of d(A) are homogeneous. For any letter s ∈ Ξ, since
its portrait is homogeneous, ρx(s) and ρy(s) are equivalent. The automaton being tensor
closed, they are equal, and so ρx = ρy. J

I Theorem 19. Let A be a two-state invertible-reversible Mealy automaton. It generates a
finite group if and only if it is md-trivial.

Proof. By [2], if A is md-trivial, it generates a finite group.
Suppose that A generates a finite group and consider its tensor closure c(A): c(A) gen-

erates a finite group by Remark 4. The connection degree of c(A) is finite by Proposition 10
and so c(A) is md-trivial by Lemma 18. Hence A is md-trivial by Remark 4. J

The last theorem summarizes all the decidability results arising from this article.

I Theorem 20. It is decidable whether a two-state invertible-reversible Mealy automaton
with alphabet Σ generates a finite group, in time O(Σ log Σ). It is decidable whether it
generates a free semigroup, in time O(Σ log Σ).

It is decidable whether a two-letter invertible-reversible Mealy automaton with stateset A
generates a finite group, in time O(A logA).

Up to now, the only methods to conclude infiniteness of automaton groups were to prove
the existence of an element of infinite order [18, FindElementOfInfiniteOrder][5, SIZE_FR],
using Sidki’s fundamental work [8, 21], or to test level transitivity [5, IsLevelTransitive]. All
these methods give sufficient but not necessary conditions.

To illustrate the actual efficiency of the md-triviality as an algorithm to test finiteness,
let us consider the 2-letter 6-state invertible-reversible Mealy automata. Bireversible Mealy
automata are particular invertible-reversible Mealy automata and an invertible-reversible
automaton generates a finite group only if it is bireversible [2]. Testing the md-triviality of
the 3446 bireversible 2-letter 6-states Mealy automata takes 751ms1, while applying Find-
ElementOfInfiniteOrder, SIZE_FR or IsLevelTransitive to determine the infinity of the group
generated by the particular bireversible 2-letter 6-state Mealy automaton of Figure 2(a) is
unsuccessful after three weeks of computation.

Acknowledgments I would like to thank Jean Mairesse and Matthieu Picantin for numer-
ous discussions around this topic.

1 Timings obtained on an Intel Xeon computer with clock speed 2.13GHz; programs written in GAP [10].

I. Klimann 513

References
1 A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algo-

rithms. Addison-Wesley, 1974.
2 A. Akhavi, I. Klimann, S. Lombardy, J. Mairesse, and M. Picantin. On the finiteness

problem for automaton (semi)groups. Int. J. Algebra Comput., 22(6):26p., 2012.
3 S.V. Alešin. Finite automata and the Burnside problem for periodic groups. Mat. Zametki,

11:319–328, 1972.
4 A.S. Antonenko. On transition functions of Mealy automata of finite growth. Matematychni

Studii., 29(1):3–17, 2008.
5 L. Bartholdi. FR Functionally recursive groups – a GAP package, v.1.2.4.2, 2011.
6 L. Bartholdi, I.I. Reznykov, and V.I. Sushchanskĭı. The smallest Mealy automaton of

intermediate growth. J. Algebra, 295(2):387–414, 2006.
7 I. Bondarenko, R.I. Grigorchuk, R. Kravchenko, Y. Muntyan, V. Nekrashevych, D. Savchuk,

and Z. Šunić. On classification of groups generated by 3-state automata over a 2-letter
alphabet. Algebra Discrete Math., 1:1–163, 2008.

8 I.V. Bondarenko, N.V. Bondarenko, S.N. Sidki, and F.R. Zapata. On the conjugacy problem
for finite-state automorphisms of regular rooted trees. Groups, Geometry, and Dynamics,
in press. arXiv:math.GR/1011.2227.

9 A.J. Cain. Automaton semigroups. Theor. Comput. Sci., 410:5022–5038, 2009.
10 The GAP Group. GAP – Groups, Algorithms, and Programming, v.4.4.12, 2008.
11 Y. Glasner and Sh. Mozes. Automata and square complexes. Geom. Dedicata, 111(1):43–6,

2005.
12 R. Grigorchuk and A. Żuk. The lamplighter group as a group generated by a 2-state

automaton, and its spectrum. Geom. Dedicata, 87:209–244, 2001.
13 R.I. Grigorchuk. On Burnside’s problem on periodic groups. Funktsional. Anal. i Prilozhen.,

14(1):53–54, 1980.
14 R.I. Grigorchuk, V.V. Nekrashevich, and V.I. Sushchanskĭı. Automata, dynamical systems,

and groups. Tr. Mat. Inst. Steklova, 231:134–214, 2000.
15 I. Klimann, J. Mairesse, and M. Picantin. Implementing computations in automaton

(semi)groups. In Proc. 17th CIAA, volume 7381 of LNCS, pages 240–252, 2012. DOI
No: 10.1142/S021819671250052X.

16 V. Maltcev. Cayley automaton semigroups. Int. J. Algebra Comput., 19(1):79–95, 2009.
17 A. Mintz. On the Cayley semigroup of a finite aperiodic semigroup. Int. J. Algebra Comput.,

19(6):723–746, 2009.
18 Y. Muntyan and D. Savchuk. automgrp Automata Groups – a GAP package, v.1.1.4.1,

2008.
19 V. Nekrashevych. Self-similar groups, volume 117 of Mathematical Surveys and Mono-

graphs. American Mathematical Society, Providence, RI, 2005.
20 D.M. Savchuk and Y. Vorobets. Automata generating free products of groups of order 2.

J. Algebra, 336(1):53–66, 2011.
21 S.N. Sidki. Automorphisms of one-rooted trees: growth, circuit structure, and acyclicity.

J. Math. Sci. (New York), 100(1):1925–1943, 2000. Algebra, 12.
22 P.V. Silva and B. Steinberg. On a class of automata groups generalizing lamplighter groups.

Int. J. Algebra Comput., 15(5-6):1213–1234, 2005.
23 B. Steinberg, M. Vorobets, and Y. Vorobets. Automata over a binary alphabet generating

free groups of even rank. Int. J. Algebra Comput., 21(1-2):329–354, 2011.
24 M. Vorobets and Y. Vorobets. On a free group of transformations defined by an automaton.

Geom. Dedicata, 124:237–249, 2007.
25 M. Vorobets and Y. Vorobets. On a series of finite automata defining free transformation

groups. Groups Geometry and Dynamics, 4:377–405, 2010.

STACS’13

Mortality of Iterated Piecewise Affine Functions
over the Integers: Decidability and Complexity
Amir M. Ben-Amram

The Academic College of Tel-Aviv Yaffo
amirben@mta.ac.il

Abstract
In the theory of discrete-time dynamical systems, one studies the limiting behaviour of pro-

cesses defined by iterating a fixed function f over a given space. A much-studied case involves
piecewise affine functions on Rn. Blondel et al. (2001) studied the decidability of questions such
as mortality for such functions with rational coefficients. Mortality means that every trajectory
includes a 0; if the iteration is seen as a loop while (x 6= 0) x := f(x), mortality means that
the loop is guaranteed to terminate.

Blondel et al. proved that the problems are undecidable when the dimension n of the state
space is at least two. They assume that the variables range over the rationals; this is an essential
assumption. From a program analysis (and discrete Computability) viewpoint, it would be more
interesting to consider integer-valued variables.

This paper establishes (un)decidability results for the integer setting. We show that also
over integers, undecidability (moreover, Π0

2 completeness) begins at two dimensions. We further
investigate the effect of several restrictions on the iterated functions. Specifically, we consider
bounding the size of the partition defining f , and restricting the coefficients of the linear compo-
nents. In the decidable cases, we give complexity results. The complexity is PTIME for affine
functions, but for piecewise-affine ones it is PSPACE-complete. The undecidability proofs use
some variants of the Collatz problem, which may be of independent interest.

1998 ACM Subject Classification F.1.0 Computation by abstract devices – General

Keywords and phrases discrete-time dynamical systems, termination, Collatz problem

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.514

1 Introduction

The purpose of this paper is to study some computational problems regarding the asymptotic
behaviour of discrete-time dynamical systems, in particular problems related to questions
about the termination of simple programs. In the context of this paper, an (n-dimensional)
discrete-time dynamical system is defined by xt+1 = f(xt), where f : Rn → Rn. For a given
initial point x0, the sequence so generated is called a trajectory. A class of functions much
studied in the Dynamical System literature is piecewise affine functions (Definition 3 at
the end of this section). Some of the central problems regarding such systems involve their
asymptotic behavior, among which are global convergence and mortality, defined next.

I Definition 1. Let f be an arbitrary map on Rn; let 0 be the origin. We call f globally
convergent to zero if for every initial point x0, the trajectory xt+1 = f(xt) converges to 0
(the words “to zero" and sometimes “globally" may be omitted in the sequel). We call f
mortal if for every initial point, the trajectory reaches the origin.

These problems were studied from a Computability viewpoint by Blondel et al. [3]. They
considered piecewise affine functions f , where the coefficients are all rational (this is important
since we are considering computability in the traditional, discrete sense).

© Amir M. Ben-Amram;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 514–525

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.514
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. M. Ben-Amram 515

I Theorem 2. [3] . The following problems are undecidable for all n ≥ 2: Given a piecewise
affine function f : Rn → Rn (with rational coefficients), is it globally convergent? Is it
mortal?

Global convergence is decidable for n = 1 when the function is continuous.

Among the many decision problems studied for dynamical systems, mortality is the most
appealing in its discrete setting since it is a restricted halting problem for a very simple
type of program (more on the connection to program termination problems below). The
global convergence problem as defined above is very closely related (in a discrete setting, a
sequence xt converges to 0 if and only if it is eventually constantly zero) and we will treat
both problems throughout the following sections.

The main contribution of this paper is to establish for the integer setting results similar to
Theorem 2. The proofs in [3] do not apply to this setting, since they are based on encoding
the state of a computation (say, a Turing-machine tape) in the fractional digits of a number;
unlimited precision is essential. To handle a discrete (or limited precision) setting, different
proof techniques are necessary. As in the continuous case, we have decidability for one
dimension and undecidability for two or more. The new undecidability result is stronger
than the one in [3] in that it is achieved for a class of functions where there is a fixed bound
on the number of regions in the partition defining f ([3] left this case open; but one can
strengthen their result in this way, too). Furthermore, we prove Π0

2 completeness, which is a
sharper result than mere undecidability.

Next, we consider some other restrictions on the space of functions. Section 4 shows
undecidability for functions of a very simple form, f(x) = (xi1 + b1, xi2 + b2).

We should point out that when there is only one region (that is, f is affine) all problems
considered in this paper are decidable in any dimension, and moreover in polynomial time;
this follows from Linear-Algebraic techniques as used for linear discrete dynamical systems
over the reals. However, even when we have one convex region in which the function is
defined as an affine function, and is zero elsewhere, its analysis becomes challenging and, in
fact, is still an open problem [5].

Section 5) considers the one-dimensional case, where the problems are decidable, and
we concentrate on complexity results. While the affine case is PTIME, we show the one-
dimensional piecewise-affine case to be PSPACE-complete.

In Section 6 we mention a couple of similar problems whose solutions follow easily, whereas
the conclusion (Sect. 7) presents a selection of open problems.

To conclude this introduction, here are a few comments on the background to this
research. The connection of Dynamical System Theory to the Theory of Computation is
obvious—any traditional model of computation is a discrete-time dynamical system. However,
most literature in Dynamical System Theory refers to a continuous state-space, whereas in
the Theory of Computation, most models are discrete (but analog models are studied and
cross-fertilization with Dynamical System Theory is evident; see for example [19]).

Taking classical (discrete) computability to continuous dynamics, Moore [17] discusses
the significance of undecidability (in the Turing sense) to dynamical systems. He shows that
a TM can be simulated by a piecewise-affine map on the plane—the method is quite similar
to the one used by Blondel et al. He concludes that for such a map, the set of points on
which the sequence converges (to a particular zone) is not recursive. Koiran, Cosnard, and
Garzon showed that such simulations can be done already in two dimensions, but not in one
[13]. Blondel and Tsiklitis [4] survey applications of discrete computability and complexity
to dynamical systems, including the above-cited results.

STACS’13

516 Mortality of Iterated Piecewise Affine Functions over the Integers

The author’s interest in the mortality problem and its variants is due to their interpretation
as special cases of the halting problem, a.k.a. program termination (the latter term often
refers to termination for any input, that is, a global property as those studied here). Decision
procedures for the termination of simple loops, where a fixed (loop-free) computation is
iterated until an end-condition is met, have gained much interest in program analysis and
several heuristic approaches have been proposed (e.g., linear ranking functions [8, 18, 1]).
These works concentrate on integer data, and on functions which are linear, piecewise
linear, or defined by linear constraints (which is a wider class). In [20], Tiwari draws on
inspiration from Dynamical System Theory to solve a termination problem for loops with
an affine-linear update function—however, over the reals. Consequently, Braverman [5]
tackled the problem for the rationals and integers. Passing from the real-number world to
the integers is sometimes quite a challenge as the theory of integers has many surprises
of its own. A notorious example is the solution of multivariate polynomial equations—or,
more generally, quantifier elimination—decidable for the reals, but undecidable for integers.
Another classic example of an integer-specific problem is the Collatz problem (or “3x + 1
problem”) [15]. Lagarias’ excellent volume shows clearly that this problem is related both to
dynamical system theory and to computability theory. Regarding the latter, Conway [9, 10]
and subsequent works [12, 7, 14] proved undecidability results for certain generalized Collatz
problems by showing how to simulate a counter machine. We shall make essential use of this
idea, specifically of the approach of [14], who were first to show Π0

2 hardness of mortality for
a generalized Collatz function.

For completeness, we should mention that there are kinds of dynamical systems very
remote from our subject, the interested reader is referred to [6].

Preliminary definitions

A closed (respectively open) half-space of Rn is the set defined by {x ∈ Rn : cx + d ≥ 0}
(respectively > 0) where c ∈ Rn, d ∈ R. We are interested in rational half-spaces, where the
components of c, d are rational. A (rational) convex polyhedron is the intersection of a finite
number of (closed or open) half-spaces, which we sometimes call the constraints.

I Definition 3. A piecewise affine function on Rn (respectively Zn) is a function f where

f(x) = Aix+ bi for x ∈ Hi (respectively, Hi ∩ Zn) (1)

where the sets H1, . . . ,Hp are an exhaustive partition of Rn into p convex rational polyhedra,
and for i = 1, . . . , p, Ai ∈ Qn×n and bi ∈ Qn (respectively, Zn×n and Zn).

The restriction to polyhedra which are convex is somewhat arbitrary, but follows the
definition in [3] and other related publications. Section 3 discusses an implication of this
restriction.

We use the notation [a, b] for an interval of integers, namely {a, a+ 1, . . . , b}.
The counter machine model, due to Minsky [16], is well known. The details of the

definition vary in the literature, but the differences are not essential. At this point, it should
suffice to remark that we write a state of the machine as (i, 〈r1, . . . , rn〉) where i is the
internal state and rj the contents of register (counter) Rj .

Π0
2 is the class of decision problems that can be expressed by a formula of the form

(∀z)(∃y)P (x, y, z) with P recursive. This class properly contains RE (characterized by
formulas (∃y)P (x, y)). A standard Π0

2-complete set is the totality problem (termination on
all inputs) for Turing machines, as well as counter machines.

A. M. Ben-Amram 517

2 Undecidability in Two Dimensions

Blondel et al. prove their undecidability results for Generalized Collatz Problems by reducing
from the mortality problem for counter machines (the set of CMs that halt on every given
configuration). Indeed, the PAF mortality problem is similar to the GCP, which is also a
problem of reachability (of 1 instead of 0), but the functions considered in the GCP are not
piecewise affine; their expression involves division and remainders, which make it easier to
encode computations and simulate counter machines. Since the reductions in [3] are based
on fractional numbers, we introduce new reductions. In addition, we rely on some proof
techniques from [14], who proved that mortality of counter machines is Π0

2-complete (leading
to a similar result for GCPs). Note that hardness of mortality does not follow easily from
hardness of totality, since many programs, while halting from all initial states, still diverge if
started at a configuration that is not reachable in a proper computation (i.e., from an initial
state).

I Definition 4. A function g : N+ → N+ is called a generalized Collatz function if there is
an integer m > 0, positive integers {a0, . . . , am−1} and non-negative integers {b0, . . . , bm−1},
such that whenever x ≡ i mod m, g(x) = ai(x− i)/m+ bi.

A standard representation of g is the list m, a0, b0, . . . , am−1, bm−1.

The standard Collatz function is usually described by g(x) = 3x+ 1 if x is odd, g(x) = x/2
if x is even. In our notation, it is given by m = 2, a0 = 1, b0 = 0, a1 = 6, b1 = 4.

I Definition 5. GCP (for Generalized Collatz Problem) is the problem of deciding, from a
standard representation of g, whether every trajectory of g reaches 1.

I Theorem 6. [14] GCP is Π0
2-complete.

region label constraints f(x, y)

D x>m, y ≥ 0 (x−m, y + 1)

R0 x=0 , y > 0 (a0y + b0, 0)

R1 x=1 , y > 0 (a1y + b1, 0)

R2 x=2 , y ≥ 0 (a2y + b2, 0)

. . .

Rm−1 x=m, y ≥ 0 (amy + bm, 0)

Z elsewhere (0, 0)
Table 1 PAF representing a GCP.

Our first result is

I Theorem 7. Global convergence and mor-
tality over Z of piecewise affine functions with
integer coefficients is a Π0

2-complete problem.

Proof. Like the GCP, our problem is clearly
a “∀∃" problem, hence belonging to Π0

2. For
Π0

2-hardness, we reduce from the GCP.
Given a description
〈m, a0, b0, . . . , am−1, bm−1〉 of a generalized
Collatz function g, our reduction produces
the function f defined by the m + 1 cases
Table 1, where for convenience every region
has a label.

To simulate a Collatz sequence generated
by g, we repeatedly apply f starting from
(x0, 0). Observe that started at (x, 0) for x > 1, the computation will stay in Region D (the
division region) until obtaining the result (i, (x−i)/m) where x ≡ i mod m. Computation will
then reach one of Regions R0 through Rm−1 and apply the appropriate case of g, producing
(g(x), 0). This process iterates until arriving at (1, 0), which indicates the convergence of the
Collatz sequence and is mapped to (0, 0), the stopping state in our problems.

Note that every point in the regions D through Rm−1 represents in fact an intermediate
state of a valid simulation of a g sequence, while all other points map immediately to the
origin. Thus, f globally converges to zero if and only if it is mortal if and only if g satisfies
the GCP. J

STACS’13

518 Mortality of Iterated Piecewise Affine Functions over the Integers

In the following sections we prove results which are strictly stronger than Theorem 7, and
their proofs are also more involved, and could not be fully given in this extended abstract;
hopefully, the above proof was sufficiently clear, and the proof fragments in the sequel will
give the reader an idea of the techniques that were necessary to obtain the other results.

3 Undecidability with a Bounded Number of Regions

The number of regions in the definition of function f above depends on the modulus m of
the Collatz function. In this section, we establish that the mortality problem is also hard
when the number of regions is bounded by some a priori constant (if it is large enough).
This will follow immediately from proving that a result like Theorem 6 holds for a fixed
modulus (which may be interesting in itself)1.

First, we introduce a special variant of the counter machine. An enhanced CM is a
counter machine, where an instruction may increase the value of a register by an arbitrary
positive constant (a decrease, however, is limited to 1 as usual).

I Theorem 8. From an (ordinary) counter machine M , one can compute an enhanced
counter machine UM such that UM is mortal if and only if M halts on every initial state
(1, 〈x, 0, . . . , 0〉). The number of registers and instructions of UM is independent of M .

The proof combines the reduction of totality to mortality by [3] with the use of a universal
CM. The enhanced instruction set is necessary to keep the size of UM independent of M .

I Theorem 9. There is a constant m such that GCP restricted to modulus m is Π0
2-complete.

Proof. We reduce from the standard problem: Given an (ordinary) counter machine M ,
does it halt on every initial state (1, 〈x, 0, . . . , 0〉)? The reduction first maps M to UM , then
translates this counter machine to a generalized Collatz function g. The modulus of g only
depends on the number of registers and instructions in UM , and is independent of M . J

I Corollary 10. There is a constant m such that global convergence and mortality over Z of
piecewise affine functions f with integer coefficients and m regions are Π0

2-complete.

It is natural to ask what the threshold of undecidability is regarding the number of regions.
Consider the function f defined in Section 2. How many regions does it have? There are
m + 2 rows in the table. But the last one does not count as a single region according to
Definition 3. The problem is that it is not convex, and therefore has to be split into convex
polyhedra. It seems natural to adjust the way we count regions by allowing the function to be
defined explicitly on certain convex polyhedral regions, and zero elsewhere. We are interested
in the number R of these convex regions. The case R = 1 coincides with an important open
problem, see [5]. For R = 2 the problem has been recently shown to be undecidable [2].

1 By constructing a universal GCP, both [12, 7] show that undecidability of the reachability problem (is 1
reachable from a given initial point?) holds for a fixed modulus. But this does not imply any conclusion
for mortality; universal machines are, of course, immortal.

A. M. Ben-Amram 519

4 Undecidability for Monic Functions

Figure 1 The dynamics of a Compass Collatz-
like function.

The result of the last section may be inter-
preted as showing that the hardness of the
problem does not depend on allowing an
unbounded number of regions. So, it must
come from allowing an unbounded set of
possible affine functions for each region. In
this section we will show that even when
restricting the coefficients in the linear com-
ponents of these functions to 1, we still have
undecidability.

I Definition 11. A monic piecewise affine
function (abbreviated to “monic PAF”) on
Z2 is a piecewise affine function where each
of the defining affine components has the
form f(x) = (xi1 + b1, xi2 + b2), where {i1, i2} = {1, 2}. In addition, the halfspaces which
define the space partition are given by inequalities of the form cxi + d ≥ 0 such that c = ±1.

The main point is that the definition of the function f does not allow for terms axj with
a > 1 (or sums like x1 + x2).

In the next proof we will use 2-counter machines (2CM). By combining the technique of
Blondel et al. with that of Simon and Kurtz, it is not hard to show that 2CM mortality is
Π0

2-complete. It will be useful to restrict the machines under consideration to a certain class
of “normal forms". A normalized machine: (1) modifies (increments or decrements) every
register in every transition; (2) only halts at a state where the values of the counters are
either 〈0, 0〉, 〈0, 1〉 or 〈1, 0〉.

From these machines, we construct a special (and new) variant of the Collatz problem,
the Compass Collatz-like function. In describing such functions we make use of the set
C = {E,N,W, S} of Compass Directions. A pair (x,∆), where x ∈ N, may be depicted as a
point on one of the axes in the Cartesian plane, in the direction ∆ (we may also refer to
such a point as lying on the ∆ axis). We refer to it as a compass point.

I Definition 12. A function g : N+×C→ N+×C is called a Compass Collatz-like function
if there is a number m = 6p with p ≥ 5 a prime, sets RN , RS ⊆ [0,m − 1] and integers
wi ∈ [0,m − 1] for i = 0, . . . ,m − 1, such that g satisfies the following equations (for
convenience we represent its argument in the form mx+ rp+ i, where x ≥ 0, 0 ≤ r < 6 and
0 ≤ i < p):

g(mx+ rp+ i, E) =
{

(mx+ rp+ i,N) rp+ i ∈ RN

(4(mx+ rp) + i,N) rp+ i /∈ RN

g(mx+ rp+ i,N) = (1
2mx+ b12rcp+ i,W)

g(mx+ rp+ i,W) =
{

(mx+ rp+ wrp+i, S) rp+ i ∈ RS

(9(mx+ rp) + wrp+i, S) rp+ i /∈ RS

g(mx+ rp+ i, S) = (1
3mx+ b13rcp+ i, E)

(2)

STACS’13

520 Mortality of Iterated Piecewise Affine Functions over the Integers

The action of such a function is schematically represented in Figure 1. The “compass”
representation is useful for the transition to a 2-dimensional dynamical system (and also
makes it easier to visualize the dynamics).

I Definition 13. CCP (for Compass Collatz-like Problem) is the problem of deciding, from
a standard representation of g, whether it is the case that every such sequence reaches some
point (x,E) with x < m (the set of such points is called the final zone).

I Lemma 14. CCP is Π0
2-complete.

Proof. (Sketch) The proof is a reduction from 2CM mortality. Given a normal 2-counter
machine M we simulate it by a Compass Collatz-like function, based on the following outline.

Let m = 6p where p > 3 is a prime such that the number of internal states of M is p− 1
(there is no loss of generality). We represent a state s = (i, 〈r1, r2〉) by ŝ = (2r13r2p+ i). We
design the function g so that it takes every encoded state (ŝ, E), in a bounded number of
steps, to a (ŝ′, E) where s′ is the successor state to s.

In greater detail: first, the point will move to the North axis, possibly increasing r1 by
two; then, move to the West axis, while decreasing r1 by one; the result is that r1 has either
been incremented or decremented—according to the instruction i, of course. In a similar way,
moving to the South axis and subsequently to the East again, an increment or decrement of
the second register is simulated.

If M is mortal, every trajectory starting at any encoded state will arrive at a halting
configuration, represented by a number of the form (rp+ 0, E) with r ∈ {1, 2, 3}, so the CCP
is satisfied. If M is not mortal, it has a non-ending computation, which translates into an
infinite trajectory under g.

Since g has to be total, we have to define g for points which do not encode a state, or
appear on the trajectory from a state to its successor, as described above; the full proof
(omitted here, for lack of space) includes a complete definition of g and argues that our claim
that the CCP is satisfied if M is mortal holds when taking all points into account. J

I Theorem 15. Global convergence and mortality of monic piecewise-affine functions over
Z2 are Π0

2-complete problems.

Figure 2 Simulating the 3x + 1 function by
a 2-dimensional monic PAF.

The theorem is proved by reducing the
CCP to the mortality problem for monic
PAFs. The details of this construction could
not fit in this abstract; but the reader may
be able to gain an idea of how it works
from the following example, where the clas-
sic 3x+ 1 problem is represented by a monic
2-dimensional PAF, whose iteration reaches
(1, 0) from initial point (x, 0) if and only if
the Collatz sequence from x reaches 1.

Recall that in the 3x+ 1 problem there
are just two possible “updates," division by
2 and the mapping x 7→ 3x+ 1. This makes
it simpler than the Compass problem, where
there are four “updates" and a large modulus.
However, we still make use of trajectories
that orbit around the origin, starting with the Cartesian point (x, 0) (Figure 2). The NE
quadrant carries (x, 0) to (bx/2c, x mod 2); if the division was even, the point is mapped to

A. M. Ben-Amram 521

(x/2, 0), ready for the next iteration; otherwise, proceeding counter-clockwise, this point is
carried first to (−(3x+ 1), 0), then to (0,−(3x+ 1)) and finally to (3x+ 1, 0).

Here is the complete definition of the PAF:

role of region constraints f(x, y)

Div by 2 x≥2, y ≥ 0 (x− 2, y + 1)

x mod 2 = 0 x=0, y ≥ 0 (y, x)

x mod 2 = 1 x=1, y ≥ 1 (x− 5, y)

region function constraints f(x, y)

Compute 3x+ 1 x<0 , y ≥ 1 (x− 6, y − 1)

West to South x<0 , y < 0 (x+ 1, y − 1)

South to East x≥0 , y < 0 (x+ 1, y + 1)

Final zone 0 ≤x ≤ 1, y = 0 (x, y)

5 Decidability and Complexity in One Dimension

Blondel et al. prove that global convergence is decidable for n = 1 when the function is
continuous. We prove the result for the integers, where continuity is irrelevant. Furthermore,
we identify the complexity of the problem, proving it to be PSPACE-complete.

The following examples hint at the difference between mortality over the integers and
over the reals. The first function has a fixed point at 10/3 and therefore is not mortal over
the reals (or rationals); but it is over the integers.

f1(x) =

−2x+ 10 x > 2
4 x < 0
0 x = 0
4− 2x 1 ≤ x ≤ 2

f2(x) =

x− 3 x > 2
4 x < 0
0 x = 0
4− 2x 1 ≤ x ≤ 2

Below, we give an algorithm to decide mortality over the integers. We also show that it
requires polynomial space (Remark: space complexity is interpreted in the standard way,
that is, number of bits used as a function of the number of bits in the input).

Note that in dimension one, the regions are just a partition of Z into a finite number
of intervals. We may assume that these are given explicitly as the list of the end points of
closed intervals, e.g.,

(−∞,−3], [−2, 0], [1,+∞) .
There will always be one interval infinite to the left, which we denote by (−∞, L], and one
infinite to the right, denoted by [R,+∞); and by breaking intervals into parts if necessary
we can ensure L < 0 and R > 0. We denote the function in the negative part by a−x+ b−

and the function in the positive part by a+x+ b+.
We may also assume f(0) = 0 since, for the convergence problem, the answer is negative if

this does not hold, while for mortality, we may as well modify the function so that f(0) = 0.
First, we define

ρ0 = max({R} ∪ {f(x), where L ≤ x ≤ R})
λ0 = min({L} ∪ {f(x), where L ≤ x ≤ R})

We note that this value can be easily calculated in polynomial time, since for each finite
interval, f(x) assumes the maximum (or minimum) at one of its ends. These values show
how far away from 0 one can get without using the infinite regions.

Next, we show that one can efficiently either determine that the dynamic system is
divergent, which means that there is an unbounded trajectory; or find a finite attractor, an
interval such that all trajectories eventually stay within it.

STACS’13

522 Mortality of Iterated Piecewise Affine Functions over the Integers

I Lemma 16. Suppose that at least one of a+, a− is non-negative. If either a+ or a− is
bigger than 1; or a+ = 1 and b+ ≥ 0; or a− = 1 and b− ≤ 0, then f is divergent, and not
mortal. Otherwise, it has the finite attractor A = [λ, ρ] where

ρ = max(ρ0, (λ0 − |b−|) ·min(a−, 0))
λ = min(λ0, (ρ0 + |b+|) ·min(a+, 0)) .

The algorithm for analysing mortality is now as follows. First, if both a+ an a− are
negative, we construct (in polynomial time) a representation of f ◦ f , whose asymptotic
behaviour is the same, and has positive coefficients in the infinite regions; we thus assume
that Lemma 16 is applicable. By testing the conditions stated in the lemma, we either
conclude immediately that f is not mortal, or get the attactor A. In the latter case, we now
proceed to trace, for each point in this interval, the trajectory from this point, until finding
that it reaches zero, or that it cycles without meeting the origin—so we know if f is mortal.
It is not hard to verify that this can be accomplished in polynomial space. We conclude

I Theorem 17. Global convergence over Z of a piecewise affine function f with integer
coefficients is a PSPACE problem.

It may be interesting to note that the decision procedure for the one-dimensional case
in [3] is much simpler, and in fact polynomial-time (for rational coefficients in a standard
representation). Keep in mind, however, that it solves a different problem (a continuous state
space and a continuous function), which is neither a sub-problem nor a super-problem of the
problem we consider. In fact, for our problem, our problem turns out to be PSPACE-hard. To
prove it, we next introduce several Turing-machine variants as intermediate representations,
and show a sequence of reductions, starting with a standard PSPACE-hard problem and
culminating in our mortality problem (in this extended abstract, the more technical steps
have been omitted to save space).

The first machine is a restricted form of linearly bounded automaton (LBA) [21].

I Definition 18. A tally LBA is a single-tape machine that receives as input a string of
the form 0n for some n ≥ 0; this string is initially written on its work tape, delimited by
endmarkers. The machine is guaranteed to never move beyond the endmarkers. The tape
alphabet is binary.

In the next definition, we consider the tally string to be part of the machine’s description:
hence, a given machine only performs a single computation.

I Definition 19. A fixed-space machine with oblivious queue access is a Turing machine with
the following features:
1. The work tape is a queue of a fixed capacity n (which we consider to be given, in tally

form, as part of the standard description of such a machine). In every step the machine
strips a symbol from the front of the queue and adds one to the rear. Hence, an instruction
of the machine is given by a 4-tuple (q, b, q′, b′), where:
q is the current control state, q′ the next;
b the symbol read off the queue, b′ the symbol appended to the queue.
We use the customary symbol δ for the set of these 4-tuples.

2. The work-tape (queue) alphabet is binary.
3. The initial contents of the queue are 0n.

I Definition 20. A fixed-space machine with oblivious queue access and a clock, briefly a
fixed-space Q&C machine, is a Turing machine with the following features:

A. M. Ben-Amram 523

1. The work tape is a queue, as in the previous definition.
2. The machine also has a clock. This device is a counter (a register of non-negative integer

value) that is automatically decremented each time the machine has completed another
cycle through the queue (that is, exactly n transitions). If the clock reaches zero, the
machine is reset: the queue is cleared, the control state is reset to an initial state (0) and
the clock is reset to its initial value.

3. The initial contents of the queue are 0n; the initial clock value is given—in binary—as
part of the standard description of such a machine.

I Lemma 21. The halting problem of tally LBAs is a PSPACE-hard problem.

I Lemma 22. The computation of a tally LBA on input 0n can be simulated by a fixed-space
machine with oblivious queue access, starting on a blank queue of capacity 2n.

Mortality of fixed-space machines is defined as usual: halting when started with any
possible configuration. Note that there are finitely many such configurations, due to the
fixed space.

I Lemma 23. The halting problem for fixed-space Turing machines with oblivious queue
access can be reduced, in logarithmic space, to mortality of a fixed-space Q&C machine.

Proof. If the given machine ever halts, the length of its computation must be bounded by
2n ·m, where n is the queue size and m the number of control states. We let this be the
initial value of the clock, so that if the machine does halt, it will halt before the clock times
out. If the machine does not halt, it will eventually time out, then restart, ad infinitum. To
see that a halting machine is transformed into a mortal one, note that regardless of its initial
configuration, the machine will either halt or time out, and from that point on, faithfully
simulate the given input-free machine. J

I Lemma 24. Mortality of fixed-space Turing machines with oblivious queue access is
PSPACE-hard.

I Theorem 25. Global convergence over Z of a piecewise affine function f with integer
coefficients is PSPACE-hard (under logspace reductions).

Proof. We reduce from mortality of fixed-space machines with oblivious queue access. The
reduction transforms a machine M , given with its space bound n, into a representation of a
piecewise-affine function f that simulates M and is mortal if and only if M is.

Let us first describe the essence of this simulation. Suppose that M has m states. A
configuration of M is specified by (q, w) where q ∈ [0,m − 1] is the control state, and
w ∈ {0, 1}n is the contents of the queue.

By identifying w with the integer that it represents in binary notation, we define an
integer that encodes a configuration:

〈q, w〉 = q · 2n + w . (3)

Next, we define f as a function that maps a configuration to the next, simulating the machine;
we present the definition by cases.

For each (q, b, q′, b′) ∈ δ, we define f(〈q, bz〉) = 〈q′, zb′〉 . (4)
If there is no transition starting with (q, b), f(〈q, bz〉) = 0. (5)

STACS’13

524 Mortality of Iterated Piecewise Affine Functions over the Integers

We now verify that the above definitions yield a piecewise-affine function. Since this is a
one-dimensional PAF, its regions of definition are intervals and we use the notation a+ [b, c]
for [a+ b, a+ c]. Let Rq,b be the interval q · 2n + b · 2n−1 + [0, 2n−1 − 1]. The function f is
defined on each such interval according to the applicable case; specifically, every transition
described by (4) is translated into: x ∈ Rq,b ⇒ f(x) = 2(x− q · 2n − b · 2n−1) + q′ · 2n + b′

while if there is no such transition, x ∈ Rq,b ⇒ f(x) = 0. J

6 Similar Problems

There are several natural problems similar to mortality and global convergence, and results
fall out of the same reductions (mostly). Here are two examples. The first behaves just the
same as mortality (Π0

2-complete in two dimensions, PSPACE-complete in one), while the
second differs in the one-dimensional case being in PTIME.

Global convergence to a fixed point [13].
Input: f , a PAF. Question: do all trajectories of f reach a fixed point?

Convergence to a Finite Set (In Dynamical System parlance: Finite Attractor).
Input: f , as previously. Question: is there a finite set S such that every sequence

xt+1 = f(xt) stays within S for all t large enough?

7 Conclusion and Open Problems

We have presented work on the border between Dynamical System Theory (much of which
refers to continuous state-spaces) and the Theory of Computation in discrete models. In
particular, this work connects Dynamical System Theory to problems of program termination.
I’d like to argue that such results may be of interest in the context of continuous-space
dynamical systems (e.g., as models of some kinds of physical systems), since, unlike previous
proofs, the undecidability is not derived from the encoding of information into the fractional
bits of a value, which boils down to assuming unlimited precision in measurement.

The focus of this work has been on deciding global properties of systems, so we have not
dwelled on the problem that corresponds to the common Turing-machine halting problem,
namely: given a function and an initial value x0, does the sequence beginning with x0 reach
zero. However it is easy to see, from our proofs, that this problem is RE-complete in two
dimensions, and PSPACE-complete in one. The problem: does the sequence beginning with
x0 reach a given value y? Is known as the orbit problem and was solved in polynomial time
for linear transformations over Qn [11].

I hope that the results presented are of interest, but also the techniques and connections
made to Collatz-like problems and to automata that capture PSPACE. Finally, here are
some open problems.
1. Is there any constant bound on the number of regions which suffices to make mortality of

monic piecewise-affine functions over Z2 as hard as the general problem, i.e., Π0
2 hard?

2. (Braverman’s problem) Is mortality decidable for functions which are zero outside a single
convex region (and affine within)?

3. What is the complexity of the mortality problem in the one-dimensional case, when the
coefficient of x is always 1?

4. What is the complexity of the mortality problem in the one-dimensional case, when the
number of intervals is considered a constant?

Acknowledgement. I thank Jakob Grue Simonsen for a helpful discussion.

A. M. Ben-Amram 525

References
1 Amir M. Ben-Amram and Samir Genaim. On the linear ranking problem for integer linear-

constraint loops. In Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages. ACM press, 2013.

2 Amir M. Ben-Amram, Samir Genaim, and Abu Naser Masud. On the termination of integer
loops. ACM Transactions on Programming Languages and Systems, to appear.

3 Vincent D. Blondel, Olivier Bournez, Pascal Koiran, Christos H. Papadimitriou, and
John N. Tsitsiklis. Deciding stability and mortality of piecewise affine dynamical systems.
Theor. Comput. Sci., 255(1-2):687–696, 2001.

4 Vincent D. Blondel and John N. Tsitsiklis. A survey of computational complexity results
in systems and control. Automatica, 36(9):1249–1274, 2000.

5 Mark Braverman. Termination of integer linear programs. In Thomas Ball and Robert B.
Jones, editors, Computer Aided Verification, 18th International Conference, CAV 2006,
volume 4144 of Lecture Notes in Computer Science, pages 372–385. Springer, 2006.

6 Michael Brin and Garrett Stuck. Introduction to dynamical systems. Cambridge University
Press, Cambridge, UK, 2002.

7 Serge Burckel. Functional equations associated with congruential functions. Theoretical
Computer Science, 123(2):397–406, January 1994.

8 Michael Colón and Henny Sipma. Synthesis of linear ranking functions. In 7th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 2031 of Lecture Notes in Computer Science, pages 67–81. Springer, 2001.

9 John. H. Conway. Unpredictable iterations. In Proc. 1972 Number Theory Conf., Univ.
Colorado, Boulder, pages 49–52. 1972. Reprinted with historical commentary in [15].

10 John. H. Conway. FRACTRAN: a simple universal programming language for arithmetic.
In T. M. Cover and B. Gopinath, editor, Open Problems in Communication and Computa-
tion, pages 3–27. Springer-Verlag, 1987. Reprinted with historical commentary in [15].

11 R. Kannan and R. J. Lipton. Polynomial-time algorithm for the orbit problem. J. ACM,
33(4):808–821, October 1986.

12 František Kaščák. Small universal one–state linear operator algorithm. In Ivan M. Havel
and Vaclav Koubek, editors, Mathematical Foundations of Computer Science (MFCS ’92),
volume 629 of LNCS, pages 327–335, Springer, 1992.

13 Pascal Koiran, Michel Cosnard, and Max Garzon. Computability with low-dimensional
dynamical systems. Theor. Comput. Sci., 132:113–128, September 1994.

14 Stuart A. Kurtz and Janos Simon. The undecidability of the generalized Collatz problem.
In Jin-Yi Cai, S. Barry Cooper, and Hong Zhu, editors, Theory and Applications of Models
of Computation, 4th International Conference, TAMC 2007, Shanghai, China, May 22-25,
2007, volume 4484 of Lecture Notes in Computer Science, pages 542–553. Springer, 2007.

15 Jeffrey C. Lagarias. The Ultimate Challenge: The 3x+1 Problem. American Mathematical
Society, 1st edition, 2010.

16 Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, USA, 1967.
17 Cristopher Moore. Unpredictability and undecidability in dynamical systems. Phys. Rev.

Lett., 64(20):2354–2357, May 1990.
18 Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis of linear

ranking functions. In VMCAI, pages 239–251, 2004.
19 H.T. Siegelmann and E.D. Sontag. Analog computation, neural networks, and circuits,.

Theor. Comp. Sci., 131:331–360, 1994.
20 Ashish Tiwari. Termination of linear programs. In Rajeev Alur and Doron Peled, editors,

Computer Aided Verification, volume 3114 of Lecture Notes in Computer Science, pages
387–390. Springer Berlin / Heidelberg, 2004.

21 K. Wagner and G. Wechsung. Computational Complexity. D. Reidel, Dordrecht, 1986.

STACS’13

On the practically interesting instances of
MAXCUT
Yonatan Bilu1, Amit Daniely∗2, Nati Linial†3, and Michael Saks‡4

1 Parasight inc
Agudat sport hapoel 1, Jerusalem, Israel.
yonatan@gmail.com

2 Department of Mathematics, Hebrew University
Jerusalem 91904, Israel.
amit.daniely@math.huji.ac.il

3 School of Computer Science and Engineering, Hebrew University
Jerusalem 91904, Israel.
nati@cs.huji.ac.il

4 Department of Mathematics, Rutgers University
Piscataway, NJ 08854.
saks@math.rutgers.edu.

Abstract
For many optimization problems, the instances of practical interest often occupy just a tiny part
of the algorithm’s space of instances. Following [6], we apply this perspective to MAXCUT,
viewed as a clustering problem. Using a variety of techniques, we investigate practically interest-
ing instances of this problem. Specifically, we show how to solve in polynomial time distinguished,
metric, expanding and dense instances of MAXCUT under mild stability assumptions. In partic-
ular, (1 + ε)-stability (which is optimal) suffices for metric and dense MAXCUT. We also show
how to solve in polynomial time Ω(

√
n)-stable instances of MAXCUT, substantially improving

the best previously known result.

1998 ACM Subject Classification F.2.0 Analysis of algorithms and problem complexity

Keywords and phrases MAXCUT, Clustering, Hardness in practice, Stability, Non worst-case
analysis

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.526

1 Introduction

As has been noted many times, worst case complexity is often an overly restrictive metric
for algorithms. In practice, a more realistic (but fuzzy) criterion would be to say that a
problem is feasible if there is an efficient algorithm that correctly solves all of its practically
interesting instances. The difference can be very substantial, since for many computational
problems, the vast majority of instances are completely irrelevant for practical purposes.

An important case in point is clustering, where one seeks a meaningful partition of a
given set of data. Almost every formal manifestation of the clustering problem is NP -Hard,

∗ Supported in part by a binational Israel-USA grant 2008368 and by a Google Europe Fellowship in
Learning Theory.
† Supported in part by a binational Israel-USA grant 2008368.
‡ Supported in part by NSF under grants CCF-0832787 and CCF-1218711, and by a binational Israel-USA

grant 2008368. Part of this work was done while on sabbatical at Princeton University.

© Yonatan Bilu, Amit Daniely, Nati Linial, and Michael Saks;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 526–537

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.526
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Y. Bilu, A. Daniely, N. Linial, and M. Saks 527

yet, a clustering instance is of practical interest only if the data can indeed be partitioned in
a meaningful way, and such data sets are very special. Thus, even if no efficient algorithm
can find the optimal partition for every data set, this does not imply that clustering is hard
in practice. As Tali Tishby put it in conversation many years ago, many practitioners hold
the opinion that "clustering is either easy or pointless". That is, for a data sets that admit a
meaningful partition of the data, finding it is not hard.

Bilu and Linial [6] proposed a framework for studying this issue which applies to optimiz-
ation problems with a continuous input space and discrete solution space. They proposed
two criteria for an optimal solution to be evidently optimal. An optimal solution is stable
if it remains optimal under moderate perturbations of the input. An optimal solution is
distinguished if the objective function value at any other point is reduced by at least an
amount proportional to the distance to the optimal point.

Following [6] we study the (weighted) MAXCUT problem in this framework. Here the
input is a weighted graph and the candidate solutions are cuts. A cut is γ-stable (for γ ≥ 1)
if it remains optimal even if each input weight wij is perturbed to a value between wij and
γwij . A cut is α-distinguished (for α ≥ 0) if moving to any other cut reduces the objective
function by at least α times the sum of (weighted) degrees of the vertices that switched side.
We also consider a weakening of stability called γ-local stability.

Our main results are:

I Theorem 1. 1. For every ε > 0 there is a polynomial time algorithm that correctly solves
all (1 + ε)-locally stable instances of Metric-MAXCUT.

2. For every ε > 0 and C > 1 there is a polynomial time algorithm that correctly solves all
MAXCUT instances that are (1 + ε)-locally stable and C-dense.

The condition of C-density (defined in Section 1.2) rules out weight being too concentrated.

I Theorem 2. There is a polynomial time algorithm that solves every instance of MAXCUT
that is α-distinguished and γ-locally stable with γ > 2

1−
√

1−α2 . In fact, it suffices that the
instance be γ-locally stable with γ > 2

1−
√

1−h2 , where h is the Cheeger constant of the weighted
graph induced by the maximal cut.

This improves a result from [6] that works only for regular graphs and requires that γ >
5+
√

1−α2

1−
√

1−α2 or γ > 5+
√

1−h2

1−
√

1−h2 .

I Theorem 3. There is a polynomial time algorithm that finds the optimal solution for every
Ω(
√
n)-stable instance of MAXCUT.

This improves on a result in [6] which needed Ω(n)-stability.

Some notation and terminology
The input to the MAXCUT problem on vertex set V is a symmetric weight function
w : V × V → R+ with 0 diagonal. Expressions such as "w is bipartite" refer to the graph
which is the support of w, which we assume to be connected. The objective is to find the cut
(S, S̄), S ⊆ V of maximum total weight

∑
a∈S, b∈S̄ w(a, b).

For a fixed cut (S, S̄), we use the self-explanatory terms “the vertices x, y are on the
same side" or “separated" by this cut. The edge xy a cut edge or a non-cut edge when
x, y are separated resp. on the same side of the cut. For A,B ⊂ V , we define E(A,B) =
{ab|a ∈ A, b ∈ B}, and w(A,B) :=

∑
uv∈E(A,B) w(u, v). Also, τw(A) = τ(A) = w(A, Ā) and

µ(A) = µw(A) = w(A, V). Fo A ⊆ V , ξ(A), ξ(A) =
∑
vu∈E(A,Ā)∩E(S,S̄) w(u, v) is the sum of

weights of cut edges leaving A and ι(A) = τ(A)− ξ(A) is the weight of the non-cut edges.

STACS’13

528 On the practically interesting instances of MAXCUT

(The reader may find the following mnemonic useful: τ stands for “total", ξ for “external"
and ι for “internal"). We slightly abuse notation for singletons A = {v} and pairs A = {u, v}
and write τ(v) or ι(e) etc., where e = uv. The minimal, maximal and average degree of w are

denoted by δ(w) = minv∈V µ(v), δ̄(w) = maxv∈V µ(v) and δ(w) =
∑

v∈V
µ(v)

n respectively.

1.1 Stable instances
I Definition 4. Let w : V × V → [0,∞) be an instance of MAXCUT and let γ ≥ 1. An
instance w′ : V × V → [0,∞) is a γ-perturbation of w if

∀u, v ∈ V, w(u, v) ≤ w′(u, v) ≤ γ · w(u, v)

An instance w is said to be γ-stable if there is a cut which forms a maximal cut for every
γ-perturbation w′ of w.

I Definition 5. Let γ ≥ 1. An instance w : V × V → [0,∞) for MAXCUT is γ-locally stable
if there is a maximal cut (S, S̄) for which it is impossible to obtain a larger cut by switching
the side of some vertex x and multiplying the edges in E(x, V \ {x}) by numbers between 1
and γ.

The definitions of stability and local stability capture the intuition of an “evidently optimal"
solution. The following more concrete equivalent definitions are usually more convenient to
use.

I Observation 1. [6] Let w : V × V → R be an instance of MAXCUT and let γ ≥ 1.
w is γ-stable iff there is a maximal cut for which ξ(A) ≥ γ · ι(A) for every A ⊂ V .
w is γ-locally stable iff there is a maximal cut for which ξ(x) ≥ γ · ι(x) for every x ∈ V .

We say that a (not necessarily maximal) cut (S, S̄) is γ-stable (resp. γ-locally stable) if the
first (resp. second) condition in Observation 1 holds.

Every instance is 1-stable and it is easy to see that there is a unique maximal cut if and
only if the instance is γ-stable for some γ > 1.

Stability and local stability are quite different. For γ > 1 an instance has at most one
γ-stable cut but may have many γ-locally stable cuts. The instance where w = 1 on the
edges of a perfect matching and ε > 0 elsewhere. As ε→ 0, the local stability tends to ∞
and has exponentially many γ-locally stable maximal cuts, but is not γ-stable for any γ > 1.
While MAXCUT remains NP -hard even under arbitrarily high local stability (see [6]), in
Section 2 we prove Theorem 3 by giving an efficient algorithm for Ω(

√
n)-stable instances.

Also, it is easy to decide whether a given cut is γ-locally stable, but we do not know how to
decide whether a given cut is γ-stable.

1.2 Metric and Dense instances
In Section 3 we study metric instances. This is done through a reduction from metric to
dense instances, so we consider such instances as well (Section 3.1).

We call w : V × V → R C-dense for C ≥ 1 if ∀x, y ∈ V, w(x, y) ≤ C · τ(x)
n . As shown in

[2], for C > 1 fixed, C-dense MAXCUT is NP -Hard, but it has a PTAS. As we show, this
PTAS can be adapted to correctly solve all instances of MAXCUT that are (1 + ε)-locally
stable and C-dense for every ε > 0, C > 1. The algorithm samples O(log n) vertices and tests
each of their bipartitions as a seed to a cut. As we show, w.h.p., one of the resulting cuts is
the maximal cut, proving the second part of Theorem 1.

Y. Bilu, A. Daniely, N. Linial, and M. Saks 529

In Section 3.2 we deal with Metric-MAXCUT. As shown in [15] (with credit to L. Trevisan)
Metric-MAXCUT is NP -Hard. That paper also gives a reduction from metric to (4 + o(1))-
dense instances of MAXCUT, thus yielding a PTAS for Metric-MAXCUT. We prove Theorem
1 by showing that a slight variation of this reduction preserves local stability1, and therefore
yields an efficient algorithms for (1 + ε)-locally stable instances of Metric-MAXCUT.

The exponent for this algorithm is quite large. We also provide a faster algorithm for
(3 + ε)-locally stable metric instances.

1.3 Distinguished and Expanding instances
Let w : V × V → R+ be an instance of MAXCUT whose (unique) maximal cut is (S, S̄).
We note that if all vertices of A ⊂ V switch side, then the weight of the cut decreases by
ξ(A)− ι(A). Thus, we define

I Definition 6. An instance w of MAXCUT is α-distinguished for 1 ≥ α ≥ 0 if for every
∅ 6= A ⊂ V , ξ(A)− ι(A) ≥ α ·min{µ(A), µ(Ā)}.

Note that every instance is 0-distinguished and being α-distinguished with α > 0 is
equivalent to having a unique maximal cut. It is not hard to see that 1+α

1−α -local stability is
equivalent to α-local distinction, namely ξ(x)− ι(x) ≥ α · µ(x) for every x ∈ V .

Distinction vs Stability. Let (S, S̄) be a maximal cut of w : V ×V → [0,∞). On the one
hand, every α-distinguished instance is 1+α

1−α -stable, because ξ(A)− ι(A) ≥ αµ(A) ≥ α(ξ(A) +
ι(A)). On the other hand, highly stable instances need not be distinguished as the following
bipartite example with V = {a1, . . . , an}∪̇{b1, . . . , bn} shows. Here w(ai, bj) is 1 when i = j

and ε � 1 otherwise. Clearly w is ∞-stable. Yet, switching the sides of all the vertices
in {a1, . . . , an

2
} ∪ {b1, . . . , bn

2
} decreases the weight of the cut only slightly. Such examples

motivate the stronger notion of distinction. Although the cut ({a1, . . . , an}, {b1, . . . , bn}) is
infinitely stable, its optimality does not seem completely evident.

Distinction and Expansion. Call w : V × V → R+ β-expanding if β ≤ h(w) where
h(w) = min∅6=A⊂V τ(A)

min{µ(A),µ(Ā)} is w’s Cheeger constant. An α-distinguished instance is α-
expanding, though highly expanding instances can even have multiple maximal cuts. However,
an instance that is both γ-stable and β-expanding is easily seen to be (β · γ−1

γ+1)-distinguished.
As this discussion implies, distinction is a conjunction of stability and expansion.

In section 4 we prove Theorem 2, using a spectral result from [6].

1.4 Spectral algorithms
In Section 5 we consider consider whether the Goemans-Williams approximation algorithm
can be used to exactly solve instances of high stability or local stability.

1.5 Other related work
Recently, Balcan and Liang [5] introduced a relaxed version of stability in which the optimal
solution is allowed to change slightly under perturbations of the input, and obtained good
algorithms for clustering under the k-medians objective. In [3] polynomial time algorithms
are given for 3-stable instances of k-means, k-medians and other “center based" clustering

1 A word of caution: Our definition of stability and local stability for Metric-MAXCUT is more restrictive
than one might think. We require the perturbed instance to satisfy the stability condition whether or
not it is metric.

STACS’13

530 On the practically interesting instances of MAXCUT

problems. The constant 3 was improved in [5] to (1 +
√

2) for k-median. The papers [9, 1, 4]
consider data sets that admit a good clustering and show how to cluster them efficiently.

Smoothed analysis is the best known example of a method for analysing instances of
computational problems based on their practical significance. As this method shows [14], a
certain variant of the simplex algorithm solves in polynomial time almost every input.

The MAXCUT problem has been shown to solvable in polynomial time with high
probability in random models (e.g. [7]) and semirandom model [10].

2 Algorithms for stable instances

I Observation 2. Let w be a γ-stable instance of MAXCUT, and let w′ be obtained from w

by merging two vertices2 on the same side of w’s maximal cut. Then w′ is γ-stable and its
maximal cut is induced from w’s maximal cut.
Thus, it suffices to give an efficient algorithm that, for any γ-stable instance, finds a pair of
vertices on the same side of the optimal cut. Once two such vertices are found, we merge
them and proceed recursively. This applies as well when γ is a non-decreasing function of n.

As an easy warm-up, we show how to find such a pair of vertices in a 2n-stable MAXCUT
instance w, simplifying an algorithm from [6]. Let vu be a heaviest edge, and let vz be
the heaviest edge incident on either u or v. We claim that both vu and vz are cut edges
and so u and z are on the same side of the cut. To see this Clearly w(v, u) ≥ 1

n−1τ(v). By
observation 1, ι(v) ≤ 1

2n+1τ(v), so w(v, u) > ι(v) and we conclude that vu is a cut edge.
Again, w(v, z) ≥ 1

2(n−2)τ({u, v}) and by observation 1, ι({v, u}) ≤ 1
2n+1τ({v, u}), implying

that w(v, z) > ι({v, u}). Consequently vz is a cut edge.

2.1 A deterministic algorithm for O(
√

n)-stable instances
Following observation 2, we will find two vertices which are on the same side of the cut. To
find this pair, we’ll only need the condition in Observation 1 to hold for subsets A ⊆ V with
|A| ≤ 2. (But full stability is needed to apply induction after merging.) Let w be a γ-stable
instance of MAXCUT with γ >

√
8n+ 4 + 1 and let (S, S̄) be a maximal cut. We first deal

with very heavy edges. Let T 1 be the set of edges vu for which w(v, u) > µ(v)/(γ + 1).
By observation 1, all edges in T 1 are cut edges. Thus if there are two incident edges
uv, vz ∈ T 1, then u and z are on the same side of the cut and we are done. It remains
to consider the case where T 1 is a matching. Let T 2 be the set of edges not in T 1 that
satisfy w(u, v) > τ({u, z})/(γ + 1) for some uz ∈ T 1. Again, by observation 1, all edges
in T 2 are cut edges. If T 2 is nonempty, say uv ∈ T 2, then there exists some uz ∈ T 1 with
w(u, v) > 1

γ+1τ({u, z}), which implies that v and z are on the same side of the cut. We
proceed to consider the case where T 2 is empty.

For every u, v ∈ V define

w̃(u, v) =
{

0 vu ∈ T 1

w(u, v) o/w
, ŵ(v) =

{
τ({u, v}) vu ∈ T 1 for some u ∈ V
τ(v) o/w

Note that ŵ(v) is well defined, since T 1 is a matching by assumption. Since T 2 = ∅ and
T 1 is a matching, we have, for every u ∈ V , w̃(v, u) ≤ 1

γ+1 ŵ(v) and, again by observation

2 Let w : V × V → R be an instance and let v, u ∈ V . The instance w′ : V ′ × V ′ → R obtained upon
merging v, u is defined as follows. V ′ = V \ {u, v} ∪ {v′} and w′(x, y) = w(x, y) for x, y ∈ V \ {v, u},
also, w′(v′, x) = w(v, x) + w(u, x).

Y. Bilu, A. Daniely, N. Linial, and M. Saks 531

1, ι(v) ≤ 1
γ+1 ŵ(v). Next, we observe as well that separated vertices cannot have too many

common neighbours. For u, v ∈ V we define n(u, v) :=
∑
z∈V w̃(v, z)w̃(z, u). If v and u are

separated, say v ∈ S, u ∈ S̄, then

n(u, v) =
∑
z∈S̄

w̃(v, z)w̃(z, u) +
∑
z∈S

w̃(v, z)w̃(z, u)

≤ 1
γ + 1 ŵ(v) · ι(u) + 1

γ + 1 ŵ(u) · ι(v) ≤ 2
(γ + 1)2 ŵ(u) · ŵ(v).

Thus, it suffices to find two vertices v, u with n(u, v) > 2
(γ+1)2 ŵ(u) · ŵ(v), and place them on

the same side of the cut. Indeed, if no such pair exists we have

1
4
∑
v∈V

ŵ2(v) ≤
∑
v∈V

τ2
w̃(v) =

∑
u,v,z∈V

w̃(u, z)w̃(z, v)

=
∑

u,v∈V, u6=v
n(u, v) +

∑
u,z∈V

w̃2(u, z)

≤ 2
(γ + 1)2

∑
u,v∈V, u6=v

ŵ(u)ŵ(v) +
∑
u∈V

1
γ + 1 ŵ(u)

∑
z∈V

w̃(u, z)

≤ 2
(γ + 1)2 (

∑
u∈V

ŵ(u))2 + 1
γ + 1

∑
u∈V

ŵ(u)τw̃(u)

≤ 2n
(γ + 1)2

∑
u∈V

ŵ2(u) + 1
γ + 1

∑
u∈V

ŵ2(u),

from which we obtain the contradiction γ ≤
√

8n+ 4 + 1.

3 Algorithms for locally stable dense and metric instances

3.1 Dense instances
I Theorem 7. For every C ≥ 1 and ε > 0 there is a randomized polynomial time algorithm
that correctly solves all (1 + ε)-locally stable, C-dense instances of MAXCUT.

The analysis of the algorithm is based on the following lemma.

I Lemma 8. Suppose that w : V × V → [0,∞) is a C-dense instance and let (S, S̄) be a
γ-locally stable cut. Let X1, . . . , Xm be i.i.d. r.v. that are uniformly distributed on V . For
x ∈ V , let Ax be the event that S+ > S−, where S± =

∑
w(x,Xi) over all i s.t. x and Xi

are separated resp. on the same side. Then

Pr (∪xAx) ≤ |V | · exp
(
−1

2

(
1
C
· γ − 1
γ + 1

)2
·m

)

Proof. For every x ∈ V , S+−S− is a sum of m i.i.d. r.v.’s of expectation ξ(x)−ι(x)
|V | ≥ γ−1

γ+1
τ(x)
|V | .

These r.v.’s are bounded in absolute value, by C · τ(x)
|V | . Now apply Hoeffding’s bound.

2

Proof. (Of Theorem 7) Let D = 2
(
C · 2+ε

ε

)2 and m = D · ln(2|V |). Let X1, . . . , Xm be
independent uniform random samples from V . By Lemma 8, with probability ≥ 0.5, there
is a partition {X1, . . . , Xm} = L

∐
R such that the cut defined by S = {x ∈ V : w(x,R) >

w(x, L)} is optimal. Now simply enumerate over the (2 · |V |)ln(2)D = nO(1) such partitions.

STACS’13

532 On the practically interesting instances of MAXCUT

3.2 Metric instances
Given an instance w : V × V → [0,∞) of MAXCUT, we split its vertices as follows. Pick
a set Ṽ and a surjective map π : Ṽ → V . A MAXCUT instance w̃ on Ṽ is defined by
w̃(x̃, ỹ) = w(x,y)

|π−1(x)|·|π−1(y)| , where π(x̃) = x, π(ỹ) = y.

I Proposition 9. Consider the map (S, S̄) 7→ (π−1(S), π−1(S̄)) from cuts of w to cuts of w̃.
1. This map preserves weights, stability and local stability of cuts.
2. Restricted to the locally stable cuts (i.e., γ-locally stable cuts with γ > 1), this is a

bijection onto the locally stable cuts of w̃.
3. It maps maximal cuts to maximal cuts.
4. If w(V, V) = 2 · |V |2 and if the preimage of every x ∈ V has cardinality bτw(x)c then w̃

is (4 + o(1))-dense.

Proof. The first three items are easy to show, so we proceed with the last claim whose
proof is essentially due to [15]. Let x̃, ỹ ∈ Ṽ such that π(x̃) = x, π(ỹ) = y. It is easy to
see that (see [15]) 2 · |V | · τw(x) ≥ w(V, V), bτw(x)c ≥

(
1− 1

|V |

)
τw(x) = (1 − o(1))τw(x),

τw̃(x̃) = τw(x)
bτw(x)c ≥ 1 and w(x, y) ≤ 1

|V | (τw(x) + τw(y)). Thus, we have

w̃(x̃, ỹ) = w(x, y)
bτw(x)c · bτw(y)c ≤ (1 + o(1)) w(x, y)

τw(x) · τw(y)

≤ (1 + o(1)
1
|V | [τw(x) + τw(y)]
τw(x) · τw(y) = (1 + o(1)) ·

(
1

|V |τw(x) + 1
|V |τw(y)

)
≤ (1 + o(1)) 4

w(V, V) ≤
4 + o(1)
|Ṽ |

= (4 + o(1))τw̃(x̃)
|Ṽ |

2

I Corollary 10. For ε > 0, there is a randomized polynomial time algorithm for (1+ε)-locally
stable instances of Metric-MAXCUT.

The drawback of this algorithm is that the exponent of the polynomial is large. We now
sketch a simple O(n4) algorithm for (3 + ε)-stable metric instances.

I Proposition 11. Let (L,R) be a γ-locally stable cut of an instance, w, of Metric-MAXCUT.
Then, for every x ∈ L, z ∈ R, w(x, z) ≥

(
γ2−1
γ

)
· w(x,R)
γ·|R|+|L| .

Proof. Using γ-local stability and the triangle inequality we obtain

1
γ
w(x,R) ≥ w(x, L) =

∑
y∈L

w(x, y) ≥
∑
y∈L

(w(z, y)− w(x, z))

= w(z, L)− |L|w(x, z) ≥ γw(z,R)− |L|w(x, z) = γ
∑
y∈R

w(z, y)− |L|w(x, z)

≥ γ
∑
y∈R

(w(y, x)− w(z, x))− |L|w(x, z)

= γw(x,R)− γ|R|w(x, z)− |L|w(x, z).

2

I Theorem 12. Let (X,w) be an instance of Metric-MAXCUT and let (L,R) be a γ = (3+ε)-
locally stable cut with ε > 0. Then either L or R is a (metric) ball.

Y. Bilu, A. Daniely, N. Linial, and M. Saks 533

Proof. W.l.o.g., |L| ≥ n
2 . We find some x ∈ L such that ∀z ∈ R, w(z, x) > diam(L), thus

proving our claim. Select some x, y ∈ L with w(x, y) = diam(L). For every z ∈ L, we
write w(x, y) ≤ w(x, z) + w(y, z). Summing over every z ∈ L, this yields |L| · w(x, y) ≤
w(x, L) + w(y, L). W.l.o.g., assume that w(x, L) ≥ |L|2 · w(x, y). By local stability,

w(x, y) ≤ 2
|L|

w(x, L) ≤ 2 · w(x,R)
γ · |L|

(1)

By proposition 11, every z ∈ R satisfies w(x, z) ≥
(
γ2−1
γ

)
· w(x,R)
γ·|R|+|L| . Combined with equation

(1), and the assumptions γ > 3 and |L| ≥ |R|, we obtain that w(x, z) > w(x, y) as claimed.

2

By Theorem 12, the maximal cut of (3 + ε)-locally stable instances of Metric-MAXCUT can
be found by simply considering all O(n2) balls.

I Note 13. Theorem 12 is tight in the following sense: There is a (3−ε)-stable metric instance
where neither side can be expressed as the union of few balls. Let (X,w) = (L

∐
R,w) where

L = {l1, . . . , l2n}, R = {r1, . . . , r2n}. For 1 ≤ i ≤ n, w(l2i−1, l2i) = w(r2i−1, r2i) = 2 and for
1 ≤ i ≤ 2n, w(li, ri) = 2. All other distances within L and within R are 1, and between L
and R are 3. It is not hard to see that w is a (3− o(1))-stable metric instance and neither
side of the max cut can be decomposed into fewer than 2n balls.

4 Distinguished and Expanding Instances

Let w : V × V → [0,∞) be an instance of MAXCUT with a maximal cut (S, S̄). We
identify w with an n × n matrix W , where Wij = w(i, j). Define wcut : V × V → R
by wcut(u, v) = w(u, v) for uv ∈ E(S, S̄) and wcut(u, v) = 0 otherwise. Similarly, denote
wuncut = w − wcut. Denote by Wcut and Wuncut the matrices corresponding to wcut and
wuncut respectively. Finally, let Dcut, Duncut, D and D′ be the diagonal matrices defined by
Dcut
ii =

∑
jW

cut
ij , Duncut

ii =
∑
jW

uncut
ij , D = Dcut +Duncut and D′ = Dcut −Duncut.

I Lemma 14. If w is γ-locally stable where γ > 2
1−
√

1−(h(wcut))2 , then W + D′ is a PSD
matrix of rank n− 1.

As shown in [6] there is an efficient algorithm that correctly solves all instances that satisfy
the conclusion of the Lemma. (Alternatively, by Theorem 20 such instances are GW-bipolar,
and the GW-algorithm solves all such instances.) This proves the second part of Theorem 2.

Proof. First, we note that it is enough to prove that D− 1
2 (W +D′)D− 1

2 is a PSD matrix of
rank n− 1. Let f : V → R be the vector defined by fi =

√
Dii for i ∈ S and fi = −

√
Dii for

i ∈ S̄. Since fTD− 1
2 (W+D′)D− 1

2 f = 0, it is enough to show that vTD− 1
2 (W+D′)D− 1

2 v > 0
for every unit vector v that is orthogonal to f . Note that

D−
1
2 (W +D′)D− 1

2 = D−
1
2 (Dcut +W cut −Duncut +Wuncut)D− 1

2 (2)

The matrix D− 1
2 (W cut + Dcut)D− 1

2 is positive semi-definite and f is in its kernel (to see
that, note that for u ∈ Rn, uT (W cut +Dcut)u =

∑
ijW

cut
ij (ui + uj)2). Therefore we have

vTD−
1
2 (W cut +Dcut)D− 1

2 v ≥ λ2 (3)

STACS’13

534 On the practically interesting instances of MAXCUT

where 0 = λ1 ≤ λ2 ≤ . . . ≤ λn are the eigenvalues of D− 1
2 (W cut + Dcut)D− 1

2 . Moreover,
Wuncut +Duncut � 0⇒ 2Duncut � Duncut −Wuncut, where A � B means that the matrix
A−B is PSD. Thus, we have,

vTD−
1
2 (Duncut−Wuncut)D− 1

2 v ≤ 2 · vTD− 1
2DuncutD−

1
2 v ≤ 2 ·max

i

Duncut
ii

Dii
≤ 2
γ + 1 (4)

Combining equations (2), (3) and (4), it is enough to show that λ2 >
2

γ+1 . However, since
wcut is bipartite, the matrices D− 1

2 (Dcut + W cut)D− 1
2 and D−

1
2 (Dcut −W cut)D− 1

2 have
the same spectrum3. Also, D− 1

2 (Dcut −W cut)D− 1
2 and D−1(Dcut −W cut) have the same

spectrum4 so it suffices to show that µ2 >
2

γ+1 , where µ2 is the second smallest eigenvalue of
D−1(Dcut−W cut). By the known relation between expansion and the second eigenvalue of the
Laplacian (e.g., Theorem 2.2 in [11]), it follows that µ2 ≥ mini D

cut
ii

Dii
· (1−

√
1− h(wcut)2) ≥

γ
γ+1 (1−

√
1− h(wcut)2)

2

Finally, to prove the first part of Theorem 2, it is enough to show that if w is α-distinguished
then h(wcut) ≥ α. Indeed, for ∅ 6= A ⊂ V we have

τwcut
(A) = ξw(A) ≥ ξw(A)− ιw(A) ≥ α ·min{µw(A), µw(Ā)} ≥ α ·min{µwcut

(A), µwcut
(Ā)}

5 The Spectral approach and the GW algorithm

We now consider a class of algorithms called spectral algorithms which have been used to
give approximations or heuristics for MAXCUT (e.g. [7, 8, 12, 13]). We make various
observations, including that the Goemans-Williamson (GW) approximation algorithm for
MAXCUT is spectral. This study is motivated in part by the hope that such algorithms
may do well on stable instances. We obtain a modest result (Corollary 19) in this direction.

In this section we view an instance of MAXCUT as an n× n matrix W and associate a
cut (S, S̄) with its characteristic vector δS which is 1 on S and −1 on S̄. A vector v ∈ Rn
is called a generalized least eigenvector (GLEV) of W if there is a diagonal matrix D such
that v it is an eigenvector of W +D, corresponding to (W +D)’s least eigenvalue, λ. By
letting ∆ := D − λI we see that v is a GLEV iff v is in the kernel of W + ∆ for ∆ diagonal
with W +D � 0. (As usual A � 0 means that A is positive semi-definite). A vector v ∈ Rn
induces the cut (S, S̄) where S = {i : vi > 0}. An algorithm for MAXCUT is called spectral
if it always returns a cut that is induced by a GLEV.

Spectral algorithms arise naturally from the following formulation of MAXCUT:

minimize vT (W +D)v subject to v ∈ {1,−1}n. (5)

Here D can be any diagonal matrix. A natural relaxations to this problem is.

minimize vT (W +D)v subject to ||v|| = 1 (6)

3 This is essentially due to the fact that bipartite graphs have a symmetric spectrum and eigenvectors that
come in pairs u and Pu, where P : Rn → Rn is the operator that reverses the sign of the coordinates
corresponding to one side of the cut and leaves the other coordinates unchanged. This operator commutes
with diagonal matrices and satisfies WP = −PW . Thus, v is an eigenvector of D−

1
2 (Dcut +W cut)D−

1
2

with an eigenvalue λ iff Pv an eigenvector of D−
1
2 (Dcut +W cut)D−

1
2 with an eigenvalue λ.

4 Since v is an eigenvector of D−
1
2 (Dcut −W cut)D−

1
2 with eigenvalue λ iff D−

1
2 v is an eigenvector of

D−1(Dcut −W cut) with eigenvalue λ.

Y. Bilu, A. Daniely, N. Linial, and M. Saks 535

where || · || denotes the Euclidean norm. Solutions v of (6) are least eigenvectors of W +D.
In view of (5), it is natural to consider the cut induced by such v.

The GW-Algorithm
In (5) we seek n vectors v1, . . . , vn in the 0 dimensional sphere S0 = {−1, 1} to minimize∑
i,jWi,j〈vi, vj〉. In [12], an alternate relaxation is proposed (seemingly unrelated to (6)):

minimize
∑
i,j

Wi,j〈vi, vj〉 subject to vi ∈ Sn−1
(7)

The GW-algorithm[12] returns the cut induced by vector u defined by ui = 〈v, vi〉 where
v ∈ Sn−1 is sampled uniformly. This yields the approximation ratio 0.879 for MAXCUT.

To solve (7) the GW algorithm finds first a solution P to the problem

minimize P ◦W subject to P � 0, Pii = 1, ∀i ∈ [n]. (8)

Where P ◦W :=
∑

1≤i,j≤n Pij ·Wij . Since P � 0 it is possible to find next vectors v1, . . . , vn
such that Pij = 〈vi, vj〉. The dual to (8) is (see [12])

maximize
n∑
i=1

Dii subject to W −D � 0, D is diagonal. (9)

As observed in [12], by SDP duality the optima of (8) and (9) coincide. Denote by
P(W) and D(W) the set of optimal solutions to (8) and (9) respectively. Denote also
P = {P ∈Mn(R) : P � 0 and ∀i, Pii = 1}, D = {D ∈Mn(R) : D is diagonal}. We say that
W is GW-bipolar if there exists a solution to (9) that also solves the binary problem (6) (i.e.,
it is contained in a copy of S0 embedded in Sn−1). Equivalently, W is GW-bipolar if P(W)
contains a matrix of the form v · vT for some v ∈ {−1, 1}n. Finally, we shall say that W is
strongly GW-bipolar if every solution to (7) is also a solution of (6). The maximal cut of
such an instance can be immediately read of the output of the GW-algorithm.

In the rest of this section, we prove that an instance can be correctly solved by some
spectral algorithm iff it is has a certain perturbation that is GW-bipolar. We also give a
primal-dual characterization of the set of solutions to the GW-relaxation, which allows us to
conclude that the GW-algorithm is a spectral algorithm.

I Theorem 15. Let W be a MAXCUT instance and v be a GLEV of W . Then the cut S
induced by v is a maximum cut if and only if the matrix W ′ with entries Wi,j = |vi||vj |Wi,j

is GW-bipolar. In particular, W has a ±1-GLEV iff W is GW -bipolar.

Proof. As noted before, v is a GLEV if and only if v is in the kernel of W + D for some
diagonal matrix D for which W +D � 0. Thus, v is a GLEV of W if and only if the optimum
of the following SDP is 0.

minimize
P

vT (W +D)v subject to W +D � 0 D is diagonal. (10)

The dual program of (10) is:

maximize
P

vTWv − P ◦W subject to Pii = v2
i , P � 0. (11)

Since (10) has a positive definite solution, strong duality holds. Thus, v is a GLEV iff
the optimum of (11) is 0. We now show this latter condition is equivalent to W ′ being

STACS’13

536 On the practically interesting instances of MAXCUT

GW-bipolar. Note that the mapping P ′ 7→ P where Pij = |vi| · |vj | · P ′ij maps the feasible
solutions to the primal GW-relaxation (8) for W ′ onto the feasible solution to (11). Moreover,
P ◦W = P ′ ◦W ′. Thus, the optimum of (11) is zero iff the optimum of the primal GW
relaxation ofW ′ is vTWv = δTSW

′δS . Consequently, the optimum of (11) is 0 iff the optimum
of (8) is attained by a ±1 vector, making W ′ GW-bipolar.

Next we give a primal-dual characterization of D(W) and P(W).

I Theorem 16. Let W be a non-negative symmetric matrix with 0-diagonal. Then (1) D(W)
is a singleton5, and (2) P(W) = {P ∈ P : P (W −D(W)) = 0}.

I Lemma 17. For every D0 ∈ D(W), P 0 ∈ P(W), P(W) = {P ∈ P : P (W − D0) = 0}
and D(W) = {D ∈ D : (W −D) � 0, P 0(W −D) = 0}.

Proof. Let D0 ∈ D(W), P ∈ P. By strong duality,

P ∈ P(W)⇔W ◦ P =
n∑
i=1

D0
i ⇔W ◦ P = D0 ◦ P

Since W −D0 and P are PSDs, P ◦ (W −D0) = 0⇔ P (W −D0) = 0. Thus, P(W) = {P ∈
P : P (W −D0) = 0}. Let P 0 ∈ P(W), and suppose D ∈ D satisfies W −D � 0. Then

D ∈ D(W)⇔W ◦ P 0 =
n∑
i=1

Di ⇔W ◦ P 0 = D ◦ P 0

Thus D(W) = {D ∈ D : (W −D) � 0, P 0(W −D) = 0}.

2

Proof. (of Theorem 16) (2) follows from (1) and Lemma 17, so it remains to prove (1). Fix
some P 0 ∈ P(W) and let D ∈ D(W). By considering the (j, j) entry of P 0(W −D) = 0, we
have Djj =

∑n
i=1 P

0
jiWij , which determines D uniquely.

I Corollary 18. GW is a spectral algorithm.

Proof. Let P be an optimum of the GW-relaxation and let v1, . . . , vn ∈ Sn−1 be vectors such
that Pij = 〈vi, vj〉. Let V be the matrix with columns v1, . . . , vn. Let v ∈ Sn−1 be the vector
sampled by the algorithm and let

∑n
j=1 αjvj be its orthogonal projection on span{v1, . . . , vn}.

The cut returned by the algorithm is the one induced by the vector u = vTV =
∑
j αjPij ,

and so by Theorem 16 it is in the kernel of the PSD matrix W −D(W).

I Corollary 19. The GW algorithm correctly solves Ω(n3)-stable instances.

Proof. In [6] it is shown that if u is a GLEV of a γ-stable instanceW with γ ≥ max(i,j)∈E |uiuj |
min(i,j)∈E |uiuj |

then u induces the optimal cut. Let u be defined as in the proof of Corollary 18. As shown,
u is a GLEV. By an easy probabilistic argument, w.h.p., ∀j, n−1.5 ≤ |uj | ≤ 1.

I Theorem 20. Let W be an MAXCUT instance with max cut S. Let v = δS and let D be
the diagonal matrix defined by Dii = −vi

∑
jWijvj . The following conditions are equivalent.

1. W is GW-bipolar.
2. δS is a GLEV of W .
3. W +D � 0
4. The optimum of the dual of the GW-relaxation is attained at −D.

5 Henceforth we usually do not distinguish between D(W) and the single matrix that it contains.

Y. Bilu, A. Daniely, N. Linial, and M. Saks 537

Proof. By Theorem 15, (1) is equivalent to (2). It not hard to see that (3) implies that δS is
in the kernel of W + D, and hence (2) . (4) clearly implies (3). Finally, suppose that (1)
holds. Let D′ be the solution of problem (9). Since W is GW-bipolar, δS · δTS is an optimal
primal solution. By Lemma 17, δS ∈ ker(W −D′) and D′ = −D . Hence (4) holds.

6 Some open problems

We have shown that O(
√
n)-stability suffices to solve MAXCUT optimally. On the other

hand, we can’t rule out the possibility that for any γ∗ > 1, every γ∗-stable instances can
be solved in polynomial time. In particular, we don’t know any hardness reductions.
What is the best possible dependency of γ on α in Theorem 2?
Regarding Corollary 10, is there a simple practical algorithm to handle 2-locally stable
metric instances?
More broadly, analyse other problems with respect to the stability approach. (See [5] for
recent work in this direction.)

References
1 M. Ackerman and S. Ben David. Which data sets are clusterable? a theoretical study of

clusterability. NIPS (2009).
2 S. Arora, D. Karger, and M. Karpinski Approximation schemes for dense instances of

NP-hard problems. STOC (1995), pages 284-294.
3 P. Awasthi, A. Blum, and O. Sheffet. Center-based clustering under perturbation stability.

Information Processing Letters, volume 112, pages 49-54, 2011.
4 M.F. Balcan, A. Blum, and S. Vempala. A discriminative framework for clustering via

similarity functions. STOC (2008), pages 671-680.
5 M. F. Balcan and Y. Liang. Clustering under Perturbation Resilience. ICALP (1) 2012:

63-74 (see also http://arxiv.org/pdf/1112.0826v3.pdf).
6 Y. Bilu and N. Linial Are Stable instances Easy? Innovations in Computer Science

(Beijing, China, 2010), pages 332-341.
7 R. Boppana. Eigenvalues and graph bisection: An average case analysis. FOCS (1987),

pages 280-285.
8 C. Delorme and S. Poljak. Laplacian eigenvalues and the maximum cut problem. Math.

Programming, 62(3, Ser. A):557-574, 1993.
9 A. Daniely, N. Linial, and M. Saks. Clustering is difficult only when it does not matter. To

appear (see http://www.cs.huji.ac.il/~nati/PAPERS/cluster_ez.pdf), 2012.
10 U. Feige and J. Kilian. Heuristics for semirandom graph problems. J. Comput. System Sci.,

63(4):639- 671, 2001. Special issue on FOCS (1998).
11 S. Friedland and R. Nabban. On Cheeger-type inequalities for weighted graphs. Journal

of Graph Theory, Volume 41, Issue 1, pages 1-17, 2002.
12 M. X. Geomans and D. P. Williamson. Improved Approximation Algorithms for Maximum

Cut and Satisfiability Problems Using Semidefinite Programming. Journal of the ACM,
Volume 42, pages 1115-1145, 1995.

13 F. McSherry. Spectral partitioning of random graphs. FOCS(2001), pages 529-537.
14 D. Spielman and S. H. Teng. Smoothed analysis of algorithms: why the simplex algorithm

usually takes polynomial time. J. ACM 51(3): 385-463 (2004)
15 W. Fernandez de la Vega and Claire Kenyon. A Randomized Approximation Scheme for

Metric MAX-CUT. FOCS (1998), pages 468-471.

STACS’13

http://arxiv.org/pdf/1112.0826v3.pdf
http://www.cs.huji.ac.il/~nati/PAPERS/cluster_ez.pdf

First Fit bin packing: A tight analysis
György Dósa1 and Jiří Sgall2

1 Department of Mathematics, University of Pannonia
Veszprém, Hungary
dosagy@almos.vein.hu

2 Computer Science Institute of Charles University
Faculty of Mathematics and Physics
Malostranské nám. 25, CZ-11800 Praha 1, Czech Republic
sgall@iuuk.mff.cuni.cz

Abstract
In the bin packing problem we are given an instance consisting of a sequence of items with sizes
between 0 and 1. The objective is to pack these items into the smallest possible number of bins
of unit size. FirstFit algorithm packs each item into the first bin where it fits, possibly opening
a new bin if the item cannot fit into any currently open bin. In early seventies it was shown that
the asymptotic approximation ratio of FirstFit bin packing is equal to 1.7.

We prove that also the absolute approximation ratio for FirstFit bin packing is exactly 1.7.
This means that if the optimum needs Opt bins, FirstFit always uses at most b1.7 · OPTc
bins.

Furthermore we show matching lower bounds for a majority of values of Opt, i.e., we give
instances on which FirstFit uses exactly b1.7 ·OPTc bins.

Such matching upper and lower bounds were previously known only for finitely many small
values of OPT. The previous published bound on the absolute approximation ratio of FirstFit
was 12/7 ≈ 1.7143. Recently a bound of 101/59 ≈ 1.7119 was claimed.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Approximation algorithms, online algorithms, bin packing, First Fit

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.538

1 Introduction

Bin packing is a classical combinatorial optimization problem in which we are given an
instance consisting of a sequence of items with rational sizes between 0 and 1, and the goal
is to pack these items into the smallest possible number of bins of unit size. FirstFit
algorithm packs each item into the first bin where it fits, possibly opening a new bin if the
item does not fit into any currently open bin.

Johnson’s thesis [8] on bin packing together with Graham’s work on scheduling [6, 7]
belong to the early influential works that started and formed the whole area of approximation
algorithms. The proof that the asymptotic approximation ratio of FirstFit bin packing
is 1.7 given by Ullman [13] and subsequent works by Garey et al. and Johnson et al. [5, 9]
were among these first results on approximation algorithms.

In this paper, we prove that also the absolute approximation ratio for FirstFit bin
packing is exactly 1.7. This means that if the optimum needs Opt bins, FirstFit always
uses at most b1.7 ·Optc bins. Thus we settle this open problem after almost 40 years.

Furthermore we show matching lower bounds for a majority of values of Opt, i.e., we
give instances on which FirstFit uses exactly b1.7 · Optc bins. More precisely, we give

© G. Dósa and J. Sgall;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 538–549

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.538
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

G. Dósa and J. Sgall 539

these lower bounds for all values of Opt, except when Opt mod 10 equals to 0 or 3; for
these two remaining cases we show a lower bound of b1.7 ·Optc − 1.

Such matching upper and lower bounds were previously known only for finitely many
small values of Opt. Thus our results not only give the exact worst case for most values of
Opt (8 out of 10 residue classes), but actually even give the first infinite sequence of values
of Opt for which the exact worst-case performance of FirstFit is known.

1.1 History and related work
The upper bound on FirstFit was first shown by Ullman in 1971 [13]; he proved that for
any instance, FF ≤ 1.7 ·Opt + 3, where FF and Opt denote the number of bins used by
FirstFit and the optimum, respectively. Still in seventies, the additive term was improved
first in [5] to 2 and then in [4] to FF ≤ d1.7 ·Opte; due to integrality of FF and Opt this
is equivalent to FF ≤ 1.7 ·Opt + 0.9. Recently the additive term of the asymptotic bound
was improved to FF ≤ 1.7 ·Opt + 0.7 in [15].

The absolute approximation ratio of FirstFit got some attention recently. A significant
step towards settling the question of the absolute approximation ratio was the upper bound
of 1.75 by Simchi-Levy [12]. This was improved independently by Xia and Tan [15] and
Boyar et al. [1] to 12/7 ≈ 1.7143 and recently Németh claimed an upper bound of 101/59 ≈
1.7119 [10].

For the lower bound, the early works give examples both for the asymptotic and absolute
ratios. The example for the asymptotic bound gives FF = 1.7·Opt whenever Opt = 10k+1,
thus it shows that the asymptotic upper bound of 1.7 is tight, see [13, 5, 9]. For the absolute
ratio, an example is given with FF = 17 and Opt = 10, which shows that the absolute
approximation ratio cannot be better than 1.7 [5, 9]. (Also an example with FF = 34 and
Opt = 20 is claimed, but it seems that this example has never been published.)

Johnson [8, 9] has also analyzed the First Fit Decreasing algorithm, which behaves like
FirstFit but receives the items on the input sorted from the largest one to the smallest,
and proved that the asymptotic approximation ratio is equal to 11/9. Johnson’s bound had
an additive constant of 4; this was improved several times and finally it was shown that
the additive constant is exactly 2/3 [3]. That is, 11

9 Opt + 2
3 bins are sufficient for First

Fit Decreasing, but this number of bins is actually also necessary for some instances for
infinitely many values of Opt. Thus for First Fit Decreasing, the asymptotic and absolute
approximation ratios are not equal. In fact, the results of [3] give the exact value of the
worst case for every value of Opt and show that the worst case absolute ratio is equal to 4/3,
attained for Opt = 6 when 8 bins may be needed for First Fit Decreasing. In light of this
result, it is rather surprising that for FirstFit the asymptotic and absolute approximation
ratios are equal and no additive term is needed.

We have mentioned only directly relevant previous work. Of course, there is much more
work on bin packing, in particular there exist approximation schemes for this problem, as
well as many other algorithms. We refer to the survey [2] or to the recent excellent book [14].

1.2 Main ideas of our results
Once the asymptotic bound with a small additive constant is shown, a natural approach to
improve absolute upper bounds is to study fixed small values of Opt and to exclude the
possibility of a higher absolute ratio for them. Indeed, solving a few such cases necessarily
improves upper bounds on the absolute ratio—but cannot give a tight result. Of course, this
is still far from trivial: Even for a fixed Opt, each such problem seems to lead to a new and

STACS’13

540 First Fit bin packing: A tight analysis

more extensive case analysis. Instead of joining this race of incremental results, we choose
a different approach to attack arbitrarily large values of Opt directly.

The first important step is a combination of amortization and weight function analysis.
To illustrate our technique, we now present a new short proof of the asymptotic ratio 1.7 for
FirstFit. It uses the same weight function as the traditional analysis of FirstFit. To use
amortization, we split the weight of each item into two parts. Identifying an item a with its
size, the weight of a is its scaled size 6

5a plus the bonus v(a) defined as

v(a) =

0 if a ≤ 1

6 ,
3
5 (a− 1

6) if a ∈
(1

6 ,
1
3
)
,

0.1 if a ∈
[1

3 ,
1
2
]
,

0.4 if a > 1
2 .

Note that there is a discontinuity only at a = 1/2. For a set of items B, v(B) =
∑
a∈B v(a)

denotes the total bonus and s(B) =
∑
a∈B a the total size.

It is easy to observe that the weight of any bin B, i.e., of any set with s(B) ≤ 1, is at
most 1.7: The scaled size of B is at most 1.2, so we only need to check that v(B) ≤ 0.5.
If B contains no item larger than 1/2, there are at most 5 items with non-zero v(a) and
v(a) ≤ 0.1 for each of them. Otherwise the large item has bonus 0.4; there are at most two
other items with non-zero bonus and it is easy to check that their total bonus is at most 0.1.

Consider an instance I. The previous bound implies that the weight of the whole instance
6
5s(I) + v(I) is at most 1.7 ·Opt.

The key part is to show that, on average, the weight of each FirstFit bin is at least 1.
Lemma 1.1 implies that for almost all bins with two or more items, the first part of its
weight plus the second part of the weight of the following such bin is at least 1.

I Lemma 1.1. Let B,C be two bins in the FirstFit packing such that s(B) ≥ 2/3, C con-
tains at least two items, and B is opened before C. Then 6

5s(B) + v(C) ≥ 1.

Proof. Since C is after B in the FirstFit packing, C contains two items c and c′ that do
not fit in B, i.e., c, c′ > 1 − s(B). If s(B) ≥ 5/6 then the lemma follows trivially without
considering v(C). In the remaining case, let x ∈ (0, 1

6] be such that s(C) = 5
6 − x. Thus

c, c′ > 1
6 +x and v(c), v(c′) > 3

5x. We get 6
5s(B)+v(c)+v(c′) > 6

5 (5
6 −x)+ 3

5x+ 3
5x = 1. J

Consider any FF-bin B with a single item. If s(B) > 1/2, then b(B) = 0.4 and 6
5s(B) +

v(B) > 1. Furthermore, at most one FF-bin has s(B) ≤ 1/2, by the definition of FirstFit.
Now consider FF-bins with two or more items. Similarly, at most one of them has size

less than 2/3: If we have one such bin, any item in any later bin is larger than 1/3 and thus
any later bin with two items is larger than 2/3. Now we use Lemma 1.1 for every FirstFit
bin B with two or more items and s(B) ≥ 2/3 (except for the last such bin); the bin C is
chosen as the next bin with the same properties.

Summing the bounds for bins with a single item plus the bounds from Lemma 1.1 for
bins with two or more items (note that each bin is used at most once as B and at most once
as C), we obtain that 6

5s(I) + v(I) ≥ FF− 3. The additive constant 3 comes from the fact
that we did not bound the weight of at most three FF-bins: (i) one bin with a single item
and s(B) ≤ 1/2, (ii) one bin with two or more items and s(B) < 2/3, and (iii) the last bin
with two or more items. Combining this with the previous bound on the total weight, we
obtain FF − 3 ≤ 6

5s(I) + v(I) ≤ 1.7 ·Opt and the asymptotic bound follows.
By itself, this simplified analysis can decrease the additive constant to 0.6 (after exam-

ining the remaining three bins in the FF packing) but cannot remove it completely. To

G. Dósa and J. Sgall 541

obtain the tight bound, we need to analyze different types of bins in the FF packing quite
carefully. In the typical worst case, FF packing starts by bins with five or more items of
size around 1/6 or smaller, followed by Opt/2 bins with two items slightly larger than 1/3,
and ends by Opt bins with a single item slightly larger than 1/2. We analyze these three
types of bins separately. To handle various possible situations we slightly modify the weight
function (see Definition 3.5) and the amortization lemma (see Lemma 3.8).

The most delicate part of the proof analyzes the FirstFit bins containing three or four
items—or rather shows that they cannot play an important role in the worst case; here
it is important that the amortization uses the bonus of only two items and thus the bins
with three or four items are “wasteful”. In the final steps of the proof, the parity of the
items of size around 1/3 comes into play: Typically they come in pairs, as described above,
but for odd values of Opt one of them is missing (or is in a FirstFit bin of 3 or more
items), and this allows us to remove the last 0.1 of the additive term. Our analysis sketched
above still leaves a few values of Opt that need to be analyzed separately. However, with
our framework of the general proof, even this is relatively simple compared to the previous
proofs in this area. The upper bound proof is presented in Section 3.

Similar amortization was used in [11] to analyze the Best Fit bin packing algorithm.
There the situation is more complicated, as the notion of the “following bin” is not clear,
in fact a careful choice is needed. Currently we are not able to fully extend our bounds to
Best Fit. The bottleneck seems to be the analysis of the bins with three and four items.

For the lower bounds we modify the instance from [5, 9]. The original construction
is quite intricate. Fortunately—and perhaps also surprisingly—it is sufficient to carefully
analyze the high-level structure of the instance, add to it a few new jobs, and carefully
position them in the input instance. See Section 4 for the details.

2 Notations

Let us fix an instance I with items a1, . . . an and denote the number of bins in the FirstFit
and optimal solutions by FF and Opt, respectively. We will often identify an item and its
size. For a set of items A, let s(A) =

∑
a∈A a, i.e., the total size of items in A and also for

a set of bins A, let s(A) =
∑
A∈A s(A). Furthermore, let S = s(I) be the total size of all

items of I. Obviously S ≤ Opt.
The bins in the FF packing are ordered by the time they are opened (i.e., the first item

is packed into them). We refer to this order when we say that one bin is before or after
another one, or when we speak about the first or last bin.

A bin is called a k-bin or k+-bin, if it contains exactly k items or at least k items,
respectively, for an integer k. An item is called k-item if FF packs it into a k-bin.

We classify the the FF bins into three groups. If a 2+-bin B satisfies s(B) ≥ 5/6, it is
a big bin; B denotes the set of all big bins and β their number. Any other 2+-bin C is a
common bin; C denotes the set of all common bins and γ their number. Finally, any 1-bin
D is a dedicated bin; D denotes the set of all dedicated bins and δ their number. The items
in big, common, and dedicated bins are called B-items, C-items, and D-items, respectively.
Finally, let C2-items be the items in common 2-bins. The common and dedicated bins are
typically denoted by C and D, and C-items and D-items by c and d (with indices and other
decorations). We use B for generic bins (typically big or common) and b for items that
may be in big or common bins. If there exists a D-item with size at most 1/2, denote it d0;
otherwise d0 is undefined. We shall see in Lemma 3.2(i) that there is at most one such item.

STACS’13

542 First Fit bin packing: A tight analysis

3 The upper bound

3.1 Preliminaries
We state a few basic properties of FF packings. Assumption 3.1 as well as all parts of
Lemma 3.2 are known and easy facts used explicitly or implicitly in previous works on
FirstFit including [12, 15, 1].
I Assumption 3.1. We assume, without loss of generality, that no two items ai and aj are
packed into the same bin both in FF and Opt solutions.
This is w.l.o.g., since any such items may be replaced by a single item of size ai + aj that
arrives at the time of arrival of the first of the original items. It is easy to see that both FF
and Opt solutions are unchanged (except for this replacement).

I Lemma 3.2. In the FF packing the following holds:
(i) The sum of sizes of any two FF-bins is greater than 1. The total size of any k ≥ 2

FF-bins is greater than k/2.
(ii) The D-items are packed into different optimal bins. Thus δ ≤ Opt.
(iii) There is at most one common bin C0 with s(C0) ≤ 2/3. Furthermore, if s(C0) =

2/3 − 2x for x ≥ 0 then for any other 2+-bin (i.e., any other common or big bin) B
we have s(B) > 2/3 + x; in addition, if B is opened after C0, then s(B) > 2/3 + 4x.

(iv) If k ≥ 3, then the total size of k arbitrary 2+-bins is greater than 2
3k.

(v) Suppose that k ≥ 1, we have k+1 FF-bins B1, B2, . . . , Bk, B, in this order, and such
that B is a k+-bin. Then the sum of the sizes of these k + 1 bins is greater than k.

Proof. (i): The first item in any FF-bin does not fit in any previous bin, thus the sum of
their sizes is greater than 1 already at the time when the second bin is opened. For k bins,
order the bins cyclically and sum the inequalities s(Bi) + s(Bj) > 1 for pairs of adjacent
bins.

(ii): Follows from (i), as the size of each D-item equals the size of its dedicated FF-bin.
(iii): If B is after C0, then it contains only items of size larger than 1−s(C0) = 1/3+2x;

since it contains two items, s(B) > 2/3 + 4x follows. If B is before C0, then notice that C0
contains an item of size at most s(C0)/2 = 1/3− x; This item was not packed into B, thus
it follows that s(B) > 2/3 + x.

(iv): Follows immediately from (iii).
(v): Let x be the minimum of s(Bi), i = 1, . . . , k. Then by the FF-rule, any item in bin

B is larger than 1−x. Since there are at least k items in bin B, we have s(B)+
∑k
i=1 s(Bi) >

k(1− x) + kx = k. J

Now we assume that the instance violates the absolute ratio 1.7 and derive some easy
consequences that exclude some degenerate cases. The first claim, Opt ≥ 7, follows from [1,
15]; we include its proof for completeness. Note that the values of 1.7 ·Opt are multiples of
0.1 and FF is an integer, thus FF > 1.7 ·Opt implies FF ≥ 1.7 ·Opt + 0.1. Typically we
derive a contradiction with the fact S ≤ Opt stated above.

I Lemma 3.3. If FF > 1.7 ·Opt then the following holds:
(i) Opt ≥ 7.
(ii) No common bin C has size s(C) ≤ 1/2.
(iii) The number of dedicated bins is bounded by δ ≥ 3.
(iv) The number of common bins is bounded by γ ≥ Opt/2+1 > 4. If FF ≥ 1.7·Opt+τ/10

for some integer τ ≥ 1 then γ > (Opt + τ)/2.

G. Dósa and J. Sgall 543

Proof. (i): If Opt ∈ {3, 4, 5, 6} and FF > 1.7 · Opt then we can verify that both FF ≥
2 · Opt − 1 and FF ≥ Opt + 3. Using Lemma 3.2(ii), the number of 2+-bins is β + γ =
FF− δ ≥ FF−Opt ≥ 3. Thus we can use Lemma 3.2(v) and obtain a contradiction:

S >
2
3(β + γ) + 1

2δ = 1
6(β + γ) + 1

2FF ≥ 1
6 · 3 + 1

2(2 ·Opt− 1) = Opt .

If Opt = 2 and FF > 1.7 ·Opt then FF ≥ 4, and by Lemma 3.2(i) we have S > 4 · 12 = Opt,
a contradiction. For Opt = 1, FirstFit is trivially optimal.

(ii): Suppose that s(C0) ≤ 1/2 for a contradiction. Lemma 3.2(iii) implies that any big
or common bin C before C0 has s(C) ≥ 3/4. Furthermore, any bin after C0 is a D-bin (as
it can contain only items larger than 1/2) and by Lemma 3.2(i), the total size of C0 and all
D-bins is at least (δ + 1)/2. Thus we can obtain a contradiction by using Opt ≥ 7 from (i)
and δ ≤ Opt from Lemma 3.2(ii) as follows:

S >
3
4(β + γ − 1) + 1

2(δ + 1) = 3
4FF− 1

4(δ + 1)

≥ 3
4

(
17
10Opt + 1

10

)
− 1

4(Opt + 1) = 41
40Opt− 7

40 ≥ Opt .

(iii): Suppose for a contradiction that δ ≤ 2. Then each FF-bin contains at least two
items, except for at most two dedicated FF-bins. Since Opt ≥ 7 from (i), we can apply
Lemma 3.2(iv) for the FF− 2 ≥ 3 of 2+-bins and Lemma 3.2(i) for the remaining two bins,
and thus we obtain a contradiction as follows:

S >
2
3(FF− 2) + 1 ≥ 2

3

(
17
10Opt + 1

10 − 2
)

+ 1 = 17
15Opt− 4

15 > Opt .

(iv): To obtain the first bound from the second one, use τ = 1 and the integrality
of Opt. Now suppose for a contradiction that γ ≤ (Opt + τ)/2. If γ ≥ 3, then we use
Lemma 3.2(v) for C, Lemma 3.2(i) for D, and the fact that the remaining bins are big, and
we obtain

S >
5
6(FF− γ − δ) + 2

3γ + 1
2δ = 5

6FF− 1
6γ −

1
3δ

≥ 5
6

(
17
10Opt + τ

10

)
− Opt + τ

12 − 1
3Opt = Opt ,

a contradiction. If γ ≤ 2 then

S >
5
6(FF− δ − 2) + 1

2(δ + 2) = 5
6FF− 1

3(δ + 2)

≥ 5
6

(
17
10Opt + τ

10

)
− 1

3Opt− 2
3 ≥ Opt + Opt + 1

12 − 2
3 ≥ Opt ,

using (i) in the last step, and we obtain a contradiction as well. J

3.2 The weight function and the main lemma
Now we introduce the main ingredients of our analysis: the modified weight function and
the main lemma that is used for the amortized analysis of the weight of FF bins. As in
the simple proof in the introduction and previous bin packing literature, our ultimate goal
is to prove that each Opt-bin has weight at most 1.7 and each FF-bin has an amortized
(average) weight at least 1.

It is convenient to describe the weight of each item a in two parts. The first part, w(a),
is called the regular (part of the) weight, and it is proportional to the size of a; it is the

STACS’13

544 First Fit bin packing: A tight analysis

same as in the simple proof. The other part, w(a) is called the bonus and it is modified so
that it depends both on the size of a and the type of FF-bin where a is packed. B-items
have no bonus. C-items have bonus equal to 0 for items of size at most 1/6, equal to 0.1
for items of size at least 1/3, and linearly interpolated between these values. D-items have
bonus 0.4 if they have size at least 1/2 and slightly smaller if they have smaller size (this
concerns only the single item d0).

Compared to the simple proof and the previous literature, we make several modifications
to the weight function. The first two are mostly a matter of convenience and simplification
of the case analysis in the proof. First, we move the bonus from the items larger than 1/2
to the D-items. Mostly these are actually the same items, except for d0. As we shall see
later, in the tight cases, each Opt-bin contains a D-item and this change allows a more
uniform analysis. Second, we decrease some of the weights that we do not use in the proof,
namely we do not put any bonus on B-items and decrease the bonus on d0 (this is necessary
to guarantee that its Opt-bin has weight at most 1.7; however, in tight cases d0 is very
close to 1/2). The third change is essential in our last step of the proof where we remove
the remaining additive constant of 0.1. We define a set of at most two exceptional C-items
whose bonus is decreased to 0. Since they are in 3+-bins in the FF packing, this does not
change the analysis of the FF packing significantly. On the other hand, the exceptional
items are chosen so that, if they exist, then one Opt-bin is guaranteed to have weight at
most 1.6, which is exactly the necessary improvement.

Formally we define the exceptional items as follows:

I Definition 3.4. If Opt ≡ 7 (mod 10) and there exists an Opt-bin E that contains no
C2-item, then fix any such bin E for the rest of the proof. Otherwise E is undefined. If E
contains at most two C-items with size larger than 1/6, denote the set of these items E′.
Otherwise (if there are three or more C-items in E or no E exists) put E′ = ∅.

Let us call E the exceptional bin and the items in E′ the exceptional items.

Note that there is at most one exceptional item in each FF-bin by Assumption 3.1. Later
we shall show that in a potential counterexample with FF = 1.7 ·Opt+0.1 the bin E exists.

I Definition 3.5. The weight function is defined as follows:
For a B-item b we define w(b) = 0.

For a C-item c we define w(c) =

0 if c ≤ 1

6 or c ∈ E′ ,
3
5 (c− 1

6) if c ∈
[

1
6 , 1

3

]
and c 6∈ E′ ,

0.1 if c ≥ 1
3 and c 6∈ E′ .

For a D-item d we define w(d) =

{
0.4 if d ≥ 1

2 ,

0.4− 3
5 (1

2 − d) if d < 1
2 .

For every item a we define w(a) = 6
5 a and w(a) = w(a) + w(a).

For a set of items A and a set of bins A, let w(A) and w(A) denote the total weight of all
items in A or A; similarly for w and w. Furthermore, let W = w(I) be the total weight of
all items of the instance I.

In the previous definition, the function w̄ is continuous on the case boundaries. Further-
more, if we have a set A of k C-items not from E with size in [1

6 ,
1
3], then the definition

implies that the bonus of A is exactly w(A) = 3
5
(
s(A)− k

6
)
. More generally, if A contains

at least k items, each of size at least 1/6, and no D-item, then we get an upper bound
w(A) ≤ 3

5
(
s(A)− k

6
)
.

G. Dósa and J. Sgall 545

First we analyze the weight of the Opt-bins.

I Lemma 3.6. For every optimal bin A its weight w(A) can be bounded as follows:
(i) w(A) ≤ 1.7.
(ii) If E is the exceptional Opt-bin then w(E) ≤ 1.6.
(iii) If A contains no D-item, then w(A) ≤ 1.5.

Proof. In all cases w(A) ≤ 1.2, thus it remains to bound w(A). We distinguish three cases:
Case 1: A contains no D-item. Either it contains at least 4 items with non-zero bonus,

in which case their total bonus is at most w(A) ≤ 3
5 (s(A) − 4

6) ≤ 3
5 ·

2
6 = 0.2. Or else it

contains at most 3 items with non-zero bonus and w(A) ≤ 0.3. In both subcases (iii) follows
and thus (ii) also holds if E = A.

Case 2: A contains a D-item larger than 1/2. The bonus of the D-item is 0.4. If E = A

then A has no other item with non-zero bonus and both (i) and (ii) hold. Otherwise, in
addition to the D-item, A contains at most 2 items larger than 1/6 and no other items have
non-zero bonus. If there is at most one such item, its bonus is at most 0.1 and (i) follows.
If there are two such items, let their total size be y; note that y < 1/2. The bonus of A is
at most w(A) ≤ 0.4 + 3

5 (y − 2
6) < 0.4 + 3

5 ·
1
6 = 0.5.

Case 3: A contains d0. Let the size of d0 be 1
2 −x for x ≥ 0. We have w(d0) = 0.4− 3

5x.
We distinguish two subcases.

Case 3.1: A contains at most two items other than d0 and larger than 1/6. Then their
total size is at most 1

2 + x. If E = A then they have no bonus and both (i) and (ii) hold.
Otherwise their bonus is at most 0.1 + 3

5x and (i) holds.
Case 3.2: If A contains at least three items other than d0 and larger than 1/6. Then

their total bonus is at most 3
5x, thus w(A) ≤ 0.4 and both (i) and (ii) hold. (This subcase

may also happen if E = A, but there is no need to distinguish this in the proof.) J

Next we analyze the weight of FF-bins. The case of big and dedicated bins is easy:

I Lemma 3.7. (i) The total weight of the big bins is w(B) ≥ β.
(ii) The total weight of the dedicated bins is w(D) > δ.

Proof. (i): For every big bin B, w(B) = w(B) = 6
5s(B) ≥ 6

5 ·
5
6 = 1.

(ii): If d0 is undefined then for every dedicated bin D, w(D) = 6
5s(D)+0.4 > 6

5 ·
1
2 +0.4 =

1 and the claim follows. If d0 exists and has size 1
2 − x for x ≥ 0, then every other D-item

has size strictly larger than 1
2 + x. We also have δ ≥ 3 by Lemma 3.3(iii). Thus

w(D) > (δ−1)
(

6
5

(
1
2 + x

)
+ 0.4

)
+6

5

(
1
2 − x

)
+0.4−3

5x = δ+
(

(δ − 1)6
5 −

6
5 −

3
5

)
x ≥ δ.

J

Now we focus on the common FF-bins. The next lemma gives the key insight for the
amortized analysis. It shows that for most common bins, the regular weight of the bin plus
the bonus of the next common bin is at least 1. A similar method was used for the analysis
of BestFit in [11]. For the rest of the upper bound section, number the common bins as
C1, . . . , Cγ , in the order of their opening. The bins C2, . . . , Cγ−1 are called inner common
bins. Note that there are some inner common bins, as γ ≥ 5 by Lemma 3.3(iv).

I Lemma 3.8. Let i = 2, . . . , γ be such that s(Ci−1) ≥ 2/3. Then there exist two items
c, c′ ∈ Ci \ E′ and for any such items

w(Ci−1) + w(c) + w(c′) ≥ 1 .

Thus we have w(Ci−1) + w(Ci) ≥ 1.

STACS’13

546 First Fit bin packing: A tight analysis

Proof. If Ci is a 2-bin, then it contains no exceptional item. If Ci is a 3+-bin, then it
contains at most one exceptional item by Assumption 3.1. In both cases c and c′ exist.
Since Ci−1 is common, the size of this bin is smaller than 5/6 and it is at least 2/3 by the
assumption of the lemma. Let x ∈ (0, 1

6] be such that s(Ci−1) = 5
6 − x. Thus c, c′ > 1

6 + x

and w(c), w(c′) > 3
5x. We get w(Ci−1) + w(c) + w(c′) > 6

5 (5
6 − x) + 3

5x+ 3
5x = 1. J

3.3 The last common bin is large
The outline of the rest of the proof is this: We prove that the common FF-bins have
total weight at least γ − 0.2. This part of analysis is considerably harder in case when
the last common bin is smaller than 2/3, and we omit that part in this conference version.
Then, since the total weight of the dedicated bins is strictly greater than δ, this implies
W > FF− 0.2. Together with W ≤ 1.7 ·Opt now FF ≤ 1.7 ·Opt + 0.1 follows. However,
FF = 1.7·Opt+0.1 can hold only if Opt ≡ 7 (mod 10). Then we show that the exceptional
bin is defined, thus W ≤ 1.7 ·Opt− 0.1 and we save the last 0.1.

I Lemma 3.9. If s(Cγ) ≥ 2/3, then the total weight of the common bins is w(C) ≥ γ − 0.2.

Proof. First consider the case when every common bin has size at least 2/3. We apply
Lemma 3.8 for every i = 2, . . . , γ. The regular weight of the last bin is at least w(Cγ) ≥
6
5 ·

2
3 = 0.8. Summing all of these inequalities we obtain

w(C) =
γ∑
i=1

w(Ci) ≥ w(Cγ) +
γ∑
i=2

(w(Ci−1) + w(Ci)) ≥ 0.8 + (γ − 1) = γ − 0.2.

Now suppose that s(Ck) = 2/3 − x for x > 0 and k < γ. Using Lemma 3.2(iii), each
Cj , j > k, contains (exactly) two items larger than 1/3 + x. Thus w(Cj) = 0.2 and also
s(Cj) > 2/3 + 2x which implies

∑γ
i=k s(Ci) > (γ + 1 − k) 2

3 . Combining these we have
w(Ck) +

∑γ
j=k+1 w(Cj) ≥ (γ + 1− k)− 0.2. Adding the last inequality and the inequalities

w(Ci−1) + w(Ci) ≥ 1 from Lemma 3.8 for i = 2, . . . , k, the lemma follows. J

I Lemma 3.10. Suppose w(C) ≥ γ − 0.2. Then
(i) FF ≤ 1.7 ·Opt + 0.1, and
(ii) if the exceptional bin E is defined, then FF ≤ 1.7 ·Opt.

Proof. By Lemma 3.7 and the assumption we have W > β + (γ − 0.2) + δ = FF − 0.2.
By Lemma 3.6(i) we have W ≤ 1.7 · Opt. Thus FF − 0.2 < W ≤ 1.7 · Opt. Since FF
and Opt are integers, (i) follows. If E is defined then by Lemma 3.6(i) and (ii) we have
W ≤ 1.7 ·Opt− 0.1. Thus FF− 0.2 < W ≤ 1.7 ·Opt− 0.1 and (ii) follows. J

To decrease the bound by the last one tenth, we only need to show that the exceptional
Opt-bin is defined. First yet another auxiliary lemma:

I Lemma 3.11. Suppose that every Opt-bin contains a D-item. Then no Opt bin contains
two 2-items c1 and c2.

Proof. For contradiction, assume we have such c1 and c2 and number them so that the
FF-bin of c1 is before the FF-bin of c2. (Note that by Assumption 3.1, c1 and c2 are not in
the same FF-bin.) Let c3 be the other item in the FF-bin of c1. Since c2 was not packed
into this bin, which contains only c1 and c3, we have c1 + c2 + c3 > 1. This implies that c3
cannot be in the Opt-bin of c1 and c2. Every Opt-bin contains a D-item by the assumption;
let d1 be the D-item in the Opt-bin of c1 and c2 and d3 the D-item in the Opt-bin of c3.
By Lemma 3.2(i), d1 + d3 > 1 and thus c1 + c2 + c3 + d1 + d3 > 2. As all these items are in
two Opt-bins, this is a contradiction. J

G. Dósa and J. Sgall 547

I Proposition 3.12. Suppose that s(C) ≥ γ − 0.2. Then FF ≤ 1.7 ·Opt.

Proof. By Lemma 3.10(i) we have FF ≤ 1.7 · Opt + 0.1. If Opt 6≡ 7 (mod 10) then by
checking all the other residue classes we can verify that 1.7 ·Opt + 0.1 is non-integral. Thus
FF ≤ 1.7 ·Opt + 0.1 implies FF ≤ 1.7 ·Opt and we are done.

It remains to handle the case when Opt ≡ 7 (mod 10) and FF = 1.7 ·Opt + 0.1.
First we claim that every Opt-bin contains a D-item and thus δ = Opt. If some

Opt-bin does not contain a D-item, its weight is at most 1.5 by Lemma 3.6(iii). Thus
W ≤ 1.7 ·Opt− 0.2. Since FF > W − 0.2, we obtain FF ≤ 1.7 ·Opt, a contradiction.

Lemma 3.11 now implies that no Opt-bin contains two C2-items. Note that Opt is odd,
as Opt ≡ 7 (mod 10). On the other hand, the number of C2-items is even (in any FF-bin
there are either zero or two C2-items). Thus some Opt-bin contains no C2-item. This bin
satisfies all the conditions of Definition 3.4 of the exceptional bin. Thus E is defined and by
Lemma 3.10(ii) the proposition follows. J

Together with the omitted case of s(C) < γ − 0.2, we obtain our main result.

I Theorem 3.13. For any instance of bin packing, FF ≤ 1.7 ·Opt.

4 Lower bounds

To prove the lower bounds, we use the classical lower bound construction from [5, 9]. We
have an input instance L with three regions of items. In the first region there are items of
size close to 1/6, in the second region come items close to 1/3, and in the third region there
are items with the equal size 1/2 + δ, for a small δ > 0. We will not modify the items in
this list, only add some new items before or after L, and also in between the three regions of
L. Thus we need to review the properties of L with the focus on the resulting FF packing
in each region; the details within each region are somewhat delicate but fortunately we can
use that part as a black box. We formulate the properties of L in the next lemma, before
giving our lower bound in Theorem 4.2.

I Lemma 4.1 ([5, 9]). For every k and a sufficiently small δ > 0 there exists an instance
L of 30k items such that Opt = 10k + 1 and FF = 17k for L. Furthermore the following
holds for ε = 46 · 18k−1δ = O(δ):
(i) The first 10k items of L have size at least 1/6 − ε and are packed into the first 2k

FF-bins; no further item is packed later into these bins. Each of these 2k FF-bins is
a big 5-bin, and has size at least 5/6 + δ;

(ii) The next 10k items of L have size at least 1/3 − ε and are packed into the next 5k
FF-bins; no further item is packed later into these bins. Each of these FF-bins is a
common 2-bin and has size at least 2/3 + 2δ.

(iii) The last 10k items of L have size exactly 1/2+δ are packed into the next 10k FF-bins.
Each of these FF-bins is a dedicated bin and has size exactly 1/2 + δ.

(iv) Moreover, all items of L, except three items, fit into 10k−1 bins, each of size 1−O(δ).
The three remaining items have sizes 1/3 + ε, 1/6− 3δ, and 1/2 + δ.

I Theorem 4.2. For all integers k ≥ 1 and 0 ≤ i ≤ 9, there exists an instance I such that
Opt = 10k + i and the lower bound in the top row of the next table holds. The bottom row
of the table gives the upper bounds from Theorem 3.13 for a comparison.

i = 0 1 2 3 4 5 6 7 8 9
FF ≥ 17k + −1 1 3 4 6 8 10 11 13 15

FF ≤ b17k + 1.7ic = 17k + 0 1 3 5 6 8 10 11 13 15

STACS’13

548 First Fit bin packing: A tight analysis

Furthermore, for i = 1, . . . , 9 there exist instances with Opt = i and FF = b1.7 · ic.

Proof. We show how the instance L from Lemma 4.1 can be modified to prove the theorem.
We only show in each case that Opt ≤ 10k + i. However, equality follows as the lower
bound on FF is always larger than the upper bound on FF for Opt − 1 (see the table in
the theorem).

For i = 0, we create I by deleting one item of size 1/2 + δ from L. Then FF = 17k − 1.
Optimum uses 10k−1 bins as in Lemma 4.1(iv). Only two items of sizes 1/3+ε and 1/6−3δ
remain and they are packed into the last bin, thus obtaining Opt ≤ 10k. For k = 1, 2, better
examples with FF = 17k and Opt = 10k exist [5, 9], no such examples are known for k > 2.

For i ≥ 1 and k ≥ 1, we modify L by inserting new items. First we describe an optimal
packing with 10k+i optimal bins together with the new items. The first 10k−1 bins contain
the same items as in Lemma 4.1(iv). The (10k)th bin contains two of the remaining items
from L, namely 1/2 + δ and 1/6 − 3δ and a new item c0 = 1/3 + 2δ. The (10k + 1)st bin
contains the last remaining item from L, namely 1/3 + ε, and two new items d0 = 1/2 + δ/4
and b0 = 1/6−δ/4−ε. If i > 1, then the (10k+j)th bin of the optimal packing, j = 2, . . . , i,
contains three new items dj = 1/2 + δ/4, cj = 1/3 + δ/4 and bj = 1/6− δ/2.

The items bj , cj and dj are called B-items, C-items and D-items, respectively; they are
typically packed into big, common and dedicated bins of the optimum. We have exactly i
new items of each type.

Now we describe the new instance I, together with the FF packing. The instance I
consists of L and some of the new items. In some cases we do not need all new items. Then
we remove the remaining new items; this can obviously only decrease the optimum, thus
Opt ≤ 10k + i.

All the new D-items are put at the end of L. Lemma 4.1 implies that they do not fit into
any previous FF bin and thus FF puts each of them into a new dedicated bin. Furthermore,
2bi/2c smallest new C-items are inserted in between the C-items and D-items in L. Since
there is an even number of these new C-items and they do not fit into any of the previous
bins, in FF packing they are put into bi/2c C-bins. Note that no D-item, old or new, does
not fit into these new bins.

At this point we have created b3i/2c new bins in the FF packing. Comparing this value
with the table in the theorem, we have sufficiently many FF-bins for i = 1, 2, 3, 4, while for
i = 5, 6, 7, 8 we need one additional FF-bin and for i = 9 two additional FF-bins. To create
these bins, we have available all i new B-items and for odd i also one C-item, namely c0,
which is the largest one. We distinguish a few cases.

Case i = 1, 2, 3, 4: We discard all the remaining new items.
Case i = 5: We put one new C-item and four new B-items in front of L. They fit into a

bin, thus FF packs them into the first bin and no other item fits in it. More precisely, the
size of this bin is 1 − O(δ), thus for a sufficiently small δ, no other item fits into it, as all
the items have size at least 1/6−O(δ). The remaining B-item is discarded.

Case i = 6, 7, 8: We put 6 new B-items at the beginning of the list. They are packed in
the first FF-bin and no other item will fit into it. The remaining items are discarded for
i = 7, 8.

Case i = 9: We put 6 new B-items including b0 at the beginning of the list. Again, they
are packed in the first FF-bin and no other item will fit into it. We also insert c0 = 1/3+2δ,
and the three remaining new B-items of size 1/6 − δ/2 between the B-items and C-items
of L. None of these items fits in the previous bins, as those have size at least 5/6 + δ

by Lemma 4.1(i). Thus they are packed into one FF-bin of size about 5/6. Since all the
following items have size at least 1/3 − O(δ), for a sufficiently small δ no further item fits

G. Dósa and J. Sgall 549

into this bin. Thus this will be the second additional bin.
This completes the proof for Opt ≥ 10. For Opt ≤ 9, let 1 ≤ i ≤ 9. Then I contains

i items of each of the three sizes 1/6− 2δ, 1/3 + δ, and 1/2 + δ. The items are ordered by
non-decreasing size. It is easy to verify that for all i = 1, . . . , 9, we have FF = b1.7 · ic and
also Opt = i, as we can pack into each bin three items of different sizes. J

Acknowledgements We are grateful to anonymous referees for numerous helpful com-
ments, in particular for correcting some historical references. G. Dósa was financially sup-
ported by the Hungarian State and the European Union under the TAMOP-4.2.2.A-11/1/
KONV-2012-0072. J. Sgall was partially supported by the Center of Excellence – Inst. for
Theor. Comp. Sci., Prague (project P202/12/G061 of GA ČR) and grant IAA100190902 of
GA AV ČR; he is also grateful to Miloš Vyleťal and YMCA Setkání for the environment at
Dům Setkání.

References
1 J. Boyar, G. Dósa, and L. Epstein. On the absolute approximation ratio for First Fit and

related results. Discrete Appl. Math., 160:1914–1923, 2012.
2 E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing:

A survey. In D. Hochbaum, editor, Approximation algorithms. PWS Publishing Company,
1997.

3 G. Dósa. The tight bound of First Fit Decreasing bin-packing algorithm is FFD(I) ≤
11/9OPT (I) + 6/9. In Proc. 1st International Symp. on Combinatorics, Algorithms,
Probabilistic and Experimental Methodologies (ESCAPE), volume 4614 of Lecture Notes
in Comput. Sci., pages 1–11. Springer, 2007.

4 M. R. Garey, R. L. Graham, D. S. Johnson, and A. C.-C. Yao. Resource constrained
scheduling as generalized bin packing. J. Combin. Theory Ser. A, 21:257–298, 1976.

5 M. R. Garey, R. L. Graham, and J. D. Ullman. Worst-case analysis of memory allocation
algorithms. In Proc. 4th Symp. Theory of Computing (STOC), pages 143–150. ACM, 1973.

6 R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical J.,
45:1563–1581, 1966.

7 R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math., 17:263–
269, 1969.

8 D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis, MIT, Cambridge, MA,
1973.

9 D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case
performance bounds for simple one-dimensional packing algorithms. SIAM J. Comput.,
3:256–278, 1974.

10 Z. Németh. A first fit algoritmus abszolút hibájáról (in Hungarian). Eötvös Loránd Univ.,
Budapest, Hungary, 2011.

11 J. Sgall. A new analysis of Best Fit bin packing. In Proc. of 6th Int. Conference FUN with
Algorithms, volume 7288 of Lecture Notes in Comput. Sci., pages 315–321. Springer, 2012.

12 D. Simchi-Levi. New worst case results for the bin-packing problem. Naval Res. Logist.,
41:579–585, 1994.

13 J. D. Ullman. The performance of a memory allocation algorithm. Technical Report 100,
Princeton Univ., Princeton, NJ, 1971.

14 D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms. Cambridge
University Press, 2011.

15 B. Xia and Z. Tan. Tighter bounds of the First Fit algorithm for the bin-packing problem.
Discrete Appl. Math., 158:1668–1675, 2010.

STACS’13

Constrained Binary Identification Problem
Amin Karbasi1 and Morteza Zadimoghaddam2

1 I&C, EPFL, Switzerland, amin.karbasi@epfl.ch
2 CSAIL, MIT, Cambridge-MA-USA, morteza@mit.edu

Abstract
We consider the problem of building a binary decision tree, to locate an object within a set by
way of the least number of membership queries. This problem is equivalent to the “20 questions
game” of information theory and is closely related to lossless source compression. If any query
is admissible, Huffman coding is optimal with close to H[P] questions on average, the entropy of
the prior distribution P over objects. However, in many realistic scenarios, there are constraints
on which queries can be asked, and solving the problem optimally is NP-hard.

We provide novel polynomial time approximation algorithms where constraints are defined
in terms of “graph", general “cost", and “submodular" functions. In particular, we show that
under graph constraints, there exists a constant approximation algorithm for locating the target
in the set. We then extend our approach for scenarios where the constraints are defined in terms
of general cost functions that depend only on the size of the query and provide an approxima-
tion algorithm that can find the target within O(log(log n)) gap from the cost of the optimum
algorithm. Submodular functions come as a natural generalization of cost functions with decreas-
ing marginals. Under submodular set constraints, we devise an approximation algorithm that
can find the target within O(log n) gap from the cost of the optimum algorithm. The proposed
algorithms are greedy in a sense that at each step they select a query that most evenly splits
the set without violating the underlying constraints. These results can be applied to network
tomography, active learning and interactive content search.

1998 ACM Subject Classification G.2.2 Graph Algorithms and Network Problems, I.1.2 Ana-
lysis of Approximation Algorithms, H.3.3. Information Search and Retrieval.

Keywords and phrases Network Tomography, Binary Identification Problem, Approximation
Algorithms, Graph Algorithms, Tree Search Strategies, Entropy.

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.550

1 Introduction

Constructing a binary search tree is one of the fundamental problems in discrete mathematics.
Formally, we are given a set N = {1, . . . , n} of objects, identified with integers from 1 to
n, as well as a probability distribution P = (p1, . . . , pn) over N , pi ≥ 0, i = 1, . . . , n, and∑n
i=1 pi = 1. The goal is to locate an object within a set N by way of the least number

of membership queries. Each binary split is a partition of N into a subset Q ⊂ N and its
complement N \Q. Given that a membership oracle provides answers without noise, what
is the best we can do in a computationally feasible manner? This problem is equivalent to
the “twenty questions game” of information theory [7], where a player has to determine the
identity of an object from a set (say, a famous person) by asking a minimum number of
yes/no questions. If any split is an admissible query, Huffman coding is optimal with close
to H[P] questions on average [7], the entropy of the distribution P from which the target
object is drawn at random.

© Amin Karbasi and Morteza Zadimoghaddam;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 550–561

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.550
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Karbasi and M. Zadimoghaddam 551

However, in realistic scenarios, there are constraints on which queries can be asked, and
solving the problem optimally is NP-hard [15]. Instances of these constraints arise frequently
in practice such as network tomography and interactive content search.

Network Tomography

A frequent situation that arises in sensor network tomography can be briefly explained
as follows [4]. Suppose we are to remotely maintain a sensor network, whose nodes are
severely restricted. First, being connected in a graph G, they can communicate with their
neighbours only. Second, although they can receive broadcast messages from a base station,
communication from any node back to the base must be kept to an absolute minimum due
to power constraints. As nodes fail regularly, it is necessary to periodically search for faults.
For simplicity, we assume that at most one node is faulty. To minimize the communication
back to base, we should use the least number of broadcasts of the form “To nodes in Q: Is
one of you faulty?”. If Q is a connected subgraph of G, the question can be answered by a
simple local message passing protocol, where a designated root in Q reports positively to
the base only if it receives messages from all neighbours in Q, etc. Given that this does not
happen, the root can poll the branch in question, whereby the faulty node can be identified
recursively and passed back to the root, which reports it back to base. Finally, if the base
does not get any reply after a reasonable time, it concludes that the chosen root must be
faulty.

We address the constraints of this type under the general and realistic notion of graph
constraints where we assume that the set N is furnished with an undirected graph structure G,
and Q ⊂ N is an admissible query if and only if the subgraph G|Q induced by Q (containing
all edges of G between vertices in Q) is connected. We then provide an efficient constant
factor approximation to the “graph-constrained” twenty questions problem, which finds the
target in ≤ 4H[P] + 2 queries on average.

Interactive Content Search

In content search applications with humans involved, it is of obvious value to keep the number
of queries as small as possible, as human interventions are disproportionally costly. Examples
include visual recognition [2] and pattern classification [11], where questions are restricted
to simple visual attributes. Whenever people are in the loop, queries are limited by their
ability to meaningfully disambiguate in the presence of many attributes. As these examples
show, it is usually not practical to allow for any query Q ⊂ N . In these scenarios, it is more
natural to define the constraints in terms of a cost rather than through a graph.

More formally, we are given a non-decreasing cost function C : {1, 2, · · · , n} → R where
the cost of making an oracle query on set S is C(|S|). Notice that the cost only depends
on the size of the set and not the elements it contains. When a human plays the role of
the membership oracle, it is more difficult to answer a query with a bigger set than one
with a smaller set [2]. This is why in many interactive search strategies such a cost function
arises naturally. In this case, we provide an approximation algorithm that can find the target
within O(log(log n)) gap from the cost of the optimum algorithm.

To generalize our analysis beyond non-decreasing cost functions, we consider the case
where constraints are defined in terms of a submodular function Cost : 2N → R. In this
setting, for all subsets S1 ⊆ S2 ⊆ N and an item i ∈ N we have Cost(S1∪{i})−Cost(S1) ≥
Cost(S2 ∪ {i}) − Cost(S2). In words, adding a new item i to a larger set should produce
an incremental cost no more than adding i to a smaller set. Under submudular constraints,

STACS’13

552 Constrained Binary Identification Problem

we provide an approximation algorithm that can find the target within O(log(n)) gap from
the cost of the optimum algorithm. Further applications of submodular functions in active
learning can be found in [12].

2 Related Work

The problem studied here can be seen as a special case of the binary identification problem
(BIP) [10]. Suppose that we are given a set of objects N and a set of tests {t1,tk} where
one of the objects is marked. Each test determines whether the marked object is in the test set
or not. The goal is to define a strategy that minimizes the number of tests to find the marked
object. It is known that both the average case minimization and worse case minimization
are NP-complete [15]. Moreover, it is even NP-Hard to have an o(log n)-approximation
algorithm for the average case [5]. In both cases, there exist heuristic algorithms that admit
O(log n)-approximation [20, 6]. The closest work to ours is [14] where the authors study the
same problem in a setting that a cost is associated with each test and the goal is to minimize
the average total cost. They propose an O(log n)-approximation algorithm. Unfortunately,
there is no straight way to follow their approach and obtain similar performance guarantees
for the submodular cost functions (for the other two problems that we consider in this paper,
our approximation factors are better). Note that in this case, there are 2n number of tests
and a naive reduction admits an exponential running time. To overcome this barrier we
propose a novel algorithm with a similar approximation guarantee.

Adding some structure to the set of tests leads to interesting special cases. For instance,
if we let the set of tests be the power set of objects, then the optimal average case strategy
is attained by Huffman coding [7]. Another basic variant of BIP is finding a marked element
in a totally ordered set, a problem that is very well studied in the literature [19]. This can
be generalized to searching in structures where the input has a partial order between its
elements instead of a total order [1, 3]. It is known that searching in posets for the worst case
minimization is NP-hard [3]. However, in [20], the authors showed a greedy algorithm with
O(log n) approximation which was further improved to a constant factor approximation by
[21]. It has been recently shown in [17] that the average case minimization is also NP-hard
for the class of trees with diameter at most 4.

Constrained BIP is strongly related to active learning [8, 22, 13, 9, 18] in which a
hypothesis space H is defined as a set of binary valued functions defined over a finite set Q,
called the query space. Each hypothesis h ∈ H generates a label from {−1,+1} for every
query q ∈ Q. A target hypothesis h∗ is sampled from H according to some prior P ; asking a
query q amounts to revealing the value of h∗(q), thereby restricting the possible candidate
hypotheses. The goal is to determine h∗ by asking as few queries as possible. In our setting,
the hypothesis space H is the set N , and the query space Q is the set of all admissible
subsets. The target hypothesis sampled from P is the target t∗. A well-known algorithm
for determining the true hypothesis in the active-learning setting is the generalized binary
search (GBS) or splitting algorithm [8, 22, 9]. Define the version space V ⊆ H to be the set
of possible hypotheses that are consistent with the query answers observed so far. At each
step, GBS selects the query q ∈ Q that minimizes |

∑
h∈V P (h)h(q)|. Recently, Golovin and

Krause [12] showed that GBS makes at most OPT ·
(
Hmax(µ) + 1

)
queries in expectation to

identify hypothesis h∗ ∈ N , where OPT is the minimum expected number of queries made
by any adaptive policy and Hmax(P) = maxx∈supp(P) log 1

P (x) . In our setting, the version
space V comprises all possible objects in z ∈ N that are consistent with answers given so far.
Under graph, cost, and submodular constraints, we replace Hmax (which in practice can be

A. Karbasi and M. Zadimoghaddam 553

Algorithm 1 The role of size
Input: Connected constraint graph G = (N , E), root node vR ∈ N .

Grow a connected subtree T ⊂ G, starting from vR, by a breadth-first search (BFS), until
T spans dn/2e vertices.
Query the vertex set of T (size dn/2e).
if I{t∗∈T} = 1 then
Recurse on T , root vR.

else
Collape all nodes in T into a single node vT , which is connected to all v ∈ N adjacent
to nodes in T in the original G. Create G′ by Connecting all neighbours of vT to one
another and removing vT . Recurse on G′.

end if

quite large) by a constant, O(log(log(n))), and O(log(n)), respectively.
The use of interactive methods for searching in a dataset has a long history in literature.

Relevance feedback [24] is a method for interactive image retrieval, in which users mark the
relevance of image search results, which then used to create a refined search query. We use
the membership oracle to model the role of a user for identifying a target in a database.
In practice, the cost of a query depends on the characteristics of the query, e.g., its size
[11, 2]. However, due to the lack of analytical results, in many such applications only heuristic
methods were proposed. To close this gap, we introduce general constraints, in terms of graph,
cost and submodular functions, on the set of queries and establish analytical guarantees
associated with them.

3 Graph Constraints

Let us assume that the set N is endowed with undirected graph structure, G = (N , E), where
E contains the edges. For any subset A ⊂ N , G−A denotes the graph obtained from G by
removing all vertices A and all edges adjacent to A, while G|A is the graph induced by A
(vertex set A, edge set those e ∈ E between vertices in A).

Given G, a query Q ⊂ N is admissible if and only if the graph G|Q is connected. Our
detection algorithm can submit any admissible query Q to a membership oracle, which
initially sampled the target t∗ at random from P : it will answer by one bit of information,
I{t∗∈Q} = 1 if t∗ ∈ Q, 0 otherwise. Our goal is to detect t∗ with as few queries to the
oracle as possible. Here, we restrict ourselves to deterministic policies which terminate
only once the version space for t∗ consistent with all previous queries Q1, . . . , Qk (formally,
(∩k|t∗∈QkQk) ∩ (∩k|t∗ 6∈Qk(N \Qk))) reaches size one. Throughout this section, we assume
that the algorithm knows the distribution P the target is drawn from.

We begin with Algorithm 1, a simple divide-and-conquer scheme which detects the target
with no more than dlog ne queries, if seeded with an arbitrary vR ∈ N as root node. Here
and elsewhere, we use binary logarithms (base 2). Essentially, this algorithm mirrors the
principle of binary search by way of intermediate sets produced during a breadth-first-search
(BFS). Given adequate backpointer structures, its running cost is that of a single BFS.

I Lemma 1. Presented with a connected constraint graph G = (N , E), where |N | = n,
Algorithm 1 detects the target t∗ with no more than dlog ne queries to the membership oracle.

While Algorithm 1 is simple and efficient, it has the obvious drawback of not exploiting
knowledge about the distribution P at all. However, it is useful as subroutine for our main
algorithm developed next.

STACS’13

554 Constrained Binary Identification Problem

Suppose w.l.o.g. that P = (p1, . . . , pn) is such that p1 ≥ p2 ≥ · · · ≥ pn. Define the nested
subsets A1 ⊂ A2 ⊂ · · · ⊂ N by

Ai = {1, . . . , ji}, ji = min
{
j
∣∣∣ ∑

k>j
pk ≤ 2−i

}
.

Put differently, Ai is the smallest subset of N so that
∑
k∈Ai pk ≥ 1 − 2−i. Also, define

ai = log(1/pji), so that pk ≥ 2−ai for all k ∈ Ai, moreover a0 = 0. The intuition behind this
choice is that A1 contains about half of the probability mass, A2 \A1 half of the remaining
mass, and so on.

Our algorithm processes the Ai in order, i = 1, 2, For Ai, it calls Algorithm 1,
which will detect t∗ if it is in Ai, otherwise we move to the next set. However, we cannot
simply pass the induced subgraph G|Ai to Algorithm 1, as it may well not be connected.
In this case, we generate Gi = (Ai, Vi) passed to the algorithm as follows. We initialize
Gi ← G|Ai and cluster the nodes into connected components. We then join each pair of
disjoint components by a shortest path π, a central part of which necessarily features nodes
V (π) with V (π) ∩Ai = ∅. We collapse this part of π into a new virtual edge between nodes
in Ai, which is labelled by the vertices V (π) and added to Vi. This process stops when Gi
is connected. Finally, when running Algorithm 1 on Gi, we need to translate queries back
to connected subgraphs of the original G. For a query Q ⊂ Ai in question, this is done by
adding nodes with which virtual edges of Gi|Q are labelled. Our construction of Gi from Ai
and labeling of virtual edges ensures that any query processed in this way corresponds to a
connected subgraph of G, therefore is admissible.

Note that due to the presence of virtual edges, Algorithm 1 may receive positive answers
from the oracle, even though t∗ 6∈ Ai. After all, t∗ might be among the vertices on virtual
edges. However, in this case, Algorithm 1 simply descends to a single vertex vi ∈ Ai, so that
one more query {vi} settles the question “t∗ ∈ Ai”. Our main result is as follows.

I Theorem 2. Given a connected constraint graph G with n vertices and any distribution
P over {1, . . . , n}, our algorithm finds a target t∗ sampled at random from P with no more
than 2 + 4H[P] admissible queries, on average over draws of t∗.

Proof. We prepare our proof with a lemma whose proof can be found in the full version.

I Lemma 3. For the numbers ak defined above, we have that
∑∞
k=1 ak/2k+1 ≤ H[P].

To establish Theorem 2, recall that we visit sets Ai in order, i = 1, 2, . . . , calling
Algorithm 1 on Gi = (Ai, Vi) constructed as detailed above. Since pj ≥ 2−ai for all j ∈ Ai,
the size of Ai is bounded by 2ai , and Algorithm 1 returns after ≤ ai queries. As noted
above, due to “virtual edge” complications, we may have to query one more single node,
yet after ≤ ai + 1 questions we know whether t∗ ∈ Ai or not, and in the former case will
have detected t∗. Now, the probability of not finding t∗ in Ai or earlier is bounded by∑
j|pj<2−ai pj ≤ 2−i. This means that the expected number of queries in in our algorithm is

at most
∑
i≥1(ai + 1)/2i−1 ≤ 2 + 4H[P], where this inequality is due to Lemma 3. J

4 Cost Function Constraints

In this section we analyze another variant of the binary identification problem where the
constraints are defined in terms of a cost function rather than a graph. More formally, we
are given a non-decreasing cost function C : {1, 2, · · · , n} → R where the cost of making an

A. Karbasi and M. Zadimoghaddam 555

Algorithm 2 Binary Identification Algorithm with Cost Function Constraints
Input: n objects with a probability distribution on them, and a cost function C :
{1, 2, · · · , n} → R, fixed constant ε > 0.
Create clusters S1, S2, . . . Sl for l = log(n2/ε).
(Phase one) Use Procedure 3 to determine which cluster contains the target t∗.
(Phase two) If cluster Si contains the target, find it by using the dynamic program 2.
(Phase three) If the target is not found in any of the above clusters, query each of the
non-clustered objects.

oracle query on set S is C(|S|)1. Notice that the cost only depends on the size of the set not
the elements it contains. When a human plays the role of the membership oracle, it is more
difficult to answer a query with a bigger set than one with a smaller set. This is why in
many interactive search strategies such a cost function arises naturally. To avoid confusion
in using term "cost" for queries and algorithms, we formally define the notion of cost for sets
and algorithms as follows.

I Definition 4. We refer to the cost of making a query on a set S by the “cost of set S".
On the other hand, we use the term “expected search cost" of an algorithm to represent the
expected value of total cost of queries the algorithm makes. Formally, An algorithm A consists
of a family of possible queries FA. Algorithm A asks each query S ∈ FA with probability
Pr(A,S) which is a function of both the algorithm A, and the probability distribution of
objects, P . We define the expected search cost of algorithm A to be

∑
S∈FA Pr(A,S)C(|S|).

By the above definition, it makes sense to talk about the expected search cost of Algorithm 2
or any other algorithm such as the optimum algorithm. We can also refer to the expected
cost associated with a part of Algorithm 2 (it has three phases) and we can similarly define
its expected cost in each phase. Note that the expected search cost of an algorithm is exactly
the expected value of its total cost according to distribution P .

I Definition 5. Let ε > 0 to be a small and fixed constant. We place objects in l = log(n2/ε)
clusters based on their probabilities as follows. Let Si be the cluster of objects with probability
in range (1/2i, 1/2i−1] for 1 ≤ i ≤ l. For any 1 ≤ i ≤ l, we define Pr(Si) to be the sum of
probabilities of objects in cluster Si, and we define Pr[i, j] .=

∑j
x=i Pr(Sx) for 1 ≤ i ≤ j ≤ l.

We let Pr[i, j] = 0 for i > j.

The choice of ε in the above definition is for ensuring that non-clustered objects have negligible
probabilities, namely, at most ε/n2.

Our algorithm for finding the target is shown in Algorithm 2. In phase one, we run
a recursive algorithm that uses procedure ClusterF inder (shown in Algorithm 3) as a
subroutine. The procedure ClusterF inder gets two numbers i and j, and finds the cluster
containing the target only if the target is in one of the clusters {Si, Si+1, · · · , Sj}. More
specifically, Algorithm 3 finds a number k and a collection of clusters Q to query as follows:

Q =
⋃

i≤m≤k

Sm, k = max
{
k′
∣∣∣ Pr[i, k′] < Pr[i, j]

2

}
(1)

1 Note that there are two ways to determine whether or not the target lies in some set S. We can query
set S or we can query the complement set N \ S. Here, we assume that the cost is always a function of
the size of the queried set and it is the job of the algorithm to determine which set needs to be queried.

STACS’13

556 Constrained Binary Identification Problem

Algorithm 3 ClusterFinder(i,j)
Input: Clusters Si, Si+1, · · · , Sj

1: Find the number k and the set Q according to Equation 1. Query set Q.
2: If t∗ ∈ Q call ClusterF inder(i, k). Otherwise, query Sk+1.
3: If t∗ ∈ Sk+1 return Sk+1. Otherwise, call ClusterF inder(k + 2, j).

If the target is in Q, the algorithm calls procedure ClusterF inder(i, k). Otherwise, it queries
set Sk+1, and if the target is not there either, it calls ClusterF inder(k + 2, l). Note that in
Eq. 1, we might have Pr(Si) = Pr[i, i] ≥ Pr[i, j]/2 which causes k to be i− 1. In this case,
the set Q will be ∅.

I Definition 6. The procedure calls of Algorithm 3 can be represented by a binary tree T
as follows. The root node is the procedure ClusterF inder(1, l). The left child of the root is
ClusterF inder(1, k), and its right child is ClusterF inder(k + 2, l). In the same fashion, we
can define the rest of the tree nodes based on the recursive calls.

In phase two of Algorithm 2, we are given a cluster Si that contains the target, and we
want to find the target object. Let x be the number of objects in Si. Our algorithm assumes
that the probabilities of all objects in Si are identical. Since they are in the same cluster,
their probabilities are close to each other (we prove later that this assumption does not
incur much cost for us). By this assumption we have symmetry among objects in cluster Si.
Therefore, the only relevant characterization of a subset of Si is its size. We define a dynamic
programming array A[j], for 1 ≤ j ≤ x, which is the expected search cost of optimal strategy
to find the target given that the target is in a subset of Si with size j under the assumption
that these objects have the same probability, and therefore are identical. We can fill up the
entries of array A as follows. It is clear that A[1] is zero. We can update each A[j] using the
lower entries A[1], A[2], · · · , A[j − 1] as follows:

A[j] = min
1≤j′<j

{C(j′) +A[j′](j′/j) +A[j − j′]((j − j′)/j)}. (2)

The optimal strategy chooses some 1 ≤ j′ < j, and a subset of size j′ among the remaining
objects (it does not matter which subset it chooses, the only important factor is the size of
the subset because of the identical probabilities assumption). Making a query on the selected
subset of size j′ has cost C(j′). With probability j′/j, the target is in the selected set, and
we have to pay A[j′] in this case. With probability (j− j′)/j, the target is not in the selected
set, and we have to pay A[j − j′] in this case. Since we assume that Si contains x elements,
the optimal cost for finding the target in cluster Si is therefore A[x].

Finally, phase three of Algorithm 2 makes sure that if we have not found the target in
the previous phases, we query each nonclustered object until we find the target.

I Theorem 7. Let CGreedy and COPT denote the expected search costs of Algorithm 2 and
the optimum algorithm, respectively. Then, we have CGreedy = O(log(log(n))COPT).

Before we proceed to the proof of this theorem, let us consider the following definitions for
general cost functions. Note that in general, the cost of a query is a function of the query
set and not necessarily its size.

I Definition 8. Let I(X) denote an instance of the search problem on a subset X ⊂ N
where the probabilities of objects in X are normalized to make sure their sum is one, and
we know that the target is in X. We denote by Cost(X ′) the cost of making a query on

A. Karbasi and M. Zadimoghaddam 557

X ′ ⊂ X. Let also Opt(I(X)) represent the expected search cost of the optimum algorithm
for instance I(X). We define

CostiX = min
{
Cost(X ′)|X ′ ⊆ X,Pr(X ′) ≥ 1− 1/2i

}
.

Let S(X, i) denote the subset for which Cost(S(X, i)) = CostiX and Pr(S(X, i)) ≥ 1− 1/2i.

Note that the particular cost function we consider in this section is Cost(X ′) = C(|X ′|).
The following lemma will provide us with a general lower bound on the expected search cost
of the optimum solution.

I Lemma 9. Opt(I(X)) ≥
∑∞
i=1 Cost

i
X/2i+1.

Lemma 9 help us bound the expected search cost of the optimum algorithm from below.

Proof of Theorem 7. We first show that the expected search cost caused by nonclustered
objects is negligible.

I Lemma 10. The expected search cost incurred by the nonclustered objects in phase three
of Algorithm 2 is at most ε · COPT .

Proof. The probability of each nonclustered objects is at most 1/2l = ε/n2. There are at
most n non-clustered objects, so the probability of the target is one of these non-clustered
objects is at most ε/n. With probability at most ε/n, we make a query for each non-clustered
object. Hence, its expected search cost is at most εn× nC(1) = εC(1). On the other hand,
note that C(1) is a lower bound for the optimum solution because no matter where the target
is we always have to make at least a query of size at least one to find the target. J

Lemma 10 entails that the expected search cost incurred by nonclustered objects is much
less than the optimal expected search cost. Thus for simplicity we can assume that there
exists no nonclustered object. In order to bound the expected search cost of the first phase
of Algorithm 2 we need a few intermediate results. Let us start with the following definition.

I Definition 11. A set of nodes S of a tree T ′ is sparse, if and only if there do not exist
three nodes v1, v2 and v3 in S such that v1 is one of the ancestors of v2 and v3, and neither
of v2 and v3 is an ancestor of one another.

Hence, in a sparse set S there cannot be two nodes such that they don’t have an ancestor/-
descendant relationship and simultaneously have a common ancestor in S. The following
lemma bounds the number of possible sparse partitions of any tree

I Lemma 12. The nodes of any tree T ′ can be partitioned into dlog(|T ′|)e sparse sets where
|T ′| is the number of nodes in T ′.

To link the expected search cost of the first phase of Algorithm 2 to nodes of the tree T,
we need the following definition.

I Definition 13. Let a node v ∈ T represent procedure ClusterF inder(i, j) for some
1 ≤ i ≤ j ≤ l. With probability Pr[i, j], we go to this node, and we make a query on
the set Q as defined in Eq. 1. If the target is not in Q (i.e., it is in one of the clusters
Sk+1, Sk+2, · · · , Sj), we make a second query on the set Sk+1. Hence, the expected search
cost of our algorithm at node v is Pr[i, j]C(|Q|) + Pr[k + 1, j]C(|Sk+1|). We define this
quantity as the price of node v.

STACS’13

558 Constrained Binary Identification Problem

It is clear that the expected search cost of our algorithm in phase 1 is the sum of the prices
of all nodes in tree T . In Lemma 14, we bound the sum of prices of nodes of a sparse set
which provide us with the key result to bound the expected search cost of the first phase.
The proof of Lemma 14 heavily relies on the observation we made in Lemma 9.

I Lemma 14. The sum of prices of nodes of a sparse set is O(COPT).

Due to the above lemma, we know that the total prices of the nodes of every sparse set is
O(COPT). By recalling Lemma 12 we also know that we can partition the nodes of T into
O(log(log(n))) sparse sets. Hence, Lemma 14 together with Lemma 12 readily bounds the
expected search cost of the first phase which is the sum of prices of all nodes in tree T .

I Lemma 15. The expected search cost for identifying which cluster contains the target t∗
(first phase of Algorithm 2) is O(log(log(n)) · COPT).

We are ready to analyze the second phase of algorithm 2. In this part, we know the
cluster, say Si, that contains the target t∗ and we just need to find it. Let us define Ii to be
this instance: we are given the information that the target is in Si, and we have to find it.
Following Definition 8, we denote the optimum expected search cost to identify the target in
Ii by OPT (Ii). The following lemma bounds the expected search cost of Algorithm 2 (phase
two) in terms of OPT (Ii).

I Lemma 16. Assume that the target t∗ is in cluster Si. Then, the expected search cost of
phase two of Algorithm 2 to find the target is at most 2 Pr(Si)OPT (Ii).

Lemma 16 helps us relate the expected search cost of phase two to COPT .

I Lemma 17. The expected search cost of phase two of Algorithm 2 is at most 2COPT .

By combining Lemmas 10, 15, and 17 we can conclude that the expected search cost of
Algorithm 2 is O(log(log(n)) · COPT). J

5 Submodular Constraints

In this section we analyze another variant of the binary identification problem where the
constraints are defined in terms of a submodular function. More specifically, we are given a
set of objects N = {1, 2, · · · , n} and a non-decreasing submodular function Csub : Fn → R
where Fn = 2N is the family of all subsets of N . We denote the cost of making a query on
the set S ⊂ N by Csub(S) where we assume that the cost function is submodular:

∀S1 ⊆ S2 ⊆ U, i ∈ U : Csub(S1 ∪ {i})− Csub(S1) ≥ Csub(S2 ∪ {i})− Csub(S2).

Intuitively, this property insures that adding an object i to a set S1 increases its cost at least
as much as adding i to a superset S2. Another equivalent definition that we later use reads
as follows: ∀S1, S2 ⊆ N , Csub(S1) + Csub(S2) ≥ Csub(S1 ∪ S2) + Csub(S1 ∩ S2). In view of
Definition 8 the cost function of a subset S ∈ N is Cost(S) = Csub(S).

Before elaborating on our new algorithm, we should note that it is possible to mimic the
first phase of Algorithm 2 and obtain an approximation factor of O(log(log(n))). However,
it is no longer possible to run the second phase with the same approximation factor for
submodular functions. Recall that in the second phase, we relied on a dynamic program
that only depends on the size of the queried sets. Due to the fact that in our new setup,
the cost of a query depends on the set (an not only on its size), we need to reformulate the
dynamic program: it matters which subset is chosen. To do so, we ought to construct an

A. Karbasi and M. Zadimoghaddam 559

Algorithm 4 Bicriteria Approx. Alg.
Input: ε > 0.

1: Find all αk’s in (3) and their corres-
ponding sets Sαk .

2: Among all Sαk , keep only those that
have Pr(Sαk) ≥ 1/6.

3: Among the remaining sets, choose the
one with minimum Csub(Sαk). Call
this set S′.

4: Keep removing objects from S′ while
its probability remains at least 1/6.

Algorithm 5 BIP with Submod. Cnst.
Input: Set of objects N .

1: Find set S′ ⊂ N (and S̄′ = N \ S′) by
using Algorithm 4. Query S′.

2: if set S′ contains the target t∗ then
3: Query one of the objects i ∈ S′. Either

i is the target, or otherwise recurs on
S′ \ {i}.

4: else
5: Recurs on S̄′.
6: end if

exponential size array (one for each subset) and as a result, the algorithm will no longer run
in polynomial time. To avoid this drawback, we can devise a log(n)-approximation algorithm
for the second phase of Algorithm 2 which can incorporate submodular constraints. Instead,
in this section we present a much simpler algorithm with the same approximation guarantee.
To do so, we first need an intermediate step.

Submodular Functions Under Linear Constraints
The problem of “minimizing submodular functions under linear constraints" is to find a subset
S∗ ∈ N such that Pr(S∗) ≥ 1/2 and its cost, namely Csub(S∗), is minimum. Here, we present
a bicriteria approximation algorithm that finds a set S′ with Csub(S′) ≤ 3Csub(S∗) and
Pr(S′) ≥ 1/6. To do so, we first need to define another submodular function fα : 2N → R
for which fα(S) = Csub(S) + α · Pr(S̄), where S̄ = N \ S, and α > 0 is a real number. The
reason that fα is a submodular function simply follows from the fact that we only added
a liner term to the submodular function Csub (check the equivalent definition we provided
earlier). It is a folklore result that submodular function minimization problem has strongly
polynomial time exact algorithms due to [23] and [16]. Hence, one can find a subset Sα ⊆ N
in polynomial time that admits the minimum value of fα. Let cmin = mini∈N Csub({i}). For
a fixed ε > 0 we also define

αk = 3cmin(1 + ε)k, for all k = 0, 1, . . . , dlog1+ε(Csub(N))/cmine. (3)

Note that there exists a k = κ for which 3Csub(S∗) ≤ ακ ≤ 4Csub(S∗).

I Lemma 18. Let Sακ denote the set that admits the minimum of the function fα for
α = ακ. Then Csub(Sακ) ≤ 3Csub(S∗) and Pr(Sακ) ≥ 1/6.

Since the value of Csub(S∗) is not known a priori, we cannot apply Lemma 18 without
modification. To this end, we propose Algorithm 4. It first calculates all values of αk. For
each αk it finds the corresponding set Sαk that minimizes fαk . It then finds among those
Sαk with Pr(Sαk) ≥ 1/6, the one that has minimum cost Cmin(Sαk). Once such a set S′ is
found, it starts removing objects from S′ while keeping Pr(S′) ≥ 1/6.

I Lemma 19. Algorithm 4 outputs a set S′ ⊂ N with Csub(S′) ≤ 3Csub(S∗) and Pr(S′) ≥
1/6. Moreover, for any i ∈ S′, we have Pr(S′ \ {i}) < 1/6.

Approximation Algorithm with Submodular Constraints
Algorithm 5 starts by finding a set S′ ⊂ N . To this end, it calls on Algorithm 4. According
to Lemma 19, for the set S′ we have Pr(S′) ≥ 1/6 and Csub(S′) ≤ 3Csub(S∗). Remember S∗

STACS’13

560 Constrained Binary Identification Problem

is the set with minimum cost and the probability at least a half. Ideally, we would like to
query the set S∗. Unfortunately, it is not easy to find such a set. Instead, Algorithm 5 queries
the set S′ that approximate our ideal candidate. If the target t∗ is in S′, then Algorithm 5
chooses an arbitrary object i ∈ S′ and see whether i is the target or not. In case it is not the
target, the whole procedure repeats now from the set S′ \ {i}, namely, Algorithm 4 will be
called for the set S′ \ {i}. If the target is not in S′ from the beginning, the algorithm recurs
on set S̄′ = N \ S′. Note that by making a singleton query before recursion, Algorithm 5
makes sure that the probability of the remaining set will shrink by a factor of 1/6 (Lemma 19)
if the target is in set S′ \ {i}. Otherwise, the probability shrinks by a factor of 5/6 because
we have that Pr(S̄′) = 1− Pr(S′) ≤ 1− 1/6.

I Theorem 20. Let CGreedy and COPT denote the expected search costs of Algorithm 5 and
the optimum algorithm, respectively. Then, we have CGreedy = O(log(n) · COPT).

Proof. The proof of this theorem is similar, mutatis mutandis, to the proof of phase one of
Theorem 7. Let us first modify Definition 8 as follows.
Let CostiX = min

X′⊆X|Pr(X′)≥1−(5/6)i
Cost(X ′). Then, we can show

I Lemma 21. Opt(I(X)) ≤
∑∞
i=1

CostiX
(5/6)i+1/5 .

The search mechanism portrayed in Algorithm 5 defines a binary tree T , similar to the
one we saw in the previous section. In brief, the tree starts from the root N . In each internal
node S with probability at least 1/6 we go to the left child (representing set S′ \ {i}) and
with the remaining probability we go to the right child (representing S \S′). Note that there
are at most 2n nodes in this tree where the probability of each child is at most 5/6 of the
probability of its father (instead of 1/2 in the previous section). Because the tree T has at
most 2n nodes, instead of O(log log(n)) sparse sets, we need log(2n) sparse sets to cover the
expected cost of all nodes. As a result one can provide a similar proof showing that the
expected cost of Algorithm 5 with submodular constraints is at most O(log(n)) times the
cost of the optimum solution.

J

6 Conclusion

In this work we considered the problem of binary identification problem (BIP) under the
general notion of graph, cost and submodular constraints. We also provided novel polynomial
time approximation algorithms with provable analytical guarantees. Even though we believe
that the three variants of BIP we considered are all NP-hard, we did not provide any rigorous
proof. This is an interesting future direction we would like to pursue.

References
1 Yosi Ben-Asher, Eitan Farchi, and Ilan Newman. Optimal search in trees, 1999.
2 Steve Branson, Catherine Wah, Florian Schroff, Boris Babenko, Peter Welinder, Pietro

Perona, and Serge Belongie. Visual recognition with humans in the loop. In ECCV (4),
pages 438–451, 2010.

3 R. Carmo, J. Donadelli, Y. Kohayakawa, and E. Laber. Searching in random partially
ordered sets. Theor. Comput. Sci., 321:41–57, 2004.

4 R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu. Network tomography: Recent
developments. Statistical Science, 19(3):499–517, 2004.

A. Karbasi and M. Zadimoghaddam 561

5 Venkatesan T. Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, Pranjal Awasthi, and
Mukesh K. Mohania. Decision trees for entity identification: Approximation algorithms
and hardness results. ACM Transactions on Algorithms, 7(2):15, 2011.

6 Venkatesan T. Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, and Yogish Sabharwal.
Approximating decision trees with multiway branches. In ICALP (1), pages 210–221, 2009.

7 Thomas M. Cover and Joy Thomas. Elements of Information Theory. Wiley, 1991.
8 S. Dasgupta. Analysis of a greedy active learning strategy. NIPS, 2005.
9 M. R. Garey and R. L. Graham. Performance bounds on the splitting algorithm for binary

testing. Acta Informatica, 3:347–355, 1974.
10 M.R. Garey. Optimal binary identification procedures. In SIAM J. Appl. Math, 1972.
11 Donald Geman and Bruno Jedynak. Shape recognition and twenty questions. Technical

report, in Proc. Reconnaissance des Formes et Intelligence Artificielle (RFIA, 1993.
12 Daniel Golovin and Andreas Krause. Adaptive submodularity: A new approach to active

learning and stochastic optimization. Journal of Artificial Intelligence Research (JAIR),
42:427–486, 2011.

13 Andrew Guillory and Jeff A. Bilmes. Average-case active learning with costs. In ALT,
pages 141–155, 2009.

14 Anupam Gupta, Viswanath Nagarajan, and R. Ravi. Approximation algorithms for op-
timal decision trees and adaptive tsp problems. In Proceedings of the 37th international
colloquium conference on Automata, languages and programming, ICALP’10, pages 690–
701, Berlin, Heidelberg, 2010. Springer-Verlag.

15 L. Hyafil and R. Rivest. Constructing optimal binary decision trees is np-complete. In
Information Processing Letters, pages 15–17, 1976.

16 Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polynomial
algorithm for minimizing submodular functions. J. ACM, 48(4):761–777, 2001.

17 Tobias Jacobs, Ferdinando Cicalese, Eduardo Laber, and Marco Molinaro. On the com-
plexity of searching in trees: average-case minimization. In Proceedings of the 37th interna-
tional colloquium conference on Automata, languages and programming, ICALP’10, pages
527–539, 2010.

18 Amin Karbasi, Stratis Ioannidis, and Laurent Massoulie. Comparison-based learning with
rank nets. In 29th International Conference on Machine Learning (ICML), 2012.

19 D. Knuth. The Art of Computer Programming, volume 3. Addison Wesley Longman
Publishing Co., Inc, 1998.

20 S. Rao Kosaraju, Teresa M. Przytycka, and Ryan S. Borgstrom. On an optimal split
tree problem. In Proceedings of the 6th International Workshop on Algorithms and Data
Structures, WADS ’99, pages 157–168. Springer-Verlag, 1999.

21 Eduardo Laber and Marco Molinaro. An approximation algorithm for binary searching in
trees. In Proceedings of the 35th international colloquium on Automata, Languages and
Programming, Part I, pages 459–471, Berlin, Heidelberg, 2008. Springer-Verlag.

22 R.D. Nowak. The geometry of generalized binary search. Transactions on Information
Theory, 5, 2012.

23 Alexander Schrijver. A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. J. Comb. Theory, Ser. B, 80(2):346–355, 2000.

24 Xiang S. Zhou and Thomas S. Huang. Relevance feedback in image retrieval: A compre-
hensive review. Multimedia Systems, 8(6):536–544, 2003.

STACS’13

Regular languages of thin trees
Mikołaj Bojańczyk, Tomasz Idziaszek, and Michał Skrzypczak

University of Warsaw∗

{bojan,idziaszek,mskrzypczak}@mimuw.edu.pl

Abstract
An infinite tree is called thin if it contains only countably many infinite branches. Thin trees
can be seen as intermediate structures between infinite words and infinite trees. In this work we
investigate properties of regular languages of thin trees.

Our main tool is an algebra suitable for thin trees. Using this framework we characterize
various classes of regular languages: commutative, open in the standard topology, closed under
two variants of bisimulational equivalence, and definable in WMSO logic among all trees.

We also show that in various meanings thin trees are not as rich as all infinite trees. In
particular we observe a parity index collapse to level (1, 3) and a topological complexity collapse
to co-analytic sets. Moreover, a gap property is shown: a regular language of thin trees is either
WMSO-definable among all trees or co-analytic-complete.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases infinite trees, regular languages, effective characterizations, topological
complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.562

1 Introduction

Since the decidability results by Büchi [7] and Rabin [17], regular languages of infinite words
and trees have been intensively studied. Those languages can be equivalently described in
monadic second-order (MSO) logic, by nondeterministic finite automata, or in terms of
homomorphisms to finite algebras. Apart from the emptiness problem, which is known to
be decidable, one ask about decidability for other, more subtle properties of a given language.

Suppose that X is a subclass of regular languages of infinite trees, e.g. X can be the lan-
guages that are definable in first-order (FO) logic with descendant; or definable in weak MSO
(WMSO); or recognized by a nondeterministic parity automaton with priorities {i, . . . , j}.
An effective characterization for X is an algorithm which inputs a regular language of infin-
ite trees and answers if the language belongs to X. As far as decidability is concerned the
representation of the language is not very important, since there are decidable translations
between the many ways of representing regular languages of infinite trees.

Effective characterizations are a lively and important topic in the theory of regular
languages. In the case of finite words there are many celebrated results, e.g. characterizations
of FO [18], two-variable FO [21] or piecewise testable languages [19]. Many of these results
carry over to infinite words, see [23], [16], or [12]. For finite trees much less is known, but still
there are some techniques [3]. The main reason why effective characterizations are studied is
that an effective characterization of a class X requires a deep insight into the structure of the
class. Usually this insight is achieved through an algebraic framework, such as semigroups
for finite words, Wilke semigroups for infinite words, or forest algebra for finite trees. Apart

∗ All authors were supported by ERC Starting Grant “Sosna” no. 239850

© Mikołaj Bojańczyk, Tomasz Idziaszek, Michał Skrzypczak;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 562–573

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.562
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Bojańczyk, T. Idziaszek, and M. Skrzypczak 563

from having a well-developed structure theory, another advantage of algebra is that many
effective characterizations can be elegantly stated in terms of identities.

Effective characterizations are technically challenging, and in fact there are very few
effective characterizations for languages of infinite trees: for languages recognized by top-
down deterministic automata one can compute the Wadge degree [14], for arbitrary regular
languages one can decide definability in the temporal logic EF [4] or in the topological class
of Boolean combinations of open sets [5]. One of the reasons why effective characterizations
are so difficult for infinite trees is that, so far, there is no satisfactory algebraic approach to
infinite trees, or even a canonical way to present a regular language. Proposed algebras (see
[4], [2]) either have no finite representation or yield no effective characterizations.

In this paper, we propose to study thin trees, which generalize both finite trees and
infinite words, but which are still simpler than arbitrary infinite trees. A tree is called thin
if it has only countably many infinite branches (or equivalently, it does not contain a full
binary tree as a minor). We believe that thin trees are a good stepping stone on the way to
understanding regular languages of arbitrary infinite trees.

Our contributions can be divided into two sets:
Effective characterizations. We characterize the following classes of regular languages of
thin trees in terms of finite sets of identities:

closed under rearranging of siblings,
closed under bisimulation equivalence (in two variants),
open in the standard topology,
definable in the temporal logic EF,
definable among all forests in WMSO logic.

The crucial ingredient of these characterizations is an observation that a regular language
of thin trees can be canonically represented by a finite algebraic object, called its syntactic
thin-forest algebra. For general trees no such representation is known.
Upper bounds. We show that in various contexts thin trees are not as rich as generic trees:

The Rabin-Mostowski index hierarchy collapses to level (1, 3) on thin trees.
The projective hierarchy of regular languages collapses to level Π1

1 on thin trees (com-
paring to ∆1

2 in the case of all trees).
We observe a gap property (see [15]): a regular language of thin trees treated as a subset
of all trees is either definable in WMSO logic or non-Borel.
If we treat thin trees as our universe then no regular language is topologically harder
than Borel sets.

2 Preliminaries

This section introduces basic notions and facts used in the proofs. To avoid technical diffi-
culties when introducing algebras, we operate on finitely branching forests instead of partial
binary trees. The difference is only technical, all the results can be naturally transferred
back to the framework of partial binary trees.

2.1 Forests
Fix a finite alphabet A. By AFor we denote the set of all A-labelled forests. Formally a forest
is a partial mapping from its set of nodes dom(t) ⊂ ω+ into A. We additionally assume
that a forest is finitely branching: for every w ∈ ω∗ there are only finitely many nodes of
the form w0, w1, w2, . . . , wn in dom(t). For w = ε those nodes are called roots of the forest

STACS’13

564 Regular languages of thin trees

t and for w 6= ε these are children of the node w. In both cases the list of nodes of the form
wn ordered by n is called a list of siblings in t.

A node w ∈ dom(t) is branching if it has at least two distinct children wn1, wn2 ∈ dom(t).
A node in dom(t) is a leaf of t if it has no children in t.

A forest with exactly one root is called a tree. The empty forest is denoted as 0. For
a given forest t and a node x ∈ dom(t) by t �x we denote the subtree of t rooted in x:
dom(t�x) = {0 · w ∈ ω∗ : xw ∈ dom(t)}, t�x (0 · w) = t(xw).

Let t be a forest. A sequence π ∈ ω∗ is a finite branch of t if either π = ε and t = 0
or π ∈ dom(t) and π (as an element of ω+) is a leaf of t. A sequence π ∈ ωω is an infinite
branch of t if for every sequence w ∈ ω+ such that w ≺ π we have that w is a node of t.

A forest is regular if it has finitely many distinct subtrees. A forest is thin if it has
countably many branches. The set of all thin forests is denoted as AThinFor ⊂ AFor. A forest
is thin if and only if it is a tame tree in the meaning of [13].

We say that a forest s is a prefix of a forest t if dom(s) ⊆ dom(t) and for every x ∈ dom(s)
we have s(x) = t(x). We denote it by s ⊆ t.

Let t be a forest and s ⊆ t be a prefix of t. A node y ∈ t is off s if y /∈ s and either y is
a root, or the parent of y is in s. Since a branch π of t can be treated as a prefix of t this
definition also extends to branches.

An A-labelled context is a forest over the alphabet A∪{�}, where the label � is a special
marker, called the hole, which occurs exactly once and in a leaf. A context is guarded if its
hole is not in a root. For every letter a ∈ A we denote by a� the single-letter tree context
with a in the root and the hole below it.

Since we are interested in algebraic frameworks for forests, we need a set of operations
which will allow to build forest from basic elements. Following [6] we introduce following
operations on forests. For a graphical presentation of these operations, compare Figure 1
and Figure 2 in [6]. We can

concatenate two forests s, t, which results in the forest s+ t,
compose a context p with a forest t, which results in the forest pt, obtained from p by
replacing the hole with t,
compose a context p with a context q, which results in the context pq that satisfies
(pq)t = p(qt).

We write at, ap for a composition of a single-letter context a� with t or p (thus a0 is
a forest of one node labelled a). Additionally we have an operation which allows us to
produce infinite forests:

compose a guarded context p with itself infinitely many times, which results in the forest
p∞ that satisfies p(p∞) = p∞. Note that we exclude non-guarded contexts from this
definition. (For example the result of (� + a0)∞, even if well-defined, is not finitely
branching.)

2.2 Automata and regular languages

A (nondeterministic parity) forest automaton over an alphabet A is given by a set of states
Q equipped with a monoid structure, a transition relation ∆ ⊆ Q × A × Q, a set of initial
states QI ⊆ Q and a parity condition Ω: Q→ N. We use additive notation + for the monoid
operation in Q, and we write 0 for the neutral element.

We say that a forest automaton A has index (i, j) (or shortly that A is (i, j)-automaton)
if i is the minimal and j is the maximal value of Ω on Q.

M. Bojańczyk, T. Idziaszek, and M. Skrzypczak 565

A run of this automaton over a forest t is a labelling ρ : dom(t)→ Q of forest nodes with
states such that for any node x with children x1, . . . , xn

(ρ(x1) + ρ(x2) + · · ·+ ρ(xn), t(x), ρ(x)) ∈ ∆.

Note that if x is a leaf, then the above implies (0, t(x), ρ(x)) ∈ ∆.
A run is accepting if for every (infinite) branch π of t, the highest value of Ω(q) is even

among those states q which appear infinitely often along the branch π. The value of a run
over a forest t is obtained by adding, using +, all the states assigned to roots of the forest.
A forest is accepted if it has an accepting run whose value belongs to QI . The set of forests
accepted by an automaton is called the language recognized by the automaton.

A language is regular if it is definable by a formula of monadic second-order logic (MSO).

I Theorem 1 ([10]). A language of thin forests is regular if and only if it is recognized by
some forest automaton. Every nonempty language of thin forests contains a regular forest.

We use MSO logic to describe properties of infinite forests. An infinite forest is treated
as a relational structure, where the universe is the nodes, and the predicates are: a binary
child predicate, a binary next sibling predicate, and one unary predicate for each label in
the alphabet. Additionally, we consider WMSO: the logic with the same syntax as MSO
but with the semantical restriction that all set quantifiers range over finite subsets of the
domain. Since the property that a given set is finite is MSO-definable on finitely branching
infinite forests, so WMSO can be naturally embedded into MSO. There are examples of
languages of infinite forests that are definable in MSO but not in WMSO.

2.3 Topology
A topological space X is Polish if it is separable and has a complete metrics. Polish topo-
logical spaces are the principal objects studied in descriptive set theory.

The set of forests AFor, equipped with the natural Tikhonov topology, is an uncountable
Polish topological space. The base of the topology is given by the sets of the form {t :
t�ω≤d= r} for finite forests r and a number (depth) d.

Let X be an uncountable Polish topological space. The class of open sets in X is denoted
as Σ0

1(X). The class of complements of open sets (called closed) is denoted as Π0
1(X). The

Borel hierarchy is defined inductively, the building ingredients are countable unions and
intersections. For a countable ordinal α let:

Σ0
α(X) be the class of countable unions of sets from

⋃
β<α Π0

β(X),
Π0
α(X) be the class of countable intersections of sets from

⋃
β<α Σ0

β(X).

The class of Borel sets is the union of all classes Σ0
α and Π0

α for α < ω1. A more detailed
introduction to the Borel hierarchy can be found e.g. in [11, Chapter II]. If the space is clear
from the context we will omit it and write just Σ0

α and Π0
α.

The class of Borel sets is not closed under projection. Each set that is a projection of a
Borel set is called analytic. The class of analytic sets is denoted by Σ1

1. The superscript 1
means that the class is a part of the projective hierarchy. The rest of the projective hierarchy
is defined as follows:

Π1
i consists of the complements of the sets from Σ1

i ,
Σ1
i+1 consists of the projections of the sets from Π1

i .
The sets from the class Π1

1 are called co-analytic.
The Borel hierarchy together with the projective hierarchy constitute the so-called bold-

face hierarchy. The most important property of this hierarchy is strictness: all the inclusions
on the following diagram are strict.

STACS’13

566 Regular languages of thin trees

Σ0
1

Π0
1

Σ0
2

Π0
2

Σ0
3

Π0
3

· · ·
Σ0
ω

Π0
ω

Σ0
ω+1

Π0
ω+1

· · ·
Σ0

2ω

Π0
2ω

· · ·
Σ1

1

Π1
1

Σ1
2

Π1
2

Σ1
3

Π1
3

· · ·

I Fact 2. Every regular language of forests is in the intersection of Σ1
2 and Π1

2 (denoted by
∆1

2).
The set of thin forests AThinFor is Π1

1(AFor)-complete, thus non-Borel.

2.4 Ranks and skeletons
The crucial tool in our analysis of thin forests is structural induction — we inductively
decompose a given forest into simpler ones. A measure of complexity of thin forests is called
a rank — a function that assigns to each thin forest a countable ordinal number. The rank
we use, denoted CB-rank (or shortly rankCB), is based on the Cantor-Bendixson derivative
on closed subsets of ωω.

Intuitively, a forest t has rankCB equal M if t contains M levels of infinite branches:
The CB-rank of the empty forest is 0,
The CB-rank of a forest with finitely many branches is 1,
if s is a prefix of t of rank 1 and for every x that is off s we have rankCB(t�x) ≤M , then
rankCB(t) ≤M + 1.

The set of forests of CB-rank bounded by a given ordinal η is denoted as AThinFor≤η.
The second tool used to analyze structural properties of thin forests are skeletons. A

skeleton can be seen as a witness that a given forest is thin. Moreover, a skeleton of a thin
forest t represents a structural decomposition of t.

A subset of nodes σ ⊆ dom(t) of a given forest t ∈ AFor is a skeleton of t if:
from every set of siblings in t exactly one is in σ,
on every infinite branch π of the forest t almost all nodes x ≺ π belong to σ.

Observe that we can identify σ with its characteristic function — a labelling of nodes of
t by {0, 1}. Therefore, σ ∈ {0, 1}For and we can treat a pair of a forest and a skeleton (t, σ)
as an element of A× {0, 1}For.

An easy inductive argument shows that a forest t has a skeleton if and only if t is a thin
forest. Moreover, for every thin forest t one can define its canonical skeleton σ(t).

3 Algebra

In this section we define thin-forest algebra. Its operations and axioms are constructed
in such a manner that the free object of this algebra is the set of all regular thin forests
and regular thin contexts. Thin-forest algebra is a common generalization of both Wilke
algebra [22] and forest algebra [6].

A thin-forest algebra is a three-sorted algebra (H,V+, V�, act, inl , inr , inf). It consists of
two monoids H and V = V+ ∪ V� (partitioned into a subsemigroup V+ and a submonoid
V�) along with an operation of left action act : H × V → H of V on H, two operations
inl , inr : H → V� and an infinite loop operation inf : V+ → H. Instead of writing act(h, v),
we write vh (notice a reversal of arguments). Instead of writing inf (v), we write v∞. We
will call H the horizontal monoid and V the vertical monoid.

The above construction is based on forest algebra (see [6]). In fact we take forest algebra
and introduce the new operation inf ; this operation corresponds to infinite composition

M. Bojańczyk, T. Idziaszek, and M. Skrzypczak 567

of contexts. However, since infinite composition is defined only for guarded contexts, we
are forced to make a distinction between guarded and non-guarded objects, therefore we
partition the sort V into two parts V+ and V� respectively.

3.1 Axioms and free objects
A thin-forest algebra must satisfy the following axioms:
A1. (H,+, 0) is a monoid with operation + and neutral element 0,
A2. (V, ·,�) is a monoid with operation · and neutral element �; it contains two disjoint

subalgebras: (V�, ·,�) is a monoid and (V+, ·) is a semigroup,
A3. (action axiom) (vw)h = v(wh) for every v, w ∈ V , h ∈ H,
A4. (insertion axiom) inl(h)g = h+ g, inr(h)g = g + h for every h, g ∈ H,
A5. (vw)∞ = v(wv)∞ for v, w ∈ V , excluding the case when v, w ∈ V�,
A6. (vn)∞ = v∞ for v ∈ V+ and every n ≥ 1.

Given an alphabet A we define the free thin-forest algebra over A, which is denoted by
AregThin4, as follows:
1. the horizontal monoid is the set of regular thin forests over A, with the operation of

forest concatenation;
2. the vertical monoid is the set of regular thin contexts over A (respectively guarded and

non-guarded), with the operation of context composition;
3. the action is the substitution of forests in contexts;
4. the inl operation takes a regular thin forest and transforms it into a regular thin context

with the hole to the right of all the roots in the forest (similarly for inr but the hole is
to the left of the roots);

5. the infinite loop operation takes a regular thin context and transforms it into a regular
thin forest by performing infinite composition.

I Theorem 3. The algebra AregThin4 is a thin-forest algebra. Moreover it is the free algebra
in the class of thin-forest algebras over the generator set A� = {a� : a ∈ A}.

Since the insertion operations are somewhat cumbersome to use, we will use the operation
+ to concatenate forests with contexts, meaning h+ v = inl(h)v, v + h = inr(h)v.

We note that it is possible to introduce an algebra where the free object would be the
set of all thin forests and all thin contexts (not only regular ones). This can be done
by generalizing ω-semigroups. However, since regular languages of forests are uniquely
described by regular forests which they contain, this more general algebra gives us the same
information about the language as thin-forest algebra. See [10] for more details.

3.2 Recognizability by thin-forest algebra and regularity
A morphism between two thin-forest algebras is defined in a natural way. A set L of thin
forests over an alphabet A is recognized by a morphism α : AregThin4 → (H,V) if L = α−1(I)
for some I ⊆ H.

We will consider terms in the signature of thin-forest algebra with typed variables. Vari-
ables can be of type τH , τV , or τV+ , which means that a valuation of a term should assign
to the variable an element of the sort H, V or V+ respectively. Similarly a term is of certain
type if a valuation of this term results in an element from the corresponding sort.

Two thin forests t, s are L-equivalent if for every term σ over the signature of thin-
forest algebra of type τH of one variable x of type τH , either both or none of the forests

STACS’13

568 Regular languages of thin trees

σ[x ← t], σ[x ← s] belong to L (note that we evaluate the term σ in the free thin-forest
algebra). Similarly we define the L-equivalence of contexts (but now the variable x is of
type τV).

The relation of L-equivalence is a congruence, and the quotient of AregThin4 with respect
to L-equivalence is the syntactic thin-forest algebra for L. The syntactic morphism of L
assigns to every element of AregThin4 its equivalence class in the syntactic thin-forest algebra
of L.

I Theorem 4. A language of thin forests is recognizable by a finite thin-forest algebra if
and only if it is regular. Every regular language of thin forests is recognizable by its syn-
tactic morphism. The syntactic thin-algebra and the syntactic morphism can be effectively
calculated, based on a parity automaton.

Let L be a regular language of thin forests and α : AregThin4 → (H,V) its syntactic
morphism. We say that an element h ∈ H is the bottom element for L if α−1(h) ∩ L = ∅
and vh = h for every v ∈ V .

Note that the bottom element is unique, since if h1 and h2 are both bottom elements,
then h1 = (�+ h2)h1 = h1 + h2 = (h1 +�)h2 = h2.

4 Applications of thin-forest algebra

In this section we show how thin-forest algebra can be used to give decidable characteriza-
tions of certain properties of languages. Many such characterizations boil down to checking
whether the syntactic algebra of a given regular language satisfies a set of identities. An
identity is a pair of terms (of the same type) in the signature of thin-forest algebra over
typed variables. An algebra satisfies an identity if for every valuation the two terms have
the same value. We usually assume that the operation v 7→ vω is a part of the signature.
This operation assigns to every v ∈ V its idempotent power, i.e. such a power vk that
satisfies vk · vk = vk. For every v there exists a unique idempotent power, since V is a
semigroup [16] (the number k is not unique, but the value vk is).

In the following subsections we show how to decide whether a given regular language of
thin forests is commutative, invariant under bisimulation, open in the standard topology,
and definable by a formula of the temporal logic EF.

4.1 Commutative languages
The notion of commutative language of finite forests is quite natural: it is a language closed
under rearranging of siblings. In the case of finite forests, a language is commutative if and
only if its syntactic algebra satisfies the identity

h+ g = g + h for g, h ∈ H. (1)

In the case of infinite forests we have more flexibility. We get different “degrees of
commutativity” by allowing rearranging of siblings finitely many times, finitely many times
on every branch, or arbitrarily many times. We think that the last (unrestricted) definition
is the most appealing. However, it is not captured by the identity (1). Consider the language
L = “every node has 0 or 2 children and every branch goes left only finite number of times”.
The language L does satisfy (1), but it is not commutative, as witnessed by two thin forests
a(a0 +a�)∞ ∈ L, a(a�+a0)∞ 6∈ L. The problem with the above example is that we would
like to be able not only to rearrange forests, but also to rearrange a forest with a context.
This property is expressed by the following identity:

M. Bojańczyk, T. Idziaszek, and M. Skrzypczak 569

I Theorem 5. A regular language of thin forests L is commutative if and only if its syntactic
thin-forest algebra satisfies the identity

h+ v = v + h for h ∈ H and v ∈ V .

Identity (1) corresponds to a weaker notion of commutativity, where on every branch we
allow only finite number of rearrangements of siblings (see [10]).

4.2 Languages invariant under bisimulation
Two forests t0 and t1 are called bisimilar if Duplicator wins the following game, which
is played by players Spoiler and Duplicator. Spoiler begins the game by choosing some
i ∈ {0, 1} and a root node xi of the forest ti. Duplicator responds by chosing a root node
x1−i of the other forest t1−i, which has the same label (if no such node exists, the game
is terminated and Spiler wins). For i ∈ {0, 1}, let si be the forest obtained by taking the
subtree of ti rooted in xi and removing the root. If Duplicator did not lose, then a new
round of the game is played with the forests being s0 and s1. Duplicator wins if infinitely
many rounds are played without Spoiler winning.

A language of thin forests L is called invariant under bisimulation if for every forests
which are bisimilar, either both or none belong to L.

I Theorem 6. A regular language of thin forests L is invariant under bisimulation if and
only if its syntactic thin-forest algebra satisfies the following identities:

h+ v = v + h, h+ h = h, (w∞ +w)∞ = w∞ for v ∈ V , w ∈ V+ and h ∈ H.

4.3 Open languages
In this section we give a characterization of the class of languages that are open in the
standard topology on forests (see Section 2.3). An equivalent definition says that a forest
language L is open if for every forest t ∈ L there is a finite prefix of t such that changing nodes
outside of the prefix does not affect membership in L. Checking whether a given regular
forest language L is open was known to be decidable, our contribution lies in showing that
for thin forests it can be done by testing the syntactic morphism of L:

I Theorem 7. A regular language of thin forests L is open if and only if its syntactic
morphism α : AregThin4 → (H,V) satisfies the following condition for v ∈ V+ and h ∈ H:

if v∞ ∈ α(L) then vωh ∈ α(L).

The notion of open sets is also applicable to the case of infinite words. It is interesting
to note that the above condition also characterizes open languages of infinite words.

Moreover, one can extend the theory of ordered algebras (see [16]) to thin-forest algebras.
Then the above condition could be simply stated as v∞ ≥ vωh.

4.4 Temporal logic EF
The logic EF is a simple temporal logic which uses only one operator EF, which stands for
“Exists Finally”. Formulas of the logic EF are defined as follows:
1. every letter a is an EF formula, which is true in trees with root label a,
2. EF formulas admit Boolean operations, including negation,

STACS’13

570 Regular languages of thin trees

3. if ϕ is an EF formula, then EFϕ is an EF formula, which is true in trees that have a
proper subtree where ϕ is true.

A tree t satisfies an EF formula ϕ if ϕ holds in the root of the tree t. There are some
technical difficulties with generalizing this definition to forests, therefore we will only allow
Boolean combinations of formulas of the form ϕ ∨ EFϕ to describe forests (we call them
forest EF formulas; a forest t satisfies such a formula if ϕ holds in any node of t).

A forest language L is invariant under EF-bisimulation if for every forests t0, t1 which
are EF-bisimilar either both or none belong to L. The relation of EF-bisimilarity is similar
to the relation of bisimilarity, but in the game Spoiler chooses an arbitrary node xi of ti (not
necessarily a root), and Duplicator responds with an arbitrary node x1−i of t1−i. Note that
if t1, t2 are EF-bisimilar and ϕ is an forest EF formula then t1 |= ϕ if and only if t2 |= ϕ.

The following theorem (in a version for general infinite forests) was proved in [4]:

I Theorem 8. A regular language of thin forests L can be defined by a forest EF formula if
and only if
1. it is invariant under EF-bisimulation,
2. its syntactic thin-forest algebra satisfies the identity

vωh = (v + vωh)∞ for v ∈ V+ and h ∈ H.

For forests that are not necessarily thin, we could not find how to express the first
condition in terms of identities. We show how to do it in the case of thin forests:

I Theorem 9. A regular language of thin forests L is invariant under EF-bisimulation if and
only if its syntactic thin-forest algebra satisfies the identities for v, u ∈ V , w ∈ V+, h ∈ H:

h+ v = v + h, vh = vh+ h, (w + (wv)∞)∞ = (wv)∞, (wvu)∞ = (wuv)∞.

5 Descriptive properties

5.1 Automata
First we show that it is possible to recognize regular languages of thin forests using „simple”
automata.

I Theorem 10. Every regular language of thin forests can be recognized among all forests
by a (1, 3)-automaton.

The principal idea is to guess a skeleton of a given forest and use nondeterministic Büchi
automata on the branches of this skeleton to verify the types in the syntactic algebra.

The following theorem expresses that the collapse from Theorem 10 is the best we can
get from the point of view of the alternating index hierarchy (also known as the Rabin-
Mostowski hierarchy).

I Theorem 11. There exists a regular language of thin forests L that is not recognizable
among all forests by any alternating (1, 2)-automaton nor any alternating (0, 1)-automaton.

The following theorem shows that regular languages of thin forests can be recognized by
unambiguous automata relatively to thin forests. It is especially interesting, since there are
regular languages of forests that are not unambiguous, one of the examples is the language
„exists a node labelled by the letter a” (see [8]). The following theorem implies that the
language of thin forests containing a letter a is unambiguous among thin forests.

M. Bojańczyk, T. Idziaszek, and M. Skrzypczak 571

I Theorem 12. For every regular language of thin forests L there exists a nondeterministic
forest automaton A such that L(A)∩AThinFor = L and for every thin forest t ∈ L there exists
exactly one accepting run of A on t.

The proof is based on a modification of a technique (called algebraic automata) proposed
by Marcin Bilkowski [1]. The idea is the following: we construct an automaton A that guesses
a marking τ of nodes of the given forest t by types in the syntactic algebra of L. Then A
runs on top of τ a deterministic top-down automaton verifying the following property:

For every node x and every infinite branch π that goes through x, the type guessed
in x is consistent with the guessed types of nodes that are off π and letters of t on π.

5.2 Languages that are WMSO-definable among all forests
In this section we consider a nonstandard approach to restricting the family of all forests to
thin ones. In this setting we show that it is decidable whether a given regular language of
thin forests is WMSO-definable. The difference between the standard approach and the one
used in this section is that we do not implicitly restrict our universe to thin forests.

I Definition 13. Let L be a regular language of thin forests and ϕ be a formula of WMSO.
We say that ϕ defines L among all forests if L =

{
t ∈ AFor : t |= ϕ

}
.

Note that the class of languages definable in WMSO among all forests is not closed under
complement with respect to thin forests: the relative complement of the empty language
∅ ⊆ AThinFor is AThinFor which is not WMSO-definable among all forests.

The following fact says that even in this restricted setting we can define languages as
complicated as in the general case.

I Fact 14. The examples of WMSO-definable languages lying arbitrarily high on the finite
levels of the Borel hierarchy (see [20]) can be encoded into thin forests in a way WMSO-
definable among all forests.

The main result of this section is the following characterization.

I Theorem 15. Let L be a regular language of thin forests. The following conditions are
equivalent:
1. there exists M ∈ N such that every forest t ∈ L satisfies rankCB(t) ≤M ,
2. L is WMSO-definable among all forests,
3. L is not Π1

1(AFor)-hard,
4. the syntactic morphism for L satisfies the following condition:

if h = v(w + h)∞ or h = v(h+ w)∞ for some v ∈ V,w ∈ V+,
then h is the bottom element for L. (2)

The following list presents a sketch of the argumentation.
From 1 to 2. A direct construction of a formula.
From 2 to 3. Folklore.
From 3 to 4. A pumping argument: a counterexample to the equations can be used to

construct a continuous function f from the space of trees over ω to AFor. If a given
tree t is well-founded (does not contain an infinite branch) then the result f(t) is in L.
Otherwise the result f(t) is not thin, therefore does not belong to L. Since the set of
well-founded trees over ω is Π1

1-hard then so is L (f is a continuous reduction).

STACS’13

572 Regular languages of thin trees

From 4 to 1. Estimating: condition (2) introduces an order on types in H. The height of
this order bounds the maximal CB-rank of forests in the language L.

Note that the last condition in the theorem is effective, therefore we obtain the following
corollary.

I Corollary 16. It is decidable whether a given regular language of thin forests L is WMSO-
definable among all forests.

I Proposition 17. Assume that L is a regular language of forests that is recognized by a
nondeterministic (or equivalently alternating) (1, 2)-automaton. Assume additionally that
L contains only thin forests. Then L can be defined in WMSO among all forests.

Proof. Since L is recognizable by a (1, 2)-automaton so L is an analytic subset of AFor.
Therefore, L cannot be Π1

1-hard, thus L satisfies the condition 3 in Theorem 15. J

5.3 Topological properties
In this section we give a couple of results showing that regular languages of thin forests are
topologically simpler then generic regular languages of forests.

I Theorem 18. Every regular language of thin forests L is co-analytic as a set of forests.

Note that despite the fact that the space of thin forests AThinFor is co-analytic among all
forests, it contains arbitrarily complicated subsets. In fact, already the family of forests of
CB-rank equal 1 is an uncountable Polish topological space, so the whole boldface hierarchy
(see Section 2.3) can be constructed using only such forests.

Theorems 15 and 18 imply the following dichotomy or gap property in the spirit of [15].
I Remark. For every regular language of thin forests L exactly one of the following possib-
ilities holds, it can be effectively decided which one:

L is WMSO-definable among all forests and lies on a finite level of the Borel hierarchy,
L is Π1

1(AFor)-complete.

The following theorem shows that, when treating thin forests as our universe, there are
no topologically hard regular languages.

I Theorem 19. Let X be a Polish topological space, f : X → AThinFor be continuous and L
be a regular language of thin forests. Then f−1(L) is Borel in X.

The following theorem can be seen as complementing Theorem 19.

I Theorem 20. There exists a regular language of thin forests LW over an alphabet AW
that is Borel-hard: for every Polish topological space X and every Borel set B ⊆ X there
exists a continuous function f : X → AW

ThinFor such that f−1(LW) = B.

The principal concept of the above language is based on a construction proposed in [9].
Using the structure of the language LW one can deduce the following corollary.

I Corollary 21. The language LW cannot be defined in WMSO among thin forests.
This statement holds true even if we provide with every forest t ∈ AW ThinFor its canonical

skeleton σ(t): there is no WMSO formula ϕ over the alphabet AW × {0, 1} such that

LW =
{
t ∈ AW ThinFor : (t, σ(t)) |= ϕ

}
.

M. Bojańczyk, T. Idziaszek, and M. Skrzypczak 573

Acknowledgements

The authors would like to thank Henryk Michalewski for posing a number of motivating
problems and questions on the subject. Additionally, the authors thank the referees for
suggestions and comments.

References
1 M. Bilkowski. Algebraic automata. Private communication, 2011.
2 A. Blumensath. Recognisability for algebras of infinite trees. Theor. Comput. Sci.,

412(29):3463–3486, 2011.
3 M. Bojańczyk. Effective characterizations of tree logics. In PODS, pages 53–66, 2008.
4 M. Bojańczyk and T. Idziaszek. Algebra for infinite forests with an application to the

temporal logic EF. In CONCUR, pages 131–145, 2009.
5 M. Bojańczyk and T. Place. Regular languages of infinite trees that are boolean combina-

tions of open sets. In ICALP, pages 104–115, 2012.
6 M. Bojańczyk and I. Walukiewicz. Forest algebras. In Logic and Automata, pages 107–132,

2008.
7 J.R. Büchi. On a decision method in restricted second-order arithmetic. In Proc. 1960 Int.

Congr. for Logic, Methodology and Philosophy of Science, pages 1–11, 1962.
8 A. Carayol, Ch. Löding, D. Niwiński, and I. Walukiewicz. Choice functions and well-

orderings over the infinite binary tree. CEJM, 8:662–682, 2010.
9 S. Hummel, H. Michalewski, and D. Niwiński. On the Borel inseparability of game tree

languages. In STACS, pages 565–575, 2009.
10 T. Idziaszek. Algebraic methods in the theory of infinite trees. PhD thesis, University of

Warsaw, 2013. Unpublished.
11 A. Kechris. Classical descriptive set theory. Springer-Verlag, New York, 1995.
12 M. Kufleitner and A. Lauser. Languages of dot-depth one over infinite words. In LICS,

pages 23–32, 2011.
13 S. Lifsches and S. Shelah. Uniformization and skolem functions in the class of trees. J.

Symb. Log., 63(1):103–127, 1998.
14 F. Murlak. The Wadge hierarchy of deterministic tree languages. LMCS, 4(4), 2008.
15 D. Niwiński and I. Walukiewicz. A gap property of deterministic tree languages. TCS,

1(303):215–231, 2003.
16 D. Perrin and J.-É. Pin. Infinite Words: Automata, Semigroups, Logic and Games. Elsevier,

2004.
17 M.O. Rabin. Decidability of second-order theories and automata on infinite trees. Bull.

Amer. Math. Soc., 74:1025–1029, 1968.
18 M.P. Schützenberger. On finite monoids having only trivial subgroups. Inf. and Cont.,

8(2):190–194, 1965.
19 I. Simon. Piecewise testable events. In Automata Theory and Formal Languages, pages

214–222, 1975.
20 J. Skurczyński. The Borel hierarchy is infinite in the class of regular sets of trees. TCS,

112(2):413–418, 1993.
21 D. Thérien and T. Wilke. Over words, two variables are as powerful as one quantifier

alternation. In STOC, pages 234–240, 1998.
22 T. Wilke. Classifying discrete temporal properties. Habilitationsschrift, Universitat Kiel,

apr. 1998.
23 Thomas Wilke. An algebraic theory for regular languages of finite and infinite words. Int.

J. Alg. Comput., 3:447–489, 1993.

STACS’13

Approximate comparison of distance automata∗

Thomas Colcombet and Laure Daviaud

Université Sorbonne Paris Cité, Cnrs, Liafa

Abstract
Distance automata are automata weighted over the semiring (N ∪ {∞},min,+) (the tropical
semiring). Such automata compute functions from words to N ∪ {∞} such as the number of
occurrences of a given letter. It is known that testing f 6 g is an undecidable problem for
f, g computed by distance automata. The main contribution of this paper is to show that an
approximation of this problem becomes decidable.

We present an algorithm which, given ε > 0 and two functions f, g computed by distance
automata, answers “yes” if f 6 (1−ε)g, “no” if f 66 g, and may answer “yes” or “no” in all other
cases. This result highly refines previously known decidability results of the same type.

The core argument behind this quasi-decision procedure is an algorithm which is able to
provide an approximated finite presentation to the closure under products of sets of matrices
over the tropical semiring.

We also provide another theorem, of affine domination, which shows that previously known
decision procedures for cost-automata have an improved precision when used over distance auto-
mata.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Distance automata, tropical semiring, decidability, cost functions

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.574

1 Introduction

One way to see language theory, and in particular the theory of regular languages, is as a
toolbox of constructions and decision procedures allowing high level handling of languages.
These high level operations can then be used as black-boxes in various decision procedures,
such as in verification. Since the early times of automata theory, the need for the effective
handling of functions rather than sets (as languages) was already apparent. Schützenberger
proposed already in the sixties models of finite state machines used for computing functions.
These are now known as weighted automata [11] and are the subject of much attention from
the research community. In general, weighted automata are non-deterministic automata,
weighted over some semiring (S,⊕,⊗). The value computed by such an automaton over a
given word is then the sum (for ⊕) over every run over this word of the product (for ⊗) of
the weights along the run.

Several instances of this model are very relevant for modelling the behaviour of systems,
and henceforth attract much attention. This is in particular the case of probabilistic
automata (over the semiring (R+,+,×) with some additional constraints enforcing weights
to remain in [0, 1]), and distance automata which are automata weighted over the semiring
(N ∪ {∞},min,+). In such an automaton, each transition is labelled with a non-negative
integer (usually 0 or 1), and the weight of a word is the minimum over all possible paths of

∗ The research leading to these results has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement no259454.

© Thomas Colcombet and Laure Daviaud;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 574–585

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.574
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

T. Colcombet and L. Daviaud 575

the sum of the weights. These automata naturally capture some optimisation problems since
computing the value amounts to find the path of minimal weight.

The subject of this paper is to develop algorithmic tools for distance automata, and
more precisely to develop the question of comparing distance automata. We know from the
beginning that exact comparison is beyond reach.

I Theorem 1 (Krob [7]). The problem to determine, given two functions f, g computed by
distance automata, whether f = g or not is undecidable. The problem whether f 6 g or not
is also undecidable, even if g is deterministic.

Despite this, some positive results exist but for a comparison relation less precise than
inequality, namely domination. Given two functions A∗ → N ∪ {∞}, f is dominated by g
(and we note f 4 g) if there is a function α : N→ N, extended with α(∞) =∞, such that

f 6 α ◦ g .

Moreover, if α is a polynomial, we say that f is polynomially dominated by g. The following
theorem shows the good properties of the domination relation.

I Theorem 2 ([2] extending results and techniques from [4, 9, 13, 6, 1]). Given two functions
computed by distance automata, domination is decidable. Furthermore, if a function dominates
another, then it polynomially dominates it1.

The motivation of this work is to improve Theorem 2 and to answer the following question:

Is it possible to decide “approximations” of the inequality of functions computed by
distance automata that are finer than domination ?

We answer positively this question in two ways. We first show:

I Theorem 3 (affine domination). Given two functions f and g computed by distance
automata, if f is dominated by g then f is affinely dominated by g, i.e., f 6 α ◦ g for some
polynomial α of degree 1.

A consequence of this theorem is that the decision procedure provided by Theorem 2 in
fact decides the affine domination, which is finer than the polynomial domination2.

Our second, and main contribution is an even more accurate decision-like procedure. One
says that an algorithm, given two functions f and g and some real ε > 0, ε-approximates the
inequality if:

if f 6 (1− ε)g, the output is “yes”,
if f 66 g, the output is “no”,
otherwise the output can be either “yes” or “no”.

Hence, if such an algorithm answers “yes”, one has a guaranty that f 6 g. Conversely if f is
ε-inferior to g (meaning f 6 (1 − ε)g), one is sure that the algorithm answers “yes”. Our
second and main result reads as follows:

I Theorem 4 (approximate comparison). There is an EXPSPACE algorithm which ε-
approximates the inequality of functions computed by distance automata.

1 Technically, this is not stated in [2] , but can be derived directly from the proofs which explicitly
compute the function α using operations preserving polynomials.

2 Theorem 2 holds for more general classes of automata, cost automata, for which affine domination does
not hold. Affine domination is specific to distance automata.

STACS’13

576 Approximate comparison of distance automata

This result is in fact a consequence of a theorem – called the core theorem below – stating
that it is possible, given a set of matrices X in the tropical semiring, to approximate (in a
suitable way) the set {

1
`

(M1 ⊗ · · · ⊗M`) : M1, . . . ,M` ∈ X
}
,

where ⊗ denotes the product of matrices. More precisely, the core theorem states that it is
possible to approximate the upper envelope of the set of pairs

{(M1 ⊗ · · · ⊗M`, `) : M1, . . . ,M` ∈ X}

for a suitable notion of approximation. This core theorem, Theorem 6, will be described
precisely in the first section of this paper.

In Section 2 we present some classical definitions and formally state our core theorem.
Section 3 is devoted to the proof of the core theorem. Section 4 applies the core theorem for
answering our original motivation, and shows the decidability of the approximate comparison
between distance automata. We prove on the way our result of affine domination, Theorem 3.
Section 5 concludes the paper.

2 Description of the core theorem

In this first section, we introduce the basic definitions, and define sufficient material for
stating our core theorem 6. Its proof is the subject of Section 3 and its application to the
comparison of distance automata is the subject of Section 4. We first introduce some classical
algebraic definitions in Section 2.1, and finally state our core theorem in Section 2.2.

2.1 Classical definitions
A semigroup (S, ·) is a set S equipped with an associative binary operation “·”. If the

product has furthermore a neutral element, it is called a monoid. The monoid is said
commutative when · is commutative. An idempotent in a monoid is an element e such that
e · e = e. Given a subset A of a semigroup, 〈A〉 denotes the closure of A under product,
i.e., the least sub-semigroup that contains A. Given two subsets X,Y of a semigroup, X · Y
denotes the set {a · b : a ∈ X, b ∈ Y }.

A semiring is a set S equipped with two binary operations ⊕ and ⊗ such that (S,⊕) is
a commutative monoid of neutral element 0, (S,⊗) is a monoid of neutral element 1, 0 is
absorbing for ⊗ (i.e., x⊗ 0 = 0⊗ x = 0) and ⊗ distributes over ⊕. We will consider three
semirings: (R+ ∪ {∞},min,+), denoted R+, its restriction to N ∪ {∞}, denoted N, and its
restriction to {0,∞} denoted B. The third, finite semiring is called the Boolean semiring,
since if we identify 0 with “true” and ∞ with “false”, then ⊕ is the disjunction and ⊗ the
conjunction. Remark that in the three cases, the “0” is ∞, and the “1” is 0.

Let S be R+, N or B. The set of matrices with m rows and n columns over S is denoted
Mm,n(S). For M ∈Mm,n(S), we denote by M̃ the matrix over B in which all entries of M
different from ∞ are changed into 0. We define the multiplication A⊗ B of two matrices
A,B (provided the number n of columns of A equals the number of rows of B) as usual by:

(A⊗B)i,j =
⊕

0<k6n
(Ai,k ⊗Bk,j) = min

0<k6n
(Ai,k +Bk,j) .

For a positive integer k, we also use the notation Mk = M ⊗ · · · ⊗M︸ ︷︷ ︸
k times

.

T. Colcombet and L. Daviaud 577

For λ ∈ S, we denote by λA the matrix such that (λA)i,j = λAi,j , with the convention
λ∞ =∞ (the standard product is used here, not the one of the semiring). We denote also
by B + λ the matrix such that (B + λ)i,j = Bi,j + λ. Finally, we write A 6 B if for all i, j,
Ai,j 6 Bi,j .

2.2 Weighted matrices and the core theorem
In this section we state our core approximation result, Theorem 6. This theorem states

that given a set of weighted matrices, it is possible to compute a finite presentation of its
closure under product up to some approximation. Hence we have to introduce weighted
matrices, the approximation, and what are finite presentations before disclosing the statement.
This requires some specific definitions that we present beforehand. We fix now a positive
integer n, and all matrices implicitly belong toMn,n(R+).

As already mentioned in the introduction, our goal is to approximate a set of pairs (M, `)
where M is a matrix and ` is a positive integer. We call such pairs weighted matrices. A
weighted matrix is an ordered pair (M, `) where M ∈Mn,n(R+) and ` is a positive integer.
The positive integer ` is called the weight of the weighted matrix. The set of weighted
matrices is denoted by Wn,n. Weighted matrices have a semigroup structure (Wn,n,⊗),
where (M, `)⊗ (M ′, `′) stands for (M ⊗M ′, `+ `′). Given A,B subsets of Wn,n, one denotes
by A ⊗ B the set {M ⊗ N : M ∈ A, N ∈ B}, and by 〈A〉 the closure under ⊗ of A.
With this terminology, our goal is, given a finite set of weighted matrices X, to approximate
〈X〉. (Intuitively, if (M, `) is a weighted matrix, M represents the behaviour of a distance
automaton that computes a function f , over a word w, while ` stands for the lengths of w.
So, weighted matrices let us compare f(w) with |w| which is exactly what we want. The
operation ⊗ between two weighted matrices matches with the concatenation of words, i.e.
the product in the tropical semiring for matrices and the sum for lengths.)

We describe now the notion of approximation that we use. Given some ε > 0 and two
weighted matrices (M, `) and (M ′, `′), one writes

(M, `) 4ε (M ′, `′) if ` > `′, M̃ = M̃ ′ and M 6M ′ + ε` .

Remark that in particular, this implies 1
`M 6 1

`′M
′ + ε, which is the intention behind this

definition. The definition of 4ε is more constraining: this is mandatory for having better
properties with respect to the product of matrices, such as in Lemma 5 below. This definition
extends to sets of weighted matrices as follows. Given two such sets X,X ′, X 4ε X ′ if for
all (M, `) ∈ X, there exists (M ′, `′) ∈ X ′ such that (M, `) 4ε (M ′, `′). One writes X ≈ε X ′
if X 4ε X ′ and X ′ 4ε X (and says X is ε-equivalent to X ′).

The following lemma establishes some simple properties of the 4ε relations (as a con-
sequence, the same properties hold for ≈ε).

I Lemma 5. Given X,X ′, Y, Y ′, Z ⊆ Wn,n and ε, η > 0,
if X 4ε Y and Y 4η Z then X 4ε+η Z,
if X 4ε X ′ and Y 4ε Y ′ then X ⊗ Y 4ε X ′ ⊗ Y ′,
if X 4ε X ′ then 〈X〉 4ε 〈X ′〉.

Proof. First item. If (M, `) 4ε (M ′, `′) 4η (M ′′, `′′), then ` > `′ > `′′, M̃ = M̃ ′ = M̃ ′′ and
M 6 M ′ + ε` 6 M ′′ + η`′ + ε` 6 M ′′ + (ε + η)`. This easily extends to sets of weighted
matrices.

Second item. Assume (M, `) 4ε (M ′, `′) and (N, t) 4ε (N ′, t′). Then, ` + `′ > t + t′,
M̃ ⊗N = M̃ ′ ⊗N ′ and M ⊗N 6 (M ′+ ε`)⊗ (N ′+ εt) 6M ′⊗N ′+ ε(`+ t). This naturally
extends to sets of weighted matrices.

STACS’13

578 Approximate comparison of distance automata

Third item. By induction, applying the second item. J

The last ingredient required is to describe how to represent (infinite) sets of weighted
matrices. Call a set of weighted matrices W ⊆ Wn,n finitely presented if it is a finite union
of singleton sets, and of sets of the form {(kM, k) : k > `} where M ∈Mn,n(R+) and ` is a
positive integer. Our algorithm manipulates finitely presented sets of weighted matrices.

The core technical contribution of this paper can now be stated, as follows.

I Theorem 6 (core theorem). Given X ⊆ Wn,n finitely presented and ε > 0, one can compute
effectively Y ⊆ Wn,n finitely presented such that:

Y ≈ε 〈X〉 .

A sketch of the proof of this result will be the subject of Section 3. The application of
this theorem to the comparison of distance automata is presented in Section 4. The two
sections are independent.

3 Proof of the core theorem

In this section we describe the key arguments involved in the proof of Theorem 6. It is
the combination of several arguments. The first one is the use of the forest factorisation
theorem of Simon.

3.1 The main induction: the forest factorization theorem of Simon
The forest factorization theorem of Simon [12] is a powerful combinatorial tool for

understanding the structure of finite semigroups. In this short abstract, we will not describe
the original statement of this theorem, in terms of trees of factorisations, but rather a direct
consequence of it which is central in our proof.

I Theorem 7 (equivalent to the forest factorization theorem [12]3). Given a semigroup
morphism ϕ from (S,⊗) (possibly infinite) to a finite semigroup (T, ·), and some X ⊆ S, set
X0 = X and for all k > 0,

Xk+1 = Xk ∪Xk ⊗Xk ∪
⋃

e is idempotent ∈T
〈Xk ∩ ϕ−1(e)〉 ,

then 〈X〉 = XN for N = 3|T | − 1.

This proposition teaches us that, for computing the closure under product in the semigroup
S, it is sufficient to know how to compute (a) the union of sets, (b) the product of sets, and
(c) the restriction of a set to the inverse image of an idempotent by ϕ, and (d) the closure
under product of sets of elements that all have the same idempotent image under ϕ. Of
course, this proposition is interesting when the semigroup T is cleverly chosen.

In our case, we are going to use the above proposition with (S,⊗) = Wn,n, (T, ·) =
Mn,n(B), and ϕ the morphism which maps (M, `) to M̃ . Our algorithm will compute, given
a finitely presented set of weighted matrices X, an approximation of 〈X〉 following the same
inductive construction as in the forest factorisation theorem. This is justified by the two
following lemmas, for which we provide the sketch of a proof.

3 Modern proofs of this theorem can be found in [8, 3], in particular with the exact bound of N = 3|T | − 1
(Simon’s original proof only provides N = 9|T |).

T. Colcombet and L. Daviaud 579

I Lemma 8. For all ε > 0 and all finitely presented sets X,Y ⊆ Wn,n there exists effectively
a finitely presented set product(ε,X, Y) ⊆ Wn,n such that

product(ε,X, Y) ≈ε X ⊗ Y .

Given a set X of weighted matrices, let us set X̃ = {M̃ | (M, `) ∈ X}.

I Lemma 9. For all ε > 0 and all finitely presented set X ⊆ Wn,n such that X̃ = {e} for
an idempotent e, there exists effectively a finitely presented set idempotent(ε,X) ⊆ Wn,n

such that
idempotent(ε,X) ≈ε 〈X〉 .

Assuming that Lemmas 8 and 9 hold, it is easy to provide an algorithm which, given
X ⊆ Wn,n finitely presented, computes X ′ ⊆ Wn,n finitely presented such that X ′ ≈ε 〈X〉.
The principle of the algorithm is to implement Theorem 7, using finitely presented sets that
approximate the Xk’s.

Set Y0 = X and N = 3(2n2)− 1 = 3|Mn,n(B)| − 1.
For all 0 6 k 6 N , set ε(k) = ε

2N−k and

Yk+1 = Yk ∪ product(ε(k), Yk, Yk) ∪
⋃

e⊗e=e∈Mn,n(B)

idempotent(ε(k), Yk ∩ ϕ−1(e)) .

output YN
Correction can be justified as follows: one proves by induction that Yk ≈ε(k) Xk for all
k = 0, . . . , N where Xk is defined as in Theorem 7 (with S = Wn,n, T = Mn,n(B) and
ϕ(M, `) = M̃). For k = 0, one has Xk = X = Yk. Let k > 0, suppose that Yk ≈ε(k) Xk, then
by Lemma 8, Lemma 5 and the induction hypothesis,

product(ε(k), Yk, Yk) ≈ε(k) Yk ⊗ Yk ≈ε(k) Xk ⊗Xk .

Finally, by Lemma 5, product(ε(k), Yk, Yk) ≈2ε(k) Xk ⊗Xk. Similarly, by Lemma 9, for all
idempotent e, idempotent(ε(k), Yk∩ϕ−1(e)) ≈2ε(k) 〈Xk∩ϕ−1(e)〉. Thus Yk+1 ≈ε(k+1) Xk+1.

Hence, what remains to be done is to establish Lemmas 8 and 9.

3.2 Approximate products of sets
In this part, we give the main ideas of the proof of Lemma 8. It shows explicit examples

of the approximation arguments that are used in a more advanced way for proving Lemma 9.

Proof of Lemma 8. Since the finitely presented sets of weighted matrices are closed under
union, it is sufficient to prove Lemma 8 for the atomic blocks of the finite presentation.
Namely, it is sufficient to consider the case X = {(M,x)} or X = {(`M, `) | ` > x} together
with Y = {(N, y)} or Y = {(`N, `) | ` > y}. This results in four possibilities, among which
only three remain up to symmetry: (a) X = {(M,x)} and Y = {(N, y)}, (b) X = {(M,x)}
and Y = {(`N, `) | ` > y}, and finally (c) X = {(`M, `) | ` > x} and Y = {(`N, `) | ` > y}.

Let us explain the most interesting case, case (c). Let a be the maximum absolute value
of a non-infinite entry of M or N . Choose some z such that 2ax 6 εz and 2ay 6 εz, and let
Z be the set Z1 ∪ Z2 defined by:

Z1 = {(x′M ⊗ y′N, x′ + y′) | x′ + y′ < z} ,
and Z2 = {(`(λM ⊗ (1− λ)N), `) | ` > z, λ ∈ [0, 1]} .

STACS’13

580 Approximate comparison of distance automata

The set Z1 is finite, and merely lists all weighted matrices of weight less than z in X ⊗ Y .
The set Z2 (which is not finitely presented) takes all barycentres of M and N , and produces
corresponding weighted matrices for all possible weights greater or equal to z. We need to
prove two things. First that Z ≈ ε

2
X⊗Y , and second that one can further approximate Z2 by

a finitely presented set Z3 ≈ ε
2
Z2. By Lemma 5 we can then conclude that X⊗Y ≈ε Z1∪Z3,

and that Z1 ∪ Z3 is finitely presented and computable from X and Y .
Let us prove that Z ≈ ε

2
X ⊗ Y . Remark first that X ⊗ Y ⊆ Z. For the converse

direction, consider (W, `) ∈ Z. Clearly, if ` < z, then (W, `) ∈ Z1 ⊆ X ⊗ Y . Otherwise,
W = (λ`M) ⊗ ((1 − λ)`N). It is sufficient for us to find x′ > x and y′ > y such that
x′ + y′ = `, and

∣∣∣λ− x′

`

∣∣∣ 6 ε
2a : indeed, assuming the existence of such x′, y′, the matrix

W ′ = (x′M ⊗ y′N, `) is such that (W, `) ≈ ε
2

(W ′, `), and furthermore (W ′, `) ∈ X ⊗ Y . For
proving the existence of such x′, y′, consider the evolution of the value x′

` when x′ ranges
from x to ` − y. Since ` > z, x` 6 ε

2a , and similarly `−y
` > 1 − ε

2a . Furthermore when x′

increases of 1, the quantity x′

` increases of at most 1
z 6 ε

2a . As a consequence, x
′

` gets to be
ε

2a -close of any λ ∈ [0, 1] when x′ ranges from x to `− y. Consider x′ witnessing this fact
and set y′ = `− x′. The pair x′, y′ satisfies the requirement.

One now needs defining a set Z3 ≈ ε
2
Z2 which is finitely presented. The set Z3 is defined

as the set Z2, but for the fact that λ is discretized by steps of ε
4a . This can be written as:

Z3 =
⋃

λ∈([0,1]∩ ε
4aN)
{(`(λM ⊗ (1− λ)N), `) | ` > z} .

Clearly, this set is finitely presented. It is also simple to prove that Z3 ≈ ε
2
Z2. J

4 Comparing distance automata

In this section, we consider the problem of comparing the functions computed by distance
automata. In particular, we establish Theorem 3, and we reduce Theorem 4 to our core
theorem, Theorem 6. We start by describing distance automata, and their relationship with
matrices over the tropical semiring (Section 4.1).

4.1 Distance automata
An alphabet is a finite set of symbols. The set of words over an alphabet A is denoted A∗.

A distance automaton is a tuple (A, Q, I, F, T), where Q is a finite set of states (that we can
assume to be {1, . . . , n}) where I (resp. T) is a row-vector (resp. column-vector) indexed by
Q, and F is a morphism from words toMn,n(N). The function f computed by a distance
automaton (A, Q, I, F, T) over an input word u is:

f : A∗ → N
u 7→ I ⊗ F (u)⊗ T .

We assume from now on that the initial and final vectors I, T of distance automata only
range over {0,∞}. The theorems are equally true without this assumption, but this simplifies
slightly the proof. In practice the theorems without this restriction can be obtained by simple
reductions to this case.

We have defined so far distance automata in terms of matrices. One can see this object
in a more “automaton” form as follows. There is a transition labelled (a, x) from state p to
state q if x <∞ and x = F (a)p,q. A state p is initial if I1,p = 0. It is final if Ti,1 = 0. An
example of distance automaton is as follows:

T. Colcombet and L. Daviaud 581

p q r

a, b : 0

b : 0

a : 1

b : 0

a, b : 0

One can redefine the function computed by a distance automaton as follows. A run of an
automaton over a word a1 . . . ak is a sequence p0, . . . , pk of states. The weight of a run is
the sum of the weights of its transitions, i.e., F (a1)p0,p1 + · · ·+ F (ak)pk−1,pk

. Remark that
if there is some non-existing transition in this sequence, say from pi−1 to pi, this means that
F (ai)pi−1,pi

=∞, and as a consequence the run has an infinite weight. A run is accepting if
p0 is initial and pk is final. One defines the function accepted by the automaton as:

f : A∗ → N
u 7→ inf{weight(ρ) : ρ accepting run over u} .

This definition is equivalent to the matrix version presented above.
For instance, the function computed by the above automaton associates to each word

u = an0ban1 . . . bank the value min(n0, . . . , nk).

4.2 Superior limits
In this section, we present Theorem 10 which allows us to compute the superior limit of

some infinite set of matrices.
In order to define the superior limit of a set of matrices, a topology is required. The

matrices over N are equipped with the following metric. When two matrices are distinct,
their distance is 1/n where n is the maximal positive integer such that the entries that carry
values at most n are the same in both matrices. If no such integer exists, the distance is 1.

Given X ⊆Mn,n(N), a matrix N (which may not be in X) belongs to the superior limit
of X if:

N is the limit of some sequence of matrices from X,
there exists no M ∈ X such that M > N .

Let us denote lim sup(X) the set of matrices in the superior limit of S.

I Theorem 10 (consequence of [5]). Given a set X ⊆Mn,n(N), the set lim sup(X) is finite.
Furthermore, there is a PSPACE algorithm which, given a morphism F from A∗ toMn,n(N),
and a non-deterministic automaton for a language L ⊆ A∗, enumerates lim sup(F (L)).

The first part of the statement is a consequence of Higman’s lemma. The second part relies
on a result of Hashiguchi [5] (improved by Leung and Podolskiy [10]) which implies that
the non-infinite entries in the matrices in lim sup(F (L)) are at most exponential. This is
crucial for representing matrices in polynomial space, and hence exploring the state space in
PSPACE.

4.3 A first reduction: the theorem of affine domination
Our goal in this section is to establish the theorem of affine domination (Theorem 3).

This will be the opportunity to introduce some notations used in the subsequent section.
Let us fix ourselves two distance automata over the same alphabet A. The first one,

Af = (A, Qf , F, If , Tf) calculates a function f . The second one, Ag = (A, Qg, G, Ig, Tg)
calculates a function g.

STACS’13

582 Approximate comparison of distance automata

Define Rp,0,q ⊆ A∗ to be the set of words over which there is a run of Ag of weight 0
from state p to state q. Let ` be a non-null weight occurring in some transition of Ag, and
p, q be states in Qg. Define Rp,`,q ⊆ A∗ to contain the words over which there is a run of Ag
from state p to state q which uses one transition of weight `, and otherwise only transitions
of weight 0. We will reuse this languages in the next section.

Proof of theorem 3. Let K be the largest number that occurs in one of lim sup(F (Rp,`,q))
for some states p, q and weight of a transition ` (such a number exists since by Theorem 10
it is the maximum of finitely many numbers). Given a matrix M , call an m-expansion of M
a matrix M ′ >M such that for all i, j, Mi,j > K implies M ′i,j > m. We first show a claim
concerning expansions.

Claim. For all M ∈ F (Rp,`,q) and for all m there exists an m-expansion M ′ ∈ F (Rp,`,q)
of M .
Indeed, by definition of the superior limit, there is some L ∈ lim sup(F (Rp,`,q)) such that
L > M . Furthermore, by choice of K, whenever Mi,j > K, Li,j = ∞. Finally, still by
definition of the superior limit, L is the limit of a sequence of matrices in F (Rp,`,q). Hence,
for all m, there exists a matrix M ′ in this sequence which is sufficiently close to L that it is
an m-expansion of M . This proves the claim.

Let us turn now to the core of the proof. Our goal is to prove that if f is dominated
by g, (i.e., there exists α : N → N extended with α(∞) = ∞ such that f 6 α ◦ g), then
f 6 K(1 + g). The proof is by contraposition. Thus, assume f 66 K(1 + g). This means
f(u) > Kg(u) +K for some word u. We have to prove that f is not dominated by g.

The first case is g(u) = 0. This means that u ∈ Rp,0,q with p initial and q final. Using
the above claim, one can choose for all m a word v(m) ∈ Rp,0,q such that F (v(m)) is an
m-expansion of F (u). Since f(u) > K, this means that for all initial state r and all final
state s of Af , F (u)r,s > K. This means that for all such r, s, F (v(m))r,s > m. It follows
that f(v(m)) > m. Hence over the sequence (v(m))m, g is bounded and f tends to infinity.
This forbids the existence of a function α such that f 6 α ◦ g, f is not dominated by g.

Assuming g(u) 6= 0, the argument is similar. Remark first that g(u) is finite since
f(u) > Kg(u) + K. This means one can find p0, . . . , pk with p0 initial, pk final, and such
that:

u = u1 . . . uk, u1 ∈ Rp0,`1,p1 , . . . , uk ∈ Rpk−1,`k,pk
,

where `1, . . . , `k are all non-null and of sum g(u). By the above claim, for all i = 1 . . . k, and all
m, one can select v(m)

i in Rpi−1,`i,pi
such that F (v(m)

i) is an m-expansion of F (ui). Consider
now the word v(m) = v

(m)
1 . . . v

(m)
k . Clearly g(v(m)) = g(u). For the sake of contradiction,

assume now that f(v(m)) < m for some m. This means that there exists q0, . . . , qk such that
q0 is initial, qk is final, and F (v(m)

i)qi−1,qi < m for all i = 1 . . . k. Since F (v(m)
i) is an m

-expansion of F (ui), this implies F (ui)qi−1,qi
6 K. It follows that f(u) 6 Kk 6 Kg(u). A

contradiction. Hence f(v(m)) > m. Thus, g is bounded over (v(m))m while f is not. As a
consequence, f is not dominated by g. J

4.4 The reduction construction
We reuse definitions and notations of automata Af and Ag given in the preceding section.

In particular, we use the sets Rp,`,q again.
Our goal is to construct a finite set of weighted matrices X that captures the relationship

between f and g. The key ideas behind this reduction are the following. Each matrix (M, `)
in X corresponds to a set of runs of g, that start in a given state p and end in a given state

T. Colcombet and L. Daviaud 583

q, and use exactly one transition of non-null weight `. The corresponding matrix M is in
charge of (a) simulating the behaviour of F over some word corresponding to such a run
(there may be infinitely many such runs, but only the finitely many matrices of the superior
limit need to be considered), and (b) keeping information concerning the first and last state
of the run of Ag for being able to check that pieces of run of g are correctly concatenated.

One also needs to define the part of the matrix in charge of controlling the validity of the
run of Ag. The construction behind Lemma 11 below is the one of a deterministic automaton,
that reads words over the alphabet Q2

g, and accepts a word (p1, q1) . . . (pk, qk) if, either p1 is
not initial, or qk is not final, or if qi−1 6= pi for some i. One can verify that this language
is accepted by a deterministic and complete automaton of states Qg] {i,⊥}. The unique
initial state is i, and, when reading the word (p1, q1) . . . (pk, qk), the automaton reaches state
⊥ if p1 is not initial or qi−1 6= pi for some i, otherwise it reaches state qk. The final states
are the ones not in Tg plus ⊥ plus possibly i if there are no states that are both initial and
final in g. Translated in matrix form, this yields Lemma 11.

I Lemma 11. There are (|Qg|+ 2, |Qg|+ 2)-matrices (Cp,q)p,q∈Qg over B and vectors IC
and TC such that for all p1, q1, . . . , pk, qk ∈ Qg,

IC⊗Cp1,q1⊗· · ·⊗Cpk,qk⊗TC =
{
∞ if p1 ∈ Ig, q1 = p2, . . . , qk−1 = pk and qk ∈ Tg,
0 otherwise.

Proof. This is implemented in matrix form as follows. For each p, q where p, q ∈ Qg, set the
matrix Cp,q that has indices in Qg ∪ {i,⊥}, to be such that:

(Cp,q)p′,q′ =

0 if p′ = i, p ∈ Ig and q′ = q,

0 if p′ = i, p 6∈ Ig and q′ = ⊥,
0 if p′ = p and q′ = q,

0 if p′ 6= i and p′ 6= p and q′ = ⊥,
∞ otherwise.

Define furthermore IC be the vector with all entries ∞ but i which is 0, and let TC be the
vector with all entries equal to 0 except Tg and i if there is a state both initial and final in
Ag. J

We can now construct the set X as follows:

X =
{((

M ∞
∞ Cp,q

)
, `

)
: M ∈ lim sup(F (Rp,`,q))

}
(1)

and the vectors

I = (If IC) and T =
(

Tf
TC

)
. (2)

The following lemma shows the validity of the construction, and more particularly how it
relates the comparison of distance automata to the computation of the closure of a set of
weighted matrices.

I Lemma 12. For all β > 0, f 6 βg if and only if for all (W, `) ∈ 〈X〉, I ⊗W ⊗ T 6 β`.

STACS’13

584 Approximate comparison of distance automata

Proof. Assume first f 66 βg, which means f(u) > βg(u) for some u. Then clearly, g(u) is
finite and hence, there is an accepting run ρ of g over u. This means that one can find
p0, . . . , pk with p0 initial, pk final, such that:

u ∈ Rp0,`1,p1Rp1,`2,p2 . . . Rpk−1,`k,pk
,

where `1, . . . , `k are all non-null and of sum ` = g(u). For all i = 1 . . . k, set Mi to be some
matrix in lim sup(F (Rpi−1,`i,pi)) such that F (ui) 6Mi. Let also Ci be Cpi−1,pi . Clearly, the
weighted matrix

(Wi, `i) with Wi =
(
Mi ∞
∞ Ci

)
belongs to X. Hence (W, `) belongs to 〈X〉, where W = W1 ⊗ · · · ⊗Wk. We then have
I ⊗W ⊗ T = min(xf , xC) with

xf = If ⊗M1 ⊗ · · · ⊗Mk ⊗ Tf and xC = IC ⊗ C1 ⊗ · · · ⊗ Ck ⊗ TC .

By choice of the Mi’s, xf > If ⊗ F (u)⊗ Tf = f(u). Furthermore, by Lemma 11, xC =∞.
It follows that I ⊗W ⊗ T > f(u) > βg(u) = β`.

Assume now that f 6 βg. Consider some (W, `) ∈ 〈X〉, it is obtained as (W, `) =
(W1, `1)⊗ · · · ⊗ (Wk, `k) with (Wi, `i) ∈ X for all i. By definition of X, each of the Wi’s can
be written, for some pi, qi ∈ Qg, as

Wi =
(
Mi ∞
∞ Cpi,qi

)
with Mi ∈ lim supF (Rpi,`i,qi

).

Once more, one has I ⊗W ⊗ T = min(xf , xC) with

xf = If ⊗M1 ⊗ · · · ⊗Mk ⊗ Tf and xC = IC ⊗ C1 ⊗ · · · ⊗ Ck ⊗ TC .

Remark first that if xC = 0, clearly, I ⊗W ⊗T = 0 6 β`. Hence, let us assume that xC =∞.
This means by Lemma 11 that p1 is initial, qk is final, and pi = qi−1 for all i = 2 . . . k. One
needs to prove xf 6 β`.

Assume for the sake of contradiction that xf > β`. By continuity of the product, and
using the definition of the superior limit, there exist words u1, . . . , uk such that for all
i = 1 . . . k, ui ∈ Rpi,`i,qi

, and If ⊗F (u1)⊗· · ·⊗F (uk)⊗Tf > β`. Furthermore, by definition
of the sets Rpi,`i,qi , the fact that p1 is initial, that qk is final, and that qi−1 = pi for all
i = 2 . . . k, it follows that g(u1 . . . uk) = `. It follows that f(u1 . . . uk) > βg(u1 . . . uk). A
contradiction. J

We are now ready to establish the main theorem of the paper.

Proof of Theorem 4. Let us consider two functions f and g computed by distance automata
and some ε > 0. The algorithm works as follows. It computes the set X of weighted matrices
as defined in this section (1), as well as the corresponding vectors I, T (2). Using Theorem 6,
it computes a finitely presented set Y of weighted matrices such that Y ≈ ε

2
〈X〉. Then it

tests the existence in Y of a weighted matrix (M, `) such that I ⊗ 1
`M ⊗ T > 1− ε

2 . This is
easy to do for finitely presented sets. If such a weighted matrix exists, the algorithm answers
“no”. It answers “yes” otherwise. Let us show the correctness of this approach.

Assume f 6 (1− ε)g, and that, for the sake of contradiction, the algorithm answers “no”.
This means that I ⊗ 1

`M ⊗T > 1− ε
2 for some weighted matrix (M, `) ∈ Y . Furthermore,

there exists (M ′, `′) ∈ 〈X〉 such that (M, `) 4 ε
2

(M ′, `′). This implies 1
`M 6 1

`′M
′ + ε

2 .
It follows that I ⊗M ′ ⊗ T > (1− ε)`′. This contradicts Lemma 12.

T. Colcombet and L. Daviaud 585

Assume f 66 g, then by Lemma 12, there exists a matrixM ∈ 〈X〉 such that I⊗ 1
`M⊗T > 1.

Furthermore, there exists M ′ ∈ Y such that (M, `) 4 ε
2

(M ′, `′). This implies 1
`M 6

1
`′M

′ + ε
2 , and hence I ⊗ 1

`′M
′ ⊗ T > 1− ε

2 . The algorithm answers “no”.
J

5 Conclusion and further remarks

In this paper, we provided an algorithm for deciding the approximate comparison of
distance automata. This algorithm involves the computation of the closure under product of
sets of weighted matrices, a result of independent interest.

The main open question is the complexity of the problem. It is clear that the problem is
at least PSPACE hard. A correct implementation of the arguments in this paper shows that
EXSPACE is an upper bound. We do not know the exact complexity.

Acknowledgments

We would like to thank Jean Mairesse for numerous enlightening discussions as well as
the anonymous referees for their helpful comments.

References
1 Mikolaj Bojańczyk and Thomas Colcombet. Bounds in ω-regularity. In LICS 06, pages

285–296, 2006.
2 Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In

Automata, languages and programming. Part II, volume 5556 of Lecture Notes in Comput.
Sci., pages 139–150. Springer, Berlin, 2009.

3 Thomas Colcombet. Green’s relations and their use in automata theory. In Adrian Horia
Dediu, Shunsuke Inenaga, and Carlos Martín-Vide, editors, LATA, volume 6638 of Lecture
Notes in Computer Science, pages 1–21. Springer, 2011. Invited lecture.

4 Kosaburo Hashiguchi. Limitedness theorem on finite automata with distance functions. J.
Comput. Syst. Sci., 24(2):233–244, 1982.

5 Kosaburo Hashiguchi. New upper bounds to the limitedness of distance automata. Theor.
Comput. Sci., 233(1–2):19–32, 2000.

6 Daniel Kirsten. Distance desert automata and the star height problem. RAIRO, 3(39):455–
509, 2005.

7 Daniel Krob. The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. Internat. J. Algebra Comput., 4(3):405–425, 1994.

8 Manfred Kufleitner. A proof of the factorization forest theorem. Technical Report Nr.
2007/05, Universität Stuttgart, Germany, 2007.

9 Hing Leung. On the topological structure of a finitely generated semigroup of matrices.
Semigroup Forum, 37:273–287, 1988.

10 Hing Leung and Viktor Podolskiy. The limitedness problem on distance automata: Hashigu-
chi’s method revisited. Theoretical Computer Science, 310(1-3):147–158, 2004.

11 Marcel-Paul Schützenberger. On the definition of a family of automata. Information and
Control, 4:245–270, 1961.

12 Imre Simon. Piecewise testable events. In H. Brackage, editor, Proc. 2nd GI Conf.,
volume 33, pages 214–222. Springer, 1975.

13 Imre Simon. On semigroups of matrices over the tropical semiring. RAIRO ITA, 28(3-
4):277–294, 1994.

STACS’13

The Rank of Tree-Automatic Linear Orderings
Martin Huschenbett

Institut für Theoretische Informatik, Technische Universität Ilmenau, Germany
martin.huschenbett@tu-ilmenau.de

Abstract
A tree-automatic structure is a structure whose domain can be encoded by a regular tree language
such that each relation is recognisable by a finite automaton processing tuples of trees synchron-
ously. The finite condensation rank (FC-rank) of a linear ordering measures how far it is away
from being dense. We prove that the FC-rank of every tree-automatic linear ordering is below ωω.
This generalises Delhommé’s result that each tree-automatic ordinal is less than ωω

ω . Further-
more, we show an analogue for tree-automatic linear orderings where the branching complexity
of the trees involved is bounded.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases tree-automatic structures, linear orderings, finite condensation rank,
computable model theory

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.586

1 Introduction

The fundamental idea of automatic structures can be traced back to the 1960s when Büchi,
Elgot, Rabin, and others used finite automata to provide decision procedures for the first-
order theory of Presburger arithmetic (N; +) and several other logical problems. Hodgson
generalised this idea to the concept of automaton decidable first-order theories. Independ-
ently of Hodgson and inspired by the successful employment of finite automata and their
methods in group theory, Khoussainov and Nerode [8] initiated the systematic investigation
of automatic structures. Recalling the efforts from the 1960s, Blumensath [2] extended this
notion beyond finite automata to finite automaton models recognising, e.g., finite trees.

Basically, a countable relational structure is tree-automatic or tree-automatically present-
able if its elements can be encoded by finite trees in such a way that its domain and its
relations are recognisable by finite automata processing either single trees or tuples of trees
synchronously. String-automatic structures can be regarded as a special case where only
specific simple trees—which effectively represent strings—are used. In contrast to the more
general concept of computable structures and based on the strong closure properties of re-
cognisability, automatic structures provide pleasant algorithmic features. In particular, they
possess decidable first-order theories.

Due to this latter circumstance, the concept of automatic structures gained a lot attention
which led to noticeable progress (cf. [1, 13]). Automatic presentations were found for many
structures and others like the random graph were shown not to be automatic at all. Some
structures are provably on an intermediate level, they are tree-automatic but not string-
automatic, for instance Skolem arithmetic (N;×). For the classes of ordinals and Boolean
algebras it was even possible to characterise their (string-)automatic members. Certain
extensions of first-order logic which preserve decidability of the corresponding theory were
detected. The question whether two automatic structures are isomorphic turned out to be
highly undecidable in general as well as for some restricted classes of structures. In contrast,

© Martin Huschenbett;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 586–597

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martin.huschenbett@tu-ilmenau.de
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.586
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Huschenbett 587

the isomorphism problem for string-automatic ordinals was proven to be decidable. Recently,
some classes of structures for which string-automaticity of their tree-automatic members is
decidable were identified. Last but not least, different classes of automatic structures were
characterised by means of logical interpretations in universal structures.

The characterisation of automatic ordinals was provided by Delhommé [4]. An ordinal is
string-automatic if, and only if, it is less than ωω. The respective bound for tree-automatic
ordinals is ωωω . To obtain these results, Delhommé developed and employed a decomposition
technique for automatic structures. Later, Khoussainov, Rubin, and Stephan generalised
the only-if-implication of the string-automatic case by proving that the finite condensation
rank (FC-rank) of any string-automatic linear ordering is below ω [9]. Roughly speaking,
the FC-rank is an ordinal indicating how far a linear ordering is away from being dense.
Basically, they applied the decomposition technique for string-automatic structures to the
class of (scattered) linear orderings. Since that time, it is presumed that the FC-rank of
every tree-automatic linear ordering is below ωω. However, this conjecture has not been
verified yet.1 We close this gap by our first main result.

I Theorem 4.6. The FC-rank of every tree-automatic linear ordering is strictly below ωω.

Again, the proof is an application of the decomposition technique to the class of (scattered)
linear orderings. Unfortunately, Delhommé never provided a proof of his decomposition
theorem for tree-automatic structures. As his wording of the theorem is also too weak for our
purposes, we state and prove a refined version (Theorem 3.7).2 However, the main difficulty
in showing Theorem 4.6 is to substantiate that scattered linear orderings are accessible to the
decomposition technique for tree-automatic structures (Proposition 4.3 and Corollary 4.5).

In the last section, we demonstrate how to adapt the (refined) decomposition technique
to finite-rank tree-automatic structures (cf. [1, Section 1.3.7]). Roughly speaking, the rank
of a tree-automatic structure describes the branching complexity of the trees involved and
is measured in terms of the Cantor-Bendixson rank (cf. [9]). Our second main result is the
following analogue of Theorem 4.6 for finite-rank tree-automatic linear orderings.

I Theorem 5.2. Let k ∈ N+. The FC-rank of every rank-k tree-automatic linear ordering
is strictly below ωk.

In the very end, we briefly sketch how to apply these results to show upper bounds on the
Cantor-Bendixson rank of (finite-rank) tree-automatic finitely branching order trees, i.e.,
partial orderings which happen to be trees.

2 Background

2.1 Tree-Automatic Structures
This section recalls the basic notions of tree-automatic structures (cf. [1, 2]).

Let 2 = {0, 1} be the binary alphabet. The set of all strings over 2 is denoted by 2? and
the empty string by ε. A tree domain is a non-empty, finite, prefix-closed subset D ⊆ 2?.
The boundary of D is the set ∂D = {ud | u ∈ D, d ∈ 2, ud 6∈ D }. Let Σ be an alphabet.
A finite Σ-labelled tree (or just tree) is a map t : D → Σ where dom(t) = D is a tree

1 Due to personal communication, S. Jain, B. Khoussainov, P. Schlicht, and F. Stephan recently verified
the conjecture for scattered linear orderings. This implies that the FC-rank of arbitrary tree-automatic
linear orderings is at most ωω (including).

2 A similar refinement was used to bound the ordinal height of well-founded order trees [7].

STACS’13

588 The Rank of Tree-Automatic Linear Orderings

domain. The set of all finite Σ-labelled trees is denoted by TΣ. Its subsets are called (tree)
languages. For t ∈ TΣ and a node u ∈ dom(t) the subtree t�u ∈ TΣ rooted at u is defined by
dom(t�u) = { v ∈ 2? | uv ∈ dom(t) } and (t�u)(v) = t(uv). For nodes u1, . . . , un ∈ dom(t)
which form an anti-chain in t, i.e., they are mutually not prefixes of each other, and trees
t1, . . . , tn ∈ TΣ, we consider the tree t[u1/t1, . . . , un/tn] ∈ TΣ which is obtained from t by
simultaneously replacing for each i ∈ [1, n] the subtree rooted at ui by ti.

A (deterministic bottom-up) tree automaton M = (Q, ι, δ, F) over Σ consists of a finite
set Q of states, a start state ι ∈ Q, a transition function δ : Σ × Q × Q → Q, and a set
F ⊆ Q of accepting states. For all t ∈ TΣ, u ∈ dom(t)∪ ∂ dom(t), and maps ρ : U → Q with
U ⊆ ∂ dom(t) a stateM(t, u, ρ) ∈ Q is defined recursively by

M(t, u, ρ) =

δ
(
t(u),M(t, u0, ρ),M(t, u1, ρ)

)
if u ∈ dom(t),

ρ(u) if u ∈ U ,
ι if u ∈ ∂ dom(t) \ U .

We omit the parameter u (resp. U) if u = ε (resp. U = ∅). Notice thatM(t, u) =M(t�u).
The tree language recognised by M is the set L(M) = { t ∈ TΣ | M(t) ∈ F }. A language
L ⊆ TΣ is regular if it can be recognised by some tree automaton.

Let � 6∈ Σ be a new symbol and Σ� = Σ ∪ {�}. The convolution of an n-tuple
t̄ = (t1, . . . , tn) ∈ (TΣ)n of trees is the tree ⊗t̄ ∈ TΣn� defined by

dom(⊗t̄) = dom(t1) ∪ · · · ∪ dom(tn) and (⊗t̄)(u) =
(
t′1(u), . . . , t′n(u)

)
,

where t′i(u) = ti(u) if u ∈ dom(ti) and t′i(u) = � otherwise. If n = 2, we also write t1⊗ t2 for
⊗(t1, t2). A relation R ⊆ (TΣ)n is automatic if the tree language ⊗R = {⊗t̄ | t̄ ∈ R } ⊆ TΣn�
is regular. We say a tree automaton recognises R if it recognises ⊗R.

A relational structure A =
(
A;RA

1 , . . . , R
A
n

)
is called tree-automatic if its domain A is a

regular tree language and each relation RA
i is automatic.3 In this situation, a tree-automatic

presentation of A is a tuple of tree automata recognising A and the RA
i . Abusing notation,

we sometimes call any structure tree-automatic (in a wider sense) which is isomorphic to
some tree-automatic structure (in the narrow sense). The following theorem lays out the
main motivation for investigating tree-automatic structures.

I Theorem 2.1 (Blumensath [2]). Let A be a tree-automatic structure. For every first-order
formula φ(x̄) in the signature of A the relation φA defined by φ is automatic and one can
compute a tree automaton recognising φA from a tree-automatic presentation of A and the
formula φ. In particular, the first-order theory of A is decidable.

2.2 Linear Orderings
This section recalls the necessary background on linear orderings (cf. [12]).

A linear ordering is a structure A =
(
A;≤A

)
where ≤A is a non-strict linear order on A.

The corresponding strict linear order is denoted by <A. If A is clear from the context we
omit the superscript A. For n ∈ N the (isomorphism type of the) linear ordering with exactly
n elements is denoted by n =

(
{0, . . . , n − 1};≤

)
. Let I and Ai for each i ∈ I be linear

orderings. The I-sum of the Ai is the linear ordering A =
∑
i∈I Ai defined by A =

⊎
i∈I Ai

and x ≤A y iff either x, y ∈ Ai and x ≤Ai y for some i ∈ I or x ∈ Ai and y ∈ Aj for some
i, j ∈ I with i <I j. In case that I is finite, say I = n, we also write A0 + · · ·+ An−1.

3 By convention, structures are named in Fraktur and their domains by the same letter in Roman.

M. Huschenbett 589

A linear ordering A is dense if for all x, y ∈ A with x < y there exists a z ∈ A such that
x < z < y. Up to isomorphism, there are only five countable dense linear orderings, namely
1, η, 1 + η, η + 1, and 1 + η + 1, where η = (Q;≤) are the rational numbers ordered as
usual. At the opposite extreme, A is scattered if η cannot be embedded into A. Examples
of scattered linear orderings include the natural numbers ω = (N;≤), the reversed natural
numbers ω∗ = (N;≥), the integers ζ = (Z;≤), and the finite linear ordering n for each n ∈ N.
Moreover, all well-orderings and scattered sums of scattered linear orderings are scattered.

For two subsets X,Y ⊆ A of a linear ordering A we write X � Y if x < y for all x ∈ X
and y ∈ Y . A condensation (relation) on A is an equivalence relation ∼ on A such that each
∼-class is a (possibly non-closed) interval of A. In this situation, the set of all ∼-classes is
(strictly) linearly ordered by � and we denote this linear ordering by A/∼. An example of
a condensation is given by x ∼ y if x and y are at finite distance in A. Transfinitely iterating
this process leads to the inductive definition of a condensation ∼α on A for each ordinal α:
1. ∼0 is the identity relation on A,
2. for successor ordinals α = β + 1 let x ∼α y iff there are only finitely many elements

between the ∼β-classes of x and y in A/∼β , and
3. for limit ordinals α let x ∼α y iff x ∼β y for some β < α.
There exists an α such that ∼α and ∼β coincide for each β ≥ α. The least such α is
called finite condensation rank (FC-rank) of A and denoted by FC(A). In particular, if A
is countable then FC(A) is also countable [12, Theorem 5.9]. Moreover, each ∼α-class is a
scattered interval of A and A/∼α is dense, proving the following theorem.

I Theorem 2.2 (Hausdorff [12, Theorem 4.9]). Every linear ordering A is a dense sum
of scattered linear orderings, i.e., there are a dense linear ordering I and scattered linear
orderings Ai for each i ∈ I such that A =

∑
i∈I Ai.

Due to Hausdorff, there is a valuable inductive construction of the class of countable scattered
linear orderings. For each countable ordinal α a class VDα is defined as follows:
1. VD0 = {0,1} and
2. for α > 0 the class VDα contains all ζ-sums of elements from VD<α =

⋃
β<α VDα.

The class VD of very discrete linear orderings is the union of all classes VDα and the VD-rank
of some A ∈ VD, denoted by VD(A), is the least ordinal α with A ∈ VDα.

I Theorem 2.3 (Hausdorff [12, Theorem 5.24]). A countable linear ordering A is scattered
if, and only if, it is contained in VD. In case that A is scattered, FC(A) = VD(A).

3 Delhommé’s Decomposition Technique

3.1 Augmentations and the Decomposition Theorem
In this section, we present the decomposition technique Delhommé developed and employed
to show that every tree-automatic ordinal is less than ωω

ω [4]. As we want to apply this
technique to linear orderings, we restrict our attention to structures whose signature contains
only a single binary relation symbol ≤, i.e., (directed) graphs. First, we introduce the central
notions of sum- and box-augmentations. For a graph A and a subset B ⊆ A we denote by
A�B the subgraph induced by B.

I Definition 3.1. A graph A is a sum-augmentation of graphs B1, . . . ,Bn if there exists a
finite partition A =

⊎
i∈[1,n]Ai of A such that A�Ai ∼= Bi for each i ∈ [1, n].

I Example 3.2. Let B1, . . . ,Bn be graphs.

STACS’13

590 The Rank of Tree-Automatic Linear Orderings

1. Suppose that the Bi are linear orderings and let A be a linearisation of the partial
ordering B1 q · · · qBn =

(⊎
i∈[1,n]Bi;�) with x � y iff x, y ∈ Bi and x ≤Bi y for some

i ∈ [1, n]. Then A is a sum-augmentation of B1, . . . ,Bn.
2. Let A be a linear ordering which is a sum-augmentation of B1, . . . ,Bn. First, each Bi

can be embedded into A and is hence a linear ordering, which is scattered in case A is
scattered. Second, A is isomorphic to a linearisation of B1 q · · · qBn.

I Definition 3.3. A graph A is a box-augmentation of graphs B1, . . . ,Bn if there exists a
bijection f : B1 × · · · × Bn → A such that for all j ∈ [1, n] and x̄ ∈

∏
i∈[1,n],i6=j Bi the map

f jx̄ : Bj → A defined by f jx̄(b) = (x1, . . . , xj−1, b, xj+1, . . . , xn) is an embedding of Bj into A.

I Example 3.4. Let B1, . . . ,Bn be graphs.
1. Suppose that the Bi are linear orderings and let A be a linearisation of the partial

ordering B1×· · ·×Bn =
(
B1×· · ·×Bn;�) with x̄ � ȳ iff xi ≤Bi yi for all i ∈ [1, n]. The

identity map B1× · · · ×Bn → A witnesses that A is a box-augmentation of B1, . . . ,Bn.
2. Let A be a linear ordering which is a box-augmentation of B1, . . . ,Bn. First, each Bi

can be embedded into A and is hence a linear ordering, which is scattered in case A is
scattered. Second, the bijection f from Definition 3.3 above is an isomorphism between
a linearisation of B1 × · · · ×Bn and A.

In order to make the class of linear orderings accessible to the decomposition technique, we
have to study the connection between box-augmentations and the FC-rank. More precisely,
given some linear orderings B1, . . . ,Bn we want to establish a bound on the FC-rank of
any linear ordering which is a box-augmentation of B1, . . . ,Bn in terms of the FC-ranks of
the Bi. However, the following example indicates that this is impossible in general.

I Example 3.5. Consider the partial ordering ω × ω∗ = (N × N,�), where � is defined
as above. For each i ∈ Z the elements (m,n) ∈ N× N with m − n = i form an anti-chain,
i.e., they are mutually incomparable by �. Therefore, any ζ-sum of countably infinite linear
orderings is (isomorphic to) a linearisation of ω × ω∗. In particular, for any countable
ordinal α > 1 there exists a (scattered) linear ordering A with FC(A) = α which is a
box-augmentation of ω, ω∗. Compare this to the fact that FC(ω) = FC(ω∗) = 1.

Owing to this observation, we introduce a restricted notion of box-augmentations. Therein,
a finite colouring of a graph A is a map σ : A × A → Q into a finite set Q such that
σ(x, y) = σ(x′, y′) and x ≤ y imply x′ ≤ y′ for all x, y, x′, y′ ∈ A.

I Definition 3.6. The box-augmentation in Definition 3.3 is called tame if for each i ∈ [1, n]
there exists a finite colouring σi : Bi ×Bi → Qi of Bi such that the map

f(σ1, . . . , σn) : A×A→ Q1 × . . .×Qn,
(
f(x̄), f(ȳ)

)
7→
(
σ1(x1, y1), . . . , σn(xn, yn)

)
is a finite colouring of A.

I Remark. In the situation of Definition 3.6, assume that all Qi are the same set, say
{1, . . . ,m}. For each i ∈ [1, n] consider the structure Ci =

(
Bi;RCi

1 , . . . , RCi
m

)
with

RCi
q = σ−1

i (q). Due to the definition of a finite colouring, the RCi
q form a finite partition of

Bi×Bi which is compatible with ≤Bi . Therefore, the graph A is a generalised product—in
the sense of Feferman and Vaught—of the structures C1, . . . ,Cn using only atomic formulae.
We will see later, in Lemma 4.4 and its proof, that every linear ordering A which is a tame
box-augmentation of ω, ω∗ is scattered and satisfies FC(A) ≤ 3. We conclude this section
by providing our refined version of Delhommé’s decomposition theorem. For a structure

M. Huschenbett 591

A, a first-order formula φ(x, y1, . . . , yr) in the signature of A, and a tuple s̄ ∈ Ar we let
φA(·, s̄) = { t ∈ A | A |= φ(t, s̄) } and abbreviate A�φA(·, s̄) by A�φ, s̄.

I Theorem 3.7. Let A be a tree-automatic graph and φ(x, y1, . . . , yr) a first-order formula
in the signature of graphs. Then there exists a finite set SAφ of tree-automatic graphs such
that for all tuples s̄ ∈ Ar the graph A�φ, s̄ is a sum-augmentation of tame box-augmentations
of elements from SAφ .

I Remark. The only, but very important, difference to Delhommé’s decomposition theorem
is our addition of the word tame. Since by Example 3.5 there is no reasonable connection
between the FC-rank and arbitrary box-augmentations, the version without tame cannot be
used to investigate bounds on the FC-rank of tree-automatic (scattered) linear orderings.

Proof of Theorem 3.7. Suppose that A ⊆ TΣ for some alphabet Σ. Let M≤ and Mφ be
tree automata recognising ≤A and φA and Q≤ and Qφ be their state sets, respectively.
In order to simplify notation, for t ∈ TΣ we put t≤ = t ⊗ t and define tφ ∈ TΣ1+r

�
by

dom
(
tφ
)

= dom(t) and tφ(u) =
(
t(u), �, . . . , �

)
, where the number of �-symbols is r.

As a first step, we construct the set SAφ . Therefore, consider the set Γ = Q≤×Qφ×2Q≤ .
For each γ =

(
q≤, qφ, P≤

)
∈ Γ we define a graph Sγ by

Sγ =
{
t ∈ TΣ

∣∣M≤(t≤) = q≤ & Mφ

(
tφ
)

= qφ
}

and t1 ≤Sγ t2 iffM≤(t1⊗ t2) ∈ P≤ .

Clearly, Sγ is tree-automatic. Finally, we put SAφ = {Sγ | γ ∈ Γ }.
We have to show that for each s̄ = (s1, . . . , sr) ∈ Ar the subgraph A�φ, s̄ is a sum-

augmentation of box-augmentations of elements from SAφ . Therefore, we fix a tuple s̄, put
B = A�φ, s̄, and consider the tree domain D =

⋃
1≤i≤n dom(si). The s̄-type of a tree t ∈ TΣ

is defined as tps̄(t) =
(
t�D,U, ρ≤, ρφ

)
, where t�D ∈ TΣ is the restriction of t to the tree

domain dom(t)∩D, U = dom(t)∩ ∂D, and ρR : U → QR, u 7→ MR

(
(t�u)R

)
for R ∈ {<,φ}.

Observe that

Mφ

(
⊗(t, s̄)

)
=Mφ

(
⊗(t�D, s̄)

[(
u/(t�u)φ

)
u∈U

])
=Mφ

(
⊗(t�D, s̄), ρφ

)
. (1)

Hence, tps̄(t) completely determines whether t ∈ B. Since D is finite, there are only finitely
many different s̄-types. Thus, the equivalence relation ∼s̄ on TΣ defined by t1 ∼s̄ t2 iff
tps̄(t1) = tps̄(t2) has finite index. Due to the mentioned consequence of Eq. (1), B is a union
of ∼s̄-classes. Say B = C1] · · ·] Cm is the corresponding partition of B into ∼s̄-classes,
then B is a sum-augmentation of B�C1, . . . ,B�Cm.

As a final step, we fix a single ∼s̄-class C ⊆ B and provide a tuple of graphs from SAφ of
whom C = B�C is a box-augmentation. Let τ =

(
t0, U, ρ≤, ρφ

)
be the s̄-type corresponding

to C. For u ∈ U we put γ(u) =
(
ρ≤(u), ρφ(u), P≤(u)

)
∈ Γ, where P≤(u) is the set of all

q ∈ Q≤ for whichM≤
(
t≤0 , ρ≤[u 7→ q]

)
is an accepting state inM≤.

It is easy to show that the map f :
∏
u∈U Sγ(u) → C with f

(
(xu)u∈U

)
= t0[(u/xu)u∈U]

is a bijection witnessing that C is a box-augmentation of the collection of the Sγ(u). To
see that this box-augmentation is tame, consider for each u ∈ U the finite colouring σu of
Sγ(u) which is given by σu(x, y) =M≤(x⊗ y) and let σ = f

(
(σu)u∈U

)
. ThenM≤(x⊗ y) is

completely determined by σ(x, y) for all x, y ∈ C and hence σ is a finite colouring of C. J

3.2 Indecomposability and Tree-Automatic Ordinals
According to Delhommé’s approach [4], we introduce the notion of indecomposable ordinals
and provide a refined version of his result on indecomposability as a corollary of Theorem 3.7.

STACS’13

592 The Rank of Tree-Automatic Linear Orderings

Therefore, suppose that C is a class of graphs and an ordinal rk(A) is assigned to each
A ∈ C in an isomorphism invariant way. We say that C is ranked by rk. An ordinal α is
rk-sum-indecomposable if for any graph A ∈ C with rk(A) = α and all graphs B1, . . . ,Bn

which A is a sum-augmentation of, there exists an i ∈ [1, n] with Bi ∈ C and rk(Bi) = α.
Analogously, rk-box-indecomposable and rk-tame-box-indecomposable ordinals are defined.
Although Example 3.5 shows that neither FC- nor VD-box-indecomposability are useful,
Corollary 4.5 indicates that VD-tame-box-indecomposability is indeed a reasonable notion.

I Corollary 3.8. Let C be a class of graphs ranked by rk, A a tree-automatic graph, and
φ(x, y1, . . . , yr) a first-order formula in the signature of graphs. Then there are only finitely
many ordinals α which are simultaneously rk-sum- and rk-tame-box-indecomposable and
admit a tuple s̄ ∈ Ar with A�φ, s̄ ∈ C and rk

(
A�φ, s̄

)
= α.

Proof. Let SAφ be the finite set of graphs which exists by Theorem 3.7. Consider an ordinal
α satisfying the condition above, witnessed by s̄ ∈ Ar. There exist box-augmentations
B1, . . . ,Bm of elements from SAφ such that A�φ, s̄ is a sum-augmentation of them. Then
there is an i ∈ [1,m] such that Bi ∈ C and rk(Bi) = α. Now, there exist C1, . . . ,Cn ∈ SAφ
of which Bi is a tame box-augmentation. Again, there is a j ∈ [1, n] with Cj ∈ C and
rk(Cj) = α. Altogether, α belongs to the finite set

{
rk(B)

∣∣ B ∈ SAφ }. J

To illustrate the general idea behind the proof of Theorem 4.6, we demonstrate how to show
Delhommé’s characterisation of the tree-automatic ordinals. For the purpose of later reuse,
the proof of the if-part is slightly more involved than actually necessary. For the converse
implication, let C be the class of ordinals and rk(α) = α. Results by Caruth [3] imply that
ωα is rk-sum-indecomposable and ωωα is rk-box-indecomposable for each ordinal α.

I Corollary 3.9 (Delhommé [4]). An ordinal α is tree-automatic if, and only if, α < ωω
ω .

Proof. We first show the if-part. There exists a k ∈ N such that α < ωω
k . For k = 0 the

claim is trivial. Suppose k ≥ 1. Then α < ωω
k−1n for some n ∈ N. We show that ωωk−1 is

tree-automatic by induction on k. The case k = 1 is obvious. For k > 1 we combine the fact
ωω

k−1 =
(
ωω

k−2)ω with the general idea behind showing that the class of tree-automatic
structures is closed under direct ω-sums. Encoding β̄ ∈

(
ωω

k−1)n by ⊗β̄ shows that ωωk−1n

is also tree-automatic. Finally,
(
ωω

k−1n
)
�φ, α = α with φ(x, y) = x < y proves the claim.

For the sake of a contradiction to the only-if-implication, assume that α ≥ ωω
ω is tree-

automatic. For each d ∈ N we have α�φ, ωωd = ωω
d , contradicting Corollary 3.8. J

4 Tree-Automatic Linear Orderings

The ultimate goal of this section is to prove Theorem 4.6, stating that the FC-rank of every
tree-automatic linear ordering is below ωω. Owing to the fact that every linear ordering is
a dense sum of scattered linear orderings, the strategy is to apply Corollary 3.8 to the class
VD of scattered linear orderings ranked by VD∗, a slight variation of the VD-rank. Since it
is already known that every ordinal is VD∗-sum-indecomposable [9], the main difficulty is
to identify the VD∗-tame-box-indecomposable ordinals.

I Definition 4.1. The VD∗-rank of a scattered linear ordering A, denoted by VD∗(A), is
the least ordinal α such that A is a finite sum of elements from VDα.

The VD∗-rank of a scattered linear ordering A is closely related to its VD-rank by the in-
equality VD∗(A) ≤ VD(A) ≤ VD∗(A) + 1. For each B ⊆ A we have VD(A�B) ≤ VD(A)

M. Huschenbett 593

[12, Lemma 5.14]. In particular, this implies VD∗(A�B) ≤ VD∗(A) for all B ⊆ A. Remem-
ber that whenever a scattered linear ordering A is a sum- or box-augmentation of B1, . . . ,Bn

the Bi are also scattered linear orderings (cf. Examples 3.2 and 3.4). The following propos-
ition essentially states that every countable ordinal is VD∗-sum-indecomposable.

I Proposition 4.2 (Khoussainov, Rubin, Stephan [9, Proposition 4.4]). Let a scattered linear
ordering A be a sum-augmentation of B1, . . . ,Bn. Then

VD∗(A) = max
{

VD∗(B1), . . . ,VD∗(Bn)
}
.

Our main tool for identifying the VD∗-tame-box-indecomposable ordinals is Proposition 4.3
below. Let α and β be two ordinals. Due to Cantor normal form, there are ordinal exponents
γ1 > · · · > γn ≥ 0 and coefficients ki, `i ∈ N, which are possibly 0, such that α =

∑i=n
i=1 ω

γiki
and β =

∑i=n
i=1 ω

γi`i. The natural sum of α and β is α⊕ β =
∑i=n
i=1 ω

γi(ki + `i). Compared
to the usual addition of ordinals, this operation is commutative and strictly monotonic in
both arguments.

I Proposition 4.3. Let the scattered linear ordering A be a tame box-augmentation of
B1, . . . ,Bn. Then

VD∗(A) ≤ VD∗(B1)⊕ · · · ⊕ VD∗(Bn) .

The proof below reveals the main benefit of tameness: box-augmentations are opened to
arguments using Ramsey’s theorem. It proceeds by induction on n, reducing to case n = 2.

I Lemma 4.4. Let the scattered linear ordering A be a tame box-augmentation of B,C.
Then

VD∗(A) ≤ VD∗(B)⊕VD∗(C) .

Proof. We proceed by induction on β = VD∗(B) and γ = VD∗(C). If β = 0, thenB is finite,
A a sum-augmentation of |B| many copies of C, and VD∗(A) = VD∗(C) by Proposition 4.2.
Similarly, VD∗(A) = VD∗(B) whenever γ = 0. Thus, suppose β > 0 and γ > 0.

Due to Example 3.4, we may assume that A is a linearisation of B × C. In particular,
A = B × C. By definition, B = B1 + · · ·+ Bm and C = C1 + · · ·+ Cn for some Bi ∈ VDβ
and Cj ∈ VDγ . Since every ζ-sum can be split into an ω∗-sum and an ω-sum, we can assume
that none of the Bi or Cj is constructed as a ζ-sum. By Proposition 4.2, it suffices to show
VD∗

(
A�(Bi × Cj)

)
≤ β ⊕ γ for all i ∈ [1,m] and j ∈ [1, n]. Therefore, fix i and j, and let

Z = A�(Bi × Cj), X = Bi, and Y = Cj . Notice that Z is a tame box-augmentation of X,Y.
If X is a finite sum of elements from VD<β , then VD∗(X) < β and the claim follows by

induction. The case of a finite sum Y is analogous. Thus, we assume that X and Y are ω- or
ω∗-sums. We only demonstrate the case X =

∑
k∈ω Xk with Xk ∈ VD<β and Y =

∑
`∈ω∗ Y`

with Y` ∈ VD<γ , for the remaining cases are very similar.
There are finite colourings σ of X and σ′ of Y inducing a finite colouring of Z. Using

Ramsey’s theorem, we find an unbounded infinite sequence x0 < x1 < x2 < · · · in X which is
monochromatic w.r.t. σ, i.e., σ(xk, xk′) is the same colour for all k < k′. Similarly, we find
an unbounded infinite sequence y0 > y1 > y2 > · · · in Y which is monochromatic w.r.t. σ′.
Depending on how (x0, y0) and (x1, y1) are ordered in Z, we distinguish two cases. As they
are very similar we only deal with the case (x0, y0) < (x1, y1), whose treatment is sketched
in Figure 1(a). The horizontal axis depicts X and increases from left to right, whereas the
vertical axis outlines Y and grows upwards. Within the grid, arrows point from lesser to
greater elements. Figure 1(b) sketches the case (x0, y0) > (x1, y1).

STACS’13

594 The Rank of Tree-Automatic Linear Orderings

X

Y

x0 x1 x2 xk−1 xk xk+1 xk+2

y0

y1

y`

(x0, y0)

(x1, y1)

(x, y)

(xk, y0)

(xk+1, y`)

(x′, y′)

T1

S0 S1 S2 · · · Sk Sk+2

(a) The case (x0, y0) < (x1, y1).

X

Y

x0 x1 x`

y0

y1

y2

yk−1

yk

yk+1

yk+2

(x0, y0)

(x1, y1)

(x, y)
(x0, yk)

(x`, yk+1)

(x′, y′)

T1

S0

S1

S2

...

Sk

Sk+2

(b) The case (x0, y0) > (x1, y1).

Figure 1 Proof sketch for the inductive step of Lemma 4.4.

We partition the set Z = X × Y into sets S0, S1, S2, . . . and T1 as indicated in Fig-
ure 1(a).4 For each k ∈ N there exists an k′ ∈ N such that Sk ⊆ (X0 ∪ · · · ∪ Xk′) × Y .
Since VD∗(X0 + · · ·+ Xk′) < β, the induction hypothesis yields VD∗(Z�Sk) < β ⊕ γ. Sim-
ilarly, we obtain VD∗(Z�T1) < β ⊕ γ. The right part of Figure 1(a) sketches how to show
Sk � Sk+2 for all k ∈ N. Therein (xk, y0) < (xk+1, y`) follows from (x0, y0) < (x1, y1) due
to monochromaticity and tameness. As a consequence, we obtain Z�T2 =

∑
k∈ω Z�S2k for

T2 =
⋃
k∈N S2k. Since every Z�S2k is a finite sum of elements from VD<β⊕γ , Z�T2 is an ω-sum

of elements from VD<β⊕γ . Thus, VD∗(Z�T2) ≤ β ⊕ γ. Analogously, VD∗(Z�T3) ≤ β ⊕ γ for
T3 =

⋃
k∈N S2k+1. Finally, Proposition 4.2 and Z = T1]T2]T3 imply VD∗(A) ≤ β⊕γ. J

Proof of Proposition 4.3. We proceed by induction on n. The case n = 1 is obvious. Thus,
consider n > 1. We assume that A is a linearisation of B1 × · · · × Bn. There are finite
colourings σi : Bi×Bi → Qi of each Bi which induce a finite colouring of A. For each q ∈ Q1
we put Xq = {x ∈ B1 | σ1(x, x) = q }, fix some xq ∈ Xq, and let Cq = A�({xq} × Y), where
Y = B2 × · · · × Bn. Straightforward arguments show that Cq is a tame box-augmentation
of B2, . . . ,Bn and A�(Xq × Y) is a tame box-augmentation of B1�Xq,Cq. Lemma 4.4 and
the induction hypothesis yield

VD∗
(
A�(Xq × Y)

)
≤ VD∗(B1�Xq)⊕VD∗(Cq) ≤ VD∗(B1)⊕

⊕
i∈[2,n]

VD∗(Bi) .

Finally, A =
⊎
q∈Q1

Xq × Y and Proposition 4.2 imply the claim. J

I Corollary 4.5. Every countable ordinal of the shape ωα is VD∗-tame-box-indecomposable.

Proof. Let a scattered linear ordering A with VD∗(A) = ωα be a tame box-augmentation of
B1, . . . ,Bn. Each Bi can be embedded into A and thus VD∗(Bi) ≤ ωα. If this inequality
were strict for each i ∈ [1, n], the definition of ⊕ would imply VD∗(B1)⊕· · ·⊕VD∗(Bn) < ωα,
contradicting Proposition 4.3. J

4 It does not matter to which of the adjacent sets the dashed lines belong.

M. Huschenbett 595

Using the previous results, we prove our main result on tree-automatic linear orderings.

I Theorem 4.6. The FC-rank of every tree-automatic linear ordering is strictly below ωω.

Proof. For the sake of a contradiction, assume there exists a tree-automatic linear ordering
A with FC(A) ≥ ωω. Consider the formula φ(x, y1, y2) = y1 ≤ x ∧ x ≤ y2. Due to the
proof of [9, Proposition 4.5], for each d ∈ N there is a s̄ ∈ A2 such that the closed interval
I = A�φ, s̄ is scattered and VD(I) = ωd + 1. As I contains least and greatest element, it
is a finite sum of elements from VD<ωd+1 = VDωd and hence VD∗(I) = ωd. Since ωd is
VD∗-sum- and VD∗-tame-box-indecomposable, this contradicts Corollary 3.8. J

5 Finite-Rank Tree-Automatic Linear Orderings

In this section we reintroduce finite-rank tree-automatic structures [1] and investigate the
linear orderings among them. The highlight is Theorem 5.2 which states that the FC-rank
of every rank-k tree-automatic linear ordering is below ωk.

5.1 Finite-Rank Tree-Automatic Structures
A binary tree is a (possibly empty or infinite) prefix-closed subset T ⊆ 2? whose elements
are considered to be ordered by the prefix relation �. The (isomorphism type of the) subtree
rooted at u ∈ T is the binary tree T �u = { v ∈ 2? | uv ∈ T }. We call T regular if it is a
regular language, or due to the Myhill-Nerode theorem equivalently, if there are only finitely
many distinct subtrees T �u. To every tree language L ⊆ TΣ we assign the binary tree
T (L) =

⋃
t∈L dom(t), which is effectively regular when L is regular.

An infinite branch of T is a prefix-closed infinite subset P ⊆ T which is linearly ordered
by �. The derivative of T is the binary tree d(T) consisting of all u ∈ T which are contained
in at least two distinct infinite branches. This operation effectively preserves regularity.
When T is regular, d(n)(T) is finite for some n ∈ N, where d(n) denotes the n-fold application
of d, precisely if the full binary tree 2? cannot be embedded into T [9, Section 7]. If these
equivalent conditions are satisfied, the rank of T is the least such n ∈ N.5

I Definition 5.1. Let k ∈ N. A tree-automatic structure A is rank-k tree-automatic if the
rank of T (A) is at most k and finite-rank tree-automatic if the rank of T (A) exists.6

I Remark. For a tree-automatic structure A the rank of T (A) is not an isomorphism invariant
property, but depends on its specific representation as a tree-automatic structure. The rank
of T (A) is computable from a tree automaton recognising A. It can be shown that the rank-1
tree-automatic structures are precisely those which are isomorphic to a string-automatic
structure.

5.2 Linear Orderings
Theorem 5.2 is our main result on finite-rank tree-automatic linear orderings. Basically, it
is shown by adapting Theorem 4.6’s proof. The key idea behind this adaption is provided
by Lemma 5.3 below.

5 This rank is a slight variation of the Cantor-Bendixson rank for trees introduced in [9].
6 The definition of rank-k tree-automatic structures in [1, Section 1.3.7] is different, but equivalent.

STACS’13

596 The Rank of Tree-Automatic Linear Orderings

I Theorem 5.2. Let k ∈ N+. The FC-rank of every rank-k tree-automatic linear ordering
is strictly below ωk.

I Lemma 5.3. Let T be a regular binary tree of rank k ∈ N. Then there exists a constant
K ∈ N such that any anti-chain (w.r.t. �) A ⊆ T contains at most K elements u such that
T �u has rank k.

Proof. We proceed by induction on k. If k = 0, then T is finite and the claim is obvious.
Thus, suppose k > 0. Let n ∈ N be the index of T , i.e., the size of the set {T �u | u ∈ T }.

For the sake of a contradiction, assume there is an anti-chain A consisting of 2n + 1
elements u ∈ T such that T �u has rank k. The set B of all v ∈ T which are the longest
common prefix of two distinct elements from A contains exactly 2n elements. For every
u ∈ A the binary tree d(k−1)(T �u) = d(k−1)(T)�u is infinite and hence, by König’s lemma,
there is an infinite branch of d(k−1)(T) containing u. Thus, B ⊆ d(k)(T) and

∣∣d(k)(T)
∣∣ ≥ 2n.

Since d(k)(T)�v = d(k)(T �v) for all v ∈ d(k)(T), the index of d(k)(T) is at most n. Finally, a
pumping argument shows that d(k)(T) is infinite, contradicting the choice of k. J

Proof of Theorem 5.2. We proceed by induction on k ≥ 1, using an artificial base case
k = 0. A rank-0 tree-automatic scattered linear ordering A is finite and hence satisfies
VD∗(A) < ω0. Thus, consider k ≥ 1.

For the sake of a contradiction, assume there exists a rank-k tree-automatic linear or-
dering A with FC(A) ≥ ωk. Let SAφ be the set constructed in Theorem 3.7’s proof from A

and the formula φ(x, y1, y2) = y1 ≤ x ∧ x ≤ y2. We show that SAφ contains for each n ∈ N a
scattered linear ordering B with ωk−1n < VD∗(B) < ωk, contradicting the finiteness of SAφ .

Consider n ∈ N and let K be the constant which exists by Lemma 5.3 applied to
T (A). Like in Theorem 4.6’s proof there is a s̄ ∈ A2 such that A�φ, s̄ is scattered and
VD∗(A�φ, s̄) = ωk−1(nK + 1). We delve into the details of Theorem 3.7’s proof, supposing
we have fixed s̄. Since ωk−1(nK + 1) is VD∗-sum-indecomposable, there exists a ∼s̄-class
C ⊆ B such that VD∗(C) = ωk−1(nK + 1). Let τ =

(
t0, U, q≤, qφ

)
be the corresponding

s̄-type. For each u ∈ U we have T
(
Sγ(u)

)
⊆ T (A)�u and hence the rank of T

(
Sγ(u)

)
is at

most k. Let V be the set of those u ∈ U for which the rank equals k. Due to Lemma 5.3,
|V | ≤ K. The induction hypothesis yields VD∗

(
Sγ(u)

)
< ωk−1 for u ∈ U \ V . If we had

VD∗
(
Sγ(u)

)
≤ ωk−1n for each u ∈ V , this would imply⊕

u∈V
VD∗

(
Sγ(u)

)
︸ ︷︷ ︸
≤ωk−1n|V |

⊕
⊕

u∈U\V

VD∗
(
Sγ(u)

)
︸ ︷︷ ︸

<ωk−1

< ωk−1n|V | ⊕ ωk−1 ≤ ωk−1(nK + 1) ,

contradicting Proposition 4.3. Hence, there exists a u ∈ V with VD∗
(
Sγ(u)

)
> ωk−1n.

Since Sγ(u) can be embedded into C, we also have VD∗
(
Sγ(u)

)
≤ ωk−1(nK + 1) < ωk. J

For ordinals α and β we have FC(α) ≤ β precisely if α ≤ ωβ . Consequently, Theorem 5.2
implies that every rank-k tree-automatic ordinal is less than ωωk . In fact, the construction
in Corollary 3.9’s proof shows that the converse implication holds as well. Therefore, we
obtain the following analogue to Corollary 3.9.

I Corollary 5.4. Let k ∈ N. An ordinal α is rank-k tree-automatic if, and only if, α < ωω
k .

6 Discussion

As an application of the FC-rank of string-automatic linear orderings being finite, it was
shown that the Cantor-Bendixson rank of string-automatic order trees is also finite [9]. The

M. Huschenbett 597

proof uses that Σ? admits an automatic linear order isomorphic to ω, but results in [5] imply
this to fail for TΣ. However, the arguments in [9] carry over for finitely branching order trees
since TΣ admits at least some automatic linear order. Thus, the Cantor-Bendixson rank of
every (rank-k) tree-automatic finitely branching order tree is below ωω respectively ωk.

Another application of Theorem 4.6 was pointed out by Kuske [10]. Results in [11] can be
adapted to show that the isomorphism problem for tree-automatic scattered linear orderings,
that he proved to be Π0

1-hard, belongs to level ∆0
ωω of the hyperarithmetical hierarchy.

As a sideline, Corollary 5.4 reproves that the hierarchy of finite-rank tree-automatic
structures is strict, a fact whose proof yet depended on deep logical insights [1, Section 1.3.7].
Moreover, it implies that any tree-automatic well-ordering is already finite-rank tree-auto-
matic. However, the respective question for arbitrary linear orderings remains open.

All results present upper bounds on the FC-rank. Unfortunately, for each k ∈ N there
exists a tree-automatic well-ordering A isomorphic to ωk such that T (A) has rank k. This
renders it impossible to provide useful lower bounds in terms of the rank of T (A). Using
another approach, a first step in this direction provides a decidable characterisation of the
tree-automatic scattered linear orderings of FC-rank at least ω [6].

Finally, it is known that the ordinal height of string-automatic well-founded partial
orderings is below ωω [4] and of tree-automatic well-founded order trees below ωω

ω [7].
Regretfully, even the refined decomposition technique seems too weak to verify the resulting
conjecture that the height of tree-automatic well-founded partial orderings is below ωω

ω .

Acknowledgement I thank Alexander Kartzow for valuable discussions on Delhommé’s
decomposition technique.

References
1 V. Bárány, E. Grädel, and S. Rubin. Automata-based presentations of infinite structures.

In Finite and Algorithmic Model Theory. Cambridge University Press, 2011.
2 A. Blumensath. Automatic structures. Diploma thesis, RWTH Aachen, 1999.
3 P. W. Carruth. Arithmetic of ordinals with applications to the theory of ordered abelian

groups. Bull. Amer. Math. Soc., 48:262–271, 1942.
4 C. Delhommé. Automaticité des ordinaux et des graphes homogènes. Comptes Rendus

Mathematique, 339(1):5–10, 2004.
5 Y. Gurevich and S. Shelah. Rabin’s uniformization problem. Journal of Symbolic Logic,

48(4):1105–1119, 1983.
6 M. Huschenbett. Word automaticity of tree automatic scattered linear orderings is decid-

able. In CiE 2012, volume 7318 of LNCS, pages 313–322. Springer, 2012.
7 A. Kartzow, J. Liu, and M. Lohrey. Tree-automatic well-founded trees. In CiE 2012,

volume 7318 of LNCS, pages 363–373. Springer, 2012.
8 B. Khoussainov and A. Nerode. Automatic presentations of structures. In LCC 1994,

volume 960 of LNCS, pages 367–392. Springer, 1994.
9 B. Khoussainov, S. Rubin, and F. Stephan. Automatic linear orders and trees. ACM

Transactions on Computional Logic, 6(4):675–700, 2005.
10 D. Kuske. Isomorphisms of scattered automatic linear orders. In CSL 2012, pages 455–469,

2012.
11 D. Kuske, J. Liu, and M. Lohrey. The isomorphism problem on classes of automatic

structures with transitive relations. Transactions of the AMS, 2011. accepted.
12 J. G. Rosenstein. Linear Orderings. Academic Press, 1982.
13 S. Rubin. Automata presenting structures: A survey of the finite string case. Bulletin of

Symbolic Logic, 14(2):169–209, 2008.

STACS’13

A general framework for the realistic analysis of
sorting and searching algorithms. Application to
some popular algorithms∗

Julien Clément, Thu Hien Nguyen Thi, and Brigitte Vallée

Université de Caen / ENSICAEN / CNRS - GREYC - Caen, France

Abstract
We describe a general framework for realistic analysis of sorting and searching algorithms, and we
apply it to the average-case analysis of five basic algorithms: three sorting algorithms (QuickSort,
InsertionSort, BubbleSort) and two selection algorithms (QuickMin and SelectionMin). Usually,
the analysis deals with the mean number of key comparisons, but, here, we view keys as words
produced by the same source, which are compared via their symbols in the lexicographic order.
The “realistic” cost of the algorithm is now the total number of symbol comparisons performed
by the algorithm, and, in this context, the average–case analysis aims to provide estimates for
the mean number of symbol comparisons used by the algorithm. For sorting algorithms, and
with respect to key comparisons, the average-case complexity of QuickSort is asymptotic to
2n log n, InsertionSort to n2/4 and BubbleSort to n2/2. With respect to symbol comparisons, we
prove that their average-case complexity becomes Θ(n log2 n),Θ(n2),Θ(n2 log n). For selection
algorithms, and with respect to key comparisons, the average-case complexity of QuickMin is
asymptotic to 2n, of SelectionMin is n − 1. With respect to symbol comparisons, we prove
that their average-case complexity remains Θ(n). In these five cases, we describe the dominant
constants which exhibit the probabilistic behaviour of the source (namely, entropy, and various
notions of coincidence) with respect to the algorithm.

1998 ACM Subject Classification F2.2: Pattern matching, sorting and searching – G2.1: Gen-
erating functions, permutations – G4: Algorithm design and analysis – H1.1: Information theory
– I1.2: Analysis of algorithms

Keywords and phrases Probabilistic analysis of algorithms – Sorting and searching algorithms
– Pattern matching – Permutations – Information theory – Rice formula – Asymptotic estimates

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.598

Introduction

There are two main classes of sorting and searching algorithms: the first class gathers the
algorithms which deal with keys, while the algorithms of the second class deal with words
(or strings). Of course, any data is represented inside a computer as a sequence of bits (that
is a binary string). However, the point of view is different: the key is viewed as a “whole”,
and its precise representation is not taken into account, whereas the structure of a word, as
a sequence of symbols, is essential in text algorithms. Hence, for basic algorithms of the first
class (sorting, searching), the unit operation is the comparison between keys, whereas for
text algorithms of the second class, comparisons between symbols are considered.

∗ Thanks to the two ANR Projects: ANR BOOLE (ANR 2009 BLAN 0011) and ANR MAGNUM (ANR
2010 BLAN 0204).

© Julien Clément, Thu Hien Nguyen Thi, and Brigitte Vallée;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 598–609

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.598
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. Clément, T. H. Nguyen Thi, and B. Vallée 599

There exist two important drawbacks to this usual point of view. First, it is difficult to
compare algorithms belonging to these two different classes, since they are analyzed with
respect to different costs. Second, when the keys are complex items, not reduced to single
machine words, it is not realistic to consider the total cost of their comparison as unitary.
This is why Sedgewick proposed in 1998 to analyze basic algorithms (sorting and searching)
when dealing with words rather than with “atomic” keys; in this case, the realistic cost for
comparing two words is the number of symbols comparisons needed to distinguish them in
the lexicographic order and is closely related to the length of their longest common prefix,
called here the coincidence. There are two factors which influence the efficiency of such
an algorithm: the strategy of the algorithm itself (which words are compared?) and the
mechanism which produces words, called the source (what makes two words distinguishable?).

The first results in the area are due to Fill and Janson [5], Fill and Nakama [6], who dealt
with data composed of random uniform bits. Then, in the paper [18], a general framework
towards a realistic analysis based on the number of symbol comparisons is provided, when the
source which emits symbols is (almost completely) general. Furthermore, these principles are
applied to two algorithms, QuickSort and QuickSelect. Later on, a study of the distribution
of the complexity was performed in the same framework [4, 7].

Main results. The present paper follows the lines of the article [18], and works within the
same general framework, with four specific aims:

(a) The general method has been already described in [18]: it was shown that a Dirichlet
series denoted by $(s) characterizes the behavior of an algorithm with respect to the source.
We wish here to highlight the main principles, in order to make easier its application to
various algorithms. As it is often the case in analytical combinatorics, there are two main
phases in the method, a first phase where the series $(s) is built, and a second phase where
it is analyzed. We note here that the first phase may mostly be performed in an “automatic”
way.

(b) We apply the method to three other popular algorithms: InsertionSort, BubbleSort and
SelectionMinimum, respectively denoted in the sequel by the short names InsSort, BubSort,
SelMin (see for instance the book [15] for a thorough description of these algorithms). With
this approach we also easily recover the results about algorithms QuickSort and QuickMin
already obtained in [18]. Thus we provide an unified framework for the analysis of these five
algorithms in Section 2.2.

(c) We exhibit in each case the probabilistic features of the source which play a role
in the analysis: each algorithm of interest is related to a particular constant of the source,
which describes the interplay between the algorithm and the source, and explains how the
efficiency of the algorithm depends on the source, via various notions of coincidence between
words (See Proposition 5). This type of coincidence provides a good characterization of the
algorithm, and our study is a tool for a better understanding of the algorithmic strategy.

(d) We discuss the robustness of the algorithms, i.e., the possible changes in the complexity
behaviors, due to the change in the complexity measure, from the number of key comparisons
to the number of symbol comparisons (see Discussion p. 607).

Plan of the paper. Section 1 first presents the general method, with its main steps. Then,
Section 2 states the main results.

Most of the proofs and technical details are omitted due to space constraints. The full
version of this paper will include them.

STACS’13

600 Realistic analysis of algorithms

1 Main steps for the “realistic” analysis of a sorting algorithm

Here, we describe our general framework, already provided in [18]. We insist on the main steps,
and the notions developed here are somewhat different from the previous paper. We first
characterize in Section 1.1 the strategy of the algorithm (which keys are compared? with which
probability?), then we describe the source, and the central notion of coincidence (Sections
1.2 and 1.3). We obtain an exact formula for the mean number of symbol comparisons,
which involves the mixed Dirichlet series $(s) (depending on the source and the algorithm)
introduced in Section 1.4 and 1.5. In order to obtain asymptotic estimates, we deal with
tameness properties of the source, which entail tameness for the series $(s), and finally the
asymptotic estimates (Sections 1.6 and 1.7).

1.1 The classical probabilistic model: permutations and arrival times
Consider a totally ordered set of keys U = {U1 < U2 < · · · < Un} and any algorithm A which
only performs comparisons and exchanges between keys. The initial input is the sequence
(V1, V2, . . . , Vn) defined from U by the permutation σ ∈ Sn via the equalities Vi = Uσ(i). The
execution of the algorithm does not actually depend on the input sequence, but only on the
permutation σ which defines the input sequence from the final (ordered) sequence. Then,
the permutation σ is the actual input of the algorithm and the set of all possible inputs is
the set Sn (usually endowed with the uniform distribution).

The strategy of the algorithm A defines, for each pair (i, j), with 1 ≤ i < j ≤ n, the
subset of Sn which gathers the permutations σ (or the arrival times) for which Ui and Uj
are compared by the algorithm A, when the input sequence is (Uσ(1), Uσ(2), . . . , Uσ(n)). For
efficient algorithms, the two keys Ui and Uj are compared only once, but there exist other
algorithms (the BubSort algorithm for instance) where Ui and Uj may be compared several
times. In all cases, π(i, j) denotes the mean number of comparisons between Ui and Uj .
The computation of π(i, j) is the first step, described in Section 2.1. These mean numbers
π(i, j) are computed with direct probabilistic arguments. A remarkable feature is that the
expectations π(i, j) are always expressed as sums of rational functions depending on i, j or
j − i.

1.2 General sources
Here, we consider that the keys are words produced by a general source. By convention, we
denote open and closed intervals of real numbers]a, b[and [a, b], whereas (a, b) denotes a
pair of real numbers.

I Definition 1. Let Σ be a totally ordered alphabet of cardinality r. A general source
produces infinite words of ΣN, and is specified by the set {pw, w ∈ Σ?} of fundamental
probabilities pw, where pw is the probability that an infinite word begins with the finite prefix
w. It is (only) assumed that sup{pw : w ∈ Σk} tends to 0, as k →∞.

For any prefix w ∈ Σ?, we denote by |w| the length of w (i.e., the number of the symbols
that it contains) and aw, bw, pw the probabilities that a word produced by the source begins
with a prefix α of the same length as w, which satisfies α < w, α ≤ w, or α = w, meaning

aw :=
∑

α,|α|=|w|,
α<w

pα, bw :=
∑

α,|α|=|w|,
α≤w

pα, pw = bw − aw. (1)

Denote by L(S) the set of (infinite) words produced by the source S, ordered via the
lexicographic order. Given an infinite word X ∈ L(S), denote by wk its prefix of length k.

J. Clément, T. H. Nguyen Thi, and B. Vallée 601

The sequence (awk) is increasing, the sequence (bwk) is decreasing, and bwk−awk = pwk tends
to 0. Thus a unique real P (X) ∈ [0, 1] is defined as the common limit of (awk) and (bwk),
and P (X) can be viewed as the probability that an infinite word Y be smaller than X. The
mapping P : L(S) → [0, 1] is strictly increasing outside the exceptional set formed with
words of L(S) which end with an infinite sequence of the smallest symbol or with an infinite
sequence of the largest symbol.

Conversely, almost everywhere, except on the set {aw, w ∈ Σ?}, there is a mapping M
which associates, to a number u of the interval I := [0, 1], a word M(u) ∈ L(S). Hence the
probability that a word Y be smaller than M(u) equals u. The lexicographic order on words
is then compatible with the natural order on the interval I. The interval Iw := [aw, bw], of
length pw, gathers (up to a denumerable set) all the reals u for which M(u) begins with the
finite prefix w. This is the fundamental interval of the prefix w.

1.3 Coincidence
Here, we are interested in a more realistic cost related to the number of symbol comparisons
performed by these algorithms, when the keys are words independently produced by the
same source. The words are ordered with respect to the lexicographic order, and the cost for
comparing two words (measured as the number of symbol comparisons needed) is closely
related to the coincidence, defined as follows.

I Definition 2. The coincidence function γ(u, t) is the length of the largest common prefix
of M(u) and M(t).

More precisely, the realistic cost of the comparison between M(u) and M(t) equals γ(u, t)+1.
The coincidence γ(u, t) is at least ` if and only if M(u) and M(t) have the same common
prefix w of length `, so that the parameters u and t belong to the same fundamental interval
Iw relative to a prefix w of length `. We thus introduce the triangles

T := {(u, t) : 0 ≤ u ≤ t ≤ 1}, Tw = (Iw × Iw) ∩ T = {(u, t) : aw ≤ u ≤ t ≤ bw}. (2)

Using the two relations

T ∩ [γ ≥ `] =
⋃
w∈Σ`

Tw,
∑
`≥0

1[γ≥`] =
∑
`≥0

(`+ 1)1[γ=`],

the following equality holds, for any integrable function g on the unit triangle T , and will be
extensively used in the sequel,∫

T
[γ(u, t) + 1]g(u, t) du dt =

∑
w∈Σ?

∫
Tw
g(u, t) du dt. (3)

1.4 Average-case analysis – various models
The purpose of average–case analysis of structures (or algorithms) is to characterize the
mean value of their parameters under a well-defined probabilistic model that describes the
initial distribution of its inputs.

Here, we adopt the following general model for the set of inputs: we consider a finite
sequence V = (V1, . . . , Vn) of infinite words independently produced by the same source S.
Such a sequence V is obtained by n independent drawings v1, v2, . . . , vn in the interval I
via the mapping M , and we set Vi := M(vi). We assume moreover that V contains two
given words M(u) and M(t), with u < t. The variables N[0,u[, N[0,t[respectively denote the

STACS’13

602 Realistic analysis of algorithms

number of words of V strictly less than M(u), strictly less than M(t). These variables define
the ranks of M(u) and M(t) inside the set V, via the relations, valid for u < t,

RankM(u) = N[0,u[+ 1,RankM(t) = N[0,t[+ 2,

where the respective translations of 1 and 2 express that M(u) and M(t) belong to V.
We first consider the number of key comparisons between M(u) and M(t), and deal with

the mean number π̂(u, t) of key comparisons performed by the algorithm between M(u) and
M(t), where the mean is taken with respect to all the permutations of V . The mean number
π̂(u, t) is related to the mean number π(i, j) via the equality

π̂(u, t) = π(N[0,u[+ 1, N[0,t[+ 2). (4)

In our framework, expressions obtained for π(i, j) ensure that π̂(u, t) is always a sum of rational
functions in variables N[0,u[, N[0,t[and N[u,t[, (with the relation N[0,t[= N[0,u[+N]u,t[+ 1).

When the cardinality n of V is fixed, and words Vi ∈ V are independently emitted by
the source S, this is the Bernoulli model denoted by (Bn,S). However, it proves technically
convenient to consider that the sequence V has a variable number N of elements that obeys
a Poisson law of rate Z,

Pr{N = k} = e−Z
Zk

k! . (5)

In this model, called the Poisson model of rate Z, the rate Z plays a role much similar to
the cardinality of V. When it is relative to probabilistic source S, the model, denoted by
(PZ ,S), is composed with two main steps:

(a) The number N of words is drawn according to the Poisson law of rate Z;
(b) Then, the N words are independently drawn from the source S.
Note that, in the Poisson model, the variables N[0,u[, N]u,t[are themselves independent
Poisson variables of parameters Zu and Z(t− u) (respectively). The expectation π̂(u, t) is
itself a random variable which involves these variables.

1.5 Exact formula for the mean number of symbol comparisons
The density of the algorithm in the Poisson model, denoted by φZ(u, t) and defined as

φZ(u, t) du dt = Z2 · EZ [π̂(u, t)] du dt = (Z du) · (Z dt) · EZ [π̂(u, t)],

is the mean number of key comparisons between two wordsM(u′) andM(t′) for u′ ∈ [u−du, u]
and t′ ∈ [t, t + dt]. In the model (PZ ,S), this is a main tool for computing, not only the
mean number of key comparisons KZ performed by the algorithm, but also the mean number
of symbol comparisons SZ via the formulae

KZ =
∫
T
φZ(u, t) du dt, SZ =

∫
T

[γ(u, t) + 1]φZ(u, t) du dt.

To return to the Bernoulli model (Bn,S), the coefficients ϕ(n, u, t) in the series expansion of
φZ(u, t) defined as

ϕ(n, u, t) := (−1)n n![Zn]φZ(u, t), (6)

are computed in an “automatic way” from the mean numbers π̂(u, t), themselves closely
related to π(i, j). This is the second step leading to results in Table 1 p. 608. Using Eq. (3),
the sequence ϕ(n) is now defined for any n ≥ 2,

ϕ(n) :=
∫
T

(γ(u, t) + 1)ϕ(n, u, t) du dt =
∑
w∈Σ?

∫
Tw
ϕ(n, u, t) du dt, (7)

J. Clément, T. H. Nguyen Thi, and B. Vallée 603

and is easy to obtain via computations of the integral of ϕ(n, u, t) on the triangles Tw. Now,
the mean number S(n) of symbol comparisons used by the algorithm when it deals with n
words independently drawn from the same source is related to ϕ(n) by the equality

S(n) =
n∑
k=2

(−1)k
(
n

k

)
ϕ(k), (8)

which provides an exact formula for S(n), described in Section 2.2. The expression of S(n)
is obtained in an “automatic” way, from the expectations π(i, j).

1.6 Asymptotic estimates for the mean number of symbol comparisons
However, the previous formula does not give an easy or straightforward access to the
asymptotic behaviour of S(n) (when n→∞). In order to get asymptotic estimates, we first
need an analytic lifting $(s, u, t) of the coefficients ϕ(k, u, t), that is an analytic function
$(s, u, t) which coincides with ϕ(k, u, t) at integer values s = k in the summation of Eq. (8).
This analytic lifting gives rise to the mixed Dirichlet series itself,

$(s) :=
∫
T

[γ(u, t) + 1]$(s, u, t) du dt =
∑
w∈Σ?

∫
Tw
$(s, u, t) du dt,

which depends both on the algorithm (via $(s, u, t)) and the source (via the fundamental
triangles Tw). For each algorithm, the existence of this analytic lifting is granted in a domain
<s > σ0. However, the value of σ0 depends on the algorithm. One has σ0 = 1, except for
the algorithms InsSort and BubSort where σ0 equals 2. This is due to constant term 1/2
appearing in the expectation π(i, j), as seen in Table 1 p. 608 (see also Section 2.2).

The Rice Formula [12, 13] transforms a binomial sum into an integral in the complex
plane. For any real σ1 ∈]σ0, σ0 + 1[, one has

T (n) =
n∑

k=1+σ0

(−1)k
(
n

k

)
$(k) = (−1)n+1

2iπ

∫
<s=σ1

G(s) ds, with G(s) = n!$(s)
s(s− 1) . . . (s− n) . (9)

Then, along general principles in analytic combinatorics [9, 10], the integration line can be
pushed to the left, as soon as G(s) (closely related to $(s)) has good analytic properties: we
need a region R on the left of <s = σ0, where $(s) is of polynomial growth (for =s→∞)
and meromorphic. With a good knowledge of its poles, we finally obtain a residue formula

T (n) = (−1)n+1

[∑
s

Res [G(s)] + 1
2iπ

∫
C2

G(s) ds
]
,

where C2 is a curve of class C1 enclosed in R and the sum is extended to all poles s of G(s)
inside the domain delimited by the vertical line <s = σ1 and the curve C2.

The dominant singularities of G(s) provide the asymptotic behaviour of T (n), and the
remainder integral is estimated using the polynomial growth of G(s) when |=(s)| → ∞.
According to Eq. (8) and(9), and in the cases where σ0 = 2, we have to add to T (n) the term
corresponding to the index k = 2, where the analytical lifting $ does not coincides with ϕ.
For algorithms BubSort and InsSort, the additional term is of the form ϕ(2)

(
n
2
)
.

1.7 Tameness of sources
We first describe three cases of possible regions R where good properties of $(s) will make
possible such a shifting to the left in the Rice formula.

STACS’13

604 Realistic analysis of algorithms

I Definition 3. A function $(s) is tame at σ0 if one of the three following properties holds:
(a) [S–shape] (shorthand for Strip shape) there exists a vertical strip <(s) > σ0 − δ for

some δ > 0 where $(s) is meromorphic, has a sole pole (of order k0 ≥ 0) at s = σ0 and is of
polynomial growth as |=s| → +∞.

(b) [H–shape] (shorthand for Hyperbolic shape) there exists an hyperbolic region R,
defined as, for some A,B, ρ > 0

R := {s = σ + it; |t| ≥ B, σ > σ0 −
A

tρ
}
⋃
{s = σ + it; σ > σ0 −

A

Bρ
, |t| ≤ B},

where $(s) is meromorphic, with an only pole (of order k0 ≥ 0) at s = σ0 and is of polynomial
growth in R as |=s| → +∞.

(c) [P–shape] (shorthand for Periodic shape) there exists a vertical strip <(s) > σ0 − δ
for some δ > 0 where $(s) is meromorphic, has only a pole (of order k0 ≥ 0) at s = σ0 and
a family (sk) (for k ∈ Z, k 6= 0) of simple poles at points sk = σ0 + 2kiπt with t 6= 0, and is
of polynomial growth as |=s| → +∞1.

There are three parameters relative to the tameness: the integer k0 is the order, and,
when they exist, the real δ is the abscissa, and the real ρ is the exponent.

Here, the main Dirichlet series $(s) of interest are closely related to the Dirichlet series
of the source, which involve the fundamental probabilities pw, and the ends aw, bw of the
fundamental intervals (see Section 1.1), via a function F : [0, 1]2 → R+ of class C1,

Λ[F](s) :=
∑
w∈Σ?

F (aw, bw) psw, Λk[F](s) :=
∑
w∈Σk

F (aw, bw) psw. (10)

For F ≡ 1, we omit the reference to F , and we let Λ := Λ[1]. These series satisfy, for <s > 1,
the relation2 |Λ(F, s)| ≤ ‖F‖Λ(σ). Since the equality Λk(1) = 1 holds for all k, the series
Λ(s) is divergent at s = 1, and many probabilistic properties of the source can be expressed
in terms of the behavior of Λ(s), when <s is close to 1. For instance, the entropy h(S) of the
source S is defined as the limit (if it exists),

h(S) := lim
k→∞

−1
k

∑
w∈Σk

pw log pw = lim
k→∞

−1
k

d

ds
Λk(s)|s=1 . (11)

Two types of properties of the source may entail tameness for the mixed series $(s).

I Definition 4 (Tameness of Sources). (a) A source is weakly tame if the function s 7→ Λ(s)
is analytic on <s > 1, and of polynomial growth when =s→∞ on any <s ≥ σ1 > 1

(b) Denote by F the set of functions F : [0, 1]2 → R+ of class C1. A source is Λ–tame
if Λ(s) admits at s = 1 a simple pole, with a residue equal to 1/h(S), (where h(S) is the
entropy of the source)3 and if one of the following conditions is fulfilled:
1. [S–shape] for any F ∈ F , the series Λ[F](s) is tame at s = 1 with a S–shape;

1 More precisely, this means that $(s) is of polynomial growth on a family of horizontal lines t = tk with
tk →∞, and on vertical lines <(s) = σ0 − δ′ with some δ′ < δ.

2 The norm ‖·‖ is the sup-norm on [0, 1]× [0, 1].
3 Then (proof omitted here) any series Λ[F](s) for any F ∈ F , F > 0, admits at s = 1 a simple pole, with

a residue equal to
1

h(S)

∫ 1

0
F (x, x)dx.

J. Clément, T. H. Nguyen Thi, and B. Vallée 605

2. [H–shape] for any F ∈ F , the series Λ[F](s) is tame at s = 1 with a H–shape;
3. [P–shape] for any F ∈ F , the series Λ[F](s) is tame at s = 1, with a P–shape for F ≡ 1.

For F 6≡ 1, Λ[F](s) has either a S–shape, or a P–shape.

This definition is in fact very natural, since it describes various possible behaviors of
classical sources. “Most of the time”, the simple sources (memoryless sources or aperiodic
Markov chains) are Λ–tame. They never have a S–shape, but they may have a H–shape or
a P–shape, according to arithmetic properties of their probabilities [8]. Dynamical sources,
introduced by Vallée and defined in [17], may have a P–shape only if they are “similar”
to simple sources. Adapting deep results of Dolgopyat [2, 3], it is possible to prove that
dynamical sources are “most of the time” Λ–tame with a S–shape [1], but they may also have
a H–shape [14]. See the cited papers for more details, where all these facts, here described
in a informal way, are stated in a formal way and proven.

This definition is also well-adapted to our framework since it describes situations where
the mixed series $(s) may be proven tame. Then, the contour of the Rice integral may be
shifted to the left, providing an asymptotic expansion for the mean number S(n).

The weak tameness of the source is sufficient to entail the tameness at s = 1 (with a
S–shape, and an exponent k0 = 0) of series $(s) related to selection algorithms (namely
QuickMin and SelMin). The Λ–tameness of the source is central in the analysis of sorting
algorithms, as it ensures the tameness of $(s) related to algorithms QuickSort, InsSort
and BubSort); moreover, the tameness shape $(s) is inherited from the one of the source.

2 Summary of our results.

We recall the main steps of the method.
Step 1. Computation of expected values π(i, j).
Step 2. Automatic derivation of $(s, u, t); determination of the abscissa σ0.
Step 3. Expression for the mixed Dirichlet series $(s), and description of the main term of
the singular expression of $(s)/(s− σ0). Interpretation of the “dominant” constants.
Step 4. Relation between tameness of the source and tameness of the mixed series $(s).
Application of the Rice Formula. Statement of the final results.

This Section presents the results with three tables (found at the end), five propositions
and a theorem. Section 2.1 summarizes Steps 1 and 2 with Propositions 2.1 and 2.2, and
Table 1. Section 2.2 summarizes Step 3 with Propositions 2.3, 2.4, 2.5, and Table 2. Finally,
Section 2.3 states the final result (Theorem 2.6) with Table 3. The proofs are omitted in this
short version and defered to a full version of this paper.

2.1 Summary of the results for Steps 1 and 2
We present in the leftmost part of Table 1 the expressions for the mean number π(i, j) of
key comparisons between Ui and Uj , for each algorithm of interest. With these expressions,
it is easy to recover the estimates for the mean number K(n) of key comparisons (recalled in
the third column).
I Proposition 5. Consider the permutation model described in Section 1.1, and denote by
π(i, j) the mean number of comparisons between the keys of rank i and j, with i ≤ j. Then,
for any of the five algorithms, the mean numbers π(i, j) admit the expressions described in
the second column of Table 1 p. 608.
We then obtain the expressions for the analytic lifting $(s, u, t), via an “automatic” derivation
taking into account the similar expressions for quantities π(i, j).

STACS’13

606 Realistic analysis of algorithms

I Proposition 6. Denote by $(s, u, t) the function which provides an analytical lifting of
the sequence ϕ(n, u, t) defined in Eq. (6), and by σ0 the integer which defines the domain
<s > σ0 of validity of this lifting. Then, for any of the five algorithms, the functions $(s, u, t)
admit the expressions described in the fifth column of Table 1 p. 608.

2.2 Summary of the results for Step 3 – the mixed Dirichlet series
I Proposition 7. Consider any general source, assumed to be weakly tame, together with
the fundamental intervals [aw, bw] defined in (1) and its Dirichlet series defined in Eq. (10).
Then, for any of the five algorithms, the mixed Dirichlet series $(s) (defined in Section 1.6)
admit in the domain <s > σ0, the expressions displayed in the second column of Table 2,
together with the values of σ0 in the third column. Depending on the value of σ0 the mean
number S(n) of symbol comparisons is

S(n) =
n∑
k=2

(−1)k
(
n

k

)
$(k) (if σ0 = 1), S(n) =

(
n

2

)
Λ(2)

2 +
n∑
k=3

(−1)k
(
n

k

)
$(k) (if σ0 = 2).

We now study the relation between tameness of the source and tameness of the mixed
Dirichlet series.
I Proposition 8. Assume the source S to be weakly tame. Then, the mixed Dirichlet series
$(s) relative to selection algorithms are both tame at σ0 = 1 with order k0 = 0 and a
S–shape. Moreover, their abscissae δ satisfy

(a) [QuickMin] δ ≥ 1/3.
(b) [SelMin] δ > 0 depends on an exponent a (attached to the source).
Assume the source S to be Λ–tame. Then, the mixed Dirichlet series $(s) relative to sorting
algorithms satisfy the following:

(a) [QuickSort] $(s) is tame at σ0 = 1 with order k0 = 2.
(b) [InsSort] $(s) is tame at σ0 = 1 with order k0 = 1.
(c) [BubSort] $(s) is tame at σ0 = 2 with order k0 = 1.
Moreover, the source S gives its shape of tameness to the series $(s).
We finally describe the main term of the singular expression of $(s)/(s− σ0) at s = σ0.
I Proposition 9. The constants of interest which intervene in the main terms displayed in
the last column of Table 2 p. 608 are:

(i) The entropy h(S) of the source.
(ii) The coincidence c(S), namely the mean number of symbols needed to compare two

random words produced by the source.
(iii) The min–coincidence a(S): this is the mean number of symbols needed to compare a

uniform random word and the smallest word of the source.
(iv) The logarithmic coincidence b(S): this is the mean number of symbols needed to compare

two words X and Y randomly chosen as follows: the word X is uniformly drawn from
the source, and Y is drawn with Y ≥ X, according to density 1/t.

The entropy is defined in (11). The constants a(S), b(S), c(S) satisfy the inequalities
a(S) < b(S), c(S) < 2b(S) and are defined as follows

a(S) =
∑
`≥0

q`, b(S) =
∑
w∈Σ?

∫
Tw

1
t
du dt c(S) = 2

∑
w∈Σ?

∫
Tw

du dt =
∑
w∈Σ?

p2
w = Λ(2).

Here q` is the probability of the prefix of length ` of the smallest word of the source, Tw is
the fundamental triangle defined in (2) and Λ(s) is defined in (10).

J. Clément, T. H. Nguyen Thi, and B. Vallée 607

The constants a(S), c(S) and h(S) are easy to compute for any memoryless source.
For the unbiased source Mr, or for the source Bp on the alphabet {0, 1}, with p := p0,
one has: a(Mr) = c(Mr) = r

r−1 , h(Mr) = log r, a(Bp) = 1
1−p , c(Bp) = 1

2p(1−p) and
h(Bp) = −p log p− (1− p) log(1− p). The constant b(S) is more difficult to compute even in
the memoryless case. But, for the sourceMr, one has (see [11] for details)

b(Mr) =
∑
`≥0

(
1 + 1

r`

r`−1∑
k=1

log k

r`

)
, b(M2) .= 2.639689120.

2.3 Final step
I Theorem 10. Consider a general source S. For selection algorithms QuickMin, SelMin,
we assume the source to be weakly–tame, and, for sorting algorithms QuickSort, InsSort,
BubSort, we assume the source to be Λ–tame. Then, the mean number S(n) of symbol
comparisons performed by each algorithm on a sequence of n words independently drawn from
the same source S admits the asymptotic behaviour described in Table 3. Here, the constants
κi in the subdominant terms4 involve the Euler constant γ together with the subdominant
constant of the source5 d(S):

κ0 = 2
h(S) (γ − 2) + 2d(S), κ1 = 1

8h(S) (2γ − 3) + d(S)
4 .

The errors terms E(n), F (n) are not of the same type for sorting algorithms and selection
algorithms.

For selection algorithms, still assuming the source is weakly tame. The error term F (n)
is of order O(n1−δ), with δ = 1/3 for QuickMin. For SelMin, the constant δ depends on the
exponent a (if it exists) attached to the source.

For sorting algorithms, assuming a Λ–tame source with a given shape, we have
– if the source has a S–shape with abscissa δ, then E(n) = O(n1−δ);
– if the source has a H–shape with exponent ρ, then E(n) = n · O (exp[−(log n)ρ]);
– if the source has a P–shape with abscissa δ, then E(n) = n ·Φ(n)+O(n1−δ) where n ·Φ(n)

is the expansion given by the family of imaginary poles (sk).

Discussion. We now compare the asymptotic estimates for the two mean numbers, the
mean number K(n) of key–comparisons (column 2 of Table 3) and the mean number S(n)
(column 3 of Table 3). There are two types of algorithms

(a) The “robust” algorithms for which K(n) and S(n) are of the same order. This is
the case for three algorithms: InsSort, QuickMin and SelMin. Of course, the constants are
different for K(n) and S(n), and the ratios S(n)/K(n) involve coincidences of various types
always between two words, respectively uniform coincidence c(S), logarithmic-coincidence
b(S), or min-coincidence a(S).

(b) The algorithms for which S(n) and K(n) are not of the same order, here QuickSort
and BubSort. In both cases, the ratio S(n)/K(n) is asymptotic to [1/(2h(S))] log n.

(c) This ratio also appears in lower bounds: Combining results due to Seidel [16], with
our methods, we obtain a lower bound for the number of symbol comparisons of any sorting

4 The constant κ2 is not computed here. Note that the computation of the subdominant term for InsSort
needs the singular expansion of $(s)/(s− 1) at s = 1.

5 This constant, defined as the constant term in the singular expansion of Λ(s) at s = 1, is easy to
compute for any source Bp: d(Bp) = (1/h(Bp))2(p log2 p+ (1− p) log2(1− p)).

STACS’13

608 Realistic analysis of algorithms

algorithm on a source S, asymptotic to S0(n) = [1/(2h(S))]n log2 n. Comparing with the
well-known lower bound for the number of key comparisons, asymptotic to K0(n) = n log n,
we observe that the ratio S0(n)/K0(n) is also asymptotic to [1/(2h(S))] log n.

Algorithms π(i, j) K(n) σ0 $(s, u, t), <s > σ0

QuickSort
2

j − i+ 1 2n log n 1 2(t− u)s−2

InsSort
1
2 + 1

(j − i+ 1)(j − i)
n2

4 2 (s− 1)(t− u)s−2

BubSort
1
2 + 1

(j − i+ 1)(j − i)+ n2

2 2 (s− 1)(t− u)s−3[t− (s− 1)u]

+ 2(i− 1)
(j − i+ 2)(j − i+ 1)(j − i)

QuickMin
2
j

2n 1 2ts−2

SelMin
1

i(i+ 1) + 1
j(j − 1) n 1 (s− 1)[us−2 + ts−2]

(a) Table 1: results for Steps 1 and 2 (Section 2.1)

Algorithms $(s) σ0 Main term of $(s)/(s− σ0)

QuickSort
2Λ(s)
s(s− 1) 1 2

h(S)
1

(s− 1)3

InsSort
Λ(s)
s

2 c(S)
2

1
(s− 2)

BubSort −Λ[F0](s− 1) = −
∑

w∈Σ?
awp

s−1
w 2 − 1

2h(S)
1

(s− 2)2

QuickMin 2
∑

w∈Σ?

∫ bw

aw

(t− aw)ts−2dt 1 2b(S) 1
s− 1

SelMin (s− 1)
∑

w∈Σ?
(bw − aw)

∫ bw

aw

us−2du 1 a(S) 1
s− 1

(b) Table 2: results for Step 3 (Section 2.2)

Algorithms K(n) Dom. term of S(n) Subdominant terms Rem. term

QuickSort 2n log n 1
h(S) n log2 n κ0n log n + κ2n E(n)

InsSort
n2

4
c(S)

4 n2 1
h(S)n log n +

(
κ0 −

c(S)
4

)
n E(n)

BubSort
n2

2
1

4h(S) n
2 log n

(
κ1 + c(S)

4

)
n2 nE(n)

QuickMin 2n 2b(S)n F (n)

SelMin n a(S)n F (n)

(c) Table 3: results for Theorem 1 (Section 2.3). Nota. Rem.: Remainder, Dom.: Dominant.

Figure 1 Tables summarizing results.

Conclusion. We show here the applicability of the method which has been described in
the paper [18]. We describe a new point of view on the basic algorithms, and their analysis,
which can be (partially) automatized. Our dream is to revisit all standard algorithms from a
student book, with this point of view, and perform their realistic analysis.

J. Clément, T. H. Nguyen Thi, and B. Vallée 609

Acknowledgements. This paper greatly benefited from many discussions we had with
Philippe Flajolet, on the topics of the Rice formula and the tameness of sources. For these,
we are truly grateful.

References
1 E. Cesaratto and B. Vallée. Gaussian distribution of trie depth for dynamical sources.

submitted, 2012.
2 D. Dolgopyat. On decay of correlations in Anosov flows. Ann. of Math., 147(2):357–390,

1998.
3 D. Dolgopyat. Prevalence of rapid mixing in hyperbolic flows. Ergod. Th. & Dynam. Sys.,

18:1097–1114, 1998.
4 J. A. Fill. Distributional convergence for the number of symbol comparisons used by

Quicksort. Ann. Appl. Probab. (2012), to appear.
5 J. A. Fill and S. Janson. The number of bit comparisons used by quicksort: an average-case

analysis. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 300–307, 2004. Long version Electron. J. Probab. 17, Article 43, 1-22 (2012).

6 J. A. Fill and T. Nakama. Analysis of the expected number of bit comparisons required by
quickselect. Algorithmica, 58(3):730–769, 2010.

7 J. A. Fill and T. Nakama. Distributional convergence for the number of symbol comparisons
used by Quickselect. CoRR, abs/1202.2599, 2012. submitted.

8 P. Flajolet, M. Roux, and B. Vallée. Digital trees and memoryless sources: from arithmetics
to analysis. Proceedings of AofA’10, DMTCS, proc AM, pages 231–258, 2010.

9 P. Flajolet and R. Sedgewick. Mellin transforms and asymptotics: Finite differences and
Rice’s integrals. Theor. Comput. Sci., 144(1&2):101–124, 1995.

10 P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.
11 P. J. Grabner and H. Prodinger. On a constant arising in the analysis of bit comparisons

in Quickselect. Quaestiones Mathematicae, 31(4):303–306, 2008.
12 N. E. Nörlund. Leçons sur les équations linéaires aux différences finies. In Collection de

monographies sur la théorie des fonctions. Gauthier-Villars, Paris, 1929.
13 N. E. Nörlund. Vorlesungen über Differenzenrechnung. Chelsea Publishing Company, New

York, 1954.
14 M. Roux and B. Vallée. Information theory: Sources, dirichlet series, and realistic analyses

of data structures. In Proceedings 8th International Conference Words 2011, volume 63 of
EPTCS, pages 199–214, 2011.

15 R. Sedgewick. Algorithms in C, Parts 1–4. Addison–Wesley, Reading, Mass., 1998. 3rd ed.
16 R. Seidel. Data-specific analysis of string sorting. In Proceedings of the Twenty-First Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 1278–1286, 2010.
17 B. Vallée. Dynamical sources in information theory: Fundamental intervals and word

prefixes. Algorithmica, 29(1/2):262–306, 2001.
18 B. Vallée, J. Clément, J. A. Fill, and P. Flajolet. The number of symbol comparisons in

QuickSort and QuickSelect. In S. A. et al., editor, Proceedings of ICALP 2009, Part I,
volume 5555 of Lecture Notes in Computer Science, pages 750–763. Springer-Verlag, 2009.

STACS’13

Search using queries on indistinguishable items
Mark Braverman1 and Gal Oshri2

1 Princeton University, research partially supported by an Alfred P. Sloan
Fellowship, an NSF CAREER award, and a Turing Centenary Fellowship.

2 Princeton University

Abstract
We investigate the problem of determining a set S of k indistinguishable integers in the range
[1, n]. The algorithm is allowed to query an integer q ∈ [1, n], and receive a response comparing
this integer to an integer randomly chosen from S. The algorithm has no control over which
element of S the query q is compared to. We show tight bounds for this problem. In particular,
we show that in the natural regime where k ≤ n, the optimal number of queries to attain n−Ω(1)

error probability is Θ(k3 log n). In the regime where k > n, the optimal number of queries is
Θ(n2k log n).

Our main technical tools include the use of information theory to derive the lower bounds,
and the application of noisy binary search in the spirit of Feige, Raghavan, Peleg, and Upfal
(1994). In particular, our lower bound technique is likely to be applicable in other situations that
involve search under uncertainty.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Search, Noisy Search, Information Theory, Query Complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.610

1 Introduction

This paper investigates the problem of identifying a set S of indistinguishable items by
repeated queries where we know the range of values the items can take. At every query, we
gain information based on our query and some random item from the set S we are trying to
find (we do not know which item was chosen). The overall simple statement of the problem
makes it widely generalizable. The query can be thought of as an experiment in which we
apply a measurement on an element of S without knowing which element has been measured.
The set of items can refer to a set of DNA strands in a “soup” of DNAs, passwords or any
item that we might be interested in finding when we know what possible values the item may
take. The queries can be viewed as tests on DNA strands, attempts at guessing a password or
any trial we may run that will provide some information about one of the items in question.
The specific problem we investigate is where the items are integers. Our queries are guesses
of integers which return the result of a comparison with a chosen integer from the set we are
trying to find.

As far as we know, this problem has not been investigated in the literature. However, it
falls into the rich class of noisy search problems. Since we do not know which number was
chosen when we query a number, we have to deal with a lack of information in trying to
determine the set of numbers. Due to this missing information, it is not immediately obvious
that there exists a solution to the problem.

In this paper we give asymptotically tight upper and lower bounds for the number of
queries needed to find a set S of size k of numbers from {1, . . . , n}, where the queries are
comparison queries.

© Mark Braverman and Gal Oshri;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 610–621

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.610
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Braverman and G. Oshri 611

We briefly discuss similar problems that have been previously studied. Feige et al.
explored the depth of noisy decision trees, where each node can be wrong with some constant
probability, in [2]. One of the problems they investigated is binary search where the result of
each query is wrong with a constant probability. They presented an algorithm to solve this
with running time Θ(log n

Q) where n is the input set size and Q is the probability of error of
the algorithm. The algorithm we present uses a similar technique to the one used for noisy
binary search in [2].

The Renyi-Ulam game is also a related problem. In one variation of this game, we need
to discover a chosen integer. To do this, we query a number and are told whether the number
we are trying to find is greater than the number we guessed or not. However, some constant
number of lies are allowed. In [8], one lie is allowed, which means that one of the responses
to our queries can be false. Similarly, Pelc discussed in [5] an algorithm for performing
the search when one lie is allowed and concluded that the original question posed by Ulam
(finding an integer between one and a million with one lie allowed) requires 25 queries. In [8],
[5] and other papers that explore the Renyi-Ulam game, some restriction is placed on the
pattern of queries with false results. Ravikumar and Lakshmanan discussed such patterns
(and why they are necessary to make the problem solvable) in [7].

The problem we are investigating is motivated by applications that involve a search
for several items by repeated queries where we do not know which item was chosen to be
compared with our query (i.e. the items are indistinguishable). One interpretation is where
the items represent DNA strands in a mixture that we are trying to identify. We can perform
tests that give us some information about one of the DNA strands in the mixture, but we
do not know which one. Similarly, instead of trying to identify DNA strands, we might be
trying to identify passwords where our queries give us some partial information about one
password out of several that a particular user often uses (and switches between).

We note that the applications mentioned do not take the exact form as the problem we
explore. The items in our problem are integers and the queries are guesses of an integer that
result in the response ‘less than or equal to’ or ‘greater than’. In generalizing the problem
to other applications, the form of items or queries may change. For example, the queries
in the DNA mixture example may describe a property of a particular nucleotide instead of
returning one of two possible answers. Therefore, the algorithm will have to be changed.
However, a similar framework can be used which allows information to be gained despite
the uncertainty regarding query responses due to the indistinguishability of the items. A
solution to the problem we have posed can lead to the development of new methods for
identifying a set of items where we know these items can only take on a certain range of
values. On the lower-bound side, our results show that information-theoretic quantities are
very effective at measuring and upper-bounding information learned from queries, even when
such information is only a fraction of one bit. We believe that the information-theoretic
lower bound technique will generalize to tight lower bounds in other settings.

We now discuss the results and structure of the paper. In Section 2, we formally introduce
the problem we are solving with the restriction that the number of chosen integers is
significantly smaller than the range of integers available. We prove a lower bound for the
problem in Section 3.1 using information theoretic techniques. This involves constructing the
hard instances where we split the possible values the chosen integers can take into consecutive
clusters of equal size and place one chosen integer in each such cluster. Intuitively, this forces
the search algorithm to find the elements one at a time, which turns out to be costly due to
the fact that we don’t control the sample. To formalize this intuition, we calculate the entropy
of the random variable representing a particular chosen integer (it may take values of the

STACS’13

612 Search using queries on indistinguishable items

integers in one of the clusters described above). We then use the mutual information of this
random variable and the random variable representing the responses to the queries we make
to find the minimum number of queries required to find that chosen integer. After showing
that the same minimum number of queries applies to at least half of the chosen integers, we
reach a lower bound of Ω(k3 log n), where k is the size of the set S and the elements of S
take integer values between 1 and n (inclusive). Further, this bound extends to all k < n,
using a slightly different set of hard instances. When k > n we obtain a lower bound of
Ω(k2n log n). In Section 4, we present an optimal algorithm for solving the problem, proving
both its correctness and worst case running time of O(k3 log n

δ) where δ is the probability of
error. This shows that the lower bound is tight. Moreover, while the lower bound applies
to finding S even with a constant error probability, we see that the upper bound remains
asymptotically the same even if we set the error δ = n−O(1) to be polynomially small.

Our results show that the problem we describe can be solved in practice when the items
we are searching for can take a large number of values. This is because the dependence of
the running time on n grows as log n. However, the number of items in S needs to remain
small because the dependence of the running time on k grows as k3.

2 Problem definition

We consider a (multi-)set S of k distinct integers where each is Xi ∈ {1, 2, . . . , n} for 1 ≤ i ≤ k.
Our goal is to discover the set S. The process is to repeat the following three steps:
1. Query an integer Y ∈ {1, 2, . . . , n}.
2. An integer Xi is selected from S uniformly at random.
3. We are told whether Xi ≤ Y or Xi > Y .
These three steps are repeated until we know what the k integers in S are. Our goal is to find
the most efficient algorithm for determining S. Our model of computation is that queries are
the costly operations. Therefore, by finding the most efficient algorithm we mean finding the
algorithm that minimizes the number of queries made. We refer to this as ‘the problem’ we
are solving. Furthermore, for brevity, we refer to the two possible responses to queries as ‘≤’
(Xi ≤ Y) and ‘>’ (Xi > Y) and the k integers in S as ‘the chosen integers’.

In this paper we give a complete characterization of the query complexity of this problem.
Note that since the Xi is selected at random from S, we cannot hope for a deterministic
algorithm, and have to settle for a probabilistic performance guarantee. We focus on
the regime where we are required to output the correct set S except with some (possibly
constant) probability δ. The answer can be broken down into three main regimes, which will
be discussed in the analysis: (1) k � n, e.g. k <

√
n; (2)

√
n < k < n; and (3) k ≥ n. The

answer is given by the following main theorem:

I Theorem 1. The number of queries needed to determine a multi-set S ⊂ [n] of size k with
a given error n−O(1) < δ < 1/4 is Θ(k3 log n) when k ≤ n, and Θ(k2n log n) when k ≥ n.

Note that the distinction between k <
√
n and

√
n < k < n only comes up in the analysis,

but (asymptotically) makes no difference in the result.

I Remark. Because of the way the algorithms work, Theorem 1 remains true even if the
comparisons in the query answers are themselves noisy, and output the correct value of
Xi

?
> Y correctly only with probability 1/2 + γ for some constant γ > 0.

I Remark. Somewhat surprisingly, same bounds hold for a fairly broad range of error
parameters. In particular, the lower bound holds even when the error is constant, while the

M. Braverman and G. Oshri 613

upper bound holds even for polynomially small errors (the constant in the Θ(·) may depend
on the constant β in δ = n−β).

3 The lower bounds

We begin with showing the lower bound. In fact, we break the lower bound into two regimes:
k ≤
√
n and k >

√
n. In the former regime, we use information-theoretic techniques to show

the lower bound. In the latter, we give a more straightforward proof of the Ω(k3 log k) lower
bound when k < n, and Ω(k2n log n) when k > n. The Ω(k3 log k) lower bound is weaker in
general than Ω(k3 log n) when k < n, but is equivalent in the regime where k >

√
n.

3.1 The case k ≤
√

n: an information-theoretic lower bound
The main technical ingredient in the lower bound proof is the Kullback-Leibler divergence
and mutual information. We first introduce these terms and the lemmas we will use. For a
more thorough introduction to these, see [1].

The Kullback-Leibler divergence (KL-divergence) measures the difference between two
probability distributions:
I Definition 3.1. For discrete random variables P and Q over sample space Ω, the KL-
Divergence is defined as:

DKL(P ||Q) =
∑
i∈Ω

P (i) log P (i)
Q(i)

with the convention that the term in the sum is interpreted as 0 when P (i) = 0 and +∞
when P (i) > 0 and Q(i) = 0

We also use mutual information, which we define and arrange into a form we will use:
I Definition 3.2. Mutual information is a measure of the correlation between two random
variables. The more independent the variables are, the lower the mutual information is.

I(X;Y) = DKL(p(x, y)||p(x)p(y))

Before we rearrange this definition into a form we will use, we first note (from [1]) that it
can also be written in terms of the more familiar Shannon entropy as:

I(X;Y) = H(X)−H(X|Y).

Since H(X) ≥ H(X|Y), I(X;Y) ≥ 0. If entropy is interpreted as the uncertainty regarding
a probability distribution, we see that the mutual information between X and Y represents
the reduction in uncertainty of X by knowing Y .

We now return to the original definition given for mutual information. Using the definition
of the KL-divergence and conditional probability (p(x|y) = p(x,y)

p(y)), we have:

I(X;Y) =
∑
y

p(y)
∑
x

p(x|y) log p(x|y)
p(x) =

∑
y

p(y)DKL(p(x|y)||p(x))

= EY [DKL(p(x|y)||p(x))]

Thus we see that the mutual information is the expectation of the KL-divergence between
the probability distribution of X and the probability distribution of X conditioned on Y .
If these two distributions have a high KL-divergence, then knowing Y provides us a high
amount of information regarding the probability distribution of X. This is equivalent to
saying that the mutual information of X and Y is high.

We will use the chain rule for mutual information:

STACS’13

614 Search using queries on indistinguishable items

I Lemma 2. I(X;Y1, Y2, . . . , Yk) = I(X;Y1) + I(X;Y2|Y1) + . . .+ I(X;Yk|Yk−1, . . . , Y2, Y1)

For a proof of the above lemma, see [1]. We are now done defining the information
theory terms we will need. Lastly, we will need the following lemma which describes the
KL-divergence between two Bernoulli random variables with a similar probability of success:

I Lemma 3. DKL(Bp±ε||Bp) = O(ε2) where Bp is a Bernoulli random variable with
probability of success p, 1

4 ≤ p ≤
3
4 and ε ≤ 1

8 .

The proof for this lemma is straightforward and is thus not included here. We are now
ready to begin our proof of the lower bound. The approach taken is to show that the
information gain from each query is small compared with the total information required to
find a certain chosen integer. This will allow us to show that a certain minimum number of
queries is required to find each of the k integers.

I Lemma 4. The lower bound for the number of queries required to find the k integers
between 1 and n in the set S with probability > 0.99, when 8 ≤ k ≤

√
n, is Ω(k3 log n)

Proof. We choose our input as follows. Split the integers in the range [1, n] into k equally
sized clusters. Call these clusters G1, G2, . . . , Gk. Let there be one of the k chosen integers in
each such cluster. This integer is chosen uniformly at random from the integers in the cluster.
Note that the number of integers in each cluster is n

k , which, without loss of generality, we
will assume is an integer.

We consider individually a cluster Gi where k+4
4 ≤ i ≤ 3k

4 . Let L be the random variable
that represents the chosen integer in Gi. Since this number is chosen uniformly at random
from n

k elements, the probability of each integer being the chosen integer is P (x) = 1
n
k

= k
n .

Therefore, the entropy of L is H(L) =
∑
x P (x) log 1

P (x) =
∑n

k
i=1

k
n log n

k = log n
k . We now

define Qj to be a Bernoulli random variable representing the response to the jth query (i.e.
either ‘≤’ or ‘>’). We need to make enough queries so that the information gain relevant to L
is close to the entropy of L in order to determine the chosen number in Gi with a high degree of
accuracy. This is equivalent to saying that the mutual information between L and the queries
made Q1, Q2, . . . , Ql is at least a constant times the entropy of L. Indeed, in the end, we
must have determined the point with probability greater than 0.99. Therefore, conditioned on
the queries, most of the mass is concentrated on one point and H(L|Q1, . . . , Ql) < 0.2 log n

k .
Therefore, I(L;Q1, . . . , Ql) = H(L)−H(L|Q1, . . . , Ql) = Ω(log n

k). Thus, we need:

I(L;Q1, Q2, . . . , Ql) ≥ Ω(log n
k

), (1)

where l is the number of queries made. We want to find the minimum l for which this is
true. First, we use Lemma 2 (chain rule) to write:

I(L;Q1, Q2, . . . , Ql) = I(L;Q1) + I(L;Q2|Q1) + . . .+ I(L;Ql|Ql−1, . . . , Q2, Q1). (2)

Take one of these terms and recall that we can express mutual information in terms of
KL-divergence:

I(L;Qj |Qj−1, . . . , Q1) = EQ[DKL(p(Qj |L,Qj−1, . . . , Q1)||p(Qj |Qj−1, . . . , Q1))]

where 1 ≤ j ≤ l. Thus, we need to find the KL-divergence of Qj |L,Qj−1, . . . , Q1 and of
Qj |Qj−1, . . . , Q1. We note that since we chose cluster Gi, there are i − 1 of the k chosen
integers that are smaller and k − i of the k numbers that are bigger than any element of

M. Braverman and G. Oshri 615

Gi. Therefore, for both probability distributions, the probability that the response is ‘≤’ is
at least i−1

k and the probability that the response is ‘>’ is at least k−i
k . Therefore, both

probability distributions are Bernoulli with probability of success (taking success to be the
response ‘≤’) between i−1

k and 1− k−i
k = i

k . Thus, the difference in probabilities of success
of the two distributions is at most i

k −
i−1
k = 1

k . Then if we let Qj |L,Qj−1, . . . , Q1 be
Bp and let Qj |Qj−1, . . . , Q1 be Bp±ε, we know 1

4 ≤ p ≤ 3
4 (because k+4

4 ≤ i ≤ 3k
4) and

0 ≤ ε ≤ 1
k (because this is the maximum difference in probability of success between the two

distributions). By lemma 3, DKL(p(Qj |L,Qj−1, . . . , Q1)||p(Qj |Qj−1, . . . , Q1)) = O(ε2) =
O(1

k2). So: EQ[DKL(p(Qj |L,Qj−1, . . . , Q1)||p(Qj |Qj−1, . . . , Q1))] = O(1
k2) and we have:

I(L;Qj |Qj−1, . . . , Q1) = O

(
1
k2

)
.

Returning to equation 2:

I(L;Q1, Q2, . . . , Ql) =
l∑

j=1
I(L;Qj |Qj−1, . . . , Q1) = O

(
l

1
k2

)

From (1), we have O(l 1
k2) ≥ Ω(log n

k) so

l = Ω
(
k2 log n

k

)
= Ω(k2 log n)

since k ≤
√
n. This is the minimum number of queries to find the chosen integer in Gi. This

holds in total for 3k
4 −

k+4
4 + 1 = k

2 of the k chosen numbers (this is the number of clusters Gi
with i in the range we considered). Note that to find the chosen number in Gi, queries made
in determining the number within Gj with j 6= i provide no information for determining
the number in Gi (as all queries are either bigger or smaller than all the numbers in Gi).
Then finding k

2 of the k chosen numbers requires at least Ω
(
k
2k

2 log n
)

= Ω(k3 log n) time.
Therefore, finding all k of the chosen numbers requires at least Ω(k3 log n) queries. J

3.2 The lower bound when k >
√

n

Next we turn our attention to the lower bound in the regime where k >
√
n. We start with

the case
√
n < k ≤ n− 2, as the case k > n− 2 is treated very similarly. The multi-set S

is constructed as follows: we place k/4 1’s and k/4 n’s in S. Partition the rest of the set
{1, . . . , n} into bins B1 = {2, 3}, B2 = {4, 5}, etc. For each bin Bi for i = 1, 2, . . . , k/2, we
place exactly one of the elements of Bi in S independently and uniformly at random. We
now look at the process of determining which element of Bi has been selected using the
queries. Note that only the query with Y = 2i carries any information on which element of
Bi has been selected. Thus a set of observations can be specified by a set of pairs of numbers
{(li, hi)}k/2i=1 where li represents the number of times we queried Y = 2i and received the ‘≤’
answer, and hi represents the number of times we received the ‘>’ answer. The probability
of each answer is between 1/4 and 3/4, and varies by 1/k depending on whether we selected
2i or 2i+ 1 in Bi.

When we output the set S, we need to make k/2 decisions of whether to output 2i or
2i + 1 for each Bi. Each of these decisions should depend only on the values of (li, hi),
and should maximize the probability that the output is correct. This can only be done by
outputting the maximum likelihood value for each Bi. More precisely, we should output 2i if
li

li+hi >
k/4+i−1/2

k , and 2i+1 otherwise. We are not particularly concerned with these details,
but only with the probability that our output is wrong. Denote by εi > 0 the probability

STACS’13

616 Search using queries on indistinguishable items

that the maximum-likelihood output given (li, hi) is incorrect. We first claim that to have a
probability of > 0.9 to be correct in outputting S, we must have a bound on the sum of the
εi’s.

I Claim 3.1. If given the values {(li, hi)}k/2i=1 the output S is correct with probability > 0.5,
then

∑k/2
i=1 εi < 1.

Proof. Since the events of being correct on each Bi are independent, the probability of being
correct on all Bi’s is given by

0.5 <
k/2∏
i=1

(1− εi) < e−
∑k/2

i=1
εi ,

which implies the statement of the claim. J

Next, let us denote by µi the a-priori expected number of ‘≤’ responses on li +hi queries,
and let di := |li − µi| be the observed deviation from this expected value. Intuitively, the
greater this deviation, the greater is our confidence in the answer. In fact, it is not hard to
formalize this intuition:

I Claim 3.2. For each i, and k > 25, εi > e−10di/k/3.

Proof. Suppose wlog that li > µi, and thus we are outputting 2i. Denote p = k/4+i−1
k and

q = 3k/4−i
k . We have by Bayes’ rule

εi = Pr[2i+ 1|(li, hi)] = Pr[(li, hi)|2i+ 1]
2Pr[(li, hi)]

≥ Pr[(li, hi)|2i+ 1]
2Pr[(li, hi)|2i]

=

pli(q + 1/k)hi
2(p+ 1/k)liqhi = pµi−1(q + 1/k)li+hi−µi+1

2(p+ 1/k)µi−1qli+hi−µi+1 ·
pli−µi+1(q + 1/k)µi−li−1

(p+ 1/k)li−µi+1qµi−li−1 =

Pr[(µi − 1, li + hi − µi + 1)|2i+ 1]
2Pr[(µi − 1, li + hi − µi + 1)|2i] ·

(
1− 1/k

p+ 1/k

)di+1
·
(

1 + 1/k
q

)−di−1
≥

(1/2) · (1− 5/k)2di+2 ≥ e−(5/k)(2di+2)/2 > e−10di/k/3.

The second-to last inequality follows from the fact that the breakdown (µi−1, li+hi−µi+1)
is more likely under the selection of 2i+ 1 than under the selection of 2i. J

Putting Claims 3.1 and 3.2 together we see that assuming the probability that the output
S is correct is > 0.5, we must have

k/2∑
i=1

e−10di/k < 3. (3)

I Claim 3.3. Equation (3) implies
∑k/2
i=1 di >

k2

40 ln k, for k > 40.

Proof. Denote τi := e−10di/k, and let f(x) := − ln x. The function f(x) is convex, and thus
we have

k/2∑
i=1

10di
k

=
k/2∑
i=1

f(τi) ≥
k

2 · f

2
k

k/2∑
i=1

τi

 >
k

2 ln k6 >
k

4 ln k,

since k > 40. This implies the claim. J

M. Braverman and G. Oshri 617

To finish the proof let Dt denote the random variable representing the value of
∑k/2
i=1 di

after t queries. Let Zt = Dt − t
k . At each time step, a query to Y = 2i will on average not

change di if the element from Bi is not selected for comparison with Y . If it is selected, it
will change di by at most 1. Thus, on average, Dt only grows by at most 1

k after each time
step. Thus Zt is a supermartingale. Let T be the random variable representing the time at
which we stop and output S. By the optional stopping time theorem, we have E[ZT] ≤ 0,
which implies E[T] ≥ k · E[DT].

If our overall success probability is > 0.75, it must be the case that with probability
> 1/2 the probability of the output S being correct conditioned on the observed {(li, hi)}k/2i=1
is > 1/2. Thus by Claims 3.1, 3.2 and 3.3, we have DT > k2

40 ln k with probability > 1/2.
Thus,

E[T] ≥ k · E[DT] > k · 1
2 ·

k2

40 ln k = Ω(k3 log k),

completing the proof of the lower bound.
I Remark. The proof in the regime k > n − 2 is very similar. The only difference is that
there are n/2 bins now, and we’d get E[DT] = Ω(kn log n) instead of Ω(k2 log n), and thus
E[T] = Ω(k2n log n).

We will now study the case where k ≤ n.

4 Optimal upper bounds

As discussed in the previous sections, it is not immediately clear how to make use of
the information gained from queries because we do not know which of the k integers the
information corresponds to. In this section, we present an algorithm for solving this problem.
The algorithm is optimal when the probability of error required is constant (which means
its worst case running time matches the lower bound). Our algorithm finds each of the k
numbers individually, without attempting to use information gained when finding one integer
to find another integer. We first introduce a concept we will use in all our algorithms:
I Definition 4.1. The k-position of an integer y is the number of integers in S that have a
value less than or equal to y
The general technique of the algorithms is to do a binary search for a chosen integer, but
repeat each query of the binary search enough times to know the k-position of the queried
integer. A straightforward application of binary search with repeated queries would take
Ω(k2 log2 n) queries to find the k-position of a number, even with a constant error probability.
We essentially use the noisy binary search technique of Feige et. al. [2] to attain the optimal
query complexity. We start with the following simple lemma:

I Lemma 5. We can find the k-position of integer y by making 2k2 log 2
δ queries with the

probability of being correct being at least 1− δ.

Proof. Let Ky be the k-position of y. We do m queries of y to find Ky. For each query Qi,
the probability of a response being ‘≤’ or ‘>’ is given simply in terms of Ky:

Pr[Qi =′≤′] = Ky

k

Pr[Qi =′>′] = 1−Ky

k

because Ky is the number of integers in S less than or equal to y and each such integer is
chosen as the Xi for a query with equal probability. We use the analogy that the random

STACS’13

618 Search using queries on indistinguishable items

variable Qi is a coin with probability of heads (which represents ‘≤’) being p = Ky
k . Given

m tosses of the coin, of which x are heads, we can approximate p as: p̂ = x
m . We need

to find the relation between the number of tosses m and the probability of error in this
approximation. Using standard concentration bounds [6], we see that m ≥ 1

2ε2 log 2
δ coin

tosses are needed to guarantee that |p̂− p| ≤ ε with error at most δ (where ε > 0).
We need to decide on a value for ε. Note that Ky is an integer in the range [1, k] and

therefore, p can only take on the values 0, 1
k ,

2
k , . . . ,

k
k . Thus, we need ε ≤ 1

2k so then we can
always round p̂ to the closest i

k , where i ∈ Z and 0 ≤ i ≤ k. Using this in the results from
[6], we see that m = 2k2 log 2

δ coin tosses are enough to guarantee that we know the correct
value of p with probability of error being at most δ. Given p, we have Ky = kp so we have
the k-position of y. J

We note that this immediately lets us solve the problem for k ≥ n:

I Corollary 6. When k ≥ n, there is an O(k2n log n) algorithm to find all k integers in S
with probability 1− n−c for all constant c > 0.

Proof. We find the k-position of all n integers in the range [1, n]. Given the k-position of all
n integers, we know how many of the k numbers have each integer value. If the k-position of
Y − 1 is i and the k-position of Y is i+ j, we know there are j of the chosen numbers with
the value Y (for 1 < Y ≤ n. For Y = 1, we know the number of the chosen integers with
this value is equal to the k-position of Y).

To find the k-position of an integer with probability of error at most δ, we need to
perform O(k2 log 2

δ) queries. If we want the probability of error of the algorithm to be a
constant, we need the probability of error of finding the k-position of each integer to be at
most δ = n−(c+1) so that applying a union bound gives a total probability of error < n−c

(since we find the k-position of n integers). Thus, to find the k-position of each integer we
need to perform O

(
k2 log 2

1
nc+1

)
= O

(
k2 log n

)
queries. Since we do this for n integers, the

total number of queries we make is: O(k2n log n). J

When k ≤ n, we could have used an approach involving a binary search where our decision
at each stage in the search is based on the k-position of the current number in the search.
However, this approach is problematic because of the constant error each time we find the
k-position of a number. This flaw is mentioned for a similar algorithm in [3]. The number
of queries we make is O(mk log n) = O

(
k3 log n log 2

δ

)
. Each group of queries of the same y

(m of them) give the wrong result with probability δ. Applying a union bound, our overall
probability of error (∆) is ∆ = k log (n)δ. If we want ∆ to be a constant, we need δ = 1

k logn
and thus, the number of queries we make is actually O

(
k3 log (n) log (2k log n)

)
.

To alleviate this problem, we model our algorithm as a random walk on a tree. In using
this technique, we follow [2]. In [2], the random walk approach is taken to do a noisy binary
search. We use this technique to find each of the chosen k integers, although each step of
the random walk is modified to accommodate our lack of information about which of the
k integers was chosen in a particular query. We use a binary tree where the leaves are (in
order) the integers 1, 2, . . . , n. The internal nodes represent intervals that are the union of
the leaves in their subtrees. For example, the root node has the interval [1, n] and the left
child of the root has the interval [1, bn2 c]. The tree height is log n. Finally, we extend this
tree by adding chains of length m′ = O(log n) to each of the leaf nodes, where the nodes
in these chains have the same value as the leaf they are attached to. An example tree with
n = 4 is shown in Figure 1 below.

M. Braverman and G. Oshri 619

Figure 1 Tree for the random walk with n = 4

4.1 Algorithm
We discuss an algorithm for finding the tth of the k chosen integers. This algorithm is
repeated k times (once for each of the k numbers). Starting at the root, for each node v we
take the following two steps:
1. We first check whether the tth chosen integer is in the range of the node (call it [a, b]).

To do this, we find the k-position of a− 1 and b by doing 8k2 queries of each of them. If
we find that the k-position of a− 1 is at most t− 1 and the k-position of b is at least t,
then the tth number lies in the range [a, b]. Otherwise, we backtrack up the tree to the
parent node of v .

2. If, according to the first step, the tth number lies in the range [a, b], we do 10k2 queries
of the middle value of the range of the node (call this u where u = ba+b

2 c). If v is not a
leaf (or on a leaf chain) and the k-position of u is at most t− 1, we choose the right child
of v. If the k-position of u is at least t, we choose the left child of v. If v is a leaf (or on
a leaf chain), we go down the chain further regardless of the result of the queries.

Note that there is a constant probability of error each time we determine the k-position
of an integer. This leads to a constant probability of choosing the wrong node to go to next.
We will analyze this probability shortly.

The algorithm walks for m = O(log n) steps and then stops, where m < m′. If it stops on
an internal node, the algorithm failed. If it stops on one of the leaf chains (or a leaf node),
it outputs the value of the leaf (i.e. declares this value to be the value of the tth of the k
numbers).

The following theorem summarizes our results:

I Theorem 7. Our algorithm finds all k integers in S in O
(
k3 log

(
n
δ

))
time with probability

of error at most δ for k ≤ n

To reach this theorem, we use the following lemma:

I Lemma 8. The algorithm finds the correct tth integer in S with the probability of error
being at most e−m35 , where m is the number of steps in the random walk.

STACS’13

620 Search using queries on indistinguishable items

Proof. We need to prove that the algorithm’s position on the walk after m steps is the
correct leaf chain with high probability. Orient all edges of the tree so they are directed
towards the correct leaf chain (and within this leaf chain they are directed down). We can
do this because the graph is a tree (there is only one path between every two vertices) and
there is only one correct leaf. We can now consider the algorithm’s position in the tree as a
one dimensional random walk. We let the starting point of the walk be 0 (the root of the
tree), the correct leaf be R steps to the right and any of the wrong leaves be R steps to the
left. Note that R = log n (height of the tree).

We need to find the probabilities of moving left and right in the random walk. We will
show that the probability of moving in the correct direction (to the right) is at least 0.7
at every node. Furthermore, note that the decision made at any node is independent of
the previous steps in the random walk. Let q be the probability of going left at any move.
This is equivalent to the probability of going along the wrong direction of an edge, which is
equivalent to making a mistake somewhere in choosing the next vertex. The probability of
incorrectly calculating whether the tth number is in the range [a, b] is at most the probability
that we incorrectly calculate the k-position of either a− 1 or b. Since we do 8k2 queries of
each, by Lemma 5 we know that the probability of error in calculating the k-position of each
is δ where 2 log 2

δ = 8⇒ δ = 1
8 . So the probability of incorrectly calculating the k-position

of either a − 1 or b is at most 1 −
(7

8
)2 = 15

64 . Similarly, we do 10k2 queries of u, so the
probability of error is δ where 2 log 2

δ = 10⇒ δ = 1
16 . Thus, the total probability of error at

each node is 15
64 + 1

16 < 0.3. Therefore, q < 0.3 and p ≥ 0.7, where p is the probability of
going to the right (i.e. the correct direction). Figure 2 illustrates the random walk space.

Figure 2 The random walk space

For the algorithm to be correct, it must be on or to the right of R after m steps (so it
returns the correct integer), otherwise it is wrong. Let X be the random variable denoting
the number of moves to the right made after m moves. Then m−X is the number of moves
to the left. Therefore, the algorithm is correct if X − (m − X) = 2X −m ≥ R. This is
equivalent to the condition that X ≥ R+m

2 . Then the probability that the algorithm is correct
is Pr[X ≥ R+m

2] = 1− Pr[X < R+m
2] and Pr[X < R+m

2] is the probability of error we want
to bound. To find E[X], let Xi be an indicator random variable that is 1 if the algorithm
moves to the right on the ith move and 0 otherwise. Note that Pr[Xi = 1] = p⇒ E[Xi] = p.
Therefore, E[X] = E[X1] +E[X2] + . . .+E[Xm] = pm by linearity of expectation. We want
to use a Chernoff bound to bound the probability of error, so we need to find a δ such that:

m+R

2 = (1− δ)pm⇒ 1− δ = m+R

2pm ⇒ δ = 2pm−m−R
2pm

Note that 0 ≤ δ ≤ 1 because 0 ≤ 2pm−m−R ≤ 2pm. Since each step of the random walk
is independent of the other steps (i.e. Xi is independent of Xj for i 6= j), we can use the

M. Braverman and G. Oshri 621

Chernoff bound ([4]):

Pr[X <
m+R

2] ≤ e−
δE[X]

2 = e−(2pm−m−R
2pm)2 pm

2 = e−
(2pm−m−R)2

8pm

Recall that p ≥ 0.7 and set m = x log n, where x is a constant. Then (2pm−m−R)2

8pm ≥
(1.4x−x−1)2

5.6x log n. We want to write this as m
d where d is a constant. Then d = x

(0.4x−1)2
5.6x

.
Note that as x increases, d decreases to some asymptotic value:

lim
x→∞

x
(0.4x−1)2

5.6x

= lim
x→∞

5.6x2

(0.4x− 1)2 = lim
x→∞

5.6(
0.4− 1

x

)2 = 5.6
0.42 = 35

Then we have that (2pm−m−R)2

8pm ≥ m
35 . Therefore,

Pr[X <
m+R

2] ≤ e−m35 .

Thus, we have bounded the probability of error as required. J

We apply Lemma 8 to prove the bound on the full algorithm. Even though our lower
bounds works when the error probability is constant, the algorithm applies even when the
error is very small (n−O(1)). We are now ready to present the proof for Theorem 7.

Proof. We prove separately the cases when δ ≥ 1
n and when δ < 1

n . In the first case, we set
m = 70 log n. By Lemma 8, the probability of not finding the correct tth number is at most
e−

70 logn
35 = elnn−2/ ln 2

< 1
n2 . Applying a union bound of this over the k numbers we need to

find, the probability of error is at most k
n2 ≤

√
n
n2 = 1

n1.5 because k ≤
√
n. Since 1

n1.5 <
1
n ≤ δ,

the probability of error is bounded as required. So we need in total 70k log n steps of the
random walk algorithm. Recall that each such step takes O(k2) queries. Therefore, in total,
we have a running time of O(70k3 log n) = O(k3 log n) = O(k3 log n

δ) since δ < 1.
We now consider the case when δ < 1

n . Set m = 70 log 1
δ . The probability of not

finding the correct tth number is at most e−
70 log 1

δ
35 = e−

2
ln 2 ln 1

δ < δ2 by Lemma 8 (and
that δ < 1). Applying a union bound over the k numbers we need to find, the overall
probability of error is kδ2 < nδ2 < δ as required. Thus, we need O

(
k log 1

δ

)
steps in the

random walk, where each consists of O(k2) queries. Therefore, the total running time is
O
(
k3 log 1

δ

)
= O

(
k3 log n

δ

)
. J

References
1 T. Cover, J. Thomas. Elements of Information Theory, New York: John Wiley & Sons,

Inc., 1991
2 U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with noisy information, SIAM

Journal on Computing, Vol 23, No. 5, pp. 1001–1018, 1994
3 R. Karp, R. Kleinberg. Noisy binary search and its applications, Proceedings of the eight-

eenth annual ACM-SIAM symposium on Discrete algorithms, pp. 881–890, 2007
4 E. Lehman, T. Leighton. Mathematics for Computer Science, Online PDF file, 2004
5 A. Pelc. Solution of Ulam’s problem on searching with a lie, Journal of Combinatorial

Theory, Series A, Vol 44, No. 1, pp. 129–140, 1987
6 M. Raginsky. Introduction: What is Statistical Learning Theory?, Online PDF file, 2011
7 B. Ravikumar, K.B. Lakshmanan. Coping with known patterns of lies in a search game,

Theoretical Computer Science, Volume 33, Issue 1, pp. 85–94, 1984.
8 J. Spencer. Guess a Number-with Lying, Mathematics Magazine, Vol. 57, No. 2, pp. 105–

108, 1984

STACS’13

Pebbling, Entropy and Branching Program Size
Lower Bounds
Balagopal Komarath∗1 and Jayalal Sarma M N2

1 Department of Computer Science & Engineering, IIT Madras
Chennai, India
baluks@cse.iitm.ac.in

2 Department of Computer Science & Engineering, IIT Madras
Chennai, India
jayalal@cse.iitm.ac.in

Abstract
We contribute to the program of proving lower bounds on the size of branching programs solving
the Tree Evaluation Problem introduced in [4]. Proving an exponential lower bound for the
size of the non-deterministic thrifty branching programs would separate NL from P under the
thrifty hypothesis. In this context, we consider a restriction of non-deterministic thrifty branching
programs called bitwise-independence. We show that any bitwise-independent non-deterministic
thrifty branching program solving BT2(h, k) must have at least 1

2k
h/2 states. Prior to this work,

lower bounds were known for general branching programs only for fixed heights h = 2, 3, 4 [4].
Our lower bounds are also tight (up to a factor of k), since the known[4] non-deterministic
thrifty branching programs for this problem of size O(kh/2+1) are bitwise-independent. We
prove our results by associating a fractional pebbling strategy with any bitwise-independent non-
deterministic thrifty branching program solving the Tree Evaluation Problem. Such a connection
was not known previously even for fixed heights.

Our main technique is the entropy method introduced by Jukna and Zak[6] originally in
the context of proving lower bounds for read-once branching programs. We also show that
the previous lower bounds known[4] for deterministic branching programs for Tree Evaluation
Problem can be obtained using this approach. Using this method, we also show tight lower
bounds for any k-way deterministic branching program solving Tree Evaluation Problem when
the instances are restricted to have the same group operation in all internal nodes.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Pebbling, Entropy Method, Branching Programs, Size Lower Bounds.

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.622

1 Introduction

The question whether L is a proper subset of P is one of the central problems in complexity
theory. One of the approaches to the problem was proposed as a program by Cook [3]
by introducing a suitable computational problem, namely the solvable path systems. The
program suggests to prove lower bounds for increasingly stronger models of computation
solving the solvable path systems problem. Indeed, for the specific problem, the attempt is
to discover the structure of that restricted variant of the underlying computation process
that captures the most natural, and if possible the most general, algorithmic strategies for

∗ Supported by the TCS Research Fellowship.

© Balagopal Komarath and Jayalal Sarma M N;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 622–633

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.622
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

B. Komarath and J. Sarma 623

solving the problem. Cook [3] also proved super-logarithmic space lower bounds for marking
machines solving the solvable path systems problem. Marking machines capture pebbling
algorithms (which is a class of “natural” algorithms) solving this problem.

Barrington and Mckenzie [2] took a similar approach by considering the problem GEN and
attempted to prove (upper and lower bounds) for increasingly stronger models of computation
for solving GEN. Specifically, Barrington [2] considered “oracle” branching programs where
each state of the branching program is allowed to ask a question about the input. For
example, a general BP can ask queries of the form “What is the ith bit of the input?” (This
is called a branching program with BIT oracle.). Barrington [2] proved exponential size
lower bounds for branching programs equipped only with certain “weak” oracles. Gal et al
[5] considered incremental branching programs for solving GEN which can be thought of as
branching programs trying to solve the GEN problem by incrementally finding the elements
of the closure.

Cook et al [4] proposed the tree-evaluation problem for separating L and P and introduced
thrifty branching programs as a model that captures “natural” algorithms solving the tree-
evaluation problem. It is shown in [4] that deterministic thrifty branching programs exactly
correspond to algorithms that implement black-pebbling. They also introduced the concept
of fractional black-white pebbling and showed that non-deterministic thrifty branching
programs can implement fractional black-white pebbling. It is also known that exponential
size lower-bounds for deterministic semantic incremental branching programs solving the
GEN problem follows from exponential size lower-bounds for deterministic thrifty branching
programs solving a generalization of tree-evaluation problem called the DAG-evaluation
problem [10].
Tree Evaluation Problem: We now briefly describe the tree-evaluation problem (see
section 2 for a formal definition). An instance of the tree evaluation problem, FTd(h, k),
is a complete d-ary tree where each leaf is associated with an element from [k] (which we
think of as the value of the leaf node) and the ith internal node is associated with a function
fi : [k]d 7→ [k]. The value of an internal node is obtained by applying this function to the
values of its children. The output is the value of the root node. The corresponding Boolean
version, BTd(h, k), differs from FTd(h, k) in that the function at the root node maps a value
in [k]d to a value in {0, 1}. An instance of BTd(h, k) is called a “yes” instance if and only if
the value of the root node is 1. Another variant of the tree-evaluation problem is the single
function variant F̂Td(h, k) where the functions at all internal nodes are the same. A natural
computational model for tree-evaluation problem is k-way branching program where each
node queries the value of a single k-ary variable (i.e., the query is either i, where i is a leaf
node, or fj(r, s), where j is an internal node and r, s ∈ [k].). As observed in [4], any size
lower bound of the form Ω(kr(h)) for k-way branching programs, where r(h) is an unbounded
function, would prove that L 6= P. We only consider k-way branching programs in this paper.
Here we think of the parameter d as fixed and are interested in how the size of the branching
programs solving FTd(h, k) increases with h and k.

A natural algorithm to solve FTd(h, k) is to evaluate the tree in a bottom-up fashion. This
can be captured by the concept of black pebbling Th

d (The complete d-ary tree of height h.). A
black pebble on a node indicates that the value of the node is known. A black pebble can be
placed on an internal node only if both its children are black pebbled. As a special case, a black
pebble can be freely placed on any leaf node. It can be shown that h pebbles are necessary
and sufficient for black pebbling Th

2. Since a value in [k] can be represented using log k bits.
This corresponds to a size bound of Θ(kh) for branching programs. Similarly, fractional
black-white pebbling captures natural non-deterministic algorithms solving FTd(h, k). A

STACS’13

624 Pebbling, Entropy and Branching Program Size Lower Bounds

white pebble can be freely placed on any node and corresponds to guessing the value of that
node. However, to remove a white pebble from a node (this corresponds to verifying the
guessed value) both its children have to be pebbled. Moreover, a branching program may
compute or guess a fraction of bits of the values of nodes and this results in fractional black
and white pebbles respectively.

A deterministic thrifty branching program is one in which the branching program is only
allowed to query fj(r, s) when r and s are the values of the children of node j. Cook et al. [4]
showed that deterministic thrifty branching programs solving BT2(h, k) require Ω(kh) states
by showing that such branching programs implement exactly a black pebbling strategy. Cook
et al. [4] also proved tight lower bounds for non-deterministic thrifty branching programs
for h = 2, 3, 4. They also show an upper-bound of O(kh/2+1) for non-deterministic thrifty
branching programs solving FT2(h, k). This shows that the non-deterministic variant is more
powerful.
Our Results: In this paper, we show that computation of non-deterministic thrifty branching
programs with an additional restriction that we call bitwise-independence can be associated
with a fractional black-white pebbling sequence and therefore requires exponential size. The
additional restriction of bitwise-independence is not too severe since all known upper-bounds
using non-deterministic thrifty branching programs can be achieved using those with bitwise-
independence property. In particular, the branching program described in [4] that achieve
O(kh/2+1) upper-bound satisfy bitwise-independence. Our main result is the first exponential
lower bound for the above restriction of non-deterministic thrifty branching programs.

I Theorem 1 (Main Theorem). If B is a bitwise-independent non-deterministic thrifty
branching program solving BT2(h, k), then B has at least 1

2k
h/2 states.

We associate these branching programs with fractional pebbling. Cook et al. [4] showed
that if the tree Th

d can be fractionally pebbled using p pebbles, then the corresponding (binary)
Tree evaluation problem can be solved by a non-deterministic thrifty branching program
of size O(kp). However, the converse direction is far from clear. We make progress in this
direction and prove our lower bound by connecting bitwise-independent non-deterministic
thrifty branching programs to fractional black-white pebbling sequences. We use the known
result[8] (see also [4]) that h/2 + 1 pebbles are necessary and sufficient to pebble Th

2 using
fractional black-white pebbling, to derive our lower bounds. We note that the lower bounds
for h = 2, 3, 4 in [4] were not shown by associating it with fractional black-white pebbling.

Our main technique is a method proposed by Jukna and Zak [6] for proving size lower
bounds for branching programs which they call the entropy method. Briefly, the method is
to distribute a large set of inputs among the states of the branching program such that only
a small number of inputs get mapped to any particular state. To achieve this, Jukna and
Zak[6] proposed to consider the set F of inputs reaching that state and show that we can
uniquely determine an input in F by a decision tree of low average depth (equivalently, the
set F has low entropy.). It follows that there are a large number of states.

As our next contribution, we show that the lower bound proofs in [4] for k-way branching
programs solving FT3

2(k), Children4
2(k) and thrifty branching programs solving BT2(h, k) can

be obtained using this framework. Thus we get new simplified and unified views of the proofs
for the following theorems.

I Theorem 2. Any deterministic k-way branching program solving FT3
2(k) must have at

least k3 states.
Any deterministic k-way branching program solving Children4

2(k) must have at least k4

states.

B. Komarath and J. Sarma 625

We then apply our method in a restricted setting where the functions at all internal nodes
are given to be the same.

I Theorem 3. Any deterministic k way branching program solving F̂T2(h, k) with the func-
tions at internal nodes restricted to a group operation must have at least 2h−2k states.

We observe that the above lower bound is tight. Indeed, when the internal operation is
that of a group, the associativity property can be used to design branching programs of size
O(2hk), when the function at the internal nodes is fixed. When the function at the internal
nodes is also a part of the input, the upper bound is off by a factor of k, namely O(2hk2).

The rest of the paper is organized as follows: In Section 2 we introduce the preliminaries
needed for the paper. We prove the main result in section 3. Further applications of the
entropy method are described in Section 4.

2 Preliminaries

For definitions of basic notions in complexity theory, we refer the reader to a standard
textbook [1, 9]. We give the formal definition of the Tree Evaluation Problem first. In the
following discussion, we label the nodes of the tree using usual heap numbering. The root
node is labelled 1 and for each internal node i, its children are labelled d(i− 1) + 2, . . . , di+ 1.
We use vi to denote the value of the ith node in the input tree. When we are talking about a
specific input I, we use vIi to denote the value of node i of the input I.

We now define the function and Boolean versions of the tree-evaluation problem.

I Definition 4. (Tree Evaluation Problems [4]) Input: The tree Th
d where each leaf node

is associated with a value from [k] and each internal node i is associated with a function
fi : [k]d 7→ [k], where d, h, k ≥ 2

Output for FTd(h, k): The value v1 ∈ [k] of the root node, where in general vi = a if i
is a leaf and a is the value associated with ith node in the input and vi = fi(vj1 , . . . , vjd

)
if i is a non-leaf node with nodes j1, . . . , jd as children.

Output for BTd(h, k): The value v1 ∈ {0, 1} of the root node. The evaluation rules
are the same as for FTd(h, k).

It is known that tree-evaluation problems are in LOGDCFL [4] (For definition of LOGDCFL
see [7].). Since we think of the parameter d as a constant, the input size is O(dhk2 log k).
Since all the values in the definition of tree-evaluation problems are k-ary, a general model
to solve tree-evaluation problem is a branching program that queries k-ary variables. Such
branching programs are called k-way branching programs, since each query has k possible
outcomes (depending on the value of the queried variable.). We define these models formally
now. Throughout the technical sections of this paper, we use BP as short form for branching
program.

I Definition 5 (k-way BPs[4]). A non-deterministic k-way BP B for FTd(h, k) is a directed
rooted multigraph. It consists of k final states labelled 1, . . . , k. All other states of the BP are
query states. A query state is labelled either i where i is a leaf node or labelled fi(x1, . . . , xd)
where i is an internal node, x1, . . . , xd ∈ [k], and each outgoing edge is labelled by an element
from [k]. A computation path on input x is a directed path from the root (the start state)
and each edge in the path is consistent with x. At least one such computation must end in a

STACS’13

626 Pebbling, Entropy and Branching Program Size Lower Bounds

final state. The BP B is deterministic if and only if each query state has exactly k outgoing
edges labelled 1, . . . , k.

A non-deterministic k-way BP B for BTd(h, k) is defined similarly except that each query
state labelled f1(x1, . . . , xd) where x1, . . . , xd ∈ [k] has all of its outgoing edges labelled by
either 0 or 1. There are two final states labelled 0 and 1. The BP B is deterministic if and
only if each query state labelled f1(x1, . . . , xd) has exactly two outgoing edges labelled 0
and 1 and every other query state has exactly k outgoing edges labelled 1, . . . , k. The BP B

solves BTd(h, k) if and only if for every “yes” instance has at least one accepting computation
path and every “no” instance has no accepting computation path.

By a sub-BP B′ of B obtained by restricting input set E to E′, we refer to the BP
obtained from B by removing edges not used by inputs in E′ and by shortcutting states for
which only one outgoing edge can be active when we consider computation on instances in
E′.

The size of binary binary for solving tree-evaluation problems differ from the size of k-way
BPs by a factor of at most k. Therefore, a size lower bound of Ω(kr(h)) for k-way branching
programs, where r(h) is an unbounded function, would separate L from LOGDCFL.

I Definition 6 (Thrifty BPs [4]). A non-deterministic BP solving BTd(h, k) is called thrifty
if and only if for any accepting computation path on instance I any query state labelled
fi(xd(i−1)+2, . . . , xdi+1) satisfies xj = vIj for d(i− 1) + 2 ≤ j ≤ di+ 1 (i.e., the internal nodes
are queried only at the correct values of its children.).

2.1 Pebbling
Pebbling sequences capture “natural” algorithms that solve the tree-evaluation problems
that evaluate the values at nodes of the tree in a bottom-up fashion. A black pebble value at
a node indicates the fraction of the value at the node that is known to the BP. Similarly, a
white pebble indicates the fraction of the value at the node guessed by the BP (respectively,
the fraction of value at the node that needs to be verified by the BP). For example, a black
pebble value of 1 indicates that value is completely known and a white pebble value of 1
indicates that the value was guessed from [k]. In order to compute or guess (a fraction of)
the value at any node, the BP must completely figure out (by computing or guessing) the
values of its children.

I Definition 7 (Fractional Black-White Pebbling [4]). A fractional pebbling configuration on
a rooted d-ary tree T is an assignment of a pair of real numbers (b(i), w(i)) to each node i of
the tree. The values b(i) and w(i) are called the black and white pebble values, respectively,
of node i. We have for every i

b(i) + w(i) ≤ 1
0 ≤ b(i), w(i) ≤ 1 (1)

The legal pebble moves are as follows.

1. For any node i, decrease b(i) arbitrarily.
2. For any node i, increase w(i) arbitrarily.
3. For any node i, if each child of i has pebble value 1, then decrease w(i) to 0.
4. For any node i, if each child of i has pebble value 1, then increase b(i) arbitrarily and

simultaneously decrease the black pebble value of children of i.

B. Komarath and J. Sarma 627

The number of pebbles in a configuration is the sum over all nodes i of b(i) + w(i). A
fractional pebbling of T using p pebbles is a sequence of (legal) fractional pebbling moves on
nodes of T which starts and ends with each node having pebble value 0 and at some point
the root node has black pebble value 1, and no configuration has more than p pebbles.

A black pebbling is a fractional black-white pebbling such that for all i the black pebble
value b(i) always takes values from {0, 1} and w(i) = 0.

It is known that h/2 + 1 pebbles are necessary and sufficient to pebble Th
2 using fractional

black-white pebbling [8].

2.2 Entropy Method
We now formally describe the entropy method introduced in [6]. We specialize the definition
slightly to suit our application of the method. Let B be a BP computing the characteristic
function of language L. Let A be a particular set of inputs. Define a “distribution” function
g : A 7→ States(B). Now consider an arbitrary state s in the range of g and let F = g−1(s).
Define a decision tree D such that each a ∈ F reaches a unique leaf in D. Such a decision tree
is called a ‘splitting tree’ for F in [6]. The next step is to prove that D has low depth which
will imply that the entropy of F , h(F) = log |F |, is small. Then we have Size(B) ≥ 2|A|−h(F).
In defining A and g, we may use properties of L and any restrictions imposed on the structure
of B. The goal is to minimize the maximum value of h(F) over all choices of F by using an
A that is as large as possible.

For the rest of our discussion, we fix d = 2. However all our arguments can be easily
generalized to arbitrary constant d.

2.3 Bitwise-independent Non-deterministic Thrifty BPs
We use N to denote the total number of non-root nodes in Th

2. Let B be a non-deterministic
thrifty BP for BT2(h, k). Let s be a state of B. We define

Fs = {(vI2 , . . . , vIN+1) : ∃I and a computation path C(I) such that s ∈ C(I)}
As = {(vI2 , . . . , vIN+1) : ∃I and an accepting computation path C(I) such that s ∈ C(I)}

We use π(S, i) to denote the set of all ith component of the tuples in S (typically, S is
either Fs or As for some s.). That is, the set formed by projecting the ith component of all
tuples in S. For any encoding function φ : [k] 7→ {0, 1}dlog ke, we use (r)i to denote the ith
bit of r ∈ [k] when r is encoded using φ.

I Definition 8 (Bitwise-independent Non-deterministic Thrifty BPs). Let k = 2` and let B be
a non-deterministic thrifty BP solving BT2(h, k). Then B is bitwise-independent if and only
if there exists an encoding function φ : [k] 7→ {0, 1}` such that for every state s in B the
following two conditions are satisfied.

Fs =
N+1
×
i=2

φ−1
(

`
×
j=1

(π(Fs, i))j
)

As =
N+1
×
i=2

φ−1
(

`
×
j=1

(π(As, i))j
)

Where we think of the first × as the normal Cartesian product and the second one (over
all the bits) as concatenating all the bits after forming the Cartesian product. When k is not

STACS’13

628 Pebbling, Entropy and Branching Program Size Lower Bounds

a power of two, we consider the largest power of two smaller than k. Let this be 2`. Then
B is bitwise-independent if and only if the above two conditions are satisfied with equality
replaced by superset.

The intuition is that at any state the bits of values of non-root nodes can be partitioned
into “fixed” bits and “unfixed” bits and the sets Fs and As are such that all possible
combinations of unfixed bits are in the set. i.e., the BP cannot store implicit information
about bits (such as, the second bit is the complement of the first bit).

If we only consider minimal bitwise-independent non-deterministic thrifty BPs, then we
have |Fs|, |As| ≥ 1 for any query state s. This is because any query state s that does not
have any accepting computation path passing through it can be merged with the reject state.
Also note that by the definition of bitwise independence, for any i and s, we have π(Fs, i)
and π(As, i) are always powers of two when k is a power of two.

We now define the pebbling values assigned to a non-root node i at state s of the BP.
These pebbling values are referred to as “actual” pebble values.

b(i, s) = 1− logk |π(Fs, i)|

w(i, s) = logk
|π(Fs, i)|
|π(As, i)|

(2)

3 Lower Bounds for Bitwise-independent Non-deterministic Thrifty
BPs

In this section, we prove exponential size lower bounds for bitwise-independent non-determinis-
tic thrifty BPs. The proof uses the entropy method. We consider the input set E for the
problem BT2(h, k), where each leaf node is allowed to take values from [k] and for each
instance I and each internal node i, we allow fi(vI2i, vI2i+1) to take any value from [k] and
restrict it to 1 elsewhere. We also fix f1(vI2 , vI3) = 1 and 0 elsewhere so that |E| = kN . Note
that all instance I ∈ E are “yes” instances. The idea is to map an accepting computation
path on I ∈ E into a valid fractional black-white pebbling sequence. To this end, we define
a set of critical states for each node on an accepting computation path of I ∈ E. The
distribution function then maps each input to the state where the pebble value is maximum
(which will imply that the number of inputs is small).

We now show that our definition of pebble values satisfy the restrictions imposed on
pebble values by (1).

I Claim 9. For any non-root node i and state s, 0 ≤ b(i, s), w(i, s) ≤ 1.

I Claim 10. For any non-root node i and state s, b(i, s) + w(i, s) ≤ 1.

The following claim establishes the fact that if the total pebble value of the tree (in non-
root nodes) is high at a state, then there are only a few inputs on an accepting computation
path reaching that state. In other words, if the pebble value at a point of the computation is
high, then the entropy at that point is low.

I Claim 11. If the total pebble value of the non-root nodes of the tree at a state s is p, then
the number of “yes” instances reaching s on an accepting computation path is kN−p.

Proof. Consider a particular non-root node i. Assume that the total pebble value at i is
pi. From this we have 1 − logk |π(Fs, i)| + logk

|π(Fs,i)|
|π(As,i)| = pi. Therefore |π(As, i)| = k1−pi .

Now by simple counting the total number of inputs on an accepting computation path is
k
∑N+1

i=2
(1−pi) = kN−p. J

B. Komarath and J. Sarma 629

Consider an input I ∈ E and an accepting computation path C(I) for I. Our aim is
to define a sequence of critical states (γ0 =)s0, s1, . . . , st+1(= acc) (s0 and st+1 are always
start and final states of the BP) and associate a fractional pebbling configuration with each
critical state. The sequence thus obtained will be a valid fractional pebbling sequence and
it will be defined such that the pebbling values at each node will underestimate the actual
pebbling values defined by (2).

Critical States

We now define the sequence of critical states on the accepting computation path C(I). The
critical state for the root node is the last state querying the root node. Every non-root node
j may have multiple critical states. Let s denote a critical state of parent of j. If b(j, s) > 0,
then the last node querying node j before s is a critical state for j. If w(j, s) > 0, then the
first node querying node j after s is a critical state for j.

Pebble Configurations

We now define the sequence of pebble configurations associated with critical states on an
accepting computation path of input I. The black pebble value of the root node becomes 1
immediately after its critical state and remains so until the end of the computation where it
becomes 0. Now we define the pebble values of an arbitrary non-root node j. Let s′ be a
critical state for j′, the parent of j. If b = b(j, s′) > 0, then this black pebble value must
have increased from 0 to b at some point of computation. Now consider the critical state s
for j before s′ as defined before. The black pebble value of node j is increased from 0 to b
at the critical state immediately following s. Similarly, if w = w(j, s′) > 0, then this white
pebble value must decrease from w to 0 at some point of computation. Now consider the
critical state s for j after s′ as defined before. The white pebble value is reduced from w to
0 from the critical state immediately following s.

The following claims about the validity of the starting and ending pebbling configurations
are easily proved.

I Claim 12. The start state has an empty pebbling configuration.

I Claim 13. The accepting state has an empty pebbling configuration.

The following lemmas establish the fact that the pebbling sequence defined above is a
valid pebbling sequence.

I Lemma 14. Let s be a critical state for node j, then both of j’s children are fully pebbled
at s.

Proof. Let s query fj(u, v). We have π(As, 2j) = {u} (and π(As, 2j + 1) = {v}) by the
thrifty property. Then b(2j, s) + w(2j, s) = 1 − logk |π(Fs, 2j)| + logk

|π(Fs,2j)|
|π(As,2j)| = 1 (and

similarly for 2j + 1). J

I Lemma 15. If the black pebble value of node j is increased or the white pebble value of
node j is decreased at state s, then both its children are fully pebbled at the critical state
immediately before s.

Proof. For a node j, the black pebble value is increased or the white pebble value is decreased
only at the critical state immediately following a critical state for j. By Lemma 14 both
children of node j are fully pebbled at this critical state. J

STACS’13

630 Pebbling, Entropy and Branching Program Size Lower Bounds

The following is our key technical lemma and establishes the fact that the pebbling values
defined for the critical states never overestimate the actual pebbling values of nodes.

I Lemma 16. Let b and w be the pebble values defined at state s for an arbitrary non-root
node 2j, then b ≤ b(2j, s) and w ≤ w(2j, s).

Proof. The proof is divided into two parts. First, we show that the black pebble values are
never overestimated. Then we show that white pebble values are never overestimated.

We consider an arbitrary state s at which the black pebble value of node 2j is defined
as b > 0. Note that the black pebble value of a non-root node 2j is non-zero if and only if
there exists a critical state for the parent of 2j at which the actual pebble value of 2j is
b. Therefore, there exists a state s2j that is a critical state for 2j before s and sj that is a
critical state for j, the parent of 2j, after s (with s = sj possibly.). Now suppose that the
actual black pebble value for node 2j at state s is b(2j, s) and that b(2j, s) < b.

1− logk |π(Fs, 2j)| < b

=⇒ |π(Fs, 2j)| > k1−b

Now by the independence assumption we may conclude that there are more than k1−b

inputs that differ only at the value of node 2j. By the definition of critical states, there does
not exist any node querying 2j in C(I) from s to sj . All these inputs can follow the same path
to the critical state sj . Therefore, the black pebble value is b(2j, sj) < b, a contradiction.

It remains to prove that white pebble values are never overestimated. We will prove that
the white pebble value of a node 2j is at least the estimated value w between all states from
sj to s2j (both inclusive). Here sj is a critical state for j at which node 2j acquired a white
pebble value of w and s2j is the critical state for 2j after which this pebble value is removed.
In order to prove this, it is sufficient to prove that the ratio f ′

a′ = |π(Fs′ ,2j)|
|π(As′ ,2j)|

for any state s′ is
greater than the corresponding ratio f

a at state sj , where s′ is a state on C(I) in the segment
from sj to s2j . By the independence argument, we have f ′ ≥ f by taking projections of all f
inputs that differ from I only at node 2j. We will show that if a′ > a, then f ′ > f by an
appropriate amount so that the ratio is not reduced.

Since the white pebble value is acquired at state sj , we have w(2j, sj) = w. Now consider
a state s′ (Possibly equal to s2j) on the segment of the computation path C(I) between
sj and s2j . Our aim is to prove that w ≤ w(2j, s′). Let f = |π(Fsj

, 2j)|, f ′ = |π(Fs′ , 2j)|,
a = |π(Asj

, 2j)| and a′ = |π(As′ , 2j)|. First of all note that f ′ ≥ f since there are no nodes
querying 2j from sj to s2j and the independence property guarantees f inputs that differ
from I only at node 2j will reach s′. Now we will show that whenever a′ > a , f ′ is greater
than f by the same multiplicative factor. Note that both f and a are powers of two. By
the assumption of bit-wise independence, we can partition bits of node 2j into “fixed” bits
and “unfixed” bits for any Fs (and As). The only way to add elements to these sets are by
unfixing bits. Let us assume that exactly one more bit became unfixed in π(As′ , 2j). So
a′ = 2a.

Let r′ be a value in π(As′ , 2j) \ π(Asj
, 2j). We claim that r′ /∈ π(Fsj

, 2j). We will prove
this by contradiction. Suppose r′ ∈ π(Fsj

, 2j), then by the independence property there
is an input J which is the same as I except that vJ2j = r′ reaches s′ through sj . Since
r′ ∈ π(As′ , 2j), there is an accepting path for J through sj . This accepting path is obtained
by using the independence property of As′ and the fact that an accepting computation for I
passes through s′. But this path makes a non-thrifty query at sj . Therefore r′ /∈ π(Fsj

, 2j)

B. Komarath and J. Sarma 631

as claimed. Since r′ ∈ π(Fs′ , 2j), at least one bit must have become unfixed. But this implies
f ′ ≥ 2f . This proof can be easily extended to the case where a′ = 2ma for any m. J

We now prove our main result by associating an accepting computation on input I ∈ E
to a valid fractional black-white pebbling sequence.

I Theorem 17. If B is a bitwise-independent non-deterministic thrifty BP solving BT2(h, k),
then B has at least 1

2k
h/2 states.

Proof. Assume that k is a power of two. We now apply the entropy method described
in subsection 2.2. Our input set is the set E described previously. We now describe our
distribution function h. Recall that each instance I in E is a “yes” instance and therefore
guaranteed to have an accepting computation path C(I) in B. As we have already seen,
we can identify a sequence of critical states in C(I) and associate a fractional black-white
pebbling configuration with each critical state such that the sequence of fractional black-white
pebbling configurations form a valid fractional pebbling of Th

2 (See Claims 9, 10, 12, 13, 14,
and 15). But we know that any valid fractional black-white pebbling of Th

2 must have a
configuration with at least h/2 pebbles on non-root nodes [8]. Let s be the critical state in
C(I) that corresponds to this configuration. Our distribution function h maps I to s. Now
consider an arbitrary state s in range(h) and consider the set Gs = h−1(s). By Claim 11,
we have |Gs| ≤ kN−h/2. It follows that B has at least kh/2 states. (Intuitively, if we consider
the splitting tree for Gs, we can determine the input by querying only those bits that are
“unfixed” at s.)

When k is not a power of two, we consider the highest power of two (2`) smaller than k.
Consider the sub-BP of B that solves BT2(h, k) when the values are from the set [2`]. By
definition of bitwise-independence and the lower bound when k is a power of two, we have
that this sub-BP of B has at least 2`h/2

> 1
2k

h/2 states. J

I Remark. We note that the lower-bound proof in [4] for deterministic thrifty BPs can be
obtained by specializing our argument to deterministic thrifty BPs. Specifically, we define
the black pebble value of a node as 1 if and only if its value is known. The critical state
for the root node is the last state querying root and critical state for other nodes j are
those states which query j and immediately precedes the critical state for j’s parent. The
fact that the computation follows a valid black pebbling can be argued using thriftiness
(bitwise-independence is not required.). We then map each input to the state that has h or
more pebbles. The lower bound follows.

4 Lower Bounds for Deterministic BPs Using Entropy Method

In this section, we show that many lower-bound proofs in [4] can be derived using the entropy
method and derive some new applications of the method. We believe that reformulating it in
terms of the entropy method makes the connection more explicit.

I Theorem 18. ([4]) Any deterministic k-way BP solving FT3
2(k) has at least k3 states.

Proof. First, we will consider a k-way BP that takes two inputs u, v ∈ [k] and computes
u+k v where +k is addition modulo k (appropriately defined on [k].). We will prove a size
lower-bound of k states for this problem. Then we will use this result to prove the theorem.

Let B be a k-way BP solving the above problem. We apply the entropy method to
prove the required size lower-bound. Our input set A consists of k2 inputs (all inputs). Our
distribution function maps each input in A to the last edge in the k-way BP B solving this

STACS’13

632 Pebbling, Entropy and Branching Program Size Lower Bounds

problem. Now consider an arbitrary edge e labelled r and connecting a state labelled (w.l.g.)
u to the output state s. Now consider the set of inputs Fe reaching this edge. The only
possible inputs are those with u = r and u +k v = s. But this implies that v = s −k r.
Therefore Fe = {(r, s−k r)} has cardinality one. Since the choice of e was arbitrary, we have
Edges(B) ≥ k2/1 = k2. Since we are considering k-way BPs where each state has exactly k
outgoing edges States(B) ≥ k.

Consider the sub-problem of FT3
2(k) where f1 = +k, leaves are allowed to take arbitrary

values, and for any input I, we allow f Ij (vI2j , vI2j+1) for j = 2, 3 to take arbitrary values and
restrict it to 1 elsewhere. Consider a k-way BP B solving this problem. Now consider the
sub-BP b′ obtained from B by fixing (v4, v5) = (v6, v7) = (r, s) for some r, s ∈ [k]. Note
that the sub-BP B′ computes u +k v for u = f2(r, s) and v = f3(r, s) and therefore must
have at least k states. Now the set of all states querying f2 or f3 in B is the disjoint union
of all states querying f2(r, s) and f3(r, s) for k2 (r, s) pairs. Therefore States(B) ≥ k3 as
claimed. J

The Children4
2(k) problem is the same as FT4

2(k) problem except that the tree has no root
node and the values at nodes 2 and 3 together is defined as the output.

I Theorem 19. ([4]) Any deterministic k-way BP solving Children4
2(k) has at least k4 states.

Proof. Consider a k-way BP that takes four inputs u, v, w, x and computes the tuple (u+k

v, w+k x). We will prove a size lower-bound of k2 states for this problem and argue that the
theorem follows from this result.

Let B be a deterministic k-way BP solving this problem. We now apply the entropy
method. Our input set A is the set of all inputs and therefore |A| = k4. Our distribution
function will map each input in A to the last edge in its computation path on B. Consider
an arbitrary edge e labelled r that connects a query state labelled u to the output state (s, t).
Now consider the set of inputs Fe that get mapped to e. We have u = r, v = s −k r, and
w+k x = t. Since there are exactly k inputs that satisfy these conditions |Fe| ≤ k. Therefore
Edges(B) ≥ k4/k = k3 and it follows that States(B) ≥ k2.

Consider the sub-problem of Children4
2(k) where f2 = f3 = +k, leaves are allowed to

take arbitrary values, and for any input I, we allow f Ij (vI2j , vI2j+1) for j = 4, 5, 6, 7 to take
arbitrary values and restrict it to 1 elsewhere. Consider a k-way BP B solving this problem.
Now consider the sub-BP B′ obtained from B by fixing values of sibling leaves to (r, s).
Note that the sub-BP B′ solves the problem discussed in the previous paragraph and hence
requires k2 states. As before, since the level 2 query states of B are the disjoint union of
query states for k2 distinct (r, s) pairs, we have States(B) ≥ k4. J

We now present a new lower-bound of Ω(2hk) for F̂T2(h, k) problem when the function at
internal nodes are restricted to a group operation. This forms a special case of the general
problem.

I Theorem 20. Any deterministic k way BP solving F̂T2(h, k) with the functions at internal
nodes restricted to a group operation has at least 2h−2k states.

Proof. Assume without loss of generality that the functions at internal nodes are +k. The
leaf nodes are labelled x1 = 2h−1, . . . , x2h−1 = 2h − 1. Let B be a deterministic k-way BP
solving this problem. Now consider the sub-BP B′ obtained from B by fixing x3, . . . , x2h−1 to
1. The sub-BP B′ computes x1 +k x2 and therefore has at least k states. A similar argument
can be applied to each pair of leaves. Since there are 2h−2 disjoint pairs of leaves, the BP B

must have at least 2h−2k states. J

B. Komarath and J. Sarma 633

Upper Bounds: We observe upper bounds for the size of branching programs computing
F̂T2(h, k) problem when the function at internal nodes are restricted to a group operation.
The associativity of the group operation implies upper bounds. We now briefly describe
a BP for this problem. The BP is a layered BP of width k. The BP evaluates the group
product in a left-associative fashion. In order to do this, the BP only has to remember the
value of the product v1 . . . vi−1 in the ith layer. This value is in [k] and can be remembered
using width k. Then, in the ith layer, the BP reads vi and moves to i+ 1st layer updating
the remembered value as required. There are two variations possible in this setting. In the
first one, the function at the internal nodes is fixed. In this case the branching program
described will be of size 2hk and hence Theorem 20 is tight. In the second version, when the
function at the internal node is also a part of the input, the described method will give an
upper bound of 2hk2 (since we also have to query the function values).

References
1 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge

University Press, 2009.
2 David A.Mix Barrington and Pierre McKenzie. Oracle Branching Programs and Logspace

versus P. Information and Computation, 95(1):96 – 115, 1991.
3 Stephen A. Cook. An observation on time-storage trade off. Journal of Computer and

System Sciences, 9(3):308–316, 1974.
4 Stephen A. Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman, and Rahul Santhanam.

Pebbles and Branching Programs for Tree Evaluation. ACM Transactions on Computation
Theory (TOCT), 3(2):4:1–4:43, 2012.

5 Anna Gal, Michal Koucky, and Pierre McKenzie. Incremental Branching Programs. Theory
of Computing Systems, 43(2):159–184, April 2008.

6 S. Jukna and S. Žák. On Uncertainty versus Size in Branching Programs. Theoretical
Computer Science, 290(3):1851–1867, January 2003.

7 I. H. Sudborough. On the Tape Complexity of Deterministic Context-free Languages.
Journal of ACM, 25(3):405–414, July 1978.

8 Frank Vanderzwet. Fractional Pebbling Game Lower Bounds, December 2011.
http://www.cs.toronto.edu/ fvan/mt11.pdf.

9 H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer New York
Inc., 1999.

10 Dustin Wehr. Lower bound for Deterministic Semantic-incremental Branching Programs
Solving GEN. CoRR, abs/1101.2705, 2011.

STACS’13

Advice Lower Bounds for the Dense Model
Theorem∗

Thomas Watson1

1 University of California, Berkeley
tom@cs.berkeley.edu

Abstract
We prove a lower bound on the amount of nonuniform advice needed by black-box reductions
for the Dense Model Theorem of Green, Tao, and Ziegler, and of Reingold, Trevisan, Tulsiani,
and Vadhan. The latter theorem roughly says that for every distribution D that is δ-dense in a
distribution that is ε′-indistinguishable from uniform, there exists a “dense model” for D, that is,
a distribution that is δ-dense in the uniform distribution and is ε-indistinguishable from D. This
ε-indistinguishability is with respect to an arbitrary small class of functions F . For the natural
case where ε′ ≥ Ω(εδ) and ε ≥ δO(1), our lower bound implies that Ω

(√
(1/ε) log(1/δ) · log |F |

)
advice bits are necessary. There is only a polynomial gap between our lower bound and the best
upper bound for this case (due to Zhang), which is O

(
(1/ε2) log(1/δ) · log |F |

)
. Our lower bound

can be viewed as an analog of list size lower bounds for list-decoding of error-correcting codes,
but for “dense model decoding” instead. Our proof introduces some new techniques which may
be of independent interest, including an analysis of a majority of majorities of p-biased bits. The
latter analysis uses an extremely tight lower bound on the tail of the binomial distribution, which
we could not find in the literature.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Pseudorandomness, advice lower bounds, dense model theorem

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.634

1 Introduction

The question of whether the prime numbers contain arbitrarily long arithmetic progressions
was a long-standing and famous open problem until Green and Tao [9] answered the question
in the affirmative in a breakthrough paper in 2004. A key ingredient in their proof is a
certain transference principle which, very roughly, states the following. Let U denote the
set of positive integers. Then for every D ⊆ U , if there exists an R ⊆ U such that D is
dense in R and R is “indistinguishable” from U , then there exists an M ⊆ U such that M
is dense in U and D is “indistinguishable” from M . Tao and Ziegler [13] proved a much
more general version of the transference principle, which has come to be known as the Dense
Model Theorem (since M is a dense “model” for D).

Reingold, Trevisan, Tulsiani, and Vadhan [12] demonstrated the relevance of the Dense
Model Theorem to computer science, and they gave a new proof which is much simpler
and achieves better parameters than the proof of Green, Tao, and Ziegler. Gowers [6]
independently came up with a similar proof. In addition to the original application of

∗ This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship under Grant No. DGE-0946797 and by the National Science Foundation under Grant
No. CCF-1017403.

© Thomas Watson;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 634–645

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.634
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

T. Watson 635

δ-dense
D −−−−−−−−−−−−−−→ R

(ε, F)-indistinguishable

xy
xy (ε′, F ′)-indistinguishable

M −−−−−−−−−−−−−−→ U

δ-dense

Figure 1 Relations among distributions in the Dense Model Theorem

showing that the primes contain arbitrarily long arithmetic progressions, the Dense Model
Theorem has found applications in differential privacy [11], pseudoentropy and leakage-
resilient cryptography [2, 12, 3], and graph decompositions [12], as well as further applications
in additive combinatorics [7, 8]. Subsequent variants of the Dense Model Theorem have
found applications in cryptography [5] and pseudorandomness [14].

To formally state the Dense Model Theorem, we first need some definitions. We identify
{0, 1}2n with the set of functions from {0, 1}n to {0, 1}. We use Dn to denote the set of all
distributions on {0, 1}n. The domain {0, 1}n could be replaced by any finite set of size 2n;
we use the domain {0, 1}n for concreteness.

I Definition 1. We say D1 ∈ Dn is δ-dense in D2 ∈ Dn if for all x ∈ {0, 1}n, PrD1 [x] ≤
1
δ PrD2 [x].

I Definition 2. We say f ∈ {0, 1}2n

ε-distinguishes D1, D2 ∈ Dn if
∣∣ED1 [f]− ED2 [f]

∣∣ > ε.

I Definition 3. For F ⊆ {0, 1}2n , we say D1, D2 ∈ Dn are (ε, F)-indistinguishable if there
is no f ∈ F that ε-distinguishes D1 and D2.

The following is quantitatively the best known version of the theorem, due to Zhang [15]
(building on [12, 1]).

I Theorem 4 (Dense Model Theorem). For every F ⊆ {0, 1}2n and every D ∈ Dn, if there
exists an R ∈ Dn such that D is δ-dense in R and (R,U) are (ε′, F ′)-indistinguishable where
U ∈ Dn is the uniform distribution, then there exists an M ∈ Dn such that M is δ-dense
in U and (D,M) are (ε, F)-indistinguishable, where ε′ ≥ Ω(εδ) and F ′ consists of all linear
threshold functions with ±1 coefficients applied to O

(
(1/ε2) log(1/δ)

)
functions from F .

The relations among the four distributions in Theorem 4 are illustrated in Figure 1.
We remark that the theorem also holds when we allow [0, 1]-valued functions f rather
than just {0, 1}-valued functions f . The proof of [12] gives the same result but where
O
(
(1/ε2) log(1/εδ)

)
functions from F are combined to get a function from F ′. The original

proof of [13] achieves an F ′ which is qualitatively simpler, namely all products of poly(1/ε, 1/δ)
functions from F , but it only achieves ε′ ≥ exp(− poly(1/ε, 1/δ)).1 We note that the
dependence ε′ ≥ Ω(εδ) is tight in two senses.

The Dense Model Theorem is actually false when ε′ > εδ, even if F ′ = {0, 1}2n . See [15]
for the simple argument.
The following converse to the Dense Model Theorem holds: If there exists an M ∈ Dn
such that M is δ-dense in U and (D,M) are (ε, F)-indistinguishable, then there exists

1 Another proof that also achieves this is given in [12].

STACS’13

636 Advice Lower Bounds for the Dense Model Theorem

an R ∈ Dn such that D is δ-dense in R and (R,U) are (ε′, F ′)-indistinguishable, where
ε′ = εδ and F ′ = F . To see this, note that U = δM + (1 − δ)M̂ for some M̂ ∈ Dn,
so we can let R = δD + (1 − δ)M̂ ; then D is δ-dense in R, and for every f ∈ {0, 1}2n

we have ER[f] − EU [f] = δ
(
ED[f] − EM [f]

)
and thus if

∣∣ER[f] − EU [f]
∣∣ > ε′ then∣∣ED[f]− EM [f]

∣∣ > ε.

The Dense Model Theorem has an undesirable feature: The class F ′ is more complex
than the class F . Thus, if we wish to conclude that D and M are indistinguishable for a
class F , we need to assume that R and U are indistinguishable for a more complex class F ′.
The less complex F ′ is, the stronger the theorem is. The reason for this loss in complexity is
because the theorem is proved using a black-box reduction. In other words, the contrapositive
is proved: We assume that for every M δ-dense in U there exists a function from F that
ε-distinguishes D and M , and we show that some of these functions can be plugged into the
reduction to get a function that ε′-distinguishes R and U . Thus the resulting function is
necessarily more complex than the functions that get plugged into the reduction. There are
three notions of complexity that are interesting to address here.
1. Computational complexity. If F consists of functions computed by small constant-depth

circuits (AC0), then can we let F ′ consist of functions computed by (slightly larger)
constant-depth circuits? This is not known to be true when ε′ ≥ Ω(εδ), because the
reductions of [12, 15] involve a linear threshold function, which cannot be computed
by small constant-depth circuits. Is it necessary that the reduction computes a linear
threshold function? The original result of [13] shows that this is not necessary if ε′ is
extremely small.

2. Query complexity. If F consists of functions computed by circuits of size s, then F ′ will
need to consist of functions computed by circuits of a larger size s′ — but how much
larger? If the reduction makes q queries to functions from F , then plugging in size-s
circuits for these functions yields a circuit of size ≥ q · s, and thus we must have s′ ≥ q · s.
Hence it is desirable to minimize q. Can we do better than q ≤ O

(
(1/ε2) log(1/δ)

)
as in

Theorem 4?
3. Advice complexity. Suppose F consists of functions computed by uniform algorithms

running in time t (that is, a single algorithm computes a sequence of functions, one for
each n = 1, 2, 3, . . . ,). Then can we let F ′ consist of functions computed by uniform
algorithms running in some (slightly larger) time t′? (Here, the distributions D,M,R,U

would need to be sequences of distributions, and a distinguisher would only be required
to succeed for infinitely many n.) The proofs of [12, 15] do not yield this, because the
reductions need a nonuniform advice string to provide some extra information about the
nth distribution D. How many bits of advice are needed?

Before proceeding we draw attention to the fact that, as we just alluded to, the advice
strings used by the reductions of [12, 15] depend on D but do not depend on R. Hence
something a little stronger than Theorem 4 actually holds: Although the statement of
Theorem 4 says we need to assume that for some R in which D is δ-dense, there is no
function in F ′ that ε′-distinguishes R and U , we actually only need to assume that there is
no function in F ′ that simultaneously ε′-distinguishes U from every R in which D is δ-dense
(the quantifiers are swapped). We are interested in proving lower bounds on the complexity
of this type of black-box reduction for the Dense Model Theorem, where the advice does not
depend on R.

The query complexity was considered by Zhang [15], who showed that for a certain
type of nonadaptive black-box reduction, Ω

(
(1/ε2) log(1/δ)

)
queries are necessary when

T. Watson 637

ε′ ≥ Ω(εδ) and ε ≥ δO(1), matching the upper bound of O
(
(1/ε2) log(1/δ)

)
for this case. In

this paper we consider the advice complexity. We show that for arbitrary black-box reductions,
Ω
(√

(1/ε) log(1/δ) · log |F |
)
advice bits are necessary when ε′ ≥ Ω(εδ) and ε ≥ δO(1), which

comes close to matching the upper bound of O
(
(1/ε2) log(1/δ) · log |F |

)
for this case [15]. Our

result also holds for much more general settings of the parameters (with some degradation in
the lower bound). Proving lower bounds on the computational complexity remains open.

Let us formally state what we mean by a black-box reduction. Recall the standard
notation [k] = {1, . . . , k}.
I Definition 5. An (n, ε, δ, ε′, k, α)-reduction (for the Dense Model Theorem) is a function

Dec :
(
{0, 1}2n)k × {0, 1}α → {0, 1}2n

such that for all f1, . . . , fk ∈ {0, 1}2n and all D ∈ Dn, if for every M ∈ Dn that is δ-dense in
the uniform distribution U ∈ Dn there exists an i ∈ [k] such that fi ε-distinguishes D and
M , then there exists an advice string a ∈ {0, 1}α such that for every R ∈ Dn in which D is
δ-dense, Dec(f1, . . . , fk, a) ε′-distinguishes R and U .

The proofs of [12, 15] work by exhibiting such reductions. The functions
{
f1, . . . , fk

}
correspond to the class F (which, if we were considering uniform algorithms, would be the
restrictions of all the algorithms in the class to a particular input length n). We now state
our theorem.
I Theorem 6 (Main). If there exists an (n, ε, δ, ε′, k, α)-reduction for the Dense Model
Theorem, and if w > 1 is an integer such that 2w+2 · δw/160 ≤ ε′, then

α ≥
⌊ 1

160w
√

(1/ε) log2(1/δ)
⌋
· log2 k − log2 w − 1

provided 2n ≥ w log2 k
εδ2(ε′)2 , ε ≤ 1/64 log2(1/δ), and k ≥ 1/16ε4.

For the case where ε′ ≥ Ω(εδ) and ε ≥ δO(1) (which is reasonable), the condition
2w+2 · δw/160 ≤ ε′ is met provided w is a sufficiently large constant and δ is less than a
sufficiently small constant,2 and thus we get a lower bound α ≥ Ω

(√
(1/ε) log(1/δ) · log k

)
.

Note that the three conditions at the end of the statement of Theorem 6 are very generous.
Our proof of Theorem 6 is somewhat reminiscent of the proof of a lower bound due to Lu,

Tsai, and Wu [10] on the advice complexity of black-box reductions for the Hardcore Lemma,
but our proof diverges significantly. We now give a quick preview of some of our ingredients.
We use the probabilistic method to find a class of functions f1, . . . , fk for which many advice
strings are needed to “cover” all the distributions D that do not have dense models. The key
technical ingredients in the analysis (which differ from the ingredients in [10] and which may
be of independent interest) include (1) a combinatorial argument identifying when several
distributions D cannot share the same advice string, and (2) an analysis of a majority of
majorities applied to overlapping sets of p-biased bits, where the sets form an almost-disjoint
family (see Figure 2). The latter analysis makes use of extremely tight lower bounds on the
tail probabilities of the binomial distribution, which we also prove (but could not find in the
literature).

In the full version we point out an analogy between our lower bound and list size lower
bounds for list-decoding of error-correcting codes, and we summarize analogous previous
work on lower bounds for hardness amplification and list-decoding. The rest of this paper is
devoted to proving Theorem 6. In Section 2 we give some intuition for the proof, and then
in Section 3 we give the formal proof.

2 The statement of Theorem 6 requires δ < 2−160, but this constant can be drastically improved.

STACS’13

638 Advice Lower Bounds for the Dense Model Theorem

−biased bitsp

Maj Maj Maj Maj Maj

Maj

.

Figure 2 The majority of majorities

2 Intuition

According to Definition 5, for Dec to succeed as a reduction, it must be the case that for all
f1, . . . , fk ∈ {0, 1}2n and all D ∈ Dn, if D has no “dense model” then there is some advice
string a such that Dec(f1, . . . , fk, a) “covers” D in a certain sense. To show that Dec needs
many advice strings in order to succeed, we find functions f1, . . . , fk ∈ {0, 1}2n and a large
family of distributions in Dn such that
(i) each distribution in the family has no dense model (with respect to f1, . . . , fk), and
(ii) each function f ∈ {0, 1}2n covers few of the distributions in the family.
So (i) implies that each distribution in the family needs to get covered, while (ii) implies
that for each advice string a, Dec(f1, . . . , fk, a) does not cover very many of them. Since the
family is large, many advice strings are needed.

First we describe a technique for achieving (i), then we describe a technique for achieving
(ii), and then we show how to consolidate the techniques to achieve both properties simul-
taneously. When we say D has no “dense model” we mean that for every M ∈ Dn that is
δ-dense in U there exists an i ∈ [k] such that fi ε-distinguishes D and M . When we say a
function “covers” D we mean that it ε′-distinguishes R and U for every R ∈ Dn in which
D is δ-dense. The only distributions D we need to consider are uniform distributions over
subsets of {0, 1}n.

Given f1, . . . , fk ∈ {0, 1}2n , what is an example of a distribution with no dense model?
Suppose we pick any I ⊆ [k] of size 1/4ε and we let XI be the set of all x ∈ {0, 1}n such that
fi(x) = 1 for the majority of i ∈ I. Suppose we take DI to be the uniform distribution over XI .
Then we have Prx∼DI , i∼I [fi(x) = 1] ≥ 1/2+2ε where i ∼ I means picking i ∈ I uniformly at
random. If XI is roughly a δ/2 fraction of {0, 1}n, then every distribution M that is δ-dense
in U has at least half its mass outside of XI , on strings x where Pri∼I [fi(x) = 1] ≤ 1/2− 2ε.
It is possible to show that Prx∼M, i∼I [fi(x) = 1] < Prx∼DI , i∼I [fi(x) = 1]− ε and thus there
exists an i ∈ I (depending onM) such that fi ε-distinguishes DI andM . So if |XI | ≈ (δ/2)2n
then DI has no dense model. This is the technique we use for finding distributions without
dense models.

Now, what is an example of a pair of distributions such that no function can cover both
simultaneously? If we can show that every pair of distributions in the family is like this,
then we will have achieved (ii). Because of an issue described below, we actually need to

T. Watson 639

consider small collections of distributions rather than just pairs, but for now we consider
pairs. Suppose D is uniform over some X ⊆ {0, 1}n of size roughly (δ/2)2n, and similarly
D′ is uniform over some X ′ ⊆ {0, 1}n of size roughly (δ/2)2n. If X ∩X ′ = ∅, then it can be
shown that no function covers both D and D′.3 Furthermore, if |X ∩X ′| is at most roughly
ε′2n then this property still holds.

To consolidate the two techniques, we find a large family of sets I ⊆ [k] each of size 1/4ε,
where

(A) |XI | ≈ (δ/2)2n for each I in the family, and
(B) the pairwise intersections of the XI ’s (for I in the family) all have size at most roughly

ε′2n.

This would imply that the corresponding distributions DI (for I in the family) have no
dense models, and no function would cover more than one of them, so (i) and (ii) would be
achieved.

We choose the functions f1, . . . , fk ∈ {0, 1}2n randomly in some way, and we argue that
for an appropriate family of sets I, properties (A) and (B) both hold with high probability.
Property (A) suggests that we should choose p so that the probability a majority of 1/4ε
independent coins each with expectation p come up 1 is exactly δ/2. Then we can set
fi(x) = 1 with probability p independently for each i ∈ [k] and each x ∈ {0, 1}n, so for each I
of size 1/4ε, Pr[x ∈ XI] = δ/2. Then by concentration, |XI | ≈ (δ/2)2n with high probability
over f1, . . . , fk.

If we choose f1, . . . , fk randomly in this way, how big will |XI ∩ XI′ | be, for I and I ′
in the family? By concentration, we would have that with high probability over f1, . . . , fk,
|XI ∩XI′ | is roughly 2n times Pr[x ∈ XI ∩XI′] (which is the same for all x ∈ {0, 1}n), so we
would like the latter probability to be ≤ ε′. So what is the probability that the conjunction
of two majorities of p-biased bits is 1? The best case is if I ∩ I ′ = ∅, in which case the
probability is exactly (δ/2)2. There are two problems with this.

(1) We cannot get a very large family of sets I if we require them to be pairwise disjoint.
(2) This requires ε′ ≥ (δ/2)2. In a typical setting where ε′ ≥ Ω(εδ), this would require ε > δ,

which is an odd and somewhat severe restriction.

To solve problem (1), we use the natural idea to allow the sets I to be pairwise almost-disjoint,
rather than disjoint (which allows us to get a much larger family). So if |I ∩ I ′| is at most
some value b, how small does b have to be to ensure that the probability both majorities
are 1 is not much more than (δ/2)2? We analyze this using the following trick: If both
majorities are 1, then the fraction of coins that are 1 among I ∪ I ′ is at least q, where
q = 1/2 − 2εb = 1/4ε−b

1/2ε ≤
|I|/2+|I′|/2−b
|I∪I′| . Using an extremely tight characterization of the

tail probabilities of the binomial distribution (which we prove using known techniques but
which we could not find in the literature), we can show that p ≈ 1/2−

√
ε log(1/δ) and the

probability of getting ≥ q fraction of 1’s among the |I∪I ′| coins is not much more than (δ/2)2

provided q is at least a constant factor closer to 1/2 than p is, say q ≈ 1/2−
√
ε log(1/δ)/4.

Thus it suffices to have b ≈
√
ε log(1/δ)/8ε ≥ Ω

(√
(1/ε) log(1/δ)

)
. Since the family of sets

I needs to be in the universe [k], there exists such a family of roughly kb many sets with
pairwise intersections bounded in size by b. Since each function can cover DI for only one I

3 Actually, there is an issue having to do with the absolute value signs in the definition of distinguishing;
this is dealt with in the formal proof.

STACS’13

640 Advice Lower Bounds for the Dense Model Theorem

in the family, roughly kb advice strings are needed, which gives an advice lower bound of
roughly log(kb) ≥ Ω

(√
(1/ε) log(1/δ) · log k

)
.

Problem (2) is solved in the formal proof by considering small collections of sets from the
family, rather than pairs. The parameter w in Theorem 6 is used to determine how big these
collections should be. Then instead of considering the conjunction of two majorities, we need
to consider the majority of several majorities, which explains where Figure 2 comes from.

3 Formal Proof

In Section 3.1, Section 3.2, and Section 3.3 we give preliminary lemmas, definitions, and
notation. Then in Section 3.4 we give the proof of Theorem 6.

3.1 Binomial Distribution Tail
We let Tail(m, p, q) denote the probability that when m independent coins are flipped each
with probability p of heads, at least a q fraction of the coins are heads (in other words, the
probability the (m, p) binomial distribution is at least qm). For our proof of Theorem 6 we
need extremely tight upper and lower bounds on the value of Tail(m, p, q). Such bounds
can be given in terms of the fundamental quantity RE(q‖p) = q log2(qp) + (1− q) log2(1−q

1−p)
which is known by a variety of names such as relative entropy, information divergence, and
Kullback-Leibler distance.

We need the following fact, which can be seen using derivatives.
I Fact 7. For all 1/4 ≤ p ≤ q ≤ 3/4, we have 2(q − p)2 ≤ RE(q‖p) ≤ 4(q − p)2.

We also need the following standard and well-known form of the Chernoff-Hoeffding
bound.

I Lemma 8. For all m ≥ 1 and all 0 ≤ p ≤ q ≤ 1, we have Tail(m, p, q) ≤ 2−RE(q‖p)m.

The following lemma (see the full version for the proof) shows that Lemma 8 is very tight.

I Lemma 9. For all m ≥ 1 and all 1/4 ≤ p ≤ q ≤ 1, we have Tail(m, p, q) ≥ 1
48
√
m
·

2−RE(q‖p)m.

Although Lemma 9 is very simple and general, for our purpose we can only use it for a
limited range of parameters, namely when ε� δ. This is because RE(q‖p) could be so close
to 0 that 1

48
√
m

completely swamps 2−RE(q‖p)m, in which case Lemma 9 is not very tight.
To handle the full range of ε and δ, we use the following stronger lower bound for the case
q = 1/2. We prove this lemma in the full version.

I Lemma 10. For all m ≥ 9 and all 1/4 ≤ p < 1/2, we have

Tail(m, p, 1/2) ≥ min
(1

256 ,
1

128
√
m(1/2−p)

)
· 2−RE(1/2‖p)m.

3.2 Combinatorial Designs
For our proof of Theorem 6 we need the existence of large families of almost-disjoint subsets
of a finite set. Such combinatorial designs have numerous applications in theoretical computer
science.

I Definition 11. An (`, k, s, b)-design is a family of sets I1, . . . , I` ⊆ [k] all of size s such
that |Ij ∩ Ij′ | ≤ b for every j 6= j′.

T. Watson 641

I Lemma 12. For every k, s, b there exists an (`, k, s, b)-design with ` ≥ kb/8, provided
k ≥ 16s4.

There is nothing very novel about this lemma, and this precise version follows from a
result in [4], but we provide a simple, self-contained proof in the full version. The proof
uses the probabilistic method with a simple concentration bound for the hypergeometric
distribution.

3.3 Notational Preliminaries
The parameters n, ε, δ, ε′, k, and w are fixed as in the statement of Theorem 6, and we always
use D,M,R,U (possibly subscripted) to denote distributions in Dn, in their roles as in
Definition 5.

We let Maj denote the majority function on bit strings, and for even length strings we
break ties by returning 1. We let And denote the and function on bit strings. We let Majt

denote the function that takes t bit strings and returns their majorities as a length-t bit
string. We use ◦ for function composition.

We also adhere to the following notational conventions. We use x for elements of {0, 1}n
and X for subsets of {0, 1}n. We use f for elements of {0, 1}2n (identified with functions
from {0, 1}n to {0, 1}) and F for subsets of {0, 1}2n . We use [k] to index functions f , and
we use i for elements of [k] and I for subsets of [k]. We use [`] to index subsets I (as in
Definition 11), and we use j for elements of [`] and J for subsets of [`]. We generally use s
for the size of I, and t for the size of J .

The following notation is with respect to fixed f1, . . . , fk ∈ {0, 1}2n . Given I ⊆ [k] we
define

fI is the function that takes x ∈ {0, 1}n and returns the length-|I | bit string (fi(x))i∈I ;
XI is the set of x ∈ {0, 1}n on which Maj ◦fI returns 1;
DI is the uniform distribution over XI (and if XI = ∅ then DI is undefined).

The following notation is with respect to fixed f1, . . . , fk ∈ {0, 1}2n and fixed I1, . . . , I` ⊆
[k]. Given J ⊆ [`] we define

fIJ
is the function that takes x ∈ {0, 1}n and returns the |J |-tuple (fIj

(x))j∈J ;
XIJ

is the set of x ∈ {0, 1}n on which Maj ◦Maj|J| ◦fIJ
returns 1.

We use ∼ to denote sampling from a distribution (for example x ∼ D), and we use the
convention that sampling from a set (for example i ∼ I) means sampling from the uniform
distribution over that set.

3.4 Proof of Theorem 6
Consider an arbitrary function Dec :

(
{0, 1}2n)k × {0, 1}α → {0, 1}2n . Supposing that

α <
⌊ 1

160w
√

(1/ε) log2(1/δ)
⌋
· log2 k− log2 w− 1, we show that Dec is not an (n, ε, δ, ε′, k, α)-

reduction. We first introduce some terminology to make things concise. Given f1, . . . , fk ∈
{0, 1}2n , a dense model for D ∈ Dn is an M ∈ Dn that is δ-dense in the uniform distribution
U ∈ Dn and is such that for all i ∈ [k], fi does not ε-distinguish D and M . We say a function
f ∈ {0, 1}2n covers D ∈ Dn if for every R ∈ Dn in which D is δ-dense, f ε′-distinguishes R
and U .

Thus to show that Dec is not an (n, ε, δ, ε′, k, α)-reduction, we need to find f1, . . . , fk ∈
{0, 1}2n such that some D has no dense model but is not covered by Dec(f1, . . . , fk, a) for
any advice string a ∈ {0, 1}α.

STACS’13

642 Advice Lower Bounds for the Dense Model Theorem

3.4.1 Distributions Without Dense Models
The following claim is our tool for finding distributions that have no dense models. We prove
this claim in the full version.
I Claim 13. For every f1, . . . , fk ∈ {0, 1}2n and every I ⊆ [k] of size 0 < s ≤ 1/4ε (for some
s), if 0 < |XI | ≤ (2δ/3)2n then DI has no dense model.

3.4.2 Distributions That Cannot Be Covered
We say a function f ∈ {0, 1}2n positively covers D ∈ Dn if for every R ∈ Dn in which D

is δ-dense, ER[f] − EU [f] > ε′ (note the absence of absolute value signs). Observe that if
f ∈ {0, 1}2n covers D then either f or its complement positively covers D. This is because if
there existed R1, R2 ∈ Dn in which D is δ-dense and such that ER1 [f] < EU [f] < ER2 [f],
then some convex combination R3 of R1 and R2 would have ER3 [f] = EU [f]. However, D
would be δ-dense in R3 since the set of R in which D is δ-dense is convex, so f would not
cover D.
I Claim 14. For every f1, . . . , fk ∈ {0, 1}2n , every I1, . . . , I` ⊆ [k] (for some `), and every
J ⊆ [`] of size t > 1 (for some t), if |XIJ

| ≤ (ε′/2)2n and |XIj
| ≥ (δ/2− ε′/4)2n for all j ∈ J

then there is no function that simultaneously positively covers DIj
for all j ∈ J .

Proof. Assume that |XIJ
| ≤ (ε′/2)2n and |XIj

| ≥ (δ/2 − ε′/4)2n for all j ∈ J . Consider
an arbitrary f ∈ {0, 1}2n and let X be the set of x ∈ {0, 1}n such that f(x) = 1. For
τ ∈ {0, 1, . . . , t} let X(τ) be the set of x ∈ {0, 1}n such that there are exactly τ values of
j ∈ J for which x ∈ XIj (in other words, (Majt ◦fIJ

)(x) has Hamming weight τ). Note that
XIJ

=
⋃t
τ=t′ X

(τ) where t′ = dt/2e. Let π = minj∈J
[

EDIj
[f]
]
. Then for every j ∈ J we

have |X ∩XIj
| ≥ π · |XIj

| ≥ π · (δ/2− ε′/4)2n. We have

(t/2) ·
(
|X|+ |XIJ

|
)
≥ (t/2) · |X ∩XIJ

|+ t · |X ∩XIJ
|

≥
∑t
τ=0 τ · |X ∩X(τ)|

=
∑
j∈J |X ∩XIj

|

≥ t · π · (δ/2− ε′/4)2n

which implies that

|X| ≥ π · (δ − ε′/2)2n − |XIJ
| ≥ πδ2n − ε′2n = (π − ε′/δ) · δ2n

since π ≤ 1 and |XIJ
| ≤ (ε′/2)2n. We might have π − ε′/δ < 0, but this is not problematic.

Let M be a distribution δ-dense in U that maximizes EM [f], and observe that

EM [f] = min
(
|X|/δ2n, 1

)
≥ π − ε′/δ.

We have U = δM + (1− δ)M̂ for some M̂ ∈ Dn. Let j ∈ J be such that EDIj
[f] = π, and

define the distribution R = δDIj
+ (1− δ)M̂ so that DIj

is δ-dense in R. Then we have

ER[f] = δπ + (1− δ) E
M̂

[f]

and

EU [f] = δ EM [f] + (1− δ) E
M̂

[f] ≥ δπ − ε′ + (1− δ) E
M̂

[f] = ER[f]− ε′

so f does not positively cover DIj
. This finishes the proof of Claim 14. J

T. Watson 643

3.4.3 Setting the Parameters
Define s = b1/4εc and t = w and b =

⌊ 1
20t
√

(1/ε) log2(1/δ)
⌋
. By Lemma 12 there exists

an (`, k, s, b)-design I1, . . . , I` with ` = dkb/8e (note that we do have k ≥ 16s4). Define p to
be such that Tail(s, p, 1/2) = δ/2. We prove the following claim in the full version, using
Lemma 10.

I Claim 15. 1
2
√
ε log2(1/δ) ≤ 1/2− p ≤ 2

√
ε log2(1/δ) ≤ 1/4.

3.4.4 The Majority of Majorities
We choose f1, . . . , fk randomly by setting fi(x) = 1 with probability p independently for
each i ∈ [k] and each x ∈ {0, 1}n.

I Claim 16. For every J ⊆ [`] of size t and every x ∈ {0, 1}n, we have Prf1,...,fk
[x ∈ XIJ

] ≤
ε′/4.

Proof. Define t′ = dt/2e. Note that if (Maj ◦Majt ◦fIJ
)(x) = 1 then there exists a subset

J ′ ⊆ J of size t′ such that (And ◦Majt
′
◦fIJ′)(x) = 1. Thus we have

Prf1,...,fk

[
(Maj ◦Majt ◦fIJ

)(x) = 1
]

≤ 2t ·maxJ′⊆J : |J ′|=t′ Prf1,...,fk

[
(And ◦Majt

′
◦fIJ′)(x) = 1

]
.

Consider an arbitrary J ′ ⊆ J of size t′. Define m =
∣∣⋃

j∈J ′ Ij
∣∣ and notice that since I1, . . . , I`

is an (`, k, s, b)-design, by inclusion-exclusion we have

t′s−
(
t′

2
)
b ≤ m ≤ t′s. (1)

Define s′ = ds/2e and q = 1/2− t′b/2s. If (And ◦Majt
′
◦fIJ′)(x) = 1 then for each j ∈ J ′ we

have
∑
i∈Ij

fi(x) ≥ s′ and so by inclusion-exclusion we have

∑
i∈
⋃

j∈J′ Ij
fi(x) ≥

(∑
j∈J ′

∑
i∈Ij

fi(x)
)
−
(
t′

2
)
b ≥ t′s′ −

(
t′

2
)
b ≥ qt′s ≥ qm.

It follows that

Prf1,...,fk

[
(And ◦Majt

′
◦fIJ′)(x) = 1

]
≤ Prf1,...,fk

[∑
i∈
⋃

j∈J′ Ij
fi(x) ≥ qm

]
= Tail(m, p, q)
≤ 2−RE(q‖p)m

=
(
2−RE(1/2‖p)s)(m/s)·(RE(q‖p)/RE(1/2‖p))

≤
(
δ1/10)(m/s)·(RE(q‖p)/RE(1/2‖p))

where the third line follows by Lemma 8 and the fifth line follows by nonnegativity of RE
and

2−RE(1/2‖p)s ≤ 2−2(1/2−p)2s ≤ δεs/2 ≤ δ1/10

which holds by Fact 7, Claim 15, and ε ≤ 1/20. We have

m/s ≥ t′ − (t′)2b/2s ≥ t′/2 ≥ t/4 (2)

STACS’13

644 Advice Lower Bounds for the Dense Model Theorem

by (1) and b ≤ s/t′ (which can be shown using the final inequality in Claim 15). We also
have t′b/2s ≤ 1

8
√
ε log2(1/δ) and thus q − p ≥ 3

4 (1/2− p) by Claim 15. Hence by Fact 7 we
have

RE(q‖p)/RE(1/2‖p) ≥ (q−p)2

2(1/2−p)2 ≥
(3

4 (1/2−p))2

2(1/2−p)2 ≥ 1/4. (3)

Using (2) and (3) we get

Prf1,...,fk

[
(And ◦Majt

′
◦fIJ′)(x) = 1

]
≤
(
δ1/10)(t/4)·(1/4) = δt/160.

We conclude that Prf1,...,fk
[x ∈ XIJ

] ≤ 2t · δt/160 ≤ ε′/4. This finishes the proof of
Claim 16. J

3.4.5 Putting It All Together
For every j ∈ [`] and every x ∈ {0, 1}n, we have Prf1,...,fk

[x ∈ XIj
] = Tail(s, p, 1/2) = δ/2.

Standard relative-error forms of the Chernoff bound give

Prf1,...,fk

[
|XIj | < (δ/2− ε′/4)2n

]
≤ e−2n(ε′)2/16δ

Prf1,...,fk

[
|XIj
| > (2δ/3)2n

]
≤ e−2nδ/54

Prf1,...,fk

[
|XIJ
| > (ε′/2)2n

]
≤ e−2nε′/12

where the latter holds for each J ⊆ [`] of size t, using Claim 16. Thus by a union bound we
have

Prf1,...,fk

[
(δ/2− ε′/4)2n ≤ |XIj | ≤ (2δ/3)2n for all j ∈ [`] and
|XIJ | ≤ (ε′/2)2n for all J ⊆ [`] of size t

]
≥ 1− ` · e−2n(ε′)2/16δ − ` · e−2nδ/54 −

(
`
t

)
· e−2nε′/12

> 0

since 2n ≥ t log2 k
εδ2(ε′)2 . Fix a choice of f1, . . . , fk such that the above event occurs.

For every J∗ ⊆ [`] of size 2t − 1, there is no a ∈ {0, 1}α such that Dec(f1, . . . , fk, a)
simultaneously covers DIj for all j ∈ J∗, because otherwise for some J ⊆ J∗ of size t, either
Dec(f1, . . . , fk, a) or its complement would simultaneously positively cover DIj

for all j ∈ J ,
which would contradict Claim 14.

Therefore for each a ∈ {0, 1}α, the number of j ∈ [`] such that DIj
is covered by

Dec(f1, . . . , fk, a) is at most 2t− 2. This implies that the number of j ∈ [`] for which there
exists an a ∈ {0, 1}α such that Dec(f1, . . . , fk, a) covers DIj is at most 2α · (2t−2) < kb/8 ≤ `
since α ≤ (b/8) log2 k− log2 t− 1. Thus there exists a j ∈ [`] such that DIj

is not covered by
Dec(f1, . . . , fk, a) for any a ∈ {0, 1}α. By Claim 13, DIj has no dense model, so Dec is not
an (n, ε, δ, ε′, k, α)-reduction. This finishes the proof of Theorem 6.

Acknowledgments I thank Anand Bhaskar, Siu Man Chan, and Siu On Chan for helpful
discussions, and anonymous reviewers for useful comments.

References
1 Boaz Barak, Moritz Hardt, and Satyen Kale. The uniform hardcore lemma via approxim-

ate Bregman projections. In Proceedings of the 20th ACM-SIAM Symposium on Discrete
Algorithms, pages 1193–1200, 2009.

T. Watson 645

2 Boaz Barak, Ronen Shaltiel, and Avi Wigderson. Computational analogues of entropy. In
Proceedings of the 7th International Workshop on Randomization and Computation, pages
200–215, 2003.

3 Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In Proceedings
of the 49th IEEE Symposium on Foundations of Computer Science, pages 293–302, 2008.

4 Paul Erdős, Péter Frankl, and Zoltán Füredi. Families of finite sets in which no set is
covered by the union of r others. Israel Journal of Mathematics, 51(1-2):79–89, 1985.

5 Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In Proceedings of the 43rd ACM Symposium on Theory of Comput-
ing, pages 99–108, 2011.

6 Timothy Gowers. Decompositions, approximate structure, transference, and the Hahn–
Banach Theorem. Bulletin of the London Mathematical Society, 42(4):573–606, 2010.

7 Timothy Gowers and Julia Wolf. Linear forms and higher-degree uniformity for functions
on Fnp . Geometric and Functional Analysis, 21(1):36–69, 2011.

8 Timothy Gowers and Julia Wolf. Linear forms and quadratic uniformity for functions on
Fnp . Mathematika, 57(2):215–237, 2012.

9 Ben Green and Terence Tao. The primes contain arbitrarily long arithmetic progressions.
Annals of Mathematics, 167(2):481–547, 2008.

10 Chi-Jen Lu, Shi-Chun Tsai, and Hsin-Lung Wu. Complexity of hard-core set proofs. Com-
putational Complexity, 20(1):145–171, 2011.

11 Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. Computational differen-
tial privacy. In Proceedings of the 29th International Cryptology Conference, pages 126–142,
2009.

12 Omer Reingold, Luca Trevisan, Madhur Tulsiani, and Salil Vadhan. Dense subsets of pseu-
dorandom sets. In Proceedings of the 49th IEEE Symposium on Foundations of Computer
Science, pages 76–85, 2008.

13 Terence Tao and Tamar Ziegler. The primes contain arbitrarily long polynomial progres-
sions. Acta Mathematica, 201:213–305, 2008.

14 Luca Trevisan, Madhur Tulsiani, and Salil Vadhan. Regularity, boosting, and efficiently
simulating every high-entropy distribution. In Proceedings of the 24th IEEE Conference on
Computational Complexity, pages 126–136, 2009.

15 Jiapeng Zhang. On the query complexity for showing dense model. Technical Report
TR11-038, Electronic Colloquium on Computational Complexity, 2011.

STACS’13

Index of Authors

Abel, Zachary .269
Ambainis, Andris . 446
Atserias, Albert . 44

Bačkurs, Arturs .446
Baartse, Martijn . 104
Barba, Luis . 281
Ben-Amram, Amir M. 514
Bilu, Yonatan . 526
Björklund, Andreas . 20
Bojańczyk, Mikołaj . 562
Bousquet, Nicolas . 3
Braverman, Mark . 610

Cannon, Sarah . 172
Capelli, Florent . 365
Case, Adam .116
Chen, Danny Z. .293
Chen, Xi .148
Clément, Julien . 598
Colcombet, Thomas .574
Cygan, Marek . 209

Dósa, György . 538
Daniely, Amit .526
Darnstädt, Malte . 185
Dartois, Luc . 329
Daviaud, Laure . 574
Durand, Arnaud . 365
Dyer, Martin . 148

Epstein, Leah . 389
Etessami, Kousha . 1

Fomin, Fedor V. 8, 32, 92
François, Nathanaël . 454

Gaspers, Serge . 67
Gawrychowski, Paweł 257
Goldberg, Leslie Ann 148
Grandoni, Fabrizio . 209

Hemaspaandra, Edith 377
Hemaspaandra, Lane A.377
Huschenbett, Martin 586

Idziaszek, Tomasz .562
Ishai, Yuval . 160

Iwata, Yoichi .127

Jalsenius, Markus . 400
Jeż, Artur . 233
Jeandel, Emmanuel . 490
Jeong, Jisu . 221
Jerrum, Mark . 148

Karbasi, Amin . 550
Kaski, Petteri . 20
Kavitha, Telikepalli . 209
Klauck, Hartmut .424
Klimann, Ines .502
Kociumaka, Tomasz 245
Komarath, Balagopal 622
Korman, Matias .281
Kowalik, Łukasz . 20
Kratsch, Stefan .32, 80
Kufleitner, Manfred . 305
Kutzkov, Konstantin 466
Kwon, O-joung .221

Lagoutte, Aurélie . 3
Lauser, Alexander . 305
Leeuwen, Erik Jan van 353
Levin, Asaf . 389
Lu, Pinyan .148
Lutz, Jack H. 116

Ma, Tengyu .478
Magniez, Frédéric . 454
Magnin, Loïck . 434
Makarychev, Konstantin 139
Manea, Florin .257
Marx, Dániel . 7
McQuillan, Colin . 148
Meer, Klaus . 104
Mehlhorn, Kurt . 5
Mengel, Stefan . 365
Menton, Curtis . 377
Mercaş, Robert . 257

Nasre, Meghana . 412
Nowotka, Dirk . 257

Oliva, Sergi . 44
Ordyniak, Sebastian . 67

INDEX OF AUTHORS 647

Oshri, Gal . 610
Oum, Sang-il .221

Paperman, Charles .329
Paulusma, Daniel . 55
Pilipczuk, Marcin 32, 353
Pilipczuk, Michał32, 197, 353
Porat, Benny . 400

Radoszewski, Jakub .245
Ramanujan, M. S. .67
Richerby, David .148
Roland, Jérémie . 434
Rytter, Wojciech . 245

Sach, Benjamin . 400
Sankowski, Piotr . 353
Saurabh, Saket . 67
Segev, Danny . 389
Sgall, Jiří . 538
Simon, Hans Ulrich . 185
Skrzypczak, Michał . 562
Slivovsky, Friedrich . 55
Smotrovs, Juris . 446
Szörényi, Balázs . 185
Szeider, Stefan . 55, 67
Szwast, Wiesław . 317

Tang, Bo . 478
Tendera, Lidia . 317
Thi, Thu Hien Nguyen 598
Thomassé, Stéphan .3
Tiseanu, Cătălin . 257

Vallée, Brigitte .598
Vanier, Pascal . 490
Villanger, Yngve . 8, 32

Wahlström, Magnus . 341
Wang, Yajun .478
Watson, Thomas . 634
Weimann, Oren . 389
Wolf, Ronald de 424, 446

Yoshida, Yuichi . 127

Zadimoghaddam, Morteza 550

STACS’13

	01
	Foreword
	Program Committee
	External Reviewers

	02
	03
	The equivalent forms

	04
	05
	06
	Introduction
	Preliminaries
	Local search
	Conclusion and open problems

	07
	Introduction
	An O*(2k)-time algorithm for Maximum Graph Motif
	The general approach
	Preliminaries on branching walks
	Labelling and shading
	The polynomial P
	Evaluating the polynomial in time O*(2k)
	The decision algorithm

	Variants of the Graph Motif Problem
	A reduction from Set Cover

	08
	Introduction
	Preliminaries
	A subexponential algorithm for p-Cluster Editing
	Reduction for large p
	Small cuts
	The algorithm

	Multivariate lower bound
	Preprocessing of the formula
	Construction

	Conclusion and open questions

	09
	Introduction
	Preliminaries
	Leveled Formulas
	Definition of bold0mu mumu freuder
	Definition of SAT
	Definition of CONSbold0mu mumu freuder
	Definition of NCONSbold0mu mumu freuder
	Converting bold0mu mumu freuder to leveled-qbf

	Main Theorem

	10
	Introduction
	Related structural parameters

	Preliminaries
	Solving #SAT for Formulas of Bounded Modular Treewidth
	A (Parameterized) Hardness Result
	Conclusion

	11
	Introduction
	Contribution
	Related Work

	Preliminaries
	Formulas
	Parameterized Complexity
	Backdoors
	q-Horn Formulas

	FPT-approximation for Deletion q-Horn Backdoor Set Detection
	Quadratic covers, implication graphs and separators
	The algorithm
	Description of the Algorithm
	Analysis

	Hardness
	Conclusions

	12
	Introduction
	Preliminaries
	A kernelization lower bound for sparse ILP Feasibility
	A polynomial kernelization for sparse ILP with bounded range
	Preprocessing for sparse Equality ILP
	Conclusion

	13
	Introduction
	Preliminaries
	An approximation algorithm for DS on HT G
	Generalized Protrusions
	Slice-Decomposition
	Final Kernel
	Conclusions

	14
	Introduction
	Previous work and outline of proof

	Basic notions
	The main proof
	Preprocessing
	Amplification
	Dimension reduction
	Putting all together

	Open questions

	15
	Introduction
	Kolmogorov Complexity in Euclidean Space
	Mutual Information in Euclidean Space
	Mutual Dimension in Euclidean Space
	Data Processing Inequalities and Applications

	16
	Introduction
	Related Works
	Organization

	Preliminaries
	Exact Algorithms
	Algorithm for Correlation Clustering
	Standard Dynamic Programming Algorithm
	Split-and-List Algorithm for Max-PA
	Utilizing Sparsity

	Approximation Algorithms for Max-PA
	Approximation Algorithms for Min-PA

	17
	Introduction
	Preliminaries
	Algorithm
	Theorem 2
	Concluding remarks

	18
	Introduction
	Preliminaries and statement of results

	Hardness results
	Balance and weak log-modularity
	Valued clones, valued CSPs and relational clones
	STP/MJN multimorphisms and weak log-supermodularity
	LSM-easiness and #BIS-easiness
	Algorithmic aspects

	19
	Introduction
	Our Results
	Overview of Techniques

	Preliminaries
	Lossy Chains
	Definitions and Basic Properties
	An Efficient Construction
	A Negative Result

	Fractional Secret Sharing
	Definitions
	Fractional Secret Sharing from Lossy Chains

	Conclusions and Open Questions

	20
	Introduction
	A tale of two models
	Our results

	Preliminaries and notation
	Informal description of the abstract tile assembly model (aTAM)
	Informal description of two-handed tile assembly model (2HAM)

	Are two hands more (tile) efficient than one?
	Finite Shapes: staircases
	Infinite Shapes

	Simulating aTAM with 2HAM
	Simulation definition: simulate an aTAM (or 2HAM) system with another 2HAM (or aTAM) system
	Simulating aTAM at 4 with 2HAM = 4
	Simulating aTAM at {1, 2} with 2HAM = 2
	Simulating aTAM at = 3 with 2HAM = 3

	Verification algorithms for aTAM and 2HAM
	Unique assembly verification

	21
	Introduction
	Definitions, Notations and Facts
	Prerequisites from Probability Theory
	Prerequisites from Learning Theory

	The Semi-supervised Versus the Purely Supervised Setting
	Proof of Theorem 1
	Proof of Theorems 2 and 3

	Final Remarks:

	22
	Introduction
	Preliminaries
	Splices and duplicability
	Canonical models
	Decidability and complexity
	Outlook

	23
	Introduction
	Our Results and Techniques
	Related Work

	Clustering
	Subsetwise Spanners
	Sourcewise spanners
	Pairwise spanners
	A Near-Additive Pairwise Spanner
	A Purely-Additive Pairwise Spanner

	Conclusions

	24
	Introduction
	Preliminaries
	Excluded vertex-minors for graphs of bounded linear rank-width
	No two graphs in k are locally equivalent.
	The size of k is 2(3k)

	25
	Introduction
	Main notions and techniques: local compression
	Main algorithm, its time and space consumption, solutions' size
	Other results
	Theoretical properties
	Double exponential bound on minimal solutions
	Exponential bound on exponent of periodicity

	Linear space for O(1) variables
	Representation of all solutions

	26
	Introduction
	Greatest Common Divisor queries
	Number-theoretic tools for Abelian periods
	Characterization of Abelian periods by proportionality relation
	Efficient implementation of the proportionality relation
	Vector equality in diff-representation
	Deterministic construction of a naming function
	Randomized construction of a naming function

	Two main algorithms

	27
	Introduction
	Algorithmic problems
	Prerequisites
	Solution of Problem 1
	Solution of Problem 2

	28
	Introduction
	Models of Pop-Ups
	Orthogonal Polygon Pop-Ups
	90 Pop-Ups
	 180, 270, and 360 Pop-Ups

	General Polygon Pop-Ups
	Nested V-folds
	The General Pop-Up Construction: The Method
	Constraining Wall Segments to Rotations
	Synchronizing Wall Segments
	Constraining Ear Cells

	Orthogonal Polyhedra Pop-Ups
	3D Pop-Up Model
	Scaffold Pop-Ups
	Additional Faces

	Conclusion and Open Problems

	29
	Introduction
	Preliminaries
	Compressed stack technique for (n)-workspaces
	Compressed stack technique
	For (logn)-workspaces
	For o(logn)-workspaces

	Applications
	Convex hull of a simple polygon
	Triangulation of a monotone polygon
	The shortest path between two points in a monotone polygon
	Optimal 1-dimensional pyramid
	Visibility profile in a simple polygon

	Conclusions

	30
	Introduction
	Our Results

	Preliminaries
	The Algorithm Outline
	Expanding the SPM(M) into a Bay (a Sketch)
	Algorithm Overview
	The Algorithm

	Expanding SPM(M) into a Canal (a Sketch)

	31
	Introduction
	Preliminaries
	Alternation within Two-Variable First-Order Logic with Successor

	32
	Introduction
	Preliminaries
	Splices and duplicability
	Canonical models
	Decidability and complexity
	Outlook

	33
	Preliminaries
	Words and logic
	Algebraic notions
	Semigroups and recognizable languages
	Stability index, stable semigroup, stable automaton
	Stamps and varieties

	 Main result
	FO2 over an enriched alphabet
	The inclusion FOMOD QDA
	The inclusion QDA FOMOD
	Congruence and syntactic operations over FOMOD
	Congruence and algebraic operations over QDA

	Other characterizations
	Conclusion

	34
	Introduction
	Preliminaries
	An Algebraic FPT Algorithm
	Graph preprocessing
	Matrix construction
	A 2k Algorithm
	Polynomial Compression

	Conclusions

	35
	Introduction
	Preliminaries
	Parameterized complexity

	Bricks and strip decompositions
	A subexponential-time parameterized algorithm
	Light strip decompositions
	A branching algorithm to obtain a light strip decomposition

	Conclusions and open problems

	36
	Introduction
	Preliminaries
	Arithmetic circuits
	Tensors

	From arithmetic circuits to {*}-formulas
	From {*}-formulas to arithmetic circuits
	Formulas with bounded maximal dimension
	Unbounded maximal dimension
	Unbounded input dimension

	The power of contracting with vectors
	The *i,j operators
	Conclusion

	37
	Introduction
	Preliminaries
	Results
	Cases When the Manipulative-Action Decision Problem Is Easy but Its Search Problem Is Hard
	Cases Where Search Reduces to Decision

	Related Work, Frequency of Hardness, and Open Directions

	38
	Introduction
	Our results
	Related work

	A Lower Bound for Randomized Algorithms
	The general idea
	The randomized construction
	Analysis

	A Randomized Algorithm
	The algorithm
	Analysis

	39
	Introduction
	Background
	Problem definition and related work
	Our new results
	Fingerprints

	Overview, key properties and notation
	The structure of parameterized matches
	Deamortisation

	The main algorithm
	Process A (finding matches with P0)
	Process B (finding matches with P1,…,Ps)
	Correctness, time and space analysis

	The deterministic matching algorithm
	The proof of Lemma 5

	40
	Introduction
	Our contributions
	Related work

	Background
	The switching graph characterization
	Some useful properties
	Generating popular pairs and counting popular matchings

	Cheating strategies – preliminaries
	s(a) for other agents remains unchanged
	An As agent cannot get one of her true rank-1 posts
	The modified instance

	Cheating strategies
	 As agent
	 Af/s agent

	41
	Introduction
	Background: fooling classical communication protocols
	Our results: fooling one-sided-error quantum protocols
	Our results: fooling nondeterministic quantum protocols

	Lower bound for one-sided bounded-error quantum protocols
	Lower bound for nondeterministic quantum protocols
	Conclusion and open problems

	42
	Introduction
	Preliminaries
	Gram matrices and fidelity
	Quantum query complexity
	The polynomial method
	The multiplicative adversary method

	The extended polynomial method
	Relation between the polynomial and the extended polynomial methods
	Relation with the multiplicative adversary method
	Discussion and open questions

	43
	Introduction
	Proof
	Proof of Claim 1

	44
	Introduction
	Preliminaries
	Lower bound for PQ-TS
	From streaming algorithms to communication protocols
	Communication complexity lower bound

	Bidirectional streaming algorithm for PQ
	One-reverse-pass algorithm for PQ
	Bidirectional two-pass algorithm
	Generalization when duplicates occur

	45
	Introduction
	Preliminaries
	Definitions
	The column row method and memory efficient matrix multiplication

	An algorithm for nonnegative matrix products
	Intuition and key lemma
	The algorithm
	Analysis of the approximation guarantee
	Comparison to previous work

	An algorithm for arbitrary real-valued matrices
	Zipfian distribution
	Comparison to previous work

	46
	Introduction
	Preliminaries
	Matroids
	Submodular functions
	The simulated greedy algorithm

	A simple stochastic process
	Laminar Matroid
	Conclusion

	47
	Preliminary definitions
	Subshifts of finite type
	Conjugacy, Embedding and Factorization
	Arithmetical Hierarchy and computability

	Conjugacy
	Factorization
	Factorization is in 03
	Factorization is 03-hard

	Embedding

	48
	Introduction
	(Semi)groups generated by Mealy automata
	Mealy automata
	Automaton (semi)groups

	Basic tools
	Nerode equivalence and minimization of a Mealy automaton
	md-reduction and md-triviality
	Portrait of a word
	Tensor closure

	The semigroup is either free or finite
	Finite connection degree
	Infinite connection degree

	Decidability of finiteness and of freeness

	49
	Introduction
	Undecidability in Two Dimensions
	Undecidability with a Bounded Number of Regions
	Undecidability for Monic Functions
	Decidability and Complexity in One Dimension
	Similar Problems
	Conclusion and Open Problems

	50
	Introduction
	Stable instances
	Metric and Dense instances
	Distinguished and Expanding instances
	Spectral algorithms
	Other related work

	Algorithms for stable instances
	A deterministic algorithm for O(n)-stable instances

	Algorithms for locally stable dense and metric instances
	Dense instances
	Metric instances

	Distinguished and Expanding Instances
	The Spectral approach and the GW algorithm
	Some open problems

	51
	Introduction
	History and related work
	Main ideas of our results

	Notations
	The upper bound
	Preliminaries
	The weight function and the main lemma
	The last common bin is large

	Lower bounds

	52
	Introduction
	Related Work
	Graph Constraints
	Cost Function Constraints
	Submodular Constraints
	Conclusion

	53
	Introduction
	Preliminaries
	Forests
	Automata and regular languages
	Topology
	Ranks and skeletons

	Algebra
	Axioms and free objects
	Recognizability by thin-forest algebra and regularity

	Applications of thin-forest algebra
	Commutative languages
	Languages invariant under bisimulation
	Open languages
	Temporal logic EF

	Descriptive properties
	Automata
	Languages that are WMSO-definable among all forests
	Topological properties

	54
	Introduction
	Description of the core theorem
	Classical definitions
	Weighted matrices and the core theorem

	Proof of the core theorem
	The main induction: the forest factorization theorem of Simon
	Approximate products of sets

	Comparing distance automata
	Distance automata
	Superior limits
	A first reduction: the theorem of affine domination
	The reduction construction

	Conclusion and further remarks

	55
	Introduction
	Background
	Tree-Automatic Structures
	Linear Orderings

	Delhommé's Decomposition Technique
	Augmentations and the Decomposition Theorem
	Indecomposability and Tree-Automatic Ordinals

	Tree-Automatic Linear Orderings
	Finite-Rank Tree-Automatic Linear Orderings
	Finite-Rank Tree-Automatic Structures
	Linear Orderings

	Discussion

	56
	Main steps for the ``realistic'' analysis of a sorting algorithm
	The classical probabilistic model: permutations and arrival times
	General sources
	Coincidence
	Average-case analysis – various models
	Exact formula for the mean number of symbol comparisons
	Asymptotic estimates for the mean number of symbol comparisons
	Tameness of sources

	Summary of our results.
	Summary of the results for Steps 1 and 2
	Summary of the results for Step 3 – the mixed Dirichlet series
	Final step

	57
	Introduction
	Problem definition
	The lower bounds
	The case kn: an information-theoretic lower bound
	The lower bound when k>n

	Optimal upper bounds
	Algorithm

	58
	Introduction
	Preliminaries
	Pebbling
	Entropy Method
	Bitwise-independent Non-deterministic Thrifty BPs

	Lower Bounds for Bitwise-independent Non-deterministic Thrifty BPs
	Lower Bounds for Deterministic BPs Using Entropy Method

	59
	Introduction
	Intuition
	Formal Proof
	Binomial Distribution Tail
	Combinatorial Designs
	Notational Preliminaries
	Proof of Theorem 6
	Distributions Without Dense Models
	Distributions That Cannot Be Covered
	Setting the Parameters
	The Majority of Majorities
	Putting It All Together

	authorindex

