5,092 research outputs found

    ClouNS - A Cloud-native Application Reference Model for Enterprise Architects

    Full text link
    The capability to operate cloud-native applications can generate enormous business growth and value. But enterprise architects should be aware that cloud-native applications are vulnerable to vendor lock-in. We investigated cloud-native application design principles, public cloud service providers, and industrial cloud standards. All results indicate that most cloud service categories seem to foster vendor lock-in situations which might be especially problematic for enterprise architectures. This might sound disillusioning at first. However, we present a reference model for cloud-native applications that relies only on a small subset of well standardized IaaS services. The reference model can be used for codifying cloud technologies. It can guide technology identification, classification, adoption, research and development processes for cloud-native application and for vendor lock-in aware enterprise architecture engineering methodologies

    Folksonomy: the New Way to Serendipity

    Get PDF
    Folksonomy expands the collaborative process by allowing contributors to index content. It rests on three powerful properties: the absence of a prior taxonomy, multi-indexation and the absence of thesaurus. It concerns a more exploratory search than an entry in a search engine. Its original relationship-based structure (the three-way relationship between users, content and tags) means that folksonomy allows various modalities of curious explorations: a cultural exploration and a social exploration. The paper has two goals. Firstly, it tries to draw a general picture of the various folksonomy websites. Secundly, since labelling lacks any standardisation, folksonomies are often under threat of invasion by noise. This paper consequently tries to explore the different possible ways of regulating the self-generated indexation process.taxonomy; indexation; innovation and user-created content

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Application of a Layered Hidden Markov Model in the Detection of Network Attacks

    Get PDF
    Network-based attacks against computer systems are a common and increasing problem. Attackers continue to increase the sophistication and complexity of their attacks with the goal of removing sensitive data or disrupting operations. Attack detection technology works very well for the detection of known attacks using a signature-based intrusion detection system. However, attackers can utilize attacks that are undetectable to those signature-based systems whether they are truly new attacks or modified versions of known attacks. Anomaly-based intrusion detection systems approach the problem of attack detection by detecting when traffic differs from a learned baseline. In the case of this research, the focus was on a relatively new area known as payload anomaly detection. In payload anomaly detection, the system focuses exclusively on the payload of packets and learns the normal contents of those payloads. When a payload\u27s contents differ from the norm, an anomaly is detected and may be a potential attack. A risk with anomaly-based detection mechanisms is they suffer from high false positive rates which reduce their effectiveness. This research built upon previous research in payload anomaly detection by combining multiple techniques of detection in a layered approach. The layers of the system included a high-level navigation layer, a request payload analysis layer, and a request-response analysis layer. The system was tested using the test data provided by some earlier payload anomaly detection systems as well as new data sets. The results of the experiments showed that by combining these layers of detection into a single system, there were higher detection rates and lower false positive rates

    A New Web Search Engine with Learning Hierarchy

    Get PDF
    Most of the existing web search engines (such as Google and Bing) are in the form of keyword-based search. Typically, after the user issues a query with the keywords, the search engine will return a flat list of results. When the query issued by the user is related to a topic, only the keyword matching may not accurately retrieve the whole set of webpages in that topic. On the other hand, there exists another type of search system, particularly in e-Commerce web- sites, where the user can search in the categories of different faceted hierarchies (e.g., product types and price ranges). Is it possible to integrate the two types of search systems and build a web search engine with a topic hierarchy? The main diffculty is how to classify the vast number of webpages on the Internet into the topic hierarchy. In this thesis, we will leverage machine learning techniques to automatically classify webpages into the categories in our hierarchy, and then utilize the classification results to build the new search engine SEE. The experimental results demonstrate that SEE can achieve better search results than the traditional keyword-based search engine in most of the queries, particularly when the query is related to a topic. We also conduct a small-scale usability study which further verifies that SEE is a promising search engine. To further improve SEE, we also propose a new active learning framework with several novel strategies for hierarchical classification

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Web Page Classification and Hierarchy Adaptation

    Get PDF

    Enrichment of ontologies using machine learning and summarization

    Get PDF
    Biomedical ontologies are structured knowledge systems in biomedicine. They play a major role in enabling precise communications in support of healthcare applications, e.g., Electronic Healthcare Records (EHR) systems. Biomedical ontologies are used in many different contexts to facilitate information and knowledge management. The most widely used clinical ontology is the SNOMED CT. Placing a new concept into its proper position in an ontology is a fundamental task in its lifecycle of curation and enrichment. A large biomedical ontology, which typically consists of many tens of thousands of concepts and relationships, can be viewed as a complex network with concepts as nodes and relationships as links. This large-size node-link diagram can easily become overwhelming for humans to understand or work with. Adding concepts is a challenging and time-consuming task that requires domain knowledge and ontology skills. IS-A links (aka subclass links) are the most important relationships of an ontology, enabling the inheritance of other relationships. The position of a concept, represented by its IS-A links to other concepts, determines how accurately it is modeled. Therefore, considering as many parent candidate concepts as possible leads to better modeling of this concept. Traditionally, curators rely on classifiers to place concepts into ontologies. However, this assumes the accurate relationship modeling of the new concept as well as the existing concepts. Since many concepts in existing ontologies, are underspecified in terms of their relationships, the placement by classifiers may be wrong. In cases where the curator does not manually check the automatic placement by classifier programs, concepts may end up in wrong positions in the IS-A hierarchy. A user searching for a concept, without knowing its precise name, would not find it in its expected location. Automated or semi-automated techniques that can place a concept or narrow down the places where to insert it, are highly desirable. Hence, this dissertation is addressing the problem of concept placement by automatically identifying IS-A links and potential parent concepts correctly and effectively for new concepts, with the assistance of two powerful techniques, Machine Learning (ML) and Abstraction Networks (AbNs). Modern neural networks have revolutionized Machine Learning in vision and Natural Language Processing (NLP). They also show great promise for ontology-related tasks, including ontology enrichment, i.e., insertion of new concepts. This dissertation presents research using ML and AbNs to achieve knowledge enrichment of ontologies. Abstraction networks (AbNs), are compact summary networks that preserve a significant amount of the semantics and structure of the underlying ontologies. An Abstraction Network is automatically derived from the ontology itself. It consists of nodes, where each node represents a set of concepts that are similar in their structure and semantics. Various kinds of AbNs have been previously developed by the Structural Analysis of Biomedical Ontologies Center (SABOC) to support the summarization, visualization, and quality assurance (QA) of biomedical ontologies. Two basic kinds of AbNs are the Area Taxonomy and the Partial-area Taxonomy, which have been developed for various biomedical ontologies (e.g., SNOMED CT of SNOMED International and NCIt of the National Cancer Institute). This dissertation presents four enrichment studies of SNOMED CT, utilizing both ML and AbN-based techniques
    • …
    corecore