30,890 research outputs found

    Functional output-controllability of time-invariant singular linear systems

    Get PDF
    In the space of finite-dimensional singular linear continuous-time-invariant systems described in the form \begin{equation}\label{eq1}\left . \begin{array}{rl} E \dot x(t)&= Ax(t)+Bu(t)\\ y(t)&=Cx(t)\end{array}{\kern-1mm}\right \}\end{equation} where E,A∈M=Mn(C)E,A\in M=M_{n}(\mathbb{C}), B∈Mn×m(C)B\in M_{n\times m}(\mathbb{C}), C∈Mp×n(C)C\in M_{p\times n}(\mathbb{C}), functional output-controllability character is considered. A simple test based in the computation of the rank of a certain constant matrix that can be associated to the system is presentedPeer ReviewedPostprint (published version

    Control refinement for discrete-time descriptor systems: a behavioural approach via simulation relations

    Full text link
    The analysis of industrial processes, modelled as descriptor systems, is often computationally hard due to the presence of both algebraic couplings and difference equations of high order. In this paper, we introduce a control refinement notion for these descriptor systems that enables analysis and control design over related reduced-order systems. Utilising the behavioural framework, we extend upon the standard hierarchical control refinement for ordinary systems and allow for algebraic couplings inherent to descriptor systems.Comment: 8 pages, 3 figure

    Stability of singular jump-linear systems with a large state space : a two-time-scale approach

    Get PDF
    This paper considers singular systems that involve both continuous dynamics and discrete events with the coefficients being modulated by a continuous-time Markov chain. The underlying systems have two distinct characteristics. First, the systems are singular, that is, characterized by a singular coefficient matrix. Second, the Markov chain of the modulating force has a large state space. We focus on stability of such hybrid singular systems. To carry out the analysis, we use a two-time-scale formulation, which is based on the rationale that, in a large-scale system, not all components or subsystems change at the same speed. To highlight the different rates of variation, we introduce a small parameter Δ>0. Under suitable conditions, the system has a limit. We then use a perturbed Lyapunov function argument to show that if the limit system is stable then so is the original system in a suitable sense for Δ small enough. This result presents a perspective on reduction of complexity from a stability point of view

    Robust normalization and guaranteed cost control for a class of uncertain singular Markovian jump systems via hybrid impulsive control

    Get PDF
    This paper investigates the problem of robust normalization and guaranteed cost control for a class of uncertain singular Markovian jump systems. The uncertainties exhibit in both system matrices and transition rate matrix of the Markovian chain. A new impulsive and proportional-derivative control strategy is presented, where the derivative gain is to make the closed-loop system of the singular plant to be a normal one, and the impulsive control part is to make the value of the Lyapunov function does not increase at each time instant of the Markovian switching. A linearization approach via congruence transformations is proposed to solve the controller design problem. The cost function is minimized via solving an optimization problem under the designed control scheme. Finally, three examples (two numerical examples and an RC pulse divider circuit example) are provided to illustrate the effectiveness and applicability of the proposed methods

    Preview Tracking Control for Continuous-Time Singular Interconnected Systems

    Get PDF
    This paper proposes and investigates a problem of preview tracking control for a class of continuous-time singular interconnected systems. Firstly, the related items are deleted to obtain several isolated subsystems with low dimensions. An error system is constructed for each isolated subsystem so that the tracking error is included in the state vector of the error system; then, the tracking problem is transformed into a regulation problem. Secondly, the preview tracking controller is designed for each error system and obtained controllers are combined as the controller of the error system of the singular interconnected system. Thirdly, the Lyapunov function method is utilized to determine the constraints of the related terms so that the closed-loop system of the error system of the singular interconnected system is stable under the action of the controller obtained. Finally, the preview tracking controller of the singular interconnected system is obtained from the relationship between the error system and the original system. A numerical simulation algorithm for continuous-time singular systems is also proposed in this paper. The numerical simulation illustrates the effectiveness of the theoretical results

    Modelling and control of the flame temperature distribution using probability density function shaping

    Get PDF
    This paper presents three control algorithms for the output probability density function (PDF) control of the 2D and 3D flame distribution systems. For the 2D flame distribution systems, control methods for both static and dynamic flame systems are presented, where at first the temperature distribution of the gas jet flames along the cross-section is approximated. Then the flame energy distribution (FED) is obtained as the output to be controlled by using a B-spline expansion technique. The general static output PDF control algorithm is used in the 2D static flame system, where the dynamic system consists of a static temperature model of gas jet flames and a second-order actuator. This leads to a second-order closed-loop system, where a singular state space model is used to describe the dynamics with the weights of the B-spline functions as the state variables. Finally, a predictive control algorithm is designed for such an output PDF system. For the 3D flame distribution systems, all the temperature values of the flames are firstly mapped into one temperature plane, and the shape of the temperature distribution on this plane can then be controlled by the 3D flame control method proposed in this paper. Three cases are studied for the proposed control methods and desired simulation results have been obtained
    • 

    corecore