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ABSTRACT 

ENRICHMENT OF ONTOLOGIES  

USING MACHINE LEARNING AND SUMMARIZATION 

 

by 

Hao Liu 

Biomedical ontologies are structured knowledge systems in biomedicine. They play a 

major role in enabling precise communications in support of healthcare applications, e.g., 

Electronic Healthcare Records (EHR) systems. Biomedical ontologies are used in many 

different contexts to facilitate information and knowledge management. The most widely 

used clinical ontology is the SNOMED CT. Placing a new concept into its proper 

position in an ontology is a fundamental task in its lifecycle of curation and enrichment.   

A large biomedical ontology, which typically consists of many tens of thousands 

of concepts and relationships, can be viewed as a complex network with concepts as 

nodes and relationships as links. This large-size node-link diagram can easily become 

overwhelming for humans to understand or work with. Adding concepts is a challenging 

and time-consuming task that requires domain knowledge and ontology skills. “IS-A 

links” (aka subclass links) are the most important relationships of an ontology, enabling 

the inheritance of other relationships. The position of a concept, represented by its IS-A 

links to other concepts, determines how accurately it is modeled. Therefore, considering 

as many parent candidate concepts as possible leads to better modeling of this concept.  

Traditionally, curators rely on classifiers to place concepts into ontologies. 

However, this assumes the accurate relationship modeling of the new concept as well as 

the existing concepts. Since many concepts in existing ontologies, are underspecified in 

terms of their relationships, the placement by classifiers may be wrong. In cases where 



 
 

the curator does not manually check the automatic placement by classifier programs, 

concepts may end up in wrong positions in the IS-A hierarchy. A user searching for a 

concept, without knowing its precise name, would not find it in its expected location. 

Automated or semi-automated techniques that can place a concept or narrow 

down the places where to insert it, are highly desirable. Hence, this dissertation is 

addressing the problem of concept placement by automatically identifying IS-A links and 

potential parent concepts correctly and effectively for new concepts, with the assistance 

of two powerful techniques, Machine Learning (ML) and Abstraction Networks (AbNs).   

Modern neural networks have revolutionized Machine Learning in vision and 

Natural Language Processing (NLP). They also show great promise for ontology-related 

tasks, including ontology enrichment, i.e., insertion of new concepts. This dissertation 

presents research using ML and AbNs to achieve knowledge enrichment of ontologies. 

Abstraction networks (AbNs), are compact summary networks that preserve a 

significant amount of the semantics and structure of the underlying ontologies. An 

Abstraction Network is automatically derived from the ontology itself. It consists of 

“nodes,” where each node represents a set of concepts that are similar in their structure 

and semantics. Various kinds of AbNs have been previously developed by the Structural 

Analysis of Biomedical Ontologies Center (SABOC) to support the summarization, 

visualization, and quality assurance (QA) of biomedical ontologies. Two basic kinds of 

AbNs are the Area Taxonomy and the Partial-area Taxonomy, which have been 

developed for various biomedical ontologies (e.g., SNOMED CT of SNOMED 

International and NCIt of the National Cancer Institute). This dissertation presents four 

enrichment studies of SNOMED CT, utilizing both ML and AbN-based techniques. 
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1 

CHAPTER 1  

INTRODUCTION 

 

1.1 Motivation 

Biomedical ontologies are structured and organized knowledge systems within the domain 

of biomedicine. They play a major role in enabling precise communications and in support 

of healthcare applications, e.g., Electronic Healthcare Records (EHR) systems [1-3]. 

Biomedical ontologies are used in many different contexts to facilitate information 

utilization [4] and knowledge management [5]. For example, the Chemical Entities of 

Biological Interest (ChEBI) ontology [6] is a large important knowledge source that 

facilitates reference to chemical entities within the biological field. It annotates small 

distinguishable entities such as atoms, ions, and polymers and their relationships to each 

other. 

Knowledge in ontologies is represented as concepts and relationships. A concept 

represents a unique entity while a relationship represents a connection between two 

entities. Relationships can be further categorized into hierarchical relationships (e.g., x IS-

A y, or x is a SUBCLASS of y) and lateral relationships (i.e., non-hierarchical 

connections). The hierarchical IS-A relationship between two concepts represents the fact 

that one concept is a specialization of the other concept. For example, within ChEBI, the 

concept Ionic Polymer has an IS-A relationship to the concept Polymer because ionic 

polymer is a specialization of polymer. A lateral relationship represents a semantic 

connection between two concepts, for example, the concept Vitamin E has a has role 

relationship to the concept Fat-soluble vitamin because Vitamin E dissolves in fats and is 

stored in body tissues.  
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The NCBO BioPortal [7] is the largest existing repository of biomedical ontologies 

that hosts 837 ontologies (as of January 2020), covering more than 11,193,698 classes 

(concepts). This dissertation focuses on large biomedical ontologies, which typically have 

complex network structures consisting of many thousands of concepts and relationships. 

For example, the National Cancer Institute Thesaurus (NCIt) [8], serving cancer 

researchers inside and outside of National Institutes of Health (NIH), contains 156,172 

concepts interrelated by more than 480,141 relationships in the February 2020 release.  

Placing a new concept into its proper position in the hierarchy of an ontology is a 

fundamental task in the lifecycle of curation and enrichment of an ontology. It is a 

challenging and time-consuming task as it requires both domain knowledge and ontology 

skills. IS-A links and concepts form the backbone structure of an ontology, enabling the 

inheritance of lateral relationships. The position of a concept, represented by its IS-A 

relationships to other concepts, determines how accurately it is modeled in terms of 

granularity. Therefore, considering as many related parent candidate concepts as possible 

leads to a more comprehensive modeling of this concept. Traditionally, curators rely on 

classifiers such as Snorocket [9] or HermiT [10] to place concepts into ontologies based on 

a Description Logic. However, this approach relies on the relationship modeling of the new 

concept as well as the relationship modeling of existing concepts. Since many concepts in 

a Description Logic ontology, like SNOMED CT [11], are underspecified in terms of their 

relationships, the placement by classifiers may be wrong. In cases where the curator does 

not manually check the automatic placement by classifiers, concepts may end up in wrong 

positions in the hierarchy. Hence, a user searching for such a concept, without knowing its 

name in SNOMED, would not find it in its expected location. Thus, a machine learning 
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model that automatically identifies a set of candidate parent concepts for a new concept 

can assist curators to improve the accuracy of placement of a new concept in the process 

of ontology curation.  

Automated or semi-automated techniques that can help in placing a concept or 

narrow down the places where to insert it, are highly desirable. Hence, this dissertation is 

trying to address the challenges of concept placement by automatically identifying sets of 

potential parent concepts correctly and effectively for any new concepts, with the 

assistance of two powerful techniques, i.e., Machine Learning (ML) and Abstraction 

Networks (AbNs).  

Machine Learning (ML) has been proven successful in many fields, e.g., Natural 

Language Processing (NLP) for knowledge mining. Some ML models were previously 

used in knowledge enrichment for ontologies [12-14]. Knowledge enrichment mines 

external sources for new knowledge that does not exist in the ontology. This dissertation 

presents experiments with using several ML and NLP models to address the tasks of 

knowledge enrichment of biomedical ontologies. 

Abstraction networks (AbNs), are compact summary networks that preserve a 

significant amount of the semantics and structure of the underlying ontologies. An 

Abstraction Network is automatically derived from the ontology itself. It consists of 

“nodes,” where each node represents a set of concepts that are similar in their structure and 

semantics. Various kinds of Abstraction Networks (AbNs) have been previously developed 

by the Structural Analysis of Biomedical Ontologies Center (SABOC) [15] to support the 

summarization, visualization and quality assurance (QA) of biomedical ontologies [16]. 

Two basic kinds of AbNs are the area taxonomy and the partial-area taxonomy, which have 



4 

been derived for various biomedical ontologies (e.g., SNOMED CT [17] and NCIt [18]).  

To extend the applicability of existing AbNs and show the effectiveness of ML-

based techniques for enrichment of biomedical ontologies, this dissertation presents five 

enrichment studies on SNOMED CT, utilizing both ML and AbN-based techniques. 

 

1.2 Dissertation Overview 

Chapter 2 provides background information on biomedical ontologies used in this 

dissertation, i.e., SNOMED CT. Chapter 2 also introduces the Abstraction Networks for 

biomedical ontologies developed by the SABOC team, and the previous enrichment studies 

of biomedical ontologies based on these Abstraction Networks. In addition, the ML 

techniques used for ontology enrichment in this dissertation are discussed. 

Chapter 3 presents a study of employing Convolutional Neural Networks (CNNs) 

to support knowledge enrichment of SNOMED CT. In this study, a CNN model is trained 

to predict the placement of new concepts into SNOMED CT. This study employs a 

vectorization technique to map each concept into a vector representation. 

Chapter 4 reports a study extending the CNN model used in Chapter 3 with one 

type of Abstraction Networks for the enrichment of SNOMED CT’s Clinical Finding 

hierarchy. The results confirmed that the CNN model trained with data prepared by 

Abstraction Networks performed better than the model trained with randomly selected 

training data. This study shows that ML can benefit from using AbNs to obtain a better 

relationship classification model for biomedical ontologies. 

Chapter 5 describes a study which employs a model from an NLP framework to 

address the enrichment task of biomedical ontologies. Using SNOMED CT’s Clinical 
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Finding and Specimen hierarchies as testbeds, a language representation model, called 

Bidirectional Encoder Representations from Transformers (BERT), was used for the 

identification of IS-A relationships for newly added concepts. Utilizing the “next sentence 

prediction” capability of BERT, this study shows that the Fine-tuning strategy of Transfer 

Learning (TL) from the BERT model can support automatic terminology enrichment – 

namely insertion of new concepts at the correct locations. 

Chapter 6 reports on a study that further improves the performance of the BERT 

model in Chapter 5. This study combines these two improvements: 1) utilizing ontology 

Abstraction Networks together with the BERT model; 2) an improved presentation of the 

training data. These two approaches further improve the model’s recall on relationship 

classifications. 

Chapter 7 reports on a study that introduces a similarity-based algorithm to identify 

parent(s) for a new concept. The algorithm utilizes a similarity score of concept level 

embeddings to identify proper candidate parents and two rules to filter out improper 

parents. The results show that this approach can assist curators with the tasks of ontology 

versioning. 

Chapter 8 describes ideas for future work and Chapter 9 concludes this dissertation. 

The studies in this dissertation have been accepted by related conferences on biomedical 

informatics. The study in Chapter 3 was published in the American Medical Informatics 

Association (AMIA) 2018 Annual Symposium proceedings. The studies in Chapter 4 and 

in Chapter 5 were published in the AMIA 2019 Annual Symposium proceedings. 
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CHAPTER 2  

BACKGROUND 

 

2.1 Biomedical Ontologies 

Biomedical ontologies are helpful in providing a structured knowledge framework to 

support enhanced information encoding and interoperability in healthcare systems. They 

have been widely used to facilitate research in the domain of biomedical informatics, 

including for natural language processing (NLP) tasks, e.g., entity relationship retrieval 

[19, 20], knowledge mining/enrichment [21-23], and other applications [24-26]. This 

section will introduce several important and large biomedical ontologies relevant to this 

dissertation. In general, in this dissertation, ontologies and terminologies will be referred 

to by the common term “ontologies.” When referring to a specific ontology or terminology 

the appropriate term will be used as preferred by its curators (e.g., SNOMED CT 

terminology, NCIt ontology). 

2.1.1 SNOMED CT  

SNOMED CT (SNOMED Clinical Terms) [27] is a comprehensive and widely used 

clinical healthcare terminology, covering many subdomains of medicine and healthcare. It 

is utilized to represent and share clinical information accurately and consistently in 

Electronic Health Records (EHRs), thus facilitating the interfacing between different 

healthcare organizations and different systems in the same organization. SNOMED 

International, formerly the International Health Terminology Standards Development 

Organization (IHTSDO), oversees the maintenance, development, quality assurance, and 

distribution of SNOMED CT. Twice a year (in January and July), SNOMED International 
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releases a new version of the SNOMED CT International Edition. The two essential 

components of SNOMED CT are concepts and the relationships connecting those concepts. 

Under the root concept of SNOMED CT there are 19 disjoint hierarchies of concepts, 

connected to the root by IS-A relationships. Examples of hierarchies include Clinical 

finding, Procedure, and Specimen.  

There are two types of relationships to provide formal definitions of concepts. One 

type is the IS-A relationship, connecting a concept to a more general concept in the same 

hierarchy. The more general concept is called the parent of the more specific concept, while 

the more specific concept is the child concept. Every concept (with one exception, the root 

of the ontology) has at least one parent concept, but it may have several parents. The other 

type of relationship is called “attribute relationship.” Attribute relationships, which are 

“lateral relationships,” define characteristics of concepts. For example, the attribute 

relationship Causative Agent connects the concept Bacterial cellulitis to the bacteria 

causing it, such as Superkingdom Bacteria.  

SNOMED CT’s 2018 January release contains 341,105 active concepts connected 

by 511,766 IS-A links. Furthermore, there are 550,308 attribute relationships between pairs 

of concepts. The Clinical finding hierarchy and the Procedure hierarchy, two of the largest 

hierarches in SNOMED CT, consist of 111,081 concepts (33%) and 57,806 concepts 

(17%), respectively. The Infectious disease subhierarchy and the Congenital disease 

subhierarchy of the Clinical finding hierarchy are comprised of 6,681 and 8,126 concepts, 

respectively.  

SNOMED CT is primarily released in its own RF2 format as a set of tab-delimited 

text files for its different components including individual files for concepts and 
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relationships. For relationships, there are two different files. One is for stated relationships, 

which are explicitly entered by SNOMED CT curators/editors. The other one is for inferred 

relationships, which are obtained by running a classifier program on the stated 

relationships. This dissertation focuses on the inferred view including both kinds of 

relationships. Each RF2 release also provides ‘delta’ files to record the changes since the 

previous release. According to the SNOMED CT release notes in July 2015 and January 

2016, revisions of the Infectious disease and the Congenital disease subhierarchies were 

initiated to detect and resolve their modeling inconsistencies brought up by external 

reviewers.  

Figure 2.1 shows an excerpt of 15 concepts from the Specimen hierarchy with 1,620 

concepts. The concept Tissue specimen from digestive system has two parents Specimen 

from digestive system and Body substance sample. The dashed green box summarizes three 

specimen concepts that share the same lateral relationship Specimen source topography. 

For example, the concept Specimen from liver has a lateral relationship Specimen source 

topography linking it to Liver structure (not shown in the diagram). 

 

Figure 2.1 Excerpt of 15 concepts from the Specimen hierarchy of SNOMED CT. 

Concepts, represented by boxes with rounded corners, are connected by IS-A relationships 

shown as upward arrows. 
Source: [28] 
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Extensive research has been conducted on SNOMED CT’s content quality. 

Ceusters et al. [29] applied two algorithms to SNOMED CT and found several kinds of 

errors like improper assignment of IS-A relationships and attribute relationships. Ceusters 

[30] also utilized the Evolutionary Terminology Auditing technique to analyze 18 

SNOMED CT releases and the results recommended explicitly documenting changes in 

SNOMED CT. Zhang and Bodenreider [31] demonstrated the Lattice-based Structural 

Auditing method for the quality assurance of SNOMED CT. Elhanan et al. [32] performed 

a user survey showing that direct users (working with SNOMED CT, as opposed to 

working with a tool that has SNOMED CT as a backend database) have a strong desire for 

an improved quality of SNOMED CT. Agrawal et al. [33] used a lexical approach to 

identify problematic concepts in SNOMED CT. Several Abstraction Network-based 

studies [34, 35] investigated the quality of different hierarchies in SNOMED CT. The 

journal special issue on auditing of terminologies [36] provides a summary of publications 

on terminology auditing and in particular on auditing of SNOMED CT [37].  

 

 

2.2 Abstraction Networks for Biomedical Ontologies 

Knowledge in large biomedical ontologies is beyond humans’ comprehension ability; 

summarization or abstraction can help with this issue. In order to facilitate the 

comprehension of the complex content in biomedical ontologies, in a long range research 

program, the SABOC team [38] has developed an Abstraction Network-based framework 

to support the summarization and visualization of biomedical ontologies. An Abstraction 

Network (AbN) of an ontology is a compact summary network consisting of “nodes,” each 

representing a set of concepts that are similar in their structure and semantics. Nodes are 
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connected by hierarchical child-of links that are derived from the IS-A relationships in the 

ontology.  

The definition of “similar” depends on an ontology’s structural characteristics and 

is not the same for all ontologies, hence there are various types of Abstraction Networks. 

For example, the SABOC team has developed the area taxonomies and partial-area 

taxonomies [17, 18, 39] for the National Cancer Institute thesaurus (NCIt) [8], SNOMED 

CT [40], and the Gene Ontology [41]. Furthermore, the disjoint partial-area taxonomies 

[42] and the tribal abstraction networks [43] have been designed for SNOMED CT. 

Besides, they have introduced the domain-defined partial-area taxonomy [44, 45] for the 

Ontology of Clinical Research (OCRe) [46] and the Cancer Chemoprevention Ontology 

(CanCo) [47], the restriction-defined partial-area taxonomy [48] for the Sleep Domain 

Ontology (SDO) [49], and the domain-defined and restriction-defined partial-area 

taxonomies [50] for the Drug Discovery Investigations Ontology [51]. An extensive review 

of Abstraction Networks has been presented by Halper et al. [16]. The Ontology 

Abstraction Framework (OAF) created by Ochs et al. [52] is an open source software 

system and tool for deriving Abstraction Networks, which is available at 

http://saboc.njit.edu/. The following sections will describe the Abstraction Networks 

associated with this dissertation using as example neoplasm concepts from NCIt. 

2.2.1 Area Taxonomy  

Area Taxonomies were introduced by Min et al. [18] to achieve summarization of large 

ontologies. Ontology concepts with exactly the same set of lateral (i.e., non-IS-A) 

relationship types are grouped into an area. Areas, considered as nodes, are connected via 

child-of hierarchical links to form a network, called an Area Taxonomy, since it has only 
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hierarchical relationships. Figure 2.2 illustrates the derivation of an Area Taxonomy. 

Figure 2.2(a) shows an excerpt of 14 concepts from SNOMED CT’s Clinical Finding 

hierarchy, drawn as labeled ovals. A dashed rectangle contains a set of concepts each of 

which has exactly the same lateral relationship type(s). The list of relationship types for 

the concepts in each dashed rectangle appears in bold. The arrows denote IS-A links. 

Lateral relationships are inherited down along the IS-A links between concepts.  

Figure 2.2(b) shows the Area Taxonomy for the excerpt of the subhierarchy in 

Figure 2.2(a). All colored dashed rectangles are represented as “nodes,” (shown as colored 

rectangles), which are connected by hierarchical child-of links (drawn as bold arrows) that 

are derived from the IS-A relationships in the ontology. The list of the relationship types 

of an area is used as its name (in bold). For example, because Bradyarrhythmia and 

Diastolic heart failure (and two other concepts) in Figure 2.2(a) all have the same lateral 

relationship types, Finding site and Has definitional manifestation, they are grouped 

together as area node (represented as a green rectangle) in Figure 2.2(b).  

Areas shown at the same level are displayed in the same color, indicating that all 

of their concepts have the same number of lateral relationship types. For example, the areas 

{Finding site, Occurrence} and {Finding site, Has definitional manifestation} appear in 

the second level in green. The concept Heart disease and its descendants in the grey 

rectangle in Figure 2.2(a) are represented by the area {Finding site} in Figure 2.2(b). 

Similarly, the concept Neonatal bradycardia and the concept Fetal bradycardia are 

represented by the red area {Finding site, Has definitional manifestation, Occurrence} in 

level 3. Areas inherit relationships along the hierarchical child-of links. For example, the 

red area inherits its relationships from both green areas. 
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Figure 2.2 Derivation of Area Taxonomy. (a) Excerpt of a subhierarchy of 14 concepts 

from SNOMED CT’s Clinical Finding hierarchy. (b) Area Taxonomy for the excerpt 

subhierarchy in (a). 

 

 

2.3 Enrichment of Biomedical Ontologies 

Ontology enrichment [53] plays a critical role in the life cycle of an ontology. It is a process 

to periodically extend a terminology with the evolvement of domain knowledge by adding 

new concepts, relationships, axioms and rules. Early terminology enrichment relied on 

advances in the NLP field, with their enrichment processes being based on linguistic 

analysis of domain specific corpora, exploiting syntactic relations to identify new concepts, 

and extracting hierarchical and non-hierarchical relations and rules [53, 54]. With the 

success of Neural Networks and Deep Learning in the NLP field, recent work on 

terminology enrichment has mainly focused on deriving high-quality word embeddings for 

terminology Machine Learning (ML) techniques for concepts from large corpora. Pembeci 

et al. [14] proposed to use concept similarity scores computed via Word2vec models to 
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discover related concepts as a domain-independent enrichment framework. Jayawardana 

et al. used word vector embeddings to derive candidate vectors and then trained an SVM 

model to calculate representative vectors for concepts [55].  

This dissertation focuses on the task of placing a list of new concepts into their 

proper positions in an ontology. Moreover, the enrichment of adding a new concept implies 

adding of new hierarchical IS-A relationships required to connect this new concept to its 

parent(s) in order to place it in the proper position. The evaluation of ontology enrichment 

results is time-consuming, because the ontology curators need to manually review the 

added concepts and relationships. Zhang et al. [56] and Ceusters [30] used the differences 

between two consecutive releases of SNOMED CT [25] to test the performance of a 

terminology quality assurance technique. Similarly, evaluation of the enrichment results 

can be automated by comparing two consecutive releases of ontologies, referred to as old 

release and new release, respectively. The placements of new concepts in the new release 

of an ontology (done by the curators of the ontology) are used as gold standards for 

algorithmic placement of those same concepts. To test how many new concepts are 

properly positioned by a proposed technique, the equivalent problem is investigated: how 

many of the new concepts’ IS-A relationships to their parents can be found by the proposed 

technique, with knowledge of only the old release.  

 

 

2.4 Machine Learning Techniques 

Natural Language Processing and Deep Learning are two fields that have attracted 

increasing research interest from both academia and industry. This dissertation proposes 

the combination of applying both NLP and deep learning techniques to the specific areas 

of ontology enrichment and quality assurance. 
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Distributed representations of words/phrases rely on the co-occurrence information 

between words obtained from large corpora of text. This assumes that words with similar 

or related meanings tend to occur in similar contexts. In the biomedical domain, this 

approach has been adopted to assist with various NLP tasks such as defining similarity and 

relatedness measures between clinical terms [57], word sense disambiguation [58], and 

entity linking by mapping text to concepts [59]. Most of these tasks have been studied with 

clinical records or biomedical knowledge bases, e.g., the Unified Medical Language 

System.  

As most of the ML algorithms require the input in numeric format, vectorization of 

biomedical ontology data as fixed-length feature vectors is necessary before feeding the 

data into downstream ML algorithms or models. Word2vec, originally proposed by 

Mikolov et al. [60], is an efficient technique for learning high-quality word-wise 

distributed vector representations, while capturing syntactic and semantic word 

relationships from large corpora of general English text.  

Figure 2.3 illustrates an example of using context words (“the,” “cat,” and “sat”) to 

predict the fourth word (“on”). In applying this method to biomedical text in the 

OHSUMED corpus (a collection of 348,566 biomedical research articles) [61], Word2vec 

has also been shown as a successful vectorization method for tasks such as grouping similar 

medical concepts [62]. In this research, Paragraph Vector (Doc2vec) [63], an extension of 

Word2vec to the paragraph or document level, is employed and its applicability tested with 

biomedical data.  
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Figure 2.3 A framework for learning word vectors. Context of three words (“the,” “cat,” 

and “sat”) is used to predict the fourth word (“on”). The input words are mapped to columns 

of the matrix W to predict the output word. 
Source: [63] 

Deep Learning [64] has been successfully applied in many fields, such as computer 

vision [65] and speech recognition [66]. Convolutional Neural Networks (CNNs) as one 

basic and popular type of deep learning model, have been extensively studied and used for 

various applications including image recognition, semantic parsing, search query retrieval, 

sentence modeling, classification, prediction and other traditional NLP tasks. CNNs utilize 

layers with convolving filters that are applied to local features [67], which serve as input 

to trainable classifiers for prediction tasks. This dissertation focusses on using CNNs as the 

downstream model to solve ontology related classification and prediction problems that are 

essential to ontology enrichment and quality assurance. 

2.4.1 Paragraph Vector (Doc2vec) 

Numeric representation of variable-length texts, ranging from sentences to documents is a 

challenging task. Doc2vec, (Paragraph Vectors) [63], an extension of Word2vec (word 

embedding) [60], maps variable-length texts to fixed-length vectors. It is an unsupervised 
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framework that learns continuous distributed vector representations from unlabeled text 

data of a paragraph/document, while preserving the inter-relationships within the text in a 

numeric format. In such vector representations, similar pieces of text are close to each other 

in Euclidean or cosine distance in lower dimensional vector spaces.  

The Doc2vec representation inherits the semantics of the words in the context and 

takes the word order into consideration when constructing the representation. The latter is 

important to some hierarchy-related ontology problems, in which the concept order 

expresses a concept’s topological/hierarchical position in the ontology. This is useful 

information for feature learning. An intensive literature search did not turn up any 

publications that uses Doc2vec to derive vector representations for biomedical ontology 

concepts. 

The Distributed Memory Model of Paragraph Vectors (PV-DM) and the 

Distributed Bag of Words version of Paragraph Vectors (PV-DBOW) are two models 

introduced [63] to derive vectors for paragraphs (or documents, if working at the document 

level).  Before training, words in the texts are mapped to unique vectors using Word2vec 

and every paragraph is also mapped to a unique vector. At every step of the training, a 

fixed-length context is sampled from a random paragraph and used to compute the error 

gradient in order to update the parameters in the model. In the PV-DM model, the 

processing involves sliding a window over a paragraph so that the order of words is taken 

into consideration. Then, the paragraph vector is concatenated with the word vectors to 

predict the next word in a context. For example, in Figure 2.4, the PV-DM model 

concatenates this paragraph vector with a context representation of three words “the,” 

“cat,” and “sat” to predict the fourth word “on.” The paragraph vector is used to represent 
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the missing information from the current context; thus it can be viewed as a memory of the 

topic of the paragraph.  

 
Figure 2.4 A framework for learning paragraph vector. This framework is similar to the 

framework presented in Figure 2.3; the only change is the additional paragraph token that 

is mapped to a vector via matrix D. 
Source: [63] 

In the PV-DBOW model, instead of using a sliding window, words in the context 

window are randomly sampled from paragraph texts. Then the model is trained to predict 

words randomly picked from the paragraph, which is analog to the Bag of Words version 

of Word2vec. According to Le et al. [63], paragraph vectors are shared for all contexts 

generated from the same paragraph, but not across paragraphs. In contrast, word vectors 

are shared across all paragraphs.  

2.4.2 Convolutional Neural Networks 

A Convolutional Neural Network (CNN) resembles a connectivity pattern between neurons 

in the human brain. A CNN is typically composed of an input layer, multiple hidden layers 

and an output layer. The hidden layers typically include convolutional layers, pooling 

layers, and fully-connected layers. A nonlinear function is calculated inside each neuron of 

every layer. The loss function is used in evaluating the performance of a classification 
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model. Some optimization methods are employed to minimize the loss function. Dropout 

is a popular technique to prevent the network from overfitting.  

Figure 2.5 illustrates a typical CNN architecture for a toy image classification task.  

 
Figure 2.5 CNN image classification pipeline. 
Source: [68] 

Convolutional layer. The convolution operation is used between two consecutive 

layers in a CNN. The input to the operation is a set of feature maps, which can be the 

numeric representation of the raw input data or convolved feature maps from the previous 

convolutional layer. The element that carries out the convolution operation on the feature 

maps is called filter (or kernel). Filters share the same size but are initialized with different 

weight so that different features can be extracted at each location [64, 67]. A  filter’s size 

represents its receptive field, which is connected to a neighborhood of neurons in the 

previous layer via a set of trainable weights [64]. A filter traverses a fixed length defined 

by the stride parameter, till the entire input is scanned. As the filter slides over the input, it 

convolves the input values by multiplying the filter’s weights with its receptive field. The 

convolved results are sent through a nonlinear activation function to compute the new 

feature map. Stacking the feature maps for all filters along the depth dimension forms the 

full output of the convolutional layer.  
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Figure 2.6 demonstrates a concrete example of the convolution operation. The input 

feature map is of size width=5, height=5, and depth=3, as shown in blue. The output is of 

size width=3, height=3, and depth=2 (same as the number of filters), as shown in green. 

The parameters for this convolutional layer are Filters=2, Stride=2, and Padding=1. W0 

and W1 are the two filters, each with size width=3, height=3, and depth=3, as shown in red.  

Stride=2 means that a filter will slide two features (i.e., move by two positions) 

each time. The input feature map is padded with zeroes at both ends. By setting Padding=1, 

the width of the padding is one feature at each end, in both dimensions. In Figure 2.6 (a), 

filter W0 (red) performed the convolution by elementwise multiplying its weights with the 

receptive field of the input, highlighted in blue. Thus, 9 grey/blue values are multiplied 

with the corresponding 9 red values and then summed up. This happens independently for 

every depth value. For example, for the first step, 0 * -1 + 0 * 0 + 0 * 0 + 0 * 1 + 1 * -1 + 

1 * 0 + 0 * 0 + 0 * -1 + 1 * 1 = -1 + 1 = 0. 

As the depth=3, the results of summing three elementwise multiplications were 0 

(as shown in the previous paragraph), 1, and -3, respectively. By summing these three 

numbers and offsetting by adding the Bias b0=1, the corresponding first unit (first row, 

first column) in the output feature map is -1 (highlighted in green). Filter W0 then slides 

over by two features, as shown in Figure 2.6 (b), to repeat the convolution. By summing 

the elementwise multiplications, the results were -2, 3, and -3. After offsetting by b0=1, 

the obtained the second unit (first row, second column) is -1 (highlighted in green). This 

process was repeated until Filter W0 sild over the entire input, so that the first layer of the 

new feature map was fully generated (the top green matrix) in the output. Similarly, sliding 
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Filter W1 over the input generated the second layer of the new feature map (the bottom 

green matrix) in the output.  
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Figure 2.6 Convolution operation on a 5x5x3 input with two 3x3x3 filters with Padding=1 

and Stride=2. (a) Filter W0 performs element wise multiplications with the input receptive 

fields. The results are summed and offset with Bias b0 to get -1 as the first unit of output. 

(b) Filter W0 slides 2 features and perform the convolution to get -1 as the second unit of 

the output.  
Source: [69] 
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Pooling layer. The pooling layer is used to pick out the salient values from a local 

patch of units. It can reduce the spatial resolution of the feature maps and thus achieve 

spatial invariance to input distortions and translations [67, 70-72]. Common pooling 

techniques including max pooling, average pooling and L2-norm pooling. The max pooling 

operation is most used, which selects the max value in a local patch of units and then the 

local patch shifts a step with the stride size. Figure 2.7 illustrates the difference between 

max pooling and average pooling. 

 
Figure 2.7 Average versus max pooling. 
Source: [68] 

Fully-connected layer. The fully-connected layer connects all units in the previous 

layer to all units in the next layer. In a fully-connected layer, the number of units in the 

next layer is required to be set as a hyperparameter (a parameter whose value is set before 

the learning process begins). Every entry in the output volume can be interpreted as an 

output of a neuron that looks at a small region in the input and shares parameters with 

neurons in the same filter bank. The fully-connected layers interpret these feature 

representations and perform the function of high-level reasoning [73-75]. For classification 

problems, it is standard to use the softmax operator on top of a CNN [65, 74-78]. The 
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softmax function is used to squash the output from fully-connected layer into normalized 

positive values (each value is between zero and one) that sum to one, which can be 

interpreted as the (normalized) probability assigned to all classes.  

Nonlinear function. In a neural network, the common ways to model a neuron’s 

output vector f as a function of its input vector z are with tanh, sigmoid, or Rectified Linear 

Unit (ReLU) [79]. Figure 2.8 shows examples of sigmoid and ReLU functions. ReLU 

outperforms the other two with its simple form (f(x) = max(0, z)) for its fast convergence 

of stochastic gradient descent.  

 
Figure 2.8 Logistic Sigmoid and ReLU functions. 

Loss function. A loss function is used to evaluate how labels derived by the current 

classification model deviate from the corresponding true labels. The loss function is usually 

composed of two parts, the variance between the estimated labels and true labels, and the 

regularization. Regularization is usually used to prevent the model from fitting the noise of 

the training data by adding a penalty on the different parameters of the model. It helps to 

reduce the freedom of the model to improve the generalization abilities of the model. The 

loss L is shown in the Formula 2-1. 

L = V + λ · R (2-1) 
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where V denotes the variance and R is the regularization value. λ is the weight decay 

determining how much the regularization affects the final loss. Two widely used 

regularization techniques are Lasso Regression (L1) and Ridge Regression (L2) [80].  

Dropout. Dropout is frequently used to reduce overfitting. At each training stage, 

individual neurons are either "dropped out" of the network with probability 1-p or kept 

with probability p. The incoming and outgoing edges to a dropped-out neuron are “turned 

off.” Only the reduced network is trained with the data in that stage. In the next training 

iteration, the dropped-out neurons are then “turned on” again with their original weights. 

CNN utilizes convolving filters to automatically learn and extract local features 

from various layers, regardless of the input size. This makes CNN a very powerful tool for 

classification or prediction tasks, e.g., text classification [81] and relation extraction [82], 

even if the data or features have not been manually labeled for learning purposes.  

2.4.3 BERT  

For the language representation model, there are two main research streams: Context-free 

and Contextual representations. Traditional word embeddings such as word2vec [83], 

GloVe [84], or fastText [85], are Context-free embeddings, which generate a single “word 

embedding” representation for each token in the vocabulary. Therefore, they are not likely 

to capture any word meaning changes caused by surrounding context changes. Contextual 

models, instead, generate a representation of each word that is based on the other words in 

the context. Contextual representations can further be categorized into unidirectional or 

bidirectional.  

BERT is the first unsupervised, deeply bidirectional system that outperforms 

previous methods [86]. BERT’s model architecture is a multi-layer bidirectional 
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transformer encoder, based on the original implementation proposed by Vaswani et al. [87]. 

Figure 2.9 shows the overall structure of BERT with a sequence of words (e.g., sentences 

with multiple words) as input. Each word in the input is transformed to a word/token vector, 

adding a position vector (e.g., a word’s index in a sentence) and a segment vector (e.g., 

index of the sentence that a word is in). The input vectors obtained this way are embedded 

with representations of words and the relationships between words. The input vectors then 

go through a network of transformers. As opposed to directional models, in which 

transformers are connected sequentially (either left-to-right or right-to-left), BERT’s 

transformers are fully-connected (non-directional) so that it can read the entire sequence of 

words at once. This characteristic allows BERT to learn the context of a word including all 

of its surroundings (all other words in the sentence, even across sentences, based on 

allowed input length).  
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Figure 2.9 Overall structure of BERT, enabling context sensitive word representations. 
Source: [88] 

An example of BERT’s input representation of two sentences of “Serum total T3 

level” and “Excision of Reinke's edema using laser” is shown in Figure 2.10. These two 

sentences are tokenized (following initial basic tokenization — converting all tokens to 
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lower case, punctuation split ) to “[CLS] serum total [MASK] ##3 level [SEP] ex [MASK] 

of rein ##ke ' s ed ##ema [MASK] laser [SEP]”. 

This sequence of tokens is further mapped to three components that are token 

embeddings, segment embeddings and position embeddings. Token embeddings are 

general word embeddings, which use vectors to represent tokens (or words). For example, 

the embedding index for token “serum” is 20194.  

Segment embeddings are used when there are multiple sentences. For instance, if 

the input includes two sentences A and B, then tokens from sentence A will be assigned 

EA as its corresponding sentence embeddings while tokens from sentence B will be 

assigned EB. If the input only includes one sentence, only one sentence embeddings will 

be used. For instance, the segment id for “serum” is 0 while the segment id for “laser” is 1.  

Position embeddings represent the token sequence of the input. The position for 

tokens will be accumulated regardless the number of sentences. For example, the position 

for masked token “T” is 3. “CLS” (embedding index 101) is the reserved token to represent 

the start of sequence while “SEP” (embedding index 102) separate segment (or sentence). 

The embedding index for [MASK] is 103. Note that token embeddings are randomly 

initialized into a vector with a length of 768 by default if a BERT model is trained from 

scratch. More detail of these three component are explained in [87]. 
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Figure 2.10 An example of BERT input representation for two concepts of “Serum total 

T3 level” and “Excision of Reinke's edema using  laser.” 

A transformer is an element for transforming one sequence into another one using 

an Encoder module and a Decoder module [89] (Figure 2.11). The Encoder module is on 

the left and connected to the Decoder module, which is on the right. Both Encoder module 

and Decoder module consist of multiple identical encoders and decoders stacked on top of 

each other, which is denoted by “Nx” in Figure 2.11. The number of encoder and decoder 

units is a hyperparameter that can be changed. An encoder consists of two components:   

Multi-Head Attention and Feed Forward Neural Network.  

The input sequences are first embedded into an n-dimensional vector space, then 

the embedded input flows through the encoder’s self-attention layer. In this process, the 

encoder encodes each specific unit (e.g., a word or token) while considering other units in 

the input sequence. 

Multi-Head Attention is concatenated from multiple self-attention heads (explained 

later). If a transformer uses eight self-attention heads, it contains eight sets for each 

encoder/decoder. The Feed Forward Neural Network consists of two linear 

transformations (multiply with a weight and add a bias) with a ReLU activation in between. 

While the linear transformations are the same across different positions, the weights and 

biases are different from layer to layer.  
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The decoder has the same two components as the encoder, with an extra Masked 

Multi-Head Attention component. Masking is used to hide some words from the input 

sequence so that the model is trained to predict the masked words, using non-masked words. 

This helps the decoder focus on the parts of the input sequence that are most relevant to 

the masked words. 

 

 
Figure 2.11 The Transformer – model architecture.  
Source: [87] 
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Each of the transformers is implemented with an attention mechanism, that is, to 

obtain a word’s transformed representation in the output, how much attention it should pay 

to each word (including itself) in the input. A single self-attention module is demonstrated 

in Figure 2.12 with an input of “The dog ran away.” For each of the word vectors, a (key, 

query, value) triple representation is computed using simple matrix multiplication with 

Query/Key/Value weight matrices. Each of these matrices is randomly initialized. After 

training, they are used to calculate the attention for each input embedding (or vectors from 

lower encoders/decoders). For example, the amount of attention that the word-to-be-

transformed “ran” should pay to each word (including itself), is computed by the scaled 

dot product of the query vector (q3) of this word with the key vectors (ki, where i = 1 … 4) 

of the other words. 

The query vector q3 for “ran” is multiplied with k1, k2, k3, and k4 to get 64, 96, 112, 

and 80, respectively. Then these numbers are scaled by dividing them by 8, which is the 

square root of the matrix dimension of the key vectors (64, as used in [87] ), to get 8, 12, 

14, and 10. A softmax function is applied to these scaled numbers to obtain weights (0.002, 

0.117, 0.865, and 0.016, which add to 1.0) for each corresponding word. The resultant 

weights determine how much each word will be expressed at this position. It is clear that 

the word “ran” at this position will have the highest softmax weight 0.865, and it is also 

useful to attend to any other word that might be relevant to the current word, such as the 

subject word “dog” with the weight 0.117. The output vector of this word “ran” is based 

on the weighted sum of value vectors (vi, where i = 1 … 4) of all words, where the weights 

are the softmax-normalized dot products (Si, where i = 1 … 4) of the S and v vectors. (See 

the dashed area in Figure 2.12). 
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Figure 2.12 A single attention module.  
Source: [88] 

A single attention module (also called one “head”) is largely limited to a single type 

of “attention” between words, such as one type of semantic or grammatical relationship. 

This is because in a single attention module, only one softmax layer is evaluated, which 

means attention is paid predominantly to one individual word at a time. To overcome this 

limitation, the transformer used by BERT consists of multiple attention heads. Figure 2.13 

shows how multiple single Scaled Dot-Product Attention modules (Figure 2.13 (a)) can be 

concatenated in parallel to form a Multi-Head Attention module (Figure 2.13 (b)). 
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Figure 2.13 (a) Scaled Dot-Product Attention. (b) Multi-Head Attention consists of several 

attention layers running in parallel. 
Source: [87] 

Figure 2.14 shows a graphical representation of an encoder’s internal architecture 

of a transformer [88]. For a multi-head attention module, the output is obtained by 

concatenating the output of each head. Concatenating vectors (the same length as the input) 

from multiple heads would quickly grow the length of an output vector to an infeasible size. 

Hence, only a fraction of the width of the original vectors from each of the attention heads 

is extracted, and then these “fractional” vectors are concatenated to achieve the original 

length (the same as the length of the input vector). Addition and Normalization operations 

(see Figure 2.14) are performed on the concatenated output before it is fed through a single-

layer Feed Forward Neural Network. The Addition operation calculates the element-wise 

sum of two vectors. The Normalization used in the Transformer is Layer Normalization, 

which calibrates (“normalizes”) a vector based on the mean and the variance of the summed 
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vectors within the same layer [90]. The Addition and Normalization operations are used to 

improve the training convergence. 

BERT is a general-purpose “language understanding” model trained on a large text 

corpus (like Wikipedia), which can be used for various downstream NLP tasks without 

heavy task-specific engineering. The BERT model is pre-trained with two tasks Masked 

Language Modeling (MLM) and Next Sentence Prediction (NSP). The training objective 

of the MLM task is to predict the masked words of a text sequence. The training objective 

of NSP is to classify whether two sentences are consecutive for any given sentence-pair. 

This generic training produces a model that represents the meaning of a large variety of 

text. Thus, the model pre-trained with these two tasks can be easily adapted to other types 

of NLP tasks. BERT has advanced the state-of-the-art for several major NLP benchmarks, 

including named entity recognition on CoNLL-2003 [91], question answering  on SQuAD 

[92], and sentiment analysis on SST-2 [93]. 



34 

 
Figure 2.14 A full transformer module.  
Source: [88] 

2.4.4 Embeddings 

The research on Embeddings (text vectorization) has advanced from context-free to 

contextual embeddings. Context-free embeddings, such as word2vec [83], GloVe [84], or 
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fastText [85], generate a single "word embedding" for each word in the vocabulary. Several 

methods were proposed to rectify this limitation [94, 95]. Subsequent research extended 

the word level embeddings to paragraphs or documents, e.g., Doc2vec [63], Sentence 

Encoder [96], and Sent2Vec [97].  

Contextual representations generate vectors for words or tokens by “considering” 

other text in their surroundings. These include various Deep Learning (DL) techniques, 

such as Semi-supervised Sequence Learning [97], Generative Pre-Training [98], ELMo 

[99], and ULMFit [100], which mainly rely on LSTM [101] or BiLSTM [102] models, thus 

they are unidirectional or shallowly bidirectional, meaning that each word is only 

contextualized using the words to its left (or right). With the advent of Attention and 

Transformers [87], research has shifted to training general language representation models 

rather than competing on improving task-specific embeddings. Bert [86], GPT-2 [103], and 

XLNet [104] are transformer-based language models, which are deeply bidirectional. 

These general-purpose language models are usually trained with a large text corpus without 

binding to specific downstream tasks.  

In bioinformatics, different textual resources have been utilized to train 

word/document embeddings, such as Word2vec trained on PubMed and PMC data [105] 

(http://bio.nlplab.org/), and Word2vec trained on 27 million articles from the 

MEDLINE/PubMed Baseline 2018 (http://nlp.cs.aueb.gr/). Cui2vec [106] has been trained 

with an insurance claims database of 60 million members, a collection of 20 million clinical 

notes, and 1.7 million full text biomedical journal articles. Wang et al. evaluated the word 

embeddings trained with four different kinds of textual resources including news [107]. 

Onto2vec [108] automatically learns feature vectors for proteins from their annotations in 

https://rare-technologies.com/sent2vec-an-unsupervised-approach-towards-learning-sentence-embeddings/
https://blog.openai.com/language-unsupervised/
https://allennlp.org/elmo
http://nlp.fast.ai/classification/2018/05/15/introducting-ulmfit.html
http://bio.nlplab.org/
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Gene Ontology. These embeddings have been commonly leveraged as feature input to 

downstream ML models. 

 

 

2.5 Semantic Similarity 

In this dissertation, Pirró's [109] definition of Semantic Similarity is adopted, which 

considers only the subsumption relationship between two concepts (i.e., ‘IS-A’). Another 

concept is Semantic Relatedness, which considers a broader range of relationships (e.g., 

‘part-of’ [110, 111]). There exist various measurement methods for both semantic 

similarity and relatedness, because of the lack of consistent definitions of those two across 

different publications. The Lesk measure, proposed by Banerjee et al.[112], increases 

linearly as the overlap between two terms increases. Patwardhan generates a first-order co-

occurrence matrix for each word based on extended definitions of biological terms and then 

builds a second-order co-occurrence matrix as a gloss vector [113]. The cosine similarities 

calculated between gloss vector pairs are used as the semantic relatedness score between 

terms. Pesaranghader used Pointwise Mutual Information (PMI) as an adjunct feature to 

cut-off co-occurrence data, improving the gloss vector-based relatedness measures [114]. 

Taieb et al. exploited WordNet features, such as the noun and the verb taxonomy and the 

shared words (overlaps) in glosses as a multi-strategy measure of semantic similarity [115]. 
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CHAPTER 3  

MACHINE LEARNING FOR ENRICHMENT OF SNOMED  

 

The goal of using ML for enrichment of ontologies is to utilize it to identify IS-A 

relationships. Consider a missing IS-A relationship from an existing concept A to a concept 

B. If the concept B is not in the ontology and is added together with adding an IS-A link 

from concept A to it, then this is knowledge enrichment. For knowledge enrichment, a 

concept is recognized as missing in the ontology and then inserted into the proper place. 

The aforementioned problems are similar to classification/prediction of relationships 

between two concepts.  

This chapter presents a study of integration of embeddings and a neural network 

model to support ontology enrichment. The previously discussed vectorization techniques, 

i.e., Doc2vec, are employed to transform each concept into its vector representation. Then 

a CNN model is trained to perform classification or prediction tasks on the relationships 

between concepts.  

 

 

3.1 Concept Vector Representation Using Doc2vec 

As noted, ontology concepts in string representations cannot be directly processed by a 

numeric ML technique such as CNN or SVM (Support Vector Machine), for classification 

or regression tasks. Thus, concepts are converted into numeric vector representations while 

maintaining as much hierarchical and semantic information as possible. Note that this 

information is critical, because similar concepts should be close to each other given their 
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vector representations. It is necessary to maintain this kind of association between concepts 

and their meaning in the vector representation.  

Concepts are primarily represented as text strings in the form of English word(s), 

sometimes combined with ID numbers. This is exactly what Word2vec and Doc2vec can 

deal with. Thus, it is necessary to construct text in a way that Word2vec can learn about 

single words or word sequences, and Doc2vec can learn about documents on a high level. 

To employ this technique, the following steps were performed: 

i. Create one “document” per focus concept (Figure 3.1). The ID for a document is 

the corresponding SNOMED CT concept ID. The content of this document consists 

of the concepts that are hierarchically related to this focus concept: the focus 

concept’s parents (targets of IS-A links from this concept), its strict siblings (that 

share exactly the same parents as this concept), and its children (sources of IS-A 

links to this concept). This construction is based on the idea that a concept is the 

topic of a document and that the closely related concepts are descriptions of the 

meaning of this concept in the ontology hierarchy. 

ii. Arrange the order of these related concepts such that the underlying hierarchical 

relationships are maintained.  In order to do that, a concept’s parent(s) should be at 

the beginning of the text, followed by the concept itself. Then, a concept’s siblings 

are put before its children. So, the order of the whole document text is: Parent(s) – 

Focus concept – Sibling(s) – Child(ren) (See Figure 3.1). No separators between 

concept groups are needed, because of the design of the ML method applied below. 

For example, “(Parents) finding of abnormal level of heavy metals in blood, finding 

of trace element level – (Focus concept) blood copper abnormal – (Siblings) serum 

iron level abnormal, zinc in blood specimen outside reference range, cobalt in 

blood specimen outside reference range – (Children) raised blood copper level, 

serum copper level abnormal” defines the content of the document for the concept 

blood copper abnormal. 
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Figure 3.1 Serializing the hierarchical structure of one concept into one document. 

iii. After constructing a document for each concept, a list of documents is obtained and 

fed to a Gensim [116] Doc2vec system, which automatically extracts semantic 

topics from the documents, with high efficiency. After the training of this Gensim’s 

Doc2vec model (Figure 3.2) is finished, a “weighted matrix under the hood” is 

constructed. In order to get the corresponding vector for each concept, a concept’s 

“one-hot vector” (a positional coding of a concept in a long vector of many 0s and 

a single 1) is multiplied with this weighted matrix. Intuitively, one can view this 

Doc2vec model as a lookup table where all trained concepts in their vector forms 

with unique IDs are stored. The vector length is chosen by the user in the training 

phase. To better fit with the CNN model used in a later step, 512 features per vector 

were chosen. (The input dimensionality is preferably a power of 2.) In addition, the 

Doc2vec model can infer a vector for a concept that was not in the training data, by 

looking at this concept’s name. Metaphorically, Doc2vec “guesses” a vector by 

looking for the concept name (words) in its “vocabulary.” The inaccuracy 

introduced by deriving a vector can propagate to the CNN classifier.        

Parent 1 

ID, Focus 

Concept 

Parent 2 

Sibling 1 

...  

Sibling 2 ...  

Child 1 Child 2 Child 3 

Parent 1 Focus 

Concept 

Parent 2 Child 1 Child 2 Child 3 

 

ID 

One document 

...  
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Figure 3.2 Data flow during vectorization phase. D = 336,893 is the total number of 

concepts. The vector length is 512. 

 

 

3.2 CNN Model as an IS-A Relationship Classifier 

In this dissertation, a CNN model was built to deal with the concept classification problem. 

The design of the CNN model was inspired by a model used to detect transportation modes 

from smartphone data by Liang et al. [117]. The input to both models is a set of one-

dimensional feature vectors. This model differs from Liang et al.’s work in both input 

vector length and the number of convolutional layers, as well as in the intricacy of the 

application domain.  

The CNN was designed for one-dimensional data. Figure 3.3 demonstrates the 

CNN architecture used in this study. The architecture consists of a succession of 

convolutional layers, max pooling, and fully-connected layers. Specifically, the input is a 

1024 × 1 vector (created by concatenating two 512 × 1 vectors). The first convolutional 

layer puts 32 filters on a 15-feature window with a stride of one feature. The following max 
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pooling layer is set with a 4-feature window and a stride of two features. The convolutional 

layer and max pooling layer are repeated N times. In the proposed network, N is equal to 

7. The six hidden layers are shown in Figure 3.4. All the max pooling layers are set to the 

same parameters. The second and third convolutional layers have 64 filters on a 10-feature 

window with a stride of one feature. The other four convolutional layers filter the data with 

64 kernels on a 5-feature window with a stride of one feature. Conducting the convolution 

and max pooling processes N times, the data become 8 × 64. The data are fed into a fully-

connected layer with a hyperparameter of 200 to become 200 × 1. Finally, the data are 

transferred into a 2 × 1 output vector. 

 
Figure 3.3 CNN architecture in this system. It is composed of a succession of 

convolutional, max pooling and fully-connected layers. 
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Figure 3.4 The six hidden layers. 

The elements of the final 2 × 1 output vector represent the probability for Class 0 

and Class 1, respectively. Class 0 means there should not be an IS-A link connecting two 

given concepts, and class 1 means there should be an IS-A link. This probability of Class 

1 can be used as the score of how confident the model is about the existence of an IS-A 

link between two concepts. 

The CNN model was implemented with the Tensorflow [118] framework for 

training and testing. The implemented neural network contained over 100,000 parameters. 

The nonlinear activation function attached to every convolutional layer and the fully-

connected layer is the Leaky ReLU function [78]. The Adaptive Moment Estimation 

(Adam) is employed to optimize the loss function for its fast convergence and adaptive 

learning rate [119].  

3.2.1 Training and Testing 

Figure 3.5 summarizes the data flow during the CNN training phase. The training samples 

for the CNN model are a set of IS-A linked concept pairs and a second set of non-IS-A 

linked pairs.  
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Figure 3.5 Data flow during training the CNN model. Test data is generated “on the fly.” 

In SNOMED CT, all pairs of concepts that are directly connected by an IS-A link 

are known. Thus, the IS-A linked pairs are given, so they can be viewed as positive sample. 

On the other hand, it is both impossible and counterproductive from a machine learning 
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point of view to create all pairs of concepts that are not connected as training data. (These 

would be labeled 0 = “No.”) It is impossible (with the limited computational resources 

available), because, for example, in the SNOMED CT 2017 January release, there are 

336,893 active concepts.  The total pairs of concepts are then 56,748,278,278. From these 

the 502,459 existing IS-A links need to be subtracted, giving a total of 56,747,775,819 

pairs of concepts that are not connected. Training a model with such an unbalanced dataset 

would create a biased and meaningless results (the model would attempt to make all 

predictions negative and could still achieve high prediction accuracy). Thus, a strategy was 

developed to reduce the negative sample size, making it both computationally manageable 

and balanced with the positive sample.  

Concept pairs such that one concept in the pair is the strict sibling of the other 

concept’s parent (“uncle”) were picked. In total, 502,459 IS-A linked pairs (positive sample 

instances) and 6,167,243 non-IS-A linked pairs (negative sample instances) were selected. 

Even this positive vs. negative sample ratio is about 1:12, but this could be handled with 

common techniques such as oversampling or downsampling.   

First, the negative pairs were randomly downsampled to make the negative 

sample’s size the same as the positive sample’s size. This was done at the beginning of 

each training round. This resulted in a training data set with 1,004,918 pairs (502,459 pairs 

from both positive and negative groups). Secondly, the training dataset was shuffled and 

then 90% of it was used as the training set and 10% was kept as the test set. Thirdly, both 

concepts in a pair of concepts (i.e., in a positive or a negative sample instance) were 

transformed into vectors by “querying” the Doc2vec model that was already trained before. 

Two vectors, either a child-parent vector pair as a positive sample instance, or a nephew-
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uncle vector pair as a negative sample instance, were concatenated into one vector (1 × 

1024) before sending it into the CNN model for feature learning.  

The CNN model compares its predictions with the truth labels (0 or 1) to perform 

self-correction. The errors are back-propagated to the model, so it updates the weights in 

each layer in order to minimize the cross-entropy loss. 

Since it is not possible to read all 1,004,918 training sample instances into the 

computer’s memory at the same time, this training dataset was divided into “batches” with 

8,000 instances per batch. In other words, in one iteration the CNN model was trained with 

8,000 instances of one batch, and then the system moved to the next batch in the next 

iteration. The classification accuracy of every 1000 batches was tracked to check on the 

training gains in the process. Note that each batch could be used for training multiple times, 

because after all the batches were iterated, the system restarted with the first batch and 

continued to the next. This process was repeated until a pre-defined accuracy threshold was 

reached. The training was repeated for 20 rounds to deal with the imbalance issue 

introduced by downsampling the non-IS-A linked pairs. 

After training the CNN model, the model was accessed with the remaining 10% 

data in the test set (Figure 3.6). The concatenated vectors from both the positive and the 

negative group were sent to the trained CNN model. The model output is a stream of 0s 

and 1s. A “0” for a pair of concepts indicates that the model concludes there should not be 

an IS-A link, and vice versa for a “1.” For a negative test instance, the label 0 is correct 

and for a positive test instance the label 1 is correct. These correctness values were sent to 

a scoring function, where Precision and Recall were calculated to get the F1 score as the 
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performance/quality measure of the trained CNN model. Precision, Recall and F1 score 

were calculated with the scikit-learn [120] built-in toolkit. 

 

Figure 3.6 Data flow during testing CNN mode phase. 

3.2.2 Prediction of IS-As for New Concepts 

To evaluate the model’s performance on real, previously unseen data, a test task using new 

concepts from the SNOMED CT 2018 January release (Figure 3.7) was created to confirm 

the efficacy of the methodology. For each new concept that was added to this release, it 

and its strict siblings were extracted pair-wise as negative sample instances, and it and its 

parents pair-wise as positive sample instances. Then they were converted into vectors, 

before they were fed into the CNN model. If a concept existed in the SNOMED CT 2017 

July release, its corresponding vector was queried directly from the pre-trained Doc2vec 

model, otherwise the model had to infer a vector for it. Since a new (2018) concept was 

not used for training with the Doc2vec model (trained with data from SNOMED CT’s 2017 

July release), the model can only infer a vector by using this concept’s name as data. 

However, if all the word(s) in a new concept’s name are not in the trained vocabulary, the 

inferred vector for this concept would be totally meaningless.  

To avoid this situation, testing the CNN model was limited to new concepts with 

multiple parents. To get the inferred vector for a new concept, one of its parents was 
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randomly selected and this parent’s name and its name were concatenated as the “query” 

to the Doc2vec model. This cannot guarantee the avoidance of a completely random vector, 

but the accuracy improvement in the experiments showed that it is a workable solution. As 

this selected parent must be excluded from the testing sample, the positive test sample set 

is then composed of all other remaining parent(s).  

The pair-wise vectors, either extracted or inferred from the Doc2vec model, were 

concatenated into single vectors before sending them to the trained CNN model. The CNN 

model processed each input vector, using the weights that it had already learned before, 

computing a class label (0 or 1) and returned it as prediction result. Both positive and 

negative samples were fed into the model in random order, and the output was a stream of 

0s and 1s. For negative sample instances, the label 0 is correct, indicating the there is no 

IS-A link in the new SNOMED CT release for these two concepts. Label 1 is correct for 

positive sample instances, indicating the existence of an IS-A link. The model’s predicted 

result labels were compared with the true labels to calculate prediction accuracy in terms 

of F1 score.  
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Figure 3.7 Data flow during testing CNN model phase with new data (use case). 

 

 

3.3 Performance Comparison between CNN and SVM Models  

The prediction results of the CNN model with the remaining 10% of the sample (See “Test 

Data” in Figure 3.5) extracted from the SNOMED CT 2017 July release are as follows. 

The average Precision, Recall, and F1 score among ten tests are presented in Table 3.1. In 

each test, the CNN is tested against 1024 sample instances (mixed positives and negatives). 

For example, in Test 4, the average Precision is 0.88, Recall is 0.77 and the F1 score is 

0.82. The results show that the proposed CNN can achieve an accuracy of approximately 

80% with reasonable fluctuations.  
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Table 3.1 Precision Score and F1 Score for Ten Tests 

Index 1 2 3 4 5 6 7 8 9 10 Average 

Precision  0.90 0.82 0.91 0.88 0.89 0.88 0.90 0.89 0.87 0.91 0.885 

Recall 0.84 0.65 0.75 0.77 0.71 0.61 0.75 0.62 0.76 0.76 0.722 

F1 Score 0.87 0.73 0.82 0.82 0.79 0.72 0.82 0.73 0.81 0.83 0.793 

 

It is also interesting to compare these results with traditional ML methods. 

Specifically, an SVM stochastic gradient descent (SGD) classifier was tested against the 

same test data. The classification results under different classification models are shown in 

Table 3.2. The table shows that in general, the proposed CNN model outperforms SVM. 

In fact, CNN (0.794) outperforms the traditional method SVM (0.705) by 8.8% when 

comparing the F1 scores. 

Table 3.2 F1 Score Comparison between CNN and SVM Models Among Ten Tests 

Index 1 2 3 4 5 6 7 8 9 10 Average 

CNN 0.87 0.73 0.82 0.82 0.79 0.72 0.82 0.73 0.81 0.83 0.793 

SVM 0.61 0.68 0.72 0.67 0.75 0.74 0.75 0.73 0.72 0.68 0.705 

 

Regarding the prediction of IS-A links for new concepts, an example is shown in 

Table 3.3 of the CNN model’s prediction results for the new concept Bone island of left 

pelvis, which was added to SNOMED CT in the 2018 January release. For each test, Bone 

island of left pelvis was paired with one of its parents (Disorder of body wall, Disorder of 

pelvic girdle, Disorder of pelvis, Finding of bone of pelvis, Hypertrophy of bone) to get its 

inferred vector, then the CNN model predicted IS-A links between it and the other parents 

and also to the sibling concept Bone island of right pelvis.  

For instance, when Disorder of pelvis was chosen as the first parent and paired with 

Bone island of left pelvis, then the task became to predict IS-A links between the pairs 

(Bone island of left pelvis, Disorder of body wall), (Bone island of left pelvis, Disorder of 
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pelvic girdle), (Bone island of left pelvis, Finding of bone of pelvis), and (Bone island of 

left pelvis, Hypertrophy of bone). No IS-A link should be found for the sibling pair (Bone 

island of left pelvis, Bone island of right pelvis). The CNN model correctly predicted the 

IS-A links between the first four child-parent pairs but was wrong about the Sibling pair.  

Table 3.3 CNN Prediction Result for Bone island of left pelvis  

Bone island 

of left pelvis 
Parent Parent Parent Parent Parent Sibling 

   Predicting 

Disorder 

of body 

wall 

Disorder 

of pelvic 

girdle 

Disorder 

of pelvis 

Finding 

of bone 

of pelvis 

Hypertrophy 

of bone 

Bone 

island 

of right 

pelvis Paired with 

Disorder of 

body wall 
◼  1 1 1 1 1 

Disorder of 

pelvic girdle 
1 ◼  1 0 1 0 

Disorder of 

pelvis 
1 1 ◼  1 1 1 

Finding of 

bone of 

pelvis 

1 1 1 ◼  1 0 

Hypertrophy 

of bone 
1 1 0 1 ◼  0 

NOTE: Grey background indicates a correct prediction. 

Table 3.4 shows the Precision, Recall and F1 score of the CNN model testing 

against all new concepts with multiple parents in the SNOMED CT 2018 January release. 

On average, this model achieved around 70% accuracy out of a total of 21,945 predictions 

using the content of SNOMED CT (January 2018) as the gold standard. 

Table 3.4 Precision, Recall, and F1 Score for New Tests 

Index 1 2 3 4 5 6 7 8 9 10 Average 

Precision 0.73 0.71 0.69 0.80 0.71 0.75 0.82 0.81 0.73 0.72 0.747 

Recall 0.69 0.67 0.63 0.65 0.60 0.67 0.69 0.73 0.62 0.64 0.661 

F1 Score 0.71 0.69 0.66 0.72 0.65 0.71 0.75 0.77 0.67 0.68 0.701 
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The results were compared with the previously employed SVM model, testing it on 

the new concept data. The classification results are shown in Table 3.5. In fact, CNN 

(0.701) still outperformed the SVM (0.643) model by 5.8% in regard to the F1 score. 

Table 3.5 Average F1 Score Comparison between CNN and SVM Models among New 

Concept Tests 

Index 1 2 3 4 5 6 7 8 9 10 Average 

CNN 0.71 0.69 0.66 0.72 0.65 0.71 0.75 0.77 0.67 0.68 0.701 

SVM 0.64 0.63 0.62 0.69 0.61 0.61 0.68 0.62 0.70 0.63 0.643 

The presented CNN model achieved good results when testing against pre-trained 

concept vectors. This supports two claims: first, the method used to construct documents 

for concepts preserves enough semantic and hierarchical information in the context of the 

whole ontology, even after the complex encoding with Doc2vec; secondly, the trained 

CNN model was able to predict IS-A links with scores in line with many other machine 

learning techniques. This suggests that the pretrained vectors maintained semantic and 

hierarchical features that can be utilized for various classification tasks with modern 

machine learning techniques.  

Meanwhile, it was found that the quality and accuracy of a vector representation of 

a concept, in a consistent way among all concepts, is critical to the downstream 

classification and prediction models. For a new concept that has a name that contains no 

words in the trained vocabulary, the inferred vector from the Doc2vec model carries very 

limited or no useful information. Also, the inferred vector is not always consistent, because 

the inference is an incremental optimization process with random initialization. 

Automatically predicting the placement of new concepts in an ontology would be 

both of practical importance by helping ontology curators and would stretch the state-of-

the-art of ML methods in the direction of semantic tasks. A limitation of the presented 
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work is that one parent had to be given for a new concept, and the system predicted the 

other parents. Ideally, all parents should be predicted. While there are some difficulties in 

principle, the main obstacle is one of computing power. Operating with 57 billion pairs 

(the negative training set) is not within the range of current computing resources. This work 

has concentrated on predicting IS-A links. Future work will extend the paradigm to 

attribute relationships (semantic relationships) and to other ontologies besides  

SNOMED CT.  
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CHAPTER 4  

ENRICHMENT OF SNOMED USING MACHINE LEARNING WITH 

ABSTRACTION NETWORKS 

 

In Chapter 3, the negative sample for training was based on nephew-uncle pairs. The 

assumption was that the uncles, while not being parents, are similar to parents in their 

content, providing a realistic negative training set for ontology enrichment. However, the 

concept may have many uncles, some of which are more similar to the parent(s) than others. 

If the first group of the more similar concepts could be distinguished from the second group 

of the less similar concepts, then the first group could serve to provide a more accurate 

negative sample for the training.  

The area taxonomy, a kind of Abstraction Network (Section 2.2), can potentially 

help to identify the set of uncles relatively more similar to the parent(s). The uncle concepts 

that are within the same area as the parent(s) are all more similar to the parent(s) than uncle 

concepts in other areas, since they have the exact same sets of relationships as the parent(s).  

This chapter presents the effectiveness of using Abstraction Networks to enhance 

the model introduced in Chapter 3 to predict IS-A relationships. It is a summarization 

approach for the automatic identification of IS-A relationships for new concepts. This 

approach is based on the area taxonomy. SNOMED CT’s Clinical Finding hierarchy was 

the test-bed for evaluating the effectiveness of this approach. 

 

 

4.1 Concept Vector Representation from Two Models 

The SNOMED CT July 2017 release was used as training set and the subsequent January 

2018 release as testbed. The data preprocessing follows the same workflow as in the 

previous study (Chapter 3 and [121]) to generate documents and train embedding vectors, 
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but is limited to the Clinical Finding hierarchy of SNOMED CT. The document generation 

process is illustrated below, as it is crucial for understanding the next step.      

i. Create one “document” per focus concept (see Figure 4.1). A concept’s 

corresponding SNOMED CT ID was used as the unique ID for a document. The 

hierarchical information related to this focus concept is used as the content of this 

document. Specifically, this concept’s parents (targets of IS-A links from this 

concept), and its children (sources of IS-A links to this concept) were chosen. 

Unlike in the previous study, a concept’s sibling(s) are neglected in this study 

without showing accuracy loss. By constructing a document this way, a concept 

becomes the focus topic of this document and its closely related concepts “describe” 

the meaning of it in the ontology hierarchy. 

 

ii. To maintain the existing hierarchical relationships of the focus concept to some 

degree, these concepts were arranged as follows: A concept’s parent(s) are placed 

at the beginning of the text, followed by the concept itself, and then by the child(ren) 

of this concept. Thus, the order of the whole document text is: Parent(s) – Focus 

concept –– Child(ren) (Figure 4.1). Tabs are used as separators between concept 

groups. For example, Infectious thyroiditis has two parents, Thyroid infection and 

Thyroiditis, and two children, Acute suppurative thyroiditis and Viral thyroiditis. 

Thus, the content of the document for the concept Infectious thyroiditis is defined 

as “Thyroid infection, Thyroiditis \t Infectious thyroiditis \t Acute suppurative 

thyroiditis, Viral thyroiditis” where \t is the ASCII tab character, and the document 

ID is 3511005, which is the SNOMED ID of the focus concept Infectious 

thyroiditis . 
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Figure 4.1 Data flow during vectorization phase. N = 109,366 is the total number of 

concepts in the Clinical Finding hierarchy of the SNOMED CT July 2017 release. 

After constructing a document for each concept, the list of all documents was 

passed to the Gensim implementation of Doc2Vec to generate two embeddings (displayed 

as black arrows in Figure 4.1). Gensim automatically generates the document-level vectors, 

while maintaining the semantic topics of the documents. Experiments with both the 

Distributed Memory version (PV-DM) and the Distributed Bag of Words (PV-DBOW) 

version of Paragraph Vector [63] were performed. The PV-DM model and the PV-DBOW 

model function as two “vector dictionaries.” For each concept, its corresponding two 

vectors (denoted as Vectorpv-dm and Vectorpv-dbow in Figure 4.1) were retrieved by sending 

its corresponding document ID to the two models, respectively. This is indicated by two 

SNOMED CT 

Concepts with unique 

Finding each concept’s  

Parent(s), Child(ren) 
(Concept 1 (Parent 1, … Concept 1, … Child 1, …), 

Concept 2 (Parent 1, … Concept 2, …, Child 1, …)  

…   

Transform each list into 

a document (Figure 3.1) 

List of documents 

Train a Distributed Memory 

version of Doc2vec Model 

PV-DM 

Train a Distributed Bag of Words 

version of Doc2vec Model 

PV-DBOW 

Querying with 

a concept’s ID 

to the 

obtained 

model 

Querying with 

a concept’s ID 

to the obtained 

model 

  

Vectorpv-dm  Vectorpv-dbow  
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blue arrows emanating from the green SNOMED CT repository. The vector dimension was 

set to 128. The use of those two embeddings is new and was not done in Chapter 3 [121]. 

 

 

4.2 Training Data from Hierarchy and Area Taxonomy 

To train a CNN model that can verify an IS-A link between a pair of concepts, two models 

were trained with both IS-A connected concept pairs and concept pairs with no IS-A 

connection. The IS-A connected concept pairs are explicitly defined in the terminology 

hierarchy. The judicious selection of non-IS-A concept pairs is critical for the accuracy of 

the model. In Chapter 3 [121], the non-IS-A pairs were limited to only nephew-uncle pairs. 

Figure 4.2 (a) illustrates this. Consider an IS-A relationship from a concept A to a concept 

B. A sibling C of B is an uncle of A. Thus, the pair of A and C is called a nephew-uncle 

pair. The concept D has an IS-A relationship to concept Q, and Q is not an uncle of A. The 

concept C is hierarchically related to B as its sibling. Thus, C has a higher probability of 

being mistaken as A's parent than D, which is not hierarchically related to B. In other words, 

the non-IS-A pair (A, C) is more similar to the IS-A pair (A, B) than the non-IS-A pair (A, 

D) is to (A, B). It is more useful to learn to distinguish between an IS-A pair and (one of) 

its nephew-uncle non-IS-A pairs than between an IS-A pair and an arbitrary non-IS-A pair, 

which might be “far away” from the IS-A pair. 
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Figure 4.2 Illustrating two potential training data patterns. 

Utilizing the Area Taxonomy, the nephew-uncle pairs can be further divided into 

two types: uncle and nephew concepts are from the same area versus uncle and nephew 

concepts are from different areas. In Figure 4.2 (b), both C and D are A’s uncles, because 

they are siblings of B. However, C is in the same (red) area as A, while D resides in another 

(green) area. The nephew-uncle pair (A, C) is more similar to the IS-A pair (A, B) than the 

nephew-uncle pair (A, D), since concepts from the same area share the same set of 

relationships types, and are more similar to each other.  

The hypothesis is that the CNN model will become more accurate by training it 

with nephew-uncle pairs from the same area, because it can learn to distinguish between 

IS-A pairs and closely related non-IS-A pairs. As a result, the derived CNN model should 

be better at verifying whether a concept pair should be connected by an IS-A link or not, 

achieving better accuracy. 

The above observation can be demonstrated with a concrete example (Figure 4.3) 

from the Clinical Finding hierarchy. Let the nephew concept be Conjunctival diphtheria 

(in yellow). Its uncle concepts are Viral conjunctivitis, Parasitic conjunctivitis, and 

Tumorlet. Conjunctivitis (also called pinkeye) is an infection of the conjunctiva, the 

transparent tissue that covers the white part of the eye. These three concepts are the siblings 
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of the concept Bacterial conjunctivitis, which is the parent of Conjunctival diphtheria. As 

Figure 4.3 shows, the uncle concept Viral conjunctivitis (in green) is in the same area 

{Associated morphology, Causative agent, Finding site, Pathological process} as 

Conjunctival diphtheria, while the other two uncle concepts Parasitic conjunctivitis and 

Tumorlet (in red) are in different areas {Causative agent, Finding site, Pathological 

process} and {Associated morphology, Finding site, Pathological process}, respectively, 

than Conjunctival diphtheria. Conjunctival diphtheria is structurally more similar to Viral 

conjunctivitis as both of them have the same four lateral relationships, while it is 

structurally different from Parasitic conjunctivitis and Tumorlet, which have only three 

lateral relationships. Indeed, Viral conjunctivitis is closer to Bacterial conjunctivitis, the 

parent of Conjunctival diphtheria, than to Parasitic conjunctivitis and Tumorlet.  

 

Figure 4.3 Nephew-uncle pairs within/without the same area. 

 

 

4.3 Training and Testing two CNN Models as IS-A Relationship Classifiers 

Two CNN models were trained with two sets of training data from the Clinical Finding 

hierarchy: one set with nephew-uncle non-IS-A pairs, with both the uncle and newphew 

concepts taken from the same area; the other set with uncle and nephew randomly chosen 
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from the hierarchy. The two models shared the same CNN architecture as in Section 3.2. 

The data was tailored to accommodate two vectors with a dimension of 128. The 

modification of stacking two vectors in depth for each concept as input does not require 

changing the previous CNN model, because the convolutional operations work across the 

depth dimension, such as, for example, when processing RGB channel data for color image 

input [64]. 

To evaluate the model’s performance on real, previously unseen data, new concepts 

from the SNOMED CT 2018 January release were used. A pre-trained Doc2Vec model 

returned a pre-determined vector for an existing concept or inferred a vector for a new 

concept from the new concept’s name. However, if all the word(s) in a new concept’s name 

were not in the trained vocabulary (i.e., they were never seen before when training the 

model), the inferred vector for this concept would be a random vector. To avoid this 

situation, the testing was limited to new concepts with multiple parents existing in the July 

2017 release. This limitation restricts the model’s applicability to about one-third of the 

concepts in SNOMED CT. For new concepts with only one existing parent, it is better to 

use them for training the model for the following release, rather than testing against them 

without having any knowledge about them in the model. The detailed procedures for 

preparing test data for both IS-A concept pairs and non-IS-A concept pairs are as follows 

(Figure 4.4).   

New concepts that were added in the SNOMED CT January 2018 release and their 

parents were used. To get the inferred vector for a new concept N, one of its parents was 

randomly selected – say Parent 1 in Figure 4.4(a). Then Parent 1’s name was concatenated 

with N’s name as the “query” to the Doc2Vec model. The vector inferred by the Doc2Vec 
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model was then paired with one of the remaining parents’ vectors, say the vector that 

represents Parent 2, to form a vector pair (N, Parent 2). This vector pair, as one test case, 

was sent to the pre-trained CNN model for IS-A link verification. Similarly, the inferred 

vector for N was paired with vectors for Parent 3 and Parent 4, respectively to create two 

more test cases, namely, whether the CNN model can verify the IS-A links for the pairs 

(N, Parent 3) and (N, Parent 4). 

 

Figure 4.4 (a) Three IS-A test cases if pairing up the new concept N with its first parent. 

(b) Repetition of (a) by pairing up N with Parent 2. 

As the Doc2Vec model is pre-trained, i.e., it is not updated during the inference 

process, the inferred vectors are independent of each other. Therefore, other sets of test 

cases were created by generating all the possible pairs between N and its parents. For 

example, as shown in Figure 4.4(b), the names of N and Parent 2 were concatenated to get 
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the inferred vector for N. Then we paired the inferred vector with vectors for Parent 1, 

Parent 3, and Parent 4 as three additional test cases. This can be continued by assuming for 

every parent (Parent 3, Parent 4) that it is known, while all the remaining parents are tested.  

Following this setup, out of 2,005 new concepts added to the Clinical Finding 

hierarchy of the January 2018 release, 1,027 concepts were selected to generate a total of 

7,494 IS-A concept pairs for testing the CNN model’s accuracy when verifying IS-A links 

for the new SNOMED CT release. Out of the 1027 concepts, 797 concepts were leaf nodes. 

For non-IS-A test pairs, the existing parents of all the new concepts that were used 

for IS-A testing were collected to form a “Parent set.” Then for each new concept, it was 

paired with all the concepts from the “Parent set” except its own parents, generating non-

IS-A test pairs (Figure 4.5). By doing this, the non-IS-A test data is not limited to only 

nephew-uncle pairs, but allows general combinations of new concepts with other existing 

parent concepts. The CNN model’s performance on such concept pairs reveals its 

generalizability to the broader population of non-IS-A test data. To achieve balanced 

testing data, 7,494 non-IS-A concept pairs were randomly selected to match the number of 

IS-A concept pairs.  

The process of converting a test pair of concepts into a vector pair is demonstrated 

in Figure 4.5. After the test pairs for both positive and negative samples were selected, the 

PV-DM and PV-DBOW models were queried to get the corresponding concept vectors. 

For each concept pair, four vectors (two vectors for each concept) were obtained. To get 

the corresponding vector pair, the two vectors generated by the same model were 

concatenated into one vector. Then the two long vectors were sent into the pre-trained CNN 

model in a random order to compute a class label (0 or 1) as the prediction result. For an 
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IS-A test concept pair, label 1 is correct if there is an IS-A link between these two concepts 

in the new SNOMED CT release. For a non-IS-A concept pair, label 0 is correct if there is 

no IS-A link between these two concepts in the new SNOMED CT release. The training 

and testing were repeated ten times with randomly chosen 90:10 splits between training 

and validation data to obtain a consistent evaluation of the efficacy of the methodology. 

Besides examining the quality of the training data, the quality of the concept vectors 

from the Doc2Vec embedding was also scrutinized. The “iterations/epochs” parameters of 

the PV-DM and PV-DBOW models were adjusted to control how many times to iterate 

over the training corpus. The typical iteration counts suggested in the original “Paragraph 

Vectors” paper [63] are 10-20 for tens-of-thousands to millions of documents. Thus, 10, 

20, and 50 iterations were experimented with, for comparison. 

 

Figure 4.5 Data flow during testing CNN model with new data (use case). 
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4.4 Performance Comparison between Two Classifiers 

The prediction results of the CNN model with the 7,494 IS-A connected concept pairs will 

be reported now. Table 4.1 summarizes the performance comparison between using the 

original (= “unsummarized”) training data from the whole Clinical Finding hierarchy 

(shown with the column title “hierarchy”) versus training data from the same area only 

(shown as “area”). The Precision, Recall, and F1 scores for ten tests are presented in Table 

4.1. The model trained using the Area Taxonomy data is superior to the model trained using 

hierarchy data in both best F1 score (0.78 vs. 0.73) and average F1 score (0.75 vs. 0.69). 

The standard deviations of the ten F1 scores for both trained models are the same (0.018). 

Table 4.1 IS-A Testing Results for Ten Tests, Comparing SNOMED CT Hierarchy 

Training Data with “in area” Training Data  

Index 
Precision Recall F1 

hierarchy area hierarchy area hierarchy area 

1 0.85 0.83 0.59 0.65 0.69 0.73 

2 0.86 0.83 0.63 0.70 0.73 0.76 

3 0.86 0.82 0.58 0.67 0.69 0.74 

4 0.87 0.78 0.59 0.74 0.70 0.76 

5 0.86 0.86 0.58 0.64 0.69 0.73 

6 0.86 0.80 0.58 0.69 0.69 0.74 

7 0.87 0.82 0.57 0.71 0.69 0.76 

8 0.87 0.80 0.53 0.76 0.66 0.78 

9 0.85 0.83 0.62 0.64 0.71 0.72 

10 0.86 0.81 0.58 0.69 0.69 0.74 

Average 0.86 0.82 0.59 0.69 0.69 0.75 

Standard deviation 0.007 0.022 0.027 0.041 0.018 0.018 

Next, the model’s performance on non-IS-A concept pairs was evaluated. The 

Precision, Recall, and F1 scores for ten tests are presented in Table 4.2. Table 4.2 

summarizes the performance comparison for non-IS-A concept pairs between using data 

from the whole hierarchy (shown as “hierarchy”) versus using training data from the same 

area (shown as “area”). The model trained with Area Taxonomy data achieved the same 
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F1 value as the model trained with the whole hierarchy (0.78). The standard deviation of 

the ten F1 scores for the “hierarchy” model is 0.005, and it is 0.008 for the “area” model. 

Table 4.2 Non-IS-A Testing Results among Ten Tests, Comparing SNOMED CT 

Hierarchy Training Data with “in area” Training Data  

Index 
Precision Recall F1 

hierarchy area hierarchy area hierarchy area 

1 0.69 0.71 0.89 0.86 0.78 0.78 

2 0.71 0.74 0.90 0.86 0.79 0.80 

3 0.68 0.72 0.90 0.85 0.78 0.78 

4 0.69 0.76 0.91 0.79 0.78 0.77 

5 0.68 0.71 0.90 0.89 0.78 0.79 

6 0.68 0.73 0.90 0.83 0.78 0.78 

7 0.68 0.74 0.91 0.85 0.78 0.79 

8 0.66 0.77 0.92 0.81 0.77 0.79 

9 0.70 0.71 0.89 0.87 0.78 0.78 

10 0.68 0.73 0.90 0.84 0.78 0.78 

Average 0.69 0.73 0.90 0.85 0.78 0.78 

Standard deviation 0.014 0.021 0.009 0.029 0.005 0.008 

The training time for the 10, 20, and 50 iterations was 485, 947, and 2035 seconds, 

respectively, with the same hardware configuration. The CNN models trained on top of 

these three vector spaces achieved an average F1 score of approximately 0.745 for IS-A 

testing, for each of the 10, 20, and 50 iterations. For non-IS-A testing, the average F1 scores 

for the 10, 20, and 50 iterations were 0.784, 0.775, and 0.753, respectively. Notably, the 

F1 scores were going down when performing more iterations.  
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CHAPTER 5  

ENRICHMENT OF SNOMED USING BERT 

 

Chapter 3 presented the effectiveness of using neural network-based methods, such as 

Convolutional/Recurrent Neural Networks to enrich biomedical ontologies by predicting 

IS-A relationships. In this chapter, we conducted experiments with a more advanced model 

for the same task. This model is called Bidirectional Encoder Representations from 

Transformers (BERT), a relatively new language representation model, which obtains 

state-of-the-art results on a wide array of general English NLP tasks. This chapter explores 

BERT’s applicability to medical terminology-related tasks. Utilizing the “next sentence 

prediction” capability of BERT, it is shown that the fine-tuning strategy of Transfer 

Learning (TL) from the BERTBASE model can address the challenging problem of insertion 

of new concepts into a terminology. Adding a pre-training strategy enhances the results.  

BERT was not trained with medical literature. In order to harness the high 

performance of BERT for medical terminology enrichment, two approaches are introduced 

in this chapter. One approach is to add medical knowledge to the general knowledge of 

BERT. For this purpose, the SNOMED CT knowledge was used, providing a “document” 

for each concept of SNOMED CT. The second approach is to train BERT to be able to 

distinguish between concept pairs that should be connected by IS-A relationships and pairs 

that shouldn’t. This kind of learning utilizes the “next sentence prediction” feature of 

BERT. The technical issues and the details involved in implementing these ideas will be 

described in the following subsections. 
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5.1 Fine-tuning BERT Model for IS-A Relationship Classification 

Step 1. Fine-tuning the BERTBASE model (Figure 5.1): IS-A linked concept pairs and 

concept pairs not connected by IS-A links were extracted as supervised fine-tuning data 

from the SNOMED CT July 2017 release. These pairs are referred to as IS-A and non-IS-

A pairs, respectively. Then a relationship classifier was trained on top of BERTBASE with 

the IS-A and non-IS-A pairs to obtain the BERTBASE+CLF model (CLF = Classifier). 

Step 2. Prediction on new release data (illustrated in the rightmost process of Figure 5.1): 

The trained BERTBASE+CLF model was tested to verify IS-A links and the absence of IS-A 

links for newly added concepts in the SNOMED CT January 2018 release. 

 
Figure 5.1 The pipeline for Strategy 1 Fine-tuning. CLF is short for Classifier. 

 

 Data Preparation 

The training sample passed to the fine-tuning process was a set of IS-A and non-IS-A 

concept pairs. In SNOMED CT, the IS-A concept pairs were given. Thus, they were used 

as positive sample instances. On the other hand, the negative sample could consist of all 

the non-IS-A pairs of concepts. This would create an imbalance between the positive and 

negative samples, because there are always many more pairs not connected by IS-A links. 

Thus, non-IS-A pairs for the negative sample were picked as follows. For each IS-A pair 
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(A, B) siblings C1, C2, …Ck of B were selected to form the non-IS-A pairs (A, Ci) with i=1, 

2, ... k. The advantage of such pairs is that they are closely related to the corresponding IS-

A pair. This will sharpen the distinction between IS-A and non-IS-A pairs in training. For 

example, (Crushing injury of back, Crushing Injury) defines an IS-A link, while (Crushing 

injury of back, Shear injury) is a similar pair that is not connected by an IS-A link. The 

reason is that Shear injury is a sibling of Crushing Injury, with the same parent Injury by 

mechanism.  

In the data preparation for fine-tuning, the positive and negative samples were first 

extracted, and the negative sample was randomly downsampled to the size of the positive 

sample, at the beginning of each training round. The dataset was shuffled and 90% of it 

was used for training and 10% was kept as the test set. The samples went through three 

preprocessing steps: Text normalization (e.g., Excision of Reinke's edema, → excision of 

reinke's edema), Punctuation splitting (e.g., excision of reinke's edema, → excision of 

reinke   '   s edema), and WordPiece tokenization (excision of reinke ' s edema, → ex 

##cision of rein ##ke ' s ed   ##ema). Then the samples were processed by BERTBASE, 

which performed its own preprocessing, including input embeddings, segment masking, 

labeling, etc. [86]. The input embeddings are the sum of the token embeddings, the 

segmentation embeddings and the position embeddings.  

For example, Urine xanthine level is the child of Evaluation of urine specimen in 

the SNOMED CT Procedure hierarchy. The input sequence will be “1 Evaluation of urine 

specimen (\t) Urine xanthine level (\t)”. This input will be converted as one training 

instance to “[CLS] evaluation of urine specimen [SEP] urine x ##ant ##hine level [SEP]” 

as shown in Figure 5.2(a).  The first token of the sequence is the classification embedding 
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([CLS]), representing a classification label. A special token ([SEP]) is used to separate 

sentences. Out-of-vocabulary words are split into word pieces and denoted with ##. For 

example, “xanthine” is denoted as three items “x”, “##ant”, and “##hine.” Similarly, 

Rubella screening is not a child of Down’s screening – blood test. The input sequence “0  

Rubella screening (\t) Down's screening - blood test (\t)” will be converted to “[CLS] rub 

##ella screening [SEP] down ' s screening - blood test [SEP]” in Figure 5.2(b). 

 

Figure 5.2 Fine-tuning data: Preprocessing (a) IS-A and (b) non-IS-A concept pairs. 

 

 Fine-tuning the BERTBASE Model 

The BERTBASE model was fine-tuned to predict the IS-A and non-IS-A linking for the 

concept pairs in the test data. This is similar to a binary sentence-pair classification task. 

Utilizing its sentence prediction capability, BERTBASE was trained as BERTBASE+CLF, to 

predict IS-A links between concept pairs of a terminology. A classifier was employed by 

using softmax with categorical cross-entropy on top of BERTBASE. The parameters of 

BERTBASE were fine-tuned to maximize the log-probability of the correct label (IS-A or 

non-IS-A). Given two concepts A and B, described as two “sentences,” the classifier 

learned to determine whether B is the next “sentence” following A. This was modeled as 

equivalent to classifying whether the concept B should be a child of A, i.e., B IS-A A 

(Figure 5.3). 
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Figure 5.3 Fine-tuning the BERTBASE model with concept pairs to obtain BERTBASE+CLF 

model. 

The input “1 Evaluation of urine specimen (\t) Urine xanthine level (\t)” was 

converted as one training instance to “[CLS] evaluation of urine specimen [SEP] urine x 

##ant ##hine level [SEP]” with Class label = 1. Class 1 means that there should be an IS-

A link between the two concepts, and Class 0 means that there shouldn’t be such a link. 

The BERTBASE model computed the probabilities for Class 0 and Class 1 and recorded the 

result as a 2 × 1 vector. The classifier reported the class label with the higher probability. 

The error between the true label and the label predicted by the model was back-propagated 

through the model to improve the CNN network’s parameters. The obtained model is 

denoted as BERTBASE+CLF (CLF = classifier), the model after fine-tuning. For this default 

model, the same hyperparameters were used as in the pre-trained BERTBASE, with the 

exception of the sequence length (=128), batch size (=64), learning rate (=2e-5), and number 

of training epochs (=3). 
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5.2 Pre-training BERT Model with SNOMED Hierarchical Data 

Step 1. Pre-training the BERTBASE model (Figure 5.4): Concept-related information from 

the July 2017 release was preprocessed to generate documents that were used as 

unsupervised pre-training data. Then BERTBASE was trained with unsupervised concept 

level data so that the trained BERTBASE+SNO model integrated terminology information 

from SNOMED CT (=SNO). Then the fine-tuning process (of Strategy 1) was applied to 

train a classifier on top of BERTBASE+SNO to derive the BERTBASE+SNO+CLF model. 

Step 2. Prediction on new release data (illustrated in the rightmost process of Figure 5.4): 

The trained BERTBASE+SNO+CLF model was tested to verify IS-A links and non-IS-A pairs 

for newly added concepts in the SNOMED CT 2018 January release. 

 
Figure 5.4 The pipeline for Strategy 2 combining Fine-tuning with Pre-training. SNO is 

short for SNOMED CT. 

 

5.2.1 Data Preparation 

In the setup of unsupervised pre-training, BERTBASE is not trained for a specific task, but 

the purpose is integrating medical knowledge into its representation. This is done by 

training with the non-task related sample taken from SNOMED CT. BERT was originally 
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trained with millions of documents that are composed of sentences. Similarly, a list of 

terminology-oriented documents were generated by creating one “document” per focus 

concept F (Figure 5.5), with related concept(s) as “sentences” of such documents. The ID 

for a document is the corresponding SNOMED CT concept ID. The content of this 

document consists of the concepts that are hierarchically related to F (Figure 5.5(a)). 

Specifically, F’s parents (targets of IS-A links from F), F itself, and its children (sources 

of IS-A links to F) were chosen. Thus, the whole document text is: Parent(s) – Focus 

concept – Child(ren) (Figure 5.5(b)). The concept groups are separated into lines, e.g., 

“(Parents) finding of abnormal level of heavy metals in blood, finding of trace element level 

–NEW LINE– (Focus concept) blood copper abnormal –NEW LINE– (Children) raised 

blood copper level, serum copper level abnormal” is the document for the focus concept 

blood copper abnormal. This construction is based on the idea that a concept is the topic 

of a document and that the closely related concepts are descriptions of the meaning of this 

concept in the terminology hierarchy. To feed sentences into the BERTBASE model, all the 

documents are concatenated in one text file, separated by empty lines.  

 

Figure 5.5 Pre-training data: Serializing (a) the hierarchical structure of one concept into 

(b) one document. 

 

(b) (a) 

Parent 1 

Focus Concept 

Parent 2 

Sibling 1 

...  

...  

Child 1 Child 2 Child 3 

Parent 

Focus 

Concept 

Parent 2 

Child Child Child 

 

One document ...  
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5.2.2 Pre-training the BERTBASE Model 

To utilize BERT’s powerful language representation, BERTBASE was enriched with 

terminology knowledge by using new training data. BERT was originally trained for two 

unsupervised prediction tasks: Masked Language Modeling (MLM) and Next Sentence 

Prediction (NSP) on an arbitrary text corpus. The same two training tasks and objective 

were adopted with concept-based documents from SNOMED CT.  

In the MLM phase, the training objective is to predict only the masked words. 

Across all the concept-based documents, 15% of the words were randomly masked out, 

and then the complete BERTBASE model was trained to output the masked words. In the 

NSP phase, the objective is to learn relationships between concepts: Given two concepts A 

and B, is B a child of A, or not (Figure 5.6). Two “sentences” Colitis and Phlegmonous 

colitis from the document were extracted for the focus concept Colitis. After preprocessing 

these two concepts (treated as two “sentences”) as shown in the middle level, two token – 

“##mon” and “##tis” were masked out. The BERTBASE model was trained to raise the 

probabilities of two correct tokens “##mon” and “##tis” over other tokens in the vocabulary.  

In the Figure 5.6, we symbolize this vocabulary using a list of tokens starting from 

“Apple” to “Zoo.” The actual vocabulary used by BERT is a WordPiece vocabulary with 

a list of 30522 tokens. In addition, as Phlegmonous colitis IS-A Colitis, the BERTBASE 

model was also trained to output the correct classification label “IsNext.” The obtained 

model is denoted as BERTBASE+SNO (SNO=SNOMED CT). Then the fine-tuning process 

(Section 5.1.2) was applied to the BERTBASE+SNO model to get the BERTBASE+SNO+CLF 

model. 

The training parameters used for pre-training are as follows: batch size = 64, 

sequence length = 128, training steps = 15,000 for Procedure and 200,000 for Clinical 
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Finding, learning rate =2e-5, dropout rate = 0.1, and activation function = gelu (Gaussian 

error linear unit). 

 

Figure 5.6 Pre-training the BERTBASE model with concept-based documents to obtain 

BERTBASE+SNO model. FFNN is short for Feedforward neural network. 

 

 

5.3 Performance Comparison between Two Classifiers 

5.3.1 Testing the Prediction on New Release Data 

To evaluate the BERTBASE+CLF and the BERTBASE+SNO+CLF models on previously unseen 

data, separate test tasks were created, using new concepts from the Procedure and the 

Clinical finding hierarchy of the January 2018 release (Figure 5.7). This description will 

focus on the Procedure hierarchy. For each new concept that was added to the Procedure 

hierarchy in this release, its parents and itself were extracted as positive sample pairs. For 

example, Local excision of lesion of kidney has two parents—Local excision and Excision 

of lesion of kidney. The corresponding positive testing sample instances are “Local excision 

(\t) Local excision of lesion of kidney” and “Excision of lesion of kidney (\t) Local excision 



 

74 

of lesion of kidney” with the true class label = 1. For the negative sample, each new concept 

was paired with a randomly chosen parent taken from the other new concepts’ parents. For 

example, Ultrasonography of left lower limb, which is the parent of Ultrasonography of 

left knee region, was selected randomly and paired it with Local excision of lesion of kidney 

to form the instance “Ultrasonography of left lower limb (\t) Local excision of lesion of 

kidney” with the label = 0. 

The positive and negative samples were randomly arranged into a sequence and 

sent to the trained BERTBASE+CLF and BERTBASE+SNO+CLF models for testing. The models 

processed each input pair, using the weights that it had learned before, returning a class 

label (0 or 1) as prediction result. For negative sample instances, label 0 is correct, 

indicating that there is no IS-A link between these two concepts in the new SNOMED CT 

release. Label 1 is correct for positive sample instances, indicating the existence of an IS-

A link. The predicted result labels were compared with the true labels to calculate the 

prediction accuracy in terms of Precision, Recall, and F1 score. 
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Figure 5.7 Data flow for testing the trained BERTBASE+CLF or BERTBASE+SNO+CLF models 

with unseen data. 

5.3.2 Results 

The prediction results of the fine-tuned model and the pre-trained & fine-tuned model with 

samples extracted from the Procedure hierarchy of the SNOMED CT 2018 January release, 

with 15,000 training steps, will be reported first. The Precision, Recall, and F1 scores for 

ten tests are presented in Table 5.1. For the Procedure hierarchy, the model was tested 

against 3,908 pairs (1,954 positives and 1,954 negatives). For example, in Test 7 for IS-A 

classification, the Precision is 0.69, Recall is 0.98, and F1 score is 0.81 for fine-tuning. 

When adding pre-training, Precision is 0.73, Recall is 0.98, and the F1 score is 0.84. The 

F1 score improved by about 3.7% with pre-training. Similarly, for Non-IS-A tests, the F1 

score increased from 0.71 to 0.77, an 8.5% improvement. On average, by adding pre-

training, we achieved 6.3% (from 0.80 to 0.85) and 14.5% (from 0.69 to 0.79) 

Testing non-

IS-A 
BERTBASE+CLF 

or BERTBASE+SNO+CLF 

BERTBASE+CLF 

or BERTBASE+SNO+CLF 

Stream of 0s and 1s, one for each Test 

Data Item. 
0 is correct 

Stream of 0s and 1s, one for each Test 

Data Item. 
1 is correct 

Result 

Quality Score of tested Model 

SNOMED CT 2018 January release new concepts 

New concept 
Randomly pick another 

new concept’s parent 
Parent 1, Parent 2, … 

Testing IS-A 
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improvements of F1 for IS-A and Non-IS-A classifications, respectively. 

Table 5.1 Precision, Recall, and F1 Score for Ten Tests of Procedure Hierarchy 

(Training Steps = 15,000) 

Procedure 

IS-A Classification Non-IS-A Classification 

Fine-tuning 
Pre-training & 

Fine-tuning 
Fine-tuning 

Pre-training & 

Fine-tuning 

No. Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 

1 0.67 0.98 0.79 0.75 0.98 0.85 0.96 0.51 0.67 0.97 0.68 0.80 

2 0.66 0.98 0.79 0.77 0.98 0.86 0.97 0.48 0.64 0.98 0.70 0.82 

3 0.70 0.98 0.81 0.75 0.98 0.85 0.96 0.58 0.72 0.97 0.68 0.80 

4 0.66 0.98 0.79 0.74 0.98 0.84 0.97 0.50 0.66 0.97 0.66 0.79 

5 0.69 0.98 0.81 0.74 0.98 0.84 0.96 0.56 0.70 0.97 0.66 0.79 

6 0.71 0.97 0.82 0.74 0.98 0.85 0.96 0.59 0.73 0.97 0.66 0.79 

7 0.69 0.98 0.81 0.73 0.98 0.84 0.97 0.56 0.71 0.97 0.64 0.77 

8 0.67 0.98 0.80 0.71 0.98 0.82 0.96 0.52 0.68 0.97 0.59 0.73 

9 0.69 0.98 0.81 0.73 0.98 0.84 0.96 0.56 0.71 0.97 0.63 0.77 

10 0.66 0.98 0.79 0.76 0.98 0.86 0.96 0.49 0.65 0.97 0.69 0.81 

Average 0.68 0.98 0.80 0.74 0.98 0.85 0.96 0.54 0.69 0.97 0.66 0.79 

Standard 

Deviation 
0.02 0.00 0.01 0.02 0.00 0.01 0.00 0.04 0.03 0.00 0.03 0.03 

The summary of the Precision, Recall, and F1 scores of ten tests for the Procedure 

hierarchy with 10,000 training steps is reported in Table 5.2. In each test, the model was 

tested against 3,908 pairs (1,954 positives and 1,954 negatives). On average, by adding 

pre-training to fine-tuning, the improvements are 3.75% (from 0.80 to 0.83) and 10.1% 

(from 0.69 to 0.76) for IS-A and Non-IS-A classifications, respectively. 

Table 5.2 Precision, Recall, and F1 Score for Ten Tests of Procedure Hierarchy 

(Training Steps = 10,000) 

Proce-

dure 

IS-A Classification Non-IS-A Classification 

Fine-tuning 
Pre-training & 

Fine-tuning 
Fine-tuning 

Pre-training & 

Fine-tuning 

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 

Average 0.68 0.98 0.80 0.72 0.98 0.83 0.96 0.54 0.69 0.97 0.62 0.76 

Max 0.71 0.98 0.82 0.75 0.99 0.85 0.97 0.59 0.73 0.98 0.67 0.79 

Min 0.66 0.97 0.79 0.71 0.98 0.82 0.96 0.48 0.64 0.96 0.59 0.73 

Standard 

Deviation 
0.02 0.00 0.01 0.01 0.00 0.01 0.00 0.04 0.03 0.01 0.02 0.02 
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For the Clinical finding hierarchy, the summary of ten test results with training 

steps = 200,000 is reported in Table 5.3. In each test, the model was tested against 8,574 

pairs (4,287 positives and 4,287 negatives). On average, by adding pre-training, the 

improvements that were achieved are 7.5% (from 0.80 to 0.86) and 15.3% (from 0.72 to 

0.83) for IS-A and Non-IS-A classifications, respectively. 

Table 5.3 Precision, Recall, and F1 Score for Ten Tests of Clinical Finding Hierarchy 

(Training Steps = 200,000) 

Clinical 

Finding 

IS-A Classification Non-IS-A Classification 

Fine-tuning 
Pre-training& 

Fine-tuning 
Fine-tuning 

Pre-training& 

Fine-tuning 

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 

Average 0.70 0.94 0.80 0.79 0.94 0.86 0.90 0.60 0.72 0.93 0.76 0.83 

Max 0.72 0.94 0.82 0.82 0.95 0.88 0.91 0.64 0.75 0.94 0.80 0.86 

Min 0.69 0.93 0.79 0.77 0.94 0.85 0.89 0.58 0.70 0.92 0.73 0.81 

Standard 

Deviation 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.02 0.02 0.01 0.02 0.01 

 

Regarding the prediction of IS-A links for new concepts, examples of the two 

models’ prediction results (Table 5.4) are shown for ten pairs for which the second concept 

was newly added to SNOMED CT’s Clinical finding hierarchy in the 2018 January release. 

For each test, one test concept was paired with one new concept as one test instance, then 

the model predicted whether there should be an IS-A link between them. For instance, for 

Example 2, Arthropathy of knee joint was chosen as the first concept and paired with 

Aseptic necrosis of right lateral femoral condyle. Then the task became to predict whether 

there is an IS-A link between the two concepts. Both the fine-tuning and pre-training & 

fine-tuning models returned the correct label (=1). For Example 4, the fine-tuning model is 

wrong, and the combined model is correct that Chronic pain following radiotherapy IS-A 
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Persistent pain following procedure. Both models are wrong about Injury of bilateral optic 

tracts, because it is not a Soft tissue injury (Example 9). 

Table 5.4 Prediction Results of Two Models on Five IS-A & Five non-IS-A Examples 

from Clinical Finding Hierarchy. 

Index Test Concept New Concept 
True 

Label 

Fine-

tuning 

Fine-

tuning 

and 

Pre-

training 

1 Injury of trachea Crushing injury of trachea 1 1 1 

2 
Arthropathy of knee 

joint 

Aseptic necrosis of right 

lateral femoral condyle 
1 1 1 

3 Lesion of neck 
Stenosis of right vertebral 

artery 
1 1 1 

4 
Persistent pain 

following procedure 

Chronic pain following 

radiotherapy 
1 0 1 

5 Joint injury 
Traumatic rupture of 

ligament of wrist 
1 1 1 

6 Bursitis of shoulder Injury of toenail 0 0 0 

7 
Atherosclerosis of 

artery 
Crushing injury of trachea 0 0 0 

8 
Finding of employment 

status 
Social isolation in parenthood 0 0 0 

9 Soft tissue injury Injury of bilateral optic tracts 0 1 1 

10 Injury of wrist 
Injury of peripheral nerve of 

abdomen 
0 1 0 
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CHAPTER 6  

ENRICHMENT OF SNOMED USING BERT AND ABSTRACTION NETWORKS 

 

The study in Chapter 4 showed that it is possible to further improve the performance of the 

CNN model by using summarization of ontologies, based on Abstraction Networks. In 

addition, the study in Chapter 5 and [122]  utilized the “next sentence prediction” capability 

of BERT for IS-A relationship classifications and demonstrated a performance 

improvement with combining pre-training and fine-tuning of BERT. Hence, two 

independent ways were demonstrated to improve on the performance of previous work 

described in Chapter 3, namely a method to automatically predict the presence of IS-A 

relationships between a new concept and existing concepts based on the language 

representation model BERT. The first improvement was achieved by using the BERT 

model rather than the CNN model and the second by utilizing ontology summarization to 

provide a more accurate training data set of a CNN model. However, the utilization of the 

“next sentence prediction” capability of BERT was not optimal. 

This chapter combines the two improvements by utilizing ontology summarization 

together with the BERT model and with an improved presentation of the training data to 

better utilize the “next sentence prediction” capability of BERT. It is a challenge to further 

improve the performance of the BERT model, which is already high, with a recall of 0.94. 

The SNOMED CT 2017 July release was used as training set and the following 

2018 January release as testbed. Due to the different sizes and inconsistent modeling 

schemas across hierarchies, SNOMED’s largest hierarchy, Clinical Finding, was selected 

as the data source. The models were implemented with Tensorflow [118]. The models were 
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trained and tested on a machine with two Nvidia Tesla P100 “Pascal” video cards with 16 

GB RAM per GPU and two Intel Xeon E5-2630-v4 CPUs with 2.2 GHz processor speed 

and 128 GB memory per CPU.  

Google released two BERT models: BERTBASE (12 Transformer layers) and 

BERTLARGE (24 Transformer layers). Both models were trained on their Cloud TPUs 

(Tensor Processing Units), which have 64GB of RAM. They were trained on English 

Wikipedia (2,500M words of text) and BookCorpus [123] (800M words of text) with one 

million update steps. As recommended by the BERT creators, BERTLARGE was not used 

on our GPUs with 16GB of RAM, because the RAM size limited the number of training 

instances in each batch to avoid out-of-memory issues. Therefore, only BERTBASE was 

used in this experiment. The number of parameters for the pre-trained BERTBASE model is 

110M, with the default training settings L=12, H=768, A=12, where L is the number of 

layers (i.e., Transformer blocks), H is the hidden size, and A is the number of self-attention 

heads. The feed-forward/filter size is set to 4 times H, i.e., 3072 for H = 768. 

Figure 6.1 illustrates the process of training and testing an IS-A relationship 

classifier using taxonomy data from SNOMED CT. In the following sections the three 

major steps of the process will be described in detail: (a) pre-train the BERT model with 

concept-level documents (blue arrows), (b) fine-tune the BERT model with data derived 

from our area taxonomy (black arrows), and (c) test the two trained models with data from 

the new SNOMED CT release (red arrows).  
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Figure 6.1 Flowchart of training and testing an IS-A relationship classifier model with 

summarization data from Area Taxonomy of SNOMED CT (CLF = Classifier). Pre-train 

the BERT model (blue arrows), fine-tune the BERT model with area taxonomy (black 

arrows), and test with data from the new SNOMED CT release (red arrows). 

 

 

6.1 Pre-training BERT Model with Concept-Level Documents 

As a general language representation model, BERT was trained with Wikipedia and 

BookCorpus data, which do not provide a domain specific (i.e., medical) orientation for 

the ontology enrichment task. Chapter 5 demonstrated that pre-training BERT with a task-

related corpus can improve the model’s classification performance over directly fine-

tuning the BERT model. Thus, an improved methodology was used by running additional 

steps of pre-training the BERT model with Clinical Finding hierarchy data, prior to training 

an IS-A relationship classifier using BERT. This section elaborates on the pre-training 

setup and process (Figure 6.1(a)) of how the data was extracted from the Clinical Finding 

hierarchy of SNOMED CT, and converted it into a format that is compatible with BERT 

for pre-training.  
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6.1.1 Data Preparation 

The original BERT was pre-trained with general English sentences. To pre-train BERT 

with the knowledge of a hierarchy of a medical ontology is a challenge because BERT is 

trained only to handle text, while the hierarchy consists of concepts connected through IS-

A relationships. Therefore, each concept’s name was treated as a “sentence.” The concept’s 

hierarchically closely related concepts were considered as part of its definition in the 

ontology hierarchy. Thus, for a given concept A, A’s hierarchically closely related 

concept(s)’ names were also considered as “sentences.” 

The challenge is to harness the capability of BERT to model these IS-A 

relationships between concepts in an ontology. The hierarchical relationship from a 

specific concept to a general concept is expressed utilizing the features of the BERT model.   

BERT was created for tasks such as Next Sentence Prediction (NSP), in which it 

needs to predict whether one sentence logically (based on human-like intuition, not on 

formal logic) follows another sentence in a given text. Given two concepts A and B and a 

relationship A IS-A B, the BERT model was trained to recognize the sentence of A as the 

next sentence following the sentence of B.   

An ontology-oriented corpus was prepared for pre-training BERT with Clinical 

Finding IS-A relationships. For each concept, a document that consists of the concepts that 

are hierarchically related to it in a textual form was created. Though the choices for textual 

representation of hierarchically related concepts for a focus concept can vary, a simple 

pattern of a triple was preferred to form the document with a Parent – Focus concept – 

Child in each triple. In this way, two IS-A relationships are embedded, one from the focus 

concept to the parent concept, the other one from the child concept to the focus concept. 

Since the parents and children are important contextual knowledge elements of a focus 
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concept, an immediate neighborhood [124], contains the concept itself plus all concepts 

connected to it by a single relationship, either hierarchical or lateral. Derived from this 

definition, the immediate hierarchical neighborhood of a concept is defined as follows.  

Definition (Immediate hierarchical neighborhood): A concept’s immediate hierarchical 

neighborhood contains the concept itself plus all concepts connected to it by a hierarchical 

relationship. That is, the immediate hierarchical neighborhood of a concept contains itself 

and all concepts at a hierarchical distance of one, i.e., its parents and children.   

A general configuration of a focus concept with its immediate hierarchical 

neighborhood is illustrate in Figure 6.2(a). Consider a focus concept F (in yellow) with its 

m parents P1 to Pm (in green) and n children C1 to Cn (in grey). This configuration was 

represented by triples of the form (Parent, Focus concept, Child) to capture all the (m + n) 

IS-A relationships between the focus concept and its parent(s) and child(ren). Triples were 

constructed by using the focus concept and matching the parents and children by their 

indexes, e.g., the second parent matching with the second child (P2, F, C2) as shown in 

Figure 6.2(b).  

Assuming m is less than n (the number of parents is smaller than the number of 

children), after exhausting all parents, the remaining children are matched with the parents 

from the beginning, e.g., (P1, F, Cm+1), and ending with (P(n mod m), F, Cn) as shown in Figure 

6.2(b). In this matching process, for each child with index n ≥ m, for cases where n mod m 

= 0 (e.g. n = 2*m), parent Pm is used instead of P(n mod m) to get (Pm, F, Cn). In the rare cases 

when n is less than m, a similar modification is done to deal with the remaining parents. In 

Figure 6.2(c) the transition from the ontology dimension to the textual dimension is 

demonstrated, as it is needed for BERT, by converting each triple into a “paragraph.” A 
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paragraph consists of three lines to accommodate the three names, the parent concept, the 

focus concept, and the child concept, one name per line. The collection of n paragraphs for 

the n triples forms the document for the focus concept.  

 
Figure 6.2 Generate a document for a focus concept F: (a) the hierarchical structure of a 

focus concept F with m parent concepts P1 to Pm and n child concepts C1 to Cn, assuming 

n ≥ m. (b) n (P, F, C) triples obtained from (a). (c) F’s document representation by 

converting each triple in (b) into a three-line paragraph, with one concept’s name per line. 

Each paragraph is separated from another paragraph by an empty line. 

The above transformation is demonstrated with a concrete example with the focus 

concept Neoplasm of kidney in Figure 6.3. Figure 6.3(a) shows the neighborhood network 

of Neoplasm of kidney in yellow with its two parents (Neoplasm of urinary system, Kidney 

disease in green), and three children (Benign neoplasm of kidney, Malignant tumor of 

kidney, Neoplasm of renal pelvis in grey). These concepts are used to construct (Parent, 

Focus concept, Child) triples in which the focus concept is fixed and the parent concept 

(Line 1) Name of P1 

(Line 2) Name of F  

(Line 3) Name of C1 

(Line 4) 

(Line 5) Name of P2 

(Line 6) Name of F 

(Line 7) Name of C2 

(Line 8) 

…  
(Line 4m-3) Name of Pm 

(Line 4m-2) Name of F 

(Line 4m-1) Name of Cm 

(Line 4m) 

(Line 4m+1) Name of P1 

(Line 4m+2) Name of F 

(Line 4m+3) Name of Cm+1 

(Line 5m) 

… 
(Line 4n-3) Name of P(n mod m) 

(Line 4n-2) Name of F 

(Line 4n-1) Name of Cn 

 

 

(b) Triples for the 

excerpt of (a) 

F 

Pm ...  

C1 C2 Cn 
...  

(a) Immediate hierarchical 

neighborhood of focus 

concept F with the 

assumption (n ≥ m) 

P1 P2 (P1, F, C1) 

(P2, F, C2) 

… 

(Pm, F, Cm) 

(P1, F, Cm+1) 

… 

(P(n mod m), F, Cn) 

 

(c) One document converted 

from the triples in (b) 
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and child concept are matched by their indexes, e.g., (Kidney disease, Neoplasm of kidney, 

Malignant tumor of kidney) is a triple matching the second parent with the second child. 

Generating triples stops when every concept is used in at least one triple. Each triple is 

converted to a three-line paragraph with one concept’s name per line (Figure 6.3(b)). Two 

paragraphs are separated by an empty line.  

For example, starting in Line 5 there are “(Line 5: Parent) Kidney disease – (Line 

6: Focus concept) Neoplasm of kidney – (Line 7: Child) Malignant tumor of kidney – (Line 

8) EMPTY LINE …”. Thus, a list of ontology-oriented documents was generated by 

creating one “document” per concept. For simplicity, all the generated documents are 

concatenated in one text file, with pairs of documents separated by two empty lines, as the 

input to pre-train the BERTBASE model. 

 
Figure 6.3 Pre-training data: Serializing (a) the hierarchical structure of Neoplasm of 

kidney into (b) one document. 

 

 

(Line 1) Neoplasm of urinary system 

(Line 2) Neoplasm of kidney  

(Line 3) Benign neoplasm of kidney 

(Line 4) 

(Line 5) Kidney disease 

(Line 6) Neoplasm of kidney 

(Line 7) Malignant tumor of kidney 

(Line 8) 

(Line 9) Neoplasm of urinary system 

(Line 10) Neoplasm of kidney 

(Line 11) Neoplasm of renal pelvis 

(b) One document for the excerpt of (a) 

Neoplasm of urinary system 

Neoplasm of kidney 

Kidney disease 

Injury of kidney 

...  

...  

Benign neoplasm 

of kidney 

Malignant tumor 

of kidney 

Neoplasm of 

renal pelvis 

One document 

...  

(a) Immediate hierarchical neighborhood of 

Neoplasm of kidney 



 

86 

6.1.2 Data Preprocessing 

After the list of ontology-oriented documents was obtained, prior to training BERT, the 

samples were preprocessed in three steps: 1) Text normalization (e.g., Fournier's gangrene, 

→ fournier's gangrene), 2) Punctuation splitting (e.g., fournier's gangrene, → fournier  '  s 

gangrene), and 3) WordPiece tokenization (fournier ' s gangrene, → four ##nier ' s gang 

##ren ##e). BERTBASE then converted the preprocessed samples into input embeddings, 

which are the sum of the token embeddings, the segmentation embeddings and the position 

embeddings [86]. The same input embedding methods from the BERT paper [86] were 

adopted. The operations that are essential for pre-training in this study are as follows:  

In Figure 6.4, an example of how a training instance is formed from the concept-

level document is demonstrated. For example, Formestane allergy is the child of Estrogen 

antagonist in the SNOMED CT Clinical Finding hierarchy. The input sequence will be “1 

Estrogen antagonist (\t) Formestane allergy (\t)”. The first token of the sequence is the 

classification embedding ([CLS]), representing a classification label. It is “1” for positive 

instances and “0” for negative instances in the training data. A special token ([SEP]) is 

used to separate sentences. Out-of-vocabulary words are split into word pieces and denoted 

with ##. For example, “estrogen” is denoted as two items “est” and “##rogen.” This input 

will be converted into one training instance as “[CLS] est ##rogen antagonist all ##ergy 

[SEP] form ##est ##ane all ##ergy [SEP]” as shown in  

Figure 6.4(a). Similarly, Main spoken language Turkmen is not a child of Born in Scotland. 

The input sequence “0 Born in Scotland (\t) Main spoken language Turkmen (\t)” will be 

converted to “[CLS] born in scotland [SEP] main spoken language turk ##men [SEP]” in 

Figure 6.4(b). 
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Figure 6.4 Preprocessing (a) IS-A and (b) non-IS-A concept pairs. 

6.1.3 Pre-train BERT Model 

The goal of pre-training is to embed ontology knowledge into BERT’s language model. 

Therefore, training BERTBASE was refined with concept-based documents (prepared in 

Section 6.1.2) from SNOMED CT. To ensure the obtained model is compatible with the 

original BERT model, the same two training tasks were adopted, Masked Language 

Modeling (MLM) and Next Sentence Prediction (NSP). These are the two tasks that BERT 

was originally pre-trained for, since BERT is intended to process text. The training 

objective of the MLM task is to predict only the masked words. The training objective of 

NSP is to learn relationships between sentences (concepts) for any given sentence-pair. For 

the MLM task, 15% of the words are randomly masked in all the concept-based documents, 

and for each document, an upper bound for the number of masks is set. Then the BERTBASE 

model is trained to output the masked words rather than other possible words.  

For the NSP task, the training objective is to learn the IS-A relationships between 

concepts: Given two concepts A and B, is B a child of A, or not. In Figure 6.5, two 

“sentences” Skin finding, and Centrifugal rash were extracted from the document for the 

focus concept Centrifugal rash. After preprocessing these two concepts (treated as two 

“sentences”) as shown in the middle level, two token – “##ri” and “rash” were masked out. 

The BERTBASE model was trained to raise the probabilities of two correct tokens “##ri” 
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and “rash” over other tokens in the vocabulary. In addition, as Centrifugal rash IS-A Skin 

finding, the BERTBASE model was also trained to raise the probability for the correct 

classification label “IsNext.” The obtained model is denoted as BERTBASE+SNO 

(SNO=SNOMED CT).  

 

Figure 6.5 Pre-training the BERTBASE model with concept-based documents to obtain 

BERTBASE+SNO model. FFNN is short for Feedforward neural network. 

The training parameters used for Pre-training are as follows: batch size = 64, 

sequence length =128, training steps = 200,000, learning rate =2e-5, dropout rate = 0.1, and 

activation function = gelu (Gaussian error linear unit). 

 

 

6.2 Fine-tuning two BERT Models as IS-A Relationship Classifiers 

6.2.1 Data Preparation 

To fine-tune a BERT model into an IS-A relationship classifier, the model needs to be 

trained with both IS-A connected concept pairs (positive instances) and concept pairs with 

no IS-A connections (non-IS-A concept pairs, in short, i.e., negative instances). The IS-A 

connected concept pairs are explicitly defined in the ontology’s hierarchy. Thus, the 
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positive training data consists of all IS-A concept pairs in the Clinical Finding hierarchy. 

However, the selection of negative training data (non-IS-A concept pairs) is critical for the 

accuracy of the model. To compare the performance of models trained with and without 

the area taxonomy-based summarization technique, two sets of negative training data were 

prepared using the following two methods:   

6.2.1.1 Negative training data from Hierarchy.       In the previous study [121], for a 

CNN model, the non-IS-A pairs were limited only to nephew-uncle pairs in the same 

hierarchy. The rational was that a non-IS-A pair formed by two randomly sampled concepts 

that are likely completely unrelated concepts, will result in negative examples with a large 

semantic distance, that do not contribute to learning the “border surface” between positive 

and negative instances. Thus, for a given IS-A pair A IS-A B, it is more useful to learn 

differences between IS-A and non-IS-A pairs from a non-IS-A pair (A, C), where C is a 

“near miss,” close to the border surface. An uncle concept was used, i.e., a sibling of B, 

rather than an arbitrary concept D, which is likely not relevant to concept A, but still 

semantically close (see Figure 6.6). The training data including all IS-A pairs and nephew-

uncle pairs from the same hierarchy will be referred to as Hierarchy data. 

 
Figure 6.6 The nephew-uncle pair (A, C) (repeated from Figure 4.2 (a)). 
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6.2.1.2 Negative training data from Area Taxonomy.  Utilizing the area taxonomy, 

the nephew-uncle pairs can be further divided into two types: uncle and nephew concepts 

are from the same area or uncle and nephew concepts are from different areas. A 

classification model can benefit more from training with nephew-uncle non-IS-A pairs 

from the same area, because in a pair from the same area the two concepts are more closely 

related than in a pair where the two concepts are in different areas. Thus, the classification 

model can better learn the features representing the subtle differences between IS-A pairs 

and nearby non-IS-A pairs. As a result, we hypothesized that the extracted features will 

enable the classification model to better verify whether a concept pair should be connected 

by an IS-A link or not, achieving better testing performance. 

 

Figure 6.7 Nephew-uncle pairs within/without the same area. 

The above distinction is demonstrated with a concrete example (Figure 6.7) from 

the Clinical Finding hierarchy. Let the nephew concept be Hearing difficulty (in yellow). 

Its five uncle concepts are Acquired hearing loss, Audiogram abnormal, Hearing 

symptoms, Perception of hearing loss, and Hearing disorder. The first two concepts are 

the siblings of the concept Decreased hearing, which is a parent of Hearing difficulty, in 
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the same area. The other three uncle concepts are siblings of the concept Decreased hearing, 

because they are all children of Hearing finding in different areas from Hearing Difficulty. 

As Figure 6.7 shows, the first two uncle concepts (in green) are from the area {Finding site, 

Interprets} that contains Hearing difficulty. In contrast, two uncle concepts Hearing 

symptoms and Perception of hearing loss (in red) are in the area {Finding site, Interprets, 

Finding informer}, while the other uncle concept Hearing disorder is in the area {Finding 

site, Interprets}. Both are in different areas than the nephew concept Hearing difficulty. 

Hearing difficulty is semantically more similar to Acquired hearing loss, and Audiogram 

abnormal from the same area as they are all various kinds of hearing findings similar to 

Hearing difficulty.  

Hearing difficulty is less similar to Hearing symptoms and Perception of hearing 

loss in a different area, since they represent symptoms and the perception of hearing. 

Similarly, Hearing difficulty is also less similar to Hearing disorder in another area, which 

is a more general concept that is the root of a subhierarchy consisting of hearing disease 

concepts (not shown in the diagram). The training data including all IS-A pairs and 

nephew-uncle pairs from the same area is referred to as Area Taxonomy data, in contrast 

to the previously introduced Hierarchy data.  

6.2.2 Training an IS-A Relationship Classifier 

In each experiment, two independent classifiers (models) were trained using different data 

sets prepared with the above two techniques for performance comparison. In an ontology, 

there are more non-IS-A concept pairs (negative pairs) than IS-A concept pairs (positive 

pairs). To avoid an imbalanced training data issue, after the positive and negative pairs 

were extracted, the collection of negative pairs was randomly downsampled to the size of 
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the positive pairs in each training round for both models. Then the dataset was divided 

according to a 90:10 ratio for training and validation, respectively.  

Thus, the BERTBASE+SNO model was fine-tuned in the training phase to predict the 

correct labels for the IS-A concept pairs and the non-IS-A concept pairs, utilizing the NSP 

binary sentence-pair classification task. The sentence prediction capability of 

BERTBASE+SNO was employed and a softmax layer with categorical cross-entropy was 

added on top of it. The obtained model is denoted as BERTBASE+SNO+CLF (CLF = classifier), 

the model after fine-tuning.  

To achieve this, the model and the classifier were trained at the same time to predict 

IS-A links between pairs of ontology concepts, i.e., the parameters of BERTBASE+SNO and 

the classifier were fine-tuned to maximize the log-probability of the correct label (IS-A or 

non-IS-A). This process is illustrated with the concept Edema of wrist as an example in 

Figure 6.8. The input “1 Finding of wrist region (\t) Edema of wrist (\t)” was converted as 

one training instance to “[CLS] finding of wrist region [SEP] ed ##ema of wrist [SEP]” 

with Class label = 1. Class 1 means that there should be an IS-A link between the two 

concepts, and Class 0 means that there shouldn’t be such a link.   

The BERTBASE+SNO+CLF model computes the probabilities for Class 0 and Class 1 

and records the result as a 2-element vector. The label of the class with the higher 

probability is reported as the prediction output. The error between the predicted label and 

the true label was backpropagated through the model to improve the model’s parameters. 

In the training, the default model hyperparameters were used in pre-trained BERTBASE+SNO, 

with one exception, the number of training epochs was set to 6. This is an empirical value, 

based on the fact that the authors of BERT recommend 3 epochs for light fine-tuning with 
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a relatively small dataset. We chose to double this number as our dataset is larger than the 

dataset they refer to. 

 

Figure 6.8 Fine-tuning the BERTBASE+SNO model with concept pairs to obtain 

BERTBASE+SNO+CLF model. 

 

 

6.3 Performance Comparison between two Classifiers 

6.3.1 Test with New Clinical Finding Data 

To evaluate the BERTBASE+SNO+CLF models on previously unseen data, separate test tasks 

were created, using new concepts from the Clinical finding hierarchy of the January 2018 

release. For each new concept that was added to the Clinical finding hierarchy in this 

release, both positive and negative samples were prepared for testing. To obtain positive 

testing sample instances, each new concept and its parents were extracted as IS-A concept 

pairs. For example, Lesion of left ear has two parents Disorder of left ear and Ear lesion. 

The corresponding positive testing instances are “Disorder of left ear (\t) Lesion of left ear” 

and “Ear lesion (\t) Lesion of left ear” with the class label = 1 (true).  
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The negative sample instances are not limited to nephew-uncle pairs, but general 

combinations of non-IS-A concept pairs. Thus, to obtain negative testing instances, each 

new concept was paired with a randomly chosen concept from the other new concepts’ 

parents as non-IS-A concept pairs. For example, Disorder of soft tissue of upper limb, 

which is the parent of Congenital trigger finger of right hand, was selected and paired with 

Lesion of left ear to form a testing instance “Disorder of soft tissue of upper limb (\t) Lesion 

of left ear” with the label = 0.  

All the testing concept pairs were randomly shuffled, divided into batches and sent 

to the trained BERTBASE+SNO+CLF models for prediction. The tested models use the 

previously learned weights to process each input pair and return a class label (0 or 1) as 

prediction result. Label 1 is correct for a positive testing instance, indicating the existence 

of an IS-A link in the new SNOMED CT release. In other words, the existence of an IS-A 

link in the new release of SNOMED CT is correctly predicted. For a negative testing 

instance, there should be no IS-A link between these two concepts, so label 0 would be 

correct. The prediction accuracy was calculated in terms of Precision, Recall, F1 and F2 

scores by comparing the labels predicted by the tested model with the ground-truth labels. 

6.3.2 Results 

The prediction results of the two models, one trained with hierarchy data (referred to as 

Hierarchy model) and the other one trained with area taxonomy data (referred to as Area 

Taxonomy model), will be reported in this subsection. The testing instances (concept pairs) 

were extracted from the Clinical Finding hierarchy of the SNOMED CT 2018 January 

release, which were not included in the training data set. In each experiment, the two trained 

models were tested using the same testing sample. Besides the typical metrics Precision, 
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Recall and F1, another metric called F2 was used. The F2 score is calculated from the 

generalized F score Fβ where 

Fβ = (1 + β2) ∗
precision ∗ recall

(β2 ∗ precision) + recall
 (6-1) 

with β =2. The value of β is set to 2, to emphasize that recall is considered more important 

than precision in this task. This experiment was repeated ten times and the Precision (P), 

Recall (R), F1, and F2 scores for the corresponding ten tests are presented in Table 6.1. 

Each model was tested against 8,574 pairs (4,287 positives and 4,287 negatives). For 

example, in Test 5 for IS-A classification, the Precision is 0.83, Recall is 0.93, the F1 score 

is 0.88, and the F2 score is 0.91 for the Hierarchy model. When testing the Area Taxonomy 

model, Precision is 0.81, Recall is 0.96, F1 is 0.88, and F2 is 0.93. The Precision score 

dropped from 0.83 to 0.81 while the Recall score increased from 0.93 to 0.96, improving 

by 3%. For Non-IS-A tests, the Recall score dropped from 0.81 to 0.78 while the Precision 

score increased from 0.93 to 0.95.  

Table 6.1 Precision (P), Recall (R), F1, and F2 Scores for Ten Experiments of Clinical 

Finding Hierarchy 

Test 
IS-A Classification Non-IS-A Classification 

Hierarchy Area Taxonomy Hierarchy Area Taxonomy 

No. P R F1 F2 P R F1 F2 P R F1 F2 P R F1 F2 

1 0.83 0.94 0.88 0.92 0.79 0.95 0.87 0.91 0.93 0.81 0.87 0.83 0.94 0.75 0.84 0.78 

2 0.84 0.93 0.88 0.91 0.8 0.96 0.87 0.92 0.93 0.82 0.87 0.84 0.95 0.77 0.85 0.80 

3 0.85 0.94 0.9 0.92 0.8 0.96 0.87 0.92 0.94 0.84 0.88 0.86 0.95 0.76 0.84 0.79 

4 0.87 0.94 0.9 0.93 0.8 0.96 0.87 0.92 0.93 0.86 0.9 0.87 0.95 0.76 0.85 0.79 

5 0.83 0.93 0.88 0.91 0.81 0.96 0.88 0.93 0.93 0.81 0.87 0.83 0.95 0.78 0.85 0.81 

6 0.86 0.94 0.9 0.92 0.81 0.96 0.88 0.93 0.93 0.85 0.89 0.86 0.95 0.78 0.86 0.81 

7 0.85 0.94 0.89 0.92 0.79 0.96 0.87 0.92 0.93 0.84 0.88 0.86 0.95 0.75 0.84 0.78 

8 0.84 0.94 0.89 0.92 0.8 0.96 0.87 0.92 0.93 0.83 0.88 0.85 0.95 0.76 0.84 0.79 

9 0.83 0.94 0.89 0.92 0.8 0.96 0.87 0.92 0.94 0.81 0.87 0.83 0.95 0.76 0.84 0.79 

10 0.87 0.94 0.9 0.93 0.8 0.96 0.87 0.92 0.93 0.85 0.89 0.86 0.95 0.75 0.84 0.78 

Average 0.85 0.94 0.89 0.92 0.80 0.96 0.87 0.92 0.93 0.83 0.88 0.85 0.95 0.76 0.85 0.79 

Standard 

Deviation 
0.02 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.01 0.02 0.00 0.01 0.01 0.01 
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Comparing the average of ten experiments between the Hierarchy model and the 

Area Taxonomy model shows that the Area Taxonomy model improves the Recall from 

0.94 to 0.96 at the cost of the Precision dropping from 0.85 to 0.80, and the F1 score drops 

from 0.89 to 0.87, while the F2 score remains the same at 0.92.   

Regarding the prediction of IS-A links for new concepts, ten examples of the two 

models’ prediction results (Table 6.2) were shown for ten pairs for which the second 

concept was newly added to SNOMED CT’s Clinical finding hierarchy in the 2018 January 

release. The first five examples are IS-A connected concept pairs, which is indicated by 

the value 1 in the True Label column. The other five examples are synthesized non-IS-A 

concept pairs, indicated in the True Label column by 0.  

Table 6.2 Prediction Results of Two Models on Five IS-A & Five non-IS-A Examples 

from Clinical Finding Hierarchy. Green fill indicates that the model correctly predicted 

the True Label 

Index Test Concept New Concept 
True 

Label 

Hierarchy 

model 

prediction 

Area 

Taxonomy 

prediction 

1 Visual cortex injury Injury of right visual cortex 1 1 1 

2 Drug therapy finding Has supply of rescue medication 1 1 1 

3 Cerebrovascular disease Occlusion of left pontine artery 1 1 1 

4 Decreased hearing 
Congenital conductive hearing 

loss 
1 0 1 

5 
Congenital anomaly of 

fetus 

Malformation of central nervous 

system of fetus 
1 1 1 

6 
Disorder of bilateral ulnar 

nerves 

Loss of tissue of right eye co-

occurrent with laceration 
0 0 0 

7 Gastric ulcer Complex burn of wrist 0 0 0 

8 
Occlusion of left cerebellar 

artery 
Dissection of basilar artery 0 0 0 

9 Osteomyelitis of right ankle Bone cyst of right foot 0 1 1 

10 Injury of toe Open wound of left foot 0 1 0 

For each test, one Test Concept was paired with one New Concept as one test 

instance, then we let the BERT model predict IS-A links between them. For instance, for 
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Example 3, Cerebrovascular disease was chosen as the test concept and paired it with the 

new concept Occlusion of left pontine artery. Then the task became to predict whether 

there is an IS-A link between the two concepts. Both the Hierarchy model and the Area 

Taxonomy model returned the correct label (=1). Correct predictions are marked in green. 

In Example 4, the Hierarchy model is wrong, and the Area Taxonomy model is correct that 

Congenital conductive hearing loss IS-A Decreased hearing. Both models are wrong about 

Bone cyst of right foot, because it is not an Osteomyelitis of right ankle (Example 9), thus 

they are marked in red. 

The procedure to reproduce the results of this chapter is described in the 

APPENDIX. 
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CHAPTER 7  

USING EMBEDDING SIMILARITY FOR TERMINOLOGY PLACEMENT 

 

This chapter introduces and tests a similarity-based approach to identify parent(s) for a new 

concept in order to properly place it into a terminology. We rank a list of parent candidate 

concepts for placing a new concept, based on the similarity score of the vector 

representation of the concept names without manual feature engineering. Each of the 

candidate parents is paired with the new concept. The similarity score is calculated using 

the cosine distance between the vector representations of the two concepts of the pair. In 

addition, syntax rules are utilized to filter out similar concepts that have no potential of 

being parents of the new concept. Curators will need to manually scan the algorithmically 

prepared list of candidates, easily eliminating the improper candidates, to obtain all or most 

parents of each new concept.  

Using the concept level embeddings and a post-processing method, we validated 

our approach with the 913 new concepts added to the Procedure hierarchy of SNOMED 

CT in the 2018 January release. The result shows that for new concepts, our method found 

43.35% of all the parents. The Machine Learning Doc2vec [63] technology with the 

similarity measure enables to automatically provide a short candidate list, capturing a 

sizable percentage of the parents of the new concepts.  

 

 

7.1 Method 

We previously observed that the names of parent and a child concepts are often similar. 

This similarity is reflected in the Doc2vec embeddings. Calculating the similarity of 

vectors of concept names can be utilized to identify linguistically similar concepts.  In 
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general, we expect the parents of a new concept to be concepts from the previous release 

(in brief: old concepts). However, some new concepts have parents that are also new 

concepts (Figure 7.1). This happens when a new release contains a batch of new concepts 

on the same subject. 

In this chapter, we harness the vector representations of the concept names for 

recommending candidate parents for a new concept. New concepts can be divided into 

three categories based on the distribution of a new concept’s parent(s) across two 

consecutive releases (Figure 7.1), the previous release and the new release. A new concept 

that only has parent(s) in the old release is assigned to Category I. A new concept that only 

has parent(s) in the new release is assigned to Category II. A new concept that has parents 

in both the old release and the new release is assigned to Category III. We list examples 

for all three categories from the SNOMED 2018 January release (new release).  

The new concept Open biopsy of adrenal gland belongs to Category I, because all 

of its parents—Surgical biopsy of adrenal gland and Open biopsy are in the old release. 

The new concept Revision of left total hip arthroplasty belongs to Category II since its 

parent Revision of total hip arthroplasty is a new concept as well. The new concept 

Magnetic resonance imaging of bilateral hands belongs to Category III, because it has two 

parents Magnetic resonance imaging of left hand and Magnetic resonance imaging of right 

hand in the old release and one parent Magnetic resonance imaging of bilateral upper limbs 

in the new release. Among 913 new concepts added into the Procedure hierarchy of the 

new release, there are 624, 92, and 197 concepts in Categories I, II, and III, respectively. 

The total number of actual child-parent concept pairs is 1954. 
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Figure 7.1 Examples of new concepts that belong to the three categories.  

Initially we considered identifying parents in the old release (Category 1 and part 

of Category 3) by training with the old concepts and identifying parents in the new release 

(Category 2) by training with the new concepts. We would obtain two sorted similarity lists 

containing old and new candidate parents, respectively, and then merge the two lists by 

similarity score in a descending order. However, we then realized that we could instead 

train a model, in an integrated algorithm, with the concepts in the new release, which 

contains both the new and old concepts, obtaining just one similarity list of candidate 

parents. Two algorithms were tested.  

7.1.1 Algorithm 1 

Algorithm 1 (Figure 7.2) relies exclusively on concept similarity (cosine similarity between 

embeddings) to obtain the N most similar child-parent pairs. We first preprocess the names 

of all concepts from the new release. (At this stage, before inserting the new concepts, the 

new release does not exist, but the list of new concepts does exist and together with all the 

concepts of the old release, the combined list consists of all the concepts of the new release). 
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Each concept’s preprocessed name is treated as a document. We train a Doc2vec 

embedding model using all those documents to obtain the embeddings for all concepts.  

For the new concept X, we query the pre-trained Doc2vec embedding model to 

retrieve its vector. A new concept’s vector is used to calculate its cosine similarity to each 

of the other concepts’ vectors. We select N candidate concepts that are most similar to the 

new concept, ranking them by their similarity scores in descending order. We select the 

top M concepts with the highest similarity scores. Each candidate concept of the M 

concepts is paired as a candidate parent with the new concept X. These concept pairs 

constitute the result. 

 

Figure 7.2 Flowchart of Algorithm 1 to generate M candidate child-parent pairs for a 

new concept X.  
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7.1.2 Algorithm 2 

To improve the performance of Algorithm 1, we included two rules that modify it, resulting 

in Algorithm 2. We observed that when the child and parent’s multi-word names are similar, 

the child’s name is typically more detailed than the parent’s, making the parent name’s set 

of words a subset of the set of words in the name of the child. For example, Repair of 

paraumbilical hernia is a parent of Laparoscopic repair of paraumbilical hernia with 

suture. We utilize this observation as follows:  

Rule 1: If the set of words of the candidate parent concept is not a proper subset of the set 

of words of the new concept, then discard this candidate parent.   

Sometimes the most similar concept of a new concept is a bilateral sibling. For 

example, the most similar concept for Magnetic resonance imaging of left knee with 

contrast is Magnetic resonance imaging of right knee with contrast. Such concepts will be 

in the first positions of the result list but are not parents. Rule 1 eliminates such concepts. 

However, it may also delete legitimate parents from the candidate list. For example, 

Ultrasonography of bilateral popliteal fossa is a child of Ultrasonography of left popliteal 

fossa. In this case, the names are identical except that “bilateral” in the child is replaced by 

“left” in the parent. To override such exclusions, we apply Rule 2 before applying Rule 1.   

Rule 2: If the word “bilateral” is in the set of words of the new concept and “left” or “right” 

is in the set of words of a candidate parent, then Rule 1 is applied only after removing “left” 

or “right” from the set of words of the parent. 

An example of Rule 2 is as follows: The concept Magnetic resonance imaging of 

bilateral elbows is converted to Set 1 {“magnetic”, “resonance”, “image”, “bilateral”, 
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“elbow”}. One of its parents, Magnetic resonance imaging of left elbows, after being 

converted to Set 2 is {“magnetic”, “resonance”, “image”, “left”, “elbow”}. Before applying 

Rule 1, we remove “left” from Set 2. Then Set 2 is a subset of Set 1, so Rule 1 is not 

activated. 

To obtain an accurate word set for a concept, we use the Natural Language Toolkit 

(NLTK) [125]. The concept’s name is first tokenized by word_tokenize() provided by 

NLTK to get a list of words. Then any stop word is removed from the list. The WordNet 

lemmatizer then transforms each word into its normal form. Next, duplicate words are 

removed from the list. Finally, we check whether Set 2 is a subset of Set 1.  

Figure 7.3 shows the flowchart of Algorithm 2, which modifies Algorithm 1 to 

include Rules 1 and 2 to accumulate M candidate pairs after discarding some improper 

candidates. We concentrate on the roles of the two rules skipping the explanations of 

components that are identical to Algorithm 1. After we obtain N most similar concepts as 

a candidate list for a new concept X, we test each concept in that candidate list. For each 

candidate concept, we pair it with the new concept. Set 1 (Set 2) is a word set of the name 

of the new concept (candidate parent concept). The flowchart applies Rule 2, which is an 

exception check, before applying Rule 1. If Set 2 is a subset of Set 1, this concept pair is 

kept in the result list. If not, we remove this concept pair. If the result size is smaller than 

M, where M is a pre-selected threshold, we move on to the next candidate concept in the 

list. This process is repeated until M child-parent pairs have been found; they are returned. 

However, if there are fewer than M concept pairs after iterating through all N candidate 

parent concepts, we return the recorded pairs. 
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Figure 7.3 Flowchart of Algorithm 2 to generate up to M child-parent pairs for new concept 

X.  

7.1.3 Evaluation Procedure 

The child-parent pairs of our methods are compared with the child-parent pairs in the new 

release, which serve as a gold standard. The performance of our approach is evaluated by 

the number of child-parent pairs in the new release identified by our method. The recall is 
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the ratio of the new release child-parent pairs identified by the algorithms. The precision is 

the ratio of identified child-parent pairs in the new release out of the candidate pairs 

submitted by the algorithm. We use a parameter N for the size of the list of concepts similar 

to the new concept and M for the maximum number of recommended parents. Since the 

recall grows and the precision declines with M, the choice of an optimal M can be made 

by maximizing the F1 measure combining recall and precision.  

7.1.4 Preprocessing 

We apply three preprocessing steps to each concept: Text normalization (e.g., Excision of 

Bartholin's gland → excision of bartholin's gland), punctuation splitting (e.g., excision of 

bartholin's gland, → excision of bartholin ' s gland), and word piece tokenization (excision 

of bartholin ' s gland, → ex ##cision of bart ##hol ##in ' s  gland). This mechanism is 

adopted from the BERT model [86]. It employs WordPiece embeddings [126] with a 

30,522 token vocabulary. Tokens are from a fixed size vocabulary that Google used for 

training, namely the concatenation of the BooksCorpus [123] and English Wikipedia. 

7.1.5 Train Doc2vec Embeddings 

Doc2vec is trained with all the concepts in the Procedure hierarchy in combination with 

the distributed bag of words (PV-DBOW) model, which has the advantage of embedding 

similarity in the vector representations of terms. This is desirable since similar biological 

entities are often named in similar ways. We employed Gensim [116] to train Doc2vec 

with the following hyperparameters: Vector size = 512, window size = 5, epochs = 100, 

workers = 4 cores, alpha=0.025, min alpha=0.00001, negative sampling = 10.  
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7.1.6 Similarity Score 

The similarity between two vectors X and Y, produced by Doc2Vec, is computed with the 

cosine similarity measure as 𝐶𝑜𝑠𝑠𝑖𝑚(𝑋, 𝑌) =
𝑋∙𝑌

‖𝑋‖‖𝑌‖
, where X · Y is the scalar product of 

X and Y, and ‖𝑋‖ is the Euclidean norm of vector 𝑋. 

 

 

7.2 Results 

We tested our methodology with the Procedure hierarchy of the SNOMED July 2017 and 

January 2018 releases. There were 913 new concepts in the latter. Of these, 624 have 

parents only in the previous release (Category I); 92 concepts have parents only in the new 

release (Category II); and 197 concepts have parents in both releases (Category III). Out 

of the 1954 new child-parent pairs, 454 pairs are internal pairs.  

Table 7.1 Precision, Recall, and F1 of Algorithm 1 and Algorithm 2 for Ten Testes 

 M 1 2 3 4 5 6 7 8 9 10 

A
L

G
O

R
IT

H
M

 1
 

Pairs found 184 440 591 674 754 798 830 864 889 914 

Out of 913 1826 2739 3652 4565 5478 6391 7304 8217 9130 

Actual child-

parent pairs 
1954 1954 1954 1954 1954 1954 1954 1954 1954 1954 

Precision 0.202 0.241 0.216 0.185 0.165 0.146 0.130 0.118 0.108 0.100 

Recall 0.094 0.225 0.302 0.345 0.386 0.408 0.425 0.442 0.455 0.468 

F1 0.128 0.233 0.252 0.240 0.231 0.215 0.199 0.187 0.175 0.165 

A
L

G
O

R
IT

H
M

 2
 

Pairs found 476 652 765 819 847 853 853 853 853 853 

Out of 782 1322 1699 1961 2124 2205 2254 2277 2290 2297 

Actual child-

parent pairs 
1954 1954 1954 1954 1954 1954 1954 1954 1954 1954 

Precision 0.609 0.493 0.450 0.418 0.399 0.387 0.378 0.375 0.372 0.371 

Recall 0.244 0.334 0.392 0.419 0.433 0.437 0.437 0.437 0.437 0.437 

F1 0.348 0.398 0.419 0.418 0.415 0.410 0.405 0.403 0.402 0.401 
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We employed Algorithms 1 and 2 to determine candidate parent concepts. The 

resulting pairs were compared with the actual child-parent pairs in the new release to 

calculate precision, recall, and F1 for both algorithms. For each concept, M is the number 

of parent candidates to be viewed by curators, and N is the number of most similar concepts 

in the list considered. We set N = 100. We executed Algorithm 1 and Algorithm 2 in ten 

tests with the value of M varying from 1 to 10 (Table 7.1).  

Table 7.1 shows that when we applied Algorithm 1 with M=5, there were 4,565 

(=913 * 5) child-parent pairs. Out of these pairs, 754 pairs are actual child-parent pairs. 

The precision, recall, and F1 are 0.165, 0.386, and 0.231, respectively. The maximum F1 

score is achieved for M=3 (with precision = 0.216, recall = 0.302, F1 = 0.252), and the 

graphs (omitted) for precision and recall intersect between M=2 and M=3. When we 

applied Algorithm 2 with M=4, there were 1,961 child-parent pairs. Out of these pairs, 819 

pairs are actual child-parent pairs. The precision, recall, and F1 are 0.418, 0.419, and 0.418, 

respectively. As shown in Figure 7.4, M=4 is where all three lines intersect, representing 

the optimal balance of precision and recall. The maximum F1 score is achieved at M=3 

(with precision = 0.450, recall = 0.392, F1 = 0.419). Thus, either 3 or 4 can be used as the 

optimal value of M.  

In our scenario, we believe that curators would be willing to pay the price of a 

slightly lower precision to identify substantially more child-parent pairs, because their 

priority is to automatically obtain the most likely child-parent pairs for reviewing while 

limiting their effort. Thus, we prefer the M value where the recall is high, and we still 

maintain a relatively high F1 score at the same time. Thus, we preferred M=5 over M=3 

because 82 (= 847-765) more child-parent pairs were identified for the price of losing only 
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0.051 (=0.450-0.399) in precision and losing 0.004 (=0.419-0.415) in F1. In contrast for 

M=6, to gain 6 (=853-847) more child-parent pairs requires reviewing 81 (=2205-2124) 

more parent candidates. The 0.004 (=0.437-0.433) improvement in recall will not justify 

the additional effort required to achieve it. 

Table 7.2 Result Comparison between Algorithm 1 and Algorithm 2 for M=5  

M = 5, N = 100 
Algorithm 1 Algorithm 2 

Integrated Search Integrated Search 

Pairs found 754 847 

Out of 4565 2124 

Real child-parent pairs 1954 1954 

Precision 0.1652 0.3988 

Recall 0.3859 0.4335 

F1 0.2313 0.4154 

 

To summarize, we compare in Table 7.2 the results of Algorithm 1 and Algorithm 

2 for M=5, where the preferred Algorithm 2 is optimized. For Algorithm 2 we use N=100 

and M=5, since this algorithm considers more candidates from the similarity list to replace 

improper candidates. We prefer a small M to save curators’ time and effort, and an N which 

is large enough to include most of the actual parents with names that are similar to the new 

concept name. For fair comparison, allowing the same number of M recorded candidates 

to be reviewed by the curators, for Algorithm 1 N=M=5. For instance, using Algorithm 1 

we recorded 913*5=4565 candidate pairs since no candidates are discarded and we found 

754 actual child-parent pairs. Similarly, we identified 847 actual child-parent pairs out of 

2124 recorded by Algorithm 2 (for some new concepts, fewer than five candidates are 

identified even when considering the 100 most similar concepts). 

Comparing precision, recall and F1 in Table 7.2, Algorithm 2 is preferable, due to 

the savings in reviewing improper candidates. Thus, from now on we will discuss only 

Algorithm 2. Figure 7.4 shows precision, recall, and F1 of the ten results of Algorithm 2. 
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Figure 7.4 Precision, recall, and F1 of Algorithm 2 for M = 1 to 10. The F1 scores for the 

ten tests are labeled. At M=3 and M=4, the F1 scores are 0.419 and 0.418, the highest two 

scores among ten tests. Note that after M=5 the tangent of the recall chart declines. 

Up to this point we considered the new release as a gold standard regarding the 

parents of the new concepts. However, in our extensive research on Quality Assurance of 

biomedical terminologies in general and of SNOMED CT in particular [17, 34, 35, 43, 127, 

128], we have shown that SNOMED modeling is not perfect and modeling errors including 

IS-A relationship errors occur. Thus, domain expert (GE) studied a random sample of 

parents of 91 new concepts (10%). We were looking for two kinds of errors for the parents 

of new concepts in the 2018 release. One kind is missing parents, where Algorithm 2 

identifies candidates that, by our judgement, are missing parents overlooked by the 

SNOMED curators. Hereby we refer to an IS-A relationship missing between the new 

concept and an existing concept in the July 2017 release. For example, our domain expert 

found that screening for abuse should be considered a parent of screening for solvent abuse. 

Thus, the existing parent Screening procedure should instead be a grandparent.  
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The second kind is wrong parents, where an “attributive phrase” in the child 

concept name is listed as parent, while the parent should be part of the “essential phrase” 

of the child name. We hypothesize that such mistakes might have occurred due to using a 

classifier algorithm without a subsequent manual review. Left salpingo-oophorectomy is a 

parent of Total hysterectomy with left salpingo-oophorectomy in the 2018 release, which 

we consider a mistake, since with left salpingo-oophorectomy is an attribute of the essential 

phrase total hysterectomy.   

Out of the 188 pairs for the sample of 91 new concepts in the January 2018 release, 

the domain expert found 28 wrong parents, 6 of which should be ancestors rather than 

parents, due to more refined parents. Out of the 257 candidate pairs obtained by Algorithm 

2 for the same 91 concepts, 23 are judged missing parents and should be added to 

SNOMED. We show a sample of review results in Table 7.3. For the new concept 

Intralesional cryotherapy of lesion of skin, Cryotherapy to skin lesion is its actual parent, 

while Cryotherapy of skin is one of its ancestors. Our expert found that Biopsy of adrenal 

gland should be a parent of Open biopsy of adrenal gland, missing in the new release. An 

example for a wrong parent is that Biopsy of abdominal mass should be an ancestor of Fine 

needle aspiration biopsy of pseudocyst of pancreas using computed tomography guidance, 

instead of a parent. Its proper parent should be another concept which is Needle biopsy of 

mass of retroperitoneum using computed tomography guidance in the same release, as it is 

modeled in the SNOMED July 2019 release. The reviewer further found that 95 candidate 

parent concepts are actual parents in the new release, 104 are ancestors, 29 are non-relevant 

concepts, and 6 are wrong parents among the 28 mentioned above.   
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Table 7.3 Sample of Review Results for Randomly Picked 91 New Concepts from 

Procedure Hierarchy  

New concept Candidate parent 
Parent 

(P) 

Ancestor 

(A) 

Missing 

parent 

(M) 

Wrong 

parent 

(W) 

Intralesional cryotherapy of 

lesion of skin 
Cryotherapy to skin lesion P    

Intralesional cryotherapy of 

lesion of skin 
Cryotherapy of skin  A   

Open biopsy of adrenal gland Biopsy of adrenal gland   M  

Fine needle aspiration biopsy 

of pseudocyst of pancreas 

using computed tomography 

guidance 

Biopsy of abdominal mass    W 

 

Algorithm 2 fails to identify some correct parents, even though they appear in the 

similarity list. In Table 7.4, we listed ten examples of such errors. The reasons for their 

rejection fall into five categories: Anatomy, Linguistic, Synonym, Ancestor, and Not Subset. 

In the Anatomy error category, Algorithm 2 fails due to the anatomical variation between 

“elbows” and “upper limbs” (row 1), “tibia and fibula” and “lower limbs” (row 2).  

For linguistic errors, the phrase differences between “of fetus” and “fetal” (row 3), 

and between “parent” and “parenting” (row 4) are the causes of the failures. The frequently 

interchanged use of synonyms also leads to problems such as “neoplasm” vs. “tumor” (row 

5), and “ultrasonographic” vs. “ultrasonic” (row 6). Algorithm 2 failed to utilize the 

inherited hierarchical information between phrases. Thus, “computed tomography,” is a 

descendant of “imaging” (row 7), and “Fluoroscopy” subsumes “Fluoroscopic 

arthrography” (row 8). The last two errors are due to the phrase variations between the 

names of new concepts and candidate parent concepts, making them not comply with Rule 

2 in Algorithm 2. 
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Table 7.4 Categorization of Parent Concepts Which Algorithm 2 Fails to Identify  

 
Category New concept 

Missed Candidate Parent 

concept 

1 Anatomy 
Computed tomography of 

bilateral elbows with contrast 

Computed tomography of 

bilateral upper limbs with 

contrast 

2 Anatomy 

Computed tomography of 

bilateral tibia and fibula with 

contrast 

Computed tomography of 

bilateral lower limbs with 

contrast 

3 Linguistic 
Two dimensional 

echocardiography of fetus 
Fetal echocardiography 

4 Linguistic 
Parent education about sibling 

rivalry 
Parenting education 

5 Synonym 

Single photon emission 

computed tomography using 

octreotide for localization of 

neoplasm 

Single photon emission 

computed tomography of 

tumor 

6 Synonym 

Percutaneous renal needle 

biopsy using ultrasonographic 

guidance 

Ultrasonic guidance for 

needle biopsy 

7 Ancestor 

Single photon emission 

computed tomography of 

cerebrospinal fluid flow 

Cerebrospinal fluid flow 

imaging 

8 

Ancestor 

& 

Anatomy 

Fluoroscopic arthrography of 

left elbow 

Fluoroscopy of left upper 

limb 

9 
Not 

Subset 

Insertion of cerebral 

ventriculoatrial shunt using 

fluoroscopic guidance 

Creation of cerebral 

ventriculo-atrial shunt 

10 
Not 

Subset 

Mammary ductography of 

bilateral breasts 
Bilateral mammography 

 

 

7.3 Discussion 

Placement of new concepts into an ontology is difficult. It requires domain knowledge as 

well as ontology engineering [129] fluency. Curators utilize classifiers such as Snorocket 

[9] or HermiT [10], but the accuracy of the placement by such classifiers depends on 

accurate modeling of the attribute relationships of the new concepts and of existing similar 

concepts.  
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Thus, curators will likely embrace computational techniques offering accurate 

placement of a sizable ratio of new concepts. They will be left with only placing the 

remainder of the new concepts, as well as considering more parents for those placed. 

Furthermore, even if the computational technique will produce a short list of parent 

candidates for a new concept, a curator will prefer to review such a list and easily delete 

the concepts which are not proper parents, to end up with all or almost all actual parents of 

the new concepts. We offer such a technique in this chapter.  

A limitation of this method is that for many child-parent pairs in biomedical 

ontologies the names of the two concepts are substantially different. Amyotrophic lateral 

sclerosis has no word in common with Lou Gehrig’s Disease. Another challenge for our 

technique is constituted by cases where the names of pairs are similar, but their similarities 

are beyond the capability of Doc2vec to identify them by vector computation. For instance, 

Complete axillary lymphadenectomy is the parent of Complete excision of lymph node 

group of left axilla.   

As mentioned before, for a random sample of 91 new concepts in 257 pairs obtained 

by Algorithm 2, our domain expert found 6 wrong child-parent pairs and 23 missing-

parents. Assuming that the ratio of these errors is proportional for 913 new concepts in 

2124 pairs, we should expect 50 wrong child-parent pairs and 190 missing-parents for 

Algorithm 2. This assumption would change the recall from 0.4335 to 0.5326 and the 

precision from 0.3988 to 0.4647.  

Applying Rules 1 and 2 comes with a tradeoff. While eliminating many improper 

candidates from the candidate list, it also deletes a few proper pairs (Table 7.4).  Algorithm 

2 is able to compensate for the loss of such pairs by yielding 847 pairs versus the 754 of 
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Algorithm 1. When improper pairs are deleted from the list, the lower pairs in the list are 

used by Algorithm 2 to achieve M candidates. Even though Algorithm 2 considers 

candidates out of the 100 most similar concepts, we end up with an average of much fewer 

than M candidates, because most similar concepts are improper parents.  

An interesting observation is that in the candidate lists produced by both algorithms, 

there are many pairs that are actually proper in the sense of being more general than the 

new concept. The reason they are improper parents is that they are not parents but 

grandparents or even great grandparents. Typically, a parent is more similar to the new 

concept and thus appears earlier in the list. 

In general, we expect the parents of a new concept to be concepts in the previous 

release. However (Figure 7.1), some new concepts have parents that are also new. This is 

a common phenomenon when a group of new concepts are all about a specific subject. A 

set of such concepts typically has a tree or DAG structure with a unique root. This root 

may be the only concept with a parent in the previous release. Another option is that 

members of the set belong to Category 3. 
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CHAPTER 8  

FUTURE WORK 

 

The IS-A relationship classification between two concepts is equivalent to a binary 

classification problem. The multiple relationship classification between two concepts can 

be considered a multi-class classification problem. For ontology enrichment, multiple-

relationship classification is defined as assigning relationship labels (including IS-A 

relationship) to pairs of concepts. For example, there are 17 lateral relationships in the 

Clinical Finding hierarchy, such as “finding site,” “associated morphology,” and 

“interprets,” and 29 lateral relationships in the Procedure hierarchy of SNOMED 2020 

January release, such as “method,” “procedure site – direct,” and “component.” In the 

Clinical Finding hierarchy, there are 85,849 pairs of concepts that are connected through 

the “finding site” relationship, 60,091 pairs of “associated morphology,” and 36,939 pairs 

of “interprets.” In the Procedure hierarchy, there are 59,786 pairs of concepts that are 

connected through the “method” relationship, 33,278 pairs connected by “procedure site – 

direct,” and 8,414 pairs connected by “component.” For each lateral relationship, if the 

number of concept pairs connected by this relationship is sufficiently large for training, 

then this relationship can be included as one class label in the training data for a multi-class 

classifier. Both the CNN and BERT models used in this dissertation can be modified and 

trained to classify multiple relationships between concept pairs.  

In this dissertation, fine-tuning the BERT model for IS-A relationship classification 

is based on the idea of Transfer Learning. The essence of transfer learning is to exploit 

knowledge gained from a pre-trained model and apply it to solve another problem. Hence, 
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the quality, richness, and bias of the pre-trained model determines its compatibility with a 

downstream task. This chapter discuss three future ideas of conducting transfer learning 

research for BERT. 

In this dissertation, the BERTBASE model (due to hardware limitations) was fine-

tuned for an IS-A relationship classification task. In the future, the work will be extended 

to the BERTLARGE model, which has more parameters than the BERTBASE model and was 

proven to be more powerful in various NLP benchmark tests.  

The BERTBASE model was trained with the concatenation of the BooksCorpus 

(800M words) [123] and English Wikipedia (2,500M words). It employs the WordPiece 

embeddings [126] with a 30,522 tokens vocabulary, which does not include most medical 

terms. Thus, medical terms that are not in the WordPiece vocabulary are split into word 

pieces denoted by ##. For example, “adenoid” is split into “aden” and “##oid.” The lack of 

medical terms in BERT’s vocabulary limited its applicability to support insertion of new 

concepts into a medical terminology such as SNOMED CT, and would probably impair 

other NLP tasks within the medical domain. In future work, the vocabulary will be 

expanded to include common medical terms selected from terminologies such as 

SNOMED CT. The BERT model pre-trained with medical terms can potentially improve 

its performance in some common NLP tasks in the medical domain, such as tagging and 

named entity recognition in EHRs. 

Another possibility is to compare and provide insights into the different existing 

BERT models that are pre-trained with rich medical knowledge. For instance, BERT’s 

variants in the biomedical or clinical domains, BioBert [130], ClinicalBERT [131] and 
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NCBI BlueBERT [132], will be fine-tuned to compare their performance for different 

ontology-related tasks, including enrichment of medical ontologies.  
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CHAPTER 9  

CONCLUSIONS 

 

The comprehensive modeling and hierarchical positioning of a new concept in an ontology 

heavily relies on its set of proper subsumption relationships (IS-As) to other concepts. 

However, identifying a concept’s IS-A relationships is a laborious task requiring curators 

to have both domain knowledge and terminology skills. This dissertation conducted four 

studies based on Machine Learning (ML), Natural Language Processing (NLP) models, 

and Abstraction Networks of ontologies to address the challenge of inserting new concepts 

into their proper positions in an ontology. The studies in this dissertation can be 

summarized under the following three main subjects: 

1. The knowledge built into an ontology can be exploited to provide features for 

machine learning. For instance, concept embeddings can be learned directly from 

the names of a concept and its hierarchically related concepts. In addition, by 

converting the neighborhood network of a concept into “sentences,” certain NLP 

models’ capability of predicting the adjacency of two sentences (BERT) can be 

exploited for relationship classification between concepts. 

2. Ontology summarization network, i.e., Abstraction Networks (AbNs), can be used 

to prepare high-quality training data because the restrictions imposed by AbNs can 

be used to better distinguish between IS-A connected concept pairs and non IS-A 

concept pairs, i.e., concept pairs that are not connected by IS-A relationships. 

3. Some neural network-based ML models or transformer-based NLP models can be 

trained to verify and predict an IS-A relationship between a new concept and an 

existing concept, which will recommend the proper location of the new concept in 

the hierarchy.  

 

To perform ontology enrichment automatically, the CNN model’s classification 

capability and BERT’s Next Sentence Prediction (NSP) capability were utilized to predict 

the presence of IS-A relationships between a new concept and existing concepts. The 

obtained automatic models can not only identify potential parents of a new concept, but 
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also filter out irrelevant candidate concepts, reducing the number of improper placement 

choices for a concept. To augment these models’ performance, the quality of training data 

matters and can be improved by various techniques including ontology summarization.  

Chapter 3 presented a study which trained a Convolutional Neural Network (CNN) 

model to learn the likely locations of new IS-A links for the whole SNOMED CT. This 

approach was based on document embeddings for each concept in the SNOMED CT. The 

model was trained with data from the SNOMED CT 2017 July release and tested to 

ascertain its ability to verify IS-A relationships for new concepts added to the SNOMED 

CT 2018 January release. In testing, the trained CNN model achieved an average F1 score 

of 0.70, which demonstrates the utility of using the classification capability of a Machine 

Learning model to verify IS-A relationships between new concepts and pre-existing 

concepts. 

The study in Chapter 4 suggested an improvement on Chapter 3 by using high 

quality, task-oriented training data. The CNN model, trained with data obtained from the 

area taxonomy, learned the subtle distinctions between IS-A pairs and closely related non-

IS-A pairs. As a result, the derived CNN model was better at verifying whether a concept 

pair should be connected by an IS-A link or not, achieving better accuracy. 

The study in Chapter 5 investigated whether an NLP model can be utilized instead 

of a CNN model for the automatic enrichment of terminologies. The study showed that a 

BERT model can be fine-tuned to verify the parent(s) of new concepts added to a 

terminology, employing its “next sentence prediction” capability. The test results of BERT 

models for the Procedure and Clinical finding hierarchies confirm that this technique is 

indeed able to verify the IS-A relationships from new concepts to their parents with a 0.80 
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F1 average value. When enhancing fine-tuning of BERT with pre-training, the average F1 

score improved to 0.85. This work shows that it is possible to harness the power of the 

BERT model to differentiate between IS-A pairs and pairs not linked by IS-A relationship 

in an ontology.  

To further improve the BERT model’s performance, the study in Chapter 6 

experimented with two approaches to refine both the data used for pre-training and for fine-

tuning in Chapter 5. The data used for fine-tuning was prepared using the area taxonomy, 

employing the same method as in Chapter 4. The data used for pre-training followed a 

three-concept triple configuration, which was shown to be a superior way of modelling a 

concept’s hierarchical information. The BERT model trained with these two enhancements 

achieved the same average recall score as in Chapter 5, while improving the average 

precision score from 0.79 to 0.85. This improvement shows the importance of accurate 

concept modeling through transformation from a concept’s immediate hierarchical 

neighborhood to its corresponding text format. 

Chapter 7 proposes a novel, unsupervised approach to recommend a set of concepts 

in a terminology as candidate parents for each new concept, based on concept name 

similarities. The similarity score is calculated using the cosine distance between the vector 

representations of the two concepts of the pair. In addition, syntax rules are utilized to filter 

out similar concepts that have no potential of being parents of a new concept. The approach 

was validated with the 913 new concepts added to the Procedure hierarchy of SNOMED 

CT in the January 2018 release. The result shows that for new concepts, our method found 

43.35% of all the parents. In practice, curators can manually scan the short list of candidates 
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prepared by our algorithm, easily eliminating any improper candidates, to obtain a large 

percentage of the correct parents of a new concept. 

In this dissertation, two types of neural network models, i.e., a convolutional neural 

network (CNN) model and a BERT model, were trained to classify IS-A relationships 

between concept pairs. In the data preparation, an ontology summarization technique was 

successfully used to specify what types of concept pairs would provide better data for 

training. The system performance showed a significant improvement when an Abstraction 

Network was employed to constrain the training data. 

From the performance reported in this dissertation, we conclude that the BERT 

model is superior to the CNN model for ontological relationship classification. Some 

potential reasons are as follows: first, the advantage of CNN is its automatic feature 

engineering, enabled by the convolution operations on the input data. It achieves better 

convolved results on image format data (2D convolution), since different features can be 

captured as the number of filters and layers increases. While text is often represented as 

embeddings (1-d, i.e., vectors), the features that can be identified through 1-d convolution 

are to a high degree determined by the feature window size, and are not proportional to the 

number of filters or layers as in 2-d or 3-d input data. Therefore, it is very difficult to 

capture the long-term dependencies that are frequently expressed in language or text. In 

addition, the quality of the embeddings determines the number of semantic or grammatical 

features that are preserved in the vector representations. Therefore, the performance of 

CNN is upper bounded by the quality of input embeddings and the efficacy of convolution 

operations.  
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BERT, on the contrary, is pre-trained with a large English corpus. It is already 

incorporating rich semantic and grammatical knowledge from general text, making it a 

more proper model for NLP related tasks, compared to a CNN model. Moreover, BERT’s 

attention-based structure can maintain various granularities of attentions by controlling the 

number of attention heads and transformers in training. The attentions are computed using 

the whole input without losing the long-term dependencies in the context. Therefore, most 

knowledge and information from the original input is preserved with these attentions. The 

downstream applications, with simple fine-tuning, can easily achieve good performance by 

taking advantage of these attentions for classification or regression tasks, including the 

ontological relationship classification task discussed in this dissertation.  

A trained CNN or BERT model can be used to predict IS-A relationships between 

new concepts and pre-existing concepts. These models can not only identify potential 

parents of a new concept, but also filter out unlikely parent concepts, reducing the number 

of improper placement choices for a concept. Ontology curators can benefit from such a 

model, since it will propose a higher ratio of proper parents for a given concept. Therefore, 

the work in this dissertation can save curators time and effort that would be needed to 

search for those parent candidates manually. 
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APPENDIX 

TRANSFER LEARNING FROM BERT 

 

This appendix describes the technical details of pre-training and fine-tuning BERTBASE 

model as an IS-A relationship classifier in order to reproduce the results reported in this 

dissertation.  

1. Environment configuration: 

1.1. Hardware requirement (Recommended) 

NVIDIA RTX Titan with 24GB GDDR6 memory 

Driver version == 418.56 

CUDA version == 10.1 

1.2. Software requirement 

Python 3.6  

Keras==2.2.4 

matplotlib==3.0.2 

nltk==3.4.1 

numpy==1.16.4 

pandas==0.23.0 

scikit-learn==0.21.2 

tensorflow-gpu==1.13.1 

2. Source code 

The source code is maintained on GitHub repository with the link below: 

https://github.com/hl395/Bert_Ontology 

The pre-trained BERT model, released by Google can be found at:  

https://github.com/google-research/bert 

3. Dataset format 

3.1. Pre-training data format 
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In our task, the pre-training data is concept triples. Each triple contains three 

concepts, with one concept per line. An empty line is used to separate triples. In 

cases a focus concept has no parent or child, there are only two concepts in the 

corresponding triple. An example of pre-training data is as follows: 

“ 

congenital anomaly of aorta 

congenital stenosis of aorta 

congenital supravalvular aortic stenosis 

 

genodermatosis 

inherited cutaneous hyperpigmentation 

naegeli-franceschetti-jadassohn syndrome 

 

hyperpigmentation of skin 

inherited cutaneous hyperpigmentation 

terminal osseous dysplasia and pigmentary defect syndrome 

” 

A short version of the example file for the pre-training data can be found at 

/data/pre_training_data_example.txt in the GitHub repository. 

3.2. Fine-tuning data format 

For fine-tuning, we need three files: “train.tsv” for training, “dev.tsv” for 

validation, and “test.tsv” for prediction. The “train.tsv” and “dev.tsv” files share 

the same format while the “test.tsv” is different by hiding the true labels. 

To fine-tune BERT as IS-A relationship classifier, we extract IS-A connected 

concept pairs as positive training sample, and concept pairs that are not connected 

as negative training sample. Each concept pair is recorded as one string in one line, 

with the two concepts’ ids and names, and the IS-A label of this pair. The 

information is organized into five columns:  

• Column “Quality” indicates the IS-A label between the two concepts.  

• Column “#1 ID” represents the SNOMED ID of the first concept. 

• Column “#2 ID” represents the SNOMED ID of the second concept. 
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• Column “#1 String” represents the SNOMED name of the first concept. 

• Column “#2 String” represents the SNOMED name of the second 

concept. 

Columns are separated using Tab as the delimiter. An example of the fine-

tuning data is as follows: 

“ 

Quality#1 ID #2 ID #1 String #2 String 

1 366054000 301976001 finding of fluorescein tear drainage

 fluorescein tear drainage impaired 

0 295116004 295019008 allergy to chymotrypsin allergy 

to mannitol 

” 

A short version of the three example files, “train.tsv”, “dev.tsv”, and “test.tsv” 

for the pre-training data can be found at the “data” directory in the GitHub 

repository. 

3.3. Test data format 

To test the trained IS-A relationship classifier, we extract both IS-A connected 

concept pairs as positive testing sample, and concept pairs that are not connected 

as negative testing sample. Each concept pair is recorded as one string in one line, 

with the two concepts’ ids and names. The information is organized into five 

columns:  

Column “Quality” indicates the IS-A label between the two concepts.  

Column “#1 ID” represents the SNOMED ID of the first concept. 

Column “#2 ID” represents the SNOMED ID of the second concept. 

Column “#1 String” represents the SNOMED name of the first concept. 

Column “#2 String” represents the SNOMED name of the second concept. 

Columns are separated using Tab as the delimiter.  

Note that the IS-A label of this pair is also included for evaluation simplicity. The 

true label is not visible or used in testing our classifier. An example of the fine-

tuning data is as follows: 
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“ 

index #1 ID #2 ID #1 String #2 String 

0 400186008 773629001 neoplasm of integumentary system

 onychomatricoma 1 

1 298756009 316561000119102 finding of bone of upper limb

 osteophyte of left elbow 1 

……  

6734 51868009 735563002 duodenal ulcer disease cicatrix 

of middle ear 0 

6735 762366009 735906001 prolapse of left eye co-occurrent 

with laceration effects of water pressure 0 

…… 

” 

A short version of the example file for the pre-training data can be found at 

/data/test.tsv in the GitHub repository. 

4. Execute program 

4.1. Preparation 

a) The program repository can be cloned using command: 

“git clone https://github.com/hl395/Bert_Ontology.git”  

The hardware compatibility and software requirement should be verified 

before executing the program.   

b) Download the pre-trained BERT model, e.g. BERTBASE uncased model 

BERT-Base, Uncased: 12-layer, 768-hidden, 12-heads, 110M parameters from:  

https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-

768_A-12.zip 

The downloaded BERT model should include the “vocab.txt” file and 

“bert_config.json” and three bert checkpoint files, “bert_model.ckpt.meta”, 

“bert_model.ckpt.index”, and “bert_model.ckpt.data-00000-of-00001”.  

 

https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
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4.2. Pre-training 

4.2.1. Create pre-training data 

The parameters used to control this data creation are specified in the 

“creating_pretraining_data.py”. The required parameters include: 

FLAGS.input_file = “/path/to/pre-training_data_example.txt” 

FLAGS.output_file = “/path/to/tf_examples.tfrecord”  

FLAGS.vocab_file = 

“/path/to/downloaded_BERT_model/vocab.txt” 

FLAGS.do_lower_case = True 

FLAGS.max_seq_length = 128 

FLAGS.max_predictions_per_seq = 20 

FLAGS.masked_lm_prob = 0.15 

FLAGS.random_seed = 12345 

FLAGS.dupe_factor = 5 

The usage of parameters can be referred at the vanilla BERT GitHub page. 

To generate pre-training data, run “python creating_pretraining_data.py”. 

After the pre-training data is generated, it is wrote to the output directory 

named by “tf_examples.tfrecord.”  

4.2.2. Run pre-training  

The parameters used to control pre-training are specified in the 

“run_pretraining.py”. The required parameters include: 

FLAGS.input_file = “/path/to/tf_examples.tfrecord” (from 4.2.1) 

FLAGS.output_dir = “/path/to/pre_trained_model_directory”  

FLAGS.vocab_file = 

“/path/to/downloaded_BERT_model/vocab.txt” (the same as in 

4.2.1) 

FLAGS.do_train = True (perform training) 

FLAGS.do_eval = True (perform evaluation/validation) 

FLAGS.bert_config_file = 

“/path/to/downloaded_BERT_model/bert_config.json” 

FLAGS.init_checkpoint = 

“/path/to/downloaded_BERT_model/bert_model.ckpt” 

FLAGS.train_batch_size = 64    

FLAGS.max_seq_length = 128 
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FLAGS.max_predictions_per_seq = 20 

FLAGS.num_train_steps = 100000 

FLAGS.num_warmup_steps = 5000 

FLAGS.save_checkpoints_steps = 20000 

FLAGS.learning_rate = 2e-5 

The usage of parameters can be referred at the vanilla BERT GitHub page. 

To pre-training the downloaded BERT with our own corpus, run “python 

run_pretraining.py”. 

After pre-training the BERT model, the obtained new model is saved to the 

output directory in “/path/to/pre_trained_model_directory” where the 

value of “FLAGS.output_dir.” Note that the obtained new model’s name 

could vary depends on the number of training steps are used. However, the 

model still consists of three files and checkpoint file. An example using the 

parameters above will generate a model with three files as follows: 

“model.ckpt-100000.meta”, “model.ckpt-100000.index”, and “model.ckpt-

100000.data-00000-of-00001” with the same number 100000 in their names 

as it is the value used as the number of training steps. 

4.3. Fine-tuning 

To fine-tune the obtained model from 4.2, we run “run_classifier_hao.py” with 

specifying the following required parameters: 

FLAGS.bert_config_file = 

“/path/to/downloaded_BERT_model/bert_config.json” 

FLAGS.vocab_file = “/path/to/downloaded_BERT_model/vocab.txt" 

FLAGS.init_checkpoint = “/path/to/pre_trained_model_directory” (in 

4.2)  

FLAGS.data_dir = “/path/to/fine_tuning_data_directory/” (the directory 

that contains the both fine-tuning training, evaluation, and testing data) 

FLAGS.output_dir = “/path/to/fine_tuned_model_directory/" 

FLAGS.train_batch_size = 64   

FLAGS.max_seq_length = 128 

FLAGS.num_train_epochs = 3 
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FLAGS.do_train = True (perform training) 

FLAGS.do_eval = True (perform evaluation/validation) 

FLAGS.do_predict = True (perform prediction) 

FLAGS.task_name = "MRPC"  

The usage of parameters can be referred at the vanilla BERT GitHub page. 

To fine-tune the pre-trained BERT with concept pairs, run “python 

run_classifier_hao.py”. 

After fine-tuning the BERT model as an IS-A relationship classifier, the obtained 

classifier is saved to the output directory in “/path/to/fine_tuned_model_directory” 

where the value of “FLAGS.output_dir” is specified.  

4.4. Testing 

The testing is performed after the model is fine-tuned in 4.3, because we turn on the 

flag for prediction by setting “FLAGS.do_predict = True.” The fine-tuned model’s 

prediction is saved in the “test_results.tsv” file in the directory of 

“/path/to/fine_tuned_model_directory.” Note that we only need to fine-tune the 

model once, and then use the obtained model to test on different testing data. This can 

be achieved by update the testing sample, i.e. “test.tsv” file with new testing data, and 

set the “FLAGS.do_train = False” and “FLAGS.do_eval = False.” 

4.5. Evaluation 

For each testing concept pair, our model predicts the probabilities that the two concepts 

should be connected by IS-A and not, respectively. The results are recorded in the 

“test_results.tsv” file. Use “output/read_results.py” to read the true results and 

prediction results to evaluate the model’s performance. The metrics used including 
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Precision, Recall, F1 and F2 scores, the micro average and macro average of these 

metrics are also calculated.   
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