493 research outputs found

    Reevaluating Assembly Evaluations with Feature Response Curves: GAGE and Assemblathons

    Get PDF
    In just the last decade, a multitude of bio-technologies and software pipelines have emerged to revolutionize genomics. To further their central goal, they aim to accelerate and improve the quality of de novo whole-genome assembly starting from short DNA reads. However, the performance of each of these tools is contingent on the length and quality of the sequencing data, the structure and complexity of the genome sequence, and the resolution and quality of long-range information. Furthermore, in the absence of any metric that captures the most fundamental "features" of a high-quality assembly, there is no obvious recipe for users to select the most desirable assembler/assembly. International competitions such as Assemblathons or GAGE tried to identify the best assembler(s) and their features. Some what circuitously, the only available approach to gauge de novo assemblies and assemblers relies solely on the availability of a high-quality fully assembled reference genome sequence. Still worse, reference-guided evaluations are often both difficult to analyze, leading to conclusions that are difficult to interpret. In this paper, we circumvent many of these issues by relying upon a tool, dubbed FRCbam, which is capable of evaluating de novo assemblies from the read-layouts even when no reference exists. We extend the FRCurve approach to cases where lay-out information may have been obscured, as is true in many deBruijn-graph-based algorithms. As a by-product, FRCurve now expands its applicability to a much wider class of assemblers -- thus, identifying higher-quality members of this group, their inter-relations as well as sensitivity to carefully selected features, with or without the support of a reference sequence or layout for the reads. The paper concludes by reevaluating several recently conducted assembly competitions and the datasets that have resulted from them.Comment: Submitted to PLoS One. Supplementary material available at http://www.nada.kth.se/~vezzi/publications/supplementary.pdf and http://cs.nyu.edu/mishra/PUBLICATIONS/12.supplementaryFRC.pd

    LINKS: Scalable, alignment-free scaffolding of draft genomes with long reads

    Get PDF

    Bioinformatics tools for analysing viral genomic data

    Get PDF
    The field of viral genomics and bioinformatics is experiencing a strong resurgence due to high-throughput sequencing (HTS) technology, which enables the rapid and cost-effective sequencing and subsequent assembly of large numbers of viral genomes. In addition, the unprecedented power of HTS technologies has enabled the analysis of intra-host viral diversity and quasispecies dynamics in relation to important biological questions on viral transmission, vaccine resistance and host jumping. HTS also enables the rapid identification of both known and potentially new viruses from field and clinical samples, thus adding new tools to the fields of viral discovery and metagenomics. Bioinformatics has been central to the rise of HTS applications because new algorithms and software tools are continually needed to process and analyse the large, complex datasets generated in this rapidly evolving area. In this paper, the authors give a brief overview of the main bioinformatics tools available for viral genomic research, with a particular emphasis on HTS technologies and their main applications. They summarise the major steps in various HTS analyses, starting with quality control of raw reads and encompassing activities ranging from consensus and de novo genome assembly to variant calling and metagenomics, as well as RNA sequencing

    Genome Assembly: Novel Applications by Harnessing Emerging Sequencing Technologies and Graph Algorithms

    Get PDF
    Genome assembly is a critical first step for biological discovery. All current sequencing technologies share the fundamental limitation that segments read from a genome are much shorter than even the smallest genomes. Traditionally, whole- genome shotgun (WGS) sequencing over-samples a single clonal (or inbred) target chromosome with segments from random positions. The amount of over-sampling is known as the coverage. Assembly software then reconstructs the target. So called next-generation (or second-generation) sequencing has reduced the cost and increased throughput exponentially over first-generation sequencing. Unfortunately, next-generation sequences present their own challenges to genome assembly: (1) they require amplification of source DNA prior to sequencing leading to artifacts and biased coverage of the genome; (2) they produce relatively short reads: 100bp- 700bp; (3) the sizeable runtime of most second-generation instruments is prohibitive for applications requiring rapid analysis, with an Illumina HiSeq 2000 instrument requiring 11 days for the sequencing reaction. Recently, successors to the second-generation instruments (third-generation) have become available. These instruments promise to alleviate many of the down- sides of second-generation sequencing and can generate multi-kilobase sequences. The long sequences have the potential to dramatically improve genome and transcriptome assembly. However, the high error rate of these reads is challenging and has limited their use. To address this limitation, we introduce a novel correction algorithm and assembly strategy that utilizes shorter, high-identity sequences to correct the error in single-molecule sequences. Our approach achieves over 99% read accuracy and produces substantially better assemblies than current sequencing strategies. The availability of cheaper sequencing has made new sequencing targets, such as multiple displacement amplified (MDA) single-cells and metagenomes, popular. Current algorithms assume assembly of a single clonal target, an assumption that is violated in these sequencing projects. We developed Bambus 2, a new scaffolder that works for metagenomics and single cell datasets. It can accurately detect repeats without assumptions about the taxonomic composition of a dataset. It can also identify biological variations present in a sample. We have developed a novel end-to-end analysis pipeline leveraging Bambus 2. Due to its modular nature, it is applicable to clonal, metagenomic, and MDA single-cell targets and allows a user to rapidly go from sequences to assembly, annotation, genes, and taxonomic info. We have incorporated a novel viewer, allowing a user to interactively explore the variation present in a genomic project on a laptop. Together, these developments make genome assembly applicable to novel targets while utilizing emerging sequencing technologies. As genome assembly is critical for all aspects of bioinformatics, these developments will enable novel biological discovery

    Genome assembly and quality control for non-model organisms

    Get PDF
    This thesis presents my work in genome assembly between 2010 and 2019. Chapter 1 is an introduction to the status of the field, presenting the challenges and opportunities on generating de novo genome assemblies. Chapter 2 presents the development of k-mer spectra validation for assembly completeness, from its beginnings as unique sequence coverage analyses, through its implementation in the Kmer Analysis Toolkit, up to its use to assess consensus accuracy on hybrid assemblies. Chapter 3 describes a series of objective guided de novo assembly strategies applied to non-model genomes, starting with the assembly of the medicinal plant C. roseus to investigate its biosynthesis pathways, continuing with the chromosome-scale assembly of the ash dieback fungus during the UK outbreak, and concluding with my work assembling the hexaploid wheat genome from whole genome shotgun short read data. Chapter 4 describes the creation of haplotype-collapsed assemblies for 16 specimens of Heliconius butterflies to enable evolutionary analyses, and presents the Sequence Distance Graph framework to work with genome graphs and multi-technology data integration as a step towards haplotype-specific assemblies. Finally, Chapter 5 discusses this research and its impact in the context of the present and future of the field

    RaGOO: fast and accurate reference-guided scaffolding of draft genomes

    Get PDF
    We present RaGOO, a reference-guided contig ordering and orienting tool that leverages the speed and sensitivity of Minimap2 to accurately achieve chromosome-scale assemblies in minutes. After the pseudomolecules are constructed, RaGOO identifies structural variants, including those spanning sequencing gaps. We show that RaGOO accurately orders and orients 3 de novo tomato genome assemblies, including the widely used M82 reference cultivar. We then demonstrate the scalability and utility of RaGOO with a pan-genome analysis of 103 Arabidopsis thaliana accessions by examining the structural variants detected in the newly assembled pseudomolecules. RaGOO is available open source at https://github.com/malonge/RaGOO

    TRITEX : chromosome-scale sequence assembly of Triticeae genomes with open-source tools

    Get PDF
    Chromosome-scale genome sequence assemblies underpin pan-genomic studies. Recent genome assembly efforts in the large-genome Triticeae crops wheat and barley have relied on the commercial closed-source assembly algorithm DeNovoMagic. We present TRITEX, an open-source computational workflow that combines paired-end, mate-pair, 10X Genomics linked-read with chromosome conformation capture sequencing data to construct sequence scaffolds with megabase-scale contiguity ordered into chromosomal pseudomolecules. We evaluate the performance of TRITEX on publicly available sequence data of tetraploid wild emmer and hexaploid bread wheat, and construct an improved annotated reference genome sequence assembly of the barley cultivar Morex as a community resource.Peer reviewe
    corecore