108 research outputs found

    A Review of Lower Limb Exoskeletons

    Get PDF
    In general, exoskeletons are defined as wearable robotic mechanisms for providing mobility. In the last six decades, many research work have been achieved to enhance the performance of exoskeletons thus developing them to nearly commercialized products. In this paper, a review is made for the lower limb exoskeleton concerning history, classification, selection and development, also a discussion for the most important aspects of comparison between different designs is presented. Further, some concluding remarks are withdrawn which could be useful for future work. Keywords: Exoskeletons, Lower extremity exoskeleton, Wearable robot

    State of the Art Lower Limb Robotic Exoskeletons for Elderly Assistance

    Get PDF
    https://ieeexplore.ieee.org/document/8759880/keywords#keywordsThe number of elderly populations is rapidly increasing. Majority of elderly people face difficulties while walking because the muscular activity or other gait-related parameters start to deteriorate with aging. Therefore, the quality of life among them can be suffered. To make their life more comfortable, service providing robotic solutions in terms of wearable powered exoskeletons should be realized. Assistive powered exoskeletons are capable of providing additional torque to support various activities, such as walking, sit to stand, and stand to sit motions to subjects with mobility impairments. Specifically, the powered exoskeletons try to maintain and keep subjects' limbs on the specified motion trajectory. The state of the art of currently available lower limb assistive exoskeletons for weak and elderly people is presented in this paper. The technology employed in the assistive devices, such as actuation and power supply types, control strategies, their functional abilities, and the mechanism design, is thoroughly described. The outcome of studied literature reveals that there is still much work to be done in the improvement of assistive exoskeletons in terms of their technological aspects, such as choosing proper and effective control methods, developing user friendly interfaces, and decreasing the costs of device to make it more affordable, meanwhile ensuring safe interaction for the end-users

    Kinematic Modelling of FES Induced Sit-to-stand Movement in Paraplegia

    Get PDF
    FES induced movements from indication is promising due to encouraging results being obtained by scholars. The kinematic model usually constitute the initial phase towards achieving the segmental dynamics of any rigid body system. It can be used to ascertain that the model is capable of achieving the desired goal. The dynamic model builds on the kinematic model and is usually mathematically cumbersome depending on the number of degrees-of-freedom. This paper presents a kinematic model applicable for human sit-to-stand movement scenario that will be used to obtain the dynamic model the FES induced movement in a later study. The study shows that the 6 DOF conceptualized sit-to-stand movement can be achieved conveniently using 4 DOF. The 4 DOF has an additional joint compared to similar earlier works which makes more it accurate and flexible. It is more accurate in the sense that it accommodates additional joint i.e. the neck joint whose dynamics could be captured. And more flexible in the sense that if future research uncover more contributions by the segments it can be easily incorporated including that of other segments e.g. the trunk, neck and upper limbs

    Design of a Rise Support to be integrated in the HOBBIT Robot

    Get PDF
    The purpose of the thesis work is to analyze the possibility to integrate a sit-to-stand functionality into the HOBBIT service robot for elderly people while keeping the stability of the robot. A prototype with a knee support and a handle was used in combination with a motion capture system to capture joints angles and forces during the sit-to-stand movement. A skeletal model was created using the OpenSim software where data and a CAD model of the robot were imported and analyzed. Matlab was used to calculate the stability of the robot and optimize the positions of the knee support and handle. Finally, the prototype was tested with four elderly people. The forces necessary to rise up did not compromise the stability of the robot and the users found the prototype useful, comfortable and necessary

    Feasibility of Rehabilitation Training With a Newly Developed Wearable Robot for Patients With Limited Mobility

    Get PDF
    ObjectiveTo investigate the feasibility of rehabilitation training with a new wearable robot.DesignBefore-after clinical intervention.SettingUniversity hospital and private rehabilitation facilities.ParticipantsA convenience sample of patients (N=38) with limited mobility. The underlying diseases were stroke (n=12), spinal cord injuries (n=8), musculoskeletal diseases (n=4), and other diseases (n=14).InterventionsThe patients received 90-minute training with a wearable robot twice per week for 8 weeks (16 sessions).Main Outcome MeasuresFunctional ambulation was assessed with the 10-m walk test (10MWT) and the Timed Up & Go (TUG) test, and balance ability was assessed with the Berg Balance Scale (BBS). Both assessments were performed at baseline and after rehabilitation.ResultsThirty-two patients completed 16 sessions of training with the wearable robot. The results of the 10MWT included significant improvements in gait speed, number of steps, and cadence. Although improvements were observed, as measured with the TUG test and BBS, the results were not statistically significant. No serious adverse events were observed during the training.ConclusionsEight weeks of rehabilitative training with the wearable robot (16 sessions of 90min) could be performed safely and effectively, even many years after the subjects received their diagnosis

    Design and control methodology of a lower extremity assistive device

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Design and Control of Lower Limb Assistive Exoskeleton for Hemiplegia Mobility

    Get PDF

    Development of Support System Modeled on Robot Suit HAL for Personalized Education and Learning

    Get PDF
    The purpose of this paper is to maintain quality education for each student who has her/his own differentiation and needs. To achieve it, we have developed our support system for education and learning. We have examined this support system, whether it improved or did not improve the performance of 98 students in 2015, compared with that in 2014. The results have shown to be more significant than those of the previous year. Moreover, we have observed that students’ behavior toward projects have been becoming greater autonomy and positive attitude in practical class. From those results, we might be able to say that this support system works effectively in personalized education and learning (PEL) by using big data processing

    Adaptive control for wearable robots in human-centered rehabilitation tasks

    Get PDF
    Robotic rehabilitation therapies have been improving by providing the needed assistance to the patient, in a human-centered environment, and also helping the therapist to choose the necessary procedure. This thesis presents an adaptive "Assistance-as-needed" strategy which adheres to the specific needs of the patient and with the inputs from the therapist, whenever needed. The exertion of assistive and responsive behavior of the lower limb wearable robot is dedicated for the rehabilitation of incomplete spinal cord injury (SCI) patients. The main objective is to propose and evaluate an adaptive control model on a wearable robot, assisting the user and adhering to their needs, with no or less combination of external devices. The adaptation must be more interactive to understand the user needs and their volitional orders. Similarly, by using the existing muscular strength, in incomplete SCI patients, as a motivation to pursue the movement and assist them, only when needed. The adaptive behavior of the wearable robot is proposed by monitoring the interaction and movement of the user. This adaptation is achieved by modulating the stiffness of the exoskeleton in function of joint parameters, such as positions and interaction torques. These joint parameters are measured from the user independently and then used to update the new stiffness value. The adaptive algorithm performs with no need of external sensors, making it simple in terms of usage. In terms of rehabilitation, it is also desirable to be compatible with combination of assistive devices such as muscle stimulation, neural activity (BMI) and body balance (Wii), to deliver a user friendly and effective therapy. Combination of two control approaches has been employed, to improve the efficiency of the adaptive control model and was evaluated using a wearable lower limb exoskeleton device, H1. The control approaches, Hierarchical and Task based approach have been used to assist the patient as needed and simultaneously motivate the patient to pursue the therapy. Hierarchical approach facilitates combination of multiple devices to deliver an effective therapy by categorizing the control architecture in two layers, Low level and High level control. Task-based approaches engage in each task individually and allow the possibility to combine them at any point of time. It is also necessary to provide an interaction based approach to ensure the complete involvement of the user and for an effective therapy. By means of this dissertation, a task based adaptive control is proposed, in function of human-orthosis interaction, which is applied on a hierarchical control scheme. This control scheme is employed in a wearable robot, with the intention to be applied or accommodated to different pathologies, with its adaptive capabilities. The adaptive control model for gait assistance provides a comprehensive solution through a single implementation: Adaptation inside a gait cycle, continuous support through gait training and in real time. The performance of this control model has been evaluated with healthy subjects, as a preliminary study, and with paraplegic patients. Results of the healthy subjects showed a significant change in the pattern of the interaction torques, elucidating a change in the effort and adaptation to the user movement. In case of patients, the adaptation showed a significant improvement in the joint performance (flexion/extension range) and change in interaction torques. The change in interaction torques (positive to negative) reflects the active participation of the patient, which also explained the adaptive performance. The patients also reported that the movement of the exoskeleton is flexible and the walking patterns were similar to their own distinct patterns. The presented work is performed as part of the project HYPER, funded by Ministerio de Ciencia y Innovación, Spain. (CSD2009 - 00067 CONSOLIDER INGENIOLas terapias de rehabilitación robóticas han sido mejoradas gracias a la inclusión de la asistencia bajo demanda, adaptada a las variaciones de las necesidades del paciente, así como a la inclusión de la ayuda al terapeuta en la elección del procedimiento necesario. Esta tesis presenta una estrategia adaptativa de asistencia bajo demanda, la cual se ajusta a las necesidades específicas del paciente junto a las aportaciones del terapeuta siempre que sea necesario. El esfuerzo del comportamiento asistencial y receptivo del robot personal portátil para extremidades inferiores está dedicado a la rehabilitación de pacientes con lesión de la médula espinal (LME) incompleta. El objetivo principal es proponer y evaluar un modelo de control adaptativo en un robot portátil, ayudando al usuario y cumpliendo con sus necesidades, en ausencia o con reducción de dispositivos externos. La adaptación debe ser más interactiva para entender las necesidades del usuario y sus intenciones u órdenes volitivas. De modo similar, usando la fuerza muscular existente (en pacientes con LME incompleta) como motivación para lograr el movimiento y asistirles solo cuando sea necesario. El comportamiento adaptativo del robot portátil se propone mediante la monitorización de la interacción y movimiento del usuario. Esta adaptación conjunta se consigue modulando la rigidez en función de los parámetros de la articulación, tales como posiciones y pares de torsión. Dichos parámetros se miden del usuario de forma independiente y posteriormente se usan para actualizar el nuevo valor de la rigidez. El desempeño del algoritmo adaptativo no requiere de sensores externos, lo que favorece la simplicidad de su uso. Para una adecuada rehabilitación, efectiva y accesible para el usuario, es necesaria la compatibilidad con diversos mecanismos de asistencia tales como estimulación muscular, actividad neuronal y equilibrio corporal. Para mejorar la eficiencia del modelo de control adaptativo se ha empleado una combinación de dos enfoques de control, y para su evaluación se ha utilizado un exoesqueleto robótico H1. Los enfoques de control Jerárquico y de Tarea se han utilizado para ayudar al usuario según sea necesario, y al mismo tiempo motivarle para continuar el tratamiento. Enfoque jerárquico facilita la combinación de múltiples dispositivos para ofrecer un tratamiento eficaz mediante la categorización de la arquitectura de control en dos niveles : el control de bajo nivel y de alto nivel. Los enfoques basados en tareas involucran a la persona en cada tarea individual, y ofrecen la posibilidad de combinarlas en cualquier momento. También es necesario proporcionar un enfoque basado en la interacción con el usuario, para asegurar su participación y lograr así una terapia eficaz. Mediante esta tesis, proponemos un control adaptativo basado en tareas y en función de la interacción persona-ortesis, que se aplica en un esquema de control jerárquico. Este esquema de control se emplea en un robot portátil, con la intención de ser aplicado o acomodado a diferentes patologías, con sus capacidades de adaptación. El modelo de control adaptativo propuesto proporciona una solución integral a través de una única aplicación: adaptación dentro de la marcha y apoyo continúo a través de ejercicios de movilidad en tiempo real. El rendimiento del modelo se ha evaluado en sujetos sanos según un estudio preliminar, y posteriormente también en pacientes parapléjicos. Los resultados en sujetos sanos mostraron un cambio significativo en el patrón de los pares de interacción, elucidando un cambio en la energía y la adaptación al movimiento del usuario. En el caso de los pacientes, la adaptación mostró una mejora significativa en la actuación conjunta (rango de flexión / extensión) y el cambio en pares de interacción. El cambio activo en pares de interacción (positivo a negativo) refleja la participación activa del paciente, lo que también explica el comportamiento adaptativo

    Functional Electrical Stimulation in Paraplegia

    Get PDF
    corecore