23,017 research outputs found

    Single-machine scheduling with periodic and flexible periodic maintenance to minimize maximum tardiness.

    No full text
    International audienceThis paper considers a single machine scheduling problem with several maintenances periods. Specially, two situations are investigated. In the first one, maintenance periods are periodically fixed : maintenance is required after a periodic time interval. In the second one, the maintenance is not fixed but the maximum continuous working time of the machine which is allowed is determined. The objective is to minimize the maximum tardiness. These problems are known to be strongly NP-hard. We propose some dominance properties and an efficient heuristic. Branch-and-bound algorithms, in which the heuristics, the lower bounds and the dominance properties are incorporated, are proposed and tested computationally

    Single machine scheduling with job-dependent machine deterioration

    Get PDF
    We consider the single machine scheduling problem with job-dependent machine deterioration. In the problem, we are given a single machine with an initial non-negative maintenance level, and a set of jobs each with a non-preemptive processing time and a machine deterioration. Such a machine deterioration quantifies the decrement in the machine maintenance level after processing the job. To avoid machine breakdown, one should guarantee a non-negative maintenance level at any time point; and whenever necessary, a maintenance activity must be allocated for restoring the machine maintenance level. The goal of the problem is to schedule the jobs and the maintenance activities such that the total completion time of jobs is minimized. There are two variants of maintenance activities: in the partial maintenance case each activity can be allocated to increase the machine maintenance level to any level not exceeding the maximum; in the full maintenance case every activity must be allocated to increase the machine maintenance level to the maximum. In a recent work, the problem in the full maintenance case has been proven NP-hard; several special cases of the problem in the partial maintenance case were shown solvable in polynomial time, but the complexity of the general problem is left open. In this paper we first prove that the problem in the partial maintenance case is NP-hard, thus settling the open problem; we then design a 22-approximation algorithm.Comment: 15 page

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin

    A Mathematical Model for HVLV Systems Scheduling and Optimization With Periodic Preventive Maintenance Using (max, +) Algebra

    Get PDF
    International audienceThe High-Variety, Low-Volume (HVLV) scheduling problem is one of the most arduous combinatorial optimization problems. This paper considers an interesting formulation of the HVLV scheduling problem using (max, +) algebra while periodic Preventive Maintenance (PM) is considered. Maintenance is time based since activities are periodically fixed: maintenance is required after a periodic time interval (all periods are equals on each machine). In this paper, the maintenance tasks of machines are controllable.The jobs and the maintenance operations are scheduled simultaneously. Also, the maintenance operations are scheduled between each other, so that a regular criterion is optimized. To generate feasible schedules, constrained decision variables are incorporated into the (max, +) model. The validity of the proposed approach is illustrated by simulation examples

    Preventive Maintenance Supply Chain Management Optimal Scheduling on VMACL Machines by Implementing Simulation Annealing Algorithms

    Get PDF
    PT. Braja Mukti Cakra uses various types of engines to produce parts for truck cars. Vertical Lathe Automatic Chucking Machine (VMACL) is a machine that has the highest frequency of damage when compared to other machines. To reduce damage costs, preventive maintenance is well scheduled. This scheduling problem solving is done using the Annealing Simulation Algorithm. The results of the analysis give direction that the scheduling that must be done are: The maintenance action schedule for the Lifter component is at month 1,6,7,22,24,34, for the Insert component at 4,15,18,27,33 months, and for the Door component at the 2nd month, 12,13,16,17,30,36. Replacement actions for the Lifter component were carried out in the 4,5th month, 1,17,20,29, for the Insert component in the 9,19,22,23,35 months, and for the Door component in the 1,20,27 months. . Scheduling for 36 months using the Simulated Annealing Algorithm will cost IDR. 84,119,244.60 and produce greater reliability than the previous reliability of 58.44%

    Project scheduling under uncertainty using fuzzy modelling and solving techniques

    Get PDF
    In the real world, projects are subject to numerous uncertainties at different levels of planning. Fuzzy project scheduling is one of the approaches that deal with uncertainties in project scheduling problem. In this paper, we provide a new technique that keeps uncertainty at all steps of the modelling and solving procedure by considering a fuzzy modelling of the workload inspired from the fuzzy/possibilistic approach. Based on this modelling, two project scheduling techniques, Resource Constrained Scheduling and Resource Leveling, are considered and generalized to handle fuzzy parameters. We refer to these problems as the Fuzzy Resource Constrained Project Scheduling Problem (FRCPSP) and the Fuzzy Resource Leveling Problem (FRLP). A Greedy Algorithm and a Genetic Algorithm are provided to solve FRCPSP and FRLP respectively, and are applied to civil helicopter maintenance within the framework of a French industrial project called Helimaintenance
    corecore