2,130 research outputs found

    RNA–protein binding kinetics in an automated microfluidic reactor

    Get PDF
    Microfluidic chips can automate biochemical assays on the nanoliter scale, which is of considerable utility for RNA–protein binding reactions that would otherwise require large quantities of proteins. Unfortunately, complex reactions involving multiple reactants cannot be prepared in current microfluidic mixer designs, nor is investigation of long-time scale reactions possible. Here, a microfluidic ‘Riboreactor’ has been designed and constructed to facilitate the study of kinetics of RNA–protein complex formation over long time scales. With computer automation, the reactor can prepare binding reactions from any combination of eight reagents, and is optimized to monitor long reaction times. By integrating a two-photon microscope into the microfluidic platform, 5-nl reactions can be observed for longer than 1000 s with single-molecule sensitivity and negligible photobleaching. Using the Riboreactor, RNA–protein binding reactions with a fragment of the bacterial 30S ribosome were prepared in a fully automated fashion and binding rates were consistent with rates obtained from conventional assays. The microfluidic chip successfully combines automation, low sample consumption, ultra-sensitive fluorescence detection and a high degree of reproducibility. The chip should be able to probe complex reaction networks describing the assembly of large multicomponent RNPs such as the ribosome

    Status Report of the CAST Experiment

    Get PDF
    The CAST Collaboration has recently published the best experimental limit on the axion-photon coupling dominating for masses up to 0.02 eV. This limit superseding for the first time the astrophysical limits. Preliminary results from the He-4 Phase are presented, extending to masses up to 0.39 eV. The collaboration has succesfully commissioned the He-3 gas system which is indispensable to reach masses up to 1.2 eV, covering the HDM limit. During 2007 the CCD detector and the X-ray telescope were refurbished and all the other magnet lines were equipped with better performing Micromegas detectors. The experiment has already started the He-3 run based on solid grounds for further exploring uncharted but promising regions of phase space

    Multi-Protocol Sensor Node for Internet of Things (IoT) Applications

    Get PDF
    This paper will describe the implementation of an end-to-end IoT solution, focusing specifically in the multi-protocol sensor node using Pycom's FiPy board. A performance assessment will be presented, addressing a comparison between the different protocols (LoRa vs. Wi-Fi) in terms radio coverage, timing issues, power consumption/battery usage, among others. Further, it will be investigated the integration onto the sensor node different sensor/actuator circuit blocks for energy metering on industrial machinery as a way to optimize energy efficiency metrics. This will provide a practical use case in the field of Industry 4.0, leading to insights for power quality monitoring

    Industrial Energy Monitoring System based on the Internet of Things (IoT)

    Get PDF
    Energy monitoring system has long been utilized for basic functionalities such as process scheduling and billing purposes in the industrial scenario. However the use of energy monitoring for improving energy efficiency and the monitoring of degradation in power quality parameters that provides important insights into process degradation and fault diagnosis as long been ignored due to lack of ability of the current energy monitoring systems to acquire and process both energy and power quality data in real-time. The advent of technologies such as the Internet of Things (IoT), Cloud computing and Big Data has made real time acquisition and analysis of data possible. This paper discusses on use of these technologies for developing an integrated real-time power monitoring system and its possible application in fault cause-effect diagnosis. This project focusses on the technologies that would enable the development of the an real-time energy monitoring system and its implementation developing an development of the an real-time energy monitoring syste

    Systematic Investigation of Insulin Fibrillation on a Chip

    Get PDF
    A microfluidic protein aggregation device (microPAD) that allows the user to perform a series of protein incubations with various concentrations of two reagents is demonstrated. The microfluidic device consists of 64 incubation chambers to perform individual incubations of the protein at 64 specific conditions. Parallel processes of metering reagents, stepwise concentration gradient generation, and mixing are achieved simultaneously by pneumatic valves. Fibrillation of bovine insulin was selected to test the device. The effect of insulin and sodium chloride (NaCl) concentration on the formation of fibrillar structures was studied by observing the growth rate of partially folded protein, using the fluorescent marker Thioflavin-T. Moreover, dual gradients of different NaCl and hydrochloric acid (HCl) concentrations were formed, to investigate their interactive roles in the formation of insulin fibrils and spherulites. The chip-system provides a bird’s eye view on protein aggregation, including an overview of the factors that affect the process and their interactions. This microfluidic platform is potentially useful for rapid analysis of the fibrillation of proteins associated with many misfolding-based diseases, such as quantitative and qualitative studies on amyloid growth

    A centrifugal microfluidic platform for capturing, assaying and manipulation of beads and biological cells

    Get PDF
    Microfluidics is deemed a field with great opportunities, especially for applications in medical diagnostics. The vision is to miniaturize processes typically performed in a central clinical lab into small, simple to use devices - so called lab-on-a-chip (LOC) systems. A wide variety of concepts for liquid actuation have been developed, including pressure driven flow, electro-osmotic actuation or capillary driven methods. This work is based on the centrifugal platform (lab-on-a-disc). Fluid actuation is performed by the forces induced due to the rotation of the disc, thus eliminating the need for external pumps since only a spindle motor is necessary to rotate the disc and propel the liquids inside of the micro structures. Lab-on-a-disc systems are especially promising for point-of-care applications involving particles or cells due to the centrifugal force present in a rotating system. Capturing, assaying and identification of biological cells and microparticles are important operations for lab-on-a-disc platforms, and the focus of this work is to provide novel building blocks towards an integrated system for cell and particle based assays. As a main outcome of my work, a novel particle capturing and manipulation scheme on a centrifugal microfluidic platform has been developed. To capture particles (biological cells or micro-beads) I designed an array of V-shaped micro cups and characterized it. Particles sediment under stagnant flow conditions into the array where they are then mechanically trapped in spatially well-defined locations. Due to the absence of flow during the capturing process, i.e. particle sedimentation is driven by the artificial gravity field on the centrifugal platform, the capture efficiency of this approach is close to 100% which is notably higher than values reported for typical pressure driven systems. After capturing the particles, the surrounding medium can easily be exchanged to expose them to various conditions such as staining solutions or washing buffers, and thus perform assays on the captured particles. By scale matching the size of the capturing elements to the size of the particles, sharply peaked single occupancy can be achieved. Since all particles are arrayed in the same focal plane in spatially well defined locations, operations such as counting or fluorescent detection can be performed easily. The application of this platform to perform multiplexed bead-based immunoassays as well as the discrimination of various cell types based on intra cellular and membrane based markers using fluorescently tagged antibodies is demonstrated. Additionally, methods to manipulate captured particles either in batch mode or on an individual particle level have been developed and characterized. Batch release of captured particles is performed by a novel magnetic actuator which is solely controlled by the rotation frequency of the disc. Furthermore, the application of this actuator to rapidly mix liquids is shown. Manipulation of individual particles is performed using an optical tweezers setup which has been developed as part of this work. Additionally, this optical module also provides fluorescence detection capabilities. This is the first time that optical tweezers have been combined with a centrifugal microfluidic system. This work presents the core technology for an integrated centrifugal platform to perform cell and particle based assays for fundamental research as well as for point-of- care applications. The key outputs of my specific work are: 1. Design, fabrication and characterization of a novel particle capturing scheme on a centrifugal microfluidic platform (V-cups) with very high capture efficiency (close to 100%) and sharply peaked single occupancy (up to 99.7% single occupancy). 2. A novel rotation frequency controlled magnetic actuator for releasing captured particles as well as for rapidly mixing liquids has been developed, manufactured and characterized. 3. The V-cup platform has successfully been employed to capture cells and perform multi-step antibody staining assays for cell discrimination. 4. An optical tweezers setup has been built and integrated into a centrifugal teststand, and successful manipulation of individual particles trapped in the V-cup array is demonstrated

    Power simulator upgrade for smart grid algorithm development and testing

    Get PDF
    This thesis describes the conversion of WVU\u27s analog power simulator into a micro-grid of the future test bed by installing digital relays and intelligent electronic switches. The simulator is a hardware representation of the grid which contains traditional hardware, both digital and analog as well as the recent addition of highly connected, via Ethernet and potentially wireless communication, smart switching and monitoring devices. These new devices were chosen specifically for their cyber security capability to explore that facet of smart grid development. It is important to note that this simulator is a hardware implementation and as such is capable of testing smart grid ideas in the most realistic setting available without affecting real customers. This simulator also has the potential to have renewable resources like wind and solar as well as fuel cell and battery storage distributed resources tied in to test smart grid adaptability to these next generation ideas.;New digital relays were installed. Micro controller units and energy meter integrated circuits were investigated based on the desire to provide many modes of communication and as much processing power as was available in a small package. Solid state switches were designed and implemented for speed, compactness and reduced power consumption
    corecore