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Abstract 
Acute pain serves as a warning sign for protective purposes in the everyday environment and 

therefore has substantial survival value. Chronic pain, however, lacks survival and adaptive functions, 

causes a great amount of individual suffering, and consumes the resources of the society through 

treatment costs and loss of production. The treatment of chronic pain remains challenging because of 

an inadequate understanding of mechanisms working at different levels of the nervous system in the 

development, modulation, and maintenance of chronic pain. Especially in chronic pain conditions, in 

which the aetiology and the pathophysiology are not understood, the treatment may be suboptimal 

because it can not be targeted to underlying mechanisms. 

Noninvasive neuroimaging techniques have contributed to our understanding of brain activity 

associated with pain. Many previous studies have focused on brain activations to acute experimental 

pain in healthy individuals, and have consistently demonstrated a widely-distributed network of brain 

regions that participate in the processing of acute pain. The aim of the present thesis was to employ 

noninvasive brain imaging methods to better understand the brain mechanisms in patients with 

chronic pain. 

In Study I, we used magnetoencephalography (MEG) to measure cortical responses to painful 

laser stimulation in healthy individuals for optimization of the stimulus parameters for patient studies. 

In Studies II and III, we monitored with MEG the cortical processing of touch and acute pain in 

patients with complex regional pain syndrome (CRPS). We found persisting plastic changes in hand 

representation area of the primary somatosensory (SI) cortex and attenuated responses in the 

posterior parietal cortex to both tactile and painful laser stimulation. The primary motor cortex 

reactivity to acute pain was reduced in patients, and the reactivity correlated with the grip strength 

and correlated inversely with the amount of ongoing spontaneous pain in the painful hand, 

suggesting tight coupling between central motor dysfunction and chronic pain in CRPS. In Studies 

IV and V, we used MEG and functional magnetic resonance imaging (fMRI) to investigate patients 



who suffered from recurrent herpes simplex virus infections and from chronic widespread pain in 

one side of the body. With MEG, we found plastic changes in the SI cortex, suggesting that different 

types of chronic pain may be associated with similar cortical reorganization. With fMRI, we found 

functional and morphological changes in the central pain circuitry, suggesting central contribution 

for the pain. 

The results show that chronic pain is associated with morphological and functional changes in 

the brain. Objective measurement of such changes with functional imaging may aid in the diagnosis 

and therapy of chronic pain conditions. 
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1. Introduction 

The survival of an organism depends essentially on its ability to perceive pain. Individuals born 

without the ability to feel pain are vulnerable to life-threatening injuries from the beginning of their 

lives, because severe damage, such as cuts, fractures, and burns may go unnoticed (Nagasako et al., 

2003). In healthy individuals, acute pain is a warning sign that protects against tissue damage in 

everyday environments. After injury, a decrease of pain threshold and increased responsiveness in 

the injured area work as motivators that facilitate protective behaviour, until the tissue heals. For 

example, ongoing pain and tenderness from a sprained ankle motivates for reduced weight bearing 

and protection, and thereby enhances healing and survival. This hypersensitivity is an expression of 

temporary and adaptive neural plasticity. 

Chronic pain, on the other hand, is maladaptive and reflects pathological changes in the 

function of the nervous system. It serves no useful purpose from an evolutionary perspective, does 

not adapt the organism to the environment, and does not lead to performance that enhances survival. 

Chronic pain causes a considerable negative impact on the individual and society. In 2003, the 

socioeconomic estimated costs of chronic pain were e.g. in the 9-million-inhabitant Sweden about 

8.9 billion € (SEK 87.5 billion). Care-related costs accounted for 0.8 billion € whereas indirect costs 

due to loss of production attributed to sick leave accounted for 8.1 billion € (Lundberg, 2006). 

Treatment of chronic pain remains difficult, and this stems partially from the insufficient 

understanding of neural mechanisms in the development and maintenance of chronic pain. Even in 

the perception of acute pain, nociceptive signals produced by harmful stimuli are modulated by 

complex anti- and pronociceptive activities at all levels of the neuraxis. This modulation is driven 

also by affective and cognitive factors, such as the state of mind, expectations, previous experiences, 

mood, attention, and context. In chronic pain, the complexity of such modulation is probably even 

more profound. 
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When the aetiology and the pathophysiology of chronic pain are unknown, no mechanism-

based treatment is available. Furthermore, unknown aetiology increases the psychological stress, 

uncertainty, and suffering in the patients, as well as confusion in the physicians trying to treat them. 

Distinct neural mechanisms may be underlying some chronic pain conditions and therefore better 

knowledge of these mechanisms could help to develop more rational therapy for chronic pain. 

However, objective measurement of neural activity related to the complex and highly subjective 

experience of pain is challenging. 

Noninvasive brain imaging has emerged as a tool for the investigation of neural function in 

healthy individuals and in neurological and psychiatric diseases. Acute pain processing in healthy 

individuals has been extensively studied with these methods, and there is now increasing enthusiasm 

for studying neural activity in patients with chronic pain conditions. 

The present thesis aims to increase knowledge of pain processing in the central nervous system 

in patient groups suffering from chronic pain with an unclear origin. In patients suffering from 

complex regional pain syndrome (CRPS), we used magnetoencephalography (MEG) to follow the 

cortical processing of tactile and nociceptive stimuli. In patients suffering from recurrent herpes 

simplex virus (HSV) infections and from chronic pain, we used MEG to study cortical plasticity and 

functional magnetic resonance imaging (fMRI) to study the central processing of touch and pain to 

reveal possible central nervous system alterations in these patients. 
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2. Background 

2.1 Anatomy and physiology of pain pathways 

 Damaging stimuli activate the peripheral free nerve endings, the nociceptors. The noxious 

signals from the periphery are transmitted to the central nervous system by the pain pathways, a 

process referred to as nociception. The experience of pain is normally generated on the basis of 

noxious input but it is also strongly modulated by affective and cognitive aspects. The subjective 

experience of pain may exist even in the absence of noxious input, but typically these two are highly 

correlated. The anatomy and the physiology of the pain pathways are presented below, based on 

recent reviews (Bromm and Lorenz, 1998; Treede et al., 1999; Schnitzler and Ploner, 2000; Millan, 

2002; Craig, 2003; Vogt, 2005; Dostrowsky and Craig, 2006). 

 

2.1.1 Nociceptors and peripheral pathways 

 Nociceptors are peripheral free nerve endings, which transduct noxious or potentially noxious 

stimuli, such as mechanical, thermal and chemical stimuli to action potentials that are sent to the 

central nervous system along the nociceptive nerve fibres. Nociceptors are widespread in the 

peripheral tissues, including skin, muscle, joints, and viscera. The noxious signals are transmitted via 

thinly myelinated Aδ-fibres and unmyelinated C-fibres. The density of the C-fibres in the human 

skin is assumed higher than that of Aδ-fibres (Bragard et al., 1996). The conduction velocity of Aδ-

fibres is around 5–30 m/s and they signal sharp pain from heat and from sharp mechanical stimuli 

(Konietzny et al., 1981), whereas the conduction velocity of C-fibres is around 0.5–2 m/s and they 

signal burning pain from heat stimuli and pain from intense pressure (Ochoa and Torebjörk, 1989). 

Both fibre types signal pain from chemical stimuli. Aδ-fibres are further divided to type I, which are 
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found in the hairy and glaborous skin, and type II, which are found in hairy skin only. Most of the C-

nociceptors respond to several types of noxious stimuli and are therefore termed polymodal 

nociceptors (Perl, 1996). 

About half of the Aδ-fibres and one third of C-fibres are silent nociceptors, which have very 

high mechanical thresholds (Meyer et al., 1991). The silent C-fibres are different from the 

conventional polymodal nociceptors, and they often become responsive to mechanical stimuli in 

inflamed skin and may therefore be the underlying mechanism for primary mechanical hyperalgesia 

(Schmidt et al., 1995). The cell bodies of the nociceptive fibres are in the dorsal root ganglia, and the 

nociceptive fibres terminate in the dorsal horn of the spinal cord or in the trigeminal ganglia in the 

head area. 

 

2.1.2 Dorsal horn and spinal cord 

In the dorsal horn of the spinal cord, the first-order nociceptive neurons synapse with 

projection neurons that ascend towards more central structures (see Figure 1). The peripheral Aδ-

fibres terminate in the most superficial layer of the dorsal horn, the lamina I, which receives the 

major input of the all nociceptive fibres, and in the lamina V. The peripheral C-fibres terminate in 

lamina I and send polysynaptic input to lamina V neurons. Large-diameter myelinated Aβ-fibres, 

transmitting mechanoreceptive and proprioceptive input also terminate at the lamina V neurons. 

Therefore the superficial lamina I receives more specific nociceptive input, whereas the lamina V 

input represents integration of all afferent input. 

In the lamina I of dorsal horn, two nociceptive cell types of the spinothalamic tract can be 

distinguished: nociceptive specific (NS) cells, which receive predominantly Aδ-fibre input, and 

polymodal nociceptive (sensitive for heat, pinch, cold), which receive mainly C-fibre input. In 
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addition to nociceptive cell types, lamina I also contains non-nociceptive cells that receive modality-

specific small-diameter cell input related to e.g. thermoreception and itch (Craig and Andrew, 2002). 

 

 

Figure 1. Dorsal horn of spinal cord and nociceptive afferent fibres terminating to projection 
neurons in laminae I–V. Adapted from Craig (2003) with permission. 

 

Lamina V is composed mostly of wide dynamic range (WDR) cells. They have large receptive 

fields and receive input both from tactile and nociceptive afferents. As a population, their activity 

represents the integration of all afferent input to the dorsal horn. 

The spinothalamic tract that projects from the spinal cord to the thalamus is most closely 

associated with pain and temperature, and it has been known for decades that lesions of this tract 

results in the loss of these sensations. Almost half of the spinothalamic tract cells are from lamina I 

and one quarter from laminae IV–VI. Some cells are located in deeper laminae and in the ventral 

horn. The ascending axons cross the midline at a level near the cell bodies and continue in the 

spinothalamic tract in anterior and lateral segments. The anterior part contains mainly lamina V 

neurons, and the lateral part contains mainly lamina I neurons. 
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Recently, monitoring pain-related neural activity in the dorsal horn of the spinal cord has been 

accomplished noninvasively using fMRI (Lilja et al., 2006). 

 

2.1.3 Ascending nociceptive projections to thalamus and brainstem 

Nociceptive information is transmitted from the spinal cord to the brain through several 

ascending pathways, the main pathway being the spinothalamic tract. The main projection sites of 

the spinothalamic tract in the thalamus are the ventral posterior (VP) nuclei, the posterior part of the 

ventral medial nucleus (VMpo), the ventral caudal part of the medial dorsal nucleus (MDcv), the 

ventral lateral nucleus, the central lateral nucleus, and the parafascicular nucleus (Dostrowsky and 

Craig, 2006). The nociceptive specific lamina I pathways project to the VP nuclei, VMpo, and MDvc. 

Lamina V pathways project to VP nuclei, ventral lateral nucleus, and central lateral nucleus (see 

Figure 2). The lateral and medial VP nuclei are the main somatosensory nuclei of the thalamus and 

receive—in addition to nociceptive input—mechanoreceptive and proprioceptive input through the 

dorsal column medial lemniscus pathways. Using microelectrodes, activity of nociceptive neurons in 

the human VP nucleus has been recorded, and microstimulation of this area has been shown to evoke 

pain (Lenz and Dougherty, 1997). In addition, lesion of this structure may lead to central pain 

(Montes et al., 2005). However, most of the nociceptive information of the spinothalamic tract is 

conveyed to the cortex through other nuclei (such as VMpo), as the cortical laser-evoked responses 

were only moderately (33%) attenuated in a patient with a VP lesion (Montes et al., 2005). 

Interestingly, in patients with central post-stroke pain, incidence of pain evoked by microstimulation 

of VP nucleus was increased (Davis et al., 1996). 

The important functions of the thalamus, in addition to processing noxious information, 

include processing and relaying both sensory and motor information. Thalamus also takes part in 

cognitive functions, such as language and memory, and it regulates arousal. Thalamic nuclei project 



7 

 

to one or few cortical areas, which in turn send back information to different thalamic nuclei, 

forming thalamo-cortico-thalamic circuits (Herrero et al., 2002). 

In addition to thalamic targets, nociceptive information is conveyed to numerous homeostatic 

sites in the brainstem. Catecholiaminergic cell groups in the brainstem receive input from lamina I 

cells (Westlund and Craig, 1996). These cell groups include regions in the ventrolateral medulla, the 

nucleus of solitary tract, the locus coeruleus, and regions in the dorsolateral pons. They integrate 

cardiorespiratory and homeostatic function and have pain-modulatory functions. For example, the 

cell groups in the ventrolateral medulla and in the dorsolateral pons are involved in descending pro- 

and antinociceptive modulation. 

 

 

Figure 2. Ascending tracts of lamina I cells (left) and lamina IV–V cells (right) in macaque 
monkey. MDvc = ventral caudal part of medial dorsal nucleus, VPI = ventroposterior inferior 
nucleus, VPL = ventroposterior lateral nucleus, VMpo = posterior part of ventral medial nucleus, CL 
= central lateral nucleus, SI = primary somatosensory cortex, SII = secondary somatosensory cortex, 
STT = spinothalamic tract. Adapted from Craig (2006) with permission from Elsevier. 
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Parabrachial nucleus receives spinal input mainly from lamina I cells, and it is connected with 

the reticular formation of the brainstem (Craig, 1995). Parabrachial nucleus projects to hypothalamus, 

amygdala, and thalamus, and is thought to integrate nociceptive activity with the homeostatic and 

autonomic activity. 

The periaqueductal gray has a dual role in aversive behaviour and in endogenous analgesia. It 

receives input primarily from lamina I cells. The closely situated pretectal nuclei have been proposed 

to have a role in endogenous analgesia, because stimulation of this area produces analgesia (Rees and 

Roberts, 1993). 

The reticular formation receives input through the spinoreticular tract, which consists of 

neurons in laminae VII and VIII (Kevetter et al., 1982). Many of these neurons respond to stimuli 

presented to either side of the body and they could therefore contribute to the diffuse nature of many 

pain conditions. 

Traditionally, the nociceptive system has been divided to lateral and medial systems. The 

lateral pain system has been assumed to serve the sensory-discriminatory aspect of pain processing, 

whereas the medial system is involved in the cognitive-evaluative, motor, and emotional components 

of pain. The cortical components of the lateral pain system include the primary and secondary 

somatosensory (SI and SII) cortices, and the posterior insula, and the corresponding regions of 

medial system include the anterior cingulate cortex (ACC) and prefrontal cortex (PFC). This division 

probably oversimplifies the actual picture as separate dimensions of the pain experience probably are 

not represented by single brain regions. 
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2.1.4 Central structures 

Insula 

Anterograde tracing of thalamocortical projections in primates indicates that thalamic nucleus 

VMpo projects to the posterior insular cortex (IC) (Craig, 2002). Accordingly, electrical stimulation 

of the posterior IC elicited pain in patients who were undergoing evaluation for the surgical 

treatment of epilepsy (Ostrowsky et al., 2002; Mazzola et al., 2006). The posterior IC and the closely 

situated SII cortex are the only cortical regions where electrical stimulation has been shown to elicit 

pain (Mazzola et al., 2006). Intracranial recordings showed that the posterior IC did not activate to 

non-painful stimuli but encoded stimulus intensity at painful levels (Frot et al., 2007). The role of 

posterior IC in the basic sensory aspects of pain is further supported by the sensitivity to the laterality 

of the stimulation and the somatotopic arrangement of body parts in the posterior IC (Brooks et al., 

2002; Bingel et al., 2003; Brooks et al., 2005). 

In human brain imaging studies of pain, IC is one of the most consistently activated cortical 

areas (Peyron et al., 2000; Treede et al., 2000; Apkarian et al., 2005) and it has been thought to be 

involved in the affective dimension of pain. This is in line with insular damage causing an 

inadequate emotional response to pain (Berthier et al., 1988). Typically in imaging studies, the 

activation is spatially extensive, spanning from anterior to posterior IC. Functional segregation of the 

subregions of the insula has recently been suggested (Schweinhardt et al., 2006a). Clinical pain in 

patients, with its greater affective component, was associated with activity in the rostral anterior IC, 

whereas the intensity of experimental (or allodynic) pain was coded by caudal anterior IC 

(Schweinhardt et al., 2006a). 

Insula appears to be a major integration site for interceptive information from the body (Craig, 

2002). As the IC also has extensive anatomical connections to limbic structures, it is well suited 

associate sensory information with emotional responses (Mesulam and Mufson, 1982). 



10 

 

 

Cingulate cortex 

The cingulate cortex belongs to the phylogenetically old limbic system.  Nociceptive neurons 

have been demonstrated in the rabbit ACC; these neurons had large receptive fields and responded to 

noxious stimulation anywhere in the body (Sikes and Vogt, 1992). Nociceptive neurons have been 

shown also in the human ACC (Hutchison et al., 1999). Thalamic projections to the Brodmann’s area 

24 have been demonstrated from thalamic midline, intralaminar (central lateral and parafascicular), 

and MDvc nuclei (Vogt, 2005). The ACC is one of the most commonly activated areas in brain 

imaging studies of pain processing (Peyron et al., 2000; Apkarian et al., 2005), and it has been 

assumed to mediate affective responses to noxious stimuli. The blood-flow based imaging methods 

show consistent activation in the ACC, but the exact activation areas inside the CC are variable. 

Activity of the dorsal ACC correlated with the subjective unpleasantness of pain during hypnosis, 

even while the stimulation energy was the same, and therefore the ACC has been suggested to 

encode the affective dimension of pain (Rainville et al., 1997). The ACC activity has also been 

shown to correlate with stimulus energy of experimental pain (Coghill et al., 1999). Büchel et al. 

(2002) showed several pain-related activation areas in the ACC; the perigenual and posterior ACC 

coded stimulus intensity and pain, whereas the anterior portion of the ACC showed signal changes 

related to working memory and attention. Attention-related activation in the anterior ACC has also 

been observed in single-cell recordings (Davis et al., 2000). Moreover, the ACC has been implicated 

in motor planning and response selection, attentional orienting, and cognitive control. 

Recent subdivision of the CC on cytoarchitectural basis suggests a four-region model including 

ACC, midcingulate cortex (MCC), posterior cingulate cortex (PCC), and retrosplenial cortex (Vogt, 

2005). In this model, the ACC is implicated in emotional and autonomic processing, the MCC is 
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involved in response selection, and PCC in visuospatial orientation. The role for the posterior MCC 

in attentional orienting and motor withdrawal is supported by recent intracranial recordings that 

showed early (120 ms) responses from this area in response to acute laser pain (Frot et al., 2008). 

 

Somatosensory cortices 

Single-cell recordings in awake monkeys have demonstrated SI cortex neurons responding in 

an intensity-correlated manner to noxious stimuli (Kenshalo et al., 1988), suggesting that the 

nociceptive SI neurons encode the sensory-discriminative component of pain. Accordingly, the loss 

of discriminative pain sensation (without loss of pain affect) was attributed to a large lesion 

involving both SI and SII (Ploner et al., 1999a). SI receives input from thalamic lateral and medial 

VP nuclei, and the SII receives input from inferior VP nucleus. The thalamic nucleus VMpo, which 

receives almost exclusively spinothalamic lamina I input, has been suggested to project to area 3a in 

the central sulcus. 

The role of the SI cortex in response to acute selectively noxious stimulation has been debated: 

about half of the studies in a meta-analysis showed no SI activation while the other half did (Peyron 

et al., 2000). This discrepancy has been explained with different stimulation methods and possible 

different excitatory and inhibitory effects of pain on SI neurons, which could result in different 

hemodynamic responses (Peyron et al., 2000; Schnitzler and Ploner, 2000). Pain-related cerebral 

blood flow increases were somatotopically organized in the SI region (Andersson et al., 1997). 

According to optical imaging data, area 3a is activated in response to heat pain, probably via 

thalamic nucleus VMpo (Tommerdahl et al., 1996). In fMRI studies that used nociceptive-specific 

thulium-laser stimuli, SI has been shown to be involved in coding the side and the intensity of the 

stimulation (Bornhövd et al., 2002; Bingel et al., 2003). Further, somatotopic representations to such 

stimuli were demonstrated in SI and in SII (Bingel et al., 2004). Using MEG, several groups have 
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localized activations in response to painful laser stimulation to SI (Kanda et al., 2000; Ploner et al., 

2000; Timmermann et al., 2001), whereas others have localized these activations significantly medial 

and posterior to area SI, possibly to posterior parietal cortex (PPC) (Forss et al., 2004). It is probable 

that both the SI and the PPC are activated in response to noxious stimulation (Nakata et al., 2008). 

 The SII cortices are the first cortical areas activated in response to noxious stimulation in 

electroencephalography (EEG) and MEG studies (Treede et al., 2000). Intracranial recordings and 

MEG recordings have demonstrated that the SII cortex encodes stimulus intensity from innocuous to 

painful level, but shows ceiling effect for higher intensity (Timmermann et al., 2001; Chen et al., 

2006; Frot et al., 2007). It was therefore suggested that the SII is involved in recognizing the noxious 

nature of stimuli. The SII cortex is bilaterally activated also in response to innocuous tactile stimuli 

and is assumed to be involved in object recognition and integration of sensory input from the two 

body halves (Simões et al., 2001). The human SII cortex is divided into four cytoarchitectonic areas. 

A meta-analysis indicated that pain-related activations were clustered in one subarea, whereas 

activations related to non-painful somatosensory stimulation were found slightly more anteriorly 

(Eickhoff et al., 2006a; Eickhoff et al., 2006b). Selective SI and SII lesions caused impaired ability 

to localize painful stimuli and to recognize the stimuli as painful, suggesting that the somatosensory 

cortices are involved in the sensory-discriminative processing of pain (Ploner et al., 1999a). This is 

supported by earlier findings of tactile and nociceptive perception deficits when tumour was pressing 

parietal operculum and elevated pain thresholds in patients with lesions involving the parietal 

operculum (Greenspan and Winfield, 1992; Greenspan et al., 1999). 
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2.1.5 Descending and modulatory projections 

The pain pathways are under the influence of top-down regulation from hierarchically higher 

levels. Many supraspinal regions give rise to pathways that monosynaptically descend to the dorsal 

horn of the spinal cord and may have either inhibitory or facilitatory effects. These include the 

hypothalamus, parabrachial nucleus, nucleus of the solitary tract, rostral ventral medulla, and 

periaqueductal grey (Millan, 2002). Pharmacological and electrical stimulation of these areas in 

animal studies has been shown to modulate nociception, either by direct or indirect spinal projections 

(Willis and Westlund, 1997; Jasmin et al., 2003). The activity of the descending pathways from 

rostral ventral medulla is primarily modified by the periaqueductal grey and other regions. 

New imaging methods have contributed to our understanding of these modulatory mechanisms 

in humans and have shown that forebrain structures such as rostral ACC and PFC are important in 

pain modulation (Bingel et al., 2007). Rostral ACC covaried with brainstem activity during both 

placebo and opioid analgesia, and during distraction task (Petrovic et al., 2002; Valet et al., 2004), 

suggesting that the connectivity of these areas is important for pain modulation. Further, placebo 

analgesia was associated with PFC activity during anticipation of pain (Wager et al., 2004). This 

might have also clinical implications, as in Alzheimer patients, the placebo component of analgesic 

treatment was reduced, indicating the importance of frontal cortex function in the modulation of pain 

(Benedetti et al., 2006). The interplay between these cortical and brainstem areas related to pain 

modulation may be important factor in the development of various chronic pain conditions. 

 

2.1.6 Pain and the central motor system 

The effect of pain on motor functions is evident in everyday life, as pain impairs and limits 

motor performance. Studies in healthy subjects have shown that thermal pain activates the primary 

motor cortex (MI) (Casey et al., 1996; Gelnar et al., 1999). The tight coupling between the central 
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motor system and pain is further supported by the observation that MI stimulation alleviates chronic 

pain (Tsubokawa et al., 1991; Garcia-Larrea and Peyron, 2007). 

One way to monitor the functional state of the MI is to measure the 20-Hz component of 

spontaneous oscillatory activity, which is thought to originate mainly in the MI on the basis of 

intracranial and MEG recordings (Jasper, 1949; Salmelin and Hari, 1994; Salenius and Hari, 2003). 

Suppression of the 20-Hz rhythm is assumed to reflect excitation and the subsequent rebound is 

thought to reflect inhibition of the MI.  A prior study with healthy subjects showed that the motor 

cortex 20-Hz rhythm is modulated by painful laser stimuli, possibly for preparation of voluntary 

movements (Raij et al., 2004), Further, in CRPS patients who had chronic pain in their upper 

extremity, reactivity of the 20-Hz motor cortex rhythm to tactile stimuli was decreased indicating 

modified inhibition of the motor cortex (Juottonen et al., 2002). 

 

2.2 Chronic pain 

The International Association for the Study of Pain (IASP) defines chronic pain as “pain 

without apparent biological value that has persisted beyond the normal tissue healing time” (usually 

more than three months). This definition is based on the duration of the pain, and it does not depend 

on the pain aetiology. Chronic pain can be nociceptive, neuropathic, or neither (i.e., pain occurs 

without known somatic background). Neuropathic pain was originally defined by IASP as “pain 

initiated or caused by primary lesion or dysfunction in the nervous system” (Merskey, 1994), and 

recently by an expert group as “pain arising as a direct consequence of a lesion or disease affecting 

the somatosensory system” (Treede et al., 2008). Neuropathic pain can arise from damage to the 

nerve pathways at any point from the terminals of the peripheral nerves to the cortical neurons in the 

brain. It is anatomically classified as central (originating from damage in brain or in spinal cord) or 

peripheral (originating from damage in peripheral nerves). Examples of peripheral neuropathic pain 
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are posttraumatic pain after mechanical nerve lesion, painful diabetic neuropathy, and postherpetic 

neuralgia. Central pain is most commonly caused by stroke, spinal cord injury, and multiple sclerosis 

(Andersen et al., 1995). The term neurogenic pain is defined by IASP as “pain initiated or caused by 

a primary lesion, dysfunction, or transitory perturbation in the peripheral or central nervous 

system” (Merskey, 1994), and it refers to neuropathic pain with full clinical recovery. 

 

Figure 3. Pain terms. Nociceptive pain can be considered to include normal pain and inflammatory 
pain (with peripheral and possibly central sensitization). Alternatively, inflammatory pain can be 
grouped with neuropathic pain under pathophysiologic pain, as changes in pain transmitting system, 
caused by tissue or nerve pathology, are involved in both. Adapted from Devor (2006) with 
permission from Elsevier. 

 

Nociceptive pain is usually considered as “normal”, physiological pain. For example when a 

toe is accidentally hit with a corner of a door, the painful experience matches the mechanical noxious 

stimulus. Typically minor injuries, such as sprains, burns, and infections, lead to inflammatory 

reaction, local release of inflammatory mediators, and sensitization of peripheral nociceptors. The 

resulting symptoms, ongoing pain and hyperalgesia, are adaptive as long as they disappear as the 

injury heals; temporary hyperresponsiveness enhances survival by protecting the injured body part. 

Even these physiological forms of pain may induce neuroplastic changes in the central nervous 



16 

 

system leading to hyperalgesia and allodynia (Treede et al., 2008). Neuropathic pain, on the other 

hand, is a sign of a pathophysiological process in the nervous system (see Figure 3). 

Clinical chronic pain conditions may be a combination of nociceptive, inflammatory, and 

neuropathic pain. The underlying disease, the mechanism of the pain, and the resulting clinical 

symptoms form a complex relationship. If disease-modifying treatment is available, it should be 

applied at the first place (such as joint replacement surgery in osteoarthritis). The treatment of the 

symptoms should be based on the mechanism of pain, and therefore understanding the mechanism of 

the pain is important (Scholz and Woolf, 2002). 

 

2.3 Complex regional pain syndrome 

The first description of CRPS probably originates from about 150 years ago, when Sir Weir 

Mitchell reported on “Gunshot wounds and other injuries of peripheral nerves” during the American 

Civil War (Mitchell et al., 1864). After that, the terms “reflex sympathetic dystrophy” and 

“causalgia” have been used to describe this syndrome. The clinical characteristics of CRPS include 

sensory, autonomic, and motor symptoms. Sensory symptoms include spontaneous pain, allodynia, 

and hyperalgesia, but sensory impairment may also occur. Autonomic nervous system symptoms 

consist of abnormalities in the skin temperature, colour, and sweating. Common examples of motor 

symptoms are weakness, dystonia, tremor, and clumsiness especially in fine motor skills. In later 

stages, clinically apparent signs in the affected limb are atrophy and osteoporosis. The disease is 

typically triggered by an initiating event, such as minor injury or fracture of a limb. CRPS is divided 

into two types: type II with nerve lesion and type I without apparent nerve lesion. The developing 

pain is usually found in the extremity, it is disproportionate to the initiating event, and the pain is not 

restricted to the area of a single peripheral nerve. The initial diagnostic criteria for CRPS were 

published by Stanton-Hicks and colleagues (1995). As motor dysfunction has been shown to be 
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common symptom in CRPS (Veldman et al., 1993; Harden et al., 1999; Birklein et al., 2000), a 

subsequent revision of the diagnostic criteria has been proposed to include motor symptoms (Harden 

et al., 2007). The annual incidence is 26 new cases per 100000, and the condition is more common in 

women than in men (de Mos et al., 2008). The majority of the patients recover spontaneously, but 

sometimes CRPS may be very resistant to treatment and has led even to amputations (Lausten-

Thomsen and Laursen, 2005). 

 CRPS has been under intensive research, but it still remains unclear what is the pathogenesis 

behind CRPS, and why it develops after minor trauma in some patients, but not in others (Birklein 

and Handwerker, 2001; Jänig and Baron, 2003). Possible explanations for the pathogenesis of CRPS 

include neurogenic inflammation, endothelial dysfunction, abnormal sympatho-afferent coupling, 

and small-fibre neuropathy combined with ectopic firing of remaining fibres (Oaklander and Fields, 

2009). Recent brain imaging studies have shown cortical reorganization in the central sensory and 

motor systems of CRPS patients (Juottonen et al., 2002; Maihöfner et al., 2007). Such plastic 

changes have been shown to correlate with the clinical symptoms, such as intensity of pain and 

tactile discrimination, and with the spread of the pain from its original location (Maihöfner et al., 

2003; Forss et al., 2005a; Pleger et al., 2006). Interestingly, decreased pain intensity due to 

rehabilitation was accompanied by normalization of plastic changes and tactile discrimination ability 

(Pleger et al., 2005). As the underlying pathophysiology of this condition is still unknown and the 

treatment options remain limited, functional brain imaging studies could help to understand the 

possible pathophysiological mechanism and help to develop tailored treatment. 

 

2.4 Herpes simplex virus infections and chronic pain 

HSVs are common pathogens. In the general population, 16% of adults have antibodies against 

HSV-2 and 70% against HSV-1 (Arvaja et al., 1999). The primary targets of the virus are the sensory 
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neurons, where the virus can remain latent. During reactivation of the virus, the most common 

affected areas are the skin and mucosal membranes (Whitley and Roizman, 2001). More severe 

complications include encephalitis and meningitis. Interesting characteristics of the virus include its 

ability to invade neural cells and its preference to certain brain areas (Davis and Johnson, 1979).  

HSV infections are known to cause transient neuralgia in the trigeminal, cervical, and sacral 

areas, and also chronic neuropathic pain has been described in the sacral (Haanpää and Paavonen, 

2004) and in trigeminal (Gonzales, 1992) dermatomes.  

Recently, Kallio-Laine and colleagues described a novel patient group who were suffering 

from recurrent HSV infections due to subtle immunological abnormalities and from chronic 

spontaneous pain in one side of the body (Kallio-Laine et al., 2008). The authors suggested that the 

patients were suffering from central neuropathic pain caused by infections and latent HSV in the 

brain. 

 

2.5 Brain imaging in acute and chronic pain 

Brain activity associated with pain has been studied in human subjects with multiple brain 

imaging methods, which either directly or indirectly reflect neural activity. With EEG, MEG, 

positron emission tomography (PET), and fMRI, a widely distributed network of brain areas has 

been shown to be activated during pain. The majority of studies have focused on brain activity in 

healthy individuals elicited by stimulation of peripheral nociceptors with various experimental 

noxious stimuli, and have demonstrated activations most commonly in SI, SII, ACC, IC, PFC, 

thalamus, and cerebellum. The different brain areas are thought to reflect the different dimensions of 

the pain experience, as measured by their activation strengths or correlated activity with other brain 

regions. To date, possible existence of region devoted solely on processing of pain remains to be 

demonstrated. In contrast, a highly distributed network of brain regions appears to be involved in the 
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generation of the pain percept. In addition, intracranial recordings and microneurographic recordings 

from peripheral nerves have increased our understanding concerning the relationship between neural 

activity and subjective perception of pain. 

The brain activation patterns in response to identical experimental painful stimuli have been 

compared between patients suffering from various pain conditions and control subjects. Early PET 

studies showed reduced responses to thermal pain in the ACC of (small groups of) patients suffering 

from postsurgical pain and from rheumatoid arthritis, but responses were increased in atypical face 

pain patients (Derbyshire et al., 1994; Jones and Derbyshire, 1997; Derbyshire et al., 1999). However, 

in larger groups of patients suffering from non-specific low back pain, the responses did not differ 

from those of control subjects (Derbyshire et al., 2002). The finding was later replicated with fMRI, 

suggesting that acute pain processing in many chronic pain conditions is not different from that of 

the healthy controls (Baliki et al., 2006). A recent meta-analysis suggested that prefrontal activation 

was observed more often in patients with clinical pain than in healthy individuals receiving 

experimental pain (Apkarian et al., 2005). In this study, the clinical pain referred to constant pain 

experienced by the patient, or to abnormal evoked sensations, such as hyperalgesia or allodynia. 

However, brain imaging studies of acute experimental pain in chronic pain patients remains 

inconclusive, probably because the studied patient populations have varied a lot in pain distribution, 

history, etiology, and related psychological factors (Apkarian et al., 2005; Kupers and Kehlet, 2006). 

In a similar way, laser-evoked potentials (LEPs) have been used to study many patient groups 

suffering from various pain conditions of peripheral, central, and unclear origin (Kakigi et al., 1991; 

Treede et al., 1991; Gibson et al., 1994; Casey et al., 1996; Hansen et al., 1996; Lorenz et al., 1996; 

Truini et al., 2003). The conclusion based on several studies was that suppression of LEPs indicates 

damage of the spinothalamic tract and supports the diagnosis of neuropathic pain (Cruccu et al., 

2004). 
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Another approach in studying chronic pain has been to measure brain activations associated 

with hyperalgesia and allodynia, because these features are common in various chronic pain 

conditions, especially in neuropathic pain. Measurement of specific cerebral signatures in different 

pain mechanisms would be useful for diagnostic purposes. Robust brain activations in key pain 

processing areas such as IC and ACC were shown in response to mechanical allodynia 

(Schweinhardt et al., 2006a). Similar changes were observed also in experimental hyperalgesia and 

allodynia models in healthy individuals (Maihöfner et al., 2004b; Zambreanu et al., 2005). However, 

in other patient groups, mechanical allodynia elicited no IC or ACC activations (Ducreux et al., 2006; 

Witting et al., 2006). The contradictory results might reflect the varying degrees of spinothalamic 

tract and lemniscal tract lesions in different patient groups, as well as the varying degree of ongoing 

background pain in individual patients (Schweinhardt et al., 2006b). 

One of the earliest approaches to study chronic pain was to compare the regional cerebral 

blood flow (rCBF) between patients suffering from ongoing pain and healthy individuals. A decrease 

of rCBF in the contralateral thalamus was observed in chronic pain conditions including painful 

mononeuropathy, cancer pain, and posttraumatic pain (Di Piero et al., 1991; Hsieh et al., 1995; 

Iadarola et al., 1995), suggesting thalamic hypoperfusion in presence of ongoing pain. 

More recent studies have examined brain activations with fMRI in patients with ongoing pain 

but without external painful stimulation. In patients with chronic back pain, the sustained component 

of the ongoing pain was associated with activity of the medial PFC, whereas the increasing 

component of pain was associated with activity in IC and other regions involved in acute pain (Baliki 

et al., 2006). Chronic ongoing pain has also been shown to disrupt the default mode network (Baliki 

et al., 2008; Cauda et al., 2009). Studying the spontaneous brain activity appears fruitful line of 

research; we (Malinen S, Vartiainen N, Hlushchuk Y, Koskinen M, Ramkumar P, Forss N, Kalso E, 

Hari R, unpublished data) have recently found higher-frequency oscillations and altered connectivity 

of IC in patients with ongoing pain. 
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2.6 Brain imaging methods 

The studies in this thesis were conducted with two complementary brain imaging methods, 

MEG and fMRI. These two noninvasive techniques open a window to the living human brain for 

observation of the electric activity on a millisecond timescale (Hämäläinen et al., 1993; Hari and 

Forss, 1999) and hemodynamic activity with spatial accuracy of millimetre scale. 

 

2.6.1 Magnetoencephalography and electroencephalography  

Neural electric activity in the brain produces weak magnetic fields that can be measured 

outside the head with sophisticated MEG instruments. The synaptic activation in the apical dendrites 

of the pyramidal cells in the cortex results in postsynaptic intracellular currents. These currents are 

extremely small, but as they last tens of milliseconds and therefore summate temporally, and occur 

simultaneously in tens of thousands of neurons, the resulting magnetic fields are strong enough to be 

detected outside the head with MEG (Hari, 1990; Murakami and Okada, 2006). 

Radially oriented currents in a spherical conductor do not produce measurable magnetic field 

outside the sphere, because the magnetic fields associated with radial intracellular currents and the 

simultaneous volume currents cancel out each other. In contrast, magnetic fields associated with 

currents that are tangential to the surface of the spherical conductor are detectable outside the scalp. 

About two thirds of the cortex of the human brain is located inside the fissures, and the pyramidal 

cells are oriented perpendicular to the surface of the cortex. Therefore the cortical sulci are well 

positioned for their activation to be detected with MEG. 

Because the magnetic fields generated by the brain currents are small compared to the static 

magnetic field of the earth (around eight orders of magnitude smaller) it is best to perform MEG 
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measurements inside a magnetically shielded room. The extreme sensitivity of the MEG method is 

based on Superconducting Quantum Interference Device (SQUID) sensors that are immersed in 

liquid helium at a temperature of –269 °C to maintain them in superconducting state. Our MEG 

device has triple sensor elements, each containing two orthogonal planar gradiometers and one 

magnetometer (VectorviewTM, Neuromag Ltd., Helsinki, Finland). Pickup coils of the sensors 

convert the magnetic flux into electric current in a way that depends from the configuration of the 

coil. The planar gradiometers are figure-of-eight shaped coils that give maximum signal over the 

area with the strongest magnetic field gradient, whereas the magnetometers are loop-shaped coils 

that give the maximum signal over the maxima or minima of the magnetic field. They are more 

sensitive to deep sources than are the gradiometers, but the trade-off is increased sensitivity to 

external noise (Hari, 1990). 

EEG measures electric potentials between scalp electrodes, but primarily reflects the same 

underlying neuronal activity that is measured with MEG. Whereas the tissues surrounding the brain, 

the meninges, the skull, and the skin are transparent to the magnetic fields, the electric potentials are 

smeared by the different conductivities of these tissues (Hämäläinen et al., 1993). However, EEG is 

more sensitive than MEG to very deep and radially oriented currents (Hari, 2005). Simultaneous 

MEG and EEG acquisition may be beneficial, because the information acquired with the methods 

complement each other. 

Cortical responses to external stimuli measured with MEG are typically analyzed by averaging 

single-trial responses to improve the signal-to-noise ratio (SNR). The activity that is not time-locked 

to the stimulus is regarded as noise, the level of which reduces as the number of averaged responses 

increases. In the analysis of averaged responses, a visual search across gradiometer channels obtains 

the first guess of time windows and activated areas, because the planar gradiometers show the 

maximum deflections above the current sources. Most commonly used source model is a point-like 

current dipole (equivalent current dipole, ECD) that represents the neural activity in the brain 
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underlying the measured MEG signals. Least-squares fit is employed to find an ECD that explains 

the magnetic field signals from selected area. A result of the fit is a three dimensional location and 

direction of current dipole. The head is typically modelled as a conductor sphere, which adequately 

models the brain and other intracranial tissue. The realistically-shaped conductor model does not 

bring much improvement when compared with the sphere conductor, except in the frontal areas 

(Tarkiainen et al., 2003). The inverse problem—solving the electrical activity of the brain underlying 

the measured magnetic field distribution—has no unique solution, but prior knowledge of anatomy 

and the physiology of the brain as well as the knowledge about the origin of the MEG signal are 

exploited to constrain the amount of solutions. 

To explain the measured signals as completely as possible, additional ECDs can be introduced, 

resulting in a multidipole model combining several ECDs. The quality of the model can be evaluated 

by comparing the explanation predicted by the model and the actual measured signals. Under optimal 

conditions, the localization accuracy of the ECDs is in the order of millimetres. 

The magnetic fields of the brain were first detected with a SQUID magnetometer in 1972 

(Cohen, 1972). After the introduction of whole-scalp magnetometers (Ahonen et al., 1992), MEG has 

been widely applied in studies of human brain function in healthy and diseased brains: the sensory 

and motor systems, spontaneous oscillatory activity, language processing, action observation, 

neurological conditions such as stroke, epilepsy, and presurgical patients have been studied with 

MEG (Hari, 1990; Del Gratta et al., 1999; Hari et al., 2000; Kakigi et al., 2000; Salenius and Hari, 

2003; Hari, 2005; Mäkelä et al., 2006; Salmelin and Kujala, 2006; Shibasaki et al., 2007). 

Pain-related magnetic fields were recorded for the first time in 1983 when the SII cortex was 

shown to be activated by noxious dental stimulation (Hari et al., 1983). Later, both nasal CO2 

stimulation (Huttunen et al., 1986; Hari et al., 1997) and CO2 laser has been used for painful 

stimulation in MEG (Kakigi et al., 1995; Watanabe et al., 1998; Kanda et al., 2000). Recently, a 

thulium laser that specifically stimulates the myelinated Aδ- and unmyelinated C-fibres has been 
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used to study the cortical pain processing in healthy individuals (Ploner et al., 1999b; Ploner et al., 

2000; Nakata et al., 2004; Raij et al., 2004; Forss et al., 2005b). 

 

2.6.2 Functional magnetic resonance imaging 

fMRI is a noninvasive method for mapping brain activity and is based on the phenomenon of 

nuclear magnetic resonance (NMR). Due to their intrinsic properties, hydrogen nuclei in an external 

magnetic field precess at a frequency that is proportional to the strength of the magnetic field. By 

varying the external magnetic field in a systematic manner together with using radiofrequency coils 

to emit electromagnetic energy and to detect the resulting NRM signal, it is possible to generate 

three-dimensional images of the structures of human body. 

The most commonly used method among fMRI techniques is the measurement of blood 

oxygen level dependent (BOLD) signal. This signal is based on the differences of the magnetic 

properties of oxygenated and deoxygenated haemoglobin (Ogawa et al., 1990). As the neurons are 

active, the relative amount of oxygenated blood increases and the associated BOLD signal changes 

can be detected (Ogawa et al., 1990). It has been shown that local field potential amplitude, which 

reflects the postsynaptic activity, is coupled with the BOLD signal, and therefore it is assumed that 

the BOLD signal reflects synaptic activity (Logothetis et al., 2001). The main advantage of the fMRI 

when compared to MEG is the high spatial resolution, in order of millimetres, in both cortical and 

subcortical areas of the brain. However, due to the sluggishness of the hemodynamic response 

(around 3–6 secs), the temporal resolution of the fMRI is in the orders of seconds, rather than in 

milliseconds as with MEG (Aguirre et al., 1998). 

The end product of a typical fMRI measurement is a large amount of data consisting of three-

dimensional arrays of voxels obtained at consecutive time points, which are then subject to several 

preprocessing steps. The data are corrected for movements by defining parameters for translation and 
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rotation in three dimensions. The spatial smoothing increases the SNR, decreases the interindividual 

variance, and helps to meet the statistical assumption by making the noise more normally distributed. 

Normalization of the data to a common template volume is done by applying linear and nonlinear 

transformations. 

In the statistical analysis, the study protocol forms the basis of a general linear model (Friston 

et al., 1995). This model is subsequently convolved with the hemodynamic response function to 

account for the delay between the neuronal activation and the hemodynamic response. The time 

course of the signal is fitted, voxel by voxel, to the model. This results in parameter estimates and 

error estimates for each modelled condition in each voxel. Statistical parametric maps are calculated 

by statistically comparing the parameter estimates of different conditions (e.g. pain vs. warm). 

Typically, fMRI studies concentrate on task- or stimulus-related activity. The analysis of 

spontaneous activity has recently gained popularity and this kind of approach, together with data-

driven analysis methods, such as independent component analysis (ICA), may have potential in the 

study of clinical neurological and psychiatric conditions (Fox and Raichle, 2007). 

In addition to studying the brain function, magnetic resonance imaging methods can be used to 

computationally evaluate the brain morphology with a method called voxel based morphometry 

(VBM) (Ashburner and Friston, 2000). VBM has been used to compare local gray matter 

concentration in various disorders, such as in schizophrenia and in chronic pain (Apkarian et al., 

2004; Glahn et al., 2008). 
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3. Aims of the study 

The aim of this thesis was to employ noninvasive brain imaging to better understand the brain 

mechanisms involved in chronic pain. In two patient groups who were suffering from chronic pain 

with unclear origin, we investigated the brain activation patterns related to touch and pain and 

compared these activation patterns to those of healthy individuals. The specific aims were the 

following: 

 

1. To define optimum interstimulus interval (ISI) to obtain best SNR for laser-evoked cortical 

responses in a fixed measurement time (Study I). 

 

2. To investigate the cortical processing of touch and acute pain in CRPS patients to better 

understand the pathophysiological mechanisms of hypersensitivity in these patients (Study II). 

 

3. To study the reactivity of the primary motor cortex to acute pain in CRPS patients to find signs of 

possible motor cortex dysfunction (Study III). 

 

4. To explore whether patients suffering from recurrent HSV infections and from chronic pain of 

unclear aetiology show chronic-pain-related cortical reorganization (Study IV).  

 

5. To find evidence for central contribution of pain in patients with recurrent HSV infections and 

chronic pain by investigating their hemodynamic responses to touch and acute pain (Study V). 
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4. Materials and methods 

4.1 Subjects 

Study N of patients and healthy subjects Stimuli 
Imaging 

method 

I 9 healthy Laser MEG and EEG 

II 8 CRPS, 9 healthy Laser, tactile MEG 

III 8 CRPS, 8 healthy Laser MEG 

IV 8 HSV, 9 healthy Tactile MEG 

V 8 HSV, 11 healthy Thermode fMRI 

Table 1. Number of subjects, stimulation type, and brain imaging method in Studies I–V. 

 

4.1.1 Healthy subjects 

Nine healthy subjects (8 right-handed, 7 men, 2 women, ages 19–37 years, mean 27 years) 

participated in Study I. Due to excessive eye movements, the data from one subject were excluded. 

Nine healthy subjects (8 right-handed, 1 ambidextrous, ages 28–57 years, mean 46 years) 

participated both in Study II and IV, and eight of them in Study III. Eleven healthy subjects (10 

right-handed, 1 ambidextrous, 6 men, 5 women, ages 25–46 years, mean 30 years) participated in 

Study V. 

 

4.1.2 Chronic pain patients 

Eight CRPS patients (all right-handed females; ages 26–57 years, mean 46 years) participated 

in Studies II and III. The patients were recruited from Orton Hospital, and a neurologist and a 
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physiatrist had performed clinical examinations of the patients. Because the patients had no 

evidence of peripheral nerve lesions, the diagnosis of CRPS type 1 was set according to the criteria 

by IASP (Stanton-Hicks et al., 1995). All patients suffered from continuous spontaneous upper-limb 

pain that had lasted for 1–9 years. The pain was best described as burning, stabbing, or tearing, and 

was rated 5–8 on the Visual Analogue Scale (VAS; from 0 to 10). Brush allodynia and fluctuating 

edema were present in the affected hands in all patients and vasomotor or sudomotor dysfunction in 

five patients. All patients had decreased grip strength and clumsiness in fine motor skills of the 

painful hand. To exclude lesions in the peripheral nerves and in the brain, electroneuromyography 

(ENMG) and magnetic resonance imaging (MRI) had been performed. 

Eight patients (all right-handed, seven females) suffering from recurrent HSV infections and 

chronic spontaneous unilateral pain participated in Studies IV and V. At the time of the MEG-

recordings of Study IV, the ages of the patients were 40–51 years (mean 46 years). The fMRI-

measurements took place on average one year later. The patients had spontaneous widespread pain 

on one side of the body, and the long-term average pain at the time of the MEG-recordings was 

rated 1–9 on numerical rating scale (NRS, from 0 to 10). The pain had started 3–20 years before the 

recordings and its intensity fluctuated over time from absent to severe. In three patients, the pain 

comprised the entire one side of the body, and in five patients, the pain covered at least three of the 

following areas: the face, trunk, arm, and leg. The patients were seropositive for HSV-1 or HSV-2, 

and had either active labial or genital herpes (3–12 recurrences per year), or had had recurrent 

HSV-2 induced meningitis episodes. The patients were recruited from the Pain Clinic of the 

Helsinki University Central Hospital, and they were a subgroup of the 17 patients described by 

Kallio-Laine et al. (2008). In six out of eight patients, the pain emerged first in a small area but 

spread later to wide regions in the ipsilateral body. In five out of eight patients, spontaneous pain 

worsened during HSV reactivation. 
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4.2 Stimuli 

4.2.1 Tactile stimuli 

Tactile stimuli were delivered to the fingertips with pneumatic diaphragms (Mertens and 

Lütkenhöner, 2000). In Studies II and IV, thumbs and little fingers of both hands were stimulated 

with 1-s ISI in one session, to evaluate the extent of the hand representation area in the SI cortex, 

and the index fingers of both hands were stimulated with 3-s ISI in another session, to evaluate the 

amplitude and latency of the SI response.  In Study V, index, middle, and ring fingers were 

stimulated with a varying stimulus onset asynchrony of 200–600 ms in 20-s blocks. The tactile 

stimulation blocks alternated with equally long rest periods. 

 

4.2.2 Thulium-laser stimuli 

Experimental acute pain was produced in Studies I, II, and III with thulium laser stimulator 

(Tm:YAG, Baasel Lasertech, Starnberg, Germany). Studies II and III were based on the same 

recordings. Short laser pulses (duration 1 ms, wavelength 2000 nm) were conducted with an optic 

fibre inside to the magnetically shielded room. An assisting person manually delivered the laser 

beam to the dorsum of the hand. The diameter of the circular laser light spot on the skin was about 5 

mm, resulting in a stimulated area of about 20 mm2. The laser stimulation elicited a fast pricking 

pain, often accompanied by a slower burning sensation. The stimulation site was changed between 

successive pulses within a skin area of about 5 cm2 to avoid adaptation and burns of the skin. In 

Study II, the individual pain thresholds before the MEG recordings were individually determined by 

increasing the stimulus energy until subjects reported pain (VAS = 1). This procedure was repeated 

three times and the mean stimulus energy obtained was set as the pain threshold. During the 

measurement, the stimulus energy of 1.4–1.5 times the pain threshold was administered (740 mJ in 
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control subjects, 520 mJ in patients). Already at this intensity level, the patients experienced severe 

pain and therefore higher intensity level stimulation was impossible. Additional energy of 1.1 times 

the pain threshold (540 mJ) was used in control subjects for control purposes. After the stimulation 

sessions, the subjects evaluated the mean pain intensity. 

 

4.2.3 Thermode stimuli 

In Study V, thermal pain was produced by two Peltier elements (TSA II, Medoc, Israel). The 

elements (16 mm x 16 mm) were placed on the hand dorsa. The stimulus temperature increased at 

10 °C/s and decreased at 8 °C/s. Prior to experiment, we tested the appropriate stimulation 

temperature by increasing the stimulus temperature in a step-by-step manner to highest level 

tolerated by the subject. During the experiment, 10-s thermal stimuli, either painful heat (mean ± 

SEM 47.4 ± 0.2 °C in control subjects, 46.6 ± 0.7 °C in patients) or innocuous warmth (42 °C), 

were pseudorandomly delivered to each hand with 30-s rest periods (22 °C) in between. 

 

4.3 Magnetoencephalographic and electroencephalographic recordings 

The MEG and EEG recordings were carried out in the magnetically shielded room in the 

Brain Research Unit of the Low Temperature Laboratory, Helsinki University of Technology. The 

cortical responses were recorded with a 306-channel neuromagnetometer (VectorviewTM, 

Neuromag Ltd., Helsinki, Finland). To align the MEG and the MRI coordinate systems, four 

indicator coils were placed on the scalp and their positions with respect to the anatomical landmarks 

were measured with a three-dimensional digitizer. The head position in relation to the sensors was 

determined by measuring the magnetic signals produced by currents led into the indicator coils. 

During recordings, the subject was sitting with the head supported against the helmet-shaped sensor 
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array of the magnetometer. The signals were band-pass filtered through 0.03–200 Hz and digitized 

at 600 Hz. The analysis period was from –200 to 500 ms in Studies I, II, and IV, and from –1000 to 

3500 ms in Study III. Altogether 110–120 tactile responses, and 40–50 laser-evoked responses were 

averaged for each stimulation site. Simultaneously recorded electro-oculograms (EOG) were 

monitored for rejection of MEG epochs that coincided with excessive eye movements or blinks. 

Laser-evoked fields in Studies I and II, and somatosensory evoked fields in Study II were 

modelled by multiple current dipoles (see 2.6.1). In Study IV, the somatosensory evoked fields 

measured over the SI cortex were modelled with single dipoles. In Study III, the temporal spectral 

evolution (TSE) of the level of the motor-cortex 20-Hz rhythm was monitored by first filtering the 

oscillatory activity through 15–25 Hz, then rectifying, and finally averaging it time-locked to laser 

stimuli (Salmelin and Hari, 1994; Silén et al., 2000). The channel showing maximum reactivity was 

chosen, and the suppression, rebound and reactivity of the rhythm were calculated for each subject. 

 

4.4 Functional magnetic resonance imaging measurements 

The fMRI measurements in Study V were conducted at the Advanced Magnetic Imaging 

Centre, Helsinki University of Technology with 3.0 T Signa EXCITE scanner (General Electric, 

Milwaukee, WI, USA). A gradient-echo echo-planar imaging sequence with the following 

parameters was used: repetition time (TR) 2000 ms, echo time (TE) 32 ms, flip angle (FA) 75°, 

field of view (FOV) 20 cm, and matrix size 64 x 64. Imaging of the whole brain required 31–33 

oblique slices, each 4 mm thick, with no spacing in between. Parameters for the T1-weighted 

anatomical images, obtained with 3D inversion-pulse prepared spoiled-gradient-recalled (SPGR) 

acquisition, were the following: TR 9.0–9.2, TE 1.9–2.0, inversion time 300 ms, FA 15°, matrix 

size 256 x 256, FOV 24 or 26 cm, and slice thickness 1 mm. 
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The fMRI data were preprocessed with BrainVoyager QX (Brain Innovation, Maastricht, The 

Netherlands). VBM analysis was conducted with the SPM2 software package (Wellcome 

Department of Imaging Neuroscience, London, UK, http://www.fil.ion.ucl.ac.uk/spm) and Matlab 

6.51 (Mathworks, Natick, MA). 
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5. Experiments 

5.1 Optimising interstimulus interval for cortical laser-evoked responses 

Laser-evoked responses have been widely used in the basic research of cortical pain 

processing and in clinical applications such as in the assessment of the nociceptive pathway 

function (Bromm and Lorenz, 1998; Spiegel et al., 2000; Cruccu et al., 2004). 

For successful use in clinical settings, the SNR of the responses should be maximized by 

optimizing the stimulus parameters. Increasing the number of averaged responses enhances the 

SNR as the (stationary) noise decreases in proportion to the square root of the number of averaged 

responses. In a fixed measurement time, the number of responses can be increased by shortening the 

ISI. On the other hand, the responses have certain recovery cycles; the amplitude of the response 

decreases with shortening ISI, whereas it increases with longer ISI to a certain saturation point 

(Wikström et al., 1996). Further, long-latency responses are known to be sensitive to changes of 

attention (Garcia-Larrea et al., 1997). Therefore, extensively long measurement session may 

decrease attention and vigilance and affect the amplitude of the responses. 

Although laser-evoked responses are widely in use, their recovery cycles had not been 

previously systematically studied. The aim of this study was to measure the recovery cycles of 

LEFs and LEPs to obtain the optimal ISI for best SNR in fixed measurement time. 

 

5.1.1 Results 

The laser pulses were described as pricking pain, followed by weaker burning pain. The 

subjects rated the intensity of the pain significantly lower at the 4-s than at 0.5-s ISI (3.6 ± 0.4 vs. 

4.4 ± 0.6, p = 0.01; mean ± SEM, 0–10 scale), and the lowest intensity rating was obtained with the 

longest ISI of 16 sec (3.1 ± 0.5). 
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The laser pulses elicited bilateral activations in all subjects in the SII regions at 150–205 ms 

and contralateral activation in seven out of eight subjects in the SI region at 160–195 ms. The 

simultaneously registered LEPs from the derivation Cz–mastoid comprised a surface-negative peak 

at 190–230 ms and a subsequent surface-positive peak at 310–330 ms. 

The MEG responses showed good replicability during the measurement session, but the EEG 

peak-to-peak potentials decreased 25–54% (p < 0.05) from the beginning to the end of the session.  

Increasing the ISI from 0.5 s to 4 s strongly increased the amplitudes of all responses, but 

further increase had little additional effect. On the basis of the curve fitting, an exponential curve 

with time constant of 3.5 s best explained the measured recovery cycle of responses. As shown by 

Ahlfors et al. (1993), the optimal ISI for the best SNR obtained in a fixed measurement time is 1.26 

x time constant. Therefore, the optimal ISI for pain-related magnetic and electric responses is 

around 4–5 s. 

 

5.1.2 Discussion 

The results show that the amplitudes of the LEFs and LEPs increase with increasing ISI, and 

start to saturate after 4-s ISI. Based on the recovery cycles of LEFs and LEPs, the optimum ISI for 

recording laser-evoked responses in a fixed measurement time is around 4–5 s. Our findings agree 

with and complement the findings of other groups who have shown amplitude increase of pain-

related responses with increasing ISI (Jacobson et al., 1985; Truini et al., 2004). 
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5.2 Responses to tactile and noxious stimulation are altered in complex 

regional pain syndrome 

Patients with CRPS commonly suffer from hyperalgesia and allodynia to external stimulation, 

in addition to chronic ongoing pain. Prior brain imaging studies in CRPS patients have 

demonstrated increased cortical activations in SI, SII, IC, and ACC during mechanical hyperalgesia 

and cortical reorganization of the hand representation area in the SI cortex contralateral to the 

affected limb (Juottonen et al., 2002; Maihöfner et al., 2003; Pleger et al., 2004; Maihöfner et al., 

2005). The amount of reorganizational changes has been shown to correlate with the severity of 

ongoing pain and with the tactile sensitivity. In CRPS patients in whom the symptoms are alleviated, 

spontaneously or by therapy, the reorganization appears to be reversible (Maihöfner et al., 2004a; 

Pleger et al., 2005), but it remains unknown whether the cortical reorganization persists when CRPS 

becomes chronic. We investigated the cortical processing of touch and acute pain in CRPS patients 

with MEG, to better understand the central mechanisms of hyperesthesia, and to find out whether 

the plastic changes in the SI cortex are permanent in chronic CRPS patients. 

 

5.2.2 Results 

In the patients, the pain thresholds to laser pain were lower than in the control subjects, not 

only for the painful (p = 0.003) but also for the healthy hand (p = 0.02) (see Figure 4). The laser 

stimuli of similar energy (520–540 mJ) were rated more painful by the patients than control subjects, 

both in the painful (7.5 ± 0.7 vs. 2.3 ± 0.3, p = 0.005) and healthy hands (5.4 ± 1.0 vs. 2.3 ± 0.3, p = 

0.05). 

The distance between the thumb (D1) and the little finger (D5) representations in SI was 

smaller for the painful compared with the healthy hand (mean ± SEM; 6 ± 2 vs. 10 ± 2 mm, p = 

0.02). The mean SI response amplitude to tactile stimulation was 33% stronger (p = 0.05) for the 
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painful than the healthy hand whereas the SII responses did not differ between the hands. The PPC 

responses to tactile stimulation were found in only three patients, whereas they were observed in all 

control subjects. 

 

 

Figure 4. Pain thresholds (A) and ratings (B) in control subjects (circles) and in CRPS patients 
(squares). Black/white squares correspond to painful/healthy hands. *p < 0.05, ***p < 0.005. 

 
 

Figure 5 shows that to painful laser stimulation with similar energy (520–540 mJ), the mean 

SII cortex activation strength was 12–15 nAm in CRPS patients, and 5–10 nAm in control subjects, 

but this difference was not statistically significant. The PPC was similarly activated in control 

subjects and in patients. When the stimulation energies of 1.4–1.5 times the pain threshold were 

compared (520 mJ in CRPS vs. 740 mJ in control subjects), the SII activation strengths did not 

differ significantly, but the PPC activation was stronger in control subjects than in patients (controls 

13.8 ± 3.5 nAm vs. patients healthy hand 4.0 ± 2.0, p = 0.03; patients painful hand 4.5 ± 3.7, p = 

0.09; PPC source was observed in seven control subjects, but only in two CRPS patients to painful 
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and three to healthy hand stimulation). The PPC activation correlated with the pain rating in the 

control subjects (r = 0.60, p = 0.01), but such correlation was not observed in the patients. 

 

 

Figure 5. Source strengths to painful laser stimulation in contra- and ipsilateral somatosensory 
cortices (SIIc and SIIi) and in posterior parietal cortex (PPC). In control subjects, sources were 
stronger to 740 mJ than to 540 mJ stimulation (*p < 0.05). Black/grey = painful/healthy hand. 

 

5.2.3 Discussion 

Earlier studies have demonstrated that the cortical reorganization in SI in CRPS patients 

reversed back to normal, together with the clinical improvement of the symptoms (Maihöfner et al., 

2004a; Pleger et al., 2005). The present results show that the D1–D5 distance remains reduced in 

chronic CRPS patients. 

The lowered pain threshold and the elevated perceived pain intensity, not only in the painful 

but also in the healthy hand, indicate a generally altered perception of pain, rather than 

hypersensitivity restricted to only one side of body. This result agrees with a previous study which 

showed that the pain thresholds also in the unaffected limb of CRPS patients tend to be lower than 

in the control subjects (Kemler et al., 2000). 

With similar stimulation energy (520–540 mJ), SII cortices were clearly activated in control 

subjects and in patients, suggesting that the nociceptive pathways in CRPS patients transmit 
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noxious impulses from the peripheral Aδ-fibres normally at least to the SII cortex. Because the SII 

activation was not statistically significantly enhanced in patients compared with control subjects, 

although the patients experienced more severe pain, it is possible that some other pain-processing 

area such as ACC or IC, could contribute to the hyperesthesia to pain. 

The patients’ decreased PPC activation to laser stimulation could be explained by the lower 

stimulation energy. However, the almost absent PPC activations to tactile stimulation in the patients 

may indicate malfunction of PPC. This is supported by recent study in CRPS patients, which 

demonstrated slowed grasping movements of the hand in a kinematic analysis, suggesting disturbed 

integration of visual and proprioceptive in PPC. In the same study, the motor performance in the 

patients correlated with PPC activity (Maihöfner et al., 2007). 

 

5.3 Motor-cortex reactivity to noxious stimulation is decreased in 

complex regional pain syndrome 

The diagnostic criteria of CRPS have traditionally concentrated on the sensory, autonomic, 

and trophic features (Stanton-Hicks et al., 1995). Because motor dysfunction is common in CRPS 

(Veldman et al., 1993; Birklein et al., 2000), revised diagnostic criteria for CRPS have been 

proposed to include also motor symptoms (Harden et al., 2007). Brain imaging studies in CPRS 

have demonstrated bilateral disinhibition of the motor cortex and adaptive changes of the central 

motor circuits (Schwenkreis et al., 2003; Maihöfner et al., 2007). We studied the motor cortex 

reactivity in response to acute painful stimuli, to clarify the role of possible motor cortex 

dysfunction and its relationship with clinical symptoms in CRPS patients. 
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5.3.1 Results 

Spectrum of the spontaneous oscillatory activity recorded over the sensorimotor region in 

both hemispheres during rest with eyes open showed spectral peaks at around 10 and 20 Hz in both 

patients and control subjects. The mean (± SEM) peak frequency in both groups was 18.8 ± 0.5 Hz, 

and the amplitudes of these peaks did not differ between the control subjects (10 ± 2 fT/cm and 11 

± 2 fT/cm for right and left hemisphere) and patients (10 ± 2 fT/cm and 11 ± 2 fT/cm for 

hemispheres contralateral to painful and healthy hand). 

The painful laser stimuli elicited clear changes in the level of the 20-Hz rhythm measured 

over the contralateral MI region (see Figure 6). In the control subjects, the strength of the reactivity 

(peak-to-peak amplitude measured between suppression and rebound peaks) did not differ between 

the 740 mJ and 540 mJ energy stimulation, but the suppression peaked earlier to 740 mJ than to 540 

mJ stimulation (432 ± 61 ms vs. 757 ± 82 ms p = 0.005).  In the CRPS patients, 20-Hz rhythm 

reactivity in the hemisphere contralateral to the affected hand was attenuated compared with the 

high and low intensity stimulation in control subjects (4.1 ± 1.5 fT/cm vs. 13.9 ± 3.9 fT/cm; p = 

0.04, high; 4.1 ± 1.5 fT/cm vs. 10.2 ± 3.0 fT/cm; p = 0.03, low). The peak latencies of suppression 

and rebound did not differ significantly between the groups. In the patients, the level of reactivity 

correlated inversely with the intensity of spontaneous pain in the affected hand (r = –0.95, p = 

0.0002). Furthermore, the level of reactivity correlated with the grip strength in the affected hand (r 

= 0.61, p = 0.05). 
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Figure 6. Grand averages of level of motor-cortex 20-Hz rhythm time-locked to painful laser 
stimulation in control subjects and in patients. Control subjects were stimulated with two energy 
levels (740 mJ and 540 mJ) and patients were stimulated with one energy level (520 mJ). 

 

5.3.3 Discussion 

Our results demonstrate decreased reactivity of the motor-cortex 20-Hz level rhythm in 

response to acute laser pain in CRPS patients. The suppression of the 20 Hz level oscillations in 

healthy individuals has been interpreted to reflect excitation or disinhibition of the motor cortex, 

and the subsequent rebound has been assumed to reflect inhibition (Salmelin and Hari, 1994; 

Salenius et al., 1997). 

The correlation between decreased reactivity and the amount of ongoing spontaneous pain in 

the affected hand suggests a causal relationship between the ongoing pain in CRPS and the motor 

cortex reactivity. TMS studies in CRPS patients have indicated disinhibition or hyperexcitability of 

the motor cortex, either bilaterally or contralaterally to the painful side (Schwenkreis et al., 2003; 

Eisenberg et al., 2005). However, we did not find increased reactivity to acute pain as a sign of 

hyperexcitability, but instead decreased reactivity (consisting of decreased suppression and rebound) 
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as a sign of defective interplay between excitation and following inhibition. If under normal 

circumstances the meaning of the suppression and subsequent rebound of the motor cortex 

originated 20-Hz rhythm is the preparation of voluntary movements, one could speculate that 

ongoing pain might lead to exhaustion—or overexcitation—of the motor cortex, so that acute pain 

does not adequately alarm the motor system. 

 Interestingly, the reactivity decrease in the motor cortex correlated with the decreased grip 

strength in the affected hand, suggesting that central motor system dysfunction could partly explain 

the observed motor deficits in CRPS. This is in line with recent fMRI study showing correlation 

between the motor cortex activity and motor performance in CRPS patients (Maihöfner et al., 2007).  

The results indicate a tight relationship between central motor system dysfunction and clinical 

symptoms such as ongoing pain and weakness in CRPS. Therapy aimed at normalizing the motor 

function in CRPS might be beneficial also for the pain symptoms. 

 

5.4 Patients with chronic pain and recurrent herpes simplex virus 

infections show plastic changes in the primary somatosensory cortex 

Plastic changes in the SI cortex have been demonstrated in patients suffering from various 

chronic pain conditions, such as phantom limb pain, CRPS, low-back pain, and painful carpal 

tunnel syndrome (Flor et al., 1995; Flor et al., 1997; Juottonen et al., 2002; Tecchio et al., 2002). 

Although the plastic changes have been linked primarily with pain, the influence of reduced afferent 

input due to peripheral nerve damage or due to lack of use of the limb can not be ruled out. We 

aimed to clarify, whether cortical reorganization in SI cortex is observed in a patient group who 

suffered from chronic pain in one side of the body (including the upper limb), but were able to use 

the painful limb in normal manner and had no signs of peripheral nerve damage. 
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5.4.1 Results 

The cortical SI responses to tactile stimulation peaked at the same latency and were equally 

strong in the control subjects and in the patients (latency: 58 ± 1 ms controls vs. 57 ± 2 painful, 54 ± 

1 ms healthy, n.s.; strength: 28.9 nAm controls vs. 23.3 nAm painful, 23.1 nAm healthy, n.s.). 

These parameters did not differ between the healthy and the painful hands in the patients. Figure 7 

shows in two representative HSV patients that the D1–D5 distance in the SI cortex was decreased in 

the hemisphere contralateral to the painful hand compared to the other hemisphere. At group level, 

the mean (± SEM) D1–D5 distance in SI was shorter to the stimulation of the painful compared to 

the healthy hand (7 ± 1 vs. 13 ± 2 mm, p = 0.04).  

 

Figure 7. Finger representations in SI in two HSV patients. Black symbols correspond to 
affected and white symbols to healthy hemisphere. 

 



43 

 

5.4.2 Discussion 

The observed decreased D1–D5 distance in SI in HSV patients indicates that cortical 

plasticity may be a common phenomenon in various chronic pain conditions. Earlier, reorganization 

has been observed in patients who have reduced afferent input due to nerve trauma or a tendency to 

immobilize the hand (Flor et al., 1995; Juottonen et al., 2002). Our patients had no indication of 

peripheral nerve lesions and the pain did not restrict the use of the affected hand. Therefore the 

influence of reduced proprioceptive input in the development of reorganization is unlikely.  

The mechanism of pain-related cortical reorganization is unclear, but it is possible that 

continuous pain could interfere with the tactile processing and cause cortical changes. It is known 

that peripheral nerve damage induces extensive neuroplastic changes in the dorsal horn of the spinal 

cord, and similar changes may occur also at supraspinal level (Woolf and Mannion, 1999). 

 

5.5 Chronic pain in patients with recurrent herpes simplex virus has a 

central contribution 

Recently an interesting chronic pain patient group was described by Kallio-Laine et al. (2008). 

The patients suffered from recurrent HSV infections and from unexplained chronic pain widespread 

in one side of the body.  The clinical picture suggested central pain, but direct supporting evidence 

was lacking. Our aim was to study, with functional and morphological brain imaging, whether the 

HSV patients have functional or structural abnormalities in the central pain-processing circuits. 

 

5.5.1 Results 

Subtle sensory abnormalities were found in the patients. Temperature sensitivity in the hand 

was lower on the painful side, compared with the healthy side (cold difference 1.4 °C, p = 0.04, 
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warmth difference 2.1 °C, p = 0.06). The tactile sensitivity was lower on the painful side compared 

with the healthy side (p = 0.04). 

The perceived intensity of painful thermal stimuli (47.4 ± 0.2 °C in control subjects, 46.6 ± 

0.7 °C in patients; n.s.) was rated similarly in both groups (6.5 ± 0.5 in control subjects, 6.3 ± 0.6 in 

patients). 

In the control subjects, a well-known network of pain-processing areas was activated in 

response to thermal pain, including the IC, SII cortices, ACC, PPC, thalamus, striatum, frontal, and 

prefrontal cortices.  In patients, the activations were statistically significantly weaker in the bilateral 

IC, in ACC, and in thalamus. Moreover, whereas the insular responses in the contralateral 

hemisphere were symmetric in control subjects to both left- and right-hand stimuli, in patients the 

responses to healthy hand stimulation were weaker compared to painful hand stimulation (see 

Figure 8). The responses to tactile stimulation in SI and SII cortices were similar in both groups. 

Figure 9 shows that the individual touch-related responses in SI and SII cortices were similar in 

control subjects and patients, but the insular responses were smaller in patients than in control 

subjects. VBM demonstrated decreased gray matter density in the frontal and prefrontal areas and in 

the ACC. 
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Figure 8. Group level hemodynamic responses to pain (A) and touch (B). Blue traces 
represent controls and red traces represent patients. Half of patients were flipped along midsagittal 
axis, normalizing painful side of the body to right. 
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Figure 9. Response strengths of touch-related responses from contralateral primary and 
secondary somatosensory (SI and SII) cortices and pain-related responses from contralateral insular 
cortex (IC). 

 

5.5.2 Discussion 

We found functional and structural changes in the central nervous system in patients suffering 

from chronic pain and from recurrent HSV infections. The areas that are normally activated to acute 

experimental pain—the IC, ACC, and thalamus—showed reduced responses to acute painful heat, 

suggesting altered processing of noxious input in these patients. Morphological changes were 

observed in the frontal and prefrontal areas, which have been associated with chronic pain in earlier 

VBM and fMRI studies (Apkarian et al., 2004; Baliki et al., 2006). 

In the patients, the hemodynamic responses to healthy hand stimulation were reduced 

compared with the painful hand. Such a reduction could be explained by functional impairment of 

the nociceptive pathways. An interesting possibility is that recurrent HSV infections have led to 

functional and structural changes in the brain, giving rise to central pain. This is supported by the 



47 

 

known neuroinvasiveness of the HSV, and by its tendency to affect especially temporal and frontal 

areas. The relationship between HSV and central pain should be studied in future. 

An alternative option is that functional and structural changes are secondary to chronic pain, 

as frontal decrease of gray matter has been observed earlier in brain imaging studies in chronic pain 

patients (Apkarian et al., 2004). 
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6. General discussion 

Functional brain imaging methods are powerful tools for studying the central nervous system 

mechanisms involved in the development and maintenance of chronic pain. Particularly in chronic 

pain conditions with unknown aetiology and pathophysiology, functional brain imaging may be 

used to pinpoint neural dysfunction related to, or underlying the pain. Abnormalities found in the 

central somatosensory and nociceptive processing could facilitate the mechanism-based diagnosis 

and therapy for chronic pain. 

Measurements of brain responses to external stimuli in patients suffering from chronic pain 

can be challenging. Using the same stimulus energy in hypersensitive patients and in control 

subjects may be impossible. The mechanism underlying the pain is difficult to conclude on the basis 

of the symptoms and the aetiology alone, because of complex relationship between disease process, 

mechanisms of pain, and clinical symptoms. Brain imaging may be beneficial in clarifying these 

relationships and be a step towards the mechanism-based treatment of chronic pain. 

 

6.1 Primary somatosensory cortex reorganization and chronic pain 

Reorganizational changes in SI have been observed in many chronic pain conditions with a 

wide range of aetiologies, such as phantom limb pain, neuropathic pain, and CRPS (Flor et al., 1995; 

Flor et al., 1997; Juottonen et al., 2002; Tecchio et al., 2002). The amount of cortical reorganization 

has been shown to correlate with the intensity of pain, both in the sensory and motor cortices (Flor 

et al., 1995; Lotze et al., 2001; Maihöfner et al., 2004a). However, the directionality between the 

cortical plasticity and pain has not been definitely concluded (Flor, 2008). The pain itself could 

cause cortical plasticity, as it has been shown that acute pain can modify the cortical maps in 

healthy subjects (Sörös et al., 2001). On the other hand, the process of maladaptive plasticity could 
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at least partially cause the chronification of the pain. Our finding of similarly decreased D1–D5 

distance in the SI contralateral to the painful limb in both HSV and CRPS patients suggests that 

cortical reorganization can be induced by various chronic pain conditions.  

The mechanism of cortical reorganization is unclear. Cortical reorganization may also reflect 

changes occurring at thalamic or spinal level, as reorganizational changes in phantom limb patients 

have been demonstrated also in thalamus (Davis et al., 1998). Increased activity of peripheral 

nociceptors is known to lead to changes in the synaptic structure of the spinal cord (Woolf and 

Salter, 2006). One possibility is that the continuous pain in our patients could gate somatosensory 

input at spinal, supraspinal, or cortical level and lead to SI reorganization. 

Because our results indicate a tight relationship between chronic pain and cortical 

reorganization, therapy aimed at normalizing the reorganizational changes in CRPS and in other 

chronic pain conditions might be beneficial also for the pain symptoms. Cortical reorganization 

might be an additional measure of chronic pain, and it could be useful in diagnostics and follow-up 

in chronic pain conditions. 

 

6.2 Changes in other cortical areas in chronic pain 

LEPs have been widely used in the studies of pain-related cortical processing in healthy 

subjects and in various neurological patient groups with altered pain perception (Bromm and 

Lorenz, 1998; Kakigi et al., 2005). The most prominent and the most commonly measured LEP 

component is the vertex potential N200–P300, which probably is generated predominantly in the 

ACC (Bromm and Lorenz, 1998; Lenz et al., 1998; Frot et al., 2008). Lesions in the spinothalamic 

system are associated with attenuated LEPs (Cruccu et al., 2004). We studied the cortical 

processing of touch and pain in CRPS patients with MEG, because this method is well suited to 

measure activity from somatosensory cortices (Hari and Forss, 1999). 
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In our CRPS patients, the SII responses were at least as strong as in the control subjects, when 

laser stimulation that mainly excites the Aδ-fibres was used, suggesting that the nociceptive 

pathways conduct impulses from the periphery to the cortical level. Dysfunction of small fibres 

(Aδ- and C-fibres) has been suggested to be a possible mechanism behind the chronic pain in CRPS 

(Oaklander and Fields, 2009). Therefore it would be interesting, although technically demanding, to 

study the C-fibre function in CRPS patients. 

The observed attenuated PPC responses to tactile stimulation and the decreased motor cortex 

reactivity to acute pain might indicate a malfunction of these cortical areas in CRPS. The decrease 

of the reactivity of the motor cortex correlated with the amount of spontaneous pain, suggesting 

tight coupling between spontaneous pain and motor cortex dysfunction. It is interesting that the 

motor cortex reactivity correlated with the grip strength in our patients and that both the motor 

cortex and PPC activities have been shown to correlate with motor performance in a recent fMRI 

study (Maihöfner et al., 2007). It is possible that the continuing pain in our CRPS patients could 

have caused constant excitation state of the motor cortex, so that acute painful stimuli did not cause 

additional activation. Both the continuous pain as well as the motor cortex malfunction could also 

contribute to the dysfunction of PPC. Taken together, malfunction of the motor cortex and the 

PPC—induced by chronic pain—could contribute to the motor symptoms and neglect-like 

symptoms that are commonly observed in CRPS patients. Therapy aimed at normalizing the 

function of these areas might be beneficial in CRPS. It might be useful to study whether motor and 

visuospatial training might lead to alleviation of the CRPS symptoms. 

6.3 Chronic pain and recurrent herpes simplex virus infections 

The observed functional and morphological changes in the central pain circuitry, together 

with the widespread distribution of pain, support the hypothesis for central involvement in the 

development of pain in patients suffering from recurrent HSV infections. 



51 

 

The reduced hemodynamic responses to pain in ICs, ACC, and in thalamus, together with the 

normal hemodynamic responses to touch in SI and SII cortices suggest that in these patients, the 

pain-processing areas are specifically affected. The reduced responses could be a sign of a 

spinothalamocortical tract lesion that is too subtle to be otherwise detected. In these patients, the 

cortical responses to acute laser pain in the SII and PPC areas measured with MEG did not differ 

from those of the healthy control subjects, and the motor cortex reactivity to acute pain was normal 

(Vartiainen N, unpublished data). This fits well with these patients not having disturbing motor and 

neglect-like symptoms. This finding also suggests that chronic pain as such does not always lead to 

motor cortex and PPC dysfunction. On the contrary, the plasticity in SI was a common finding in 

both patient groups. 

It is interesting that in most patients with recurrent HSV infections, there were no clinical 

signs of central nervous system infection. Two patients had meningitis, and one had suspected 

encephalitis. The possibility that a recurrent labial or genital virus infection in some susceptible 

individuals could cause changes in central pain processing circuits and cause central pain, should 

motivate further studies, especially among patient groups vulnerable to such infections. In 

susceptible patients, more aggressive treatment could possibly prevent the development of central 

nervous system changes and chronic pain. 

 

6.4 Future goals 

It is clear that the treatment of chronic pain should be based on the mechanism of pain. Brain 

imaging methods may be helpful in reaching this goal, as brain activity associated with certain 

mechanism may be distinct and could thereby be used for classification of pain conditions and for 

tailored pharmacotherapy and rehabilitation. One possible future approach may be the studying of 

resting state activity of the brain in chronic pain patients. 
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Brain imaging has helped us to understand which brain areas are activated when an individual 

perceives acute pain, and different areas are assumed to play different roles in contributing to the 

subjective experience of pain. Simultaneously with the experience of pain, complex pro- and 

antinociceptive modulation takes place along the neuraxis. Better understanding of this modulation 

by functional imaging may help to understand the development of various chronic pain conditions, 

and why some individuals may be susceptible to develop chronic pain. As this modulation occurs 

already at the level of the brain stem and the spinal cord, technical development allowing functional 

imaging of these regions will be necessary. 

As several analgesic drugs are being developed for the treatment of chronic pain, and 

especially neuropathic pain, functional imaging of central nervous system may be used to facilitate 

the pharmacological development by quantifying central correlates of pharmacological effects. 
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7. Conclusions 

The main results of this thesis work were the following: 

The optimum ISI for recording cortical laser-evoked responses with best possible SNR in a 

restricted time slot is around 5 s. 

In chronic CRPS, the plastic changes in the SI cortex appear to be permanent, at least during 

the three-year follow-up. The about 33% increased SI responses to painful compared to healthy 

hand stimulation may reflect central sensitization. Lowered pain thresholds and higher perceived 

pain estimates in both sides of the body suggest general hyperresponsiveness in these patients. 

Intact SII responses to painful laser stimulation suggest integrity of nociceptive ascending pathways 

from peripheral Aδ-fibres to the SII cortex. The attenuated PPC responses and the attenuated motor-

cortex reactivity might reflect PPC and motor cortex dysfunction that would explain the neglect-like 

symptoms and the motor weakness in the affected hand. It remains to be demonstrated what causes 

the observed dysfunction in cortical systems; is it the ongoing pain, or the (still unknown) primary 

pathophysiological process underlying CRPS? 

Similar kind of reorganizational changes in the hand representation area of the SI cortex were 

found in CRPS patients and in HSV patients, suggesting that chronic pain of various aetiologies is 

associated with SI plasticity. 

The morphological and functional changes in the central pain circuitry found in the patients 

suffering from recurrent HSV infections and from spontaneous fluctuating pain in one side of the 

body suggest central nervous system involvement in the development of pain. As the pain was on 

clinical grounds suspected to be associated with virus infections, it is possible that the observed 

central changes could be related to the virus and its latency in the brain. It might be clinically 

relevant to target patients who are susceptible to recurrent HSV infections, with more aggressive 

treatment, so that development of chronic pain could be avoided. 
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Chronic pain is a burden that reduces the quality of life and causes economical losses to 

individuals, companies, and to society as a whole. A better understanding of the pathophysiological 

processes in the development and maintenance of pain, especially when the origin of chronic pain is 

unclear, is needed. Suffering related to these conditions could be reduced by prevention and 

alleviation of symptoms with pharmacotherapy, physiotherapy, and psychological techniques that 

are target the underlying mechanism. In future, brain imaging could be used to facilitate 

mechanism-based diagnosis of chronic pain. 
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