
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-22-2012 12:00 AM 

A New Web Search Engine with Learning Hierarchy A New Web Search Engine with Learning Hierarchy 

Da Kuang 
The University of Western Ontario 

Supervisor 

Charles X. Ling 

The University of Western Ontario 

Graduate Program in Computer Science 

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of 

Philosophy 

© Da Kuang 2012 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Artificial Intelligence and Robotics Commons 

Recommended Citation Recommended Citation 
Kuang, Da, "A New Web Search Engine with Learning Hierarchy" (2012). Electronic Thesis and Dissertation 
Repository. 750. 
https://ir.lib.uwo.ca/etd/750 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F750&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F750&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/750?utm_source=ir.lib.uwo.ca%2Fetd%2F750&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


A NEW WEB SEARCH ENGINE WITH LEARNING HIERARCHY
(Thesis format: Monograph)

by

Da Kuang

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

c© Da Kuang 2012



THE UNIVERSITY OF WESTERN ONTARIO
School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor:

. . . . . . . . . . . . . . . . . . . . .

Dr. Charles X. Ling

Examiners:

. . . . . . . . . . . . . . . . . . . . .

Dr. Jamie Andrews

. . . . . . . . . . . . . . . . . . . . .

Dr. Kamran Sedig

. . . . . . . . . . . . . . . . . . . . .

Dr. Luiz Capretz

. . . . . . . . . . . . . . . . . . . . .

Dr. Yang Xiang

The thesis by

Da Kuang

entitled:

A NEW WEB SEARCH ENGINE WITH LEARNING HIERARCHY

is accepted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

. . . . . . . . . . . . . . .

Date

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chair of the Thesis Examination Board

ii



Abstract

This thesis proposes our first attempts to build a novel web search engine, named SEE (Search
Engine with hiErarchy), with webpages classified into categories of a topic hierarchy. We also
discuss how to improve SEE with minimal human supervision.

Most of the existing web search engines (such as Google and Bing) are in the form of
keyword-based search. Typically, after the user issues a query with the keywords, the search
engine will return a flat list of results. When the query issued by the user is related to a topic,
only the keyword matching may not accurately retrieve the whole set of webpages in that topic.
On the other hand, there exists another type of search system, particularly in e-Commerce web-
sites, where the user can search in the categories of different faceted hierarchies (e.g., product
types and price ranges). Since the total amount of data is relatively small, the categorization is
often conducted by human efforts or based on the pre-defined labels. Is it possible to integrate
the two types of search systems and build a web search engine with a topic hierarchy? Yahoo!
in fact attempted to organize the Internet webpages into a hierarchical structure by labeling
them using human effort. However, it failed eventually as the number of webpages increased
dramatically on the Internet. Thus, to build such integrated web search engine, the main diffi-
culty is how to classify the vast number of webpages on the Internet into the topic hierarchy. In
this thesis, we will leverage machine learning techniques to automatically classify webpages
into the categories in our hierarchy, and then utilize the classification results to build the new
search engine SEE.

Firstly, we extract a reasonable hierarchy from the Open Directory Project (ODP), and
use the webpages in ODP as our base training data to build the classifier. Then we utilize
the top-down hierarchical classification approach to classify new Internet webpages into our
hierarchy. By exploring different feature filtering methods, classifier parameters and calibration
algorithms, we optimize the performance of our hierarchical predictive model. According to
the evaluation results, the classification performance is satisfactory.

How to leverage the classification results to build the search engine SEE is the next step.
Here, we face two major challenges: how to deal with the false positive classification errors and
rank the results within each category, and how to handle the false negative errors introduced in
the classification phase. Accordingly, we design a novel ranking function and a smart way to
let user explore more results. We conduct a comprehensive evaluation by using a well-known
data collection for information retrieval. The results demonstrate that the hierarchical version
of SEE can achieve better search results than the flat version in most of the queries, particularly
when the query is related to a topic.

In order for SEE to achieve better search performance, it is critical to improve the classifi-
cation performance, which often requires human efforts to label more webpages as the training

iii



data. Thus, it is worthwhile to study the problem on how to maximize the classification per-
formance in the hierarchical setting with minimal human supervision. We propose a novel
multi-oracle setting and a new active learning framework for the hierarchical classification.
According to the experiment results, our methods can largely reduce the human labeling cost,
and thus can be used to further improve the performance of SEE.

In summary, we implement a prototype of a novel search engine named SEE, where the
user can do both keyword search and hierarchical browsing. Several challenges have been
discussed and several novel solutions have also been proposed accordingly. According to the
evaluation, SEE obtains promising results. More importantly, since the classifiers are built
offline, this technology is scalable to be applied to any large-scale search engine.

The thesis is joint work with Xiao Li. We both contributed in designing the architecture of
the entire system for SEE as well as the algorithms on how to improve SEE. I contributed more
on Chapter 3 and Chapter 4, while Xiao contributed more on Chapter 5.
Keywords: search engine, hierarchy, faceted hierarchies, e-Commerce websites, classification,
ranking, information retrieval, oracle, active learning
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Chapter 1

Introduction

The development of the Web (World Wide Web [4]) and Internet technologies (e.g., HTTP
[21], HTML [4], servers and browsers) makes users’ access to information much easier than
before. Rather than going to the library to find information by reading books, Internet users
only need to enter the URL of a webpage in the browser and the desired information will be
displayed. Consequently, the Web became an ideal platform for the Internet users to supply
and retrieve information on every aspect in their life.

As the amount of scientific information and the number of electronic journals on the Inter-
net continue to increase [35], how to discover the desired information became a challenge for
the Internet users. Therefore, a centralized organization is needed to manage and organize the
web content on the Internet and provide convenience for the users to find useful information. It
directly leads to the advent of the web search engines [10] such as Google and Bing. Typically,
most of the modern web search engines are keyword-based. Specifically, they crawl the web-
pages on the Internet and index the full text of each webpage. When the user issues a query
containing several keywords, they compare the keywords with the indexed documents by using
some similarity metrics, and return a flat list of the closest ones. Figure 1.1 demonstrates an
example for the keyword-based web search engine1.

Figure 1.1: Keyword-based web search engine.

1Google recently introduced a few categories (e.g., images, maps, videos) as shown in the left subgraph of
Figure 1.1

2



3

However, this keyword-based search engine may not work well on the ambiguous queries
and topic-related queries, which are common when people search information. For example,
to search worm as the animal in the nature, if we search “worm” as the keyword of the query, it
is an ambiguous query, since worm can also mean the computer virus. If we restrict the search
in the area of animal, we can search “animal worm”. This is a topic-related query. However,
the keyword “animal” may not match well the webpages that really talk about the animal worm
but do not contain the keyword “animal”. Suppose we have a topic category named “animal”
with all animal-related webpages classified into it; we can simply search the keyword “worm”
in the topic category and the results will be much better.

In fact, the concept of integration of keyword search and categorization has been proposed
and applied into some other search systems, particularly for the product (or item) search in the
e-Commerce websites. Those search systems are often called Faceted Search System [3]. For
example, in Amazon and Kijiji as shown in Figure 1.2, on the left side, we have some category
facets (hierarchical or flat) and we can search the keywords in the categories of the facets
to narrow down the search domain. Since most of the products are pre-labeled by the users
(when the products are uploaded), it is not difficult to integrate the categories into the search.
However, it is difficult to implement this functionality in the general web search engine, since
there exist a huge amount of webpages on the Internet and there is no predefined category
label for each of the webpage. The task to manually categorize all the Internet webpages is
impossible. Is it still possible to build a general web search engine integrating keyword search
with categorization in topics?

Figure 1.2: Faceted search system.

In this thesis, we utilize machine learning techniques to implement a novel web search
engine, named SEE (Search Engine with hiErarchy), with all documents classified into the
categories of a topic hierarchy. We leverage the Open Directory Project(ODP) to generate our
hierarchical topics and train a hierarchical predictive model to categorize the Internet webpages
into our hierarchy. Based on the results of the classification, we construct the actual search
engine by indexing the prediction scores. This feature makes our search engine SEE scalable
to billions of webpages. We design a new ranking function for SEE and a smart way to let
the user explore additional results. According to the evaluation, SEE achieves more promising
results compared to the search engine without hierarchy. We also study how to improve the
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performance of SEE by using less human effort. We propose a novel active learning framework
for hierarchical classification. The experimental results show that the human labeling cost can
be greatly reduced by using our approach.

The rest of this chapter is organized as follows. We first review the two search systems
(web search engine and hierarchical faceted search system) (Section 1.1). We then present
the motivation for this new search engine (Section 1.2.1). We briefly discuss the difficulties
in building SEE (Section 1.2.2). We also demonstrate the overall architecture and the user
interface of SEE (Section 1.2.3). Finally, we list our major contributions in this thesis (Section
1.3).

1.1 Two Types of Search Systems
In this section, we will provide some preliminaries on the keyword-based web search engine
as well as the faceted search system, so that people can have an intuition and basic idea on how
roughly the keyword-based web search engines (such as Google and Bing) and the hierarchical
faceted search engine work.

1.1.1 Keyword-based Web Search Engine
On the user interface of most keyword-based web search engines, the key component is a text
box where the user can enter any combinations of keywords as the query. As the “search”
button is clicked, a HTTP request containing the query is sent to the server. Then, the server
processes the query, searches the indexed documents and returns a list of most relevant results
back to the user. The most challenging problem for the search engine is how to retrieve the
relevant ones from billions of indexed documents in a millisecond timescale based on the key-
words. Webpages are usually semi-structured (e.g., most of HTML pages have title and body)
or even unstructured data, which makes the searching more difficult, compared to searching the
structured data such as the relational database. We will briefly introduce two typical models
to retrieve documents based on keywords. The first model is called boolean retrieval model
[34, 68]. In this model, keywords in the query are in combinations with logic operators (and,
or, not) and each document is treated as a set of words. In order to quickly locate the documents
matching the query, an inverted index list [30] is built for each of the words appearing in all
the indexed documents. It is actually a mapping from a word to a list of documents containing
the word. The inverted index lists are constructed and sorted during the indexing phase after
the search engine crawls the webpages from the Internet, and more importantly they can be
incrementally built up rather than rebuilt as new webpages arrive. Since the inverted index has
been constructed beforehand, when the user issues a query of several keywords as well as the
operators, it is very efficient to map the keywords to the containing documents. By simply
conducting intersection or union on the sorted lists, even the billion-scale search engine can
return the results in hundreds of milliseconds. A simple illustration for the boolean retrieval
model is presented in Figure 1.3.

In normal Internet search, the operator “and” is the most commonly used. When a user
enters the keywords separated by space, the operator “and” is implicitly applied. There are
several problems with the boolean retrieval model. First of all, it is hard to express the complex
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Machine learning is a branch of artificial intelligence.

He is learning knowledge like a machine.

Machine can not understand human knowledge.

Document 1

Document 2

Document 3

machine Doc 1 Doc 2 Doc 3

learning Doc 1 Doc 2

is Doc 1 Doc 2 Doc 3

a Doc 1 Doc 2

branch Doc 1

of Doc 1

artificial Doc 1

intelligence Doc 1

he Doc 2

knowledge Doc 2 Doc 3

like Doc 2

can Doc 3

not Doc 3

understand Doc 3

human Doc 3

Indexed 
documents

Inverted 
index lists

machine learningQuery

machine Doc 1 Doc 2 Doc 3

learning Doc 1 Doc 2

Intersection

Returned documents Doc 1 Doc 2

Figure 1.3: Simple illustration for boolean retrieval model.
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query vector document vector

data 1 2

mining 1 1

is 0 1

to 0 1

discover 0 1

the 0 1

rules 0 1

from 0 1

~V ~V(q) = {1, 1, 0, 0, 0, 0, 0, 0} ~V(d) = {2, 1, 1, 1, 1, 1, 1, 1}

|~V | 1.41 3.32

Table 1.1: Vector conversion.

information need (e.g., the operator ”or” and ”not”). Secondly, the number of retrieved results
is difficult to control, since all the documents matching the query will be returned. Finally, it is
difficult to rank the results (e.g., the documents containing all the keywords of the query cannot
be distinguished).

The second model is called vector space model [54] , which overcomes the problems of the
boolean retrieval model. This model has been widely used in the modern web search engines
as the basic function for information retrieval. The basic idea of vector space model is that
both the query and the document are converted to word vectors, and similarity metrics are then
applied on the two vectors to calculate a score on how similar the document is to the query.
The score can be then used to truncate and rank the documents.

Cosine similarity [62] is a typical metric to calculate the score of two vectors. Given a
query q and a document d, the score can be computed as

score(d, q) =
~V(q) · ~V(d)

|~V(q)||~V(d)|
,

where ~V(q) and ~V(d) represent the word vectors for the query and the document respectively.
The larger the value of cosine similarity, the more similar the document to the query. From
the formula above, we can see, the numerator represents the dot product of the two vectors,
and the denominator is the product of their Euclidean lengths for the normalization purpose.
Suppose we have a query “data mining” and a short document “Data mining is to discover the
rules from data.” The conversion to the word vector can be conducted by using bag of words
model, where each document is represented as an unordered collection of words, regardless
of the grammar and order of the words. Thus, the query and document can be converted into
vectors as shown in Table 1.1.
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According to the cosine similarity, the score of the query and the document can be calcu-
lated as 1×2+1×1

1.41×3.32 = 0.64.
To return the relevant results to the user, the vector space model does not need to calculate

the score for all the indexed documents. Instead, the inverted index list can still be used in
vector space model and only the documents that contain the keywords in the query will be
considered. Thus, the web search engine can still instantly locate the results. Based on the
scores computed, the search engine can rank the documents and return the top K to the user.

Another important advantage of vector space model is that the score generated can be com-
bined with other factor scores (e.g., importance score, time series score) to produce more so-
phisticated ranking score.

1.1.2 Faceted Search System

Figure 1.4: Typical facets in Amazon.com.

Faceted search systems, such as in Amazon.com and Kijiji.ca, allow users to explore a
collection of information by applying multiple filters in the facets. The search system can
usually have more than one facet, and each facet can be either a flat list or a structured hierarchy
of various categories. For example, in Amazon.com, the top facet is the department facet,
where all the products are categorized into a hierarchy. If we search “iPad” in the category
“tablets”, besides the department facet, additional facets (e.g., display size, hard drive size,
brand, price, etc.) will be displayed to the user (shown in Figure 1.4).

The key part of faceted search system is the classification of various products or items into
the multiple facets. As many modern e-Commerce websites adopt the customer-to-customer
business model, the label of the categories in each facet can be easily obtained from the cus-
tomers who are selling products. For example, a customer wants to sell a new product, say
a tablet, he/she needs to provide a detailed list of the specifications, such as the category it
belongs to, the display size, the brand name and the desired price, etc. Those information will
be used to classify the product into various facets to assist the searching.

Usually users search in two ways in the faceted search system. The first way is to directly
search the keywords in the search box, and then the user can not only obtain a flat list of results
matching the keywords but also a group of facets with the results classified into their categories
(sometimes displaying the number of the results). Afterwards, the user can iteratively refine the
search results by clicking the categories of those facets. Suppose a customer wants to buy an
iPad on a e-Commerce website, the customer can search the keyword “iPad” as the query (see
the left subgraph of Figure 1.2). The returned results may be grouped into multiple categories
(e.g., “tablets” and “computer accessories”, etc.), since the iPad cases will be classified into the
category “computer accessories” rather than “tablets”. By clicking into “tablets”, the irrelevant
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results in “computer accessories” can be filtered out. For the second way, the user can first
click into a desired category and all the products in the category will be shown to the user.
Then by issuing a query of keywords, the user can restrict the results within the category. For
the customer who is planning to buy a tablet but not sure which type to buy, he/she can click
into the category “tablets”, have an overview and a comparison of different types, and then
further search the keywords of the desired one.

The advantages of faceted search are twofold. First of all, users are able to view a summary
of the search results and know how the returned results are organized by different criteria.
Secondly, users can browse each of the categories in some facets and have an overview of what
already exist. It is particularly useful when the user is not sure which keywords to search (or
what products to buy).

1.2 Integrating Topic Facet into Web Search Engine
As the faceted search has tremendous benefits, why not introduce it to the keyword-based
web search engine? In fact, Google has already embedded the faceted search into its original
system. From Figure 1.1, besides the result list, on the left side there is a vertical bar listing
some facets (e.g., result type and location). However, those facets are still limited compared to
the diverse needs in search. The most intuitive way for users is to organize the documents into
common sense topics, such as Arts, Science, Sports, which can further break down into sub-
topics. In this case, diverse needs from different users can be covered better. Why does Google
not include such a hierarchy into web search? It is probably due to the difficulty to classify the
vast amount of webpages on the Internet into the hierarchical topics, since this task cannot be
accomplished by human effort. In this thesis, we will report our first attempts to implement
a new web search engine which integrates a hierarchical topic facet, by leveraging machine
learning techniques to automatically classify webpages into our hierarchy. In the following
parts, we will first explain the motivation of building this search engine in detail. Then we will
briefly discuss the difficulties to construct it. Finally, we will present the user interface and the
architecture of the new search engine SEE.

1.2.1 Why Do We Need such a Search Engine?
We already know some of the benefits that the facets will bring to the users in the e-Commerce
websites as we mentioned in Section 1.1.2. Why would we need the hierarchical topic facet in
the web search engine? Why not just use the keyword-based search? In what situations does
this hierarchy benefit us most in search?

Simple keyword search may not work well when the user intends to search target informa-
tion within a specific topic. In this scenario, usually the user will issue two types of queries,
ambiguous query and topic-related query. For example, if the user intends to find worm only
in the animal concept, he/she may search directly “worm” which is an ambiguous query, or
“animal worm” which is a topic-related query. Here, the word “worm” itself is ambiguous,
which can mean a kind of animal or a type of computer virus. In the query “animal worm”,
the keyword “animal” is intended to restrict the search within the topic “animal”. As another
example, if the user would like to find computer books, he/she may issue a query as “books”



1.2. Integrating Topic Facet intoWeb Search Engine 9

which is an ambiguous query, or “computer books” which is a topic-related query. In this case,
although the word “books” itself is not ambiguous, the query “books” is still ambiguous with
respect to the user intention, since it can mean any kinds of books rather than the computer
books. In the query “computer books”, the keyword “computer” is intended to constrain the
search domain. However, those two types of queries both have their limitations.

Ambiguous query may introduce many irrelevant results and leads to a low precision. In
information retrieval, precision [1] is defined as the ratio of the number of relevant results
retrieved over the total number of the retrieved results. Mathematically, it can be defined as

Precision =
Nr

Nr + Nir
,

where Nr is the number of relevant results retrieved and Nir is the number of irrelevant results
retrieved. Since the ambiguous query can match information in different domains, the number
of relevant results Nr is supposed to be much smaller compared to the number of irrelevant
results Nir, which causes the low precision.

Topic-related query may truncate a lot of relevant results and lead to a low recall [1]. In
information retrieval, recall is defined as

Recall =
Nr

Ntr
,

where Nr is the number of relevant results retrieved and Ntr is the total number of the relevant
results in all the indexed documents. Since the keyword(s) used to represent the topic may not
match the documents in that topic that do not contain the used keyword(s), a certain number of
relevant results may be filtered out (in boolean retrieval model) or low-ranked (in space vector
model). It is reasonable that the recall will be low.

Why is it that the documents in a topic may not contain the keyword(s) used to represent the
topic? It is because a topic is generally an abstract concept covering a wide range of sub-topics,
and the name for the topic is used to describe the entire topic, thus may not appear in some
specific documents. For example, in the topic “animal”, a large part of the documents may talk
about dog, bird, tiger or worm, without mentioning “animal”. Also, a lot of documents in the
topic of “computer” may be specifically on programming, Internet or CPU, and thus they do
not necessarily contain the keyword “computer”. Even they are talking about computer itself,
the synonyms, such as PC, machine, can be used instead.

In order to find the desired documents in a topic, the user often needs to try a large number
of queries with different keywords combinations. Sometimes, the user needs to guess what
are the keywords that are likely to appear in the desired documents. For example, in order to
find the animal worm, after the failure of the query “animal worm”, the user may try to issue
another query, say “soil worm”, since worms used to live in the soil and the documents talking
about worm are likely to contain the keyword “soil” too. If this query still fails to achieve the
purpose, the use may consider to use “crawl worm”. It is because the way that worms move
is to crawl. This tedious searching process can easily annoy the user and the user will end up
with no findings.

However, if a topic hierarchy is introduced into the web search engine and all the related
documents are classified into each topic category, the user needs not try multiple keywords that
may be contained in a topic, and the only query the user needs to input is the keywords for the



10 Chapter 1. Introduction

target information within the topic category. For the example to search computer book, if there
exists a category “computer” containing all computer-related documents (e.g., programming,
Internet or CPU, etc.), by using the keyword “books” as the query, all the relevant documents
containing the keywords “programming books”, “Internet books” or “CPU books” will be
returned to the user. The hierarchy can help the users save a lot of time in searching the desired
results in the web search engine.

1.2.2 Difficulties to Build the Search Engine
Although it is obvious that the topic hierarchy is beneficial, it is non-trivial to introduce such
functionality into the web search engine. There are several difficulties in building the web
search engine with a hierarchical topic facet.

First of all, in contrast to the e-Commerce website, the Internet does not have a policy
to force the web creators to tag the webpages with the topic labels when they are published.
The free Internet environment makes the major part of the webpages on the Internet unlabeled.
Without the topic labels, how can we classify them into the categories in the topic hierarchy?
The simplest but the most infeasible approach is to ask human to label the Internet webpages.
Let’s assume there are one billion webpages on the Internet. We can employ 1000 workers,
and each of them labels 1000 webpages per day, then we need almost three years to finish the
labeling for all the pages. To ensure the quality of the labels, one webpage may need to be
labeled by multiple workers, which can cause even higher cost. In our work, we will leverage
the power of machine learning techniques to automatically classify them into the categories of
our topic hierarchy.

The second challenge is how to appropriately select topics for the hierarchy and how to
accurately classify the webpages into the multi-level hierarchy. The common machine learn-
ing algorithms are designed for binary or multi-class classification problems. In our case, a
webpage may simultaneously belong to multiple categories which are in a tree structure. For
example, a news webpage talking about a concert held for a soccer game should be catego-
rized into “arts”→ “music” as well as “sports”→ “soccer”. In this thesis, we will utilize the
data collection in Open directory Project as the training data and the hierarchical classification
approaches to categorize the Internet webpages into the topic hierarchy.

Since the classification done by machine learning algorithms will not be 100% accurate,
how would we build the web search engine SEE based on the imperfect classification? For
each category, there are two types of errors (false positive errors and false negative errors).
False positive error [44] for a category is that a document has been classified into the category
but the document actually does not belong to the category. This type of errors may make the
results noisy by introducing the documents from unrelated topics. False negative error [44]
for a category is that a document has not been classified into the category but the document
actually belongs to the category. This type of error may truncate some relevant results in a
category. To handle the false positive errors, we propose a new ranking function. To deal
with the false negative errors, we introduce a button on the user interface for users to explore
additional results.

How to evaluate SEE is another challenge. The typical approach in information retrieval is
to post some queries to the search engine and evaluate the relevance of the returned results to
the query. However, very few of the previous works talk about how to conduct evaluation on the
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Figure 1.5: User Interface for SEE.

search engine with a hierarchy. Besides, in order to evaluate SEE, we need to know the relevant
documents for each query. How can we get the query relevance is another problem. In our
thesis, we will base our evaluation on TREC collection2, and design an evaluation framework
for SEE.

We also face the problem on how to further improve the performance of SEE. Introducing
more training data will definitely improve the classification accuracy, but sometimes a huge
number of training data may only slightly boost the accuracy, especially in the hierarchical
setting. Besides, labeling a large number of documents requires a great amount of human
efforts. How can we improve the classification accuracy while minimizing the human supervi-
sion? In our thesis, a new framework of active learning [55] will be proposed for hierarchical
classification to reduce the human labeling cost.

1.2.3 System Overview
In order to provide an overview of the whole system, we will demonstrate the user interface of
SEE including some typical search operations on the UI, as well as the architecture chart, in
the following part.

Figure 1.5 illustrates the main user interface of our search engine. On the left side of
the interface, we have a hierarchical tree for all the topics (Initially, only top level topics are
shown). Furthermore, we can expand the tree, click into any category and search with any query

2http://trec.nist.gov/
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within that category. When users are not familiar with the categories (topics) in the hierarchy,
they can search the desired topic in the topic search box. It should be noted that when we do
not search anything (no keywords in the search box) without choosing any category, instead of
the blank page as in Google, the most popular websites in the world (such as Yahoo!, Google,
etc.) are returned.

If we want to find specific information, say worm, a type of computer virus, how can
we search in SEE? We can simply search “worms” in the category, named “computer” →
“security” → “hacking”. In fact, there are two possible sequences of steps to complete the
search. The first sequence (demonstrated in Figure 1.6) is to first locate the category “hacking”
and then search with the keyword “worms” within “hacking”. Figure 1.7 demonstrates the
second way, where we can first search with the keyword “worms” without clicking into any
category, and then gradually narrow down the search domain to the category ‘hacking”. Both
of the two step sequences can arrive at the same search results as we can see in the last subgraph
of Figure 1.6 and Figure 1.7. However, there are only 27 results in the category. If we are
unsatisfied with the 27 results, we can have the opportunity to explore more results by clicking
a button called “Additional Results”, when coming to the last page (3rd page in this case) of
the returned results. By doing so, the user may have more chance to find the desired results.
Figure 1.9 illustrates this operation to search more results about “worms”. In this case, when
we click the “Additional Results” button, one more result is found.

Another important feature of SEE is that people are able to browse any category without
any keyword. In this case, the most popular webpages within the browsed category will be
returned to the user. It offers a good way to help people know other unfamiliar areas (or
domains). Figure 1.8 shows the results when the category “sports” is browsed. We can see that
many popular sports websites are displayed, such as www.nba.com, www.nfl.com, etc.

Figure 1.10 presents the overall architecture of the whole system. The entire system can be
divided into three sub systems, classification system, crawling system and web search engine.
The three systems are inter-connected. In the classification system, we train a classifier based
on existing labeled data. Then after we start running the crawling system on the Internet,
the web crawler [31] will crawl new webpages and index them into the web search engine.
Since the category labels of those webpages are known, we will use the constructed classifier
to categorize them into our hierarchy. Afterwards, those classification information will also
be indexed into the web search engine. When the user issues a query within a topic on the
user interface, the request will be sent to the web server. Then the web server will search the
indexed documents as well as the indexed classification information, and return the final list of
returned results back to the user.

The most time-consuming part in our system is to train the classifier. This step is actually
conducted offline. Once the classifier is ready, the classification for a new crawled webpage can
be done instantly. Thus, as long as the crawler is running, we can easily build up a web search
engine with billion-scale of webpages. Besides, since the topic classification information is
also indexed, the response time for the query with topic selection can be very quick. Thus, we
can see, our search engine SEE has a promosing scalability.
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Step 1

Step 2 Step 3

Step 4 Final results

Figure 1.6: Steps to find information about “worm” in “computer”→ “security”→ “Hacking”:
first locate category, then search keywords.
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Step 1

Step 2 Step 3

Step 4 Final results

Figure 1.7: Alternative steps to find information about “worm” in “computer”→ “security”→
“Hacking”: first search keywords, and locate category.
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Figure 1.8: Browsing “sports” category without any keyword.

Figure 1.9: Explore more results about worm in “computer”→ “security”→ “Hacking”: click
“Additional Results” button. Right subgraph shows the results after the button is clicked. In
this search case, only one more result is found.
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Figure 1.10: System architecture for SEE.

1.3 Contributions of the Thesis
Web search engine has been around for almost two decades, but keyword-based model has been
always in the leading role. As we discussed earlier in this chapter a hierarchical topic structure
will definitely benefit the search experience, why have those major web search engines still not
implemented it? It is mainly because manually classifying vast number of Internet webpages
is not realistic. In this thesis, we will leverage machine learning techniques to automatically
complete this challenging task and build a web search engine with a topic hierarchy embedded.

In Chapter 3, we extract a reasonable hierarchy from Open Directory Project (ODP) and
use the webpages in ODP as our base training data. Then we utilize the top-down hierarchical
classification approach to classify new Internet webpages into our hierarchy. By exploring dif-
ferent feature selection methods, classifier parameters and calibration algorithms, we optimize
the performance of our hierarchical predictive model. According to the evaluation results, the
classification performance is satisfactory.

Chapter 4 discusses how to leverage the classification results to build the search engine
prototype SEE. Here, we face two major challenges: how to deal with the false positive classi-
fication errors and rank the results within each category, and how to handle the false negative
errors introduced in the classification phase. Accordingly, we design a novel ranking function
and a new interface to let the users explore more results. We conduct a comprehensive evalu-
ation by using a well-known data collection for information retrieval. The results demonstrate
that the hierarchical version of SEE can achieve better search results than the flat version in
most of the queries, particularly when the query is intended to search within a topic. The work
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in Chapter 3 and 4 was published in the Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI-11) [32].

In order for SEE to achieve better search performance, it is critical to improve the classi-
fication performance, which often requires human efforts to label more webpages as the train-
ing data. Thus, it is worthwhile to study the problem on how to maximize the classification
performance in the hierarchical setting with minimal human supervision. We propose a novel
multi-oracle setting and a new active learning framework for the hierarchical classification. Ac-
cording to the experimental results, our methods can largely reduce the human labeling costs.
The work was published in the The 16th Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD2012) [39].

We list our major contributions in the entire thesis as follows.

1. We propose the new idea of integrating a hierarchy into general web search engine and
implement a prototype of this new search engine SEE.

2. We take advantage of machine learning and data mining techniques (e.g., SVM, hier-
archical classification and data preprocessing) to categorize Internet webpages into our
hierarchy. We design a parallel framework to improve the efficiency for the training
and classification processes. Besides, we propose an algorithm to find the best param-
eter combination that maximizes the classification performance. The evaluation results
demonstrate that our classification performance is good.

3. To build the new search engine SEE, we propose a novel ranking function and design
a new interface to explore additional results when returned results are limited. We also
conduct a comprehensive evaluation on SEE, and the results show that the hierarchical
version of SEE can achieve better search results than the flat version without hierarchy
in most of the queries, particularly when the query is suitable to search within a topic.

4. To further improve SEE with minimal human effort, we propose a novel multi-oracle
setting and a new active learning framework for the hierarchical classification. According
to the experimental results, our methods can greatly reduce the human labeling effort.



Chapter 2

Review of Previous Work

Since we are building a new type of search engine with a topic hierarchy embedded, we would
like to know what similar search engines are. We will review some existing web search engines
and discuss the similarities and differences with our search engine SEE. Furthermore, because
we will use machine learning techniques to classify the webpages, we will also review some
popular classification learning algorithms, and discuss their characteristics. However, most of
reviewed classification algorithms are designed to deal with binary problems, and can only be
used to train the base classifier. In our case, webpages need to be classified into multiple cate-
gories in the hierarchy. We will further leverage a technique called hierarchical classification
to handle this task. In this chapter, we will also review three typical approaches for hierarchical
classification.

2.1 Other Advanced Search Systems
Besides the keyword-based web search engines, such as Google and Bing, there exist several
other forms of web search systems. They offer alternative ways to assist the users in searching
on the Internet.

2.1.1 Web Clustering Engine
Web clustering engine [76, 7] is the most similar one to the search engine we are attempting to
build. By grouping the results returned by a search engine into a hierarchy of labeled clusters,
it provides a complementary way to explore the results in the flat list returned by the keyword-
based web search engines. Figure 2.1 shows the user interface of a web clustering engine
named Yippy. There are a number of web clustering engines in both research and commercial
domains. The typical ones are AISearch [77], SnakeT [20], Carrot2 [60], CREDO [6], KartOO1

and Yippy2, etc.
Web clustering engines are helpful in the following aspects as mentioned in [7].

1. Fast subtopic retrieval. If the documents that pertain to the same subtopic have been

1www.Kartoo.com
2www.yippy.com
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Figure 2.1: User Interface for a web clustering engine named Yippy.

correctly placed within the same cluster and the user is able to choose the right path from
the cluster label, such documents can be accessed in logarithmic rather than linear time.

2. Topic exploration. A cluster hierarchy provides a high-level view of the whole query top-
ic including terms for query reformulation, which is particularly useful for informational
searches in unknown or dynamic domains.

3. Alleviating information overlook. Web searchers typically view only the first result page,
thus overlooking most information. As a clustering engine summarizes the content of
many search results in one single view on the first result page, the user may review
hundreds of potentially relevant results without the need to download and scroll to sub-
sequent pages.

It should be mentioned that most existing clustering engines do not construct the index for
the documents, instead they are meta search engines [42, 13]. They forward the user queries
to some other public search engines (e.g., Google, Bing, ODP, etc.), and utilize clustering
algorithms to group those returned results and visualize them in various forms. Thus, the
clustering is actually a post-processing step after the retrieval of the query-relevant results from
the web search engine. There are generally four key steps to implement such web clustering
engine: raw results retrieval, feature generation, cluster construction, and cluster visualization.

The main task of raw results retrieval is to repost the user query to one or multiple data
sources, such as reputed web search engines, web directory and Wikipedia, and obtain about
100 to 1000 results3 relevant to the query. The content of those results normally contains the
title and URL of a webpage, snippets generated from the source system (e.g., search engine).
Then all those information will be fed to the next step as the raw results.

3The number depends on the query.
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The next step is the feature generation, which is a preprocessing step for the actual clus-
tering operation. The major task is to transform the raw results (title, URL, snippets) into text
features accepted by the common clustering algorithms. Several techniques in natural language
process can be utilized here, such as tokenization, stemming, n-grams, and feature extraction
and selection.

In cluster construction, three types of clustering algorithms can be used to cluster the doc-
uments based on the features produced in the last step.

1. Data-centric algorithms. This type of algorithm clusters the documents by finding the
data center of each cluster and emphasizes the quality on the closeness of the documents
in the cluster. Those algorithms are usually modified versions of traditional clustering
methods (e.g., hierarchical, optimization, spectral, etc.) with some additional textual
description for each cluster.

2. Description-aware algorithms. A serious problem of data-centric algorithms is that
the generated textual description for each cluster may not be accurate and friendly for
the users to search desired results. This problem is what description-aware algorithms
attempts to solve. This algorithm aims to improve the quality of the textual labels for the
generated clusters and make them interpretable to human, while still pursuing the quality
of the clustering.

3. Description-Centric Algorithms. This type of algorithms is designed to focus on guar-
anteeing the quality of descriptions (labels) for each cluster, so that users can better un-
derstand the meaning of the cluster and improve their search experience. If it is difficult
to describe a cluster, then it is not useful to present the cluster to the users.

The last step is cluster visualization [36]. This step is to display the clusters produced in
the client-side browser. The clusters can be demonstrated in various chart formats. The most
common approach is the hierarchical tree structure where each cluster is represented by a folder
icon, as shown previously in Figure 2.1.

Intuitively, web clustering engines are very similar to SEE, particularly in the following
aspects.

1. Similar Goal. Both web clustering engines and SEE aim to categorize the search engine
results and narrow down the search domain and improve the search performance.

2. Similar User Interface. As we can see in Figure 2.1, on the left hand side, there is also
a tree structure similar to the hierarchical tree in SEE (Figure 1.5). Users can drill down
along the path and search the results in an appropriate category.

However, they are dramatically different. We will list some key characteristics of the web
clustering engines and do comparisons with SEE.

1. Limited Clustered Results. As discussed before, clustering engines simply post-process
the returned results (ranges from 100 to 1000) from web search engines and group them
into clusters. The limited results as shown in Figure 2.1 may not meet the user’s need.
In SEE, the classification is conducted on the entire indexed documents and all the doc-
uments matching the user query can be returned.
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2. No Index of Documents. The lack of indexed documents makes the clustering engines
heavily dependent on other data sources. Furthermore, without index of documents,
other than the returned results, users are not able to explore other possible results in each
cluster. In SEE, we build our own index for all the documents as well as the classification
information, so that the user can explore each topic category thoroughly. Without issuing
any query, SEE becomes a web directory, users can browse the most popular webpages
within any topic, by integrating the factor of page importance.

3. Unpredictable Clusters. An important feature of clustering is to explore unknown
groups. However, this feature will inevitably lead to many unpredictable and unmeaning-
ful clusters. For example, in Figure 2.1, by searching “books”, the user may expect to see
books in different fields, such as in computer, arts, business. However, the resulting clus-
ters somehow mix everything together, which may confuse the users. In contrast, SEE
uses predefined common-sense categories (see Section 3.1) and the results will always
be classified into the existing categories without creating new categories.

4. Insufficient Data Input. Most clustering engines simply rely on the snippets to conduct
the clustering task. Since the snippets are relatively short, the accuracy and reliability
of the constructed clusters may not be satisfactory. In contrast, SEE utilizes the full text
of documents to build the classifier, which is more likely to produce better classification
results.

5. Computational Inefficiency The clustering process is often conducted on-the-fly after
user posts the query. The high computational complexity of clustering (as high as O(n3))
will significantly affect the response time. It may work well when the number of results
returned is small. However, if we would like to return more results to the users, the clus-
tering engines may fail to deliver the results in a short time. Since all the classification
information is indexed, SEE can response the users instantly.

2.1.2 Web Directory
Another type of similar system to SEE is the web directory. Rather than a keyword-based
search engine, a web directory does not return a list of ranked search results as users post
queries. Different from a web clustering engine, a web directory does not construct a hier-
archical tree of categories on-the-fly. A web directory maintains a good number of websites
by human effort, and those websites are organized in a hierarchical structure. The users can
browse the websites in each category as well as search the keywords within each category.
The typical web directories include the ODP (Open Directory Project)4, Yahoo Directory5 and
Google Directory6. In the following, we will give a brief introduction on the ODP7, since later
we will utilize it to build our search engine SEE.

The Open Directory Project, also known as DMOZ, is the largest and most comprehensive
human-edited directory of the Web. There are a vast number of volunteer editors (usually

4www.dmoz.org
5dir.yahoo.com
6It has been shut down.
7The other two web directories are similar to ODP.



22 Chapter 2. Review of PreviousWork

domain experts), who participate in the construction and maintenance for the ODP. The ODP
was originally named Newhoo which was founded in June of 1998. Then in the same year
Netscape purchased the website and still continued to run the site in a free mode. Up until
now, the ODP includes almost five million websites and becomes the largest web directory in
size, and over 50, 000 volunteer editors over the world have been involved in contributing to
its development.

Like other web directories, the ODP categorizes its websites into categories of various top-
ics. There are over one million categories and the deepest one goes up to 14-level depth. How
does the ODP collect those websites? In fact, the ODP allows Internet users or enterprisers to
submit their websites without any charge. When submitting a website, the user needs to spec-
ify the category that the website is most likely to belong to. After the submission, the website
does not directly go to the chosen category; instead, the human editors will double check if the
category is a good choice or not. There might be a good chance that the category needs to be
changed or new categories need to be added. Once confirmed, the submitted website will be
included in the corresponding categories.

The significant effect to submit the websites to the ODP is that it will increase the ranking
of the website when searching in Google. When accepted by ODP, two significant links will
link to the submitted website, one from ODP and the other from Google Directory. Both of
them already have high PageRank [47]. The consequence will be that the PageRank of the
submitted website will be significantly boosted. Thus, it is very beneficial to list the websites
on ODP.

Besides, all the data in the ODP are publicly accessible and can be downloaded free, which
is a reliable labeled data source for research purposes, particularly useful for machine learning
and data mining research.

Figure 2.2 demonstrates the main interface for ODP. In the figure, the top level categories
with some of their subcategories in ODP are displayed. By clicking into each of the categories,
the corresponding subcategories will be expanded. The users can also input a query in the
text box of any category, which searches the websites matching the keywords only within that
category.

Intuitively, web directories are very similar to our search engine SEE. In fact, they are sig-
nificantly distinguished from each other. We first present their similarities listed in following.

1. Predefined hierarchical categories. Both web directories and SEE utilize the prede-
fined hierarchical categories to classify their documents (websites and webpages).

2. Supporting hierarchical browsing and keywords search. In both web directories and
SEE, by clicking into each category, the user is able to browse the content within that
category without any query. Furthermore, the user is able to input the keywords in any
category and the matched results within that category will be listed to the user.

We will also list some features of web directories and discuss the differences with SEE.

1. Not a search engine. Although queries can be handled in web directories, the purpose
is to list and categorize web sites. It is not used for the purpose of general search (e.g.,
question and answer search, article search), since it only returns websites rather than
webpages. In another word, a web directory is a data provider rather than a search
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Figure 2.2: Interface of Open Directory Project.

engine. Moreover, they do not rank results. In contrast, SEE is a fully functional search
engine.

2. Limited scalability. An important reason that web directories cannot be developed into a
real search engine is that the categorization of websites is managed by human. Originally,
Yahoo! was attempting to build a search engine in a form of web directory, but it failed
to work as the number of published webpages increased dramatically on the Internet and
manually categorization became infeasible. However, SEE leverages machine learning
techniques to automatically categorize the webpages, thus it can be scaled easily as long
as the classifier has been built.

2.2 Popular Classification Algorithms

Since SEE will utilize machine learning to classify the webpages, we will introduce several
concepts related to machine learning and review some typical classification algorithms in the
literature.
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Machine learning can be defined as follows. A computer program is said to learn from ex-
perience E with respect to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E [43].

Simply speaking, as a subdomain of artificial intelligence, machine learning empowers
computers with the capability to learn from empirical data, without being programmed explic-
itly. In general, machine learning can be divided into two major areas, unsupervised learning
and supervised learning. Unsupervised learning solves problems where we need to discover
the hidden structures in unlabeled data. For example, the clustering technique used in web clus-
tering engines falls into the field of unsupervised learning, since it just tries to find the similar
groups of webpages without knowing the category labels. Supervised learning attempts to infer
a function based on a set of training examples with labels provided. The function, also called
model, can be used to predict the label values of new examples. If the label is numeric, the task
is a regression task. If the label is discrete, the task becomes a classification problem, and the
constructed model can be called classifier. In the thesis, classifying webpages into hierarchical
topics is actually a classification problem. There are several types of classification problems,
such as binary classification, multiclass classification [25], multilabel classification [64]. The
task of binary classification is to classify examples into one of two target classes (positive class
and negative class8). Rather than only two classes, multiclass classification can classify new
examples into one of three or more classes. In multilabel classification, new examples can be
classified into more than one classes.

In the following, we will introduce some classic learning algorithms for classification tasks
and discuss their advantages and weaknesses, as well as which one is more suitable for our
problem.

2.2.1 Decision Tree

Decision tree [49] is one of the most commonly used classification algorithms. Based on
the training data, the decision tree algorithm builds a top-down tree structure to fit the data.
Basically, the tree construction follows recursive steps starting from the root. Each time, the
data is split by the current best attribute, until the distribution of examples on each node of the
tree becomes pure (belonging to the same class) or satisfies a certain condition. When a new
example is coming, its attributes will be tested from the root until the leaf node is reached,
where the class of the example can be determined.

For example, suppose we would like to predict whether or not we will enjoy playing tennis
today, according to some input attributes such as the outlook, windy or not, humidity, etc.
Based on a training set consisting of previous playing records as shown in Table 2.1, we can
build a decision tree as shown in Figure 2.3. We can see, each internal (including root) node
of the tree is associated with an attribute, while each leaf node is connected to a class. For
example, on the root node, according to the value of the attribute outlook, the whole training
data can be divided into three parts (outlook==rainy, outlook==overcast and outlook==sunny).
Two of those three parts are further divided, while the other one (outlook==overcast) directly

8In the rest of the thesis, positive documents (or examples) mean the documents (or examples) belonging to
positive class, and negative documents (or examples) mean the documents (or examples) belonging to negative
class
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outlook temperature humidity windy play or not

sunny hot high FALSE no

sunny hot high TRUE no

overcast hot high FALSE yes

rainy mild high FALSE yes

rainy cool normal FALSE yes

rainy cool normal TRUE no

overcast cool normal TRUE yes

sunny mild high FALSE no

sunny cool normal FALSE yes

rainy mild normal FALSE yes

sunny mild normal TRUE yes

overcast mild high TRUE yes

overcast hot normal FALSE yes

rainy mild high TRUE no

Table 2.1: Weather dataset.

leads to a leaf node (the class“YES”). It means, when the outlook is overcast, we always
enjoyed playing tennis according to the previous data. After the decision tree is constructed, if
today is sunny but too humid, the classifier will output “NO”, meaning that we will probably
not enjoy the tennis playing today.

The key step in building a decision tree is to find the best attribute to split the data on each
internal node. There are many proposed metrics [46, 41] to accomplish it. The most typical and
commonly used metric is entropy, which is used to calculate the uncertainty associated with a
random variable. In this case, the class attribute of each example can be the random variable.
If the class attribute has n different values, then the entropy of an example set X can be defined
as

Entropy(X) =

n∑
i=1

−pi × log2 pi,

where pi is the proportion of X belonging to class i.
Generally, the purer the class on a node, the less uncertain the class is, and the lower the

value of entropy. The best attribute is the attribute that produces the greatest information gain,
which means the reduction in the entropy. Mathematically, the information gain of an attribute
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Figure 2.3: Decision tree structure.

A on a set of examples X can be defined as

Gain(X, A) = Entropy(X) −
∑

v=v(A)

|Xv|

|X|
Entropy(Xv),

where v(A) is the set of all possible values for the attribute A and Xv is the subset of X such
that A = v. For all the attributes, we simply choose the one with maximum Gain(X, A) for each
internal node to split the current data on the node.

Another issue with decision tree is how to avoid overfitting in decision tree? Decision tree
can always perfectly classify the training examples by building a large (deep) decision tree.
However, this approach sometimes overfits the training examples when we have noise in the
training data, or when the size of training data is too small. To tackle this problem, usually a
pruning step is adopted. Pruning typically removes the small branches in the tree, which are
likely to be unreliable. It can make the decision tree more robust to noise or more accurate for
unseen examples. More specifically, it uses a post-pruning rule as follows:

1. Build a decision tree following the above algorithm described.

2. Convert the tree into an equivalent set of rules.

3. Prune each rule by removing any preconditions that result in improving its estimated
accuracy.

4. Sort the pruned rules according to estimated accuracies.

The advantages of decision tree can be listed as follows.

1. White box model. The model can be easily interpreted and gives good intuitions to the
decision maker.
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2. Rules generation. The decision tree can be converted into simple and useful rules, where
experts have difficulties to formalize their knowledge.

There are also some disadvantages of decision tree.

1. Hard to model complex concept. Normally, the rule-based decision tree has difficulties
to model the complex target concepts with many relevant attributes. It is due to the fact
that the reliability of the rules generated by decision tree strongly correlates with the
number of observed data. On the deep level of the decision tree, the number of training
data significantly decreases, thus the rules become unreliable.

2. High time complexity for large feature set. The decision tree can be very efficient
when the attribute set is small. However, when there are millions of attributes, in order
to find the best attribute on each node, the linear comparison for all the attributes is very
costly. If f is the number of the features and p is the number of the nodes on the tree, the
time complexity can reach O( f × p).

To build our search engine SEE, we need to classify the text contents in the webpages,
which usually have millions of attributes (words). Thus, as we mentioned above, decision tree
is not a good choice.

2.2.2 Naive Bayes
Naive Bayes [50] is another typical classification algorithm which is based on Bayes rules.
Given an example x, if we want to classify it into one class in a class set C, we simply calculate
the posterior probability of x belonging to each class, and the one with the largest probability
will be the predicted class. Mathematically, give an example x, the posterior probability of a
class c can be calculated as,

Pr(c|x) =
Pr(c)Pr(x|c)

Pr(x)
,

where Pr(c) is the prior probability of the class c. For each of other classes, we calculate the
posterior probability probability the same way. We will find Pr(x) is the same for all the classes,
thus we only need to compare Pr(c)Pr(x|c) for different classes. Pr(c) can be computed by
calculating the percentage of the examples belonging to c in the whole training data. However,
it is more difficult to calculate Pr(x|c), since we do not know the true probability of x in the
underlying distribution. By assuming that the attributes in x are independent, Naive Bayes uses
an estimation to approximate Pr(x|c) as follows:

Pr(x|c) ≈
n∏

i=1

Pr(x(Ai)|c),

where x(Ai) is the value of x on the attribute i. By decomposing the example into attributes,
we can easily compute the Pr(x(Ai)|c) as the percentage of examples with attribute i equaling
x(Ai) in the examples belonging to class c in the training set. For example, by applying Naive
Bayes to the same dataset as presented in Table 2.1, given the attributes of today as

outlook = rainy, temparature = hot, humidity = high,windy = FALS E,
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we can calculate the posterior probability probability Pr(yes|today) and Pr(no|today) as fol-
lows.

Pr(yes|today) =Pr(yes)Pr(outlook = rainy|yes)Pr(temparature = hot|yes)
Pr(humidity = high|yes)Pr(windy = FALS E|yes)

=
9

14
×

2
9
×

1
9
×

3
9
×

6
9

= 0.0035

Pr(no|today) =Pr(no)Pr(outlook = rainy|no)Pr(temparature = hot|no)
Pr(humidity = high|no)Pr(windy = FALS E|no)

=
5

14
×

2
5
×

2
5
×

4
5
×

2
5

= 0.0183.

Thus, according to the prediction of Naive Bayes (Pr(no|today) > Pr(yes|today)), today is not
a good day to play tennis. Furthermore, by normalizing the two probabilities above, we can
obtain a probabilistic likelihood for each class ( 0.0035

0.0035+0.0183 = 0.161 and 0.0183
0.0035+0.0183 = 0.839).

Those normalized probability can be useful in many practical problems (e.g., expected cost
estimation).

There is a special case we should pay attention to. For example, if there is no examples
with temparature = hot in the class yes, then Pr(temparature = hot|yes) = 0, which will
cause the Pr(yes|today) = 0. Apparently, in this case, the calculated posterior probability will
be incorrect. In order to deal with this issue, a method called laplace correction is introduced to
Naive Bayes. Basically, laplace correction increments one to both denominator and numerator
of the probability calculation for each attribute. For example, if originally Pr(temparature =

hot|yes) = 0
9 , after laplace correction, Pr(temparature = hot|yes) = 1

10 .
Naive Bayes has some advantages for classification problems, which are listed as follows.

1. Efficient model construction. By simply scanning all the examples in the training set
once, the probability for each attribute value as well as the prior probability of each class
can be calculated.

2. Capability for large attribute set. No matter how large is the attribute set, given a
new example, the product of them times the prior of the class produces the posterior
probability of that class.

There are also some disadvantages with Naive Bayes.

1. Unrealistic independence assumption. Naive Bayes makes an unrealistic assumption
on the attribute independence. It assumes that given the class of an example, the at-
tributes of the example are independent. In fact, most of the real cases, the attributes are
correlated.

2. Strong prior impact. Given an example, to calculate the posterior probability for a class,
we always need to multiply by the prior probability of the class. If the class is extremely
imbalanced, such as 1% for a class and 99% for the other, the posterior probability will
strongly bias the majority class.
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Figure 2.4: Demonstration of K Nearest Neighbor.

Since Naive Bayes can handle large attribute set, it has been already applied in text classifi-
cation (e.g., spam filtering). However, according to some previous works [73, 27], in terms
of text classification, the performance of Naive Bayes is not as good as some other learning
methods such as K Nearest Neighbor and Support Vector Machine.

2.2.3 K Nearest Neighbor

K Nearest Neighbor (KNN) [15] is an instance-based classification algorithm. It belongs to
lazy learning methods as opposed to eager learning methods such as Decision tree and Naive
Bayes. Lazy learning method does not build the model in advance, and until an unseen example
is coming, it begins to explore the training data and attempts to classify it.

The general idea of KNN is to decide the class of a new example by considering the class of
the similar examples in the training set. Specifically, KNN classifies the new example based on
the majority vote of the k training examples closest to this example, called k nearest neighbors.
For example, given a house dataset with two attributes price and size, we need to predict if
a new house is worth buying. Figure 2.4 demonstrates how KNN basically works. The solid
circles represent the positive examples (houses purchased), while the hollow circles represent
the negative examples (houses not purchased). Suppose k = 3, when a new example (dashed
rectangle) is coming, it will be classified as positive examples, since 2 of the 3 closest examples
(marked as 1,2 and 3) are positive.

An improved version of KNN, called distanced-weighted KNN [15], further takes the dis-
tance of the neighbors into consideration. The weight can be calculated by using the inverse
square of the distance from each neighbor to the new example. The short the distance, the
higher weight it puts on the neighbor.

KNN has some desirable features for classification as listed below.
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1. Effective local classification. By weighting the distance, KNN can be a highly effective
classification method for many practical problems. Since only k neighbors are consid-
ered, KNN is robust to noisy training data, and can be very effective given a large set of
training data.

2. No training cost. Since KNN is a lazy learning method, no model is constructed for
training and we directly classify new examples without paying any training cost.

Several weaknesses can be also found for KNN.

1. High classification (prediction) cost. Although we do not need to build the model for
KNN, for each new example, KNN needs to go through all the training examples to
find the k nearest neighbors of the new example. Suppose n is the number of training
examples, the time complexity to classify one new example will be O(n), compared to
O(k) for decision tree and Naive Bayes, where k is a constant. If we have a large number
of examples to be classified, the time complexity will be very high.

2. Choice of K. The performance of KNN strongly relies on the choice of the parameter k.
However, it is usually difficult to determine the optimal value for k.

To build the search engine SEE, we need to classify a large number of new webpages into the
hierarchical categories. Thus, KNN is not a good choice for our task due to its high classifica-
tion cost.

2.2.4 Support Vector Machine
The basic idea of Support Vector Machine [11], also called SVM, is to find the hyperplane that
can well separate positive and negative examples in the training data with the largest margin.
For example, we still use the same housing dataset in Section 2.2.3. By using SVM, we can find
many different hyperplanes that can perfectly separate the solid circles (positive examples) and
hollow circles (negative examples) as the lines shown in left subgraph of Figure 2.5. Among
those lines, we can find a line that maximizes the margin between the positive and negative
examples as the solid line shown in the right subgraph of Figure 2.5. We call the examples
lying on the margin support vectors.

Mathematically, any hyperplane can be represented as a set of points X, which satisfies

W · X − b = 0,

where · denotes the dot product and W is the normal vector to the hyperplane. Suppose the two
classes of the training set are linearly separable, we can always find two parallel hyperplanes
(dashed lines as shown in the right subgraph of Figure 2.5) such that no training examples stay
between them and the distance between them is maximal. Mathematically, we can define them
as

W · X − b = 1,W · X − b = −1.

The distance between the two hyperplane can be calculated as 2
‖W‖ . To maximize the margin,

we need to minimize ‖ W ‖. Thus, the model construction for SVM is to find the best W and
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Figure 2.5: Demonstration of support vector machine.

b that minimizes ‖ W ‖ and correctly classifies all the examples in the training set as well. To
make the hyperplane classify the positive and negative examples perfectly, we should ensure,
for each positive examples xi in the training set, W · xi − b ≥ 1, and for each negative examples
xi, W ·xi−b ≤ −1. The two inequations can be rewritten into one inequation as yi(W ·xi−b) ≥ 1,
where yi is the class label (yi ∈ {−1, 1}) for example i in the training set.

Thus, SVM can be transformed into an optimization problem as

min
w,b
‖ W ‖

sub ject to, yi(w · xi − b) ≥ 1, ∀i (1 ≤ i ≤ n),

where n is the number of training examples.
Since the problem includes a square root ‖ W ‖, it is difficult to solve. However, we can

substitute ‖ W ‖ with ‖ W ‖2, without changing the original problem. Thus, it becomes a
quadratic programming optimization problem.

min
W,b

1
2
‖ W ‖2

sub ject to, yi(W · xi − b) ≥ 1, ∀i (1 ≤ i ≤ n),

where n is the number of training examples.
We can further transform the problem to the following form by introducing Lagrange mul-

tipliers α.

min
W,b

max
α≥0
{
1
2
‖ W ‖2 −

n∑
i=1

α[yi(W · xi − b) − 1]}

By using the standard quadratic programming, now we can solve the problem. According
to the ”stationary” Karush–Kuhn–Tucker condition, the solution can be represented as a linear
combination of vectors of the training examples

W =

n∑
i=1

αiyixi.
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In fact, only the support vectors (satisfying yi(W · xi − b) = 1) will have non-zero α.
Therefore, we can calculate b by averaging over all the support vectors as

b =
1

Nsv

Nsv∑
i=1

(W · xi − yi).

The optimization problem introduced above is the Primal form for SVM. Since we know

‖ W ‖2= W ·W, if we substitute W =
n∑

i=1
αiyixi, then we can convert it into its dual form as

max{
n∑

i=1

αi −
1
2

∑
i. j

αiα jyiy jxT
i x j}

sub ject to αi ≥ 0,
n∑

i=1

αiyi = 0.

By calculating α, we can further compute w by W =
n∑

i=1
αiyixi.

However, in certain circumstances, the positive and negative examples in the training set
are not linear separable. How can we deal with this case?

One solution is that we can use the soft margin instead of the hard margin. By using the
soft margin, we allow the imperfect separation by the hyperplane on the training set. We can
reformulate the optimization problem as

min
W,b,ξ
{
1
2
‖ W ‖ +C

n∑
i=1

ξi}, sub ject to, yi(W · xi − b) ≥ 1 − ξi,

where the parameter C is the penalty for any of the training errors and ξi measures the degree
of misclassification of an example i. Thus, the optimization problem becomes a problem to
maximize the margin while minimizing the training errors.

The SVM we discussed above is called linear SVM, since the hyperplane is in a linear
formula. To handle the non-linear separable data, another more sophisticated method is to use
kernel. The basic idea of kernel to transfer the original attribute space of the data into a higher
dimensional feature space so that the training data will be linear separable. Mathematically, if
we rewrite the dual form and replace the term xT

i x j with k(xi, x j), we can obtain the following
form.

max{
n∑

i=1

αi −
1
2

∑
i. j

αiα jyiy jk(xi, x j)}

sub ject to αi ≥ 0,
n∑

i=1

αiyi = 0.

Here, k(xi, x j) is the kernel function. Different kernel functions can be used to solve different
types of real problems. We list two common kernels as follows.

1. Polynomial kernel:k(xi, x j) = (xi · x j)d
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2. Gaussian kernel: k(xi, x j) = exp(−γ ‖ xi − x j ‖)2

In this thesis, since it is not necessary to do the space transformation for textual documents,
we will not introduce the kernel function in detail.

The advantages of using SVM as the classification algorithm are listed below.

1. Effective and robust model. By maximizing the margin, SVM has good generalization
capability. With the soft margin introduced, SVM can be robust against the noise in the
training set. By choosing the correct kernel and parameters, SVM can handle various
types of data and large-scaled data sets.

2. Efficient model construction. By using dynamic programming, the optimization of
model construction for SVM can be accomplished within a few iterations. There are sev-
eral open libraries that implement SVM with slightly different approaches. The typical
and most commonly used ones are LibSVM and SVMLight.

3. Text classification. Usually, the attribute (word) set for text (webpages and documents)
is very large. The high dimensionality often leads to the training data being linear sepa-
rable. Thus, linear SVM can be a good choice for text classification.

Several disadvantages can also be observed for SVM.

1. Black box model. SVM can do perfect job for classification, but it is difficult to interpret
the model constructed by SVM, particularly for high dimensional data set.

2. Choice of parameters. There are several parameters in SVM that we need to specify
in advance, such as C in the soft margin, and other parameters for different kernels.
Inappropriate choice of the parameters may lead to poor classification performance.

Due to the advantages mentioned above, SVM is a good choice for our task. Furthermore,
many previous works [27, 28, 5, 73] empirically verify that SVM is superior to other classifi-
cation algorithms (Naive Bayes, KNN and Decision Tree) in terms of text classification. Thus,
we will choose SVM, specifically linear SVM, as the base classification algorithm to construct
the search engine with classified webpages. More specifically, we will use an open library of
linear SVM called LibLinear (see Section 3.2.3.2 for detail) to implement our classification
system.

2.3 Hierarchical Classification Approaches
To build SEE, we need to classify each new webpage into the categories in the hierarchy. One
webpage may be classified into multiple categories which form a tree structure, since a web-
page may belong to several topics in the same time. For example, a website talking about sales
on crafts can be classified as “Shopping” and “Arts”. It is different from the traditional binary
or (multiclass) classification problem, where each new example is classified as one of the mul-
tiple classes. In our cases, the output of the model for an example is a hierarchical structure
of multiple classes. How can we deal with this classification task? We will utilize a technique
called hierarchical classification [16, 57, 61] to accomplish this task. In the following sub-
sections, we will briefly introduce three classical approaches for hierarchical classification, as
well as their weaknesses and strengths.
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2.3.1 Flat Classification Approach
As the simplest strategy to handle hierarchical classification tasks, the flat classification ap-
proach [2, 24] completely ignores the hierarchical relations between categories (e.g., parent
and child, siblings), and only classifies new examples into the leaf categories. A typical and
commonly used method for this approach is called one-vs-all. Basically, it decomposes a com-
plex classification problem with multiple classes into multiple binary classification problems
on the leaf categories. The positive examples for the binary problem on a leaf category are
examples on the category, while the negative examples are the examples belonging to all other
leaf categories other than the current leaf category. Figure 2.6 illustrates the approach, from
which we can see the positive examples on the leaf category “Music” are in the solid rectangle
and the negative examples are in the dashed rectangle.

The training set can be used to build a binary classification model on each of the leaf
categories. When a new example is coming, the model of each leaf category will generate a
classification output (positive or negative), then the example will be classified into all the leaf
categories with positive classifications. Since the categories of parent and children are of “IS-
A” relation, once an examples is classified into a leaf category, it is implicitly classified into all
its ancestor categories.

Figure 2.6: Illustration of flat classification approach.

The advantage of the flat classification approach is:

1. Simple and intuitive. By a simple transformation, the original complicated problem
becomes a group of simplified binary tasks, which can be solved by traditional classifi-
cation algorithms.

The disadvantages of the flat classification approach are primarily twofold.

1. Imbalanced training sets. The decomposed binary training set on each category will
be very imbalanced, since the number of negative examples will be much larger than the
number of positive examples. For example, in the hierarchy of SEE, we have 575 leaf
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categories. For each leaf category, the positive examples come from one class (itself),
while the negative examples consist of the other 574 classes. In this case, it is very
difficult for most of the classification algorithms to perform well on the minority class,
since simply predicting every example as negative can still lead to a high accuracy.

2. High training cost. Since the training set on every leaf category consists of all the
examples on the leaf categories, it is very costly to train the models. The time complexity
is O(l × n), where l is the number of leaf categories and n is the total number of training
examples. For example, as shown in Table 3.2, we have 1,242,785 training examples in
total, which equals the number of training examples on all the leaf categories. If we use
the flat classification approach, we will need to train 575 models where each is built on
more than one million examples. The massive size of data would cost a huge amount of
memory, or even cannot be fit into the memory. Even if it can be loaded into the memory,
it will still take a long time to execute the algorithm to construct the model.

2.3.2 Local Classifier Approach
To overcome the two disadvantages of the flat classification approach, the local classifier ap-
proach [65, 8, 71, 69, 17, 40] has been proposed. Instead of globally using the entire training
examples to train the model on each leaf category, the local classifier approach locally uses
the examples belonging to the parent category to train each model (All examples belong to the
root). Figure 2.7 illustrates the idea of local classifier approach. For the category “Music”, the
positive examples on “Music” are still from “Music” itself, however, the negative examples
only consist of the examples from the other subcategories under “Arts”. Thus, the categories
under “Computer” and “Sports” are excluded. Thus, we can see the whole training examples
for each category are actually the positive examples from the training set of its parent category.

Figure 2.7: Illustration of local classifier approach.

By recursively localizing the training examples, we can generate the training set for each
category of the hierarchy, except the root. Generally, the deeper the category, the smaller the
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training set. Then the local classifier approach trains a binary classifier on each of the leaf and
internal categories.

When a new example is coming, it adopts a top-down method to classify it into the cate-
gories of the hierarchy. The basic idea is that the descendant categories will have chances to
classify an example only if all the ancestor categories classify it as positive. Specifically, first of
all, all the classifiers on the top level categories9 choose to predict the new example, and each
one will output a classification (positive or negative). Then the example will be pushed down
further to the subcategories of those top categories with positive classifications. This process
iterates until it reaches the leaf category. Suppose we have a hierarchy as shown in Figure 2.7.
Given a new example, if the classifier on “Arts” and “Sports” classifies it as negative, and the
classifier on “Computer” classifies it as positive, then the example will stop being pushed down
on “Arts” and “Sports” and be pushed down to all the subcategories of “Computer” for further
classification. We will discuss how to classify new examples in detail in Section 3.2.4.

The advantages of the local classifier approach are:

1. More balanced training sets. Compared to the flat classification approach, the localized
training set generated by local classifier approach is expected to have much less negative
examples, and thus more balanced. It is definitely beneficial to the performance of the
classification algorithms.

2. Low training cost. Since the training set on each category in the hierarchy is localized,
the size of the training set decreases as the category goes deeper. Only the training sets
on the top level categories use the entire training examples. It greatly reduces the training
cost to construct the models, and speeds up the training process.

3. Convenient model modification. The localization of the training examples makes it
convenient to add and delete new categories to the hierarchy. For examples, in Figure
2.7, if we would like to add a new category “Baseball” under “Sports”, we only need
to update the training sets on “Soccer”, “Basketball”, “Hockey” as well as “Sports”,
“Computer” and “Arts”, but the subcategories under “Arts” and “Computer” can stay
unchanged. When the examples of “Baseball” are included for training, the negative
training examples of “Soccer”, “Basketball”, “Hockey”, “Computer” and “Arts” as well
as the positive training examples of “Sports” will need to be changed. However, it does
not affect the training examples for the subcategories under “Arts” and “Computer”, since
they come from the positive examples of the parent categories.

The disadvantages of the local classifier approach are:

1. Limited examples on deep categories. The reduction of the training cost can also mean
the reduction in training size, particularly on the leaf categories. Based on limited train-
ing examples, the classifier may not perform well on new examples.

2. Error Propagation. In the local classifier approach, a new example needs to be classi-
fied by the ancestor categories before reaching the deep category. It is possible that an
ancestor classifier make mistakes on the example. The error will be propagated to all

9Top level categories are the children categories of the root
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its subcategories. There are two types of errors that will be propagated, false positive
and false negative. False positive is the misclassification of the actual negative exam-
ple to positive. False negative is to misclassification of the actual positive example to
negative. For example, in Figure 2.7, given a new example belonging to “Computer”
→ “Software”, if the classifier on “Arts” makes a false positive error (misclassifies it as
positive), then the example will be passed to all the subcategories of “Arts”. However,
since the classifiers on those subcategories are trained based on the examples belonging
to “Arts”, it is very likely that further errors will occur on this out-of-scope example.
Besides, for the same example, the classifier on “Computer” may make a false negative
error, meaning that it misclassifies it as negative on “Computer”. In this case, the subcat-
egory “Software” under “Computer” will not have the chance to classify it, thus further
decreasing the overall classification performance.

2.3.3 Global Classifier Approach

In contrast to the flat and local approach, global classifier approach only builds one single but
usually complex model for all categories, instead of multiple decomposed binary models. To
classify new examples, the model can either directly output an entire hierarchy of categories,
or still follow the top-down method used by the local classifier approach. There are various
approaches [51, 56, 66] that can belong to the category of global classifier approach. Although
they seem be share no core characteristic, in general two related characteristics are associated
with them [57].

1. They consider the entire class hierarchy at once.

2. They lack the kind of modularity for local training of the classifier.

The key difference between global and local or flat approach is in the training phase (single
model versus multiple models).

The advantage of the global classifier approach is:

1. Time efficient. By building only a single model rather than each model for all the cate-
gories in the hierarchy, the global classifier approach can significantly reduce the training
time consumption.

The disadvantages of the global classifier approach are:

1. Poor performance for complex hierarchy. The performance of the global classifier ap-
proach may degrade dramatically as the number of categories in the hierarchy increases,
since it is difficult for a single classifier to model the complicated relations among a large
number of categories.

2. Black box model. Usually the model built by the global classifier approach is very
complicated and hard to understand, which makes it difficult to analyze the model and
thus further improve the model.
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By considering the advantages and disadvantages of the three approaches introduced above,
we decide to choose the local classifier approach, which is the most appropriate for our purpose.
Because our total training size is over 1,000,000, we cannot afford the high training cost of
the flat classification approach. Furthermore, with 662 categories our hierarchy is not that
simple. Thus, the global classifier approach is less likely to perform well when modeling the
complicated hierarchical relations. Overall, the local classifier approach is the best choice for
our classification task, in terms of the training efficiency and effectiveness.



Chapter 3

Classification System

To implement the search engine SEE, we will need to create a hierarchy of topic categories and
build classification models to categorize new webpages into our hierarchy. In this chapter, we
will first introduce how we generate the hierarchy for SEE, and then discuss in detail how we
preprocess the training data, design the parallel framework and maximize the performance of
our classifiers. The evaluation results show that the constructed classifiers have good classifi-
cation performance. This part is joint work with Xiao Li. We both contributed in designing
the overall classification process. I contributed more in the hierarchy generation, performance
maximization and performance evaluation, while Xiao contributed more in the data prepro-
cessing, parallel framework design and most of the coding work in building the classification
system.

3.1 Hierarchy and Training Data Generation

A reasonable and user-friendly hierarchy of topics is one of the most important elements in
our search engine. It can greatly benefit the search experience of the users. There are several
criteria that we think a good hierarchy should have for SEE.

1. Common sense. According to the statistics from Internet World Stats, by Dec 31, 2011,
the total number of Internet users around the world has reached 360,985,492. Different
users may have different education backgrounds, different expertise domains, different
understanding even towards the same object. It is desirable to present a common sense
hierarchy to various users so that majority of them will feel familiarized and convenient
to find the desired topics. To satisfy various users, the hierarchy should also have a broad
coverage of common topics.

2. Tree structure with moderate width and depth. Usually, tree-structured hierarchy is
an acceptable form for users, since the tree structure has been around in many other do-
mains (e.g., hierarchical menu, Windows directory). Besides, for the users’ convenience,
the hierarchy should not be too deep and the number of branches under each topic should
not be too large. A complicated hierarchical structure (e.g., the long path from the root
and the long list of subtopics) can easily confuse the users.

39
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To generate our hierarchy, we can actually take advantage of some existing well-established
taxonomies. There exist several taxonomies which have been already used by a large popula-
tion of Internet users, such as the category structure in Wikipedia and the topic hierarchy in
Open Directory Project (ODP) as we mentioned in Section 2.1.2.

However, the taxonomy in Wikipedia is a directed acyclic graph (DAG) rather than a tree-
structured hierarchy. In fact, tree is a special structure of DAG which only allows one parent
node for one node, but in DAG one node can have multiple parent node. For example, “Na-
ture” is a category on the top level of the hierarchy (a subcategory of the root) as well as
a subcategory under another top level category “Life”. This type of topic structure will be
confusing to the users, who get used to tree-based browsing. Another important reason that
Wikipedia categories cannot be used in SEE is that the category relationship is not a strict ”IS-
A” relationship. For example, there is a connection path in Wikipedia: “Sports”→“Sport and
politics”→“Olympics”→“Summer Olympic Games”→“Host cities of the Summer Olympic
Games”→“Los Angeles”. We can see, the city “Los Angeles” definitely does not belong to
“Sports”. The weak category relationship can not only mislead the users, but also increase the
difficulty for learning algorithm to do accurate classifications.

The topic hierarchy of ODP is a tree structure and the relationship between a parent and
a child basically follows the ”IS-A” constraint. Thus, it can be a good base taxonomy for
SEE. However, as we mentioned in Section 2.1.2, the entire hierarchy has over one million
categories with a maximal depth of 14, which does not meet our criteria mentioned before. We
need to extract some categories and customize them to be a reasonable hierarchy for SEE. The
extraction follows the following rules.

1. Prefer popular and meaningful categories.

2. Prefer to choose the categories with more than 100 websites maintained under it.

3. Try to restrict the number of subcategories to be no more than 10 (moderate width).

4. Keep the depth of the hierarchy to be no more than 4 (moderate depth).

Based on the rules above, we extract 662 categories in total for our hierarchy. The top level
has 11 topic categories, including Arts, Business, Computer, Health, Home, Recreation, Ref-
erence, Science, Shopping, Society, Sports. These 11 topics basically cover different domains
in our regular life. We skipped the other five top categories in the original ODP, which has 16
top categories. We list the reasons why we did not select them in Table 3.1. The hierarchy
has several leaf categories with a depth of four, however, most of the leaf categories are in the
depth of three.

After we determine the hierarchy for SEE, we will need the training data to build the model
for the classification of new webpages. Since a number of websites are maintained under each
category in ODP, we can utilize the homepages of those websites as the training examples.
Specifically, for a particular category in our hierarchy, we use the homepages of the websites
belonging to all its descendants in ODP plus its own homepages as its training examples. For
examples, for the top category Health, its training examples include the examples purely be-
longing to Health, such as the general health website WebMD, as well as the training examples
in all the subcategories of Health, Medicine, Conditions and Diseases, Addictions, etc. Thus,
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Category name Reason to skip

Games There is a similar subcategory under Computer.

Kids and Teens It is just a kids version of the whole ODP structure.

News It has too few websites (8000) to train the classifier.

Regional The categorization is based on locations, thus infeasible to apply classifiers.

World The webpages are in other languages, rather than English.

Table 3.1: The reason to skip five top categories.

Level Number of Categories Number of Example

1 11 1242785

2 99 31989

3 499 3941

4 53 2650

Table 3.2: The statistic information of the topic hierarchy at each level.

although we only extract four levels of categories in ODP, we basically use all the documents
in ODP as our training examples except the documents in the five skipped top categories. We
tabulate some simple statistics of our hierarchy on each level in Table 3.2.

3.2 Classification Methodology
After the hierarchy and training data are determined, we can build classifiers based on those
training data by using the local classifier approach (introduced in Section 2.3.2). Then, those
constructed classifiers can be utilized to classify new webpages into the hierarchy. In this
section, we will discuss the detail on how we process the raw data, construct the classification
model and categorize new webpages.

3.2.1 Data Preprocessing

As we mentioned in Section 3.1, we will utilize the webpages in ODP to build the classification
model. However, since feature vectors are required for classifier training, those raw webpages
(55.7 GB) cannot be used directly to train the classifier. We will apply a sequence of data
preprocessing techniques (shown in Figure 3.1) to the raw webpages and output a qualified
training set for the model construction.

Remove HTML tags. As we all know, webpages on the Internet consist of many HTML
tags, such as <title>, <body>, <table> and so on. Since they have no meaning relevant to the
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Figure 3.1: The sequence of data preprocessing.

topic of the webpage, introducing them as extra features (attributes) into the training set has
little help to boost the performance of the classifier, instead the classifier may be misled by
those irrelevant features. Thus, we remove all the HTML tags and scripts embedded in all the
webpages, and only retain the text content. Therefore, the original webpages are converted into
pure text documents.

Stemming. For the text documents, we choose to use a technique, called stemming. Stem-
ming is a process to reduce the inflected words to their stem (or root) form. The intuition behind
this is that words sharing the same morphological invariant (root) can be related to the same
topic [58]. For example, “programming” and “programmer” will be stemmed as “program”
and treated as the same feature. Stemming has been widely used in text classification, and
demonstrated to improve the classification performance. Specifically, to stem a text document,
for each word, we reduce it to its stem form (e.g., “programming”→ “program”).

After the HTML tag removal and stemming, we still need to handle a huge document
collection with over four million unique words and 5.1 GB disk space. They cannot even be
loaded into the memory of a normal PC for the further classifier training. Thus, we employ two
techniques to further reduce the total number of words.

Remove rare words. We first remove the rare words over the entire collection. Specifi-
cally, we delete all the words that occur no more than three times (common choice in previous
works [22]) in all the documents. Those rare words are of little value for the classification
performance, since the classification patterns based on the rare words are unreliable.

Remove stop words. Furthermore, we delete all the stop words in the document collection.
Stop words, such as “the”, “is” ,“at” and “which”, usually take a large space of a document,
but do not carry any meaning. By removing the stop words, we can significantly decrease the
storage space and memory usage, when training the classifier.

Add tag suffix. Although HTML tags are not semantic, different tags indicate different
importance of the text content inside them, which can be utilized to benefit the topic classifi-
cation. For example, a webpage with a word “software” in the tag <title> is more likely to
belong to “computer” than a webpage with the word “software” simply appearing once in the
tag <body>. There are also other helpful tags, such as description of <meta> and keywords of
<meta>. However, as those information are missing in most of the webpages on the Internet,
we treat the text in them the same as the text in the tag <body>. Based on this intuition, we
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treat the same words in the tag <title> and in other tags of the webpage differently. Specifical-
ly, we append an suffix “ t” to each of the words in the <title> and “ b” to each of the words in
other tags.

Apply Bag of words model. The next step is to transform each text document into a feature
vector, which can be used as the input for the classification algorithm. We will utilize a typical
feature representation model called bag of words, which is commonly used for text represen-
tation in document classification, natural language processing and information retrieval. The
basic idea of this model is that we treat each text document as a collection of words but ignore
the order of the words. In terms of how to represent the word collection in the bag of word
model, there are different ways, including binary format, occurrence format, TF format and
TF-IDF format.

For binary format, if a word appears in a document, the value of this feature (word) is
1; otherwise, it is 0. However, this format does not consider the weight of each word. For
example, a document containing 100 times of “software” is much more likely to belong to
“computer” than a document only mentioning “software” once.

To overcome this problem in binary format, occurrence format counts the number of oc-
currence of the words appearing in the document and use it as the value of the feature. The
weakness of this format is that it does not take the length of the document into consideration.
For example, the word “software” appears twice in a document with 5 words as well as in a
document with 10000 words , but the shorter one should be more likely to belong to “comput-
er”.

By normalizing the document by its length, we can solve the problem in the occurrence
format. This is the main idea of TF format, where TF represents term (word) frequency. It not
only counts the number of occurrence of each word but also normalizes the occurrence by the
length of the total words in the document. Mathematically, the TF of a word w in a document
d can be defined as

t f (w, d) =
|t ∈ d : t = w|

|d|
,

where t is any word in d. There is also an issue with the TF format. By using TF format, some
common but non-discriminating words will have high weight. For example, the stop words
such as “the”, “and” are likely to appear frequently in every document but they are not able
to distinguish different topics. In most documents under the category “computer”, the word
“computer” is likely to occur frequently, but it is also a non-discriminating word when we need
to distinguish the topics under “computer” (e.g., “Software” vs. “Hardware”). Those highly
weighted non-discriminating words will severely affect the classification performance.

Therefore, a more sophisticated format called TF-IDF format is proposed. In addition
to TF, for each word, it also calculates the inverse document frequency (IDF). The inverse
document frequency is to measure how common a word is across all documents in a collection.
The more common a word, the lower the IDF. For example, the stop words (e.g., “the” and
“and”) will have very high value for IDF. To compute the IDF of a word w in a collection D,
we can divide the number of documents by the number of documents containing this word, and
then take the logarithm of the quotient.

id f (w,D) = log
|D|

|d ∈ D : w ∈ d|
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computer software is a subfield of hardware different from includes and

Document 1 2
7 × log 3

3
1
7 × log 3

3
1
7 × log 3

2
1
7 × log 3

1
1
7 × log 3

1
1
7 × log 3

1 0 0 0 0 0

Document 2 2
7 × log 3

3
1
7 × log 3

3
1
7 × log 3

2 0 0 0 1
7 × log 3

2
1
7 × log 3

1
1
7 × log 3

1 0 0

Document 3 3
7 × log 3

3
1
7 × log 3

3 0 0 0 0 1
7 × log 3

2 0 0 1
7 × log 3

1
1
7 × log 3

1

Table 3.3: Illustration of TF-IDF format. In each cell, the left is the TF value while the right is
the IDF value.

Then the TF-IDF value of a word w in document d as regard to a collection D can be calculated
as

t f − id f (w, d,D) = t f (w, d) × id f (w,D)

From the formula above, we can see, t f−id f (w, d, F) can suppress the weight of those common
but non-discriminating words. Table 3.3 presents a simple example to apply TF-IDF format to
a collection of three documents.

Due to the superiority of TF-IDF format, we choose it as the feature representation for the
text documents and generate the training set for the model construction.

3.2.2 Parallel Classification Framework
After the data preprocessing, each feature vector will be a training example, associated with
several categories in the hierarchy. Based on the local classifier approach mentioned in Section
2.3.2, we can construct one binary training set on each category and build a binary classifier,
and use top-down approach to classify new examples into the categories in the hierarchy.

Although in the data preprocessing we have reduced the feature space by removing the rare
words and stop words, we still have over 1,277,386 unique features and 1,054,652 examples in
each of the 11 training sets on the top level categories of the hierarchy. In addition, we need to
build 662 binary classifiers for the whole hierarchy. The huge feature space, large training size
and considerable number of classifiers significantly increase the time complexity for the model
construction and classification process.

Therefore, we design a novel parallel computing framework to improve the efficiency of the
training and classification process. Specifically, we build a small cluster with five PCs. Three
PCs have eight CPU cores and the other two have four CPU cores. Thus, ideally, we can run 32
parallel threads simultaneously, but in fact only a maximum of 27 threads can be used taking
away the system processes. All those PCs are connected to a Gigabit switch, so that the data
transfer speed between them can reach as high as 100Mb per second. Then we configured a
MPI (Message Passing Interface) environment on those PCs so that they can communicate with
each other. Under this environment, a parallel algorithm is implemented to train the classifiers
and make classification on the new examples.
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Figure 3.2: The process of the parallel framework.

Before the running of the program, we copy the preprocessed training set to each of the
five PCs, so that the threads launched on each PC can locally load the large-scale data to the
memory, rather than obtaining the data from a remote centralized data center. It can signifi-
cantly boost the efficiency. Basically, we design a master and several slaves in the algorithm.
Both master and slaves will be executed in a form of thread. The task of the master thread is
to assign a number of model construction tasks (categories) to each of the slave threads, and
gather the classification results from slaves and evaluate the classification performance. The
task of each slave thread is to construct the binary models of the categories assigned by the
master thread and classify the new examples into the hierarchy. All the slave threads can be
executed simultaneously over the multiple CPU cores. To make sure the balance of the work
load on each slave, the master adopts a level-wise strategy to randomly select the categories.
Specifically, we maintain a list of categories for each of the four levels of the hierarchy. We
repeatedly iterate each slave thread, and in each iteration the master pops one category from
each list to assign to the slave if the list is not empty. The whole process terminates when no
category is left in any of the four lists. Figure 3.2 demonstrates the framework of our parallel
architecture.
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3.2.3 Model Construction
For each slave thread, the first step is to build a binary model for each of the categories as-
signed by the master. There are three key factors in constructing each binary classifier (feature
filtering, parameter tuning and probability calibration).

3.2.3.1 Feature Filtering

As we mentioned in the last section, the number of features in each binary training set is large,
particularly for the top level categories. To further boost the efficiency of the model construc-
tion, we can utilize another typical technique in text classification, called feature filtering. The
goal of feature filtering is to reduce the high dimension of input space without degrading the
classification performance, so that the training phase becomes more efficient. In fact, well-
selected features can even substantially improve classification performance.

For text classification, there are a number of feature filtering methods [74], such as Infor-
mation Gain (IG), Chi Square (CHI), Document Frequency (DF), Bi-Normal Separation (BNS)
[22] and so on. In our work, we only consider DF and BNS. The reason is that DF, IG and CHI
are strongly correlated and usually obtain similar results [74], and DF is much simpler than the
other two methods. Bi-Normal Separation has been recently proposed and shown to be very
effective, particularly when data is class-imbalanced. The definition of the two methods (DF
and BNS) are shown as follows.

1. Document Frequency. The DF of a word is simply measured by counting how many
documents contain this word. Mathematically, given a word w, its DF value can be
defined as

DF(w) = |d ∈ D : w ∈ d|,

where D is the collection of all the documents and d is any document in D.

2. Bi-Normal Separation. BNS uses the standard normal distribution’s inverse cumulative
probability function1 F−1 to calculate the measure. Mathematically, it can be defined as

BNS (w) = |F−1(
tp(w)
pos

) − F−1(
f p(w)
neg

)|,

where tp(w) is the number of positive documents containing the w, f p(w) is the number
of negative documents containing w, pos is the total number of positive documents, and
neg is the total number of negative documents.

By applying DF, we generally remove the rare words and retain the common words over all
documents. The intuition behind the method is that choosing the common words can improve
the chances that the features will be present in the new examples needed to be classified.

BNS takes the class labels (positive and negative) into consideration. It biases the dis-
criminating words either for positive examples or negative examples. For example, if 80%

1Cumulative probability function calculates the probability that a random variable is less than or equal to a
certain value under a probability distribution.
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documents about “soccer” have the word “dribble”, and none of the non-soccer documents
contain “dribble”, then the word “dribble” will have very high BNS value.

In our hierarchy, we have 662 binary training sets on different categories with various char-
acteristics. For example, the top level training sets are generally large with vast number of
features, while the leaf training sets are usually small with less features. Uniformly applying a
single feature filtering method to all the categories in the hierarchy may not produce an optimal
performance. Different feature filtering methods (DF and BNS) can fit different training sets.
Thus, we will explore the best method for each training set and try to maximize the perfor-
mance on each single category, thus optimizing the overall classification performance in the
whole hierarchy.

3.2.3.2 Classifier Tuning

We will use linear SVM as our classification algorithm to classify the text documents. Specif-
ically, an open library called LibLinear [19] will be utilized to train the classifiers. LibLinear
is an optimized version of linear SVM [9] and very efficient for training large-scale problems.
For example, it only takes a few seconds to train a binary classifier from the RCV1 (Reuters
Corpus Volume 1) dataset with more than 600,000 documents.

The optimization problem of LibLinear can be defined as

min
W,b,ξ
{
1
2
‖ W ‖ +C(w+

n+∑
i=1

ξi + w−
n−∑
i=1

ξi)}, sub ject to, yi(W · xi − b) ≥ 1 − ξi,

where ξi measures the degree of misclassification of an example i and w+ + w− = 1. The
formula above is actually transformed from the optimization formula defined in Section 2.2.4.
As we discussed in Section 2.2.4, SVM with soft margin attempts to maximize the margin
between the positive examples and the negative examples, while minimizing the errors on the
training examples by multiplying each training error by a constant C. Generally, large C leads
to fewer training errors and small margin, while small C results in more training errors and
large margin. Since many real-world datasets are class-imbalanced (negative examples are
much more than positive examples), LibLinear treats the training errors on the two classes
differently by splitting C into two parts for positive errors and negative errors individually.
w+ is the weight for the positive errors and w− is the weight for the negative errors. Usually,
for class-imbalanced datasets, we need to put more weight on positive (minority class) errors
to guarantee the classifier is consistent with the positive training examples. By doing so, the
classifier is likely to make less errors to classify new positive examples.

Therefore, we need to specify two parameters before training a classifier, C and w+ (w− =

1 − w+). Different combinations of the two parameters may lead to different classification per-
formance. Thus, for each category in our hierarchy, we tune the two parameters of LibLinear,
in order to obtain an optimal performance for the resulting classifier.

3.2.3.3 Probability Calibration

Only the hard categorization is insufficient to build our search engine SEE (we will explain it
in the next chapter). The key output of the classifier for a new webpage is the probabilistic
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likelihood (chance) of this webpage belonging to the categories in our hierarchy. For example,
from the output of the classifiers, we know a new webpage has 90% chance belonging to
“sports”, 10% chance belonging to “arts”, 30% chance belonging to “science”, etc. Although
LibLinear can produce a score for each example indicating how far it is from the classification
boundary, the score is not in the range [0, 1], and moreover not calibrated. Calibration is an
important property for the score or probability produced by classifiers. Intuitively, if we say the
probability outputted by a classifier is calibrated, then for all the examples to which a classifier
assigns a probability 0.8 belonging to a category, then 80% of these examples should belong to
that category.

There are two typical methods to transform the output (score) of classifier into calibrated
probability, Platt Scale [48] and Isotonic Regression [75].

Platt Scale fits the training data to a sigmoid sharp as

P(y = 1|s) =
1

1 + eA×s+B ,

where s is the original score produced by the classifier for a training example, and P(y = 1|s)
is the calibrated probability, which is 0 or 1 for the examples in the training set. Then gradient
descent is used to find A and B. When a new example needs to be classified, we can calculate
its calibrated probability by using the same formula.

Isotonic regression attempts to find a monotonically increasing function M̂ that maps the
original score s into a probability within [0, 1]. A typical algorithm for calculating the isotonic
regression is pair-adjacent violators (PAV). PAV uses a stepwise-constant isotonic function to
fit the training data according to a mean-squared error criterion.

For each classifier on a category, we apply both Platt Scale and isotonic regression, and find
the best calibration method for each classifier that optimizes the classification performance.

3.2.3.4 Maximizing Performance

As we mentioned in Section 3.2.3, there are three major factors that significantly affect the
performance of a classifier: feature filtering, classifier parameters and probability calibration.
For the feature filtering methods, we consider DF and BNS. For classifier parameters, we
set C ∈ 1, 10, 100, 1000 and w+ ∈ 0.5, 0.7, 0.95. For probability calibration methods, we
consider Platt scaling and isotonic regression. We design a novel algorithm to find the best
combination of the three factors on each of the categories in the hierarchy. We attempt to find
the optimal combination that maximizes classification performance (e.g., F1-score) on each
of the categories in the hierarchy by using 3-fold cross validation. The detailed algorithm is
demonstrated in Algorithm 1.

N-fold cross validation is a standard approach to evaluate the performance of a learning
algorithm. Basically, we split the training set into N parts. Usually, we stratify the training set
so that each part has the same class distribution. Each time we choose N − 1 parts to train a
classifier and the other part is used to evaluate the classifier since we know the class label, and
we repeat the process N times. Finally, we combine the evaluation results over the N repeats.

By executing the algorithm above, we can obtain the optimal { fbest,Cbest,w+best , calbest} for
each category. Then we train each classifier with its best parameters, which can be used to
classify new webpages.
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Algorithm 1
Input: Training set Ti on each of the categories
Output: The best combination of { fbest,Cbest,w+best , calbest} for each category, where f is
the feature filtering method and cal is the calibration method.
for i ∈ [1, 662] do

MaxPi = 0
for f ∈ {DF, BNS } do

Apply f on traini and get a reduced set reducedi

for C ∈ {1, 10, 100, 1000} do
for w+ ∈ {0.5, 0.7, 0.95} do

for cal ∈ {Platts scaling, isotonic regression} do
use 3-fold cross validation on reducedi to calculate the performance
measure Pi, where C and w+ are used to train the classifier
if Pi > MaxPi then
{ fbest,Cbest,w+best , calbest} = { f ,C,w+, cal}
MaxPi = Pi

end
end

end
end

end
end

3.2.4 Document Categorization

After the model construction, we can use the “best” classifiers to categorize new webpages
(examples) into the hierarchy in a top-down fashion.

Basically, we set a truncation threshold for each of the categories in the hierarchy, say
0.5. When a new example is coming, we first let each of the classifiers in the top level of the
hierarchy output a probability for the example. If the probability is greater than the threshold
on a category, then the example is classified as belonging to the category, and we further pass
the example to the classifiers of all the subcategories of that category; otherwise, the example
is classified as not belonging to the category as well as all the descendant categories of that
category, and thus we stop passing down the example to the subcategories of that category.
This process iterates until all categories are considered. After the categorization, for each new
webpage, we will know which categories it is classified into. The detailed pseudo code is
presented in Algorithm 2. From the algorithm, we can see the outputted set C contains the
categories that a new page is classified into.

3.3 Classification Evaluation
In this section, we will present the evaluation of our classification performance. Firstly, we will
introduce several measures utilized in our evaluation and then demonstrate the experimental
results as well as the analysis.
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Algorithm 2
Input: Given a new example e, a truncation threshold t and a hierarchy H; Output: The
category set C in H that e is classified to;
queue={}

C={}

topCats = subcategories of the root of H
for c ∈ topCats do

queue← c
end
while queue is not empty do

c = queue.pop()
let the classifier on c produce the likelihood probability pc(e) for e
if pc(e) ≥ t then

C ← c
for child ∈ c.subcats do

queue← child
end

end
end

3.3.1 Evaluation Measure
Since most of the 662 binary datasets in our hierarchy are class-imbalanced, we can still utilize
recall and precision (introduced in Section 1.2.1), which are particularly effective when the
two classes are imbalanced. The traditional measures such as accuracy and error rate are
not suitable for the class-imbalanced dataset. For example, to simply classify all examples
as negative in a dataset consisting of 990 negative examples and 10 positive examples, the
classifier can achieve an accuracy as high as 99%. However, this classifier is actually useless.

The definition for recall and precision for classification evaluation is slightly different from
that in information retrieval. Here, we always assume positive class is the minority class.

Recall and Precision Given a set of positive examples P and a set of negative examples N,
for all the examples in P and N, a classifier classifies a set of examples T as positive and a set
of examples F as negative.

recall =
|T ∩ P|

P

precision =
|T ∩ P|

T

Generally, high recall and high precision cannot be achieved at the same time. To have a
high recall, the classifier needs to predict more examples as positive, where the misclassified
ones will decrease the precision. Thus, in order to evaluate the overall performance of the
classifiers, we utilize another measure named F1-score, which is a combinatorial measure of
recall and precision. It ranges from 0 to 1. Mathematically, it can be defined as

F1 =
recall + presision

2 × recall × precision
.
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Level Number of Categories Average Positive Class Ratio Average F1-Score

1 11 0.2156 0.792156

2 99 0.1137 0.827007

3 499 0.1053 0.820650

4 53 0.1030 0.841153

Table 3.4: The average F1-Score over the categories at each level.

As reported in many previous works [40, 16] for text classification, the F1-score cannot
reach very high value (usually 0.8 is a pretty high value), particularly when the class is imbal-
anced.

3.3.2 Results and Analysis
In Section 3.2.3.4, we obtained the best performance (F1-score) for each category and we re-
port some statistics of the performance. It should be noted that the predictive results presented
are obtained by using 3-fold cross validation on the training data rather than on the new web-
pages from the Internet. Therefore, the results reported here may not accurately reflect the real
situation. The reason we do not evaluation on new webpages is that new webpages on the In-
ternet have no class labels and it is difficult to evaluate the performance on them. However, the
diversity of the training set (webpages from various topics in ODP) can still make our training
data approximate the distribution of the Internet webpages. Besides, the large number of train-
ing examples can also avoid overfitting of the classifiers. Thus, the results reported here can
still be regarded as an important indication for the classification performance on new Internet
webpages.

Table 3.4 presents the average F1-score over the categories at each level of the hierarchy.
We can see the lowest average F1-score (the first level) of the four levels is close to 0.8. The
classification performance is pretty impressive, since the class is imbalanced (with the average
positive class ratio from 0.1 to 0.2).

In order to observe the performance of each individual classifier, we also show the distri-
bution of the F1-score of different categories in each level in Figure 3.3. In the X-axis, we split
[0, 1] into 10 ranges and the Y-axis represents the percentage of categories in each level having
the F1-score falling into those ranges. For example, for all the 499 categories in level 3, 33%
have F1-score within [0.9, 1], 33% within [0.8, 0.9), and only about 10% within [0.6, 0.7), etc.
We can discover that for all the four levels, most of the categories have their F1-score higher
than 0.7, and very few categories perform poorly (with F1-score less than 0.6).

Thus, by optimizing the classification performance, the classifiers are expected to achieve
reasonable results to classify new webpages.

Furthermore, we find some other interesting results for the optimized parameters. Figure
3.4 plots the distribution of the feature filtering method in the optimized parameters. It can
be observed that DF is selected as the best feature filtering method for most of the categories
in the hierarchy. Furthermore, for the first two levels, none of the categories choose BNS. As
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Figure 3.3: The distribution of F1-score over different categories.

discovered in our experiments, the tendency of BNS to select rare words can greatly reduce
the size of the training data, which negatively affects the classification performance when the
original data is large. For example, the training sets in the first level generally have a large
number of examples with more than one million features. One original training set in the first
level can usually take 300MB disk space. By applying BNS to reduce the features to 10%, we
can decrease the needed disk space to an extremely small size (say 5MB). However, many of
the reduced examples contain no features and become useless for training the classifier, which
significantly degrades the classification performance.

Figure 3.5 demonstrates the distribution of the best calibration approach over different cate-
gories. It is clear that isotonic regression dominates Platt scaling in all the four levels. However,
there is a trend that Platt scaling become more and more popular as the level goes deeper. In our
experiment, we found that the step-wise isotonic regression is more likely to produce calibrated
probability when the number of training examples is large, while Platt scaling is less sensitive
to the data size since it fits the data to a sigmoid sharp. It is the reason that the deep cate-
gories (with less training examples) prefer Platt scaling as the calibration approach to isotonic
regression.

Figure 3.6 and Figure 3.7 draw the distribution of the two parameters (C and w+) for Li-
bLinear. Generally, the higher the level, the smaller the C and the larger the w+. C is used
to control the fitting of the model with the training data. Usually, the larger the C, the better
the model fits the training data. For the categories in the higher levels, the training sets are
often large and large C can easily cause the model to overfit the training data, thus high-level
categories favor the smaller C (e.g., C = 1). We can use w+ to balance the fitting of positive
and negative training examples. Higher w+ will lead to high penalty when a positive example
is inconsistent with the model. In the high level, because we allow the inconsistency between
the model and the training data by choosing a smaller C, we hope positive examples to be
more consistent with the model since the positive (rare) class is often more important in class-
imbalanced problems. However, in the low-level categories, more consistency between the
model and the (smaller) training data can usually result in high classification performance. In
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Figure 3.4: The distribution of best feature filter over different categories.

Figure 3.5: The distribution of best calibration method over different categories.
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Figure 3.6: The distribution of best parameter C over different categories.

this case, w+ actually takes less effect, since there are fewer training inconsistencies for both
positive and negative class. It is the reason that the higher the level, the larger the w+ is chosen.

3.4 Summary
In this chapter, we discussed how we choose the proper hierarchy, generate the training data,
process the raw data, construct the optimized classifiers and categorize new documents. The
evaluation results demonstrate that the performance produced by our classifiers is satisfactory.
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Figure 3.7: The distribution of best parameter w+ over different categories.



Chapter 4

Search Engine Prototype

In this chapter, we will discuss how we build the novel search engine (SEE) by utilizing the
classification results obtained in the last chapter. Firstly, we address two key issues in designing
SEE and propose two novel solutions to solve them respectively. Then, we introduce how we
develop the entire system from the implementation level. Finally, we conduct a comprehensive
evaluation for SEE compared with the traditional flat search engine. This part is also joint work
with Xiao Li. We both contributed in designing the overall system architecture. I contributed
more in designing the ranking function and the new interface to explore additional results as
well as the evaluation for SEE, while Xiao contributed more in designing the system to crawl
the webpages from Internet and querying PageRank from Google API.

4.1 Ranking Function Design

An important aspect of modern web search engines is to rank the returned results when a query
is issued by the user. The simplest ranking function is to sort the results by their relevance to
the keywords in the query. The most common approach to calculate the query relevance score
is to compute the similarity between the query and each indexed document by using vector
space model, which was introduced in Section 1.1.1.

However, this simple ranking function does not consider the popularity (or importance) of
the webpages, which plays a significant role in web searching. For example, it is common that
students would like to visit an official website of a university, say Western university. When a
query “Western University” is issued to a search engine, it is very likely that many documents
match the query equally well. In this case, how can we guarantee the official website to appear
in the top of the returned results? By including a popularity score into the ranking function,
the official website that has a much higher weight would generally be top-ranked. There are
several algorithms [29, 47, 23] proposed to calculate the popularity score. Among them, the
most typical one is PageRank [47], which is a link-based algorithm. The PageRank score of
a webpage is defined recursively as a function of the PageRank scores of all the webpages
that link to it. A webpage that is linked to by many popular pages with high PageRank score
can also receive a high score. For example, if a page has links from www.yahoo.com, www.
facebook.com and www.amazon.com, it can be expected that this page would have a high
score of PageRank. Most of the existing web search engines (e.g., Google and Bing) have

56
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already included the popularity score into their ranking algorithms. An intuitive but effective
way to integrate the popularity score is to multiply the query relevance score with the popularity
score. In this thesis, we will use PageRank as the popularity score.

To rank the returned results in SEE, the two scores mentioned above are not enough. In
SEE, when the user issues a query within a particular category (e.g., “sports”), we need to return
all the relevant documents categorized into “sports” and also rank those results to display to
the user. As the classifier is not 100% accurate, one type of misclassification, false positive,
can occur. For a specific category, false positive means that the documents that actually do not
belong to it are actually categorized into it. It would be annoying and confusing if those false
positive documents are displayed and even top-ranked to the user. Thus, to rank the results
in SEE, we should take this case into consideration. We take advantage of the classification
probability of each document belonging to a particular category.

Usually, the false positive documents are the boundary cases, where the classifier is likely to
make mistakes. Their probabilities belonging to the category may be just above the truncation
threshold as mentioned in Section 3.2.4. If the threshold is 0.5, then a false positive document
may probably have a probability such as 0.51. In contrast, the documents that actually belong
to a category are usually assigned a high probability far from 0.5 such as 0.9. Based on this
intuition, we can directly use the classification probability as an additional score to rank the
returned results within a category. By doing so, we hope to lower down the rank of those false
positive documents, so that they are less likely to appear in the top of the returned results.

Due to the error propagation of the local classifier approach we use for hierarchical classifi-
cation, the false positive documents on a category can further be misclassified into its subcate-
gories. Thus, the likelihood of a document belonging to a category relies on the joint probabil-
ity of all the categories along the path from the root. Suppose we have two documents (D1 and
D2) on “sports”→“soccer”. For D1, Pr(sports|D1) = 0.9 and Pr(soccer|sports,D1) = 0.51,
while for D2 Pr(sports|D2) = 0.51 and Pr(soccer|sports,D2) = 0.51. It is apparent that D2 is
much less likely to belong to “soccer” than D1, since with the chance of 0.51, D2 is probably
unrelated to “sports”.

Therefore, we introduce an additional score for our ranking called category score.

Category score Given a webpage w and a category c, the category score of w associated to c
is defined as,

scoreC(c,w) = CPr(c,w) ×
∏
c′∈⇑c

CPr(c
′

,w), (4.1)

where ⇑ c is the set of the ancestor categories of c, and CPr(c,w) is the conditional probability
on how likely w belongs to c in the condition that w belongs to all the ancestor categories of c.

Simply speaking, the category score of a document on a category is the multiplication of the
probabilities on all the categories along the path from the root to that category in the hierarchy.

Based on the category score, we further define our ranking function as a function of three
scores (query relevance score, popularity score and category score).

Ranking score Given a query q, a webpage w and a category c, the ranking score of w related
to q on category c is defined as,

scoreR(q,w, c) = scoreQ(q,w) × scoreP(w) × scoreC(c,w), (4.2)
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Figure 4.1: Browsing “sports” category without any keywords.

where scoreQ(q,w) is the query relevance score, scoreP(w) is the popularity score and scoreC(c,w)
is the category score.

Sometimes, when the scales of the three scores greatly differ from each other, we may need to
re-scale some of the scores.

By using the ranking function above, we can introduce an important and novel feature to
our search engine SEE. If users simply browse a category without any keyword, scoreQ(q,w)
is constant for all webpages. SEE will return all the indexed webpages classified into this
category with the most popular and most category-relevant ones at the top. In this case, SEE
simply becomes a web directory, and people can browse the most popular webpages in each
topic category of the whole hierarchy. Figure 4.1 shows the first page of the returned results
when the user simply browses the category “sports” in SEE. We can see that the most popular
sports websites, such as www.nba.com, www.nhl.com and www.nfl.com, are displayed to the
user.

The feature provides an alternative way for users to explore unfamiliar topics and areas. It
is common that people with expertise in one area know nothing about another area. Suppose
a musician suddenly becomes interested in programming, and would like to find some useful
information on the Internet. However, the unfamiliarity to programming would prevent him
coming up with useful keywords. Thus, the traditional keyword-based search engine may not
work well in this case. If the musician switches to use SEE, he can first click into the category
“computer”→“programming” without any keywords. The most popular websites displayed
would provide an overview and guidelines to programming, and then he can further explore
the area with some specific keywords.
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4.2 Exploring Additional Results
The ranking function we proposed actually deals with one type of misclassification errors, false
positive. How does the other type of misclassification errors, false negative, affect our search
engine? How can we handle it effectively? In this section, we will address those issues, discuss
three potential methods and propose a novel solution.

For a specific category, false negative means that the documents that actually belong to
the category are not classified into it. Therefore, the users of the search engine cannot find
those false negative documents in the category as well as in all its descendent categories, no
matter what keywords they use. For instance, the classifier on the category “sports” produces
a probability 0.49 on a document that really belongs to “sports”. If we set the truncation
threshold to be 0.5, then the document will not be classified into “sports”. Furthermore, the
document would not be classified into all the descendent categories of “sports”. Even if the
document also belongs to “soccer”, the classifier on “soccer” will not have the chance to be
able to classify this document, since it has already been truncated in “sports”.

To deal with this problem, we will discuss three heuristic solutions: no threshold, flexible
threshold and probability intervals.

No threshold is to remove the truncation on the probability by using threshold, so that
for each category we will not have any false negative documents. Hence, in each category,
the searchable documents are the entire indexed documents and the user will never miss any
useful results when searching. If the user simply browses without any keyword, no matter
what category is browsed, SEE will return the same amount of documents (all the indexed
documents). However, the ranking of the returned results in different categories varies. For
example, if we browse the category “sports” and “shopping”, the number of returned results
is the same. However, in “sports”, www.nba.com may be at the top of the returned list, but
in “shopping” www.amazon.com may be top-ranked. The problem with this solution is that it
may introduce a lot of noisy documents when users search within a specific category. Since
all indexed documents are available to match the query issued by the user in each category, it
is likely that some category-unrelated documents have high query relevance scores and thus
are top-ranked. These noisy documents will severely degrade the quality of the search results.
Thus, this solution is not a reasonable choice.

Flexible threshold still adopts the threshold to truncate the documents within each catego-
ry, but allows the user to lower down the threshold for more results. If the original threshold
is t in category C, the documents with probability within [t, 1] can be found by the users. If
we lower down the threshold to t

′

, now the users can find more documents with probabili-
ty within [t

′

, 1]. By decreasing the threshold, some original false negative examples will be
classified as true positive. Suppose the classifier on “sports” outputs that www.nba.com has a
probability 0.45 belonging to “sports”. If the threshold is set to 0.5, www.nba.com will not be
classified as “sports”, and thus a false negative. If the threshold can be adjusted a bit lower,
say 0.4, www.nba.com will be classified as positive in “sports”, and the users are able to find
www.nba.com in the category “sports”. However, this approach has a serious problem. That is,
although more documents are classified as positive, they may not easily be found by the users
as they are likely to have low ranks. According to our ranking function, the order of the results
is determined by query relevance score, popularity score and category score. Since the newly
included documents (within [t

′

, t)) have low category scores and are mixed with the original
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documents (within [t, 1]), they are usually lowly ranked. Unless they are highly relevant to
the query or extremely popular, it is very likely that no changes can be seen within the first
few pages after the user lowers down the threshold. The problem will make our search engine
unfriendly to the search experience of the users. Therefore, we will not adopt this solution.

Probability intervals offers three probability intervals [0.5, 1], [0.3, 0.5) and [0.1, 0.3) for
the users to explore. Initially, when a user logs onto SEE and searches in any specific catego-
ry, only the documents with probability within [0.5, 1] that match the query will be returned.
When the user reaches the last page of the returned results, we design a new interface and
display a button named “Additional Results” to the user. The button can be clicked twice, and
accordingly the documents with the probability falling into [0.3, 0.5) and [0.1, 0.3) will be re-
turned respectively. This solution is more intuitive and friendly to the users’ search experience.
Usually the reason that a user would like to explore additional results is that the total number
of returned results is small and all the results cannot meet the need of the user. In this case, it is
reasonable to let the user explore more results in the last page of the returned results. Besides,
replacing the documents within one probability interval with another can solve the problem as-
sociated with the solution flexible threshold. The documents in the new interval (e.g., [0.3, 0.5))
will not mixed with the original interval (e.g., [0.5, 1]), and thus the new documents can have
good ranking and easily be discovered by the user. One possible drawback of this solution is
that completely replacing the documents within one probability interval with another can cause
the loss of the original documents. Fortunately, since the user has already come to the last page,
it is not that meaningful to revisit these already-checked documents.

Besides, for both solutions (flexible threshold and probability intervals), the decrease in
threshold will result in extra false positives. For instance, when a user searches in the cate-
gory “sports”, a website www.music.com with 0.35 probability belonging to “sports” may be
returned, if the threshold is set to 0.3 or the probability interval is changed to [0.3, 0.5). It will
introduce extra noise to the search results. However, in order to find the desired results, we
think it is worthwhile to provide such functionality to the users. Based on the benefits of prob-
ability intervals over the other two methods, we will choose it for users to explore additional
search results.

Figure 4.2 demonstrates how probability intervals works as people click the “Addition Re-
sults” button in a real case. Suppose a user would like to find job information about “soft-
ware engineer” in Boston, he/she may issue a query like “software engineer boston” in the
“business”→“employment”→“job search”. However, only 11 results are returned and none of
them are relevant as shown in the top subgraph of Figure 4.2. It means that only 11 indexed
documents have their probabilities within [0.5, 1] belonging to “business”, “employment” and
“job search”, and also match the query “software engineer boston”. At this time, he/she can
click the “Addition Results” on the second (last) page (see the middle subgraph of Figure 4.2).
Finally, although only one more result is found, it is highly relevant and useful to the user (see
the bottom subgraph of Figure 4.2). It is clear that the probability of this result belonging to
“job search” is within [0.3, 0.5) and thus it is a false negative initially. When the “Addition Re-
sults” button is clicked, the interval [0.3, 0.5) completely replaces [0.5, 1], and thus this result
is returned to the user. It should be noted that we just offer a way for users to find those mis-
classified results that match the query and cannot guarantee that users can always find relevant
results. If in an interval there is no documents satisfying this condition, no documents will be
returned to the user. Even if some results are returned, they may not be needed by the user.
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Figure 4.2: Illustration on how probability intervals works as people click the “Addition Re-
sults” button. In this case, a user would like to find job information about “software engineer”
in Boston.
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4.3 System Implementation
In this section, we will discuss the implementation detail of SEE, including the design and
implementation of different components in SEE, data flow between different components and
how we integrate the ranking function and additional results exploration into the system.

In the last chapter, we have already discussed how we construct the classification system
for the whole system. Once the classification system is ready, we can start the crawling system
to download the webpages on the Internet, and then use the classification system to automat-
ically categorize them. After the categorization, for each webpage, a list of 662 probabilities
will be generated, and each probability represents the conditional probability of this webpage
belonging to a category in the hierarchy. Each webpage together with the 662 probabilities will
be processed in the indexing system of SEE.

Since SEE is just a prototype of a new search engine rather than a commercial search en-
gine, we did not conduct a large scale web crawling over the whole Internet. Most of the
indexed webpages are crawled from some public data collections and their PageRank is ob-
tained by querying Google APIs. In the following parts, we will skip the crawling system, but
focus on the indexing and search server, user interface and web server.

4.3.1 Indexing and Search Server

We utilize an open source search server called Apache Solr1 to index the webpages into SEE.

“Solr is the popular, blazing fast open source enterprise search platform from the A-
pache Lucene project. Its major features include powerful full-text search, hit high-
lighting, faceted search, dynamic clustering, database integration, rich document (e.g.,
Word, PDF) handling, and geospatial search. Solr is highly scalable, providing distribut-
ed search and index replication, and it powers the search and navigation features of many
of the world’s largest Internet sites. Solr is written in Java and runs as a standalone full-
text search server within a servlet container such as Tomcat. Solr uses the Lucene Java
search library at its core for full-text indexing and search, and has REST-like HTTP/XML
and JSON APIs that make it easy to use from virtually any programming language. Solr’s
powerful external configuration allows it to be tailored to almost any type of application
without Java coding, and it has an extensive plugin architecture when more advanced
customization is required.”[59]

For each crawled HTML webpage, we index the url and text in the tag<title>, <keywords>,
<description> and <body>, all the 662 probabilities and the PageRank score into the Apache
Solr indexing system. Apache Solr provides a set of HTTP APIs (JSON and XML) to pro-
cess the indexed documents, such as search, delete and addition. The most commonly used
API is the search API that is used to receive query request and response the search results.
For example, if we would like to search “music” and get the results in JSON, the search API
can be accessed by http://kdd.csd.uwo.ca:88/see/result?q=music&wt=json, where
http://kdd.csd.uwo.ca:88 is the host address, /see is the web application, /result is

1lucene.apache.org/solr/
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Parameter name Description

q keywords of the query

start the page index of the complete returned results

rows the number of results in each result page

hl whether to highlight the matched keywords

sort the field used to sort the returned results

fq query on a specific field

wt format of returned results

Table 4.1: Common parameters for the search API in Apache Solr.

the search API, q is a parameter specifying the keywords of the query and wt is another param-
eter specifying the format of the returned results. Table 4.1 tabulates some common parameters
for the search API.

Upon receiving a search request, Apache Solr searches q in all indexed text field (e.g., url,
title, keywords, description, body) by setting different (integer) weights for different fields. By
considering the importance of different fields in searching, we set weighturl = 1, weighttitle =

10, weightkeywords = 5, weightdescription = 5 and weightbody = 2. To calculate the query relevance
score, Apache Solr uses the following formula.

scoreQ(q, d) = coord(q, d) × queryNorm(q) ×
∑

t∈q(t f (t ∈ d) × id f (t)2), (4.3)

where coord(q, d) is a score factor based on how many of the query terms are found in the spec-
ified document, queryNorm(q) is a normalizing factor used to make scores between queries
comparable, t f (t ∈ d) is the term’s frequency in document d, and id f (t) stands for inverse
document frequency. According to the ranking function proposed in Section 4.1, we need to
combine popularity score and category score with the query relevance score. Since we already
indexed the other two scores, we can easily use them to generate the final ranking score by
leveraging the boosting mechanism and the function query in Apache Solr. The boosting mech-
anism can be realized by rewritting the parameter q in the search API. Suppose we would like
to search “music” in the category “arts” and rank the results according to our ranking function.
Instead of specifying only the keywords for q (e.g., q = music), we can place a boosting func-
tion for q such as q = {!boost b = product(page rank, arts prob) de f Type = dismax}music.
By doing so, the query relevance score of each document to the query will be multiplied by
the factor product(page rank, arts prob), where page rank is the indexed PageRank score,
arts prob is the indexed probability of each document belonging to “arts” and product is the
function query provided by Apache Solr. Finally, the multiplication (page rank,arts prob and
query relevance to “music”) will be used to rank the documents.

Besides, if the parameter f q is not empty in the request, Apache Solr will filter out the
documents that do not satisfy the field query. If a field F specified by f q is numeric, we can
use a numeric interval (e.g., [50, 100]) to filter out documents with F > 100 and F < 50.
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After retrieving all the documents that satisfy the request, Apache Solr will rank the docu-
ments based on the ranking function and return them to the user.

4.3.2 User Interface and Web Server
To communicate with the search API of Apache Solr, we design an intuitive and effective user
interface as well as a middle-level web server (developed in Java) to connect the user interface
and Apache Solr. Among all the components of the user interface shown in Figure 1.5, the
most important part is the hierarchical tree on the left side. We implement the tree by using
Javascript and AJAX. When a user initially logs onto SEE, only the top-level categories of
the hierarchy are displayed to the user in the tree. When the user clicks one category in the
tree, an AJAX request will be sent to the web server to get its subcategories, and then the
clicked category will be expanded on the client side by Javascript. It should be noted that each
category on the tree is associated with a number in the brackets. The number indicates the
number of results satisfying the current search condition, which includes the selected category,
the truncation threshold and the search keywords. In the last subgraph of Figure 1.5 in Section
1.2.3, the number (27) beside “computer”→“security”→“hacking” means that there are 27
results having the probability greater than 0.5 for “hacking” and also matching the keyword
“worms”. The document number is also computed in the web server. Besides the subcategories,
for each category, the web server will query the search server by using the search API, and
extract the number of related documents in the meta information of the returned results (in
JSON or XML format). The document numbers for all the subcategories will also be returned
to the client side and displayed in the tree by Javascript.

Above the hierarchical tree, we introduce a topic (category) search box in the user interface.
When users are not sure about the location of the category in the hierarchy, they can use the
search box to find the category first. We use the partial keyword matching for the category
search. After the user types in a few indicative characters of the category name, the top ten
matched categories will be shown and the user can select the desired category from them.
This functionality makes it more convenient for the new users of the search engine, since they
may not know the structure of our category hierarchy. However, we believe that over time a
well-thought-out category hierarchy can become familiar to users.

The primary responsibility of the web server is to construct the url, query the search API
of the search server and return the results from the search server to the client side. There
are several occasions (shown in the following) triggered by the user that the web server will
reconstruct the query url and access the search server.

1. When the search button is clicked.

2. When the category is clicked.

3. When the button “Additional Results” is clicked.

4. When the page link is clicked.

Suppose a user searches “Michael Jackson” in “arts”→“music” without clicking the “Addition-
al Results” button, the following is the url constructed by the web server to query the search
API.
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http://localhost:88/see/result?hl=true&start=0&q={!boost˜b=product(page_

rank,arts_prob,music_prob)}Michael˜Jackson&fq=arts_prob:[0.5˜1]&fq=music_

prob:[0.5˜1]

http://localhost:88 is the host, /see is the web application of SEE on web server,
/result is the servlet to construct the query. hl=true is to turn on the highlight of the
keywords in the returned snippets. start=0 is to get the first page of the returned results.
In product(page_rank,arts_prob,music_prob), we actually include the probabilities of
all the ancestor categories of “music” into the calculation of the final ranking score. Here,
since “music” only has one ancestor category, arts_prob is multiplied. fq=arts_prob:
[0.5˜1]&fq=music_prob:[0.5˜1] is to apply the probability interval [0.5, 1], so that the
documents with probability lower than 0.5 on “arts” and “music” will be truncated. If the
user clicks the “Additional Results” button, this part will be replaced with fq=arts_prob:
[0.3˜0.5)&fq=music_prob:[0.3˜0.5), or even fq=arts_prob:[0.1˜0.3)&fq=music_
prob:[0.1˜0.3).

One important reason that we need another web server other than the search server is that
we want to hide the implementation details from the users. Thus, on the user interface, we
only show limited information to the user (e.g., category ID), and we complete the complex url
construction on the server side.

4.4 Search Evaluation

In this section, we will conduct a comprehensive evaluation on the SEE compared with the
keyword-based search engine. Since we are just building a prototype of the new search engine
and do not have the resource to crawl a vast amount of webpages, we will not directly compare
with the commercial search engines such as Google and Bing. We will utilize partial webpages
from a well-known data collection for information retrieval called ClubWeb092, and categorize
and index them into SEE. Then we compare two versions of SEE. They are SEE with the
category hierarchy, and SEE without the category hierarchy, which is essentially the same as
the traditional keyword-based search engine.

4.4.1 Data Collection

The data collection used for our evaluation is called ClubWeb09, which is from TREC (Text
Retrieval Conference)3. The TREC consists of different workshops focusing on different in-
formation retrieval research areas (tracks). TREC provides the necessary infrastructure for
large-scale evaluation of text retrieval methodologies to facilitate and encourage research in
the information retrieval community. Each track holds a challenge (or contest) where a partic-
ular type of data sets and test problems are provided to the participates. Participants run their
own retrieval systems on the data, and return with a list of the retrieved top-ranked documents.
The organizer pools the individual results, judges the retrieved documents for correctness, and
evaluates the results.

2http://www.lemurproject.org/clueweb09.php
3http://trec.nist.gov/
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Judgement score Description

4 This page represents a home page of an entity directly named by the query; the user
may be searching for this specific page or site.

3 This page or site is dedicated to the topic; authoritative and comprehensive, it is
worthy of being a top result in a web search engine.

2 The content of this page provides substantial information on the topic.

1 The content of this page provides some information on the topic, which may be
minimal; the relevant information must be on that page, not just promising-looking
anchor text pointing to a possibly useful page.

0 The content of this page does not provide useful information on the topic, but may
provide useful information on other topics, including other interpretations of the
same query.

Table 4.2: Five-point scale of relevance judgement in ClubWeb09.

ClubWeb09 is from the web track, which is to explore information seeking behaviors com-
mon in general web search. The data set was crawled from the Web during January and Febru-
ary 2009. The entire collection contains 1,040,809,705 web pages in 10 languages, and takes
25TB disk space.

Besides the text documents, ClubWeb09 also offers a list of 50 test tasks and the relevance
judgement of the documents related to each task in the collection. Each task consists of a
suggested query (keywords) and the description of the intended search topic. The relevance
judgement of each document to each task is in a five-point scale as shown in Table 4.2. In
a challenge of TREC, for a particular task, the participates need to issue the suggested query
to their own retrieval system, and returned results are then evaluated based on the relevance
judgement. However, in our evaluation, since we introduce a topic hierarchy into the search
engine, the suggested queries, which are designed to test different keyword-based retrieval
systems, are insufficient and sometimes inappropriate in our case. Therefore, for each task, we
will design some new queries, but still based on the suggested query.

Since the total number of documents in ClubWeb09 is too large to be fully downloaded and
indexed, we only extract a small portion from it to conduct the evaluation. The official website
of ClubWeb09 actually provides a search engine called Indri for users to extract their desired
documents from ClubWeb09. We take advantage of Indri to obtain the documents for our
evaluation. In order to cover the 662 categories of our hierarchy as much as possible, for each
category, we design some related keywords, query Indri and extract the top 1000 documents
returned by Indri. Besides, in order to test how well SEE can retrieve the relevant documents
(with judgement score greater than 0), we also extract the documents that are relevant to the
50 tasks from ClubWeb09. Finally, we extract 630,920 documents from ClubWeb09 in total.
Then we categorize them by using the optimized classifiers obtained in Section 3.2.3.4 and
index them into SEE. For each task, we issue queries to both SEE with hierarchy and without
hierarchy, compare their returned documents with the actual relevant documents, and measure
their performance.
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i reli logi
reli

log2i

1 4 0 N/A

2 2 1 2

3 0 1.59 0

4 3 2.0 1.5

5 1 2.32 0.431

Table 4.3: Element values to calculate DCG.

4.4.2 Evaluation Metric
To evaluate the performance of the search engines, we will use a typical measure for infor-
mation retrieval named DCG (Discounted Cumulative Gain) [26]. DCG is particularly useful
to evaluate the performance when the documents are judged by graded relevance (e.g., the
five-point scale in ClubWeb09) rather than binary relevance. The intuition of DCG is that the
usefulness (gain) of a document in a list is discounted by its position. In fact, DCG accumu-
lates the discounted gain over all the documents up to a position. Mathematically, DCG at a
position p can be defined as

DCGp = rel1 +

p∑
i=2

reli

log2i
,

where reli is the graded relevance of the result at position i. DCG is actually based on the
following two assumptions.

1. Highly relevant documents are more useful when appearing earlier in a search engine
result list (have higher ranks).

2. Highly relevant documents are more useful than marginally relevant documents, which
are in turn more useful than irrelevant documents.

Here is an example on how to calculate the DCG measure given a list of documents with graded
relevance. Suppose a search engine returns a list of documents for a query and we would like
to calculate DCG for the first five documents. We also know the true relevance score for the
first five documents are 4,2,0,3,1. Table 4.3 lists the values of different elements to calculate
DCG. Then, DCG5 can be computed as

DCG5 = rel1 +

p∑
i=2

reli

log2i
= 4 + 2 + 0 + 1.5 + 0.431 = 7.931

4.4.3 Evaluation Results
We conduct the evaluation on SEE from two aspects. Firstly, to show the effectiveness of the
hierarchical search engine over traditional keyword-based search engine, we will compare SEE
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with hierarchy (called SEE+H) and SEE without hierarchy (called SEE-H, which is only based
on keywords). Then, we will demonstrate the usefulness of the “Additional Results” button.

4.4.3.1 Comparison with keyword-based Search Engine

From all the 50 tasks in ClubWeb09, we remove 11 tasks that are not related to any topic
category in our hierarchy. The purpose is to test the performance difference between SEE+H
and SEE-H. For the removed tasks, SEE+H and SEE-H are actually of the same performance,
since without specified category SEE+H has no difference with SEE-H. Then for each selected
task, we find a corresponding category in our hierarchy that is likely to contain the information
needed. Based on the suggested query, we design reasonable queries to search in SEE+H and
SEE-H, respectively, and calculate their DCG at three different positions (top 5, top 10 and top
30). Table 4.4 lists the targets and suggested queries for all the 39 tasks.

Moreover, according to the property of each task, we further divide the 39 tasks into
category-intended tasks (the first 29 tasks in Table 4.5) and category-unintended tasks (the
last 10 tasks in Table 4.6). If a task has some indication to search information within a cate-
gory (or topic), we call the task category-intended task. If the information searched in the task
is specific and does not rely on any category, we call the task category-unintended task. More
specifically, given a task, we attempt to design the most specific query to accurately express
the information in the task. If one part of the keywords can be replaced with or included by
one of the categories in our hierarchy, we call the task category-intended task; otherwise, we
call it category-unintended task. For example, the first task is “Find information about horse
hooves, their care, and diseases of hooves”. The most specific query can be “horse hooves
diseases”, where the keyword “diseases” is in the domain of the category “Health”. Therefore,
it is a category-intended task. However, for the last task “Find information on plate tectonics
and the major continental plates”, the query “continental plates” is good enough to express the
information in the task, and it cannot be further decomposed. Thus, it is a category-unintended
task.

For each category-intended task, we design three queries to test SEE-H, since SEE-H is
essentially the keyword-based search engine and people may try different queries when search-
ing. The first query contains only the keywords for the needed information without any key-
words for the category. In this case, since the returned documents usually contain a lot of
irrelevant results from other categories, we call the query ambiguous query. In order to find
more specific results, people often add some category-related keywords. Thus, following this
intuition, we design another two queries by integrating two intuitive keywords respectively.
We call those queries topic-related queries, since partial keywords are related to a topic. For
example, one of the tasks is to find information about iron as an essential nutrient. The first
query is simply “iron”, and the other two queries are “iron nutrient” and “iron food”, where
“nutrient” and “food” are the possible keywords to constrain the search domain within a topic.
To evaluate SEE+H, we simply search one query in the intended category. Table 4.5 presents
the designed queries and the intended category for each category-intended task. For each task,
query 1 is the ambiguous query, and query 2 and 3 are the topic-related queries.

For each category-unintended tasks, as the information is specific enough, we do not need
to include additional keywords to refine the search. Hence, for both SEE+H and SEE-H, we
only use one (the same) query. Besides, although the tasks are not category-intended, there
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Task ID target suggested query

1 Find information about horse hooves, their care, and diseases of hooves. horse hooves

2 Find events sponsored by the Association of Volleyball Professionals. avp

3 Find locations and information of Discovery Channel stores and their products. discovery channel store

4 Find information about iron as an essential nutrient. iron

5 Find information about jobs in Connecticut. ct jobs

6 Find information about penguins. penguins

7 Find information about computer worms, viruses, and spyware. worm

8 Find information about Flushing, a neighborhood in New York City. flushing

9 Find information about PVC pipes and fittings. pvc

10 Find beginners instructions to sewing, both by hand and by machine. sewing instructions

11 Find information about the Sun, the star in our Solar System. the sun

12 Find information on kiwi fruit. kiwi

13 Find dealers that sell or rent Bobcat tractors and construction equipment. bobcat

14 Find information about the NASA Voyager spacecraft and missions. voyager

15 Find reviews of computer keyboards. keyboard reviews

16 Find information about Afghanistan’s history, government, religion, and culture. afghanistan

17 Find information about joints in the human body. joints

18 Find information about human memory. memory

19 Where can I find information about forearm pain? forearm pain

20 Find information on obsessive-compulsive disorder. ocd

21 Find information on the MGB sports car. mgb

22 Find information about the television show “ER”. er tv show

23 Find information about the Pink Floyd album, “The Wall” the wall

24 Find the homepage of Raffles Hotel in Singapore. raffles

25 Find information on the Nissan Titan truck. titan

26 Find recipes for rice. rice

27 Find information about the history, culture, and geography of South Africa. south africa

28 Find information on taking the SAT college entrance exam. sat

29 Find background information about man-made satellites. satellite

30 Find information about the office of US President. president of united states

31 Find information on the USS Yorktown, an aircraft carrier that is part of the museum exhibit
at the Patriots Point museum in Charleston Harbor, SC.

uss yorktown charleston sc

32 How do I go about building a fence myself? how to build a fence

33 How can I file my Federal income tax return online? income tax return online

34 Find information about very-low-density lipoprotein, a type of cholesterol. vldl levels

35 Find music, tour dates, and information about the musician Neil Young. neil young

36 Find information about tornadoes, what causes them, and where they occur. tornadoes

37 Find information on raised garden beds and boxes. raised gardens

38 Find “reasonable” dieting advice, that is not fads or medications for weight loss. dieting

39 Find information on plate tectonics and the major continental plates. continental plates

Table 4.4: Targets and suggested queries for 39 tasks.
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SEE-H SEE+H

Task ID query1 query2 query3 query intended category

1 horse hooves horse hooves care horse hooves diseases horse hooves Health

2 avp avp volleyball avp sports avp Sports

3 discovery chan-
nel

discovery channel store discovery channel products discovery chan-
nel

Shopping

4 iron iron nutrient iron food iron Health

5 ct ct jobs Connecticut jobs ct Business→Employment

6 penguins penguins animal penguins south pole penguins Recreation→Pets

7 worm worm computer worm virus virus Computers→Security
→Malicious Software

8 flushing flushing new york flushing review flushing Recreation→Travel

9 pvc channel pvc pipe pvc fitting pvc Business→Industrial
Goods and Services

10 instructions sewing instructions needlework instructions instructions Arts→Crafts→ Needle-
work

11 sun sun solar sun astronomy sun Science→Astronomy→
Solar System

12 kiwi kiwi fruit kiwi food kiwi Home→Cooking→
Fruits and Vegetables

13 bobcat bobcat dealer bobcat tractor bobcat Business

14 voyager voyager spacecraft voyager NASA voyager Science→Astronomy

15 keyboard
reviews

computer keyboard re-
views

Peripherals keyboard re-
views

keyboard
reviews

Computers→Hardware
→Peripherals

16 afghanistan afghanistan history afghanistan culture afghanistan Society→History

17 joints joints human joints health joints Health

18 memory memory human memory health memory Health

19 forearm forearm pain forearm ache forearm Health→Conditions and
Diseases

20 ocd ocd disorder ocd health ocd Health→Conditions and
Diseases

21 MGB MGB car MGB sports car MGB Recreation→Autos

22 ER ER tv ER tv show ER Arts→Television
→Programs

23 wall wall Pink Floyd wall music wall Arts→Music

24 raffles raffles hotel raffles Singapore raffles Recreation→Travel

25 titan titan truck titan nissan titan Recreation→Autos

26 rice rice recipe rice cooking rice Home→Cooking

27 south africa south africa history south africa culture south africa Society→History

28 sat exam sat exam college sat entrance exam sat exam Reference→Education

29 satellite man made satellite satellite astronomy satellite Science→Astronomy

Table 4.5: Designed queries and the intended category for category-intended tasks.



4.4. Search Evaluation 71

SEE-H SEE+H

Task ID query query related category

30 president united states president united states Society→Politics

31 uss yorktown charleston sc uss yorktown charleston sc Reference→Museums

32 build fence build fence Home

33 income tax return online income tax return online Business→Accounting

34 vldl levels vldl levels Health

35 neil young neil young Arts→Music

36 tornadoes tornadoes Science→Earth Sciences→Atmospheric Sciences

37 raised garden raised garden Home→Gardening

38 dieting dieting Health

39 continental plates continental plates Science→Earth Sciences→Geology

Table 4.6: Designed queries and the related category for category-unintended tasks.

are still categories related to those tasks. To evaluate SEE+H, we just choose the most related
category and search the query within that category. Table 4.6 tabulates the used queries and the
related category for each category-unintended task.

Table 4.7 compares the performance of SEE-H and SEE+H, in terms of the DCG values
at three positions for the 29 category-intended tasks. The Bold cell represents the winner in
one comparison of DCG at the position of 5, 10 or 30. From the table, it is clear that SEE+H
wins in most of the comparisons (19 wins for top 5 and top 10, and 18 wins for top 30). For
those cases that SEE+H does not win, SEE+H can mostly keep itself in the second place in
the comparisons (see the last row in Table 4.7). Furthermore, by looking to the DCGs obtained
by SEE+H and SEE-H, we can observe that when SEE+H is the winner it can usually perform
much better than any of the queries in SEE-H. For example, in the 5th task, in terms of DCG
of top 30, SEE+H achieves 17.19, while SEE-H only obtains as high as 3.90. Therefore, when
the tasks are category intended, SEE+H is more likely to achieve better results than SEE-H. In
SEE+H, the user only needs to click into the intended category and search the keywords of the
information needed. However, in SEE-H, even if the user changes the keywords three times,
the results are not as good as in SEE+H.

For the 10 category-unintended tasks, the results of the comparison are presented in Table
4.8. It should be noted that the same query is issued for SEE-H and SEE+H for each task,
but we do one more step in SEE+H (choose a related category). From the table, we can see,
SEE+H performs even worse than SEE-H over the 10 category-unintended tasks. For the top
5 and top 10, it only wins in 3 out of 10 comparisons, and for the top 30, its performance
improves a little (4 wins out of 10). Thus, SEE+H does not have advantage over SEE-H in
category-unintended tasks.

Why SEE+H performs better for category-intended tasks than category-unintended tasks?
In what situation does the category hierarchy help our search? In the following parts, we will
discuss those issues.

For most of the web search tasks, they contain the primary target information such as the
instruction in task 10 and the tornado in task 36. People attempt to use the most appropri-
ate keywords to describe the target information (“instructions” in task 10 and “tornadoes” in
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Top 5 Top 10 Top 30

SEE-H SEE+H SEE-H SEE+H SEE-H SEE+H

Task ID query1 query2 query3 query query1 query2 query3 query query1 query2 query3 query

1 4.19 3.93 4.99 3.56 5.89 5.29 8.36 6.64 11.22 12.80 17.29 9.33

2 3.56 14.25 2.56 8.98 6.20 19.63 4.25 14.77 12.24 30.08 10.10 27.47

3 2.06 3.99 2.06 4.50 3.45 6.02 3.38 6.53 7.77 12.44 5.37 11.66

4 3.56 6.86 1.00 6.12 5.25 8.71 2.16 9.81 9.74 15.71 3.86 15.57

5 2.00 2.49 1.00 4.75 2.00 3.43 1.67 8.05 2.95 3.90 2.55 17.19

6 3.56 0.63 6.05 6.76 5.25 1.29 8.10 7.50 10.23 5.50 17.25 7.50

7 2.56 0.50 0.63 6.12 4.59 1.48 3.03 9.15 9.76 6.45 8.69 16.42

8 3.50 1.26 0.00 4.50 5.09 1.26 1.02 4.50 11.50 4.43 4.08 4.50

9 3.56 1.49 2.93 1.43 5.25 3.83 3.32 3.16 8.95 9.18 7.93 5.04

10 1.43 2.13 0.00 7.69 1.76 4.44 0.69 9.39 2.23 7.58 1.52 13.52

11 2.56 1.50 0.00 7.68 4.25 1.89 0.00 12.02 8.49 4.22 0.00 13.48

12 2.56 0.63 1.63 8.12 4.25 1.30 1.95 10.24 7.85 6.07 3.87 10.24

13 10.42 9.42 10.25 11.18 14.25 13.92 14.59 15.46 21.12 24.12 20.46 26.39

14 2.56 10.05 7.05 9.68 3.95 13.90 10.84 13.30 9.77 21.46 18.65 17.53

15 1.00 0.43 1.00 0.86 1.00 1.20 1.00 3.01 2.72 2.09 1.46 3.01

16 4.56 2.00 2.63 4.06 5.90 3.69 4.29 5.44 10.15 6.68 8.39 10.37

17 2.06 1.56 1.63 3.56 3.75 2.19 2.37 6.57 6.99 4.50 3.26 13.90

18 2.93 0.00 0.00 2.00 3.93 0.32 0.33 2.63 7.19 1.49 1.07 5.53

19 3.56 4.56 4.49 5.19 4.90 6.25 7.26 8.23 9.36 11.83 11.33 14.81

20 2.63 2.00 0.93 5.69 4.66 2.72 1.32 8.07 10.64 7.37 4.14 14.67

21 5.45 7.06 6.32 6.82 8.09 9.00 8.01 9.66 14.39 14.47 13.64 15.31

22 2.93 3.69 3.06 5.00 3.53 5.07 5.11 6.57 7.55 8.47 8.64 17.31

23 2.06 6.12 1.00 4.82 3.42 8.66 1.00 6.99 5.99 11.18 2.44 11.54

24 3.56 2.79 0.63 4.26 5.89 3.74 2.74 5.35 10.17 6.47 5.44 7.57

25 3.56 1.29 4.93 9.75 5.25 2.35 6.55 11.49 8.79 5.36 12.53 11.72

26 4.06 0.00 0.00 5.63 6.43 1.68 1.74 9.02 10.81 2.64 1.96 16.10

27 1.86 2.36 2.63 4.79 2.81 2.66 2.63 7.97 6.23 5.74 4.91 8.70

28 2.00 2.00 0.00 5.13 2.93 2.00 1.49 8.79 5.91 4.91 7.06 15.16

29 1.56 1.63 0.00 3.56 2.94 5.12 0.00 6.65 6.12 7.92 0.24 11.20

first place 4 5 2 19 5 3 2 19 4 4 3 18

second place 11 7 4 8 8 8 4 9 10 9 3 7

Table 4.7: The comparison of SEE with hierarchy and without hierarchy for category-intended
tasks
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Top 5 Top 10 Top 30

Task ID SEE-H SEE+H SEE-H SEE+H SEE-H SEE+H

30 5.01 2.90 5.01 2.90 8.03 9.21

31 6.11 4.43 6.11 4.43 12.20 4.43

32 3.73 0 3.73 0 4.54 2.06

33 10.25 7.25 10.25 7.25 14.81 10.14

34 9.45 8.91 9.45 8.91 17.49 17.77

35 8.89 8.69 8.89 8.69 16.92 15.23

36 4.77 5.34 4.77 5.34 11.30 12.71

37 2.13 2.14 2.13 2.14 2.90 2.14

38 3.50 1.96 3.5 1.96 4.71 3.83

39 9.19 13.22 9.19 13.22 17.07 23.09

first place 7 3 7 3 6 4

Table 4.8: The comparison of SEE with hierarchy and without hierarchy for category-
unintended tasks

task 36). Those keywords can usually match most of the indexed documents in the search en-
gine. In the traditional keyword-based search engine like SEE-H, for task 10 to find sewing
instructions, only the keyword “instructions” is insufficient and ambiguous, since other irrele-
vant documents (e.g., computer instructions) may also be matched and those noisy results may
confuse the user. This task is actually intended to search “instructions” within the category
“sewing”. To reduce the noisy results, intuitively, normal users would add an extra keyword to
restrict the search domain in “sewing”. However, choosing a proper keyword is actually tricky
for some users. Since the documents belonging to the category “sewing” can contain various
relevant keywords such as “sewing”, “needlework”, “cross stitch” and “embroidery”, etc, the
users, particularly those who are not familiar with the domain “sewing”, will have difficulties
in finding good keywords. If keywords are not chosen well, the results will be poor with very
few relevant documents. Even if the user knows all the relevant keywords in “sewing”, he/she
may need to issue different keywords combinations multiple times (e.g., “sewing instruction-
s”, “needlework instructions” and “embroidery instructions”, etc.), in order to retrieve all the
relevant documents. In contrast, in SEE+H, we only need to search the keyword “instruc-
tions” within the category “needlework” and it will match all the sewing-related documents
pre-categorized into the category. Therefore, the results of SEE+H are expected to be much
better in category-intended tasks.

Figure 4.3 illustrates the general idea on why SEE+H can work better than SEE-H in the
category-intended task (task 10). The solid frame represents all the documents containing the
keyword “instructions”, and the dashed frame represents the documents containing “instruc-
tions” and related to the category “sewing”. In SEE-H, if the keyword is too general such as
“instructions”, the returned results are too noisy, including all the irrelevant documents in the
solid frame. On the other hand, if the keywords are too specific such as “sewing instructions”,
the returned results would have too few relevant documents like the documents in the shaded
rectangle. In SEE+H, we have a way to restrict the search domain in the category “sewing”
(the dashed frame), so that the user only needs to search “instructions” and the returned doc-
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Figure 4.3: Illustration why SEE works better than category-intended tasks.

uments can include all the relevant documents about sewing instructions (even without the
keyword “sewing”). We have known why SEE+H works well in category-intended tasks. But
why SEE+H has a poor performance in category-unintended tasks such as task 36? In task
36, the target information is tornado, and the intention of the user is all information about tor-
nadoes without any further domain restriction. Thus, to search in SEE-H, only the keyword
“tornadoes” is enough to locate most of the relevant documents. On the other hand, in SEE+H,
as we know tornado is related to the atmospheric sciences, we can search “tornadoes” within
that category. However, it does not help filtering out the noisy documents, since tornadoes are
not likely to be related to other domains. Conversely, it actually filters out some useful results
(false negative documents), as the classifiers are not 100% accurate. Therefore, it is reasonable
that SEE+H works poorly in category-unintended tasks.

From the discussion above, when the user is intended to search the target information within
a category, the search engine with hierarchy would likely be helpful.

4.4.3.2 Search for Additional Results

In section 4.2, we introduced a button named “Additional Results” into the user interface. We
will evaluate the usefulness of the button in search. The purpose of the button is to provide
an opportunity for the user to find more desired results when few documents are returned.
Thus, we only test the cases for SEE+H in the 29 category-intended tasks where the number of
returned results are no more than 100. Table 4.9 shows the document ranking of top 10 of the
additional results when the button is clicked. Take the first row as an example. When the user
searches “horse hooves” in the category “Health”, SEE+H only returns 44 results. When the
user reads over the 44 results, comes to the last page and clicks the button to explore additional
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Task ID query intended category number of results before button clicked ranking of additional results

51 horse hooves Health 44 2,2,1,1,2,0,0,0

52 avp Sports 52 2,1,2,3,4,2,2,1,4,1

63 flushing Recreation→Travel 70 1,0,0,0,0

93 raffles Recreation→Travel 63 1,2,0,0,0,0,0

94 titan Recreation→Autos 76 0,0,0,0,0,0,0

Table 4.9: The document ranking of top 10 of the additional results when the button is clicked.

results, the top 10 of the additional results are ranked as 2, 2, 1, 1, 2, 0, 0, 04. From the table, we
can observe that the additional results (at least top results) are pretty useful in the most of the
five tasks (the first four tasks).

4.5 Summary
In this chapter, we discussed the core techniques of our search engine SEE. We propose a nov-
el ranking score function and a new interface to explore additional results. We also present
the detailed implementation of SEE. Then we leverage a well-known data collection named
ClueWeb09 to conduct a comprehensive evaluation on SEE. The results demonstrate that when
the search is intended to search with a category, SEE is likely to perform better than the tradi-
tional keyword-based search engine, and thus can improve the search experience of the users.

4Total number of additional results is 8 here. Rank 2 means the document is relevant to the query, rank 1
means slightly relevant and rank 0 means irrelevant.



Chapter 5

Improving SEE with Minimal Human
Supervision

The last two chapters have shown the effectiveness and usefulness of SEE. Suppose SEE has
been deployed and used by a number of users, how to continuously improve its performance?
In this chapter, we will address this issue.

Since the performance of SEE largely relies on the performance of the classifiers, improv-
ing the classifiers is an intuitive and direct approach. However, in order to boost a classifier
a bit, usually a large number of training documents are required. In reality, the labeled web
documents are very limited compared to the total number of unlabeled webpages on the Inter-
net. Thus, to obtain new training documents, human experts need to be employed to label the
unlabeled webpages, which is very costly. Moreover, in our case, the experts have to provide
662 labels to each document, since each training document is associated with 662 categories in
the hierarchy. How can we build reliable hierarchical classifiers from a relatively small number
of labeled documents? Can we reduce the human labeling effort significantly? Those are the
questions we are going to explore in this chapter.

To tackle the lack of the labeled examples, active learning can be a good choice [63, 52, 70].
The idea of active learning is that, instead of passively receiving the training examples, the
learner actively selects the most “informative” examples for the current classifier and gets their
labels from the oracle (i.e., human expert). Usually, those most informative examples can
benefit the classification performance most, so the classifier can be boosted quickly with a few
examples labeled. Several works have successfully applied active learning in text classification
[63, 18, 72]. However, to our best knowledge, no previous works have been done in hierarchical
text classification with active learning due to several technical challenges. For example, as a
large taxonomy can contain thousands of categories, it is impossible to have one oracle to
provide all labels. Thus, similar to DMOZ (mentioned in Section 2.1.2), multiple oracles are
needed. What would be a realistic setting for multiple oracles for active learning in hierarchical
text classification? How can we leverage the hierarchical relation to further improve active
learning?

In this chapter, we study how active learning can be effectively applied to hierarchical text
classification so that the number of labeled examples (or oracle queries) needed can be reduced
significantly. We propose a novel setting of multiple oracles, which is currently in use in many
real-world applications (e.g., ODP). Based on this setting, we propose an effective framework
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for active learning in hierarchical text classification. Moreover, we explore how to utilize the
hierarchical relation to further improve active learning. Accordingly, several novel strategies
and heuristics are devised. According to our experiments, active learning under our framework
significantly outperforms the baseline learner, and the additional strategies further enhance the
performance of active learning for hierarchical text classification. Compared to the best perfor-
mance of the baseline hierarchical learner, our best strategy can reduce the number of required
labeled examples by 74% to 90%. Those novel active learning strategies can be employed to
continuously improve the performance of SEE, with less human effort. This chapter is also
joint work with Xiao Li. We both contributed in generating the idea and designing the active
learning framework and strategies, while Xiao contributed more in coding the algorithms.

5.1 Multi-Oracle Setting
When active learning is applied to text classification, as far as we know, all previous works (e.g.,
[18, 72]) explicitly or implicitly assume that given a document that might be associated with
multiple labels, there always exist oracles who can perfectly answer all labels. In hierarchical
text classification, it is very common that the target hierarchy has a large number of categories
(e.g., DMOZ has over one million categories) across various domains, and thus it is unrealistic
for one oracle (expert) to be “omniscient” in everything. For example, an expert in “business”
may have less confidence about “computer”, and even less about “programming”. If the expert
in “business” has to label “programming”, errors can occur. Such error introduces noise to the
learner.

Therefore, it is more reasonable to assume that there are multiple oracles who are experts in
different domains. Each oracle only gives the label(s) related to his or her own domains. Thus,
the labels provided by multiple oracles will be more accurate and reliable than the labels given
by only one oracle. Although previous works have studied active learning with multiple oracles
[14, 45], as far as we know, their settings are quite different from ours as their oracles provide
labels for all examples for only one category, while in our case, different oracles provide labels
for examples in different categories in the hierarchy.

Our setting of multiple oracles is actually implemented in DMOZ (mentioned in Section
2.1.2). DMOZ holds a large number of categories, and each category is generally maintained
by at least one human editor whose responsibility is to decide whether or not a submitted
website belongs to that category.1 We adopt the similar setting of DMOZ. In our setting, each
category in the hierarchy has one oracle, who decides solely if the selected document belongs
to the current category or not (by answering “Yes” or “No”).

5.2 A Novel Active Learning Framework for Hierarchical
Classification

Here, we mainly discuss pool-based active learning where a large pool of unlabeled examples
is available for querying oracles. Figure 5.1 shows the basic idea of our hierarchical active

1See http://www.dmoz.org/erz/ for DMOZ editing guidelines.
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Figure 5.1: The hierarchical active learning framework. The typical active learning steps are
numbered 1, 2, 3 in the figure.

learning framework. Simply speaking, at each iteration of active learning, classifiers on dif-
ferent categories independently and simultaneously select the most informative examples from
the unlabeled pool for themselves, and ask the oracles on the corresponding categories for the
labels. The major steps of our hierarchical active learning algorithm are as follows:

1. We first train a binary classifier (C) on each category to distinguish it from its sibling
categories. The training set (DL) is constructed by using the positive examples from the
training set of the parent category [57].2

2. Then, we construct the local unlabeled pool (DU) for each classifier (see Section 5.2.1),
select the most informative examples from the local unlabeled pool for that classifier,
and query the corresponding oracle for the labels.

3. For each query, the oracle returns “Yes” or “No” to indicate whether the queried ex-
ample belongs to that category or not. Based on the answers, the classifier updates its
classification model (see Section 5.2.2).

4. This process is executed simultaneously on all categories at each iteration and repeats
until the terminal condition is satisfied.

There are two key steps (step two and three) in the algorithm. In step two, we introduce the
local unlabeled pool to avoid selecting out-of-scope (we will define it later) examples. In step
three, we tackle how to leverage the oracle answers in the hierarchy. We will discuss them in
the following subsections.

2On the root of hierarchy tree, every example is positive.
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5.2.1 Unlabeled Pool Building Policy
From step one of our algorithm, we know that the training examples for a deep category (say c)
must belong to its ancestor categories. However, it is likely that many unlabeled examples do
not belong to the ancestor categories of c. We define those examples as out-of-scope examples.
If those out-of-scope examples are selected by c, we may waste a lot of queries. Thus, instead
of using one shared unlabeled pool [18] for all categories, we construct a local unlabeled pool
on each of the categories. To filter out these out-of-scope examples, we use the predictions
of the ancestor classifiers to build the local unlabeled pool. Specifically, given an unlabeled
example x and a category c, only if all the ancestor classifiers of c predict x as positive, then
we will place x into the local unlabeled pool of c.

5.2.2 Leveraging Oracle Answers
For the two answers (“Yes” or “No”) from oracles, there are several possible ways to handle
them. We give a brief overview here and discuss the detailed strategies in Section 5.3.

If the answer is “Yes”, we can simply update the training set by directly including the
queried example as a positive example. To better leverage the hierarchical relation, we can
even add the positive example to all the ancestor categories. Furthermore, since the positive
example is possibly a negative example on some of the sibling categories, we may consider
including it as a negative example to the sibling categories.

If the answer is “No”, we can not simply add the example as a negative example, since we
do not know whether the queried example actually belongs to the ancestor categories. Thus,
we could simply discard the example. Alternatively, we can also query the oracle on the parent
category to see if the example belongs to the parent category, but the extra query may be wasted
if the answer is “No”.

In the following parts, we will first present our experimental configuration, and then empir-
ically explore whether our framework can be effectively applied to hierarchical classification
and whether different strategies described above can indeed improve active learning.

5.3 Empirical Study

5.3.1 Datasets
We utilize four real-world hierarchical text datasets (20 Newsgroups, OHSUMED, RCV1 and
DMOZ) in our experiments. They are common benchmark datasets for evaluation of text clas-
sification methods. We give a brief introduction of the datasets. The statistic information of
the four datasets is shown in Table 5.1.

The first dataset is 20 Newsgroups3. It is a collection of newsgroup documents partitioned
evenly across 20 different newsgroups. We group these categories based on subject matter into
a three-level topic hierarchy which has 27 categories. The second dataset is OHSUMED4. It is
a clinically-oriented MEDLINE dataset with a hierarchy of twelve levels. In our experiments,

3http://people.csail.mit.edu/jrennie/20Newsgroups/
4http://ir.ohsu.edu/ohsumed/
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Table 5.1: The statistic information of the four datasets. Cardinality is the average number of
categories per example (i.e., multi-label datasets).

Dataset Features Examples Categories Levels Cardinality

20 Newsgroups 61,188 18,774 27 3 2.202

OHSUMED 12,427 16,074 86 4 1.916

RCV1 47,236 23,049 96 4 3.182

DMOZ 92,262 12,735 91 3 2.464

we only use the sub-hierarchy under subcategory “heart diseases” which is well-studied and
usually taken as a benchmark dataset for text classification [33, 53]. The third dataset is RCV1
[38]. It includes three classification tasks: topic, industrial and regional classification. In our
experiments, we focus on the topic classification task.5 The last dataset is DMOZ. We extract a
partial hierarchy from ODP rooted at “Science” and it has three-level category hierarchy. The
purpose is to test the effectiveness of the active learning method on SEE, since SEE uses partial
hierarchy of ODP as the training data.

5.3.2 Performance Measure

To evaluate the performance in hierarchical classification, we adopt the hierarchical F-measure,
which has been widely used in hierarchical classification for evaluation [67, 12, 57]. We first
define two related measures hierarchical precision and hierarchical recall:

hP =

∑
i |P̂i
⋂

T̂i|∑
i |P̂i|

hR =

∑
i |P̂i
⋂

T̂i|∑
i |T̂i|

, (5.1)

where P̂i is the set consisting of the most specific categories predicted for test example i and
all its (their) ancestor categories and T̂i is the set consisting of the true most specific categories
of test example i and all its (their) ancestor categories. And the definition of the hierarchical
F-measure is as follows,

hF =
2 × hP × hR

hP + hR
. (5.2)

5.3.3 Active Learning Setup

In our experiment, linear SVM (LibLinear) is still used as the base classifier on each category
in the hierarchy. We set C = 1000 and w+ as the negative class proportion in the training
set. For example, if the class ratio of positive and negative class in the training set is 1:9, then
w+ = 0.9. The purpose is to give more penalty to the error on the minority class.

5http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
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For active learning, due to the simplicity and effectiveness of Uncertainty Sampling6 [37],
we adopt uncertainty sampling as the strategy to select the informative examples from the un-
labeled pool. It should be noted that our hierarchical active learning framework is independent
of the specific active learning strategy. Other strategies, such as expected error reduction [52]
and representative sampling [70] can also be used. We will study them in the future.

We split all the four datasets into labeled (1%), unlabeled (89%) and testing (10%) parts. As
we already know the labels of unlabeled examples, we will use the simulating oracles instead of
the real human oracles (experts). The training process is decomposed into a sequence of itera-
tions. In each iteration, each category simultaneously selects a fixed number of examples7 from
its local unlabeled pool and queries the oracles (one query will be consumed when we ask one
oracle for one label). After each category updates its training set, we recompute the parameter
w+ and update the classification model. The entire training process terminates when the num-
ber of queries consumed exceeds the predefined query limit. To reduce the randomness impact
of the dataset split, we repeat this active learning process for 10 times. All the results (curves)
in the following experiments are averaged over the 10 independent runs and accompanied by
error bars indicating the 95% confidence interval. In this section, we will first experimentally
study the standard version of our active learning framework for hierarchical text classification,
then propose several improved versions and compare them with the previous version.

5.3.4 Standard Hierarchical Active Learner

In order to validate our active learning framework, we will first compare its standard version
(we call it standard hierarchical active learner) with the baseline learner. The standard hier-
archical active learner uses intuitive strategies to handle oracle answers (see Section 5.2.2) in
deep categories. If the oracle answer is “Yes”, the standard hierarchical active learner direct-
ly includes the example as a positive example; if “No”, it simply discards the example. On
the other hand, the baseline learner is actually the non-active version of the standard hierar-
chical active learner. Instead of selecting the most informative examples, it selects unlabeled
examples randomly on each category.

We set the query limit as 50×|C|where |C| is the total number of categories in the hierarchy.
Thus, in our experiments the query limits for the four datasets are 1,350, 4,300, 4,800 and 4,850
respectively. We denote the standard hierarchical active learner as AC and the baseline learner
as RD. Figure 5.2 plots the average learning curves for AC and RD on the four datasets. As we
can see, on all the datasets AC performs much better than RD. This result is reasonable since the
unlabeled examples selected by AC are more informative than RD on all the categories in the
hierarchy. From the curves, it is apparent that to achieve the best performance of RD, AC needs
significantly fewer queries (approximately 43% to 82% queries can be saved)8. However, there
is an exception. That is, at the later learning stage of DMOZ, the advantage of AC over RD

6Uncertain sampling in active learning selects the unlabeled example that is closest to the decision boundary
of the classifier.

7We heuristically use logarithm of the unlabeled pool size to calculate the number of selected examples for
each category.

8In 20 Newsgroups, RD uses 1,350 queries to achieve 0.46 in terms of the hierarchical F-measure, while AC
only uses 750 queries. Thus, (1350 − 750)/1350 = 44.4% of the total queries are saved. The savings for other
datasets are 82.5%, 72.9% and 43.3%.
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Figure 5.2: Comparison between AC and RD in terms of the hierarchical F-measure. X axis is
the number of queries consumed and Y axis is the hierarchical F-measure.

becomes smaller. It is probably due to the imbalance of datasets in the hierarchy of DMOZ.
With severe imbalance, it is more likely the oracle will say “No”, since we have more negative
examples. In this case, the selected example will be discarded and never learned by both AC
and RD. This situation becomes more serious after most of the positive examples have already
been learned. That is why the performance of AC and RD becomes similar in the later learning
stage.

Although the standard hierarchical active learner (AC) significantly reduces the number of
oracle queries compared to the baseline learner (RD), we should note that there is no interaction
between categories in the hierarchy (e.g., each category independently selects examples and
queries oracle). Our question is: can we further improve the performance of the standard
active learner by taking into account the hierarchical relation of different categories? We will
explore several leveraging strategies in the following subsections.

5.3.5 Leveraging Positive Examples in Hierarchy
As mentioned in Section 5.2.2, when the oracle on a category answers “Yes” for an example,
we can directly include the example into the training set on that category as a positive example.
Furthermore, according to the category relation in a hierarchy, if an example belongs to a
category, it will definitely belong to all the ancestor categories. Thus, we can propagate the
example (as a positive example) to all its ancestor categories. In such cases, the ancestor
classifiers can obtain free positive examples for training without any query. It coincides with
the goal of active learning: reducing the human labeling cost!

Based on the intuition, we propose a new strategy Propagate to propagate the examples to
the ancestor classifiers when the answer from oracle is “Yes”. The basic idea is as follows. In
each iteration of the active learning process, after we query an oracle for each selected example,
if the answer from the oracle is “Yes”, we propagate this example to the training sets of all the
ancestor categories as positive. At the end of the iteration, each category combines all the
propagated positive examples and the examples selected by itself to update its classifier.

We integrate Propagate to the standard hierarchical active learner (we name the integrated
version as AC+) and then compare it with the original AC. The first row of Figure 5.3 shows
the learning curves of AC+ and AC on the four datasets in terms of the hierarchical F-measure.
Overall, the performance of AC+ is slightly better than that of AC. By propagating positive
examples, the top-level classifiers of AC+ can receive a large number of positive examples and
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Figure 5.3: Comparison between AC+ and AC in terms of the hierarchical F-measure (first
row), recall (second row) and precision (third row).

thus the (hierarchical) recall of AC+ increases faster than AC as shown in the second row. This
is the reason why AC+ can defeat AC on the first three datasets. However, from the third row,
we can see the hierarchical precision of AC+ actually degrades very sharply since the class
distribution of the training set has been altered by the propagated positive examples. It thus
weakens the boosting effect in the hierarchical recall and hinders the improvement of overall
performance in the hierarchical F-measure.

Since positive examples can benefit the hierarchical recall, can we leverage negative exam-
ples to help maintain the hierarchical precision so as to further improve AC+? We will propose
two possible solutions in the following.

5.3.6 Leveraging Negative Examples in Hierarchy
We introduce two strategies to leverage negative examples. One is to query parent oracles when
the oracle answers “No”; the other is to predict the negative labels for sibling categories when
the oracle answers “Yes”.

For deep categories, when the oracle answers “No”, we actually discard the selected ex-
ample in AC+ (as well as in AC, see Section 5.3.4). However, in this case, the training set
may miss a negative example and also possibly an informative example. Furthermore, if we
keep throwing away those examples whenever oracle says “No”, the classifiers may not have
chance to learn negative examples. On the other hand, if we include this example, we may
introduce noise to the training set, since the example may not belong to the parent category,
thus an out-of-scope example (see Section 5.2.1).
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How can we deal with the two cases? We introduce a complementary strategy called Query.
In fact, the parent oracle can help us decide between the two cases. We only need to issue
another query to the parent oracle on whether this example belongs to it. If the answer from
the parent oracle is “Yes”, we can safely include this example as a negative example to the
current category. If the answer is “No”, we can directly discard it. Here, we do not need to
further query all the ancestor oracles, since the example is already out of scope of the current
category and thus cannot be included into its training set. There is a trade-off. As one more
query is asked, we may obtain an informative negative example, but we may also waste a query.
Therefore, it is non-trivial if this strategy works or not.

Figure 5.4: Comparison between AC+P, AC+Q and AC+ in terms of the hierarchical F-measure
(upper row) and precision (bottom row).

When the oracle on a category (say “Astronomy”) answers “Yes” for an example, it is
very likely that this example may not belong to its sibling categories such as “Chemistry” and
“Social Science”. In this case, can we add this example as a negative example to its sibling
categories? In those datasets where each example only belongs to one single category path, we
can safely do so. It is because for the categories under the same parent, the example can only
belong to at most one category. However, in most of the hierarchical datasets, the example
belongs to multiple paths. In this case, it may be positive on some sibling categories. If we
include this example as negative to the sibling categories, we may introduce noise.

To decide which sibling categories an example can be included as negative, we adopt a
conservative heuristic strategy called Predict. Basically, when a positive example is included
into a category, we add this example as negative to those sibling categories that the example
is least likely to belong to. Specifically, if we know a queried example x is positive on a
category c, we choose m sibling categories with the minimum probabilities (estimated by Platts
Calibration [48]). We set

m = n −max
x∈DL

Ψ↑c(x), (5.3)

where DL is the labeled set, ↑ c is the parent category of c, n is the number of children categories
of ↑ c, and Ψ↑c(x) is the number of categories under ↑ c that the example x belongs to.
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We integrate the two strategies Query and Predict discussed above into AC+ and then com-
pare the two integrated versions (AC+Q and AC+P) with the original AC+. Since in AC+
positive examples are propagated, we can use this feature to further boost AC+Q and AC+P.
For AC+Q, when the parent oracle answers “Yes”, besides obtaining a negative example, we
can also propagate this example as a positive example to all the ancestor categories. For AC+P,
as a positive example is propagated, we can actually apply Predict to all the ancestor categories.

We plot their learning curves for the hierarchical F-measure and the hierarchical precision
on the four datasets in Figure 5.4. As we can see in the figure, both AC+Q and AC+P achieve
better performance of the hierarchical F-measure than AC+. By introducing more negative ex-
amples, both methods maintain or even increase the hierarchical precision (see the bottom row
of Figure 5.4). As we mentioned before, AC+Q may waste queries when the parent oracle an-
swers “No”. However, we discover that the average number of informative examples obtained
per query for AC+Q is much larger than AC+ (at least 0.2 higher per query). It means that
it is actually worthwhile to issue another query in AC+Q. Another question is whether AC+P
introduces noise to the training sets. According to our calculation, the noise rate is at most
5% on all the four datasets. Hence, it is reasonable that AC+Q and AC+P can further improve
AC+.

However, between AC+Q and AC+P, there is no consistent winner on all the four datasets.
On OHSUMED and RCV1, AC+Q achieves higher performance, while On 20 Newsgroup and
DMOZ, AC+P is more promising. Thus, we can see that AC+P is a good choice to improve
the performance of SEE. We also try to make a simple combination of Query and Predict with
AC+ (we call it AC+QP), but the performance is not significantly better than AC+Q and AC+P.
We will explore a smarter way to combine them in our future work.

Finally, we compare the improved versions AC+Q and AC+P with the non-active version
RD. We find that AC+Q and AC+P can save approximately 74% to 90% of the total queries.
The savings for the four datasets are 74.1%, 88.4%, 83.3% and 90% respectively (these num-
bers are derived from Figures 5.2 and 5.4).

To summarize, we propose several improved versions (AC+, AC+Q and AC+P) in addition
to the standard version (AC) of our hierarchical active learning framework. According to our
empirical studies, we discover that in terms of the hierarchical F-measure, AC+Q and AC+P
are significantly better than AC+, which in turn is slightly better than AC, which in turn out-
performs RD significantly. In terms of query savings, our best versions AC+Q and AC+P need
significantly fewer queries than the baseline learner RD.

5.4 Summary
In this chapter, we propose a novel multi-oracle setting for active learning in hierarchical clas-
sification as well as an effective active learning framework for this setting. We explore different
solutions which attempt to utilize the hierarchical relation between categories to improve active
learning. We also discover that propagating positive examples to the ancestor categories can
improve the overall performance of hierarchical active learning. However, it also decreases
the precision. To handle this problem, we propose two novel strategies to leverage negative
examples in the hierarchy. Our empirical study shows both of them can further boost the per-
formance. Our best strategy proposed can save a considerable number of oracle queries (74%
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to 90%) compared to the baseline learner. It is clear that those novel active learning strategies,
particularly the strategy named AC+P, can be employed to continuously improve the perfor-
mance of SEE, with less human effort.



Chapter 6

Conclusions and Future Work

6.1 Conclusions
In this thesis, we reported our first attempt to build a new type of search engine called SEE.
In addition to the keywords search, we introduced a topic hierarchy into the search engine, so
that the users can browse the most popular webpages within each topic category and search
target information in a desired category to avoid ambiguity. To implement a prototype of SEE,
we firstly build a back-end classification system by leveraging an existing labeled data source
called ODP. When new webpages are crawled, the classification system automatically classifies
them and then indexes them into the search engine. As all the classification information are
indexed, the response for the user queries is very fast. To implement SEE, we design a novel
ranking algorithm and a novel user interface to let users explore additional results. According
to the evaluation results, SEE has a good performance in terms of search quality, particularly
when the user is intended to search in a category. One important and novel feature of SEE
is that once the classification system is constructed, it can index as many documents as the
server is capable of. Thus, SEE has a promising scalability. Besides, we also discussed how to
improve SEE by proposing a new active learning framework for hierarchical text classification.

The thesis primarily addressed two issues: implementing SEE and improving SEE (Chapter
5). For the implementation, we discussed the classification system (Chapter 3) and the detailed
design of the search engine (Chapter 4), separately.

In Chapter 3, we talked about the classification system for SEE in the following steps.

• We gave an introduction on how we extracted the topic hierarchy for SEE as well as
how we generated the training data for the construction of the classifiers. We design an
intuitive and reasonable criteria to select a topic hierarchy from Open Directory Project,
and choose the webpages under the categories of this topic hierarchy as the raw training
data.

• We discussed the detailed classification methodology, which includes how we prepro-
cessed the raw webpages, how we dealt with the computational issue, how we optimized
the classifiers and how we categorize new documents. We took sophisticated methods to
preprocess the training data, and designed a parallel framework to improve the computa-
tional efficiency. More importantly, we designed a novel algorithm to find the parameters
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that maximize the classification performance, and leveraged hierarchical classification to
categorize new documents.

• We conducted an evaluation on the constructed classifiers and the results demonstrated
that the classification performance is satisfactory.

In Chapter 4, we discussed the detailed design and implementation of the search engine
SEE following the steps below.

• We proposed a novel ranking function for SEE, integrating the likelihood of each docu-
ment belonging to a category. It can deal with the false positive errors introduced in the
classification phase. With the new ranking function, users can browse the most popular
webpages within each topic category.

• We introduced a button into the user interface to let users explore additional results when
few results are returned. It can deal with the false negative errors introduced in the
classification phase. When results are limited, this feature can help users find more
results.

• We discussed the detailed implementation of the system from a development perspective.
It includes the indexing system, user interface and the web server, as well as the data flow
between them.

• We conducted a comprehensive evaluation on SEE to test its effectiveness. We used a
well-know data collection ClueWeb09, and DCG as the metric. We compared SEE with
the traditional keyword-based search engine and also test the usefulness of the button to
explore additional results. The results demonstrated that SEE is particularly useful when
the user is intended to search within a topic category.

In Chapter 5, we studied how to further improve the performance of SEE with minimal human
effort, by proposing a novel active learning framework for hierarchical classification.

• We pointed out the weakness of the traditional single-oracle mode in hierarchical setting,
and introduced a new multi-oracle setting where each expert is responsible to answer the
query on a particular category. The labels provided in our setting are more accurate and
reliable than the labels given by only one oracle.

• We proposed a novel active learning framework for hierarchical classification. Based on
that, we further designed several novel strategies to reduce the human labeling cost. The
results demonstrated that our active learning strategies can save 74%-90% oracle queries
compared to the random strategy.

We list our major contributions over the entire thesis as follows.

1. We propose the new idea of integrating hierarchy into general web search engine and
implement a prototype of this new search engine SEE.
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2. We take advantage of machine learning and data mining techniques (e.g., SVM, hier-
archical classification and data preprocessing) to categorize Internet webpages into our
hierarchy. We design a parallel framework to improve the efficiency for the training
and classification processes. Besides, we propose an algorithm to find the best param-
eter combination that maximizes the classification performance. The evaluation results
demonstrate that our classification performance is good.

3. To build the new search engine SEE, we propose a novel ranking function and design
a new interface to explore additional results when returned results are limited. We also
conduct a comprehensive evaluation on SEE, and the results show that the hierarchical
version of SEE can achieve better search results than the flat version without hierarchy
in most of the queries, particularly when the query is intended to search within a topic.

4. To further improve SEE with minimal human effort, we propose a novel multi-oracle
setting and a new active learning framework for the hierarchical classification. According
to the experimental results, our methods can greatly reduce the human labeling cost.

6.2 Future Work
We are planning to conduct a comprehensive usability study for SEE. In order to diversify
the participates, we consider conducting it on the crowd-sourcing platforms such as Amazon
Mechanic Turk, where the users are from various areas of the society. Besides, we will design
more questions for the users to answer after using SEE, such as how much time and how many
keywords they use in their search.

Moreover, we are considering to build an image and video search engine, also with hier-
archy. The difficulty will be how to classify the image and video into the categories in the
hierarchy.

Another application of SEE is to apply it to a local domain (e.g., a company or a university)
to classify all their documents into a predefined hierarchy, and construct a local search service
for them.
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