68 research outputs found

    Single Event Effect Hardening Designs in 65nm CMOS Bulk Technology

    Get PDF
    Radiation from terrestrial and space environments is a great danger to integrated circuits (ICs). A single particle from a radiation environment strikes semiconductor materials resulting in voltage and current perturbation, where errors are induced. This phenomenon is termed a Single Event Effect (SEE). With the shrinking of transistor size, charge sharing between adjacent devices leads to less effectiveness of current radiation hardening methods. Improving fault-tolerance of storage cells and logic gates in advanced technologies becomes urgent and important. A new Single Event Upset (SEU) tolerant latch is proposed based on a previous hardened Quatro design. Soft error analysis tools are used and results show that the critical charge of the proposed design is approximately 2 times higher than that of the reference design with negligible penalty in area, delay, and power consumption. A test chip containing the proposed flip-flop chains was designed and exposed to alpha particles as well as heavy ions. Radiation experimental results indicate that the soft error rates of the proposed design are greatly reduced when Linear Energy Transfer (LET) is lower than 4, which makes it a suitable candidate for ground-level high reliability applications. To improve radiation tolerance of combinational circuits, two combinational logic gates are proposed. One is a layout-based hardening Cascode Voltage Switch Logic (CVSL) and the other is a fault-tolerant differential dynamic logic. Results from a SEE simulation tool indicate that the proposed CVSL has a higher critical charge, less cross section, and shorter Single Event Transient (SET) pulses when compared with reference designs. Simulation results also reveal that the proposed differential dynamic logic significantly reduces the SEU rate compared to traditional dynamic logic, and has a higher critical charge and shorter SET pulses than reference hardened design

    Study of Radiation Tolerant Storage Cells for Digital Systems

    Get PDF
    Single event upsets (SEUs) are a significant reliability issue in semiconductor devices. Fully Depleted Silicon-on-Insulator (FDSOI) technologies have been shown to exhibit better SEU performance compared to bulk technologies. This is attributed to the thin Silicon (Si) layer on top of a Buried Oxide (BOX) layer, which allows each transistor to function as an insulated Si island, thus reducing the threat of charge-sharing. Moreover, the small volume of the Si in FDSOI devices results in a reduction of the amount of charge induced by an ion strike. The effects of Total Ionizing Dose (TID) on integrated circuits (ICs) can lead to changes in gate propagation delays, leakage currents, and device functionality. When IC circuits are exposed to ionizing radiation, positive charges accumulate in the gate oxide and field oxide layers, which results in reduced gate control and increased leakage current. TID effects in bulk technologies are usually simpler due to the presence of only one gate oxide layer, but FDSOI technologies have a more complex response to TID effects because of the additional BOX layer. In this research, we aim to address the challenges of developing cost-effective electronics for space applications by bridging the gap between expensive space-qualified components and high-performance commercial technologies. Key research questions involve exploring various radiation-hardening-by-design (RHBD) techniques and their trade-offs, as well as investigating the feasibility of radiation-hardened microcontrollers. The effectiveness of RHBD techniques in mitigating soft errors is well-established. In our study, a test chip was designed using the 22-nm FDSOI process, incorporating multiple RHBD Flip-Flop (FF) chains alongside a conventional FF chain. Three distinct types of ring oscillators (ROs) and a 256 kbit SRAM was also fabricated in the test chip. To evaluate the SEU and TID performance of these designs, we conducted multiple irradiation experiments with alpha particles, heavy ions, and gamma-rays. Alpha particle irradiation tests were carried out at the University of Saskatchewan using an Americium-241 alpha source. Heavy ion experiments were performed at the Texas A&M University Cyclotron Institute, utilizing Ne, Ar, Cu, and Ag in a 15 MeV/amu cocktail. Lastly, TID experiments were conducted using a Gammacell 220 Co-60 chamber at the University of Saskatchewan. By evaluating the performance of these designs under various irradiation conditions, we strive to advance the development of cost-effective, high-performance electronics suitable for space applications, ultimately demonstrating the significance of this project. When exposed to heavy ions, radiation-hardened FFs demonstrated varying levels of improvement in SEU performance, albeit with added power and timing penalties compared to conventional designs. Stacked-transistor DFF designs showed significant enhancement, while charge-cancelling and interleaving techniques further reduced upsets. Guard-gate (GG) based FF designs provided additional SEU protection, with the DFR-FF and GG-DICE FF designs showing zero upsets under all test conditions. Schmitt-trigger-based DFF designs exhibited improved SEU performance, making them attractive choices for hardening applications. The 22-nm FDSOI process proved more resilient to TID effects than the 28-nm process; however, TID effects remained prominent, with increased leakage current and SRAM block degradation at high doses. These findings offer valuable insights for designers aiming to meet performance and SER specifications for circuits in radiation environments, emphasizing the need for additional attention during the design phase for complex radiation-hardened circuits

    Study of radiation-tolerant integrated circuits for space applications

    Get PDF
    Integrated Circuits in space suffer from reliability problems due to the radiative surroundings. High energy particles can ionize the semiconductor and lead to single event effects. For digital systems, the transients can upset the logic values in the storage cells which are called single event upsets, or in the combinational logic circuits which are called single event transients. While for analog systems, the transient will introduce noises and change the operating point. The influence becomes more notable in advanced technologies, where devices are more susceptive to the perturbations due to the compact layout. Recently radiation-hardened-by-design has become an effective approach compared to that of modifying semiconductor processes. Hence it is used in this thesis project. Firstly, three elaborately designed radiation-tolerant registers are implemented. Then, two built-in testing circuits are introduced. They are used to detect and count the single event upsets in the registers during high-energy particle tests. The third part is the pulse width measurement circuit, which is designed for measuring the single event transient pulse width in combinational logic circuits. According to the simulations, transient pulse width ranging from 90.6ps to 2.53ns can be effectively measured. Finally, two frequently used cross-coupled LC tank voltage-controlled oscillators are studied to compare their radiation tolerances. Simulation results show that the direct power connection and transistors working in the deep saturation mode have positive influence toward the radiation tolerance. All of the circuit designs, simulations and analyses are based on STMicroelectronics CMOS 90 nm 7M2T General Process

    Radiation Tolerant Electronics, Volume II

    Get PDF
    Research on radiation tolerant electronics has increased rapidly over the last few years, resulting in many interesting approaches to model radiation effects and design radiation hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation hardened electronics for space applications, high-energy physics experiments such as those on the large hadron collider at CERN, and many terrestrial nuclear applications, including nuclear energy and safety management. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their ionizing radiation susceptibility has raised many exciting challenges, which are expected to drive research in the coming decade.After the success of the first Special Issue on Radiation Tolerant Electronics, the current Special Issue features thirteen articles highlighting recent breakthroughs in radiation tolerant integrated circuit design, fault tolerance in FPGAs, radiation effects in semiconductor materials and advanced IC technologies and modelling of radiation effects

    Study of Layout Techniques in Dynamic Logic Circuitry for Single Event Effect Mitigation

    Get PDF
    Dynamic logic circuits are highly suitable for high-speed applications, considering the fact that they have a smaller area and faster transition. However, their application in space or other radiation-rich environments has been significantly inhibited by their susceptibility to radiation effects. This work begins with the basic operations of dynamic logic circuits, elaborates upon the physics underlying their radiation vulnerability, and evaluates three techniques that harden dynamic logic from the layout: drain extension, pulse quenching, and a proposed method. The drain extension method adds an extra drain to the sensitive node in order to improve charge sharing, the pulse quenching scheme utilizes charge sharing by duplicating a component that offsets the transient pulse, and the proposed technique takes advantage of both. Domino buffers designed using these three techniques, along with a conventional design as reference, were modeled and simulated using a 3D TCAD tool. Simulation results confirm a significant reduction of soft error rate in the proposed technique and suggest a greater reduction with angled incidence. A 130 nm chip containing designed buffer and register chains was fabricated and tested with heavy ion irradiation. According to the experiment results, the proposed design achieved 30% soft error rate reduction, with 19%, 20%, and 10% overhead in speed, power, and area, respectively

    Study of Single-Event Transient Effects on Analog Circuits

    Get PDF
    Radiation in space is potentially hazardous to microelectronic circuits and systems such as spacecraft electronics. Transient effects on circuits and systems from high energetic particles can interrupt electronics operation or crash the systems. This phenomenon is particularly serious in complementary metal-oxide-semiconductor (CMOS) integrated circuits (ICs) since most of modern ICs are implemented with CMOS technologies. The problem is getting worse with the technology scaling down. Radiation-hardening-by-design (RHBD) is a popular method to build CMOS devices and systems meeting performance criteria in radiation environment. Single-event transient (SET) effects in digital circuits have been studied extensively in the radiation effect community. In recent years analog RHBD has been received increasing attention since analog circuits start showing the vulnerability to the SETs due to the dramatic process scaling. Analog RHBD is still in the research stage. This study is to further study the effects of SET on analog CMOS circuits and introduces cost-effective RHBD approaches to mitigate these effects. The analog circuits concerned in this study include operational amplifiers (op amps), comparators, voltage-controlled oscillators (VCOs), and phase-locked loops (PLLs). Op amp is used to study SET effects on signal amplitude while the comparator, the VCO, and the PLL are used to study SET effects on signal state during transition time. In this work, approaches based on multi-level from transistor, circuit, to system are presented to mitigate the SET effects on the aforementioned circuits. Specifically, RHBD approach based on the circuit level, such as the op amp, adapts the auto-zeroing cancellation technique. The RHBD comparator implemented with dual-well and triple-well is studied and compared at the transistor level. SET effects are mitigated in a LC-tank oscillator by inserting a decoupling resistor. The RHBD PLL is implemented on the system level using triple modular redundancy (TMR) approach. It demonstrates that RHBD at multi-level can be cost-effective to mitigate the SEEs in analog circuits. In addition, SETs detection approaches are provided in this dissertation so that various mitigation approaches can be implemented more effectively. Performances and effectiveness of the proposed RHBD are validated through SPICE simulations on the schematic and pulsed-laser experiments on the fabricated circuits. The proposed and tested RHBD techniques can be applied to other relevant analog circuits in the industry to achieve radiation-tolerance

    Fully Automated Radiation Hardened by Design Circuit Construction

    Get PDF
    abstract: A fully automated logic design methodology for radiation hardened by design (RHBD) high speed logic using fine grained triple modular redundancy (TMR) is presented. The hardening techniques used in the cell library are described and evaluated, with a focus on both layout techniques that mitigate total ionizing dose (TID) and latchup issues and flip-flop designs that mitigate single event transient (SET) and single event upset (SEU) issues. The base TMR self-correcting master-slave flip-flop is described and compared to more traditional hardening techniques. Additional refinements are presented, including testability features that disable the self-correction to allow detection of manufacturing defects. The circuit approach is validated for hardness using both heavy ion and proton broad beam testing. For synthesis and auto place and route, the methodology and circuits leverage commercial logic design automation tools. These tools are glued together with custom CAD tools designed to enable easy conversion of standard single redundant hardware description language (HDL) files into hardened TMR circuitry. The flow allows hardening of any synthesizable logic at clock frequencies comparable to unhardened designs and supports standard low-power techniques, e.g. clock gating and supply voltage scaling.Dissertation/ThesisPh.D. Electrical Engineering 201
    corecore