278 research outputs found

    Noninvasive vagus nerve stimulation alters neural response and physiological autonomic tone to noxious thermal challenge.

    Get PDF
    The mechanisms by which noninvasive vagal nerve stimulation (nVNS) affect central and peripheral neural circuits that subserve pain and autonomic physiology are not clear, and thus remain an area of intense investigation. Effects of nVNS vs sham stimulation on subject responses to five noxious thermal stimuli (applied to left lower extremity), were measured in 30 healthy subjects (n = 15 sham and n = 15 nVNS), with fMRI and physiological galvanic skin response (GSR). With repeated noxious thermal stimuli a group Ă— time analysis showed a significantly (p < .001) decreased response with nVNS in bilateral primary and secondary somatosensory cortices (SI and SII), left dorsoposterior insular cortex, bilateral paracentral lobule, bilateral medial dorsal thalamus, right anterior cingulate cortex, and right orbitofrontal cortex. A group Ă— time Ă— GSR analysis showed a significantly decreased response in the nVNS group (p < .0005) bilaterally in SI, lower and mid medullary brainstem, and inferior occipital cortex. Finally, nVNS treatment showed decreased activity in pronociceptive brainstem nuclei (e.g. the reticular nucleus and rostral ventromedial medulla) and key autonomic integration nuclei (e.g. the rostroventrolateral medulla, nucleus ambiguous, and dorsal motor nucleus of the vagus nerve). In aggregate, noninvasive vagal nerve stimulation reduced the physiological response to noxious thermal stimuli and impacted neural circuits important for pain processing and autonomic output

    Taking Sides with Pain – Lateralization aspects Related to Cerebral Processing of Dental Pain

    Get PDF
    The current fMRI study investigated cortical processing of electrically induced painful tooth stimulation of both maxillary canines and central incisors in 21 healthy, right-handed volunteers. A constant current, 150% above tooth specific pain perception thresholds was applied and corresponding online ratings of perceived pain intensity were recorded with a computerized visual analog scale during fMRI measurements. Lateralization of cortical activations was investigated by a region of interest analysis. A wide cortical network distributed over several areas, typically described as the pain or nociceptive matrix, was activated on a conservative significance level. Distinct lateralization patterns of analyzed structures allow functional classification of the dental pain processing system. Namely, certain parts are activated independent of the stimulation site, and hence are interpreted to reflect cognitive emotional aspects. Other parts represent somatotopic processing and therefore reflect discriminative perceptive analysis. Of particular interest is the observed amygdala activity depending on the stimulated tooth that might indicate a role in somatotopic encoding

    Localization of pain-related brain activation: A meta-analysis of neuroimaging data

    Get PDF
    A meta-analysis of 140 neuroimaging studies was performed using the activation-likelihood-estimate (ALE) method to explore the location and extent of activation in the brain in response to noxious stimuli in healthy volunteers. The first analysis involved the creation of a likelihood map illustrating brain activation common across studies using noxious stimuli. The left thalamus, right anterior cingulate cortex (ACC), bilateral anterior insulae, and left dorsal posterior insula had the highest likelihood of being activated. The second analysis contrasted noxious cold with noxious heat stimulation and revealed higher likelihood of activation to noxious cold in the subgenual ACC and the amygdala. The third analysis assessed the implications of using either a warm stimulus or a resting baseline as the control condition to reveal activation attributed to noxious heat. Comparing noxious heat to warm stimulation led to peak ALE values that were restricted to cortical regions with known nociceptive input. The fourth analysis tested for a hemispheric dominance in pain processing and showed the importance of the right hemisphere, with the strongest ALE peaks and clusters found in the right insula and ACC. The fifth analysis compared noxious muscle with cutaneous stimuli and the former type was more likely to evoke activation in the posterior and anterior cingulate cortices, precuneus, dorsolateral prefrontal cortex, and cerebellum. In general, results indicate that some brain regions such as the thalamus, insula and ACC have a significant likelihood of activation regardless of the type of noxious stimuli, while other brain regions show a stimulus-specific likelihood of being activated. © 2011 Wiley Periodicals, Inc

    The roles of the somatosensory cortices in the perception of noxious and innocuous stimuli

    Full text link
    Résumé Les premières études électrophysiologiques et anatomiques ont établi le rôle crucial du cortex somatosensoriel primaire et secondaire (SI et SII) dans le traitement de l'information somatosensorielle. Toutefois, les récentes avancées en techniques d’imagerie cérébrale ont mis en question leur rôle dans la perception somatosensorielle. La réorganisation du cortex somatosensoriel est un phénomène qui a été proposé comme cause de la douleur du membre fantôme chez les individus amputés. Comme la plupart des études se sont concentrées sur le rôle du SI, une étude plus approfondie est nécessaire. La présente série d'expériences implique une exploration du rôle des régions somatosensorielles dans la perception des stimuli douleureux et non-douleureux chez des volontaires sains et patients avec des douleurs de membre fantôme. La première étude expérimentale présentée dans le chapitre 3 est une méta-analyse des études de neuro-imagerie employant des stimuli nociceptifs chez des volontaires sains. En comparaison aux précédentes, la présente étude permet la génération de cartes quantitatives probabilistes permettant la localisation des régions activées en réponse à des stimuli nociceptifs. Le rôle du cortex somatosensoriel dans la perception consciente de stimuli chauds a été étudié dans le chapitre 4 grâce à une étude d'imagerie par résonance magnétique fonctionnelle, dans laquelle des stimuli thermiques douloureux et non-douloureux ont été administrés de manière contrebalancée. Grâce à cette procédure, la perception de la chaleur fut atténuée par les stimuli douloureux, ce qui permit la comparaison des stimuli consciemment perçus avec ceux qui ne le furent pas. Les résultats ont montrés que les stimulations chaudes perçues ont engendré l’activation de l’aire SI controlatérale, ainsi que de la région SII. Grâce à l’évaluation clinique de patients amputés présentant une altération de leurs perceptions somatosensorielles, il est également possible de dessiner un aperçu des régions corticales qui sous-tendent ces modifications perceptuelles. Dans le chapitre 5 nous avons émis l'hypothèse proposant que les sensations du membre fantôme représentent un corrélat perceptuel de la réorganisation somatotopique des représentations sensorielles corticales. En effet, la réorganisation des sensations peut donner des indices sur les régions impliquées dans la genèse des sensations référées. Ainsi, un protocole d’évaluation sensoriel a été administré à un groupe de patients affligés de douleur au niveau du membre fantôme. Les résultats ont montré que, contrairement aux études précédentes, les sensations diffèrent grandement selon le type et l'intensité des stimuli tactiles, sans évidence de la présence d’un modèle spatialement localisé. Toutefois, les résultats actuels suggèrent que les régions corticales à champs récepteurs bilatéraux présentent également des modifications en réponse à une déafférentation. Ces études présentent une nouvelle image des régions corticales impliquées dans la perception des stimuli somatosensoriels, lesquelles comprennent les aires SI et SII, ainsi que l'insula. Les résultats sont pertinents à notre compréhension des corrélats neurologiques de la perception somatosensorielle consciente.Abstract Early anatomical and single-unit recording studies established a crucial role for the primary and secondary somatosensory cortices (SI & SII) in processing somatosensory information. However, recent advances in brain imaging and analysis techniques have called into question their role in somatosensation. Findings from this recent research are relevant to the study of the reorganizational changes occurring in the somatosensory cortices that have been causally linked to the genesis of pain in amputee patients. These patients continue to perceive and experience pain in the absent limb, which is usually referred to as phantom-limb pain; but little research on this phenomenon has focused on other regions outside SI, and further study is needed. The present series of experiments involve an exploration of the roles of the somatosensory cortices in the perception of noxious and innocuous tactile stimuli in healthy volunteers and patients with phantom-limb pain. The first experimental study in Chapter 3 is a meta-analytic review of neuroimaging studies examining noxious stimuli evoked activation in healthy volunteers. In comparison to previous reviews that have merely reported the prevalence of pain-related activation, the present study yields quantitative probabilistic maps that permit localization of the likelihood of obtaining activation in response to noxious stimuli within any brain region. The role of the somatosensory cortices in the conscious perception of brief warm stimuli was explored in Chapter 4 using functional magnetic resonance imaging, where noxious and innocuous thermal stimuli were counterbalanced within the experimental protocol. This procedure allowed a gating of the somatosensory system in which the perception of warm stimuli was attenuated by painful stimuli, thus permitting the comparison of detected with undetected stimuli. Results showed that detected warm stimuli significantly activated SI and SII. It is also possible to draw insight regarding which cortical regions subserve somatosensory processing and its organization by clinical assessment of amputee patients, who demonstrate altered somatosensation. To date, few studies have explored the relationship between referred sensations to the phantom and cortical reorganization. In Chapter 5 we hypothesized that referred sensations to phantom limbs are a perceptual correlates of a somatotopic reorganization of sensory representations. Derangements in referred sensations can give clues to the regions involved in referred sensations genesis. Thus, a quantitative sensory testing protocol was administered to a group of phantom-limb pain patients. Results showed that, contrary to previous reports, referred sensations to the phantom differed greatly based on the type and intensity of the tactile stimuli applied to the body, with no evidence of a spatially localized pattern. Previous reports of referred sensations have solely focused on plastic changes in SI. However, the present results suggest that other cortical regions with bilateral receptive fields also undergo reorganizational changes in response to deafferentation. These studies present an emerging picture of the cortical regions involved in the perception of somatosensory stimuli, which include SI and SII, as well as the insula. Findings are relevant to our understanding of the neural correlates of conscious perception of somatosensation and the formation of the mental representation of stimuli applied to the body

    CEREBRAL ACTIVATION DURING THERMAL STIMULATION OF BURNING MOUTH DISORDER PATIENTS: AN fMRI STUDY

    Get PDF
    Functional magnetic resonance imaging (fMRI) has been widely used to study cortical and subcortical mechanisms related to pain. The pathophysiology of burning mouth disorder (BMD) is not clearly understood. Central neuropathic mechanisms are thought to be main players in BMD. This study aimed to compare the location and extension of brain activation following thermal stimulation of the trigeminal nerve with fMRI blood oxygenation level dependent (BOLD) signal. This study included 8 female patients with BMD and 8 matched pain-free volunteers. Qualitative and quantitative differences in brain activation patterns between the two study groups were demonstrated. There were differences in the activation maps regarding the location of activation, with patients displaying greater BOLD signal changes in the right anterior cingulate cortex (ACC BA 32/24) and bilateral precuneus (pandlt;0.005). The control group showed larger BOLD signal changes in the bilateral thalamus, right middle frontal gyrus, right pre-central gyrus, left lingual gyrus and cerebellum (pandlt;0.005). It was also demonstrated that patients had far less volumetric activation throughout the entire brain compared to the control group. These data are discussed in light of recent findings suggesting brain hypofunction as a key player in chronic neuropathic pain conditions

    FMRI evidence of memory representations of somatosensory stimuli in the human brain

    Get PDF
    Distinct brain regions process innocuous vibration and cutaneous heat pain. The role of these areas in the perception of pain is still a matter of debate; and the role of these areas in the mediation of memory of somatosensory stimuli is uncertain and has not been studied with brain imaging in healthy human volunteers. All experiments described here, involved an experimental design, which included a delayed-discrimination paradigm and functional magnetic resonance imaging (fMRI). In manuscript #1, we aimed at unraveling the cerebral correlates of attention and spatial localization of innocuous vibrotactile stimuli applied to the right volar surface of the forearm. In this study, we report that increased degrees of attention to the vibrotactile stimuli were associated with heightened levels of activation in several brain areas. In manuscript #2, we investigated the short-term memory for sensory aspects (intensity and location) of cutaneous heat pain delivered to two areas (thenar and hypothenar eminences) of the palm of the right hand. In this experiment, the memory and control trials were presented in blocks, whereby the subjects could predict what trials were going to follow. This study revealed that the presentation of painful stimuli evoked activation in different brain regions than those activated during the online maintenance (interstimulus interval or ISI) of the intensity and spatial features of those stimuli; a process, which I will refer to short-term memory. In manuscript #3, we investigated again short-term memory for sensory aspects of heat pain (as in manuscript #2), but in this case, the memory and control trials were presented in a randomized order. In this study, we found that the perception and short-term memory of pain were processed by a comparable network of areas. The predictability of the memory and control trials may have contributed to these findings.La vibration inoffensive ainsi que la chaleur douloureuse cutanée sont traitées pardifférentes régions du cerveau. Le rôle de ces régions dans la perception de la douleurest controversé; et le rôle de ces régions dans la mémoire des stimuli somatosensorielsest incertain et n'a jamais encore été étudié en imagerie cérébrale chez des sujetshumains sains. Le design expérimental de toutes les études décrites ici comprenait unparadigme de 'delayed-discrimination' et l'imagerie par résonance magnétiquefonctionnelle (IRMf). L'étude #1 visait à élucider les corrélats cérébraux de l'attention etde la localisation spatiale des stimuli vibrotactiles inoffensifs présentés à la faceantérieure de l'avant-bras droit. Dans cette étude, nous avons trouvé que des degrésélevés d'attention portée aux stimuli vibrotactiles étaient associés à des niveaux accrusd'activation dans plusieurs zones du cerveau. Dans l'étude #2, nous avons enquêté surla mémoire à court-terme des caractéristiques sensorielles (intensité et emplacement)de la chaleur douloureuse cutanée présentée à deux endroits (éminences thénar ethypothénar) de la paume de la main droite. Dans cette étude, les essais mémoire etcontrôle étaient présentés en bloc, ou de sorte que les participants pouvaient prévoir dequel type serait le prochain essai. Cette étude a révélé que la présentation des stimulidouloureux a évoqué une activation de différentes régions cérébrales que celles quiétaient activées lors de la rétention de l'intensité et de l'emplacement des stimulationsdurant l'intervalle inter-stimuli (liS); un processus que je qualifierai de mémoire à courtterme.Dans l'étude #3, nous avons également enquêté sur la 'mémoire à court-termedes aspects sensoriels de la chaleur douloureuse (tout comme dans l'étude #2), maisdans ce cas, les essais mémoire et contrôle étaient présentés de façon aléatoire. Danscette étude, nous avons trouvé que la perception de la douleur ainsi que la mémoire àcourt-terme de la douleur étaient traitées par un réseau de régions semblable. Laprévisibilité des essais mémoire et contrôle peut avoir contribué à ce résultat

    Neurophysiological mechanisms of longer-lasting experimental pain in humans

    Get PDF
    Pain serves the protection of the body. Consequently, noxious stimuli or, more precisely, the thereby induced neurophysiological processes commonly lead to pain perception. Identical noxious stimuli, however, do not always translate into the same pain experience depending on multiple factors. To acknowledge this variability, the distinction between nociception as the neural process elicited by noxious stimuli and pain as subjective multifactorial experience is essential. During longer-lasting experimental pain and chronic pain, nociception and pain can substantially dissociate. Moreover, longer-lasting experimental pain resembles chronic pain regarding certain perceptual features such as prolonged pain duration and intensity fluctuations. Thus, longer-lasting experimental pain offers the opportunity to gain new insights into both the differential neural representation of noxious stimuli and pain and the neuronal mechanisms associated with the state of longer- lasting pain. We applied 10 minutes of painful heat stimulation to the left and right hand of 39 healthy participants while we recorded continuous pain ratings, electroencephalography (EEG), and autonomic responses. Data were analyzed in three distinct projects aiming at different aspects of neuronal mechanisms underlying longer-lasting pain. Project 1 assessed whether stimulus intensity as proxy of nociception and pain intensity relate to distinct patterns of oscillatory brain activity. EEG recordings revealed that increases in stimulus intensity were reflected by suppressions of alpha and beta oscillations in sensorimotor areas contralateral to the stimulated hand. In contrast, increases in pain intensity were associated with enhanced gamma oscillations in the medial prefrontal cortex. More importantly, the encoding of stimulus intensity by alpha and beta oscillations in the sensorimotor areas was spatially specific, i.e. depended on the stimulus location, whereas the encoding of pain intensity by gamma oscillations in the medial prefrontal cortex was independent of stimulus location. Thus, prefrontal gamma oscillations might reflect higher- order aspects of noxious stimuli, such as salience, valence, and motivational aspects rather than precise sensory features. Project 2 investigated the relationship between stimulus intensity, pain intensity, autonomic responses, and brain activity. Skin conductance measures, as markers of sympathetic activity, co-varied more closely with stimulus intensity than with pain intensity. Correspondingly, skin conductance measures were related to suppressions of alpha and beta oscillations in the sensorimotor area contralateral to the stimulated hand. These finding suggest that skin conductance measures are in part directly elicited by nociceptive processes and, thus, at least partially independent of perceptual processes during longer-lasting pain. Hence, these observations corroborate concepts of pain in which sensory, motivational, and autonomic processes partially independently contribute to the experience of pain. Finally, project 3 incorporated the systematic and comprehensive assessment of oscillatory brain activity, functional connectivity, and graph- theory based network measures during the state of longer-lasting pain. Longer-lasting pain was associated with suppressions of oscillatory brain activity at alpha frequencies in addition to stronger connectivity at alpha and beta frequencies in sensorimotor areas. Furthermore, sensorimotor areas contralateral to stimulation showed increased connectivity to a common area in the medial prefrontal cortex at alpha frequencies and built a sensorimotor-prefrontal network during longer-lasting pain. This network might be involved in the integration of sensory, cognitive, and motivational-affective information and, consequently, in the translation of a noxious stimulus into a subjective pain experience. All three projects contribute to a better understanding of neuronal mechanisms underlying longer-lasting experimental pain, which serves as an experimental model for chronic pain. Since the treatment of chronic pain has remained insufficient and unsatisfactory, the current results might provide EEG-based targets for urgently needed new treatment approaches, such as non-invasive brain stimulation and neurofeedback

    Brain imaging of chronic pain

    Get PDF
    Acute pain has substantial survival value because of its protective function in the everyday environment. Instead, chronic pain lacks survival and adaptive function, causes great amount of individual suffering, and consumes the resources of the society due to the treatment costs and loss of production. The treatment of chronic pain has remained challenging because of inadequate understanding of mechanisms working at different levels of the nervous system in the development, modulation, and maintenance of chronic pain. Especially in unclear chronic pain conditions the treatment may be suboptimal because it can not be targeted to the underlying mechanisms. Noninvasive neuroimaging techniques have greatly contributed to our understanding of brain activity associated with pain in healthy individuals. Many previous studies, focusing on brain activations to acute experimental pain in healthy individuals, have consistently demonstrated a widely-distributed network of brain regions that participate in the processing of acute pain. The aim of the present thesis was to employ non-invasive brain imaging to better understand the brain mechanisms in patients suffering from chronic pain. In Study I, we used magnetoencephalography (MEG) to measure cortical responses to painful laser stimulation in healthy individuals for optimization of the stimulus parameters for patient studies. In Studies II and III, we monitored with MEG the cortical processing of touch and acute pain in patients with complex regional pain syndrome (CRPS). We found persisting plastic changes in the hand representation area of the primary somatosensory (SI) cortex, suggesting that chronic pain causes cortical reorganization. Responses in the posterior parietal cortex to both tactile and painful laser stimulation were attenuated, which could be associated with neglect-like symptoms of the patients. The primary motor cortex reactivity to acute pain was reduced in patients who had stronger spontaneous pain and weaker grip strength in the painful hand. The tight coupling between spontaneous pain and motor dysfunction supports the idea that motor rehabilitation is important in CRPS. In Studies IV and V we used MEG and functional magnetic resonance imaging (fMRI) to investigate the central processing of touch and acute pain in patients who suffered from recurrent herpes simplex virus infections and from chronic widespread pain in one side of the body. With MEG, we found plastic changes in the SI cortex, suggesting that many different types of chronic pain may be associated with similar cortical reorganization. With fMRI, we found functional and morphological changes in the central pain circuitry, as an indication of central contribution for the pain. These results show that chronic pain is associated with morphological and functional changes in the brain, and that such changes can be measured with functional imaging.Akuutti kipu toimii terveellä ihmisellä elämää ylläpitäväna varoitussignaalina, joka syntyy vahingollisen ärsykkeen vaikutuksesta. Kivun muuttuessa krooniseksi se menettää normaalin varoitusfunktionsa, eikä enää edesauta selviytymistä. Krooninen kipu aiheuttaa yksilötasolla suurta kärsimystä ja huonontaa elämänlaatua, ja sen yhteiskunnalliset ja taloudelliset vaikutukset ovat mittavat hoitokulujen ja työkyvyttömyyden vuoksi. Kaikentyyppisessä kroonisessa kivussa keskushermostolliset mekanismit osallistuvat kivun kehittymiseen, säätelyyn ja ylläpitoon. Toistaiseksi näitä mekanismeja on ymmärretty huonosti, joten kroonisen kivun tehokas hoito on vaikeaa. Erityisesti silloin kun kroonisen kivun syntymekanismia ei tunneta, diagnostiikka, hoito ja kuntoutus ovat erityisen haasteellisia. Uudet aivokuvantamismenetelmät kuten magnetoenkefalografia (MEG) ja toiminnallinen magneettikuvaus (fMRI), joilla kipuun liittyviä aivoaktivaatioita voidaan havaita hyvällä aika- ja paikkatarkkuudella ovat tuoneet runsaasti tietoa akuutin kivun keskushermostollisesta käsittelystä terveillä ihmisillä. Tämän väitöskirjan tarkoituksena oli näitä menetelmiä käyttäen tutkia krooniseen kipuun liittyviä aivomekanismeja kahdella potilasryhmällä, jotka kärsivät kroonisesta kivusta. Tutkimuksiin osallistui kahdeksan monimuotoisesta paikallisesta kipuoireyhtymästä (CRPS) kärsivää potilasta, joilla krooninen kipu paikantui toiseen yläraajaan, sekä kahdeksan potilasta, jotka kärsivät toistuviin virusinfektioihin liittyvästä koko toisen kehonpuoliskon käsittävästä kroonisesta kiputilasta. Kipupotilaitten aivoaktivaatiota verrattiin terveiden verrokkihenkilöiden vastaaviin aivoaktivaatioihin. Tutkimuksissamme selvitimme ensin MEG:llä terveiden koehenkilöiden aivokuorivasteita kivuliaille lasersärsykkeille optimoidaksemme mittausparametreja ennen siirtymistämme varsinaisiin potilasmittauksiin. Seuraavaksi tarkastelimme MEG:llä CRPS-potilaiden aivokuorivasteita kosketukseen ja akuuttiin kipuun, sekä mittasimme liikeaivokuoren reaktiivisuutta akuuttiin kipuun. Osoitimme että käden edustustalue primaarilla tuntoaivokuorella (SI) oli kutistunut, viitaten siihen että krooninen kipu voi muovata aivoja ja jättää niihin pysyvät jäljet. Liikeaivokuori reagoi akuuttiin kipuun sitä huonommin, mitä voimakkaammasta kivusta potilaat kärsivät ja mitä huonompi puristusvoima kädessä oli. On mahdollista että potilaitten krooninen kipu johtaa liikeaivokuoren huonontuneeseen toimintaan ja sen välityksellä puristusvoiman heikkouteen. Lopulta käytimme MEG:tä ja fMRI:tä tutkiaksemme kosketuksen ja kivun käsittelyä potilailla, jotka kärsivät toistuviin virusinfektioihin liittyvästä kroonisesta kivusta. Havaitsimme käden edustusalueen kutistumisen SI:lla, viitaten siihen että useasta eri syystä johtuva krooninen kipu voi jättää samanlaiset jäljet aivoihin. fMRI:llä löysimme sekä toiminnallisia että rakenteellisia muutoksia aivojen kivunkäsittelyalueilla. Nämä muutokset viittaavat siihen että toistuviin virusinfektioihin liittyvillä keskushermostollisilla mekanismeilla voi olla osuutta kroonisen kivun kehittymisessä näillä potilailla. Tutkimuksen tulokset osoittavat, että krooniseen kipuun liittyy sekä rakenteellisia että toiminnallisia muutoksia aivoissa, ja että tällaiset muutokset ovat mitattavissa moderneilla aivokuvantamismenetelmillä
    • …
    corecore