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ABSTRACT 

 

The latest research regarding the world population ageing developed by the United 

Nations demonstrates how fast the proportion of people over 65 years old is increasing [1]. Thus 

the demand for elderly care services is growing. This environment encouraged the creation of the 

main idea of the HOBBIT project which is to build a “service robot” with the purpose of taking 

care of elderly people allowing him or her to have an independent life. This robot includes many 

tasks such as reducing the falling risk which is one of the most common accidents in elderly 

people (30% of elderly people fall at least once a year) [2] by removing dangerous object of the 

floor.  

The general objective of this master thesis was to design a rising support to help older 

people to stand up, in order to decrease the risk of falling. The device should be integrated in the 

latest version of the HOBBIT robot project financed by the European Commission.  

After the literature review and the generation of ideas, the main conclusion was that 

giving stability to the lower body by adding a support for one or both knees, and a handle for one 

arm is enough to help the user to place his or her body in a good position to perform the Sit-to-

Stand movement and gives the required balance at the same time. Thus, with the purpose of 

getting information of the behavior of the structure and the body of the user during the movement, 

a model was built with two provisional supports. This structure has displacement sensors which 

measured the forces generated during the motion. On the other hand, during the tests in the 

laboratory the movement was recorded with the motion capture system. 

The main task of the project was reached successfully, a rise support was designed and tested 

and the verification process (using Matlab and OpenSim models) demonstrated the feasibility of 

including this design in the HOBBIT project. The model of the rise-up device improves the 

stability of the user during the Sit-to Stand movement, keeping the balance of the HOBBIT robot. 

The position of the supports forces the user to a good initial position for the movement, reducing 

the risk, of falling and the moment required in hips and knees. 

 

Keywords: Sit-to-Stand, HOBBIT, robot, balance, fall risk, OpenSim, supports. 
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NOMENCLATURE 

 

Symbols 

 

 p1: Contact point with the ground of the caster wheel 

 p2 and p3: Contact point with the ground of the two bigger wheels 

 C1: Knee support 

 C2: Hand support 

 CM: Center of mass of the robot 

 O: Origin of the coordinates 

 Xcm, Ycm and Zcm: Coordinates of the center of mass 

 Xc1, Yc1 and Zc1: Coordinates of the knee support 

 Xc2, Yc2 and Zc2: Coordinates of the hand support 

 d1,d2 and d3: distances to determine the position of the contact points with the ground 

 W: Weight of the robot 

 N1, N2 and N3: Normal forces generated in the contact points with the ground 

 Fr1, Fr2 and Fr3: Friction forces in Z direction 

 Fk is the force applied in the knee support 

 Fh is the force applied in the hand support 

 Θ: Angle of Fh to the horizontal 

 β: Angle of Fk to the horizontal 

 α: Rotation of the caster wheel (small wheel) 

 δ: Elbow flexion angle 
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1 INTRODUCTION 

This first chapter gives an overview of the subject and an introduction to the thesis. 

1.1 BACKGROUND 

 

It is known that the twentieth century is defined by many characteristics. One of them is the 

increase of the older people population. This phenomenon is called the world population ageing. 

The United Nations establishes [1] that the percentage of elderly people (more than 60 years old) 

is increasing at the same time as the proportion of young people (under 15 years old) is 

decreasing. It is expected for 2050 to find a bigger amount of older than young people in the 

world; it would be for the first time in humanity´s history. 

There are two demographic determinants for the world population ageing that defines the 

current situation; the first one is the decrease in fertility, followed by the mortality decline. The 

total fertility rate has been bigger in less developed regions of the world, at the same time the life 

expectancy at birth is lower in the same places if they are compared with more developed regions. 

That is the reason why least developed countries have a bigger proportion of young than older 

people. But it doesn’t mean that it is not changing. The United Nations reports show how the 

parentage of elderly people is increasing in every country around the world. 

The Figure 1 and Figure 2 are presented in order to facilitate the understanding of the trend 

followed by the world population ageing among the last 64 years described above.  
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Figure 1: Total fertility rate and life expectancy at birth among the last 64 years 

[1] 

 

 

 

 

Figure 2: Total fertility rate for different development levels of countries around the world 

[1] 
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Another characteristic that is changing with the years is the internal composition of the 

older people group. To explain this process it is easier to use the following example. Sixty years 

ago, only 6.67% of the elderly people were above 80 years old. Nowadays, this percentage has 

increased to 11.11% and for 2050 is expected to have up to 20% of elderly people aged above 80 

[1]. This information is easily explained in the United Nations graph (Figure 3). 

 

Figure 3: Distribution of population groups aged over 60, 70 and 80 years [1] 

 

The elderly people require assistance and supervision occasionally even in basic necessities. 

One of the most used services is the home health care, a group of professionals that built 

companies to give care to the ones who need it. The service includes personal care like feeding, 

bathing, among other things [3]. As a result of the world population ageing, there will be an 

increase for the demand of elderly people's care assistance, thus these services will be required in 

a bigger scale every year. 

Eldercare is a responsibility of the family members and government. In countries such as 

Canada and the United States the adult children have legal responsibility to support their parents 

when they are not able to take care about themselves, thus the problem affects indirectly people 

of any age [4]. At the same time with the population ageing, more people require elderly care, i.e. 

more organizations are motivated to find ways to contribute with the assistance of older people.    
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Since the demand for personnel to take care of weaker people has increased, the mankind 

has tried to develop new technologies. The best example of this fact is the wheelchair, invented in 

China more than 1500 years ago, that helps to transfer people from one place to another [5]. This 

device has not changed only the life style of the users, the family and the society around them is 

directly affected. A person who is not able to use his legs to walk would be completely 

disconnected with the surrounding environment if he doesn’t use a wheel chair. 

The future seems nearer than ever, amphibious cars, jet packs, smart cellphones, 3D 

television, why not a robot helping elderly people with their basic necessities? That is the main 

idea of the “HOBBIT The mutual Care robot” project, financed by the European Commission. A 

common action as picking up objects from the floor, e.g., could become an impossible mission 

for older people. The HOBBIT project goal is to find a robot solution that decreases the risk of 

falling and improves the independence that allows older people to live at their homes longer [6]. 

On the other hand, fall related injuries have been a serious problem for people older than 65 

years old all over the world. Approximately 30% of the older population falls every year at least 

once, which results in serious injuries and big costs [2]. The fall detection and prevention is the 

main task of the HOBBIT robot. The device should be able to detect any object at the floor that 

could lead to a fall accident and HOBBIT should call for help if an emergency is found. To take 

care of each other, the robot and the human have to build a relationship, and the HOBBIT project 

is focused on it, defining a mutual care concept. 

One of the actions the most people perform many times during the day is standing up from 

a seated position; this motion is commonly called Sit-to-Stand movement. The process starts 

when the buttocks are in contact with any surface and the person wants to go to elsewhere or 

simply to reach a standing up position. This simple activity helps everyone to be independent, but 

for many people the movement could become a dangerous process if the person has not the 

required strength and balance for a proper performance.  

It was reported that a 60% of people over 60 years have problems with the balance during 

the Sit-to-Stand movement, which implies a greater risk of recurrent falls [7]. For that reason 

many companies have been trying to find a workable way to make the raise up process easier and 

safer. There are different solutions that have been developed applying training and therapy, but 

also technology plays an important role developing different devices that help weaker people to 

do this movement independently. 
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Many companies like Handicare, EasyStand and Rifton have been working within this 

environment with the goal to offer a real solution to the Sit-to-Stand problem. They developed 

several designs that nowadays are part of the healthcare business.  

 

The Sit-to-Stand devices allow the users to move from a sitting position at a bed, chairs, 

among others, to a standing position in a safer way. It should be design to give comfort and 

stability while the person is rising up. There are many alternative for the device, one common 

way is to give only a support for the upper body.  In this case the user should be able apply some 

force. On the other hand, there are solutions that carry the whole mass of the person.  

The benefits of the Sit-to-Stand devices include the independence that they give to the 

person. But the users are not the only ones with benefices. When someone is not able to rise up 

by himself, and there are no devices to support at the moment, there is need for a person to help. 

Very often the people who help in the Sit-to-Stand movement get injuries in several party of the 

body such as back and shoulders injuries [8]. 

 

1.2 PROBLEM DISCUSSION 

 

The HOBBIT robot is able to detect and prevent dangerous situations, and one of the main 

risks is the fall related accident. Currently the device has many functions to avoid falls such as 

clearing the floor of unsafe objects. 

The risk of falling down during the Sit-to-Stand movement is high; it is due to how hard is 

to balance the body before, during and after the motion, especially for people above 65 years. The 

HOBBIT robot is not capable to help the user when he needs to stand up, thus the device does not 

give any warranty to avoid a fall related accident while the movement is being performance. 

The current problem is to design a rising support to help older people to perform the Sit-to-

Stand movement for the HOBBIT robot, thus decreasing the balance problem present during the 

motion. But the solution to this problem brings the following question, is it possible to integrate 

this support to the robot and still find it stable? A wider robot base would make it impossible to 
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navigate in user’s homes with lots of furniture and narrow door openings. This problematic is 

taken into consideration along the project. 

 

1.3 JUSTIFICATION 

 

The health care personal currently is being required in a wider magnitude than 50 years ago, 

thus technology is gaining importance to cover that demand. In the past it would be hard to 

believe how successful the business of developing equipment to help people who are not able to 

take care of themselves has become.  But the economic success is not only what projects such as 

HOBBIT robot are looking for, also the aim of improving the independence and the quality of life 

of whoever needs it, brings huge motivation for a lot of people to work with developing projects 

related to rehabilitation engineering. 

This project has positive impact firstly for the elderly persons allowing them to live 

independently and continue doing what they previous were able to do, and secondly for their 

families who do not have to worry so much if their parents or grandparents are able to satisfy 

their basic necessities.  

Finally, a fall related injury could cause a strong impact in older people health, so by 

avoiding these accidents it is not only possible to allow to live in a safer way, it results in a 

significant costs reduction for families and governments too.  

 

1.4 OBJECTIVES 

 

General objective 

Design a rising support to help older people to stand up. The device should be possible to 

integrate in the last model of the HOBBIT robot designed in a project financed by the European 

Commission. 
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1.5 RESTRICTIONS 

 

The main restrain for this project comes with the dimensions of the latest version of the 

HOBBIT; its mass is estimated around 80Kg and the robot with the rising support integrated 

shouldn’t overturn in any case while the user is performing the Sit-to-Stand movement. The user 

can exceed the device weight, so the structure should be stable enough to avoid any fall related 

accident. 

The prototype will operate with elderly people in a house environment, thus any error could 

lead to a dangerous situation, because older users are prone to suffer harder injuries in any kind 

of accidents. So, a proper security factor has to be used during the design process, but it shouldn’t 

generate additional costs, because the final price of the robot should be able to compete in the 

European market. 
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2 METHOD 

This chapter is used to explain the methodology followed during the development of the 

project, including the design of one model and the studies to determine if it is feasible. In resume, 

the main idea was to develop a preliminary design, and then built a model similar to the resultant 

development for testing the behavior under the interaction with the users to determine the 

possible changes that the HOBBIT should present. On the other hand, the method followed to 

design the model is the one suggested by the professor Jose Miguel Torán from Simón Bolívar 

University in his course design methodology [9]. 

The project can be divided in three different processes, but each dependent on parallel 

progress in the other. The first step followed is the concept design, where a functional analysis is 

done in order to define the main characteristics of the desired prototype. Having defined the 

functionality, the generation of ideas starts with a brainstorming and brain writing in order to 

establish possible solutions, which should go through an evaluation process. This section of the 

project has to have as result a simple model that theoretically satisfies the main objective which is 

designing a rising support.  

In order to determine if the model reaches all the objectives, studies should be done, and it is 

necessary to obtain experimental data to be able to predict the behavior of the structure using 

physical models based in Newton laws. Thus, the next big step of the project is the data collection 

that includes kinematical and dynamical studies, the first one using a motion capture system and 

finishing with displacement sensors with the purpose of getting the forces generated by the 

contact between the model, user and ground. 

Having all the data collected, its analysis allows to verify if the main idea is adaptable to the 

HOBBIT robot. A model built in OpenSim together with the inverse kinematic tool permit to get 

the angles of the joints of the user body and the force application angles. On the other hand, with 

those results a physical model written in Matlab, after a period of iterations, gives the best 

dimensions to define a safe structure. Finally, as output of the muscoskeletal software, an 

animation is obtained and allows to preview the interaction of the user with the robot. 

Finally, the prototype was tested with elderly people, measuring the forces and collecting 

qualitative data through surveys in order to validate the proposal. 
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In summary, the methodology is listed below: 

 

- Literature review regarding the Sit-to-Stand movement 

- Build a model of the Sit-to-Stand device based  in preliminary studies 

- Collect experimental data of the interaction between the model and the user with a motion 

capture system to determine the movement parameters using the inverse kinematic 

- Built a skeletal model in OpenSim to study the motion and could be used as an example 

in the biomechanics course at LTH 

- Estimate the forces generated in the Sit-to-Stand process between the mechanism and the 

human being using displacement sensors 

- Develop a computational program using MATLAB based in Newton’s laws to describe 

the behavior of the device under the forces produced by the interaction with the users 

- Determine if the mass distribution of the last model of the HOBBIT robot should be 

changed to get an stable structure when the Sit-to-Stand support is integrated 
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3 THEORETICAL FRAMEWORK 

This chapter gives the concepts and theories necessaries to develop the master thesis. 

3.1 THE HOBBIT PROJECT 

 

HOBBIT is a research project proposed by the European Commission, it was created to 

develop a socially assistive robot to help seniors at home, and the goal of the HOBBIT project is 

to create a robotic solution that will improve the wellness and life quality for old people, 

enhancing their ability to live by themselves.  The HOBBIT project develops the concept of 

mutual care; it builds a relationship between the human and the robot, meaning that both can help 

each other. The main tasks of the robot is to prevent accidents by picking objects in the floor, 

entertain the person, it can also help to stay socially connected and it is able to detect emergency 

situations. The robot provides autonomous navigation, a manipulator with a gripper and a user 

interface to allow interaction with the human. The HOBBIT project aims to offer many benefits 

to the user at a relatively low cost [6]. In Figure 4 the latest version of the HOBBIT could be seen. 

 

 

Figure 4: Latest model of the HOBBIT robot [6] 
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3.2 THE SIT-TO-STAND MOVEMENT AND PRODUCTS 

 

The Sit-to-Stand (StS) movement helps the people to stand up when they are sitting down; 

it means this process allows us to live the life as we know. One of the most common ways to 

describe the motion is dividing the process in four phases. The first one begins with the initiation 

of the movement and ends just before the buttocks are lifted from the seat of the chair (flexion-

momentum phase). The second phase or momentum transfer phase starts when the buttocks are in 

the air and finishes when ankle dorsiflexion is achieved. It is followed for the extension phase 

(number three), starting with the ankle dorsiflexion and finishing when the hips stop extending. 

The last phase is the stabilization (number four) that ends when the body is completely stable. 

This process was mainly described by Schenkman et all [10]. 

The following picture (Figure 5) shows how the movement is being performed; the Sit-to-

Stand movement includes any attempt to stand up from any object such as chair, bed, wheelchair, 

bench among others.  

 

 

 

 

Figure 5: Sit-to-Stand movement 
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3.2.1 Determinants review 

 

There are many determinants that define the movement; the most important include the 

seat height, armrests, chair type and strategy-related determinants. 

The determinants related with the strategy depend in every person. As an example there is 

the speed that increases the hip flexion, knee and ankle joint moments. The foot positioning plays 

an important role in the StS movement as well; it is known that placing your feet closer to the 

center of mass (Posterior position) is possible to reduce the maximum hip extension moment at 

least four times.  It means that using the right technique to stand up is possible to reduce the 

strength required for the movement in a considerable amount [11]. 

In order to give an overview of the determinants of the sit to stand movement, the 

following table shows the most important ones with a short description.  

 

Table 1: Determinants of the Sit-to-Stand movement [11] 

Determinant Comment 

Seat Height Lowering the seat height  makes harder the movement 

Armrests Including the armrests during the movements reduces the moments at 

knees and hip 

Speed Increasing seep of the motion increases the hop flexion 

Foot 

Positioning 

Posterior position allows to reduce the maximum hip extension moment 

at least four times 

Trunk 

Positioning 

With maximum flexion of the trunk the knee joint moments could be 

reduced by 27% compared with an erect position of the trunk at the 

beginning of the movement 

Arm Movement The arm movement changes considerable the center of mass of the body 

during the whole motion 

Knee 

Positioning 

Positioning the knee in more extension could increase the hip extension 

moments up to 77% more than using a foot-backward setup 
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3.2.2 Movement techniques and assistance 

 

When a person can manage the strength and balance required for the Sit-to-Stand 

movement, it is possible to perform it without any problem, but there are some recommendations 

that allow the people to stand up in a safer way. In order to complete a successful movement the 

following steps should be followed, firstly use any firm surface as support for arms such as 

armrests or the edge of a bed (To find stability during the action), secondly place the feet back 

(under the seat if it is possible), then move forward the trunk with the purpose of getting the nose 

above the toes (The buttocks should be placed in the edge of the seat). To finish the process 

creating a moment it is necessary to lift the body (Never lose contact with the hand support if it is 

needed). Finally balance the body to get a proper standing position [12].  

The following picture (Figure 6) shows a person just before the moment when the 

moment should be created in order to reach the standing up position. 

 

 

Figure 6: The beginning of the second phase of the Sit-to-Stand movement [12] 

 

On the other hand, there are people who are not able to manage the Sit-to-Stand 

movement by themselves, so it is necessary to have an external help to reach the goal (To stand 
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up). For this problem it is possible two find a trained staff to help the person but there are 

mechanical devices to support the movement as well.  

In the case of having a prepared personal to help, the process that should be followed is 

the next one. Following the same steps described above, but in this case the additional carer 

should, first stand beside the seat and face the same direction as the person, then bend the hips 

and knees delicately. After that, the helper should place one hand at the shoulder and the other 

one at the lower back of the person that he or she is taking care (In Figure 7) is possible to see the 

right position of the hands). Finally stay close to the person while the transfer is being performed 

using the hands to give the strength and balance required. 

 

 

 

Figure 7: The beginning of the second phase of the Sit-to-Stand movement with a carer 

[12] 

 

3.2.3 Developed products 

 

Different companies have seen the health care business as an opportunity to develop an 

economic and social project. A good example of this is Handicare, its founders were focused in 

developing alternatives to give independence to the disabled and elderly people who were not 

able to take care about themselves.  
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Finding a solution for people that are not able to stand up without an external help have 

been the main task for corporations such as EasyStand or EZ way. Different answers have been 

developed for this problem, including from only supports just for hand or legs up to lifts for the 

whole mass of the users. It is presented below several products that were built to help people to 

stand up. 

3.2.3.1 Vancare Vera II B450 

 

This transfer device, operated by batteries, was designed with the purpose of reducing 

back injuries in the nursing staff which could be affected; it is possible due to de capacity of the 

lift to rise up persons weighing up to 204Kg. The main task for the Vera II B450 is to allow the 

user to reach a standing position and hold it while is being transfer to a bed, chair or wheelchair. 

An image of the prototype can be appreciated in the following picture (Figure 8) [13]. 

 

 

Figure 8: Latest model of the 2.1.2.1 Vancare Vera II [13] 

 

It is important to know that this device is built to help people who are not able to apply 

any moment in hips, knees or force with their arms, thus a third person is required to operate the 

Vera II while the persons is being transferred. The principle used for the mechanism is to apply a 
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lift force in the back of the user, at the same time there is a support for both knees in order to 

balance the human body during the whole process. And the structure has to be stable, i.e. the 

dimensions of the device (when its arms and legs are closed) are relatively big (length 1m and 

width 0.6m), this characteristic makes the Vera II hard to move, either inside or outside a room. 

 

3.2.3.2 Handicare ReTurn7100 

 

The company Handicare has developed the ReTurn7100 concept, which is a simple 

design with supports for hands and knees, and a base for the user’s feet for facilitating the 

transfer of him or her. As the Vera II this device allows weaker people perform a safer and active 

Sit-to-Stand movement and transfer to or from wheelchair, bed or chair. The mechanism can be 

used as rehabilitation device as well. 

 

 

Figure 9: Latest model of the Handicare ReTurn7100 [14] 

 

In order to reach a standing position with the ReTunr7100, the user has to pull with the 

arms to lift the body, and the knee support offers stability to the person. It is important to say that 

this device was not designed for people who are not able to use their own muscle force to 
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complete the movement, because the user has to have at least the power enough to rise up with 

the help of the supports, but this functionality gives to the prototype a better maneuverability and 

easier transportation. It is because the mechanisms don’t need to have an engine to complete the 

process (The energy required is only from the users). In the picture above (Figure 9) the 

ReTurn7100 product is shown [14]. 

3.2.3.3 Handicare QuickMove 

 

  SystemRoMedic
TM

 is the line of Handicare dedicated to find solutions for the people 

transfer problem, in this section they have designed the QuickMove (Figure 10) that helps the 

person to stand up and move him or her to another place. This device, unlike the others above 

mentioned, forces the users to move forward their center of mass in order to reduce the strength 

required for the Sit-to-Stand movement. This prototype is aimed at people that are able to use 

their muscles but don’t have the balance and strength required to complete a safe standing up 

movement. 

 

Figure 10: Latest model of the Handicare QuickMove [15] 
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3.2.3.4 Robot Suit HAL 

 

  There are simple and more complicated solutions for the people transfer problematic, but 

clearly the robot Suit HAL is one of the most daring projects in this field. It consists of an 

exoskeleton that improves the strength and balance of the whole body of the user, allowing 

people with disabilities to transfer independently as an able-bodied person. 

Atsushi Tsukahara et all demonstrated in their study “Sit-to-Stand and Stand-to-Sit 

Transfer Support for Complete Paraplegic Patients with robot Suit HAL” how this device is able 

to make the desired movement in a safer way, improving the quality of life of the users. The 

intention with the robot is to give back the physical requirements demanded for the standing up 

movement. In Figure 11 it can be appreciated how the device allows the person to perform 

movements that require a higher strength than the one her body can afford [16]. 

 

 

Figure 11: Last model of robot Suit HAL [16] 
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3.3 MOTION CAPTURE SYSTEM 

 

The process of getting experimental information of any movement in objects, animals or 

humans and previewing that data in a digital device is called motion capture (Mocap), that is used 

with several objectives such as creating computer animations, or with medical or mechanical 

reasons [17].  

There are several motion capture methods. Often the most used is having multiples cameras 

to record a certain group of reflective “markers” (Points of interest to study in the body) usually 

placed in joints [18]. The set-up allows saving the placement coordinates of those markers 

regarding to a predefined coordinate system in a text file. This information can be interpreted, 

previewed and analyzed by different software such as Fastmocap, ARENA, Expression and 

Tracking Tools among others for animation, and OpenSim or AnyBody for biomechanical 

reasons. 

In the following image (Figure 12) a common motion capture system set-up is shown. 

 

 

Figure 12: A common motion capture system set-up [18] 
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3.4 OPENSIM 

  

OpenSim is a free software system that allows the users build models of musculoskeletal 

structures and generate dynamic simulations of movement.  The program is written in ANSI C++ 

and Java is used to develop the graphical interface. OpenSim lets the users to model, simulate, 

control and analyze the neuromusculoskeletal system. The models include the most of the 

muscles and bones of the body and it is possible to describe three-dimensional movements [19].  

OpenSim models are written with a XML language, which means that to be edited the user 

should get used to working with software such as NotePad++ or XMLMarker (XML files editors). 

This method of changing the model set up can be confusing and even hard to learn. For  this 

reason it is recommended to devote enough time in practicing the model editing process before 

stating to work with OpenSim. The main advantage of using this programming language is that it 

makes the user free to change everything he or she wants to change. 

Once the user get used to working with files .osim and .xml, is ready to start analyzing the 

human body with this software, that allows previewing data provided by the motion capture 

system described above. OpenSim lets to make coincident the experimental markers gotten in the 

laboratory with the virtual markers (Defined in the .osim file) in order to drive the model and 

generate the desired motion. 

The OpenSim’s interface is user friendly and offers several tools to analyze all kind of 

simulation. In Figure 13 a screenshot of the user interface and the tools integrated to the software 

is shown. Scale model, Inverse Kinematics and Inverse Dynamics tools allow the user to makes a 

complete mechanical study of the human body.  

For this project the main tools are scale model and inverse Kinematics, the first one has two 

ways to operate, one introducing values coming from a manual measurement process of the 

human body, or OpenSim is able to recognize automatically the distances between the 

experimental markers (With this information is possible to scale the model as well). Secondly the 

inverse Kinematics lets you determine the different solutions for the positions of the body’s parts 

during the whole simulation. This tool allows getting information of any angle between the joints 

and body sections in the motion process. 
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Figure 13: Screenshot of the interface of OpenSim showing several tools [19] 
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4 CONCEPT DESIGN 

The first step of the design is to define the technical specifications of the desired model, in 

order to determine the main necessities the device should cover. 

 

4.1 NECESSITY 

 

As described above the main necessity is to find a solution for a rising support to help 

elderly people to stand up, reducing at the same time the risk of any fall related injury. The 

prototype result of this design project should be integrated to the HOBBIT robot. 

As it could be appreciated in the theoretical framework, after the literature research, the 

best way to help people to stand up is by forcing the user to move the upper body forward in 

order to place the mass center of the whole body closer to the feet and they should be placed as 

far back as possible (even under the chair), and all this in order to reduce the moment required to 

complete the movement. On the other hand, the person needs to maintain the balance to avoid a 

fall related accident. To reduce the risk of falling, the user needs supports if it is possible for his 

or her knees, arms (As it could be appreciate in all developed products in theoretical framework) 

and shoulders (following the instructive of ACC [12]) 

 

4.2 FUNCTIONAL ANALYSIS 

 

This section is focused on identifying the different functions the model should perform; this 

is made with the purpose of dividing the main problem in smaller ones in order to facilitate the 

design process. The methodology used for this section starts firstly with a black box diagram to 

define the inputs and outputs of the process, secondly a diagram of functions which splits the 

tasks, and finally a process diagram to determine the steps the final design should follow with the 

aim of reaching the main objective. 
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4.2.1 The black box 

 

This tool is used to describe and identify the interaction of the device with the 

environment (Inputs and outputs of the process) in order to help to define the main functions the 

prototype should include. Figure 14 shows the black box diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2 Diagram of functions 

 

In the following diagram (Figure 15) it is possible to find the different functions the 

dispositive should perform in order to reach the objective. 

 

 

Figure 15: Diagram of functions 

Help people to stand up 

Transfer the user 

• Make the Sit-to-Stand 
movement safer and easier 

Keep user balance 

• Offer the patient a support 
to stabilize her or him 
body  

Do not lose stability of the 
structure 

• Avoid any risk of the 
device overturning 
 

Main task: 

Help people to stand up 

Signal input 

Desire to stand up 

Energy input 

Electric energy 

(Batteries), 

Mechanical energy 

(User) 

Elements input 

Device, User 

Signal output 

Indicator that the objective 

has been reached 

Elements output 

Device, User 

 Environment restrictions 

Objects around the device 

Energy output 

Mechanical energy  

Figure 14: Black Box diagram to define inputs and outputs of the process the device 

should complete 
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4.2.3 Process Diagram 

 

In Figure 16 the suggested process that the model should follow to finish a safer and 

easier Sit-to-Stand movement is described. 

 

 

 

Figure 16: Diagram of the process required to reach a standing up position 

4.3 TECHNICAL SPECIFICATIONS 

In this section the specifications that should be followed during the design are listed. 

 



 

25 
 

4.3.1 Functional characteristics 

 

- It could work with or without electricity 

- It should support the forces generated in the interactions with humans 

- It has to allow the user to perform an easier and safer Sit-to-Stand movement 

- The stability of the device is the main risk factor to consider 

- The device should offer supports of arms, knees or back/shoulders 

 

4.3.2 Environmental conditions 

 

- The device will work in an indoor home environment 

- It should be completely wireless 

- It has to be able to adapt between chairs, bed or any furniture 

- To avoid any obstacle such as carpets or objects in the floor should not be a major 

problem  

 

4.3.3 User characteristics 

 

- The design is mainly intended to deal with elderly people 

- The user may have physical disabilities 

 

 

 

4.3.4 Interface 

 

- They device will be integrated to the HOBBIT robot, being this task the main objective of 

the project 
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4.4 GENERATION OF IDEAS 

 

For the process of generation of ideas the brain storming and brain writing techniques were 

applied with the purpose of getting a design that satisfies the objectives. The following figures 

show the best two alternatives after a long design process. Firstly, the designs were not fully 

defined, in this sections only basic sketches were presented without deep details. 

 

4.4.1 First option 

 

 

Figure 17: Option 1 

This design was the first idea for this project. It is based in studies of many products 

already designed. It consists in three different supports, the first one for fixing both legs with the 

purpose to stabilize the lower body, while the other two are handles which the user is able to pull, 

thus the moment required in the hip and knees would decrease considerably. This model does not 

work with a natural movement of the human body, it is due to the patient’s restriction in arms and 
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legs, consequently this idea would require and exhaustive analysis in order to study the feasibility 

to apply it in the HOBBIT robot. A picture of the first option is shown above (Figure 17). 

 

4.4.2 Second option 

 

 

 

Figure 18: Option 2 

 

 

The design shown above (Figure 18) is simpler and works with a natural movement of the 

body, the user places one leg in the lower support, which gives balance to the lower part of the 

body. The aim of the upper support is to drive the user to the right position to start the Sit-to-

Stand movement (upper body placed forward with the nose just above feet), at the same time the 

person can pull or push it in order to reduce the strength required by leg muscles, and improve the 



 

28 
 

balance. In order to reduce the torque in hips the user should be placed in the edge of the seat 

(explained in theoretical framework, in movement techniques section). 

On the other hand, this model follows Germund’s design, the difference appears in the 

lower support, which in this case should be able to tilt and move vertically in order to allow the 

user to have his or her knee in contact with it and place his or her feet further back. 

 Finally, it is necessary to decide the side where the supports should be placed (front or 

lateral side of the robot), this is studied in the following chapters of the project. 

 

4.5 EVALUATING PROCESS 

 

The models presented above were only ideals designs, the following step required to decide 

the best option to move forward. In order to help with the decision a matrix was made assigning 

values to different parameters, the result is shown below in Table 2.  

Table 2: Decision matrix 

Criterion (100Pts) Option 1 Option 2 

Technical feasibility (Yes or No) Yes Yes 

Reaches the objective (30pts) 30 20 

Manufacturing feasibility (10pts) 5 8 

Maintainability (10pts) 5 8 

Usability (20pts) 20 15 

Integrable to HOBBIT (30pts) 15 30 

Total 75 81 

 

In Table 2 the best options is the number 2, because the design is simpler and theoretically 

should reach the objective. This idea needs to be tested in order to define all its physical 

parameters. The option 2 will be used as a base for the following steps to reach the final design.  

The preliminary positions used for the supports in the prototype are the suggested by 

Germund Larsson in the previous master thesis for an older version of the HOBBIT robot [20]. 
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His proposal does not suggest a tilt angle for the knee support but the dimensions of it will work 

for the first studies of this new prototype. The positions of the supports are shown in Figure 19. 

 

 

Figure 19: Germund Larsson's proposal for the distances of the supports [20] 
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5 DATA COLLECTION 

This chapter describes the method followed to collect the information required for the 

analysis that allows reaching proper conclusions regarding the design. It is possible to split the 

data collection in three parts, the laboratory set-up manufacturing, the forces measurement and 

the motion capture system. For this process people of different ages were used in order to 

compare the different results. 

 

5.1 LABORATORY SET-UP 

 

 

The main goal of the project is to design a rising support. In the last chapter a preliminary 

model was defined. In order to move forward it is necessary to develop a mechanical analysis that 

determines the dimensions and the feasibility of the design. Any physical model should be as 

similar to the reality as possible. For that reason with the purpose of studying the dynamical and 

kinematical behavior of the possible solution, a model was built including displacement and 

movement sensors to get useful information. 

 

The alternative chosen consists in two supports, one for the knee and one handle, thus the 

model built should include both. A wooden box (made in a previous thesis work by Germund 

Larsson) was used. It has two supports and allows changing the position of them. Additionally 

sensors to estimate the load were added. The result can be appreciated in the following picture 

(Figure 20). 
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Figure 20: Measurement prototype 

 

5.2 FORCE MEASUREMENT 

 

This section implied one of the hardest parts of the project, because adding loads sensors to 

the supports required to design a smart solution to estimate real values of the force for the whole 

interaction between the user and the model.  
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The first step was to define the kind of sensors that were going to be added. After a 

research process, the displacement sensors were chosen to be integrated to the model. LTH 

provided an older prototype that included this kind of measuring device (Figure 21).  

 

 

 

 

Figure 21: Older device with the measuring sensors included 

 

In Figure 21 the displacement sensors could be observed. They are the small rings placed 

between the black seat and the aluminum bars.  
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Having the sensors the problem was to estimate the load, thus a short model was done to 

demonstrate the relation between displacement and load for this case. In Figure 22 a free body 

diagram (DCL) of the ring to help with the understanding regarding the measuring device is 

shown. 

 

 

 

 

 

 

 

 

 

 

 

 

The sensors output is a displacement, i.e. the force should be estimated. Appling Hook’s 

law is possible to calculate the loads (equation 1), but a preliminary calculations should be done 

in order to calibrate the system. On the other hand, it is necessary to mention that Labview 

software was used to get the outputs coming from the sensors. 

 

                                                (1) 

Where: 

- F: Force applied to the sensor 

- K: Linear coefficient 

-   : Displacement difference 

F 

F 

F/2 

F/2 

F/2 

F/2 

F/2 

F/2 

F/2 

F/2 

Sensor Sensor 

Half ring 

Half ring 

Figure 22: Displacement sensors model 
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Equation 1 shows the linear behavior of the force regarding the displacement; this theory was 

used to calculate the forces. The values of the “K” coefficient were obtained and are reflected in 

Table 3. In order to get those values, every sensor was tested with different known loads, then 

with the data. A linear estimation was made and the curve fitting resulted almost perfect with a 

value of R
2
 equal to 0.99 for each measuring device. 

 

Table 3: K values for displacement sensors 

Ring K (Kg/Volts) 

Green and Yellow 3.45E5 

Green 3.90E5 

Yellow 3.76E5 

 

In Table 3 the unit for the K coefficient is Kg/Volts, it is due to the output coming from 

the Labview software is a voltage spike that is proportional to the displacement. How the desired 

parameter is force, the calibration was done directly with loads values. It is possible assuming the 

forces applied are below the yield strength of the sensor’s material (aluminum). 

After some tests the data was diffused, thus it was necessary to apply a virtual filter in 

order to get interpretable information. For the filtering process the command “butter” was used in 

Matlab software. In Figure 23 it is possible to observe how the noise decreases in a signal that 

should be flat (should have the same value along the time), the blue curve represents the data 

before using the virtual filer and the red line after. 

 

 

Figure 23: Noise reduction in the sensor's output 
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 Note: The sensor reports positive values for compression and negative values for tension. 

Having defined the method to get the force values with the displacement sensors, the 

problem was how to add it to the supports in order to find the best results. In Figure 24 a CAD 

model of the solution for the handle is shown. 

 

 

Figure 24: Handle with sensors integrated 

  

This distribution was decided because the sensors can only measure the displacement in only 

one direction. Thus if only one bar is attached to the model, but can turn around its axis, all the 

force applied in the other bar (handle) is in the direction the sensors can measure. Figure 25 helps 

to explain it. It is true that the results could be affected because of degree of freedom (the handle 

can turn) but is a better approximation than fixing the support and getting only one component of 

the total force. In Figure 20 it is possible to appreciate the handle already manufactured and 

integrated to the model. 
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The solution for the knee support was much simpler, because the force was normal to the 

contact with the user’s leg and the tilt angle is fixed during the movement. In Figure 26 it is 

possible to observe the result. 

 

 

Figure 26: Knee support (the knee pushes on the flat surface of the triangular part, which 

needs to be modified for the final product) 

 

 

Measuring direction 

Force Force 

Figure 25: Measuring direction 
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5.3 MOTION CAPTURE SYSTEM 

 

With the objective of recording the movement information the K600 Nikon Metrology 

motion capture system (Figure 27) was used in the robot laboratory at LTH. In Figure 28 the 

marker distribution is shown. The data was interpreted in the OpenSim software and the analysis 

is described in the following chapter. 

 

Figure 27: Motion capture system 
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Figure 28: Laboratory set-up 

5.4 SURVEYS 

 

For every person who tried the model, 5 males and 2 females between 21 and 90 years, 

several questions were asked to get a feedback and evaluate the feasibility of the project. Not for 

all the cases a defined survey was used, instead a little talk was established in order to define the 

user perception.   The following questions were used as a base for  most of the tests.  

 

 

- Do you think it is necessary to have support to avoid the risk of falling when you are 

standing up? (Answer with Yes, No and comments) 

 

- If you have a support such as the model you used before, would you use it frequently? 

(Answer with Yes, No and comments) 
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- Do you think the device helps you to stand up? (Answer with Yes, No and comments) 

 

- Was it comfortable to use the handle for pulling? (Answer with Yes, No and comments)  

 

- Was it comfortable to use the handle for pushing? (Answer with Yes, No and comments)  

 

- General comments (Such as general opinion or what would you change) 

 

 

 

 

5.5 DATA COLLECTION PROTOCOL 

 

Having all the procedure defined, the measurement process started. In Figure 28 the 

laboratory set-up is shown. For every laboratory session the methodology followed was as similar 

as possible. It started by attaching the markers to the user’s body and positioning the motion 

capture system facing a lateral of the wooden model. Then, the Sit-to-Stand movement had to 

start at the same time as the motion data and forces recording. Finally a short talk regarding the 

opinion of the volunteer was established. In several cases a quick survey was applied. 
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6 MODELS AND VALIDATION PROCESS 

 

6.1 OPENSIM MODEL 

 

In order to study the kinematic of the tests, a skeletal model of the users arm was built in 

OpenSim software. In this section of the thesis a description of how the model was created will 

be given with the purpose of facilitating the understanding for the model editing with this 

computer program. This explanation should facilitate a more complicated model creation for 

future researches in this field. 

 

6.1.1 Importing the motion data 

 

The output coming from the motion capture system is a Matlab file that has to be 

imported into an OpenSim file (.trc). This file consists of a special distribution of the data in a 

text file, which is easy to edit using the Microsoft Excel editor. Figure 29 shows an example of 

the format required, where it is necessary to define the marker name, camera recording frequency, 

numbers of frames, units and coordinate values. 

 

Figure 29: .trc file editing 
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Having the .trc file fully defined, OpenSim allows to preview the data, the following 

picture (Figure 30) is a screenshot of the preview mode. It is possible to visualize the position of 

the markers in the space. 

 

 

 

 

 

 

 

 

 

 

 

6.1.2 Creating the model 

 

Creating an OpenSim model could result confusing, because it does not have a user 

friendly interface, the user has to create a XML file defining all the characteristics of it. A model 

file should be called .osim at the end of the name.  In Figure 31 the structure of a model file in 

OpenSim could be seen. 

 

Figure 30: The markers distribution at the laboratory is shown to the 

left and the markers OpenSim preview to the right 
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Figure 31: View of the editing process of an OpenSim model 

 

For this project the only sections used were the “BodySet” and “MarkerSet”, where all the 

geometry of the model and the position of the markers were defined. 

 

6.1.3 Scaling and inverse Kinematic tools 

 

For this project the scaling tool was used in the automatic mode. OpenSim recognizes the 

markers and adjusts the distances in order to reduce the error between the real and the virtual 

markers as much as possibble. As the model editing it should be defined in an XML file, this tool 

needs the .trc as input file and the model with the virtual markers included. 

On the other hand, the kinematic tool requires to define a third XML file which should 

define the relation between the .trc and the virtual markers. As an output a .mot file is obtained. It 

drives the created model and an animation could be seen in the main screen, and it is possible to 

plot the information of the angles/positions of the joint/bodies along the time. 
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6.2 STABILITY MODEL AND SPATIAL DISTRIBUTION 

 

After defining the kinematic parameter, a static analysis was developed to study the balance 

of the HOBBIT. The model below (Figure 32) is based in the Newton equations to describe the 

behavior of the robot structure under the loads applied by the humans when they are interacting 

with the device.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The meanings of the variables are defined in the nomenclature section at the 

beginning of this thesis. 

 

 

Figure 32: Physical model to study the balance of the HOBBIT 
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Figure 33: Position of the wheels in the base plate 

Newton’s equations: 

 

 

∑            ( )        ( )                                          (2) 

∑          ( )        ( )              = 0                                    (3) 

∑                          ( )            ( )            ( )        

          ( )                                                                                                   (4) 

∑    (         ( ))               ( )            ( )                                   (5) 

∑              ( )        (         ( ))              ( )                     (6) 

 

 

The objective is to determine if the center of mass is placed in the right position to find 

the robot stable. If it is not, it is necessary to find the coordinates (            ) that allow the 

structure to be in balance even when the forces are maximal. 

In Figure 33 the position of the contact points with the ground are defined. 
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The radius of the two bigger wheels is 10cm and for caster wheel (small one) is 3.5cm. 

The critical points of the structure are given when one of the normal forces (N1, N2 or 

N3) reaches the value of 0 N, this means that the robot has lost contact with the floor in the wheel 

that the ground force is applied.  

The aim for the model is to determine if the robot is stable with the current coordinates for 

the center of mass for the range of force applied. If the position for the center of mass doesn’t 

allow to have a wide security factor before the structure overturns, it is necessary to change to 

change the position of it to find the HOBBIT stable. 

In order to solve the equation system a Matlab code was programmed, where the normal 

forces N1, N2, N3, the friction forces Fr1, Fr2, Fr3 and the hand support force Fh were unknown 

variables. It was studied in two different cases where N2=0N or N3=0N (critical cases). For each 

case the equation system was complete determinate, 5 unknown variables with 5 equations (One 

normal force and one friction force are zero because in the critical point there are only two 

contacts with the ground).  

The supports were placed in the front of the robot in order to have the two big wheels as 

supports in the movement plane. 

 

 

 

In general the function programmed in Matlab has as inputs: 

 Xcm, Ycm and Zcm 

 Xc1, Yc1 and Zc1 

 Xc2, Yc2 and Zc2 

 d1,d2 and d3 

 W 

 Θ 

 Fk 



 

46 
 

 α 

 β 

And outputs: 

 Fh is the force applied in the hand support 

 N1, N2 and N3: Normal forces generated in the contact points with the ground 

 Fr1, Fr2 and Fr3: Friction forces in Z direction 

The equation system is completely linear. Thus by changing only one input while the others 

are static, it is possible to study the dependence of the model regarding the parameter is being 

changed. After a long period of iterations the best combination of parameters (with the best 

stability) was found. 

The decision of placing the supports in the front of the HOBBIT was taken because the 

distance between the bigger wheels is longer than the distance between the caster wheel and the 

axis of the other ones (d2). But another option should be study in order to increase the 

opportunity of finding the best solution. In Figure 34 a model with the supports placed in one side 

of the robot is shown. 
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Figure 34: Physical model to study the balance of the HOBBIT with the supports placed in 

the lateral side 

 

This model can be study with the following equations: 

 

∑            ( )        ( )                                       (7) 

∑          ( )        ( )          = 0                                    (8) 

∑                 ( )            ( )            ( )                  ( )  

  

 
    

  

 
                                                                                                         (9) 

∑              ( )            ( )                                       (10) 

∑              ( )                  ( )                        (11) 
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7 RESULTS AND ANALYSIS 

The laboratory results, the respective analysis and the final proposal are presented in this 

chapter which is divided into five parts: the results from the laboratory, kinematic study, the 

stability study, elderly people tests and the final design summary.  

7.1 LABORATORY RESULTS 

 

The laboratory allowed to obtain the force and the position of the markers along the time. 

For that reason this section is divided in force values and coordinate position. 

In general, for every test the forces and the coordinates were measured while the user was 

pushing and then pulling the handle.  For the knee support, it is possible to apply load in only one 

direction, thus for both cases the user was pushing with his or her leg.  

The effect of the angle “β” was studied during the calibration process, and it was concluded 

that it does not influence in the final results. This angle only forces the user to place the contact 

leg further back (better for the Sit-to-Stand movement). For this reason, during the measurement 

process the angle “β” was fixed between 35º-45º (this range was comfortable for all the 

volunteers)  

 

7.1.1 Force values 

 

Regarding the forces measurement, the data was collected in a text file. In order to 

interpret the information a Matlab file was programmed as it can be seen below.  The code is 

explained carefully with the purpose of giving an idea of the calculation process. 

Note: The green sentences are comment in the code to explain the purpose of the 

command. 
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Xo=[]; %Reference values measured directly from the sensors when the force applied is zero. 

Colunm one for the values of the sensor at the knee support and the others for the handle sensor 

Yo=[0   0   0]; %Reference values of the forces (0N) 

S=[]; %K value calculated for each sensor 

X=[];%Values measured directly from the sensors 

[B,A]=butter(2,0.02,'low'); %Filtering process 

Y=filtfilt(B,A,X); %Filtering process 

a=(1:length(X))*(1/1000); %The sample frequency used was 1000Hz 

Yn=10*[ (S(1)*(Y(:,1)-Xo(1)))+Yo(1)   (S(2)*(Y(:,2)-Xo(2)))+Yo(2)    (S(3)*(Y(:,3)-

Xo(3)))+Yo(3) ]; %Force calculation expressed in Newton 

Yn=[Yn(:,1) Yn(:,2)+Yn(:,2)]; %Here the column one is added to the third one in order to 

calculate the total handle force 

hold on 

plot(a,Yn(:,1)) %Plot commands 

plot(a,Yn(:,2),'r') 

 

 

 

Figure 35: Example of the results of the force measuring process (pushing handle) 
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After applying the code to the data coming from the sensors, the forces during the 

interaction of the user with the prototype were calculated and plotted. Figure 35 shows an 

example of the Matlab output. It is important to mention that the results did not depend on the 

mass or the height of the volunteer, but the results were always accurate for the same user. The 

main conclusion was that the force depends on the user’s Sit-to-Stand technique, if he or she 

follows the instruction described for a safer movement (Theoretical framework, movement 

techniques). 

For this section the main goal was to determine the maximal values the user could apply 

to the prototype. The critical forces were obtained before explaining the volunteer how to 

perform a right Sit-to-Stand movement. The results shown below correspond to the worst cases. 

The subject (a man) mass is 83Kg and height of 1.82m. 

 

 

Figure 36: Force applied to the supports, worst case (pulling) 
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Figure 37: Force applied to the supports, worst case (pushing) 

 

Figure 36 and Figure 37 show the maximal forces obtained in the laboratory for the two 

different cases, pushing or pulling. For puling case the force measured has negative values, it is 

because the sensors are in tension (the positive value of deformation was defined for 

compression). As it could be seen in the figures, the load applied for pushing are lower, but in the 

same direction. Furthermore, the first case presents higher values for all the volunteers and the 

forces are applied in different directions. 

On the other hand, for the pulling case it was necessary to estimate the relation between 

the force applied in the knee support and the handle. The results of this case for different users 

showed the same behavior and changes only in the magnitude. 
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 In  

Figure 38 the values of the forces for different users when they are pulling can be seen. The 

magnitude of the loads for both supports is almost the same, it is due to the user tries to balance 

his or her body as possible while the Sit-to-Stand movement. This behavior was exactly the same 

for all the measurement. Consequently, it is possible to affirm that the ratio of both forces is one 

to one. 

Resuming, Table 4 shows the results of the maximal forces determined in this section 

used for the following calculations. These values were obtained with the worst cases but a 

security factor of 1.5 was used to decrease the risk of failure for the final proposal. 

 

Table 4: Maximal values of the force 

 Pulling case Pushing case 

Parameter Fk [N] Fh [N] Fk [N] Fh [N] 

Minimal value 0 0 0 0 

Maximal value 150 150 100 100 

Maximal value (with security factor) 225 225 150 150 

Worst case 225 225 150 150 

 

Figure 38: Results of the force for the pulling case for two different users 
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7.1.2 Coordinate position 

 

At the same time as the forces were recorded, the motion capture system saved the 

position of each marker every millisecond, which allowed to import the collected data into 

OpenSim to start the kinematic study (this process is explained in the importing the motion data 

section). 

 

7.2 KINEMATIC STUDY 

 

With the coordinate position data along the time already defined in a .trc file, the next step 

to study the kinematics was the model building process. The geometry files for the user bones 

were downloaded from the OpenSim web page [6], the handle was created in SolidWorks and 

imported to OpenSim software using binary files. In Figure 39 a preview of the model could be 

seen, the red dots represent the virtual markers. 
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Figure 39: Preview of the OpenSim model with the handle 

 

 

Having defined the model and the data already imported to OpenSim, the following step 

was to program the XML files in order to apply the scale and inverse kinematic tools as it was 

explained in the models and validation chapter. Figure 40 shows a sequence an animation of the 

results obtained after applying these tools.  
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The main objective of the OpenSim model was to determine the application force angle in 

the handle (θ). As the support for the hand is allowed to rotate around the pivot point, the desired 

angle is the one defined from the handle to the horizontal (Figure 41), it is because the handle 

will rotate according the direction the user apply the force. 

On the other hand, another important parameter determined was the elbow flexion angle (δ) 

that determines the flexibility the user should have to be able to perform a natural Sit-to-Stand 

movement; this angle is shown in Figure 41. 

 

 

 

 

Figure 40: Animation resulted from the inverse kinematic tool 
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 The values of the angles were calculated with OpenSim for different users. For this report 

the results are shown for the best simulation (the shortest distance between virtual and real 

markers). In the following graphs θ and δ should be seen for both cases, pushing and pulling. 

θ 
δ 

Figure 41: Elbow flexion and handle angles 
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Figure 42: θ angle Vs time for pushing and pulling case 

 

Figure 43: δ angle Vs time for pushing and pulling case 

From Figure 42 it is possible to conclude that the θ angle is higher for the pushing method 

in any case, the critical values observed in all the laboratory tests are shown in Table 5, the values 

for the elbow flexion can be found as well. 
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Table 5: Critical values for δ and θ angles 

 Pushing Pulling 

Max θ [º] 70 55 

Min θ [º] 55 45 

Max δ [º] 45 60 

Min δ [º] 20 20 

 

  Finally, the range determined the user should be able to move is between 20 º up to 60 º 

for the elbow flexion, in order to perform a naturally and comfortable Sit-to-Stand movement 

with the help of the prototype. 

7.3 STABILITY STUDY 

 

Having the forces and the kinematics defined, all the parameters required to start the stability 

analysis were defined. The Matlab model (the code can be found in the appendix) solves the 

equation system applying the Gauss-Jordan method (equations 2, 3, 4, 5, 6). The program could 

be interpreted as the following function: 

 

[Fh, N1, N2, N3, Fr1, Fr2, Fr3]=function(Xcm, Ycm, Zcm, Xc1, Yc1, Zc1, Xc2, Yc2, Zc2, d1,d2, d3, W, Θ, α, β, Fk) 

 

 Before starting the simulations, the cases of study were defined. As the model of the 

movement was stablished in only two dimensions, the two critical possibilities are presented 

when: first N2 reaches 0N or second when N3 reaches 0N, it means the points are losing contact 

with ground. Figure 44 helps with the understanding of these two cases. There are no forces that 

could implied a third case when the point 1 (p1) loses the contact with the ground. 
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The defined protocol was to fix all the inputs with logical values, and then start changings 

individual parameters. In order to interpret the results and the behavior of the structure, the 

Matlab code solved the equation system for different values of Fk (from 0N up to 360N) for fixed 

values of Xcm, Ycm, Zcm, Xc1, Yc1, Zc1, Xc2, Yc2, Zc2, d1,d2, d3, W, Θ, α, β. An example of 

the output coming from the program is shown in Figure 45 

 

 

 

Figure 44: DCL of the physical model of the proposal 
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Figure 45: Example of the output of the Matlab code 

 

In Figure 45, the red curve represents the maximal values of Fh before turning around the 

contact point 2 when a specific Fk is applied, the positive values indicate that in order to reach 

those loads the user has to “pull” the handle. Furthermore, the blue curve shows the opposite case, 

the maximal value for the pushing force in the handle. 

The optimization process consisted in finding the best configuration where the area between 

the two curves presented in Figure 45 is maximal. The final solution has to be logical according 

the physical position of the supports. This process was composed by several iterations, an 

example of the optimization of one parameter is described with the purpose of showing the 

followed methodology. 

The example below corresponds to the optimization process for the β angle. It started fixing 

Xcm, Ycm, Zcm, Xc1, Yc1, Zc1, Xc2, Yc2, Zc2, d1,d2, d3, W, Θ, α in standard values. Then the 

process started by changing the values of the tilt angle to see the behavior showed by the 

structure. Figure 46 shows the results for this process. 
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Figure 46: Optimization process for the β angle 

 

The optimization process for the β angle demonstrated that increasing this angles the structure 

is safer. It is in line with the reality, as bigger β is, the horizontal component of Fk is lower, and 

this component is one of the main responsible for the rotation around the X direction. 

The angle θ depends on the user movement, and it was determined in the optimization 

process that as low it is, the structure is less stable. For that reason the angle was fixed in 40° for 

the calculations. It is less than the worst case registered at the laboratory. On the other hand, the 

angle used for α was 0° (found as the worst case). 

 Applying this methodology for every parameter is was possible to optimize the structure 

at the most. The results for this process are shown in Table 6 (for the coordinate system defined 

in Figure 44). In Figure 47 the safety area can be seen. 
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Table 6: Proposal for the physical distances of the support and center of mass 

 
Coordinates 

 
Z [mm] Y [mm] X [mm] 

Hand Support 200 500 270 up to 350 

Knee Support 150 350 to 450 270 

Center of Mass 20 
As low as 

possible 
80 up to 100 

 

 

 

 

 

 

Figure 47: Safety area for the final proposal 
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Figure 47 shows the critical forces for the final proposal. As it can be seen, for the pushing 

case the structure has a security factor of 2, it means than the maximal forces found in the 

laboratory sessions are lower than a half of the critical forces for this structure. However, for this 

case of study the friction forces are assumed big enough to avoid any displacement, it is 

recommended for future studies to determine the friction factor between the wheels and the 

surfaces in order to improve the model. 

On the other hand, for the pulling case the structure can afford up to 150N (the maximal force 

found in the laboratory) in the handle support when there is no force applied in the knee support. 

But this limit increase when the leg is in contact with the support as it could be seen in Figure 47 

(because this force is opposed to the force applied in the handle). So long as the user does not 

lose contact with the knee support the structure will have a wide security factor for this case. For 

that reason the final design should include signals to avoid the user to start the movement if his or 

her knee is not in contact with the device.  

Finally, placing the supports in the front of the HOBBIT, the best solution was found. It was 

hard to find a solution with the alternative model (with supports in the lateral side), because big 

changes in the center of mass coordinates should be done in order to have a stable structure.   

 

7.4 ELDERLY PEOPLE TESTS  

 

With the purpose of confirming the credibility of the project, the prototype was tested with 

4 elderly people between 83 and 90 years old. The results of the forces never reached the values 

found during the laboratory tests with younger people, this can happen due to the elderly people 

performed the movement carefully and slower. 

After applying the surveys, it was found that the shortest users (155cm and 163cm) did 

not need any help to stand up, and the expressed they would not use a Sit-to-Stand device. 

However, they found the prototype comfortable specifically using the pulling method. The 

pushing method did not satisfied all the users. 
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On the other hand, for the other (185cm for both) the results were complete different, 

especially for one of the volunteers who has problem in hips and knees. They were pleasured 

with the device, it was found useful, comfortable and necessary. 

Finally, with these tests it is possible to conclude that this device satisfies the necessities, 

and could simplify the lifestyle of the users with a lack of balance or strength to perform a safe 

Sit-to-Stand movement. 

 

 

7.5 FINAL DESIGN SUMMARY 

 

In resume, the final design consists in two supports, one handle and one knee support as it 

was described in option 2 (Figure 18). After the optimization process the distances for the 

supports and the center of mass where found and are shown in Table 6. The β angle should be 

fixed in 40º and the knee support should be able to move in the vertical direction in order to find 

the best position for the user. During the tests, the users did not find significant differences in 

using the right side of the body or the left one to perform the movement. For that reason in Figure 

48 a proposal is shown with the supports placed in order the user would use the right hand and 

right knee, unlike the models showed before. It means that the supports could be manufacture in 

both directions, it is only necessary to consider the coordinate system defined.  

Note: The distances proposal are referred to the coordinate system defined in Figure 44, 

and the center of mass of the HOBBIT includes the supports. 
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Figure 48: Final proposal integrated to the HOBBIT 

 

 Finally, an animation with the final CAD model was performed in OpenSim in order to 

visualize the interaction of the user’s arm and the HOBBIT. A sequence of pictures can be seen 

in Figure 49. This simulation allows to conclude that the screen of the robot should be place at 

the same level than the front face of the robot or behind, in that way it will not interfere with the 

movement. 
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Figure 49: Pictures sequence of the interaction of the user with the HOBBIT and 

the final proposal 
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8 CONCLUSION 

 

The main objective of this master thesis work was reached successfully. A rise support was 

designed and tested and the verification process demonstrated the feasibility of including this 

design in the HOBBIT project with a security factor of 1.5. 

The model of the rise-up device improves the stability of the user during the Sit-to Stand 

movement, keeping the balance of the HOBBIT robot. The position of the supports forces the 

user to a good initial position for the movement, reducing the risk, of falling and the torque 

required in hips and knees. 

This design proposal should be possible to integrate to the latest version of the robot 

HOBBIT but a change of the position of the screen on the top of the robot should be considered, 

in order to allow the user to reach a standing position with a natural movement (The current 

position of the screen could crash with user’s shoulder). 

The following information is suggested for future researches: 

 

 Study the friction factor between the wheels and different surfaces in order to improve the 

stability model proposed in this project. 

 Develop security signals in order to notify the user that he or she is in a good position to 

perform the movement. 

 Design a mechanics to allow the knee support a vertical displacement. 

 Built a full body OpenSim model in order to apply the inverse dynamic to study the 

impact of the proposal in the muscle forces. 
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9 APPENDIX 

 

The following Matlab code was used to generate the results of the 7.3 section. 

 

N=360; %Maximal value for Fk [N] 
  
%Define all the parameter of the robot in N and m 
  
alpha=180*pi/180; 
beta=40*pi/180; 
tita=30*pi/180; 
d1=0.024; 
d2=0.245; 
d3=0.153; 
W=800; 
f=d2-(d1*cos(alpha)); 
Xc1=0.215; 
Yc1=0.4; 
Zc1=0.2; 
Xc2=0.215; 
Yc2=0.5; 
Zc2=0.2; 
Zcm=0.0; 
Xcm=0.12; 
  
max=(N/20); 
x=0:20:N; 
y=zeros(2,max); 
  
for l=2:3  %   2 when N2=0 or 3 when N3=0 
D=l; 
if D~=2 && D~=3 
    disp('error, D is diferent than 2 or 3') 
    break 
end 
  
for i=1:20:N+1 
     
    Fk=i; 
    b=Fk*sin(beta); 
    c=Fk*cos(beta); 
b=[b+W; c; Yc1*c+Zcm*W-Zc1*b; -Xc1*c; Xc1*b-Xcm*W]; 
if abs(D-3)<=0.001 
    A=[1 1 0 0 sin(tita); 0 0 1 1 cos(tita); 0 -d3 0 0 (Yc2*cos(tita)+Zc2*cos(tita)); 0 0 f 0 -Xc2*cos(tita); -f 0 0 0 

Xc2*sin(tita)]; 
    o=2; 
else 
    A=[1 1 0 0 sin(tita); 0 0 1 1 cos(tita); 0 d3 0 0 (Yc2*cos(tita)+Zc2*cos(tita)); 0 0 f 0 -Xc2*cos(tita); -f 0 0 0 

Xc2*sin(tita)]; 
    o=3; 
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end 
     
X=A\b; 
fprintf('N1 = %4.1f N%1.0f = %4.1f Fr1 = %4.1f fR%1.0f = %4.1f Fh = %4.1f \n',X(1),o,X(2),X(3),o,X(4),X(5)) 
j=1+(i-1)/20; 
y(l-1,j)=X(5); 
end 
end 
hold on 
xlabel('Fk/N') 
ylabel('Fh/N') 
plot(x,y(1,:)) 
plot(x,y(2,:),'r') 
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