116 research outputs found

    Ultra-Wideband FSS-Based Antennas

    Get PDF
    As antennas are indispensable elements in wireless systems, it is necessary to provide UWB antennas suitable for UWB systems. The most proposed UWB antennas have omnidirectional radiation, which provides the wide coverage area that is highly demanded by many conventional UWB applications. However, directional radiation is more beneficial for other UWB applications and it may even be beneficial for the conventional UWB omnidirectional applications in some environments that contain many sources of interference and distorting objects, where the omnidirectional radiation leads to high interference and loss of power in undesirable directions. Consequently, an immense research has addressed the issue of realizing UWB planar antennas with unidirectional radiation characteristics. Basically, the main technique used to create unidirectional radiation patterns is employing cavity-baking reflectors to redirect the back radiation, hence increasing the gain of the radiators. In addition, these reflectors can decouple the mounted radiator from the surroundings that can damage its characteristics. Therefore, we suggest the employment of UWB reflectors to achieve UWB planar antennas with directional radiation. Our research for designing optimal UWB reflectors has led to the investigation in the field of frequency selective surfaces (FSSs), which are valuable structures and can be of great interest to a wide range of applications especially UWB applications. Subsequently, the main aim of this chapter is to give a review of the fundamental uses of FSSs in antenna engineering and the basic physical concepts that have been employed to serve the purpose of enhancing antennas’ performances using FSSs with a variety of features and characteristics. Furthermore, it is geared toward the presentation of our proposed UWB FSS-based antennas. First, we use basic FSSs such as the capacitive and its complementary inductive FSSs to design UWB reflectors that can serve improving and stabilizing the gain of UWB antennas. Thereafter, a proposed UWB single-layer FSS is used to serve the same purpose. Then, the FSS is integrated and designed together with UWB radiator, which resulted in lower profile along with good performance

    Compact Size And High Gain Of CPW-Fed UWB Strawberry Artistic Shaped Printed Monopole Antennas Using FSS Single Layer Reflector

    Get PDF
    This study proposed the use of coplanar waveguide Ultrawide-band strawberry artistic shaped printed monopole (SAPM) antenna with a single-layer frequency selective surface (FSS) as the metallic plate to improve the gain of antenna application. The intersection of six cylinders is used to structure the strawberry artistic shaped radiating element, which leads to enhancing the antenna bandwidth. The proposed FSS reflectors used a 10 × 10 array with the unit cell of 6mm × 6mm in introducing a center-operating frequency. This study used the FR4 substrate with coplanar waveguide (CPW) fed to print the proposed antenna, which provided a wide impedance bandwidth of 8.85 GHz (3.05–11.9GHz) that covers the licensed Ultrawide-band. The proposed FSS transmitted a stop-band transmission coefficient, which is below −10 dB with the linear reflection phase over the bandwidth in the range from 3.05 GHz to 11.9 GHz. The UWB SAPM antenna with FSS reflector showed an improvement from 1.65 dB to 7.87 dB in the lower band and 6.3 dB to 9.68 dB in the upper band with an enhancement of 6.22 dB. The gain value is enhanced by the gaping between the antenna and FSS, which has an approximately constant gain response through the band, the gain is sustained among 7.87 dB to 9.68 dB. The total dimension of the antenna is 61mm×61mm×1.6 mm. The proposed antenna structure provides the directional and balanced far-field pattern, which is suitable for Ultrawide-band (UWB) applications and ground-penetrating radar (GPR) application

    A High Gain Dual Notch Compact UWB Antenna with Minimal Dispersion for Ground Penetrating Radar Application

    Get PDF
    A compact (27.5×16.5×0.8 mm3) co-planar waveguide fed printed ultra-wideband antenna operating in the impedance band of 1.75-10.3 GHz with two wide frequency notch bands at 2.2–3.9 GHz and 5.1–6 GHz, is introduced. Dual notch is achieved by inserting U-slot on the radiator and with inverted patch shaped downscaled parasitic load at the opposite end of feed line. Maximum antenna gain augmentation by about 5 dBi is achieved without changing the bandwidth, by incorporating a dual layer reflective frequency selective surface (FSS) of dimension 33×33×1.6 mm3 below the antenna. The antenna-FSS composite structure exhibits maximum radiation in the broadside direction with a peak gain of 9 dBi and an average radiation efficiency of more than 80% in the operating band. Antenna transfer function and group delay are experimentally studied in ground coupling mode of ground penetrating radar (GPR). Linear magnitude response of transfer function and consistent, flat group delay are achieved, that ensure minimal antenna dispersion and its ability for GPR application

    A Compact Umbrella-Shaped UWB Antenna with Gain Augmentation Using Frequency Selective Surface

    Get PDF
    A compact (35 mm × 30 mm × 0.8 mm) co-planar waveguide fed ultra-wideband antenna with bended ground plane suitable for GPR applications is proposed in this article. The umbrella shaped radiating element is constructed using the intersection of two ellipses. The proposed antenna provides a wide impedance bandwidth of 10.35 GHz (3.05–13.4 GHz) covering the unlicensed UWB band. The simply structured antenna is easy to fabricate and to integrate in PCB board. A frequency selective surface (FSS) with two layers, each of 4×4 array, cascaded via air gap, is incorporated in the antenna as a substrate to enhance the gain by 2 to 4 dBi over the entire frequency band. Metamaterial inspired unit cells are chosen for the FSS layers, with unit cell dimension on the order of λ/10 with respect to 3 GHz, much less than λ/4. The spacing between the antenna and FSS is kept so as to enhance the gain value without hampering nearly flat gain response over the band. The gain is maintained between 5.5–8.5 dBi over the band. The antenna was investigated by comparing the simulated and measured fundamental antenna parameters. High radiation efficiency of more than 90% with non-varying group delay and nearly omnidirectional H-plane radiation pattern were achieved. Measurement results validated the antenna performance and gain enhancement due to the addition of FSS layers

    Monopole antenna design with flexible frequency selective surface

    Get PDF
    A flexible monopole antenna combined with a flexible frequency selective surface (FSS) is presented in this work. Initially, the FSS structure is examined by constructing a unit cell of the periodic FSS structure with (3x3) arrays of square loops. On a thickness of 0.13 mm, a fast film with a permittivity of 2.7 is printed, and the substrate of the monopole antenna is FR-4 with a dielectric constant of 4.3. The monopole antenna is then densely and parallelly positioned 26 mm above the FSS structure. After studying the monopole antenna's return loss, efficiency, bandwidth, and antenna gain, the design is included in the FSS framework to obtain a steady frequency response. When the distance between both the antenna and the FSS structure is extended, the frequency response of the antenna is moved, and the return loss is determined to be less than -52 dB. Furthermore, the fractional bandwidth is extended from 62% to 103%, and the gain is increased greatly to 2.4 dB. This design structure demonstrated exceptional wireless communication performance

    Microstrip-Fed Circular Disc Monopole Antenna with Defected Waveguide Structure

    Get PDF
    This paper presented the microstrip-fed circular disc monopole antenna with defected waveguide structure. First, the microstrip-fed circular disc monopole antenna was designed. Next, the monopole antenna was designed with waveguide and lastly followed by the defected waveguide structure where the uniplanar compact (UC) structure was used. CST Microwave studio software was used for simulation and parametric studies process. Initially, the microstrip-fed circular disc monopole antenna was designed to achieve return loss less than -10dB for wideband frequencies. Then, the gain and directivity was improved with the integration of waveguide. The highest directivity of 11.38dBi found at 13.5GHz. However, low efficiency and narrower bandwidth were obtained. Next, uniplanar compact defected waveguide structure (UC DWS) was designed at inner surface of waveguide. The bandwidth achieved 3.09GHz where it covered from 10.91GHz to 14GHz. Meanwhile, the directivity maintained higher than the monopole antenna with highest directivity of 8.84dBi at 10GHz. The gain was also improved from 11GHz to 14GHz with highest gain of 6.38dB occurred at 13.5GHz

    Reconfigurable Antennas

    Get PDF
    In this new book, we present a collection of the advanced developments in reconfigurable antennas and metasurfaces. It begins with a review of reconfigurability technologies, and proceeds to the presentation of a series of reconfigurable antennas, UWB MIMO antennas and reconfigurable arrays. Then, reconfigurable metasurfaces are introduced and the latest advances are presented and discussed

    A Review on Different Techniques of Mutual Coupling Reduction Between Elements of Any MIMO Antenna. Part 2: Metamaterials and Many More

    Get PDF
    This two‐part article presents a review of different techniques of mutual coupling (MC) reduction. MC reduction is a primary concern while designing a compact multiple‐input‐multiple‐output (MIMO) antenna where the separation between the antennas is less than λ0/2, that is, half of the free‐space wavelength. The negative permittivity and permeability of artificially created materials/structures (Metamaterials) significantly help reduce MC among narrow‐band compact MIMO antenna design elements. In this part two of the review paper, we will discuss techniques: Metamaterials; Split‐Ring‐Resonator; Complementary‐Split‐Ring‐Resonator; Frequency Selective Surface, Metasurface, Electromagnetic Band Gap structure, Decoupling and Matching network, Neutralization line, Cloaking Structures, Shorting vias and pins and few more

    A Printed U-Shaped Coplanar Waveguide Feed UWB Antenna for GPR Applications

    Get PDF
    A printed U-shaped coplanar waveguide fed (CPW) ultra-wideband (UWB) antenna is designed, fabricated, and measured in this paper for ground penetrating (GPR) applications. To enhance the working bandwidth, a set of cutoffs was introduced in different parts of the antenna. The antenna was printed on the FR4-epoxy substrate in a compact size of 0.252λ0×0.3λ0×0.015λ0 at 3 GHz. The calculated results were validated by realizing and measuring a prototype. Experimental demonstrations were done with the R& S®ZNB Vector Network Analyzer, which indicates that the antenna's working bandwidth extends from 3.09 GHz to 11.07 GHz (112.71%). Additionally, the antenna's radiation patterns were measured in an isolated anechoic chamber, which shows that the proposed antenna has omni-directional radiation patterns. Moreover, acceptable gain antenna values ranging between 1.74 and 7.04 dBi and high values of radiation efficiency of more than 80% were achieved over the whole working bandwidth. Besides, the antenna presents a stable group delay with a linear phase of S21 through the UWB frequency band. To prove the efficiency of the fabricated antenna for GPR applications, the operation of the antenna was experimentally tested in a sandy soil box. The obtained results show that the proposed antenna could be a good candidate for GPR applications

    A compact multi-band notched characteristics UWB microstrip patch antenna with a single sheet of graphene

    Get PDF
    A rectangular tuneable Ultra-wideband (UWB) Microstrip Patch (MP) antenna based on a Single Sheet of Graphene (SSG) is designed in this study. The antenna band can be tuned by applying a DC voltage bias perpendicular to the SSG at various values via adjusting the input impedance. The antenna has been analyzed by Computer Simulation Technology (CST) Microwave Studio (MWS) software using an FR4 substrate of thickness 1.6 mm with a dielectric permittivity =4.4 and loss tangent tan =0.02 fed by a 50 Ω microstrip line frequency. The design is compact since the antenna consists mostly of copper and the SSG. Graphene’s low weight, high flexibility, and strength make it more attractive than other semiconductor materials. Then, the study investigates the effects of applying the electrical characteristics of graphene to the antenna’s length, which varies with the ON and OFF states. This UWB MP antenna is also designed with notch characteristics so that it can reject undesired interference signals. Subsequently, this compact UWB MP antenna with tuneable resonance frequency is suitable for most wireless communication applications. The simulation results work in the 3.1 to 10 GHz range, as required for UWB technology
    corecore