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Genome assembly is a critical first step for biological discovery. All current

sequencing technologies share the fundamental limitation that segments read from

a genome are much shorter than even the smallest genomes. Traditionally, whole-

genome shotgun (WGS) sequencing over-samples a single clonal (or inbred) target

chromosome with segments from random positions. The amount of over-sampling

is known as the coverage. Assembly software then reconstructs the target. So

called next-generation (or second-generation) sequencing has reduced the cost and

increased throughput exponentially over first-generation sequencing. Unfortunately,

next-generation sequences present their own challenges to genome assembly: (1)

they require amplification of source DNA prior to sequencing leading to artifacts

and biased coverage of the genome; (2) they produce relatively short reads: 100bp–

700bp; (3) the sizeable runtime of most second-generation instruments is prohibitive

for applications requiring rapid analysis, with an Illumina HiSeq 2000 instrument



requiring 11 days for the sequencing reaction.

Recently, successors to the second-generation instruments (third-generation)

have become available. These instruments promise to alleviate many of the down-

sides of second-generation sequencing and can generate multi-kilobase sequences.

The long sequences have the potential to dramatically improve genome and tran-

scriptome assembly. However, the high error rate of these reads is challenging and

has limited their use. To address this limitation, we introduce a novel correction

algorithm and assembly strategy that utilizes shorter, high-identity sequences to

correct the error in single-molecule sequences. Our approach achieves over 99%

read accuracy and produces substantially better assemblies than current sequencing

strategies.

The availability of cheaper sequencing has made new sequencing targets, such

as multiple displacement amplified (MDA) single-cells and metagenomes, popular.

Current algorithms assume assembly of a single clonal target, an assumption that

is violated in these sequencing projects. We developed Bambus 2, a new scaffolder

that works for metagenomics and single cell datasets. It can accurately detect

repeats without assumptions about the taxonomic composition of a dataset. It can

also identify biological variations present in a sample. We have developed a novel

end-to-end analysis pipeline leveraging Bambus 2. Due to its modular nature, it is

applicable to clonal, metagenomic, and MDA single-cell targets and allows a user

to rapidly go from sequences to assembly, annotation, genes, and taxonomic info.

We have incorporated a novel viewer, allowing a user to interactively explore the

variation present in a genomic project on a laptop.



Together, these developments make genome assembly applicable to novel tar-

gets while utilizing emerging sequencing technologies. As genome assembly is criti-

cal for all aspects of bioinformatics, these developments will enable novel biological

discovery.
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Chapter 1

Introduction†

The advent of short-read sequencing machines gave rise to a new generation of

assembly algorithms and software. Here, we introduce algorithms for de novo whole-

genome shotgun assembly from next-generation sequencing data. We use a narrow

definition of de novo whole-genome shotgun assembly. The shotgun process takes

reads from random positions along a target molecule [138]. Whole-genome shotgun

(WGS) sequencing samples the chromosomes that make up one genome. WGS

assembly is the reconstruction of sequence up to chromosome length. The assembly

task is relegated to computer software [155]. Assembly is possible when the target is

over-sampled by the shotgun reads, such that reads overlap. De novo WGS assembly

refers to reconstruction in its pure form, without consultation to previously resolved

sequence including from genomes, transcripts, and proteins. Broader introductions

can be found elsewhere, e.g. [125].

Today’s commercial DNA sequencing platforms include the Genome Sequencer

from Roche 454 Life Sciences [97], the Solexa Genome Analyzer from Illumina [8], the

SOLiD System from Applied Biosystems. These platforms have been well reviewed,

e.g. [96, 107, 156, 119]. A distinguishing characteristic of these platforms is that

†The text of this chapter is based on the publication J. Miller, S. Koren, and G. Sutton.
Assembly algorithms for next-generation sequencing data. Genomics, 95(6):315–327, 2010. Only
sections coauthored by Sergey Koren and Jason Miller are included. Sections 1.7 onward represent
unpublished text.
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they do not rely on Sanger chemistry [139] as did first-generation machines including

the Applied Biosystems Prism 3730 and the Molecular Dynamics MegaBACE. The

second-generation machines are characterized by highly parallel operation, higher

yield, simpler operation, much lower cost per read, and (unfortunately) shorter

reads. Today’s machines are commonly referred to as short-read sequencers or next-

generation sequencers (NGS) though their successors have become available. Pacific

Biosciences’ machine [28] can produce reads longer than first-generation machines.

First-generation reads were commonly 500bp to 1000bp long. Today’s NGS reads

are in the 700bp range (from 454 machines), the 100bp range (from the Illumina

machines), or less. Shorter reads deliver less information per read, confounding

the computational problem of assembly. Assembly of shorter reads requires higher

coverage, in part to satisfy minimum detectable overlap criteria. High coverage

increases complexity and intensifies computational issues related to large data sets.

All sequencers produce observations of the target DNA molecule in the form of reads:

sequences of single-letter base calls plus a numeric quality value (QV) for each base

call [31]. Although QVs offer extra information, their use generally increases a

program’s CPU and RAM requirements.

The NGS platforms have characteristic error profiles that change as the tech-

nologies improve. Error profiles can include enrichment of base call error toward

the 3’ (terminal) ends of reads, compositional bias for or against high-GC sequence,

and inaccurate determination of simple sequence repeats. There are published error

profiles for the 454 GS 20 [60], the Illumina 1G Analyzer [24], and comparisons of

three platforms [55]. Some NGS software is tuned for platform-specific error profiles.
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Others may have unintentional bias where development targeted one data type.

Sanger platforms could deliver paired-end reads, that is, pairs of reads with a

constraint on their relative orientation and separation in the target. Paired ends were

essential to assembly of cellular genomes small [35] and large [2] due to their ability

to span repeats longer than individual reads. Paired ends, also called mate pairs,

have a separation estimate that is usually provided to software as the fragment size

distribution measured on a so-called library of reads. A sufficient variety of paired

end separations should help resolve large chromosomes to single scaffolds [150]. The

exploitation of paired ends (as well as other contig constraints) within assembly is

generally referred to as the scaffolding problem and is discussed in Section 1.7.

1.1 What is an assembly?

An assembly is a hierarchical data structure that maps the sequence data to a

putative reconstruction of the target. It groups reads into contigs and contigs into

scaffolds. Contigs provide a multiple sequence alignment of reads plus the consensus

sequence. The scaffolds, sometimes called supercontigs or metacontigs, define the

contig order and orientation and the sizes of the gaps between contigs. Scaffold

topology may be a simple path or a network. Most assemblers output, in addition,

a set of unassembled or partially assembled reads. The most widely accepted data

file format for an assembly is FastA, wherein contig consensus sequence can be

represented by strings of the characters A, C, G, T, plus possibly other characters

with special meaning. Dashes, for instance, can represent extra bases omitted from
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the consensus but present in a minority of the underlying reads. Scaffold consensus

sequence may have N’s in the gaps between contigs. The number of consecutive N’s

may indicate the gap length estimate based on spanning paired ends.

Assemblies are measured by the size and accuracy of their contigs and scaf-

folds. Assembly size is usually given by statistics including maximum length, average

length, combined total length, and N50. The contig N50 is the length of the smallest

contig in the set that contains the fewest (largest) contigs whose combined length

represents at least 50% of the assembly. The N50 statistics for different assemblies

are not comparable unless each is calculated using the same combined length value.

Assembly accuracy is difficult to measure. Some inherent measure of accuracy is pro-

vided by the degrees of mate-constraint satisfaction and violation [123]. Alignment

to reference sequences is useful whenever trusted references exist.

1.2 The challenge of assembly

DNA sequencing technologies share the fundamental limitation that read lengths

are much shorter than even the smallest genomes. WGS overcomes this limitation by

over-sampling the target genome with short reads from random positions. Assembly

software reconstructs the target sequence.

Assembly software is challenged by repeat sequences in the target. Genomic

regions that share perfect repeats can be indistinguishable, especially if the repeats

are longer than the reads. For repeats that are inexact, high-stringency alignment

can separate the repeat copies. Careful repeat separation involves correlating reads
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by patterns in the different base calls they may have [66]. Repeat separation is

assisted by high coverage but confounded by high sequencing error. For repeats

whose fidelity exceeds that of the reads, repeat resolution depends on spanners, that

is, single reads that span a repeat instance with sufficient unique sequence on either

side of the repeat. Repeats longer than the reads can be resolved by spanning paired

ends, but the analysis is more complicated. Complete resolution usually requires

two resources: pairs that straddle the repeat with each end in unique sequence,

and pairs with exactly one end in the repeat. The limit of repeat resolution can be

explored for finished genomes under some strict assumptions. For instance, it was

shown that the theoretical best assembly of the E. coli genome from 20 bp unpaired

reads would put 10% of bases in contigs of 10 Kbp or longer given infinite coverage

and error-free reads [178]. The limit calculation is not straightforward for reads

with sequencing error, paired-end reads, or unfinished genomes. Careful estimates

of repeat resolution involve the ratio of read length (or paired-end separation) to

repeat length, repeat fidelity, read accuracy, and read coverage. In regard to NGS

data, shorter reads have less power to resolve genomic repeats but higher coverage

increases the chance of spanning short repeats.

Repeat resolution is made more difficult by sequencing error. Software must

tolerate imperfect sequence alignments to avoid missing true joins. Error tolerance

leads to false positive joins. This is a problem especially with reads from inex-

act (polymorphic) repeats. False-positive joins can induce chimeric assemblies. In

practice, tolerance for sequencing error makes it difficult to resolve a wide range of

genomic phenomena: polymorphic repeats, polymorphic differences between non-
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clonal asexual individuals, polymorphic differences between non-inbred sexual in-

dividuals, and polymorphic haplotypes from one non-inbred individual. If the se-

quencing platforms ever generate error-free reads at high coverage, assembly software

might be able to operate at 100% stringency.

WGS assembly is confounded by non-uniform coverage of the target. Coverage

variation is introduced by chance, by variation in cellular copy number between

source DNA molecules, and by compositional bias of sequencing technologies. Very

low coverage induces gaps in assemblies. Coverage variability invalidates coverage-

based statistical tests, and undermines coverage-based diagnostics designed to detect

over-collapsed repeats.

WGS assembly is complicated by the computational complexity of processing

larger volumes of data. For efficiency, all assembly software relies to some extent

on the notion of a k-mer. This is a sequence of k base calls, where k is any positive

integer. In most implementations, only consecutive bases are used. Intuitively, reads

with high sequence similarity must share k-mers in their overlapping regions, and

shared k-mers are generally easier to find than overlaps. Fast detection of shared k-

mer content vastly reduces the computational cost of assembly, especially compared

to all-against-all pair-wise sequence alignment. A tradeoff of k-mer based algorithms

is lower sensitivity, thus missing some true overlaps. The probability that a true

overlap spans shared k-mers depends on the value of k, the length of the overlap,

and the rate of error in the reads. An appropriate value of k should be large enough

that most false overlaps do not share k-mers by chance, and small enough that most

true overlaps do. The choice should be robust to variation in read coverage and
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accuracy.

WGS assembly algorithms, and their implementations, are typically complex.

The general assembly problem has been shown to be NP-hard [111]. Several prob-

lems within assembly, such as scaffolding, are also NP-hard [42]. Therefore, most

software relies on heuristics and known approximations to solve the problem.

1.3 Graph algorithms for assembly

We organize the assemblers into three categories, all based on graphs. The

Overlap/Layout/Consensus (OLC) methods rely on an overlap graph. The de Bruijn

Graph (DBG) methods use some form of k-mer graph. The greedy graph algorithms

may use OLC or DBG.

A graph is an abstraction used widely in computer science. It is a set of nodes

plus a set of edges between the nodes. Nodes and edges may also be called vertices

and arcs, respectively. Importantly, each directed edge represents a connection from

one source node to one sink node. Collections of edges form paths that visit nodes

in some order, such that the sink node of one edge forms the source node for any

subsequent nodes. A simple path may not intersect itself, by definition, and one

may additionally require that no other paths intersect it. The nodes and edges may

be assigned a variety of attributes and semantics.

An overlap graph represents the sequencing reads and their overlaps [108]. The

overlaps must be pre-computed by a series of (computationally expensive) pair-wise

sequence alignments. Conceptually, the graph has nodes to represent the reads and
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edges to represent overlaps. In practice, the graph might have distinct elements

or attributes to distinguish the 5’ and 3’ ends of reads, the forward and reverse

complement sequences of reads, the lengths of reads, the lengths of overlaps, and

the type of overlap (suffix-to-prefix or containment). Paths through the graph are

the potential contigs, and paths can be converted to sequence. Paths may have

mirror images representing the reverse complement sequence. There are two ways

to force paths to obey the semantics of double-stranded DNA. If the graph has

separate nodes for read ends, then paths must exit the opposite end of the read

they enter. If the graph has separate edges for the forward and reverse strands,

then paths must exit a node on the same strand they enter.

The de Bruijn graph was developed outside the realm of DNA sequencing to

represent strings from a finite alphabet. The nodes represent all possible fixed-length

strings. The edges represent suffix-to-prefix perfect overlaps.

A k-mer graph is a form of de Bruijn graph. Its nodes represent all the

fixed-length subsequences drawn from a larger sequence. Its edges represent all

the fixed-length overlaps between subsequences that were consecutive in the larger

sequence. In one formulation [62], there is one edge for the k-mer that starts at each

base (excluding the last k − 1 bases). The nodes represent overlaps of k − 1 bases.

Alternately [183], there is one node representing the k-mer that starts at each base.

The edges represent overlaps of k − 1 bases. By construction, the graph contains a

path corresponding to the original sequence (Fig 1.1). The path converges on itself

at graph elements representing k-mers in the sequence whose multiplicity is greater

than one.
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Figure 1.1: A read represented by k-mer graphs. (a) The read is represented
by two types of k-mer graph with k = 4. Larger values of k are used for real data.
(b) The graph has a node for every k-mer in the read plus a directed edge for every
pair of k-mers that overlap by k − 1 bases in the read. (c) An equivalent graph has
an edge for every k-mer in the read and the nodes implicitly represent overlaps of
k − 1 bases. In these examples, the paths are simple because the value k = 4 is
larger than the 2 bp repeats in the read. The read sequence is easily reconstructed
from the path in either graph.

A k-mer graph may represent many sequences instead of one. In its application

to WGS assembly, the k-mer graph represents the input reads. Each read induces

a path. Reads with perfect overlaps induce a common path. Thus, perfect overlaps

are detected implicitly without any pair-wise sequence alignment calculation (Fig

1.2). Compared to overlap graphs, k-mer graphs are more sensitive to repeats and

sequencing errors. Paths in overlap graphs converge at repeats longer than a read,

but paths in k-mer graphs converge at perfect repeats of length k or more, and k

must be less than the read length. Each single-base sequencing error induces up to

k false nodes in the k-mer graph. Each false node has a chance of matching some

other node and thereby inducing a false convergence of paths.

Real-world WGS data induces problems in overlap graphs and k-mer graphs.
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Figure 1.2: A pair-wise overlap represented by a k-mer graph. (a) Two reads
have an error-free overlap of 4 bases. (b) One k-mer graph, with k = 4, represents
both reads. The pair-wise alignment is a by-product of the graph construction. (c)
The simple path through the graph implies a contig whose consensus sequence is
easily reconstructed from the path.

• Spurs are short, dead-end divergences from the main path (Fig 1.3(a)). They

are induced by sequencing error toward one end of a read. They can be induced

by coverage dropping to zero.

• Bubbles are paths that diverge then converge (Fig 1.3(b)). They are induced

by sequencing error toward the middle of a read, and by polymorphism in the

target. Efficient bubble detection is non-trivial [32].

• Paths that converge then diverge form the frayed rope pattern (1.3(c)). They

are induced by repeats in the target genome.

• Cycles are paths that converge on themselves. They are induced by repeats

in the target. For instance, short tandem repeats induce small cycles.

In general, branching and convergence increases graph complexity, leading to

tangles that are difficult to resolve. Much of the complexity is due to repeats in the
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Figure 1.3: Complexity in l-mer graphs can be diagnosed with read multi-
plicity information. In these graphs, edges represented in more reads are drawn
with thicker arrows. (a) An errant base call toward the end of a read causes a spur
or short dead-end branch. The same pattern could be induced by coincidence of
zero coverage after polymorphism near a repeat. (b) An errant base call near a read
middle causes a bubble or alternate path. Polymorphisms between donor chromo-
somes would be expected to induce a bubble with parity of read multiplicity on the
divergent paths. (c) Repeat sequences lead to the frayed rope pattern of convergent
and divergent paths.
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target and sequencing error in the reads. In the graph context, assembly is a graph

reduction problem. Assemblers often rely on heuristic algorithms and approximation

algorithms to remove redundancy, repair errors, reduce complexity, enlarge simple

paths and otherwise simplify the graph.

1.4 Greedy Graph-based Assemblers

The first NGS assembly packages used greedy algorithms. These have been

reviewed elsewhere [125, 128]. The greedy algorithms apply one basic operation:

given any read or contig, add one more read or contig. The basic operation is

repeated until no more operations are possible. Each operation uses the next highest-

scoring overlap to make the next join. The scoring function measures, for instance,

the number of matching bases in the overlap. Thus the contigs grow by greedy

extension, always taking on the read that is found by following the highest-scoring

overlap. The greedy algorithms can get stuck at local maxima if the contig at hand

takes on reads that would have helped other contigs grow even larger.

The greedy algorithms are implicit graph algorithms. They drastically simplify

the graph by considering only the high-scoring edges. As an optimization, they may

actually instantiate just one overlap for each read end they examine. They may also

discard each overlap immediately after contig extension. Like all assemblers, the

greedy algorithms need mechanisms to avoid incorporating false-positive overlaps

into contigs. Overlaps induced by repetitive sequence may score higher than overlaps

induced by common position of origin. An assembler that builds on false-positive
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overlaps will join unrelated sequences to either side of a repeat to produce chimera.

1.5 Overlap/Layout/Consensus assemblers

The OLC approach was typical of the Sanger-data assemblers. It was op-

timized for large genomes in software including Celera Assembler [110], Arachne

[7, 64], and CAP and PCAP [59]. The OLC approach has been reviewed elsewhere

[124, 6, 157].

OLC assemblers use an overlap graph. Their operation has three phases:

1. Overlap discovery involves all-against-all, pair-wise read comparison. The

seed and extend heuristic algorithm is used for efficiency. The software pre-

computes k-mer content across all reads, selects overlap candidates that share

k-mers, and computes alignments using the k-mers as alignment seeds. Over-

lap discovery is sensitive to settings of k-mer size, minimum overlap length,

and minimum percent identity required for an overlap. These three parameters

affect robustness in the face of base calling error and low-coverage sequencing.

Larger parameter values lead to more accurate but shorter contigs. Overlap

discovery can run in parallel with a matrix partition.

2. Construction and manipulation of an overlap graph leads to an approximate

read layout. The overlap graph need not include the sequence base calls, so

large-genome graphs may fit into practical amounts of computer memory.

3. Multiple sequence alignment (MSA) determines the precise layout and then

the consensus sequence. There is no known efficient method to compute the
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optimal MSA [172]. Therefore, the consensus phase uses progressive pair-

wise alignments guided by, for instance, the approximate read layout. The

consensus phase must load the sequence base calls into memory. It can run in

parallel, partitioned by contig.

1.6 The de Bruijn graph approach

The third approach to assembly is most widely applied to the short reads

from the Illumina and SOLiD platforms. It relies on k-mer graphs, whose attributes

make it attractive for vast quantities of short reads. The k-mer graph does not

require all-against-all overlap discovery, it does not (necessarily) store individual

reads or their overlaps, and it compresses redundant sequence. Conversely, the k-

mer graph does contain actual sequence and the graph can exhaust available memory

on large genomes. Distributed memory and compression approaches may alleviate

this constraint.

The k-mer graph approach dates to an algorithm for Sanger read assembly

[62] based on a proposal [120] for an even older sequencing technology; see [125] for

review. The approach is commonly called a de Bruijn graph (DBG) approach or

an Eulerian approach [122] based on an ideal scenario. Given perfect data (error-

free k-mers providing full coverage and spanning every repeat) the k-mer graph

would be a de Bruijn graph and it would contain an Eulerian path, that is, a path

that traverses each edge exactly once. The path would be trivial to find making

the assembly problem trivial by extension. Of course, k-mer graphs built from real
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sequencing data are more complicated. To the extent that the data is ideal, assembly

is a by-product of the graph construction. The graph construction phase proceeds

quickly using a constant-time hash table lookup for the existence of each k-mer in

the data stream. Although the hash table consumes extra memory, the k-mer graph

itself stores each k-mer at most once, no matter how many times the k-mer occurs

in the reads. In terms of computer memory, the graph is smaller than the input

reads to the extent that the reads share k-mers.

Pevzner [120] explored problems that genomic repeats introduce. Repeats

induce cycles in the k-mer graph. These would allow more than one possible re-

construction of the target. Idury and Waterman [62] also explored problems of real

data. They added two extra types of information to the k-mer graph and named

the result a sequence graph. Each edge was labeled with the reads, and positions

within each read, of the sequences that induced it. Where nodes had one inbound

and one outbound edge, the three elements could be compressed into one edge. This

was called the elimination of singletons. Further research led to the Euler software

implementation [121] for Sanger data. Impractical for large-scale Sanger sequenc-

ing projects, Euler and the DBG approach were well positioned when the Illumina

platform started to produce data composed of very short unpaired reads of uniform

size.

Three factors complicate the application of k-mer graphs to DNA sequence

assembly.

1. DNA is double stranded. The forward sequence of any given read may overlap
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the forward or reverse complement sequence of other reads. One k-mer graph

implementation contains nodes and edges for both strands, taking care to

avoid output of the entire assembly twice [62].

2. Real genomes present complex repeat structures including tandem repeats,

inverted repeats, imperfect repeats, and repeats inserted within repeats. Re-

peats longer than k lead to tangled k-mer graphs that complicate the assembly

problem. Perfect repeats of length k or greater collapse inside the graph, leav-

ing a local graph structure that resembles a rope with frayed ends (Fig 1.3(c));

paths converge for the length of the repeat and then they diverge. Successful

assembly requires separation of the converged path, which represents a col-

lapsed repeat. The graph contains insufficient information to disambiguate

the repeat. Assemblers typically consult the reads, and possibly the mate

pairs, in attempts to resolve these regions.

3. A palindrome is a DNA sequence that is its own reverse complement. Palin-

dromes induce paths that fold back on themselves.

4. Real data includes sequencing error. DBG assemblers use several techniques

to reduce sensitivity to this problem. First, they pre-process the reads to

remove error. Second, they weight the graph edges by the number of reads

that support them, and then erode the lightly supported paths. Third, they

convert paths to sequences and use sequence alignment algorithms to collapse

nearly identical paths. Many of these techniques derive from the Euler family

of assemblers.
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Figure 1.4: Three methods to resolve graph complexity. (a) Read threading
joins paths across collapsed repeats that are shorter than the read lengths. (b) Mate
threading joins paths across collapsed repeats that are shorter than the paired-end
distances. (c) Path following chooses one path if its length fits the paired-end
constraint. Reads and mates are shown as patterned lines. Not all tangles can be
resolved by reads and mates. The non-branching paths are illustrative; they could
be simplified to single edges or nodes.

By processing k-mers not reads, the k-mer graph construction discards long-

range continuity information in the reads. This defect can be repaired by threading

the reads through the graph. Reads ending inside a repeat are consistent with

any path exiting the repeat, but reads spanning a repeat are consistent with fewer

paths. For the latter, read threading pulls out one piece of string from a frayed

rope pattern, thus resolving one copy of the collapsed repeat (Fig 1.4(a)). Thus

read threading constrains the set of valid paths through the graph. This allows

resolution of repeats whose length is between k and the read length. A paired-end

read is effectively a long read that is missing base calls in the middle. Paired ends

that span a repeat provide the evidence to join one path that enters a repeat to one

path that exits the repeat (Fig 1.4(b)). Paired ends can also resolve some complex
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tangles induced by repeats. A complex graph may have multiple paths between two

nodes corresponding to opposite ends of a mate pair. Each path implies a putative

DNA sequence. In many cases, only one of the paths implies a sequence whose

length satisfies the paired-end constraint (Fig 1.4(c)). Between any mate pair, there

could be too many paths for exhaustive search to be feasible, requiring heuristics.

Regardless of the assembly method used, the resulting contigs are generally

short. Assemblers rely on paired-end sequences to build gapped sequence and scaf-

folds. We explore scaffolding in detail in the next section.

1.7 Scaffolding

After the unitigs are constructed, they may be viewed as the nodes in a new

graph. At this stage, the nodes are commonly referred to as contigs. A contig may

represent a single unitig or an un-gapped combination. Using the set of paired-

end reads in a contig, assemblers bundle consistent pairs together into a weighted

edge. Since each of the read pairs provides a distance and an orientation, each edge

between two contigs has an orientation and a mean distance. The resulting graph is

bi-directed. That is, there are four possible edges between any two nodes (Fig 1.5):

• Both arrows pointing inwards, away from the nodes. This is generally known

as an innie edge.

• Both arrows pointing outward, toward the nodes. This is generally known as

an outie edge.

• Left arrow pointing inward, right arrow pointing outward. This is generally
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(b) Outie
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(c) Normal

1 2

(d) Anti-Normal

Figure 1.5: The four types of edges present in a bi-directed graph of contigs.

known as a normal edge.

• Right arrow pointing inward, left arrow pointing outward. This is generally

known as an anti-normal edge.

Generally, scaffolding starts by assigning an arbitrary orientation to a node and

placing it at position 0. Nodes are then oriented consistent with their edges. Each

node is also assigned a position along a linear axis. Whenever the edges indicate an

overlap, two nodes may be joined. As a result of this operation the bi-directed graph

is transformed into a directed one. Note that the innie and outie edges indicate that

the two nodes are in opposite orientations (Fig 1.5(a), 1.5(b)). These edges are

known as reverse-edges and it is not possible to properly orient the nodes if they

are part of a cycle with an odd number of reverse-edges. A scaffolding module must

minimize the number of edges removed from the graph. That is, we wish to ignore

the minimum number of edges so that there are no remaining cycles with an odd

number of reverse-edges. Unfortunately, finding such a minimum set is equivalent

to the Maximal Bipartite Subgraph problem which is NP-hard [42]. Each connected

component in a graph becomes a scaffold. Next, we need to generate a layout of

contigs on a number line. We want to maximize the number of satisfied edges by
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placing nodes as close to the specified position as possible. This problem is similar

to the Optimal Linear Arrangement problem which is also NP-hard [42]. A final

step is to project the graph form of a scaffold onto a linear sequence. Whenever two

contigs occupy the same positions, they must be reconciled using sequence analysis.

This can often lead to scaffolds being broken when two contigs cannot be reconciled.

1.8 Genome finishing

Despite the advances in genome assembly, the result is almost never a single

contig per chromosome. The task of genome finishing is the process of “closing”

a genome by filling in sequence missing from the assembly, confirming repeat se-

quence, and correcting assembly errors. Due to the expense, genome finishing is

commonly only applied to prokaryotic genomes and often requires months of man-

ual effort [36]. One common strategy for genome finishing is targeted sequencing.

In contrast to WGS sequencing which samples the genome uniformly at random,

targeted sequences are known to come from a specific region of the genome. These

sequences are subsequently manually incorporated into an existing assembly to close

gaps and resolve repeats.

1.9 Challenges of third-generation sequencing instruments

Recently, successors to next-generation sequencing instruments have become

commercially available, starting with the PacBio RS [28]. The PacBio RS is a real-

time single-molecule sequencer. It requires no amplification, eliminating potential
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bias, while producing long sequences (e.g. median ≥ 2Kbp) [130]. The unbiased

long sequences hold great promise for simplifying genome assembly by resolving

difficult repeats. The long sequences also hold the potential to sequence abun-

dant transcripts in a single sequence. Unfortunately, the instrument averages only

82.1%[16]–84.6%[130] nucleotide accuracy. There is currently a lack of bioinformat-

ics tool designed to handle this level of sequencing error, limiting the impact of this

technology.

1.10 Metagenomics and single-cell genomics

Metagenomics is the sequencing of DNA in an environmental sample. Whereas

WGS targets one clonal population, metagenomics usually targets several. By con-

trast, single-cell genomics targets the genome of a single cell. However, both single-

cell and metagenomics present similar challenges to assembly. The assembly of

metagenomic data is complicated by several factors such as: (i) widely different lev-

els of representation for different organisms in a community; (ii) genomic variation

between closely related organisms; (iii) conserved genomic regions shared by dis-

tantly related organisms; and (iv) repetitive sequences within individual genomes.

Single-cell genomics relies on whole genome amplification by the multiple displace-

ment amplification (MDA) method to allow sequencing of single cells [22, 149]. The

assembly of single-cells is complicated by (i) widely different levels of representa-

tion for different portions of a genome (ii) amplified contaminating sequences from

non-target genomes (iii) chimeric sequences introduced by the single-cell process
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[85].

Current assemblers, developed for single-organism assembly, have been suc-

cessfully used to assemble metagenomic data sets [136], [168]. However, these as-

semblies are not well specified, require manual intervention and undocumented set-

tings, and are error prone. Simulations indicate high rates of chimera, especially in

short contigs assembled from complex mixtures [98]. As discussed above, assemblers

try to identify the genomic repeats for special handling. For example, the Celera

Assembler [110] uses coverage, computed from the average number of bases between

read start positions, to identify repeats. An increase in coverage is presumed to

be an indicator of a repeat. The repeats may also be identified using local graph

features such as convergent and divergent paths. However, in a metagenomic and

single-cell context, these are not indicative of repeat structure.

Metagenomics is still a manually-intensive process. Biologists need to view

how contigs are connected to see the paths representing organisms as well as areas

of divergence. Current visualization is static [126] and the complex graph structure

as well as poor node layout makes it difficult to interpret.

1.11 Previous work

We have previously explored the application of heuristic graph algorithms to

the assembly problem. In Miller et. al. [105], we rely on a heuristic to simplify the

overlap graph. Given the overlaps for a set of reads R, we construct a multi-graph

G with both directed and undirected edges. Each read r is represented by a pair of
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nodes r5′ and r3′ , representing the two ends of a read, connected by an undirected

edge. Directed edges represent dovetail overlaps, that is, those that span one end

of each read. We simplified the graph using a simple heuristic, all directed edges

except those that represent the mutually-best edge between any pair of read ends

are removed. A mutually-best edge is defined as one that spans the most bases.

This heuristic reduces the overlap graph to require storing only a single edge for

each node. Finally, heuristics are applied to split contigs that were built incorrectly.

This heuristic is shown to perform well in practice [105].

For the problem of multiple-sequence alignment, we also use a graph-based

heuristic in Rausch et. al. [131]. A multi-alignment can be represented as a graph

G. Vertices represent non-overlapping sequence segments, edges connect vertices

and represent un-gapped alignments between reads while gaps are implicit. For a

set S of n reads, G is n-partite. Every position in a read r is represented in exactly

one vertex. Since some edges may be contradictory, only a subset of the edges E

can be satisfied in a given alignment. A proper subset E ′ ⊂ E, called a trace, can be

found efficiently using heuristics. The consensus tool built on this concept generates

superior multi-alignments, especially in the case of high-error and short reads [131].

1.12 Contributions

In Chapter 2 we present a novel method for incorporating finishing sequences

to improve genome assembly. The finishing of prokaryotic genomes is an expensive

and time consuming manual process. We have automated an important step, the
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incorporation of sequences targeted to fill gaps in a draft assembly. The resulting

algorithm closes more gaps and achieves better repeat resolution in assemblies than

previous approaches.

In Chapter 3 we present a novel method for utilizing high-error third-generation

sequencing data to significantly improve genome assembly. In the best case, our

method produces a 5–fold improvement over second-generation sequencing alone

while reducing assembly error. Our method is widely applicable, and we demon-

strate its use on assembly of both prokaryotic and eukaryotic genomes, as well as on

eukaryotic RNA-seq analysis. Our results show that single-molecule long sequences

can be accurately assembled, potentially ushering in the era of single-chromosome

prokaryotic assembly.

In Chapter 4 we present a novel scaffolding method to address the challenges of

uneven representation as well as genomic diversity. Our scaffolder, Bambus 2, per-

forms as well as the state of the art assemblers targeting clonal datasets while signif-

icantly improving metagenomic assembly. Our repeat detection method is sensitive

and accurate, without knowledge of the taxonomic composition of a dataset. We

demonstrate increased assembly contiguity on three simulated and five real metage-

nomic datasets. Our method identifies biologically relevant genomic variations that

have been previously observed. Finally, we demonstrate our method’s applicability

to single-cell genomes.

In Chapter 5, we present an end-to-end metagenomic analysis pipeline. We

have developed a pipeline incorporating many third-party tools to assemble se-

quences, identify and annotate genes, analyze composition, and classify the assem-
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bled results into their appropriate taxonomic class. The pipeline includes interactive

visualization of taxonomic composition, using Krona [114], as well as assembly se-

quences. We include a novel visualization tool for the genomic variants present in a

dataset that can allow a user to navigate a metagenome on their laptop.
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Part I

Improving Clonal Genome Assembly
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Chapter 2

An algorithm for automated closure during assembly†

2.1 Overview

The shotgun method generates reads randomly in high volumes by Sanger and

next-generation sequencing platforms. Whole-genome shotgun assembly (WGA) is

the process of constructing a draft assembly of a genome from whole-genome shotgun

reads (WGS). WGA software constructs a read layout by inference from shared

sequence between reads and constraints between pairs of reads from the same DNA

fragment (paired-ends). The randomness of WGS can be exploited in software by

adopting uniformity of read coverage as an objective function to be maximized by

the assembly. For instance, the Celera Assembler software [110] invokes the A-stat

coverage statistic to assign lower confidence to higher-coverage mini-assemblies. The

Velvet software [183] invokes low-coverage to trim branches of its de Bruijn graph.

Finishing is the process of improving the quality and utility of a draft genome

sequence. Finishing aims to fill gaps between contigs, enlarge contigs, or provide

deeper coverage for the contigs in the draft. Some finishing is accomplished without

sequencing by manually editing an automatically generated draft. Most finishing

requires additional sequence referred to as finishing reads. Finishing reads derive

†The text of this chapter is based on the publication S. Koren, J. Miller, B. Walenz, and
G. Sutton. An algorithm for automated closure during assembly. BMC Bioinformatics, 11(1):457,
2010.
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from PCR, primer walking, transposon bombing, shotgun of individual clones, and

other techniques. See [36] for a review.

Intuitively, a PCR experiment provides evidence that reads generated from

within the PCR product should be assembled between instances of the primer se-

quences. The set of finishing reads derived from an individual amplicon, or clone,

have a co-location requirement. End-reads from amplicons or clones provide the

boundaries between which the finishing reads should assemble. Manual inspection

and placement of finishing reads is expensive [115], even when assisted by soft-

ware. The widely-used Consed package [51] provides assembly editing functionality

through a graphical user interface. Dupfinisher [53] automates several finishing pro-

cedures, including homology-based search to identify repeats in the draft assembly.

As an example, Consed and Dupfinisher were invoked during the finishing stage of

the Pedobacter heparinus genome project [54]. After 44K WGS reads had been as-

sembled with Phrap (http://www.phrap.org), Dupfinisher corrected mis-assemblies.

Then, with 1 897 finishing reads, Consed and manual editing were used to close gaps

and improve quality. Both of these methods are a posteriori, running after an as-

sembly has been generated. They require users to specify a gap for each finishing

read. In contrast, we introduce an algorithm for placing finishing reads within the

context of a WGA.

Our method generates a de novo assembly in one process that integrates the

WGS and finishing reads. We only require the identifiers for the end-reads from the

amplicons or clones, potentially improving usability. The algorithm uses the sets

of finishing reads and placement bounds for each set to incorporate finishing reads
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during the assembly process. Our algorithm targets repetitive genomic regions,

seeking to close and thicken repeat-induced gaps, as well as to locate repeat copies

missed in the initial assembly.

The algorithm was challenged to assemble five prokaryotes and one eukaryotic

genome from WGS and finishing reads. The results were compared to assemblies of

all the reads input as WGS reads. The results were also compared to an alternate

assembly pipeline.

2.2 Methods

The input has three components: WGS reads, finishing reads, and bounding

constraints. The reads may include paired-end reads, such that any given read

pair consists of two WGS reads or two finishing reads. The bounding constraint is

usually a paired end thought to span the target of the finishing reactions, based on a

WGS assembly. Alternately, it could be any two reads whose sequence encompasses

the PCR primers that generated the template for the finishing reads, or the PCR

primers themselves. Formally, given the set of bounded finishing reads F and WGS

reads W , the finishing reads and bounding constraints must satisfy the following

conditions:

• For each finishing read f ∈ F , there exists at most one pair of sequences,

fa ∈ (W ∪ F ) and fb ∈ (W ∪ F ) s.t. fa 6= fb, f 6= fa, and f 6= fb (referred to

as the bounding constraint for f).

• For each bounding constraint (fa, fb), there exists an non-empty set of finishing
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reads (fa, fb) = f1 . . . fn.

• For any two bounding constraints (fa, fb) and (ga, gb), the intersection (fa, fb)∩

(ga, gb) = ∅.

2.2.1 Assemble the reads

The algorithm uses the hierarchy of overlaps, unitigs, contigs, and scaffolds

as used by Celera Assembler [110]. The WGS and finishing reads are processed

to detect pair-wise overlaps. Reads and overlaps are compressed into unitigs, also

called chunks [108]. The unitigs are low-risk assemblies consistent with nearly all of

the detectable pair-wise read overlaps. Unitigs that are deemed repetitive, V , are

not trusted. All the others, U , are trusted. The trusted unitigs are assembled into

contigs and scaffolds using detected pair-wise overlaps and paired-end constraints.

Untrusted unitigs are incorporated last. The contigs represent contiguous assembly.

The scaffolds consist of contigs separated by gaps whose length is estimated from

paired-end constraints.

2.2.2 Fill the gaps

The algorithm applies aggressive techniques to fill gaps in scaffolds. It starts by

assigning left over unitigs (including individual reads) to specific gaps. It generates

a list G of gaps in scaffolds, a list U of unique trusted unitigs not placed in scaffolds,

and a list V of all untrusted repeat unitigs. For each unitig u ∈ U ∪ V , and a gap

g ∈ G, define a placement score P (u, g) = M +B where M=(number of WGS reads
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in u whose paired-end constraint would be satisfied by placement in gap g ∈ G) and

B=(number of finishing reads in u whose bounding constraint would be satisfied by

placement in gap g ∈ G). A paired-end constraint is satisfied when one read is within

u while the second is not and the placement of the contig in the gap matches the

expected orientation and distance of the paired-end library. A bounding constraint

is satisfied when the bounding reads (fa, fb) are both placed in a pair of contigs

and span only gap g ∈ G. For each unique contig u ∈ U , assign it one gap that

maximizes P (u, g) > 0, if one exists. For each repeat contig u ∈ V , assign it all

gaps for which P (u, g) > Q for some threshold Q.

Once the unitigs are placed within gaps, we apply a miniature assembly pro-

cess. Estimate the length of each gap from spanning paired-end constraints. For

each gap, construct a graph whose nodes are unitigs assigned to the gap. Add a

node for both of the contigs that bound the gap. Add an edge for every unitig pair,

or unitig/contig pair, that shares paired-ends or has a detectable sequence overlap.

Search for any path through the graph that satisfies the size estimate and visits each

node at most once. If such a path is found, the gap is filled with unitigs from the

path. If no path spans the gap, the algorithm will settle for less: adding a unitig to

each contig end so as to reduce the size of the remaining gap. This gap-filling step

runs twice: first with unassembled unitigs from U , then with all unassembled unitigs

from U and V . For all unitigs in scaffolds, a multiple sequence alignment of reads

is determined. Repeat unitigs, V , can have zero, one, or many placements in the

assembly, but their reads can have at most one placement (Figure 2.1(a)). For each

unitig u ∈ V with at least one placement in a scaffold, every read r ∈ u is assigned a
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specific location, if possible. Read r is placed only if there is unambiguous support

from the placement of u, and the mate of r, if any, or the bounding constraint of r,

if any.

2.2.3 Implementation

In order to exploit the maturity of WGS assembly software, we implemented

the algorithm inside an existing package, Celera Assembler. Originally designed for

Sanger data [110], the software now incorporates alternate modules into a pipeline

called CABOG [105] specifically for data from the 454 Life Sciences next-generation

sequencing platform [97].

The bounding read behavior is offered as a run-time option in Celera Assem-

bler. When turned on, it executes as part of the scaffold module, specifically during

the gap filling stage called rocks and stones [110]. To search the set of unitigs that

could fill a gap, Celera Assembler uses a breadth first search algorithm. As always,

Celera Assembler calculates the scaffold consensus sequence given the hierarchical

layout of contigs, unitigs, and reads. Where the new code needs to partition the

unitigs into U and V , it re-uses Celera Assembler’s partition, which is based on

empirical observation of the distribution of unitig coverage levels and calculation of

the A-stat log-odds ratio [110].

The implementation allows that some constraints are inherently unsatisfiable.

Constraints where the bounds span multiple gaps or are not part of the assembly

are considered unsatisfiable and the current implementation does not use them. The
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Table 2.1: Test datasets for the closure algorithm. Sanger WGS Reads: num-
ber of paired or unpaired reads from WGS on a Sanger platform. 454 PE WGS
Reads: number of reads from WGS pyrosequencing of a paired-end library, after
processing to split linker-positive sequences into two reads. 454 UP WGS Reads:
number of reads from WGS pyrosequencing of an unpaired library. Features (Fea-
tures with bounds): regions targeted by finishing that present at least one finishing
read bounded by two other reads. Bounded (Bounded finishing reads): number of
finishing reads provided with a bounding constraint. These reads are the focus of the
bounding read algorithm. For E. coli K12, a 454 library was used in combination
with finishing reads and their bounds generated for the E. coli O157:H7 project.
WGS: whole-genome shotgun. PE: paired end (counting two reads per pair). UP:
unpaired read.

Species Sanger WGS 454 PE WGS 454 UP WGS Features Bounded

E. coli O157:H7 59 749 0 0 516 1 041
E. coli K12 1 032 67 910 185 682 516 1 041
S. enterica 51 199 0 0 608 891
B. mallei 54 980 0 0 825 1 235
C. amycolatum 3 410 0 193 092 37 45
I. multifiliis 232 924 11 332 2 606 081 734 1 233

thresholdQ, used to place unitigs from V in scaffold gaps, is calculated automatically

at run time for each unitig. The threshold defaults to the number of unsatisfiable

constraints. Intuitively, this value of Q requires more evidence for a unitig placement

than against.

2.2.4 Test data

Six genomes were selected for testing (Table 2.1). The genomes include five

bacteria and one protozoan. All six WGS data sets include Sanger sequence. Three

are predominantly pyrosequencing data. All six finishing read sets include Sanger

reads from selected WGS clones.
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2.3 Results

2.3.1 Test of the algorithm

Contiguity statistics, such as N50, are course-grained and mask the improve-

ments that a small numbers of finishing reads can provide. Therefore, we introduce

a concept of candidate regions and we measure how many candidates are improved.

The candidates are genome repeats for which we have finishing reads and bounding

constraints. Potential improvements consisted of closing a gap (Fig 2.1(b)), adding

read coverage across a repeat, and fixing the consensus sequence (Fig 2.1(a)). The

candidates are exclusive of non-repeat regions (Fig 2.1(c)) for which the control al-

gorithm is sufficient. Improvement was measured by comparing the bounded read

assemblies against control assemblies. The controls used the same software and

reads without the bounding constraints.

2.3.2 Comparison to alternate assemblers

Dupfinisher is a pipeline for assembly, repeat identification, finishing read gen-

eration, and re-assembly. It is integrated with phrap, BLAST, Consed, and Aut-

ofinish [52]. It was not feasible or meaningful to snap Dupfinisher into our assembly

pipeline or to snap our assembler into its pipeline. Also, it was not possible to

compare published experiments. Papers that describe Dupfinisher report combined

gains of the software plus manual editing (e.g. [54]) or present results on projects

[53] for which we could not obtain finishing reads.

The Newbler de novo assembly software [97] is designed specifically for py-
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Figure 2.1: Resolution of repeats using finishing reads. Two algorithms for
assembling shotgun reads and finishing reads. The control treats both read types
equally. The bounded algorithm attempts to assemble finishing reads consistently
with their bounding constraints. For each algorithm, the figure shows its construc-
tion of a scaffold from contigs (rectangles) with 2X in shotgun reads (black lines).
Each finishing read (colored line) has a corresponding pair of PCR primer sites (ar-
rows of same color). External to the scaffold is a unitig (grey area) deemed repetitive
due to high coverage. (a) A mate pair constraint (curve) localizes one read and the
unitig to this gap. Nevertheless, the control algorithm cannot tile this gap with
reads. The bounded algorithm localizes two finishing reads by their primer sites.
The bounded algorithm does tile the gap with reads, enabling a more accurate con-
sensus sequence. (b) The control cannot localize the unitig or any reads to this gap.
It does not close the gap. The bounded algorithm localizes the unitig by finishing
reads and their primer sites. It tiles the gap with finishing reads from the unitig. (c)
Both algorithms assemble finishing reads from a gap that is not a genomic repeat.
In our data sets, most finishing reads fit gaps of this type.

rosequencing reads alone or in combination with Sanger data. It also supports

incremental assembly, whereby additional reads are added to a previous assembly

result. The incremental assembly feature can be used to add finishing reads to as-

semblies of WGS reads. Newbler was tested on three genomes for which we had

pyrosequencing reads.
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Table 2.2: Comparison of three closure algorithms. Control uses finishing
reads like WGS reads. Bounded uses finishing reads with placement constraints. Alt
(Alternate) uses finishing reads in a second round of assembly without constraints.
Candidate gaps include both regions in the control assembly between finishing con-
straints with zero coverage and a consensus sequence derived from a repeat unitig or
no consensus sequence in the control assembly. The parentheses indicate the number
of gaps with no consensus sequence in the control assembly. The gap and spanning
constraint are not necessarily 1-to-1. Bounds: The total number of bounding con-
straints that span the repeat gap or were not satisfied in both control and bounded
assemblies. Finishing: The total number of finishing reads generated for the bounds
in the table. Placed finishing reads: The total number of finishing reads placed
in the assembly by each of the assembly algorithms. Gaps closed: The number of
gaps closed by filling in missing consensus sequence or by tiling repeat instances
with reads. By definition, the control assembly always closes 0 gaps. The bounded
assembly joins were verified by alignment to finished reference, where available.

# Placed Finishing Reads Gaps closed
Species Candidates # Bounds # Finishing Control Bounded Alt Control Bounded Alt

E. coli O157:H7 14 (1) 56 128 26 92 - 0 11 -
S. enterica 2 (0) 18 33 14 23 - 0 1 -
B. mallei 9 (0) 23 40 4 27 - 0 4 -
I. multifiliis 11 (2) 14 21 3 21 17 0 6 4
E. coli K12 49 (2) 23 60 12 49 11 0 29 0
C. amycolatum 4 (0) 3 3 0 2 0 0 1 0

Total 89 (5) 137 285 59 214 28 0 52 4

2.3.3 Assembly results

The bounded algorithm closes 52 candidate regions, previously having either

no sequence or no read coverage. The control, by definition, closes 0 and the al-

ternate pipeline closes 4. This large gain can be attributed to incorporating more

finishing reads. The algorithm incorporates 75.10% of finishing reads. That is 54%

more than control and 42% more than the alternate. The assemblies show a gain of

0.09± 0.09% in percent of the genome with > 1X read coverage versus control. Full

details of the per-genome assembly improvements are in Table 2.2. The bounded

algorithm also fixes 63 consensus bases while introducing only 3 incorrect calls in

comparison to the control versus reference. Details are available in Table 2.3.
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Table 2.3: Consensus quality of the bounded read placement algorithm.
Performance of the same three algorithms described in Table 2.2. Number of con-
sensus differences: The total number of bases in consensus that are different between
the bounded and control assemblies versus reference. True positive: Number of con-
sensus base changes that are supported by the reference. False positive: The number
of consensus base changes that differ from the reference. The finishing reads used
for E. coli K12 did not come from the same strain as the reference. We cannot
validate whether a consensus discrepancy between an assembly and the reference is
due to assembly error or to strain-level differences. Consensus quality could not be
measured on the two genomes that lack a reference.

Species # Consensus differences True positives False negatives

E. coli O157:H7 14 14 0
S. enterica 5 5 0
B. mallei 47 44 3

Total 66 63 3

Table 2.4: Contiguity metrics for the bounding read placement algorithm.
Performance of the same three algorithms described in Table 2.2. Contig count:
number of contigs whose consensus is at least 2Kbp. Contig bases: sum of consensus
lengths for contigs at least 2Kbp long.

Contig count Contig N50 Contig bases
Species Control Bounded Alt Control Bounded Alt Control Bounded Alt

E. coli O157:H7 6 5 - 2 315 032 4 484 293 - 5 656 811 5 661 119 -
S. enterica 6 6 - 3 620 140 3 620 144 - 4 813 438 4 813 442 -
B. mallei 19 19 - 424 003 424 003 - 5 835 215 5 834 616 -
I. multifiliis 4 273 4 273 5 765 12 070 12 070 11 444 37 616 884 37 616 884 47 976 992
E. coli K12 313 314 387 27 255 27 255 16 838 4 679 711 4 679 711 4 441 778
C. amycolatum 26 26 38 307 040 307 040 152 524 2 525 388 2 525 392 2 507 351

In three of the six genomes, the algorithm places additional copies of repeat

unitigs, filling in missing consensus sequence. As a consequence, ten contigs are

merged. Due to the coarseness of the contig metrics, the bounded assemblies show

improvement (fewer contigs and higher N50) in one genome but no change on the

rest. In two genomes, the merging involved one contig greater than 2Kbp and one

smaller than 2Kbp and is therefore not reflected in Table 2.4.

The assemblies of E. coli O157:H7 were examined and compared to the avail-
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able reference. The bounded assembly was confirmed, having eight alignments of

99% identity over 99% length of the assembly covering 99% of the reference. By

the same measure, the control assembly had nine alignments. Inspection revealed

two high-coverage unitigs each placed six times in the control and seven times in

the bounded. Together, the two unitigs make up a seventh repeat instance that

was missing from the control. The repeat, which we characterized by NCBI BLAST

[3] as an rRNA operon, is known to occur seven times in the wild-type genome.

[19]. Other joins in the bounded assembly were also verified by comparison to the

reference, indicating no mis-assembly (Section A.2.1). The bounding read algorithm

placed a majority of the finishing reads available for each genome. On no genome

did the algorithm close all the gaps or tile all the candidate regions. The algorithm

closed 52 out of 89 possible candidates, this may be due to limitations of the finishing

read set rather than the algorithm as no assembly was able to close all candidates.

In summary, the bounding read algorithm consistently augmented repeat resolution

and gap closure by finishing read placement and improved the consensus.

2.4 Discussion

We implemented our algorithm within the Celera Assembler software for whole-

genome shotgun (WGS) assembly. The implementation placed more finishing reads

than two alternate methods: de novo assembly of WGS reads and finishing reads

together (our control), or by adding finishing reads to the initial assembly (with

Newbler). This result was not surprising since only our algorithm exploited the
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finishing read placement constraint data associated with finishing reads.

All of our test data sets included some Sanger WGS reads. Future genome

projects are unlikely to present Sanger WGS data due to the lower cost of high-

throughput, next-generation sequencing (NGS). Such projects will require clone-

free finishing reads generated from genomic template. In this case, each amplicon’s

end reads can serve as bounds for the other reads derived from that amplicon. Thus,

our approach should apply to 100% NGS WGS data sets.

We have presented a novel algorithm for automated re-assembly to exploit

finishing reads and placement constraints. Our implementation out-performed two

other automated approaches on real data. An alternate approach to finishing, relying

on NGS data to correct assembly errors, shows average gains of 0.16± 0.15% apart

from a single outlier with 6.73% gain [115]. By comparison, our algorithm achieves a

gain of 0.09±0.09% through the careful use of existing finishing data, without relying

on any additional sequencing. Both methods are valuable to correctly assemble the

final pieces of a genome and demonstrate the difficulty involved.

2.5 Conclusions

The finishing process has rate-limiting manual components. Here we demon-

strate automation of one finishing component, the careful placement of finishing

reads whose position is known relative to other reads. We described the Bounding

read algorithm that could be incorporated in a 4-part finishing pipeline: WGS reads

are assembled with an assembler; the assembly is scanned for low-quality regions
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and gaps; finishing reads are generated to target each region; the WGS and finishing

reads are re-assembled with the bounding read assembly algorithm.

Earlier approaches to automated finishing use a posteriori methods that add

finishing reads to assembled contigs. Dupfinisher was the first. Newblers iterative

assembly method demonstrates another. Our approach incorporates finishing reads

a priori in a de novo assembly with the WGS reads. The finishing reads are exploited

throughout the assembly construction, possibly generating a different result than

the WGS-only assembly. Additionally, our algorithm can identify new instances of

recognized repeats and tile reads across them. The algorithm outperformed two

alternate methods, filling more gaps, placing more reads, and improving consensus.

Our algorithm is a valuable tool to assist the automation and improvement of genome

finishing projects.
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Chapter 3

Hybrid error correction and de novo assembly of single-molecule

sequencing reads†

3.1 Overview

Second-generation sequencing technologies, starting with 454 pyrosequencing

[97] in 2004, Illumina sequencing-by-synthesis [8] in 2007 and others, have revolu-

tionized DNA sequencing by reducing cost and increasing throughput exponentially

over first-generation Sanger [139] sequencing. Despite the great gains provided by

second-generation instruments, they have several drawbacks. First, they require

amplification of source DNA prior to sequencing, leading to amplification artifacts

[113] and biased coverage of the genome related to the chemical-physical properties

of the DNA [24]. Secondly, current second-generation technologies produce rela-

tively short reads: typically 100 bp for Illumina (up to 150 bp) and ≈ 700 bp mode

(up to 1 000 bp) for 454. Short-reads make assembly and related analyses difficult,

with theoretical modeling suggesting that decreasing read lengths from 1 000 bp to

100 bp can lead to a six-fold or more decrease in contiguity [73]. Finally, the size-

able runtime of most second-generation instruments is prohibitive for applications

†The text of this chapter is based on the publication S. Koren, M. Schatz, B. Walenz, J. Martin,
J. Howard, G. Ganapathy, Z. Wang, D. Rasko, W. McCombie, E. Jarvis, and A. Phillippy. Hybrid
error correction and de novo assembly of single-molecule sequencing reads. Nature Biotech, In
Review, 2012

41



requiring rapid analysis, with an Illumina HiSeq 2000 instrument requiring 11 days

for the sequencing reaction alone (http://www.illumina.com/).

Pacific Biosciences recently released their first commercial “third-generation”

sequencing instrument, the PacBio RS: a real-time, single-molecule sequence. It

aims to address the problems outlined above by requiring no amplification and

reducing compositional bias [140, 16], producing long sequences (e.g. median =

2 246, max = 23 000 bp using the latest PacBio chemistry which has not yet been

publicly released) [130], and supporting a short turn-around time (24 hrs sample to

sequence) [28, 16]. The long read lengths would be beneficial for de novo genome

and transcriptome assembly as they have the potential to resolve complex repeats or

span entire gene transcripts. However, the instrument generates reads that average

only 82.1% [16]–84.6% [130] nucleotide accuracy, with uniformly distributed errors

dominated by point insertions and deletions. The high error rate obscures the

alignments between reads and complicates analysis since the pairwise differences

between two reads will be approximately twice the individual error rate. This error

is far beyond the 5%–10% error rate [105, 97, 137] that most genome assemblers can

tolerate and simply increasing the alignment sensitivity of traditional assemblers

is computationally infeasible (Section 3.3.4). Additionally, the PacBio technology

utilizes hairpin adaptors for sequencing double stranded DNA, which can result

in chimeric reads if the sequencing reaction processes both strands of the DNA

(first in the forward and then reverse direction). While it is possible to generate

accurate sequences on the PacBio RS by reading a circularized molecule multiple

times (circular consensus or CCS), this approach reduces read length by a factor
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equal to the number of times the molecule is traversed (resulting in sequence with

an example median = 423 bp, max = 1 915 bp). Thus, there is a great potential

advantage to the long, single-pass reads if the error rate can be algorithmically

managed.

To overcome the limitations of single-molecule sequencing data and unlock its

full potential for de novo assembly, we developed an approach that utilizes short,

high-identity sequences to correct errors in long, single-molecule sequences (Fig 3.1).

Our pipeline, PacBio corrected Reads (PBcR), implemented as part of the Celera

Assembler [105], trims and corrects individual long-read sequences by first mapping

short-read sequences to them and computing a highly-accurate hybrid consensus

sequence: improving accuracy from as low as 80% to over 99.9%. The corrected

“hybrid” PBcR reads may then be de novo assembled alone or in combination with

other data, or exported as FastA sequences for other applications. As demonstrated

below for several important genomes, including the previously un-sequenced ∼ 1.2

Gbp genome of the parrot Melopsittacus undulatus, incorporation of PacBio data

using this method leads to greatly improved assembly quality versus either first or

second-generation sequencing, indicating the true dawn of a “third generation” of

sequencing and assembly.

3.2 Methods

Our strategy consists of two phases: a long-read correction phase and an

assembly phase. Both are implemented as part of the Celera Assembler [105], but
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Figure 3.1: The PBcR single-molecule read correction and assembly
pipeline. a) The high-error, indicated by black vertical bars, in single-pass PacBio
RS sequences obscures overlaps. b) Given a high-accuracy sequence (≈ 99% iden-
tical to the truth), the error between it and a PacBio RS sequence is half the error
between two PacBio RS sequences. Therefore, accurate alignments can be com-
puted. In this example, black bars in the short-reads indicate “mapping errors”
that are a combination of the sequencing error in both the long and short reads. In
addition, a two-copy inexact repeat is present (outlined in gray) leading to “pile-
ups” of reads at each copy. To avoid mapping reads to the wrong repeat copy, the
pipeline selects a cutoff, C, and only the top C hits for each short read are used. The
spurious mappings (in white) are discarded. c) The remaining alignments are used
to generate a new consensus sequence, trimming and splitting long reads whenever
there is a gap in the short-read tiling. Sequencing errors, indicated in black, may
propagate to the PBcR read in rare cases where sequencing error co-occurs. d) After
correction, overlaps between long PBcR sequences can be easily detected. e) The
resulting assembly is able to span repeats that are unresolvable using only the short
reads.
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the output of the correction phase can be used as input to any other analysis or

assembler capable of utilizing long FastA sequences. The outline of the correction

algorithm is as follows: (1) high-identity short-read sequences are simultaneously

mapped to all long-read sequences, (2) repeats are resolved by placing each short-

read sequence in its highest identity repeat copy, (3) chimera and trimming problems

are detected and corrected within the long-read sequences, and (4) a consensus

sequence is computed for each long-read sequence based on a multiple alignment of

the short-read sequences.

3.2.1 Simulated overlap error

We developed a simulated alignment program to calculate expected overlap

error between PacBio sequences. The program assumed 83.7% accuracy, with a

11.5% insertion, 3.4% deletion, and 1.4% substitution rate. Reads were simulated

from the same position of a reference E. coli K12 and randomly mutated. The

resulting sequences were aligned and cumulative overlap error computed. When-

ever two sequences had the same type of error in the same position, the error was

ignored (that is if both reads had the same insertion at a single position). The

simulation shows that the overlap error is approximately additive (1.87 times the

single-sequence error) with the average error in a single sequence being 16.8% and the

total error of 31.55% (versus 33.76% if the error were exactly additive) due to some

pairs of sequences sharing an error at the same position. As most second-generation

sequence overlaps are found below 3% error (Fig 3.2), we expect the average over-
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lap between PacBio reads and high-identity short-read sequences should be at most

17.5% (16.5% + 1%). Simulating PacBio to Illumina overlaps, where Illumina has

99% accuracy (with all errors being substitutions), results in a total error of 17.45%

(versus 17.83% if the error were exactly additive). Therefore, the expected overlap

error between a high-accuracy technology (such as Illumina) and PacBio is approx-

imately half (1.8 times) of one between two PacBio sequences. This observation

is supported by real E. coli K12 data in Figures 3.2 and 3.3 below. Thus, our ap-

proach relies on the fact that overlaps between long-read sequences and high-identity

sequences are detectable by current alignment methods.

3.2.2 Overlap detection

The algorithm begins by computing all-vs-all overlaps between the low-accuracy

single-pass (PacBio) long-read sequences and high-identity short-read sequences (Il-

lumina, 454, PacBio CCS). The overlaps are computed only between fragments that

have shared seed sequences of a pre-defined length (14 bp by default), and only

short-read sequences aligned across their entire length to a long-read sequence are

considered; support for partial overlaps to the ends of long reads is left for future

versions. For efficiency, overlaps between reads of the same technology (e.g. short

to short) are not computed during this phase.

Next, overlaps are converted into a tiling of short-read sequences along each

long-read sequence. Each short-read sequence is permitted to map to more than

one long-read sequence, since the long-read sequences are expected to cover the
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Figure 3.2: PacBio RS sequences are too high error to accurately detect
overlaps.The cumulative percentage of overlaps detected below a given overlap
error threshold is shown. The cumulative % of overlaps is calculated relative to the
total number of overlaps detected below 25% error. As PacBio overlaps are expected
to be 31.55% error (beyond the maximum limit of the overlapper), the curve above
overestimates the percentage of true PacBio overlaps detected. For both 454 and
Illumina, over 80% of the overlaps are detected by 3% error. By contrast, on PacBio,
only 10% are detected at 15% error. Results shown using E. coli K12.
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Figure 3.3: Overlaps between PacBio RS and high-identity sequences are
detectable at lower error than PacBio RS to PacBio RS overlaps. The
cumulative percentage of overlaps between 454 and PacBio is shown. As in Figure
3.2, the % of overlaps is computed out of the total overlaps detected below 25%
error, overestimating the percentage of PacBio overlaps detected. As expected,
the 454-PacBio overlaps are found much faster than PacBio-PacBio overlaps with
approximately 75% detected by 10% error (versus less than 40% for PacBio-PacBio)
and approximately 90% at 16% error. This corresponds well with our prediction that
expected Illumina-PacBio overlaps error rate is 17.45%. Results shown using E. coli
K12.
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genome at more than 1X coverage. However, within a single long-read sequence, a

short-read sequence is placed only in its highest identity location with ties broken

randomly.

3.2.3 Repeat separation

In the case of repeats distributed across multiple long-read sequences, short-

read sequences from all repeat copies will map to each copy of the repeat. To avoid

tiling each repeat copy with the same set of reads, short-read sequences are separated

into their appropriate copies by ranking their mappings by identity and permitting

each short-read sequence to map only to its top C hits, where C is roughly defined

to be the expected long-read sequencing depth. This effectively separates repeat

copies when sequencing coverage and error is uniform. The value of C, a repeat

threshold, is defined as follows:

Given a histogram H =
∑n≤max(ni)

n=1 (ni)∀i, and a threshold 0 ≤ T ≤ 1

slope(K) =
HK

HK−1
∀K ≥ 2

total(K) =

k≤K
∑

k=1

(
HK

∑k≤max(ni)
k=1 Hk

)

C =min(K) s.t. total(K) ≥ T and

slope(K) > slope(K − 1) and HK < HK−1
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Where ni is the number of long-read sequences a short-read sequence i maps to ∀i.

Theoretically, the histogram, H , has a peak equal to the long-read depth of coverage.

It can be expected that a unique short-read sequence will map to, on average, this

many long-read sequences. Thus, a short-read sequence from a two-copy repeat will

map to roughly double this number. The chosen repeat threshold is the point in the

curve past this peak that includes at least T% of the high-identity reads. Figure

3.4 shows an example histogram on E. coli K12. The histogram has a pronounced

peak at 20X, corresponding to the PacBio coverage of this dataset. The vertical

line shows the cutoff chosen by our algorithm. Figure 3.5 shows the coverage of the

corrected PacBio RS sequence by Illumina data. The histogram has a peak at 50X,

the Illumina coverage used for correction.

In this way, each repeat copy will only be tiled by its best representative reads

for correction. This approach can sometimes place reads in the wrong repeat copy.

For instance, in cases where the error rate of two PacBio RS sequences from two

separate repeat instances is significantly different, such that one is higher, Illumina

sequences may preferentially map to the lower-error PacBio read. This would in-

crease the mapped coverage of the low-error read by including some reads from the

alternate copy, while decreasing the coverage of the high-error read. However, this

problem should be alleviated as overall PacBio coverage is increased, because the

read accuracy distribution in the different repeat copies will converge after a few

fold redundancy. As evidence, systematic misplacement of reads in repeats, leading

to inaccurate correction, coverage fluctuations, or decreased throughput, has not

been observed in any of our experiments (e.g. Table 3.3, Table 3.4, Fig 3.5).
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Figure 3.4: Histogram for the number of PacBio long-read sequences each
Illumina short-read sequence maps to for E. coli K12. The peak is at 20,
the coverage of the reference in long reads, and there is a long tail of reads with
many matches, coming from repeat regions of the genome. The vertical line shows
the repeat threshold identified by our algorithm, 28 in this case. Only the top
28 matches for each Illumina sequence will be used for correction. The remaining
matches are assumed to be spurious due to a single Illumina sequence mapping to
multiple instance of a genomic repeat. b) The histogram of Illumina read mappings
after removing spurious repeat-induced mappings and short PacBio RS sequences.
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Figure 3.5: Histogram of the Illumina short-read coverage for each cor-
rected position of a PacBio sequence for E. coli K12. The peak is at 50, the
coverage of the Illumina short-reads used for correction. To correct for PBcR read
ends, coverage is not computed for the first and last 100bp of each PBcR sequence
(100 bp corresponds to the Illumina sequence length). The Y-axis shows the fre-
quency while the X axis shows the coverage. The normal shape of the distribution
shows the PacBio reads are uniformly covered by Illumina sequences at the expected
depth, with very few regions of unusually high or low Illumina coverage.

52



3.2.4 Consensus generation

Finally, from the multiple-alignment of the tiled short-read sequences, the cor-

rection algorithm generates a new consensus sequence for each long-read sequence

using the AMOS consensus module [127]. In the consensus, if there is a gap in the

layout between adjacent overlapping short reads, this is considered a irreconcilable

discrepancy between the short and long-read sequences, especially since the reads

are generated from the same biological sample, and it is assumed there is sufficient

coverage in the short sequences to tile each long-read sequence. Therefore, any gap

in coverage is indicative of either improper trimming of the long-read sequence or

chimera formation, and the long-read sequence is broken at this point. If instead

there is merely insufficient coverage leading to a true sequencing gap for the short-

read sequences, this will result in an unnecessary split. However, the correction

algorithm errs on the side of caution. Future work remains to resolve any unneces-

sary gaps caused by the conservative trimming, such as by recognizing and filling

these gaps during scaffolding.

The corrected, now high-identity, long-read sequences can be assembled alone

or co-assembled with other read types using standard OLC assembly techniques. To

support de novo assembly using Celera Assembler we have increased the input size

limitation, applying it successfully to sequences up to 30 000 bp in length.
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3.2.5 Implementation

The correction algorithm implementation is designed to be easily paralleliz-

able, both using shared memory (via POSIX threads) and distributed architectures

(using SGE). There are two important parameters to specify: 1) the number of

parallel consensus jobs N . 2) the number of threads t to use for correction. A set of

recommended parameters for SGE and shared-memory systems is provided in the

code distribution. The correction step splits the long-read sequences into the user

specified number of partitions N . The correction is parallelized in two blocks. The

first streams through the overlaps computed for each long-read sequence and gen-

erates N intermediate files specifying the layout of the short-read sequences. The

repeat threshold C is then computed as above. The overlaps are examined again

(this time serially) for each short-read sequence and at most C best hits are stored

for each. The best hits are recorded into N files, sorted by long-read sequence. Thus,

the final parallel block uses a pool of t worker threads to operate on N partitions,

selecting the next partition, 1 ≤ n ≤ N from a queue. As the intermediate results

have already been sorted by long-read sequence and only matching high-identity

short-read sequences remain, each thread can generate the output for a partition

independently of the other threads. Finally, the consensus is computed in parallel

on each of the N partitions.
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Table 3.1: Sequence data used to test PBcR correction/assembly pipeline
The eight datasets used for testing our assembly and correction pipeline. The PacBio
RS lengths are reported before correction. The simulated data was generated by
wgsim from the SAMTools package (version 0.1.16) [87]. Simulated sequences as
well as the Lambda reference genome can be downloaded from
http://www.cbcb.umd.edu/∼sergek/PacBio/index.html. The Zea mays project is
hosted at http://www.maizesequence.org.

Genome Institute Tech # Seqs Mated Med (bp) Max (bp)

Lambda NEB3011 PacBio PacBio RS 7 550 - 548 3 440
simulated Illumina 25 000 200bp 100 100

Escherichia coli K12 PacBio PacBio RS 251 762 - 540 3 787
Illumina UK Illumina 22 720 100 500bp 100 100

Escherichia coli C227-11 PacBio PacBio RS 258 301 - 2 098 22 841
PacBio PacBio CCS 617 561 - 423 1 915
wgsim Illumina 4 125 500 500bp 100 100
wgsim Illumina 2,749,218 3Kbp 100 100
wgsim Illumina 2 749 218 6Kbp 100 100

Escherichia coli 17-2 PacBio PacBio RS 212 399 - 2 188 17,696
IGS Illumina 30 282 936 300bp 100 100

Escherichia coli JM221 PacBio PacBio RS 211 366 - 2 553 18 564
IGS 454 FLX Titanium 1 174 121 - 470 612

Saccharomyces cerevisiae

S228c
CSHL PacBio RS 969 445 - 588 8 495

CHSL Illumina 57 886 340 300bp 76 76
Melopsittacus undulatus PacBio PacBio RS 4 176 242 - 1,308 16,947

Duke University Illumina 660 997 244 400bp 101 101
Roche/
Duke University

454 FLX Titanium(+) 48 337 115 3,8,20Kbp 385 2 038

BGI Illumina 2 031 639 664
0.22,0.5,0.8,
2,5,10Kbp

90 150

Zea mays B73 DOE JGI PacBio RS 131 257 - 1 027 5 613
DOE JGI Illumina 230 000 000 - 250 250

3.3 Results

3.3.1 Test data

We used eight datasets to test and validate our correction and assembly

pipeline, shown in Table 3.1

3.3.2 Analysis of PacBio RS sequences

The error distribution of PacBio RS sequences was evaluated using the S.

cerevisiae S228c genome. The error at each base position was tabulated for all
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Figure 3.6: The PacBio RS sequence error profile. The positional error profile
in PacBio RS sequences. The read error rate is tightly distributed around 16% (as
expected) with very little deviation until 2.5Kbp. This pre-release sequencing data
does not have many sequences over 2.5Kbp in length, limiting the sample size for the
error rate calculation. However, the divergence does not show a drop in accuracy,
instead there is an equally likely probability of higher or lower accuracy, reflecting
the sampling effect.

sequences. Figure 3.6 shows the resulting distribution. Unlike all other sequencing

technologies currently available, the PacBio RS shows a normal error distribution

with no positional bias. The only deviation from the expected 16% error rate is

visible after 2.5Kbp when a low sample size (due to the exponential read length

distribution) causes the per-base positional accuracy to diverge from the mean.

Note that this divergence does not show decreasing accuracy but is instead equally

distributed both above and below the mean as would be expected with a sampling

artifact.
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Figure 3.7: PacBio RS sequencing depth by genome position.The gold verti-
cal lines separate the chromosome (chrI-chrXVI, then the mitochondrion genome).
The plot shows that most of the genome is evenly covered with minimal bias. The
mitochondrial genome shows higher depth because it is present in the cell at a
greater copy number than the chromosomes. Coverage spikes in the chromosomes
are mapping artifacts caused by repeats, because we report the ten best hits for
each read.

We examined the induced coverage along the reference Saccharomyces cere-

visiae S228c genome considering the top ten best alignments for each read and

only considering alignments ≥ 1 000 bp. Figure 3.7 shows the average coverage of

1 000 bp bins along the genome, with gold vertical lines separating the chromosome

(chrI-chrXVI, then the mitochondrion genome). The even coverage is consistent

with Pacific Biosciences claim that their technology removes amplification bias and

greatly reduces GC bias, leading to more uniform coverage of the genome than other

technologies [16].

The coverage distribution is also displayed in Figure 3.8, which shows the

number of bases of the genome at each coverage level. The distribution closely

matches the expected Poisson distribution with a lambda of ∼ 12.5 (shown in red)

although the variance is slightly higher than predicted by a Poisson process. In

particular, from the Poisson distribution 1.48% of the genome is expected to be at
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Figure 3.8: PacBio RS coverage matches Poisson expectation. The distri-
bution closely matches the expected Poisson distribution with a lambda of ∼ 12.5
(shown in red) although the variance is slightly higher than predicted by a Poisson
process.

5-fold or lower coverage, but instead 2.97% has 5-fold of lower coverage coverage.

Furthermore, only .0000187% of the genome is expected to have 30 fold or greater

coverage, but instead 5.97% has high coverage with a max coverage of 2 024X.

We examined the regions with zero coverage and found they fell into 6 contigu-

ous segments, although 3 were 13bp or less, concordant with the Poisson expectation.

The remaining 3 consist of a 2 861 bp region of chr III (148 616–151 476), 326 bp

of chr IX (119 987–120 312), and the last 158 bp of chr VI (270 002-270 160). The

longest region contains a cluster of 3 LTRs and several tRNAs. The next largest

segment consists of an exon of the STH1 gene, and the last segment contains part of
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the telomeric arm of the chromosome. These results suggest the sequencing process

may have small biases against certain repetitive sequences, although given the very

small numbers of events and non-zero coverage across the other > 100 annotated

teleomeric repeats, any biases must have marginal effects.

The highest coverage regions (≥ 1 000 fold) consisted of a single 16 895 bp

segment (451 625–468 519) on chr XII, which contains many genes from the 35S and

18S ribosomal RNA transcripts. The coverage spikes are likely a mapping artifact

resulting from reporting the top ten matches for each sequence.

3.3.3 De novo assembly of long reads

Genome assembly is the computational problem of reconstructing a genome

from sequencing reads [125, 104]. It and the closely related problem of de novo

transcriptome assembly are critical tools of genomics required to make order from

a myriad of short fragments. The assembly problem is frequently formulated as

the problem of finding a traversal of an appropriately defined graph derived from

the sequencing reads. Two commonly used formulations are: the Overlap-Layout-

Consensus (OLC or string graph) paradigm [108, 67, 109, 105] where the graph

is constructed from overlapping shared sequences (edges) between sequence reads

(nodes), and the Eulerian/de Bruijn graph formulation [62, 122, 13, 15, 183] where

the graph is constructed from substrings of a given length k, called k-mers, derived

from the set of reads.

The optimal value of k for a de Bruijn assembler is dependent of the length of
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the read, the genome coverage, and the error rate. In particular, the value k must

be small enough so that reads with a true overlap share many error-free matching

sequences of at least k bases. In contrast, OLC assemblers form the assembly graph

using overlaps, where the graph nodes represent sequencing reads and an edge indi-

cates overlap between two reads. A string-graph formulation can be used to simplify

the graph by removing all transitive edges. After transitive reduction, the remaining

branching nodes indicate read disagreement, where a sequence a overlaps both se-

quences b and c, but b and c do not overlap each other. The majority of assemblers

developed for second-generation sequencing rely on the de Bruijn graph formulation

because it is computationally simpler to identify length-k exact matches between

reads, making it better suited for high-coverage, short-read sequencing. In contrast,

OLC assemblers start by finding overlaps using pair-wise sequence alignment.

Assembly graph complexity is determined by both sequencing error and re-

peats, but repeats are the single biggest impediment to all assembly algorithms and

sequencing technologies [123]. Under a de Bruijn graph formulation, repeats longer

than k form branching nodes that must be resolved by “threading” reads through

the graph or by applying other constraints, such as mate-pair relationships [101].

In contrast, within OLC assemblers, only repeats longer than r̄ = rmax − 2 × o

cause unresolved branches in the graph, where rmax is the read length and o is the

minimum acceptable overlap length. For short-read sequences, k and r̄ are very

similar, so the corresponding graphs are nearly equivalent. However, for long reads,

r̄ may be substantially longer than feasible values of k due to the limiting factors

of sequencing error. Therefore, the availability of long sequences has a greater po-
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tential to simplify the OLC assembly problem. In the extreme case, if all repeats

in a genome were spanned by reads of greater length, OLC assembly of the genome

into its constituent chromosomes and/or plasmids would be trivial. In practice,

longer reads increase the probability of spanning repeats, and thus produce better

assemblies at lower sequencing coverage than short reads.

3.3.4 Assembly of uncorrected PacBio data

For these reasons, OLC would seem to be superior for assembling long reads.

Figure 3.9 reports the estimated k-mer size required to detect overlaps at various

error rates. For PacBio RS uncorrected sequences, a k-mer size of 10 or lower

is required to detect overlaps. We hypothesize that PacBio RS sequence overlap

detection is computationally expensive and below the sensitivity of most assembles.

To test our hypothesis, we measured the relative performance of de novo as-

sembly of PacBio RS reads from Lambda phage using OLC and de Bruijn methods.

As expected, the assemblers are unable to deal with the high-error present in the

(uncorrected) PacBio RS data, producing “shattered” assemblies (Table 3.2).

3.3.5 Comparison of assemblies using high-identity long-read data

Previous analysis confirmed the difficulty of finding both matching k-mers and

overlaps at high-error rates (Fig 3.9, Fig 3.2). We next evaluated the performance

of assembly after error correcting the Lambda phage PacBio RS sequences with

high-accuracy short-read sequencing (Table 3.2). All assemblies were more contigu-
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Figure 3.9: Random errors obscure overlap seeds. 20X coverage of 1 000bp
reads was simulated for E. coli K12 at four error rates and the fraction of known
overlapping reads sharing an exact match of at least seed-length bases was measured.
The current PacBio error rate falls between the black bar (20% error) and the red
bar (15% error). At this rate, a seed length of approximately 10 is required for
good overlap discovery. Shorter seed sizes complicate the assembly graph (since any
repeat longer than seed size is must be resolved via read threading or paired-ends).
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Table 3.2: Assemblers cannot utilize PacBio RS high-error sequences di-
rectly. The most popular OLC and de Bruijn graph assemblers were compared
on uncorrected PacBio data. % Cvg is the percentage of the reference covered by
the assembly and % Idy is the average identity of the uniquely-mapping regions of
the assembly to the reference. For CA, the k-mer size specified is the minimum
length used to seed an overlap. Not surprisingly, neither the OLC nor the de Bruijn
graph assemblers are able to deal with the high rate of sequencing error present in
PacBio RS data, even on this simple phage genome. All assemblies cover only a
fraction of the genome at low identity while making many errors. After correction,
the assemblers are able to reconstruct the genome accurately, however, only the
OLC assembler is able to reconstruct the entire genome in a single contig (versus 5
for SOAPdenovo and 23 for Velvet).

Assembler k-mer N50 Max Corrected N50 Total BP % Cvg % Idy

CA 14 0 1 095 0 4 734 6.33% 98.92%
SOAPdenovo 39 2 239 2 682 133 4 526 193 60.01% 95.79%
Velvet 37 1 544 2 640 1 544 2 285 250 75.47% 96.20%

Corrected sequences

CA 14 48 452 48 452 48 452 48 452 99.90% 99.93%
SOAPdenovo 87 26 424 26 424 26 424 48 850 99.90% 99.93%
Velvet 87 26 430 26 430 26 430 52 886 99.90% 99.93%
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ous but only the OLC assembler reconstructed the phage in a single contig. To

test the benefits of increasing read lengths, we simulated error-free data of varying

length from the Saccharomyces cerevisiae S228c genome and compared the resulting

assemblies (Fig 3.10(a)). OLC assembly becomes progressively more powerful for

longer reads, displaying a nearly linear increase in contig size as read lengths grow.

In contrast, the de Bruijn assemblies plateau and cannot effectively utilize the long

reads without increasing k beyond practical values due to the inherent limitations of

the graph construction and the complexity of the read-threading problem [122, 111].

Therefore, we developed a pipeline to correct and assemble PacBio RS sequences

using an OLC approach.

3.3.6 Correction accuracy and performance

We evaluated the PBcR correction and assembly algorithm on multiple short

and long read datasets generated by Illumina, 454, and PacBio sequencing in-

struments, including three data sets with available reference sequences: Lambda

NEB3011, Escherichia coli K12, and Saccharomyces cerevisiae S228c (Table 3.1).

Using 50X of Illumina data to correct PacBio reads for each reference organism,

the characteristics of the corrected data is examined by comparison to a reference

genome (Table 3.3). Figure 3.11(a) shows the raw sequences produced by the PacBio

instrument. The accuracy of reads has a peak at 89.01% (median = 89.13%), as

expected. A significant fraction (50%) of the PacBio sequence cannot be accurately

mapped to the reference. Figure 3.11(b) shows that the accuracy of the corrected
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Figure 3.10: Long-reads yield assembly improvements, even at low cover-
age. a) Effect of PacBio corrected read length (PBcR) on contig size is measured for
the OLC assembler Celera Assembler [105] and the de Brujin assembler SOAPdenovo
[89]. Contig size, after breaking contigs at mis-joins, is measured using the standard
N50 metric (N such that 50% of the genome is contained in contigs ≥ N). The
baseline SOAPdenovo assembly (purple star) represents an assembly of 50X of real
76 bp Illumina paired-end (300 bp) reads from S. cerevisiae S228c. Increasing PBcR
read length was simulated and assembled using 10X of error-free reads generated
from the reference at three additional length distributions: the pre-release PacBio
instrument (Spring ’11), the first publicly available instrument (Summer ’11), and
the “C2” chemistry upgrade (Fall ’11). b). Effect of PBcR coverage is measured
for Escherichia coli, sequenced with a combination of PacBio and second-generation
sequencing. The benefit of the PBcR sequences is visible even below 5X , which
leads to a 50%–100% increase in N50. Maximum contig N50 is reached by ≈ 10X ,
where adding 10X of PBcR increases the N50 by up as much as 3.5-fold (250%).
The larger gain versus the 454-only assembly is due the longer PBcR sequences
available for E. coli JM221. The variation in N50 is due to random subsampling of
sequencing data.
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reads with respect to the reference is 99.99% (median = 100%). The length of the

sequences is shorter since chimeric sequences have been split during correction, but

median length is not drastically affected (median = 848 pre-correction vs median =

767 post-correction). The corrected reads are also 99.96% (median = 100%) covered

by a single match to the reference (Figure 3.11(b)).

The correction has a low rate of chimeric and improperly trimmed reads, mea-

suring < 2.5% and < 1%, respectively (Table 3.3). The concurrence of the corrected

reads with their references is testament to the automated trimming process, which

is necessary for the removal of adapter sequences that can be otherwise difficult to

identify. During correction, reads may be discarded due to unusually low quality or

short length, and the percentage of reads that are successfully corrected and output

by the pipeline is termed throughput. The observed throughput is generally around

60%, but varies significantly depending on the quality of the individual runs. For

example, throughput for the S. cerevisiae S228c reads appears unusually low, and is

likely because much of this sequencing was performed using a pre-release PacBio RS

instrument during testing at Cold Spring Harbor Laboratory. Nevertheless, in all

cases the pipeline successfully identifies the usable data and outputs highly accurate

long reads.

To further evaluate correctness accuracy, we selected regions of the genome

that appear repetitive and compared the correction error rates within repeat regions

to error rates in the full genome. PBcR quality was evaluated for the full PBcR set,

and the repeat-only PBcR set for both E. coli K12 as well as S. cerevisiae S228c. To

control for differences between the sequenced genome and the reference, the original
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Figure 3.11: A comparison of PacBio length, coverage, and identity ver-
sus a reference before (a) and after (b) correction. Here, E. coli K12 is
shown. Alignment was performed using MUMmer 3.23. Matched were filtered us-
ing delta-filter q to retain the best matches for each position of a sequence. a)
the raw PacBio reads after quality filtering generated by the instrument. The %
coverage is calculated as the total fraction of the fragment that could be mapped (in
any number of matches) to the reference. The % identity is calculated as the average
(weighted by match length) of all matches for a sequence. A significant fraction of
sequences could not be aligned to the sequence and are reported as having 0% for
coverage and identity. b) the same sequences after correcting using 50X of Illumina
sequencing data. The resulting sequences are shorter (having a maximum of 3Kbp
versus 4Kbp) due to breaking at positions with no short-read coverage. However,
all corrected reads can be mapped to the reference, with the vast majority (over
95%) mapping at 100% identity over 100% of their length.
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Table 3.3: PacBio correction accuracy Corrected (PBcR) read accuracy as com-
pared to reference sequence. Reads were mapped using NUCmer 3.23 [82]. For all
statistics, only reads > 500bp were included. % TP (Throughput): the percentage of
raw uncorrected bases that are in non-chimeric, correctly-trimmed sequences after
correction. % Idy (R): average identity of good corrected reads to the reference. %
Idy (A): average identity of assembled corrected reads to the reference. % Cov (Cov-
erage): average coverage of good corrected reads by a single match to the reference.
% Chimer: the percentage of corrected bases within reads with a split mapping to
the reference. % Trim: the percentage of corrected bases within reads with a single
match to the reference over less than 99.5% of their length. The time is reported
in seconds and memory in gigabytes. The corrected sequences remain above 99%
identity and 99% trim within the repetitive regions of the genome (Table 3.4).

Organism % TP % Idy % Idy (A) % Cov % Chimer % Trim Time Mem

Lambda NEB3011 74.03% 99.90% 100.00% 100.00% 1.82% 0.10% 121 0.12
E. coli K12 57.46% 99.99% 99.99 % 99.92% 2.02% 0.34% 1580 2.10
S. cerevisiae S228c 21.86% 99.90% 99.97% 99.93% 1.46% 0.33% 4357 5.90

uncorrected PacBio RS sequences were also evaluated. Only PacBio RS sequences

with a mapping were used to tabulate statistics. The results are presented in Table

3.4. In all cases, the PBcR pipeline trims bad sequences while retaining over 99%

identity and trim.

Sufficient coverage of short-read data was the primary factor for determining

the effectiveness of the correction pipeline. As short-read coverage is increased,

more long-read sequences can be accurately corrected, but the error correction run-

time also increases linearly with the number of short-read sequences (Fig 3.12). To

determine an appropriate tradeoff, E. coli K12 Illumina sequences were subsampled

from 5X to 200X and used for correction (Fig 3.13, Table 3.5).

The long read accuracy greatly improves as Illumina coverage increases from

5 to 50X but improvements continue with diminishing returns at higher coverage.

Furthermore, the correction pipeline required 135.46 CPU hours (2.5hrs wall-clock

68



Table 3.4: PBcR correction is accurate within genomic repeats. The re-
peat regions within genomes were selected by mapping. Both original PacBio RS
sequences as well as the PBcR sequences intersecting those regions were selected
and their quality evaluated as in Table 3.3. It is expected that selecting for re-
peat regions biases the selection towards naturally variable regions of the genome.
Therefore, to identify correction errors versus true variation in the reads, the error
rates were compared to the original PacBio RS reads. As expected, selecting re-
peat regions selects for variable regions within genomes, leading to higher rates of
chimera and trim errors in the original PacBio RS data. Columns are defined as
in Table 3.3: % Good Bases: the percentage of total sequence in non-chimera and
non-trim sequences. % Idy (Identity): average identity of good corrected reads to
the reference. % Cov (Coverage): average coverage of good corrected reads by a
single match to the reference. % Chimer: the percentage of corrected bases within
reads with a split mapping to the reference. % Trim: the percentage of corrected
bases within reads with a single match to the reference over less than 99.5% of their
length.

All sequences Repeat region sequences
Genome Seq % Good % Idy % Cov % Chim % Trim % Good % Idy % Cov % Chim % Trim

E. coli K12 Orig 30.46% 89.18% 99.77% 2.02% 60.96% 44.06% 89.01% 99.78% 4.12% 71.64%
PBcR 97.61% 99.99% 99.92% 2.02% 0.33% 96.04% 99.94% 99.80% 3.37% 0.57%

S. cerevisiae

S228c
Orig 13.78% 88.10% 99.63% 1.23% 22.81% 38.59% 88.23% 99.58% 4.56% 40.91%

PBcR 98.27% 99.90% 99.93% 1.46% 0.33% 94.52% 99.51% 99.24% 3.15% 2.85%

time) and 7.5GB of peak memory for the 200X correction for an effective parallelism

of 56 cores, and only 13.64 CPU hrs (0.5hrs wall-clock time) and 2.1GB of peak

memory for the 50X case (for an effective parallelism rate of 32 cores). As the

correction accuracy and assembly contiguity show diminishing returns after 50X,

this coverage is recommended as a compromise between performance and accuracy.

3.3.7 Hybrid de novo assembly

We evaluated the impact of PBcR reads on whole-genome assembly, either

alone or in combination with the complementary reads. Two other assemblers are

also reported to support PacBio reads: ALLPATHS-LG [45] and ALLORA [130].

However, neither program performs correction or de novo assembly from uncorrected

69



0 50 100 150 200

Illumina Coverage

S
e

c
o

n
d

s

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
2

3
4

5
6

7

G
ig

a
b
y
te

s

Runtime

Memory

Figure 3.12: Performance of the correction algorithm scales linearly with
increasing coverage. Performance of the correction pipeline as Illumina coverage
is varied from 5X to 200X. The left vertical axis shows the time (in seconds) for the
pipeline to complete. The right vertical axis shows (in gigabytes) the peak memory
used by the pipeline. The peak memory is the maximum memory in use on a single
machine by the pipeline. An average of 41.5 overlap jobs (min = 10, max = 97)
were created and submitted to an SGE grid. For the correction step, we used 16
threads and 200 parallel consensus jobs to generate the corrected sequence.

Table 3.5: PBcR correction is accuracy is independent of coverage. The
coverage of high-identity sequences does not have a significant impact on correction
accuracy. While the throughput is lower (as shown in Fig 3.13), the identity and
coverage remains above 99.9%.

Genome Coverage % Idy (Reads) % Cov % Chimera % Trim

E. coli K12 5X 99.95% 99.91% 0.74% 0.12%
10X 99.98% 99.95% 1.17% 0.13%
20X 99.99% 99.96% 1.24% 0.14%
30X 99.99% 99.93% 1.35% 0.47%
40X 99.99% 99.93% 1.62% 0.50%
50X 99.99% 99.92% 1.72% 0.49%
60X 99.98% 99.91% 1.94% 0.52%
70X 99.98% 99.92% 1.96% 0.57%
80X 99.98% 99.93% 2.03% 0.59%
90X 99.98% 99.91% 1.83% 0.75%
100X 99.98% 99.92% 1.91% 0.62%
200X 99.96% 99.91% 3.21% 0.67%
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Figure 3.13: Increased coverage with Illumina sequences allows increased
error correction. The percentage of original PacBio reads remaining after correc-
tion as Illumina sequence coverage is increased. Results are presented for E. coli
K12. For assembly contiguity, the contig N50 (assembly only the PBcR sequences,
after breaking at mis-joins) is reported. As the figure shows, there is a large gain as
coverage increases from 5X to 30X, after which the return from additional sequenc-
ing begins to diminish, leveling off at 50X. The lower assembly contiguity at 200X
represents a minor 4.86% percent drop in uncorrected N50. This lower contiguity is
due to a 1.3% increase in chimera (to 3.61%) at 200X Illumina coverage. At this ex-
treme depth, erroneous Illumina sequences begin to confirm native PacBio chimeras
by random chance and these chimeras negatively affect the OLC assembly. More
aggressive trimming of Illumina sequences before correction (for example by Quake
[69]) reduces the chimera rate to 1.89% and eliminates the N50 drop. However,
correction at this level of coverage is unnecessary and not recommended.
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reads. Instead, ALLPATHS-LG uses the raw reads to assist in scaffolding and gap

closure of short-read de Bruijn assemblies. The downside of this approach is that

errors introduced in the short-read contigs will go uncorrected, and this function is

currently available only for genomes < 10 Mbp with an Illumina paired-end library

< 200 bp as well as a long-range Illumina jump library. Only the parrot genome

presented here includes this required combination of Illumina and PacBio reads,

but is larger than the stated size limit and could not be evaluated. ALLORA,

a long-read assembler based on AMOS [127, 154, 142], is computationally limited

to small genomes and requires high-accuracy PacBio sequences, such as CCS, to

operate. Inspired by our initial results, low-accuracy PacBio sequences from the 2011

German E. coli outbreak were manually corrected using our consensus module and

iteratively assembled with ALLORA [130]. We have now evaluated our automated

correction and assembly pipeline on the same E. coli C227-11 genome, and have

found it outperforms the previously published assembly (Table 3.8).

Being the only OLC assembler currently capable of assembling giga-base genomes

from long reads (e.g. > 2 000 bp), the Celera Assembler was used for all experi-

ments unless otherwise noted. Current algorithms are capable of assembling large

and accurate scaffolds using solely Illumina short and long-rage pairs, but leave

many repeats unresolved, resulting in short contigs [26, 137]. Thus, we focus results

on the area of the assembly most likely to gain from long reads: contig size.

In all cases, from bacterial to eukaryotic, the incorporation of PBcR data pro-

duces substantially better assemblies than any other sequencing strategy tested—in

the best cases, more than tripling the N50 contig size for equivalent depths of cover-
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Table 3.6: PBcR sequences increase assembly accuracy and contiguity. Or-
ganism: The genome being assembled. The median and max lengths of corrected
PacBio sequences (PBcR) are given in parenthesis. The corrected length is shorter
than original PacBio RS sequences due to trimming and splitting chimeric sequences.
Table 3.1 reports the original PacBio RS sequence lengths before correction. The
three reference data sets (Lambda NEB3011, E .coli K12, and S. cerevisiae S228c)
were generated using the pre-release PacBio RS. Technology: the read data used for
assembly. Pair separation (if applicable) is listed immediately after the coverage.
Reference bp: the assumed genome size used for the N50 calculation. Assembly
bp: the total number of base pairs in all contigs (only contigs ≥ 10 000 bp are in-
cluded in all results). # Contigs: The number of contigs comprising the assembly.
Max/CMax: The maximum contig length, before and after breaking at assembly er-
rors following the methodology in [137]. N50/CN50: N such that 50% of the genome
is contained in contigs of length ≥ N , again before and after correction. Assemblies
for next-generation (Illumina/454) data were generated by Celera Assembler [105]
and SOAPdenovo [89]. Only the best assembly (based on contiguity) in each case
was reported. The ratio is measured between corrected and original N50. A higher
ratio indicates a more correct assembly. Full assembly quality statistics are listed in
Table 3.7, following the GAGE assembly evaluation methodology [137].

Contigs
Organism Technology Ref bp Asm bp Count Max CMax N50 CN50 Ratio

Lambda NEB3011 Ill 100X 200bp 48 502 48 492 1 48 492 48 492 48 492 48 492 100%
med:727
max:3 280

PBcR 25X 48 440 1 48 444 48 444 48 444 48 440 100%

E .coli K12 Ill 100X 500bp 4 639 675 4 462 836 61 221 615 221 553 100 338 83 037 82.76%
med:747
max:3 068

PBcR 18X 4 465 533 77 239 058 238 224 71 479 68 309 95.57%

18X PBcR
+ Ill 50X 500bp

4 576 046 65 238 272 238 224 93 048 89 431 96.11%

S. cerevisiae S228c Ill 100X 300bp 12 157 105 11 034 156 192 266 528 227 714 73 871 49 254 66.68%
med:674
max:5 994

PBcR 13X 11 110 420 224 224 478 217 704 62 898 54 633 86.86%

PBcR 13X
+ Ill 50X 300bp

11 286 932 177 262 846 260 794 82 543 59 792 72.44%
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Table 3.7: PBcR sequences generate accurate assemblies. N50: Contig N50
size. CN50 (Corrected N50): corrected N50 length computed as in GAGE [137].
Ratio: The fraction of the corrected N50, relative to the originala larger percentage
indicates a more correct assembly. Idy (Identity): The average identity of the
assembly to the reference. Inv (Inversions): an inverted assembly with respect to
the reference. Reloc (Relocation): chimeric assembly region corresponding to a
large jump in the reference sequence. Trans (Translocation): A combination of
sequences from two different chromosomes into a single assembled sequence. While
the absolute number of errors is sometimes higher in the PBcR hybrid assemblies,
the ratio of corrected N50 to original is always higher. This means the errors are in
short contigs (chaff) that is any contig over 200bp. Since every PBcR read is over
200bp, chaff will include any originally chimeric untrimmed PacBio RS sequence.
Future work remains to identify and remove this chaff from the assembly output.

Genome Assembly N50 CN50 Ratio % Idy Inv Reloc Trans Total

Lambda NEB3011 Illumina 48 492 48 492 100.00% 99.92% 0 0 0 0
PBcR 48 444 48 444 100.00% 99.93% 0 0 0 0

E. coli K12 Illumina 100 338 83 037 82.76% 99.99% 0 7 0 7
PBcR 71 479 68 309 95.57% 99.99% 1 2 0 3
Illumina + PBcR 93 048 89 431 96.11% 99.99% 7 3 0 10

S. cerevisiae S228c Illumina 73 871 49 254 66.68% 99.99% 0 5 8 13
PBcR 62 898 54 633 86.86% 99.97% 2 7 14 23
Illumina + PBcR 82 543 59 792 72.44% 99.97% 2 5 25 32

age (Table 3.8, Fig 3.14). These improvements also come without the introduction of

additional assembly error, as measured against the three available reference genomes

(Table 3.6).

Figure 3.14 summarizes the N50 results for various technologies and coverages

for the E. coli genome. The three “short-read” alternatives of 50X 454, 50X PacBio

CCS, and 100X Illumina paired-ends all produce similar assemblies. However, sub-

stituting half of the 454 coverage with corrected PacBio reads increases the N50

contig by 3 fold (e.g. 25X 454 + 25X PBcR); matching 50X short-read CCS cover-

age with 50X of PBcR reads results in a 5 fold increase. Because PacBio sequencing

can be completed in just hours, this example provides a promising method for rapid

genotyping and sequencing in time-critical situations, such as for an emerging dis-

ease outbreak.
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Table 3.8: PBcR assembly is more contiguous than second-generation se-
quencing. Organism: The genome being assembled. The median and max lengths
of corrected PacBio sequences (PBcR) are given in parenthesis. The corrected length
is shorter than original PacBio RS sequences due to trimming and splitting chimeric
sequences. Table 3.1 reports the original PacBio RS sequence lengths before correc-
tion. Technology: the read data used for assembly. Pair separation (if applicable) is
listed immediately after the coverage. Reference bp: the assumed genome size used
for the N50 calculation. Assembly bp: the total number of base pairs in all contigs
(only contigs ≥ 10 000 bp are included in all results). # Contigs: The number of
contigs comprising the assembly. Max Contig Length: The maximum contig length.
N50: N such that 50% of the genome is contained in contigs of length ≥ N . Assem-
blies for next-generation (Illumina/454) data were generated by Celera Assembler
[105], SOAPdenovo [89], and ALLPATHS-LG [45] (where possible). Only the best
assembly (based on contiguity) in each case was reported.

E. coli C227-11 PacBio CCS 50X 5 504 407 4 917 717 76 249 515 100 322

(med: 1 217 max: 14 901)
PacBio 25X PBcR
(corrected by 25X CCS)

5 207 946 80 357 234 98 774

PacBio PBcR 25X
+ CCS 25X

5 269 158 39 647 362 227 302

PacBio PBcR 50X
(corrected by 50X CCS)

5 445 466 35 1 076 027 376 443

PacBio PBcR 50X
+ CCS 25X

5 453 458 33 1 167 060 527 198

Manually Corrected
ALLORA Assembly [130]

5 452 251 23 653 382 402 041

E. coli 17-2 Illumina 100X 300bp 5 000 000 4 975 331 62 226 141 74 940
(med: 886 max: 10 069 ) PacBio PBcR 50X 4 981 368 58 318 969 143 307

PacBio PBcR 50X
+ Illumina 50X 300bp

5 022 503 55 367 911 180 932

E. coli JM221 454 50X 5 000 000 4 714 344 66 308 063 106 034
(med: 1 216 max: 12 552) PacBio PBcR 25X 5 005 429 30 631 286 314 500

PacBio PBcR 25X
+ 454 25X

5 008 824 30 633 667 314 500

Melopsittacus undulatus

Illumina 194X
220/500/800 paired-end
2/5/10Kb mate-pairs

1.23 Gbp 1 023 532 850 24 181 1 050 202 47 383

454 15.4X
FLX + FLX Plus
+ 3/8/20Kbp paired-ends

999 168 029 16 574 751 729 75 178

(med: 997 max: 13 079)
454 15.4X
+ PacBio PBcR 3.75X

1 071 356 415 15 081 1 238 843 99 573
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Figure 3.14: Contig sizes for various combinations of sequencing technolo-
gies. Assemblies are for E. coli C227-11 (assemblies using Illumina, PBcR (corrected
by Illumina and PacBio CCS), and PacBio CCS) and E. coli JM221 (assemblies us-
ing 454, PBcR (corrected by 454)). Both genomes have similar repeat content,
PacBio read length, and coverage. Assemblies of only second-generation data are
comparable and average N50 ≈ 100 Kbp. By comparison, adding 25 or 50X of
PBcR to these data sets increases N50 as much as 5 fold and push the maximum
contig size greater than 1 Mbp (for the PBcR/CCS combination).
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Unlike de Bruijn approaches, which often benefit from high depth of coverage,

extreme coverage (e.g. > 100X) can be detrimental to OLC assemblers. Too little

coverage leads to a fragmented assembly because of sequencing gaps, and too much

coverage accumulates sequencing errors in the string graph, which can fragment the

assembly. To seek an appropriate coverage balance, single-pass PacBio reads for E.

coli C227-11 were corrected using both 25X and 50X of CCS data. The hybrid reads

were then assembled at 25, 50, and 75X coverage. The assembly quality plateaus

when hybrid coverage matches the correction read coverage (e.g. 50X CCS plus

50X hybrid, Table 3.9). Intuitively, this is because the correction pipeline splits

sequences at short-read coverage gaps. Therefore, the hybrid assembly is inherently

limited by the correction read coverage. This potential limitation could be overcome

in later stages of assembly by using the uncorrected PacBio reads for scaffolding,

for example.

While more contiguous than second-generation sequencing, the assembly con-

tiguity in Table 3.8 varies between genomes. We hypothesize that the performance

difference is due to varying PBcR read lengths. To test our hypothesis, the aver-

age read length for each assembly in Tables 3.6 and 3.8 was calculated and plotted

vs N50 (scaled by genome size). The result is shown in Figure 3.15. The degree

of improvement correlates with the median length of the corrected reads, with the

newer, longer reads yielding the biggest gains and the older technology producing

only modest gains. Two clear outliers, Lambda and M. undulatus, are visible. This

is expected, as Lambda is a phage genome with a low repeat content while M. undu-

latus is a complex eukaryote. For the others, the graph indicates strong agreement
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Figure 3.15: Assembly contiguity is highly correlated with average read
length. The average read length for assemblies from Tables 3.6 and 3.8 is plotted
against assembly contiguity (calculated as N50 scaled by genome size). There is
a clear visual trend (supported by a log-linear model) of increasing contiguity as
read lengths increase. The two outliers are present due to their relative genome
complexity when compared with the other assemblies

between average read length and assembly contiguity. While there are only five sam-

ples used for the model, four are similar E. coli genomes with PacBio read length

being the major variable. We believe this trend explains much of the variation in

contiguity observed in Tables 3.6 and 3.8.
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3.3.8 PBcR assembly outperforms long-rage paired-end libraries and

second-generation long-read sequencing

Arguably, a diverse range of long insert sizes might be used to produce an

assembly of comparable continuity. However, the available data listed in Tables

3.6 and 3.8 is limited to unpaired 454 and short-insert Illumina libraries (200–500

bp), with the exception of M. undulatus. To compare the effect of PBcR reads

versus long-range pairs, we simulated ideal 3 Kbp and 6 Kbp Illumina long-range

libraries at 50X coverage each for the E. coli C227-11 genome (with 10% standard

deviation on insert length and no chimeric pairs or size/orientation artifacts). Even

in this ideal case, the pure PacBio assembly of the PBcR (corrected by CCS) and

CCS reads outperforms the Illumina-only assembly by 44% with an N50 of 527 198

versus 364 181. In addition, the combination of PBcR reads and Illumina short-range

paired data produces an assembly nearly identical to the idealized Illumina long-

range libraries (Table 3.9). As Illumina short-range libraries double the sequencing

time and long-range libraries are difficult to construct, these results suggest long,

single-molecule sequencing is a practical alternative to both.

The 454 sequencing platform has recently been upgraded to generate sequences

up to 1 Kbp in length. The only genome for which both FLX+ and long PacBio

sequences are available is M. undulatus, precluding a comparison due to the low

and unequal coverage. To compare assembly contiguity between these long 454

sequences, called FLX+, and PacBio sequences, we generated error-free simulated

sequences for the E. coli K12 genome. Using the observed read distributions in M.
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Table 3.9: PBcR corrected sequences outperform Illumina jumping li-
braries. Technology: the read data used for assembly. Reference bp: the number
of base pairs in the reference sequence used for N50 calculation. Total bp: the total
number of base pairs in all contigs. # Contigs: The number of contigs comprising
the assembly. Only contigs ≥ 10 000bp are included in results. Max Contig Length:
The length of the max contig in the assembly. N50: Contig N50 size.

Organism Technology Ref BP Asm BP # Contigs Max N50

E. coli C227-11 Ill 100X 500bp 5 504 407 5 010 115 68 301 145 102 139
Ill 50X 500bp + 50X 3Kbp 5 268 399 44 521 615 273 314
Ill 50X 3Kbp + 50X 6Kbp 5 267 648 36 763 958 364 181
Ill 50X 500bp + 50X 3Kbp + 50X 6Kbp 5 288 424 38 546 066 287 929
PacBio 50X (Corrected by 50X Illumina) 5 342 166 35 915 367 318 612
PacBio 50X + Illumina 50X 500bp 5 490 446 44 1 1027 387 317 661
PacBio 25X (Corrected by 25X CSS) 5 207 946 80 357 234 98 774
Pacbio 50X (Corrected by 25X CSS) 5 204 812 83 340 018 89 556
PacBio 75X (Corrected by 25X CSS) 5 249 417 87 343 158 84 817
PacBio 25X (Corrected by 50X CSS) 5 397 525 41 569 739 216 129
PacBio 50X (Corrected by 50X CSS) 5 476 824 39 1 057 326 365 964
PacBIo 75X (Corrected by 50X CSS) 5 601 310 55 642 068 308 312

undulatus for the FLX+ sequences as well as the post-correction PBcR sequences,

we generated 18X coverage for each dataset. We then calculated assembly metrics

as in Table 3.6. The FLX+ simulated assembly generated a total of 42 contigs

with a maximum contig of 343Kbp and an N50 of 179Kbp. In contrast, the PacBio

simulated assembly generated a total of 11 contigs with a maximum of 1 261Kbp

and an N50 of 1 204Kbp. The increased contiguity of the PBcR assembly is due to

the exponential read distribution generated by the PacBio RS sequencer, with over

30% of the PBcR bases being in reads of 2Kbp or greater. By contrast, all FLX+

sequences were shorter than 2Kbp.

3.3.9 Prokaryotic repeat resolution

The assembly gains are striking because they are entirely a result of resolving

repeat structure rather than closing so-called “sequencing gaps” in the short-read

coverage (Section 3.2.4). Thus, the PBcR reads are uniquely suited for closing
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difficult gaps left by second generation technologies, such as complex tandem repeats

(e.g. VNTRs and STRs).

Repeat resolution occurs when a read spans a repeat and is anchored by the

surrounding unique sequence. Longer reads are capable of spanning a greater variety

of repeats, leading to better assemblies. Repeat classes fall in two broad categories:

interspersed and tandem. Paired reads, either with Illumina or 454, can be used

to resolve many simple interspersed repeats. Here, an advantage of long reads is in

library prep, by removing the need for paired libraries, which can be difficult and

costly to construct. Paired ends fail to resolve repeats when their short ends cannot

be uniquely anchored. Similarly, tandem repeats can be very difficult to resolve

using only read pairing. For example, a 10 bp element repeated 100 times is too

long (1 000 bp) to be spanned by a second generation read, and pair libraries do not

have the resolution to determine the number of copies (the difference between 99

and 100 copies is only 10bp, which is shorter than the typical size variation seen in

1 000bp insert libraries). These types of repeats, such as VNTRs and STRs, have

important biological functions and make powerful genotyping tools, so their correct

assembly is important. The long, continuous PBcR reads allow the assembly of such

sequences, which is not always possible with other technologies. Figure 3.16 shows

three common types of repeats resolved by PBcR reads in bacterial genomes that

were left un- or mis-assembled using 454 reads: interspersed, inverted, and tandem.
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Figure 3.16: Example repeats resolved by PBcR sequences in E. coli

JM221. A dotplot shows the alignment of a single 1 Mbp hybrid PBcR contig
to the corresponding 454 contigs. This single PBcR contig closes 18 gaps left in the
454 assembly. Each horizontal dotted line indicates the boundary of a 454 contig and
the contigs are arranged in order of their appearance in the PBcR contig. Three
repeats resolved by PBcR but not 454 are highlighted. a) The two black arrows
point to 1.4 and 1.8 Kbp gaps in the 454 assembly. These represent two different
interspersed repeat families that appear in the genome in multiple copies, but were
collapsed into single contigs elsewhere in the 454 assembly. Because the long PBcR
reads were able to span these repeats, the gaps were closed. b) The blue, negative
diagonal alignments indicate an inverted repeat of ∼ 800 bp bounding a region of 5
Kbp. The 454 reads were unable to resolve this repeat structure, but the region was
closed by PBcR reads. c) This alignment motif represents a tandem repeat with a
unit length of ∼ 100 bp, repeated 4 times, spanning ∼ 400bp. The 454 assembly
has mis-assembled the region by inserting an extra copy of the repeat. This type
of tandem repeat slippage (either expansion or collapse) is a common mis-assembly
seen in second-generation data and is very difficult to resolve without a full read
spanning the entire region.
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3.3.10 Low long-read coverage impact on assembly

Long reads are capable of producing better assemblies, even at greatly reduced

coverages. A comparison of the literature shows that a 10–20X Sanger assembly is

better than a 100X Illumina assembly, albeit with prohibitively greater sequencing

costs using the older technology [86, 141, 45]. We found that for S. cerevisiae S228c,

an assembly using 13X of PBcR data (corrected by 50X Illumina) is comparable to

an assembly of 100X of paired-end Illumina data (Table 3.6). This is true despite

the fact that sequencing was performed using a pre-release instrument. The cor-

rected PacBio sequences also generate a more accurate assembly: while the 100X

of Illumina produces a slightly longer raw N50, after splitting contigs at assembly

errors, the N50 is larger for the PBcR assembly. Another striking example is E. coli

JM221, for which the 25X PBcR assembly triples the N50 of the 50X 454 assembly.

Given the evident ability of PBcR reads to improve assemblies, the additive

benefit of supplementing second-generation data was measured using E. coli. Be-

tween 1X to 50X of corrected PacBio data was added to the short read data for an

existing assembly (Fig 3.10(b)). The large and rapid gains after the addition of long-

read sequencing are readily apparent. At just 10X coverage, nearly the maximum

N50 is reached for the second-generation/PBcR assembly. The N50 measures a 2.5

and 3.5-fold improvement over the Illumina and 454 assemblies, respectively. These

results demonstrate significant improvements in continuity without the need for

paired libraries and at relatively minor coverages. Thus, one might expect roughly

double the N50 contig size with the addition of just 20X raw PacBio sequencing
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(assuming a throughput of > 50% during correction).

3.3.11 Assembling the parrot genome

Demonstrating applicability to vertebrate genomes, we successfully assem-

bled the Melopsittacus undulatus genome using the PBcR pipeline. A total of

5.5X PacBio sequences (4M) was corrected using 54X of Illumina paired-end reads

(660M), producing 3.75X of PBcR sequences for a throughput of 68.38%. The cor-

rection required 20K CPU hours (6.75 days wall-clock time) using a peak of 176GB

of memory and 121 effective cores. Based on these performance results, correcting

a human genome with matching coverage would take 61K CPU hours, which can be

completed in 10.16 days with an effective parallelism rate of 250 cores. By compar-

ison an ALLPATHS-LG Illumina assembly and a Celera Assembler 454 assembly

each took over 1 week to complete, with the Celera Assembler using the same num-

ber of cores as PBcR. Thus, the correction represents an approximate doubling of

the total assembly time.

Following the method presented in [141], we evaluated the repeat complexity

of the parrot genome in comparison with several other genomes in Figure 3.17 using

the tallymer tool [82]. This analysis is sensitive to assembly quality, so we measured

both the Illumina and PBcR assemblies. If an assembly over-collapses repeats, for

example, the assembly will measure more unique than the truth. The figure shows

that the M. undulatus genome is at least as complex to assemble as the human

genome (as measured for the Illumina assembly) and is likely more comparable to
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the fruit fly and mouse genomes (as measured for the PBcR assembly). The mouse

genome, for example, is known to have 2.25 to 3.25 fold more simple sequence repeats

than the human genome [175], even though it has fewer interspersed repeats. In

many cases, it is the simple repeats that are the most difficult to assemble. Even

though S. cervisiae has a small genome, it is also complex for long k relative to its

genome size. This demonstrates that because the PBcR pipeline performed well on

both S. cervisiae and M. undulatus, it can be expected to perform well on other

high-complexity genomes, such as human.

Because M. undulatus is a novel genome without an available reference, cor-

rection accuracy was estimated by mapping PBcR reads to all assemblies (except

our own) submitted as part of the Assemblathon 2 [26]. For this diploid genome,

each assembly can be thought of as a mosaic of the two haplotypes, so only the

assembly containing the best mapping for each PBcR read was considered in an

effort to match the correct haplotype. Using this method 99.7% of the PBcR reads

had at least one mapping, with 93.7% mapping end-to-end with an average iden-

tity of 99.5%. Of the 6.2% of reads with partial or fragmented mappings, 2.5% have

breakpoints internal to a contig, which provides a rough estimate of chimerism. The

remaining 3.7% map to contig boundaries and their accuracy cannot be determined.

Considering likely haplotype switching within Illumina contigs, the slight increase in

estimated error is not unexpected. Overall, the PBcR reads show good congruence

with the independent assemblies.

The PBcR reads were then co-assembled with 15.4X of 454 reads, which in-

cluded 3, 8, and 20 Kbp libraries, to leverage the complementarity of the three
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Figure 3.17: k-mer uniqueness for five well-known eukaryotes. The ratio is
defined here as the percentage of the genome that is covered by unique sequences
of length k or longer. The horizontal axis shows the length in base pairs of the
sequences. For example, 97.5% of the human genome is contained in unique se-
quences of 200bp or longer. In contrast, only 95% of the parrot genome is contained
in unique sequences at the same 200bp length. The figure demonstrates that parrot
repeat complexity is higher than that of human, closer to D. melonogaster and M.
musculus rather than H. sapiens.
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sequencing technologies and provide a diverse set of insert lengths. For compari-

son, two additional assemblies were generated. One running Celera Assembler with

identical parameters but on the 454 data only, and a second running ALLPATHS-

LG on 194X of Illumina data, including 0.22, 0.5, 0.8, 2 Kbp, 5 Kbp, and 10 Kbp

libraries. ALLPATHS-LG has been shown to be an effective short read assembler

for large genomes [137, 26], and serves as an appropriate benchmark for assem-

bling this genome using only Illumina data. The results of the PBcR, 454, and

Illumina assemblies are included in Table 3.8. However, a co-assembly of just the

454 and Illumina data was not possible because Celera Assembler does not support

high-coverage Illumina data and ALLPATHS-LG does not support 454.

The PBcR/454 assembly, with an N50 contig size of 100 Kbp, is more con-

tiguous than the second generation assemblies in Table 3.8 and compares favorably

with previous avian genome assemblies sequenced using the “gold-standard” Sanger

method. The zebra finch (Taeniopygia guttata) was sequenced to 6X coverage using

Sanger sequencing, generating a maximum contig of 424 635 and an N50 of 38 549

[174]. The chicken Gallus gallus was also sequenced using Sanger to 7.1X , result-

ing in a maximum contig of 624 663 and an N50 of 45 280 [58]. In contrast, for

genomes assembled using only short-read sequencing, the N50 contig size rarely ex-

ceeds 30 000 bp [141, 45]. Much of the parrot genome continuity can be attributed

to the long-read 454 data, including a mix of library sizes and the latest 454 chem-

istry nearing 1 Kbp reads, but the addition of just 3.75X PBcR sequences results

in a 65% increase in maximum contig length and 32% increase in N50 (Table 3.8),

on par with the projections from Figure 3.10(b). However, these PBcR sequences

87



were corrected using Illumina data, so the gains are not directly comparable to the

454-only assembly. Instead, the PBcR hybrid assembly demonstrates the utility of

combining a diverse set of sequencing technologies, something that is not currently

supported by most large-genome assemblers.

In addition to the continuity, the overall quality of the contigs remains high

after the addition of the PBcR reads. Improvement to long-range accuracy is sup-

ported by satisfaction of both assembled 454 pairs and mapped Illumina mate-pairs.

The fraction of unsatisfied 454 pairs drop from 0.056% in the 454 assembly to 0.051%

for PBcR. The fraction of satisfied 10Kbp Illumina mate-pairs increases from 50.80%

to 51.62% in the PBcR versus the 454-only assembly (an increase of 1M or 0.82%).

The Illumina mate-pairs, not utilized in the PBcR assembly, were also used to

test for the presence of chimeric joins. We calculated clone coverage for each base of

the assembly. The clone coverage is incremented for any bases that are spanned by

a satisfied mate, along with the bases within the mate sequences themselves. Unsat-

isfied (wrong orientation, stretched, or compressed) mates do not contribute to the

clone coverage. If an assembly contains a chimeric joins, no pairs are expected to

span the join with the correct separation and orientation. This has previously been

shown to be an effective indicator of mis-assembly [123, 169]. Confirming correct-

ness, the percentage of bases not covered by satisfied 10Kbp mates was tabulated to

be 0.11% in the 454-only assembly versus 0.16% in the PBcR assembly, indicating

almost no change.

The gaps closed by PBcR reads were also evaluated for correctness and their

clone coverage was compared to the overall assembly (Fig 3.18). Both histograms
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Figure 3.18: PBcR contigs are supported by Illumina mate-pairs. The
histograms show the per-base clone coverage by satisfied mate-pairs for the full
PBcR/454 assembly compared to junction regions in the PBcR assembly versus the
454-only assembly. The histograms both show a strong peak at 200X clone coverage.
There is a low rate of 0X coverage regions in both histograms (corresponding to
0.16% of the bases in both cases). The peak at 20X coverage could correspond
to low-complexity regions that could not be sequenced by Illumina or a mapping
artifact.

have a peak at approximately 200X with the same percentage of bases with no clone

coverage (0.16%) and no indication of a higher rate of bad paired-end sequences

surrounding PBcR junctions. The clone coverage by satisfied pairs across PBcR

junctions by an independent library confirms that the assembled contigs are well

supported.

Completeness and correctness of the PBcR assembly is also supported by

aligned transcripts. Of the 15 275 zebra finch mRNA sequences currently anno-
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tated in GenBank, approximately 95% are partially mappable to the three parrot

assemblies using the gmap spliced aligner [181]. All three assemblies show good

structural agreement with the transcripts with only 83, 86, and 85 chimeric map-

pings to the PBcR, 454, and Illumina scaffolds, respectively. Despite its smaller

contigs, ALLPATHS-LG appears very effective at assembling and scaffolding ex-

ons, and its assembly contains an additional 1–2% of the transcript bases than the

others (23.94Mbp PBcR, 23.78% 454, 24.26Mbp Illumina). However, the long read

assemblies excel at reconstructing the often complex intronic sequences, with PBcR

and 454 splitting 23% and 18% fewer transcripts across contigs than Illumina (1 320

PBcR, 1 405 454, 1 708 Illumina). This results in a greater fraction of each tran-

script being contained on a single contig (Fig 3.19, Table 3.10), and the number of

transcripts mapped to a single contig at over 80% length is 15% and 6% greater

for the PBcR and 454 versus Illumina assemblies (8 876 PBcR, 8 156 454, 7 719 Il-

lumina). We extracted the mapping for the well-studied FOXP2 mRNA transcript

(NM 001048263.1) and found that 94.1% maps to a single 504 945bp contig in the

PBcR assembly, while only 80.5% is contained in smaller 163 917bp and 119 070bp

contigs in the 454 and Illumina assemblies, respectively. Thus, the PBcR assembly

shows improved intron reconstruction, but the Illumina assembly maintains slightly

higher exon coverage. This suggests that high-coverage Illumina sequencing may be

a good complement to low-coverage PacBio RS sequencing for complex genomes,

but additional development is needed to adapt assemblers to this challenge.

This demonstrates the utility of corrected, long sequences to improve both

contig length and quality, and better resolve the complex sequence of non-coding
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Figure 3.19: PBcR assembly demonstrates better eukaryotic transcript
coverage. The cumulative plot shows the percentage of transcripts mapped at
a minimum percentage in a single contig (left) and scaffold (right) in each parrot
assembly. The Y axis is the total number of transcripts mapped at or below the
coverage on the X axis. Perfect mapping is not possible between different species,
but curves shifted closest to Y=100% represent assemblies with the best transcript
coverage. The Illumina assembly shows the best transcript coverage in scaffolds,
with the PBcR assembly having 1–2% less transcripts at a given coverage. This
demonstrates that the high-coverage Illumina assembly is able to accurately recon-
struct and scaffold the exons. In contrast, the PBcR assembly has a higher per-
centage of transcripts covered in a single contig at any given coverage than either
the Illumina-only or 454-only assembly, with the Illumina-only assembly having the
lowest percentage coverage. This suggests that the high-coverage Illumina assembly
is able to accurately reconstruct and scaffold the exons, while the advantage of the
long reads lies in resolving complex intron and non-coding sequences.
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Table 3.10: PBcR demonstrates better eukaryotic transcript coverage. The
table shows the values plotted in Figure 3.19 above. The Min % Coverage corre-
sponds to the number of transcripts with at least this coverage in a single mapping
to a contig or scaffold.

Contigs Scaffolds
Min % Coverage PBcR 454 Illumina PBcR 454 Illumina

10 14 366 14 204 14 326 14 424 14 308 14 445
20 14 147 13 939 14 058 14 240 14 101 14 287
30 13 853 13 511 13 641 14 030 13 871 14 103
40 13 373 12 918 12 929 13 702 13 520 13 806
50 12 628 12 049 11 962 13 233 13 033 13 365
60 11 536 10 830 10 575 12 489 12 256 12 631
70 10 327 9 605 9 225 11 584 11 365 11 758
80 8 876 8 156 7 719 10 316 10 139 10 547
90 7 056 6 333 5 927 8 515 8 320 8 759
100 2 181 1 867 1 821 2 757 2 683 2 886

regions, even when long-range libraries are available.

3.3.12 Towards single-contig chromosomes

All our datasets are based on the second-generation PacBio chemistry, with an

uncorrected median read length of ≈ 2 Kbp. To estimate effects of increasing read

length for E. coli K12, we generated several exponential distributions with increas-

ing medians and assembled the resulting error-free read sets for each. We found

that the exponential distribution with a median of 1 600 assembles E. coli K12 into

a single chromosome. Given our current observed sequence loss due to trimming

(median 2 553 trimmed to 1 216 for E. coli JM221, or 48% after trim), this corre-

sponds to a median, uncorrected length of approximately 3 350. However, PacBio

read lengths do not exactly follow an exponential distribution and the simulations

always assemble better than real data. Thus, we roughly estimate that a median,

uncorrected length of 3.5 Kbp will enable single contig assemblies for E. coli K12

at 50X coverage. At this level of coverage, a sufficient fraction of the reads are long
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enough to span the largest repeat family in E. coli, which is approximately 5.5 Kbp.

A median read length of 3.5 Kbp represents a seemingly achievable 40% length in-

crease over the current median length produced by the PacBio RS. However it is

difficult to predict when this threshold will be reached because it is unclear how the

read length distribution may scale for future chemistries.

3.3.13 Single-molecule RNA-Seq correction

Finally, we explored the application of PBcR in transcriptome analysis. Since

the length of the single-molecule PacBio reads (ranging from a few hundred bases

to several kilobases) from RNA-Seq experiments is within the size distribution of

most transcripts, we expect many PacBio reads will represent full-length or near

full-length transcripts. These long reads can therefore greatly reduce the need for

transcript assembly, which requires complex algorithms for short reads [160]. By

aligning long PacBio reads to the reference genome to reveal the exon structure,

alternatively spliced isoforms should be easily detected. However, aligning these

reads to the reference genome is problematic because of the predominance of indel

errors and the lack of algorithms to efficiently align PacBio RNA-Seq reads to the

genome. For example, in this study we generated 50 130 PacBio reads with a median

size of 817 bp from a Zea mays B73 seedling mRNA sample, but only 11.6% (15 173)

of the reads can be aligned to the reference genome by BLAT [72] at > 90% sequence

identity. In contrast, for the corrected PBcR sequences (using 17.8X of Illumina data

completing in 3.56 days of wall-clock time and a peak of 225GB of memory), the
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Figure 3.20: Error correction of RNA-Seq data provides more accurate
mapping of novel transcripts. A genome browser view of alignments using
uncorrected (purple) and Illumina-corrected (green) PacBio reads generated from
Zea mays B73 cDNAs. The splice-aware aligner, BLAT [72], was used for aligning
PacBio reads to the genome. Long gaps in the alignment correspond to introns
in the PacBio reads but not the reference genome, and short gaps (only visible in
the pre-corrected PacBio reads) are putative indel errors. The read coverage of the
Illumina reads used for correction is also shown, along with the current reference
gene annotation for the displayed reference locus. The colored bars in read coverage
are an artifact of the aligner, indicating reads which have overhangs across exon
junctions. The corrected PBcR sequences match the reference annotations end-to-
end. Genome coordinates for chr6 are shown from the RefGen v2 genome assembly
(http://maizesequence.org/).

percentage of sequences that align at > 90% identity increases dramatically to 99.1%

(49 679 reads). Consistent with the results reported above for genome assembly, the

corrected RNA-Seq sequences have very low error rates, with only 0.06% insertion

and 0.02% deletion rates.

As shown in Figure 3.20, many PacBio reads indeed represent close to full-

length transcripts. However, the exon structure is not evident before the error
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correction by PBcR. The post-correction sequences have virtually no errors and

precisely identify splicing junctions. As a result, two of the isoforms at this locus

in the reference annotation were confirmed by PacBio RNA-Seq reads. To system-

atically test the ability of PacBio reads to validate annotated gene structure, we

aligned the PacBio reads to the reference genome, and looked for PacBio reads that

matched the exon structure over the entire length of the annotated transcripts. Be-

fore correction, only 41 (0.1%) of the PacBio reads exactly match the annotated

exon structure. This number rises sharply after correction to 12, 065 (24.1%), sug-

gesting that PBcR can greatly increase the usefulness of the PacBio RNA-Seq reads

for transcript structure annotation or validation.

3.4 Discussion

Current de novo assemblers are unable to effectively use the long-read se-

quencing data generated by present single-molecule sequencing technologies primar-

ily because of the considerable error rate. Our approach exploits this technology by

complementing it with shorter, high-identity sequences resulting in long, accurate

transcripts and improved assemblies for both large and small genomes. Since the

average contig size produced by our approach correlates with read length, assem-

bly results are expected to improve as the read lengths of the technology improve.

This strategy also benefits from the complementarity of multiple technologies, which

proved powerful when combining Sanger sequencing with second-generation data

when it first became available [47]. The result of our hybrid approach is higher

95



quality assemblies with fewer errors and gaps, which will drive down the expensive

cost of genome finishing and enable more accurate downstream analyses.

High-quality assemblies are critical for all aspects of genomics, especially genome

annotation and comparative genomics. For example, many microbial genomic anal-

yses depend on finished genomes [37], but producing finished sequence remains pro-

hibitive with the cost of finishing proportional to the number of gaps in the origi-

nal assembly. Eukaryotic genomics requires continuous assemblies to capture long,

multi-exon genes and to determine genome organization and structural polymor-

phisms. In addition, recent work has suggested de novo assembly may be superior

to read mapping approaches for discovering large structural variations, even when

a reference genome is available [90]. This is especially significant for understanding

the genetic variations of cancer genomes and other human diseases such as autism

that frequently contain gene fusions, copy number variations, and other large scale

structural variations [33, 146]. It is clear that higher quality assemblies, with long

unbroken contigs, will have a positive impact on a wide range of disciplines.

Future improvements to the PBcR pipeline would benefit from the addition of

a gap closure routine to fill potential sequencing gaps in the short-read data, and

appropriately weighing the single-molecule base calls during consensus calling. This

is particularly important for GC-rich sequences that tend to be underrepresented by

second-generation sequencers, and for metagenomic and amplified samples that have

severe coverage fluctuations. Non-uniform coverage will also require modifications

to the repeat separation algorithm, since the current heuristic assumes uniform long-

read coverage and error. For example, by utilizing paired-end information or variant
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clustering to constrain the mapping during correction.

3.5 Conclusion

We have demonstrated that high error rates need not be a barrier to assembly.

High-error, long reads can be efficiently assembled in combination with comple-

mentary short-reads to produce assemblies not possible with any prior technology,

bringing us one step closer to the goal of “one chromosome, one contig.” The rapid

turnaround time possible with PacBio and other technologies such as Ion Torrent

[135] will make it possible to produce high-quality genome assemblies at a frac-

tion of the time once required. Future studies are needed to explore the relative

costs and trade-offs of the available technologies, but from our results we antic-

ipate future sequencing projects will consist of a combination of both long and

short-read sequencing. Today this is particularly necessary for effective long-range

scaffolding (≥ 9 Kbp pairs), for which the current PacBio reads provide limited

assistance. However, if single-molecule technology continues to advance and reads

begin to exceed the lengths of typical bacterial repeats (≈ 6 Kbp) at reasonable

cost and throughput, single-contig assemblies of some bacterial chromosomes will

be possible. Additionally, we believe many long sought capabilities will be enabled,

such as haplotype separation in eukaryotes, accurate transcriptome annotation, and

true comparative genomics that extends beyond an exon-centric view to include the

whole genome.
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Part II

Applying Assembly to Novel Targets
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Chapter 4

Towards Automated Metagenomic and Single-cell Analysis†

4.1 Overview

Metagenomics, the direct sequencing of DNA from all organisms in an environ-

ment without culturing, has recently emerged as a new scientific field that enables

the discovery of novel organisms and genes [182] - as well as the study of popula-

tion structure and dynamics [5, 74]. Metagenomic studies have greatly expanded

the understanding of microbial diversity. For example, viral quasi-species have been

shown to affect pathogenicity in the poliovirus due to cooperation between differently

adapted individuals in a population, as well as between co-infecting viruses [170].

Other recent studies have relied on metagenomics to identify novel genes and un-

cultured microbes [57].

The assembly of metagenomic data is complicated by several factors such as:

(i) widely different levels of representation for different organisms in a community;

(ii) genomic variation between closely related organisms; (iii) conserved genomic

regions shared by distantly related organisms; and (iv) repetitive sequences within

individual genomes. Similar challenges occur in the assembly of polymorphic eu-

karyotes, a challenging domain for existing assembly algorithms. For example, the

†The text of this chapter is based on the publication S. Koren, T. Treangen, andM. Pop. Bambus
2: scaffolding metagenomes. Bioinformatics, 27(21):2964–2971, 2011. Sections 4.4.2, 4.4.3, 4.4.7,
4.3.1, and 4.3.6 represent unpublished work.
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assembly of the sea squirt genome Ciona savignyi required extensive manual inter-

vention and customized scripts despite the fact that this genome is fairly “simple”

– there were only two haplotypes of roughly equal coverage [171]. Metagenomic

data are considerably more complex. Due to the lack of assembly tools specifically

targeted at metagenomic projects, studies rely on existing assemblers and attempt

to mitigate some of the challenges posed by the data through iterative adjustment of

assembly parameters and post-processing. Tuning is critical as existing assemblers

make frequent errors even in simulated datasets with significantly lower complexity

than true environments [98]. At the same time, current assemblers produce frag-

mented assemblies, hampering downstream analysis. For example, in the analysis of

the Global Ocean Survey data, the Celera Assembler [110] was heavily modified to

allow high error rates in order to account for strain variation, and to overcome the ef-

fects of varied coverage levels on the statistical repeat detection procedure [168, 136].

Only two assemblers were developed specifically for metagenomic datasets [84, 117].

However, neither utilizes mate-pairs, our focus in this work.

We present novel scaffolding algorithms optimized for non-clonal assembly.

Though our algorithms are also applicable to polymorphic genomes, the primary

focus of this paper is on metagenomic analysis. These algorithms are implemented

in a software tool called Bambus 2. Bambus 2 supersedes our previous scaffolder,

Bambus [126], which was targeted at clonal Sanger data. We will show that, when

applied to metagenomic datasets, Bambus 2 generates large scaffolds while avoid-

ing false joins between distantly related organisms. Furthermore, our software can

automatically identify genomic regions of variation that correspond to previously
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characterized polymorphic loci.

4.1.1 Metagenomic scaffolding

In our opinion, the main challenge in metagenomic assembly is to develop

an assembler that can automatically generate contiguous assemblies yet accurately

capture genomic variation information throughout the assembly process.

It is important to first define the basic concepts underlying genome scaffolding.

Most modern genome assemblers start by reconstructing segments of the genome

that are unambiguously defined by the set of reads. These segments – called unit-

igs – are sections of the genome entirely contained in either unique regions, or in

repeats, i.e. they do not span the boundary between individual repeats or between

repeats and unique regions. The nucleic acid sequence of unitigs can, therefore, be

unambiguously reconstructed.

Irrespective of the assembly algorithm employed, the unitigs themselves are

generally small and assembly software must use additional information to increase

the size of the contigs produced. Commonly, assemblers leverage the information

contained in mate-pairs – information constraining (in orientation – the DNA strand

from which the sequence originated – and approximate distance) the pairwise posi-

tion of reads along the genome. The process through which mate-pair information

is used to increase contig sizes, as well as to determine a global arrangement of

contigs along the genome, is called scaffolding. Note that longer contigs can also

be constructed by careful analysis of the assembly graph without the use of mate-
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pair information [111, 73] – we broadly consider scaffolding to also include such

analyses. Most existing genome assemblers contain dedicated scaffolding modules

(e.g. [110, 13, 184, 89]). The unitig graph is output by a variety of modern assem-

blers such as Newbler [97], Celera Assembler [110], and SOAPdenovo [89], allowing

scaffolding tools to operate as a stand-alone module post-assembly [126, 21, 41].

Throughout the paper we will assume that the unitig graph is given and will demon-

strate how this information can be used to effectively analyze metagenomic datasets.

Genomic repeats are the major challenge when assembling isolate genomes,

and their effect is compounded in metagenomic datasets. Repeats link together

disparate sections of the genome. As the number of reconstructions grows expo-

nentially with the number of repeats [73], it is intractable to find the one correct

reconstruction. Therefore, most assemblers start by masking out unitigs that appear

to represent repetitive segments of a genome. Celera Assembler, for example, uses

depth of coverage statistics to determine whether a particular unitig represents a

repeat, then ignores these unitigs until the later stages of scaffolding [110]. Coverage

statistics are also used in other assemblers [13, 184, 21]. An alternative approach re-

lies on topological information: unitigs that have multiple conflicting neighbors [89]

can be inferred to represent repeats.

While the approaches described above work well in isolate genomes, they can

lead to false positives in metagenomic datasets. Coverage-based methods can classify

abundant organisms as repeats, preventing the assembly of exactly those segments

of the community that should be easily assembled [168]. Distinguishing between

repeats within the same genome and conserved genomic segments shared by closely
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(a)

(b)

(c)

Figure 4.1: Local coverage metrics are misleading in a metagenomic as-
sembly. (a) The unitig graph representation of a single unitig, 3, having double the
coverage of the surrounding unitigs. Solid black arrows correspond to reads com-
prising a unitig. (b) One of the possible resolutions of the graph presented in (a).
This example places unitig 3 in two locations along a single genome. (c) A second
of the possible resolutions of the graph presented in (a). This example places unitig
3 at the same location in two genomes (highlighted in different colors).

related organisms can be difficult. As seen in Figure 4.1, the local unitig graphs

and coverage look identical in both cases. Below we will describe new approaches

for repeat detection that work well in metagenomic datasets.

Currently available scaffolders attempt to construct linear scaffolds, i.e. where

unitigs can be placed in a linear, non-overlapping order. When multiple unitigs oc-

cupy the same genomic region, they are either collapsed into one or the scaffolds

are broken apart. Collapsing unitigs assumes the differences are due to error [183].

Breaking scaffolds assumes the ambiguity is due to repeats, [21]. In metagenomic as-

sembly, such bubbles (multiple contigs occupying the same position in the assembly)

are common due to polymorphisms between closely related strains, and fracturing

the scaffolds at such positions leads to fragmented assemblies. Collapsing unitigs
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can lead to a “mosaic” consensus sequence. If the variation occurs within genes, the

consensus may contain frame-shifts and even make it difficult to determine whether

a gene exists. Previous attempts at untangling the genomic variation information

from assembly data have relied on visualization techniques [29]. While valuable

insights have been obtained through such studies, these approaches are manually

intensive and not scalable to large metagenomic datasets. In this paper we propose

an approach that can preserve polymorphic bubbles within the assembly yet allows

long-range scaffolds to be constructed.

4.2 Our approach

We propose that repeats and genomic variation can be distinguished from each

other by examining the unitig graph. Repeats appear to “tangle” the unitig graph,

thereby masking the global structure of the genome. Genomic variants, on the other

hand, lead to localized motifs in the graph. For example, assume several strains of

an organism are virtually identical with the exception of a region of variation (e.g.

a locus of antigenic variation). The graph pattern corresponding to this situation in

Figure 4.2(a) appears as a bubble in the unitig graph. We suggest that the global

structure of the genome can be best recovered if the ambiguity due to genomic

variation is maintained throughout the scaffolding process. Specifically, motifs due

to genomic variation do not affect the long-range structure of the common backbone

shared by related genomes. Instead of resolving the bubbles, we detect regions of

variation and replace each of them with a single graph node, simplifying the graph
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11

189

2034 ferrochelatase

2338 ferrochelatase

188

(a)

189_2034_188 TTCCGCAAGCGATAGAGGAAATTGTGGCTGCTTGTTGTTATTTCCACCAGCAGGCGGAGG 

189_2338_188 REPLACE RANGE (0, 18299) TTCCGCAAGCGATAGAGGAAATTGTGGCTGCTTGTTGTTATTTCCACCAGCAGGCGGGCA 

                *********************************************************    

189_2034_188 ATTATCAAATCAATATGTCCCGCATTGGCTTTGCCGGTGATTCCGCAGGTGCCATGCTGG

189_2338_188 REPLACE RANGE (0, 18299) TTAAGCGCCGGAATATATTCATATTTTTTCCCGCCGGCACCGAGGAAGACCTCACGGTTT

 * * *     ***** * *    **      *****       * **    ** * *   

189_2034_188 CGCTCGCCAGTGCGTTGTGGTTGCGTGATAAACAGATCGATTGCGGTAAAGTTGCGGGCG 

189_2338_188 REPLACE RANGE (0, 18299) TGCTCGGCAATCTCTTCCAGC------GTCTCCAGACAATCCGCAGCAAAGCC-CGGGCA

 ***** ** *   **   *        *   ****      ** * ****   *****  

189_2034_188 TTTTGCTGTGGTATGGGCTTTACGGATTAC---GGGATTCCGTGACTCGTCGTC--TGTT

189_2338_188 REPLACE RANGE (0, 18299) CATCACCTGAATATGACCTACGCCTTTTTCTCCGAGCATTTTCAGCGCTTCGTCGGTATA

  *  *     ****  **   *   ** *   * *  *      * * *****  * * 

(b)

Figure 4.2: Bambus 2 is able to identify biologically relevant variations
in a metagenome.(a) A variant motif detected on the Sim3 dataset. The motif
corresponds to a ferrochelatase gene in Escherichia coli. There are two alternate
versions of the gene within the E. coli K12 (2338) and E. coli O157:H7 (2034)
genomes. (b) A CLUSTAL W [159] alignment of a subset of the FastA output from
Bambus 2, with an edit region corresponding to (a).
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without obscuring the structure. Through the iterative application of this process,

interleaved with standard graph simplification procedures we can obtain scaffolds

that capture a large fraction of the common genome structure of closely related

organisms. For each variant, we output a main sequence along with alternatives

corresponding to the haplotypes in the data. Fasulo et. al. [32] have previously

presented an approach for detecting and representing variant bubbles during the

assembly process, primarily targeting short-range variation that can be found within

a single sequencing read. Our approach is more general and can tolerate larger scale

variants (our approach detected variants with an average size of 5606.2 ± 8868.26

when scaffolding 75bp reads). Used in concert with the algorithm described by

Fasulo et al.: our method will detect large-scale polymorphisms in addition to the

short-range within-read variants.

Underlying the procedure above is the assumption that the ambiguity in the

assembly graph is primarily caused by genomic variants, i.e. repeats have been

detected and removed from the graph. We will describe two approaches for finding

repeats in metagenomic samples. The first approach is based on the observation

that repeat nodes appear to “tangle” the graph structure – i.e. these nodes look

like focal points in the graph, as in Figure 4.3. We detect such repeats using a

measure of node centrality similar to the vertex-betweenness centrality measure

used in social network analysis [38, 39]. We also propose a variant of coverage-

based repeat detection that tracks the change in coverage within graph components

instead of using a global coverage statistic. We will show that this localized coverage

measure is less sensitive to coverage differences between organisms in the sample.
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Figure 4.3: Example of a genomic repeat tangling the contig graph. The
figure shows a subset of a bacterial assembly where nodes are connected if they share
paired-end reads. The shaded node, 119, is a repeat that occurs on many shortest
paths.

4.3 Methods

Our algorithms operate on a contig graph. A contig may represent a sin-

gle unitig or an un-gapped concatenation of multiple contigs. For each mate-pair

connecting pairs of contigs, we generate a link l with length d(l) and orientation

computed from the orientation and positions of the reads in the contigs. The stan-

dard deviation σ(l) is provided as input to Bambus 2. Using the set of links between

pairs of contigs, the orientation is set as the orientation of the majority of the links.

Once an orientation is selected, we check whether the distance constraints implied

by the links are consistent with each other. If not, we discard the smallest number

of links that results in a consistent set S (the largest consistent set can be found

in nlogn time using an algorithm for maximal clique finding in an interval graph).

Each consistent set is output as an edge e with weight w(e) = |S|. The average
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length l(e) =

∑ d(l)

σ(l)2
∑ 1

σ(l)2
and standard deviation σ(e) = 1∑ 1

σ(l)2
as suggested in [61].

Additional information, such as overlaps between adjacent contigs (contigs sharing

common sequence), is also included when constructing the edges. The resulting

graph is bi-directed [101].

Scaffolding consists of three operations: orientation, positioning, and simpli-

fication. Throughout the process, we prune the graph by removing contradictory

edges and recording their reason for removal.

To avoid the ambiguity introduced by repeats we start with a repeat detec-

tion step, then exclude all repeat contigs and incident edges from scaffolding. The

(possibly multiple) placement of these nodes can be determined after the initial

scaffolding is complete.

4.3.1 Centrality-based repeat detection

We calculate the all-pairs-shortest paths with each edge having weight w = 1.

For each node, v, we calculate the number of times it appears on a shortest path:

Pv. Note that larger contigs are expected to have a higher degree because they

contain more reads and, therefore, have a higher chance of being the end-point of

a mate-pair link. To correct for this, we linearly scale Pv by the contig length.

Such a length-dependent correction has been previously proposed in the context of

estimation of gene abundance in metagenomic samples [148]. A node is declared

repetitive if the scaled Pv > x̄+ c× σ where c is a constant (usually set to 3), x̄ is

the mean of all scaled Pv ∀v ∈ V , and σ is the standard deviation of all scaled Pv
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∀v ∈ V .

The algorithm above for arbitrary edge weights runs in O(V 3) using the Floyd-

Warshall algorithm. It also only tabulates the single shortest path between a pair of

nodes, not all shortest paths. As an alternative, we also implement the breadth-first

search based algorithm first proposed by Brandes [12] with a complexity of O(V E).

This algorithm, while not allowing weights on edges, does count all shortest paths

between pairs of nodes. It has also been extended to count not only the shortest

path but the k–shortest path as well. The k–shortest path is defined as a path

between nodes v and u with length equal to d(u, v) + k where d(u, v) is the length

of the shortest path between u and v.

In Algorithm 4.1 we present the cache-coherent lock-free pseudocode for the be-

tweenness centrality algorithm, implemented in OpenMP [20] which requires O(e
√
kV E)

time and O(V E) space. The algorithm relies on two atomic functions,

compare and swap(variable, originalvalue, newvalue) which will update variable

to newvalue if it currently equals originalvalue. In either case, it will return the

value stored in variable. It also requires an atomic add(variable, value) which incre-

ments the variable by value. The algorithm is adapted from [95, 65]. The recursive

function W (k, d, w, σ) is defined below in Algorithm 4.2.

4.3.2 Local coverage statistic

For each connected component S and for each node v ∈ S, we compute the

A-stat value [110]. An abundant organism is less likely to appear repetitive in

our approach as the connected component is more homogeneous. The calculation
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Algorithm 4.1 Compute Vertex Betweenness In Parallel: Part 1, Initialization.
B[v] = 0∀v ∈ V
S[v] = 0∀v ∈ V
{Part 1: Initialization}

{#pragma omp parallel for schedule(static)}
for k = 1→ K do

child[k][e] = ∅∀e ∈ E
for s = 1→ V do

dist[v]←∞∀v ∈ V
sigmaSums[v]← 0∀v ∈ V
{#pragma omp parallel for}
for k = 1→ K do

σ[k][v]← 0∀v ∈ V
δ[k][v]← 0∀v ∈ V

phase← 0
σ[0][s]← 1
dist[s]← 0

{Part II: Graph Traversal}
count← 1
while count > 0 do

count← 0
{#pragma omp parallel for schedule(dynamic)}
for all v ∈ S[phase] do

for all w ∈ V such that ∃e(v, w) ∈ E do

← compare and swap(dist[w],∞, phase+ 1)
deltaW ← dist[v]− distW + 1
if distW =∞ then

atomic add(count, 1)
S[phase+ 1]← S[phase+ 1] ∪w
distW ← phase+ 1
deltaW ← dist[v]− distW + 1

if deltaW < K then

child[deltaW ][v]← child[deltaW ][v] ∪ w
if deltaW ≤ min(K − 1, 1) then

atomic add(σ[deltaW ][w], σ[0][v])
phase← phase+ 1

for k = 1→ K − 1 do

for i = 1→ phase do

{#pragma omp parallel for schedule(dynamic)}
for all v ∈ S[i] do

for all w ∈ child[0][v] do
atomic add(σ[k][w], σ[k][v])

if k < (K − 1) then

for dj = 1→ k + 1 do

for all w ∈ child[dj][v] do
atomic add(σ[k + 1][w], σ[k + 1− dj][v])

{#pragma omp parallel for schedule(static) collapse(2)}
for k = 1→ K do

for j = 1→ V do

atomic add(sigmaSums[k], σ[k][j])

{Part 3: Back-propagation}
phase← phase− 1
for k = 1→ K do

{#pragma omp parallel for schedule(dynamic)}
for p = phase→ 0 do

for all v ∈ S[p][i] do
for d = 0→ K do

for all w ∈ child[d][v] do
for di = 0→ (k − d) do

sum← 0
e← k − d− di
for dj = 0→ e do

sum← sum+W (e− dj, e, w, σ) ∗ σ[dj][v]
δ[k][v]← δ[k][v] + (sum ∗ (δ[di][w]/(σ[0][w])e+1))

δ[k][v]← δ[k][v] + (σ[k − d][v]/sigmaSums[w])
B[v]← B[v] + δ[k][v]
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Algorithm 4.2 Function W(k, d, w, σ)

if k = 0 then

return σ[0][w]d

else

sum← 0
for i = 0→ k do

sum← sum− σ[i][w] ∗W (k − i, d− 1, w, σ)
return sum

on each connected component is performed in parallel using OpenMP [20]. This

operation is carried out after the repeat nodes identified by all-pairs-shortest paths

have been removed.

4.3.3 Orientation

We must first convert the bi-directed graph into a directed graph by choosing

an orientation for each node in the graph. We call reverse edges any pairwise

constraints that require the adjacent contigs to be in opposite orientations. It is

impossible to assign a consistent order to nodes involved in a cycle with an odd

number of reverse-edges without discarding edges. We attempt to remove a mini-

mum number of edges to allow a consistent orientation to be assigned. Finding such

a minimum set is equivalent to the Maximal Bipartite Subgraph problem which is

NP-hard [42]. We rely on a greedy heuristic proposed by Kececioglu et al. [67] that

achieves a 2-factor approximation. The algorithm runs in O(V + E) time.

4.3.4 Positioning

In addition to assigning an edge direction, we want to assign a position for each

contig. There may be multiple edges assigning contradictory positions to a node.

This imperfect data is the result of experimental errors and repeats (ambiguities

in the placement of reads along a genome). We want to maximize the number of

satisfied edges by placing nodes as close to the specified position as possible. This
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problem is similar to the Optimal Linear Arrangement problem which is also NP-

hard [42]. We rely on the following greedy extension heuristic to linearly order the

contigs: Scaffolding starts by placing an arbitrary node at position 0. For each

node without a position, compute an initial position based on all already-placed

neighbors as a weighted average. Subsequent edges can reposition the node within

a limit of 3σ(e) where σ(e) is the standard deviation of the edge. The extension

stops when the ratio of an edge weight w(e(u, v)) to the maximum weight edge

incident on node u or v is below a threshold. Edges eliminated from the graph due

to invalid orientation are not used in this step. The algorithm runs in O(V + E)

time. This heuristic is sufficient once the graph is simplified as above and repeat

contigs removed.

4.3.5 Simplification

A transitive reduction is applied to the contig graph and redundant edges

are removed. Transitive edges (an edge e(u, v) such that there is a path p with

a set of edges pe ⊂ E incident on nodes pv ⊂ V between u and v not including

e(u, v)) are removed from acyclical components of the graph by performing a depth-

first search from each node in topological order. Given the sequence lengths of

contig in the graph l(v) ∀v ∈ V and a path p, we define the length of the path as

l(p) =
∑

∀ contigs v∈pv l(v) +
∑

∀ edges e∈pe l(e). Define the standard deviation of the

path as σ(p) =
∑

∀ edges e∈pe σ(e). A transitive edge is removed when |l(e)− l(p)| ≤

σ(e) + σ(p). These edges can be removed without loss of information. Simple

paths (all nodes have in- and out-degree equal to 1) are then collapsed: the nodes

on the path are replaced with a single node representing the concatenation of the

original nodes, and the intervening edges are removed from the graph. Finally, each

simplified connected component in the graph gets reported as a scaffold.
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4.3.6 Variant detection

Once we have oriented and positioned the contigs and simplified the graph,

we iteratively search for variation motifs. We search for subgraphs where multiple

paths begin at a source node and collapse to one sink node within a certain number

of hops. To allow for artifacts due to incomplete coverage, we allow subgraphs where

paths terminate before reaching the sink.

Given graph G = (V,E) and motif set S ⊂ V

incoming edges = Sin(u, v) ⊂ E s.t. u ∈ V − S and v ∈ S

outgoing edges = Sout(x, w) ⊂ E s.t. x ∈ S and ∈ V − S

∀e∈Sin(u,v),v = source, ∀e∈Sout(x,w), x = sink

That is, the incoming edges may only be incident on the source node and the outgo-

ing edges may only be incident on the sink node. The pseudocode to identify 1-deep

motifs is given in Algorithm 4.3.

Finally, to avoid false positives due to layouts that satisfy edge constraints

but where nodes can be placed in a linear, non-overlapping order, we calculate the

overlap ratio.
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Algorithm 4.3 Identify and Simplify Motifs in Contig Graph

Given a directed, multi-graph G(V,E)
Each vertex v ∈ V has a position and orientation.
Each edge e(u, v) ∈ E has an orientation and a distance.
Set M initialized to empty.
while a motif is found do

for all v ∈ V do

sink ← uninitialized
for all u ∈ V such that ∃e(v, u) ∈ E do

neighbor ← uninitialized
numNeighbors← 0
for all w ∈ V such that ∃e(u,w) ∈ E do

if w 6=v then

numNeighbors = numNeighbors+ 1
neighbor ← w

if (numNeighbors = 1 AND (sink = neighbor OR sink = uninitialized)) then
sink ← neighbor
M.add(v), M.add(u), M.add(sink)

for all u ∈ V such that ∃e(v, u) ∈ E do

if u /∈M then

M.clear()
for all u ∈ V such that ∃e(u, sink) ∈ E do

if u /∈M then

M.clear()
for all m ∈M such that m 6= v AND m 6= sink do

for all u ∈ V such that ∃e(m,u) ∈ E or ∃e(u,m) ∈ E do

if u /∈M then

M.clear()
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Given S ⊂ V , node v ∈ S, start coordinate of v, B(v), and end coordinate of v,

E(v)

length(S) = abs(E(sink)−B(source))

overlap(S) =
∑

∀(u,v)∈S

(min(E(u), E(v))−max(B(u), B(v)) + 1)

s.t. min(E(u), E(v))−max(B(u), B(v)) + 1) > 0

The overlap ratio is then overlap(S)
length(S)

. Intuitively, it is the total number of bases covered

by two or more nodes, divided by the total number of bases in the motif. Motifs

whose overlap ratio exceeds a threshold are marked as a polymorphism. To make the

problem tractable, only subgraphs with a diameter of 2 are detected in the current

implementation of our algorithm. Each iteration of motif detection has a runtime of

O(|V |×(∆(G)3+3∆(G))) where ∆(G) is the maximum degree of G. This algorithm

has a worst-case runtime of O(|V | × (|E|3 +3|E|)). However, in a contig graph it is

likely that ∆(G) << |E|. Every level of depth multiplies the runtime by a factor of

∆(G).

4.3.7 Output

Bambus 2 supports several output formats. Since we do not linearize scaffolds

and maintain ambiguity due to variation in the graph, the native output is a graph

(in Graphviz format [40]). Bambus 2 also finds the longest sequence reconstruction

through each scaffold. That is, it will ignore variant motifs and generate a single

self-consistent sequence for each scaffold. Additionally, Bambus 2 outputs each

variation motif as a set of sequences. For each motif, S, we start from the source

node, as defined above. For each child node c of source, we recursively compute

the sequences starting at c. The longest sequence starting at source is the master

sequence of the motif. The alternate sequences found in the graph are also output,
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including edit positions specifying where within the master sequence they belong.

Figure 4.2(b) shows an example alignment of the FastA output for a variant region

within Escherichia coli.

4.3.8 Test data

We tested the algorithm using the following datasets: Brucella suis 1330 com-

prised of 36 080 reads and available as NCBI Trace Archive Project ID 320. The ref-

erence includes: AE014291:AE014292 (2 107 792bp, 1 207 381bp). Three simulated

datasets were generated using MetaSim [133] (Table 4.1). The Acid Mine drainage

dataset was generated by [165, 151], consists of 179 770 reads and is available as

NCBI Trace Archive Project ID 13696. The reference AMD dataset includes: Fer-

roplasma acidarmanus Type I, Ferroplasma sp. Type II, Leptospirillum sp. Group

II 5-way CG, Leptospirillum sp. Group III, and Thermoplasmatales archaeon Gpl

and is available as CH003520:CH004435. The Twin Gut data was generated by [163]

and is available as SRA002775 (8.30M GS FLX fragments). The MetaHIT datasets

were generated by the MetaHIT consortium [129] and are available as ERS006526,

ERS006594, and ERS006494. The GAGE dataset is used in [137] and available

online. The single cell genomes are published in [17] and available online.

4.4 Results

In the following section, we demonstrate the performance of Bambus 2 by com-

paring it with two assemblers used in recent metagenomic projects (Celera Assembler

[110], and SOAPdenovo [89]). We also compare Bambus 2 to seven assemblers tar-

geting clonal genomes and one assembler designed for single-cell sequencing data.

We have not included a comparison with our previous scaffolder, Bambus [126], as

it lacks the functionality necessary in a metagenomic setting. Also, we have omitted
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Table 4.1: Four reference genomes used to generate three simulated
metagenomic datasets. Organism: The reference used to generate simulated
data. Reference Size: The size (in bp) of the reference. Identifier: The identifier of
the reference in the NCBI Entrez database. # Reads: Total number of reads sim-
ulated from the reference for a simulated dataset. The effective coverage for each
reference is listed in each dataset.

Organism Reference Size Identifier

Psychromonas sp CNPT3 3 052 410 AAPG00000000
Porphyromonas gingivalis W83 2 343 476 AE015924
Escherichia coli K-12 MG1655 4 639 675 U00096
Escherichia coli O157:H7 EDL933 5 528 445 AE005174

Dataset # Reads Simulated paired-end size P. sp CNPT3 P. gingivalis W83 E. coli K-12 E. coli O157:H7

Sim1 10,000 50% 5Kbp, 50% 10Kbp 1.97X 2.00X 2.01X 0.00X
Sim2 10,000 50% 5Kbp, 50% 10Kbp 5.30X 0.55X 0.56X 0.00X
Sim3 10,000 50% 5Kbp, 50% 10Kbp 0.55X 0.57X 1.68X 1.65X

comparisons to Genovo [84] and Meta-IDBA [117] as neither of these use mate-pair

information during the assembly process.

4.4.1 Repeat detection

We benchmarked our algorithms for repeat detection using artificial and real

datasets by comparing repeats identified by Bambus 2 with those identified by the

Celera Assembler [105] with metagenomic settings [168, 136] (referred to as CA-

met). The CA-met settings increase the tolerance for mismatches when building

unitigs, providing longer-range contiguity but possibly leading to mis-assembly. The

repeat detection from Celera Assembler relies on coverage, a common approach, and

procedures for tuning this assembler for both isolate and metagenomic assemblies

have been documented (http://wgs-assembler.sf.net). Figure 4.4 shows the results.

Ideally, the repeat detection should have both high sensitivity and specificity.

Sensitivity reflects how many true repeats are detected. Detecting too few repeats

can lead to assembly errors in scaffolding. Specificity reflects the false-positives.

Detecting too many repeats leads to a sub-optimal assembly as these contigs do not

fully participate in scaffolding. In the case of Brucella suis 1330, both methods have
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high sensitivity and specificity. Celera Assembler repeat detection was designed for

clonal organisms. Since the B. suis dataset is clonal, CA can accurately detect

repeats. In all other cases, Bambus 2 has a higher sensitivity and specificity than

Celera Assembler. The default genome size estimates in CA are too sensitive, iden-

tifying too many repeats. While varying the genome size improves repeat detection,

it is at the expense of sensitivity or specificity. On all datasets, this tuning, which

is difficult when the true taxonomic distribution is unknown, still does not match

Bambus 2’s automated sensitivity and specificity result.

4.4.2 Parallel repeat detection

We evaluate the performance of the OpenMP [20] algorithm and compare it to

the Floyd-Warshall O(V 3) implementation. Figure 4.5(a) shows the absolute time

taken for repeat detection. Switching to the O(V E) algorithm improves runtime

from 137 185s to 3 835.8s, a 35.8–fold improvement in the best case. The minimum

gain is a 1.7–fold improvement. The parallel algorithm also shows good scaling as

the number of processors is increased (Fig 4.5(b)). The speedup is 7.55 (94.38% effi-

ciency), 6.01 (75.13%), and 7.39 (92.38%) for eight threads and 14.12 (88.81%), 9.1

(56.88%), and 16 (100%) for sixteen threads on UC8, VC1, and MH12, respectively.

The best-case efficiency corresponds to MH12, by far the largest graph in the test set

with 378 128 nodes and 38 475 edges. The wost-case efficiency corresponds to VC1,

the smallest test set with only 90 563 nodes and 8 754 edges. As our algorithm’s

parallelism is limited by the average out-degree of a node in the graph, the smaller

graph is likely reaching saturation by 4 threads while the larger graph continues to

benefit. Future work remains to automatically scale the number of threads based

on the graph size. The parallel algorithm provides significant gains in speed while

providing good speedup efficiency through the use of lock-free operations.

As mentioned above, the Floyd-Warshall algorithm only computes a single
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Figure 4.4: Bambus 2 shows higher sensitivity and specificity when iden-
tifying repeats. Ideal repeat detection corresponds to the top-right corner of the
graph, with 100% sensitivity and specificity. We vary the genome size estimate
(a critical parameter in the procedure for detecting repeats) for CA, generating a
curve for each dataset. The CA-met default is indicated by large shaded points.
The Bambus 2 repeat detection is fully automated, generating a single point. As
CA is designed for clonal organisms, only the default genome size estimate is used
for B. suis. The gold standard is built from REPuter. All tests are run using the set
of unitigs generated by CA-met. Sensitivity: TruePositives
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Figure 4.5: Parallel repeat detection decreases runtime as much as 35–
fold at over 88% efficiency. (a) The repeat performance of the original O(V 3)
algorithm as compared to the parallel O(V E) algorithm, in seconds. The parallel
algorithm provides as much as a 35–fold improvement in runtime. (b) The efficiency
of the parallel algorithm with increasing processors. Perfect efficiency corresponds
to a diagonal line. The algorithm demonstrates good efficiency (over 88% at 16
threads) on two of the three datasets. The smallest dataset (VC1) experiences
diminishing returns after 4 threads.
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Table 4.2: Repeat detection accuracy on unweighted graphs in parallel
matches weighted single-core results. Datasets and columns are defined in
Figure 4.4. Path-only refers to only the betweenness centrality based repeat detec-
tion. The Total includes repeats found by both betweenness centrality as well as by
local coverage metrics.

Dataset Repeat Detection Sensitivity Specificity

Path-only B. suis Weighted (original) 25.00% 98.96%
Unweighted (original) 25.00% 98.96%
Unweighted (parallel) 25.00% 96.96%

Sim1 Weighted (original) 24.13% 98.12%
Unweighted (original) 24.13% 98.12%
Unweighted (parallel) 24.13% 98.39%

Sim2 Weighted (original) 8.00% 99.61%
Unweighted (original) 12.00 100.00%
Unweighted (parallel) 12.00% 100.00%

Sim3 Weighted (original) 9.09% 98.14%
Unweighted (original) 7.79% 98.09%
Unweighted (parallel) 10.38% 98.45%

Total B. suis Weighted (original) 83.33% 92.72%
Unweighted (original) 83.33% 92.72%
Unweighted (parallel) 83.33% 92.22%

Sim1 Weighted (original) 96.55% 76.40%
Unweighted (original) 96.55% 76.72%
Unweighted (parallel) 96.55% 76.79%

Sim2 Weighted (original) 80.00% 85.31%
Unweighted (original) 80.00% 85.60%
Unweighted (parallel) 80.00% 85.60%

Sim3 Weighted (original) 64.93% 78.75%
Unweighted (original) 64.93% 78.75%
Unweighted (parallel) 64.93% 79.01%

shortest path between a set of nodes. However, it allows arbitrary weights on the

edges. To compare the benefits of weighted graphs we ran the Floyd-Warshall al-

gorithm, both weighted and unweighted and compare it to the Brandes [12] algo-

rithm (Table 4.2). While the weighted graph is sometimes beneficial, the gain from

computing all shortest paths (not just a single one) outweighs it and the parallel

algorithm is able to generate similar sensitivity and specificity results in a fraction

of the time.
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Table 4.3: Scaffolding results for Brucella suis 1330 using Celera Assem-
bler and Bambus 2. Scaffolds and contigs do not include scaffolds comprising a
single contig. N50 Scaffold: represents the scaffold such that at least 50% of the
genome bases are in scaffolds of that size or greater. Scaffold Span: the total number
of bases in all scaffolds, including gaps between contigs.

ASM # Unitigs # Scaffolds Scaffold N50 Scaffold Span

CA 20 3 1 822 827 3 322 447
Bambus2 151 4 1 807 874 3 298 843

4.4.3 Scaffolding of clonal data

While metagenomic assembly violates assumptions commonly made by assem-

blers targeting clonal populations, a metagenomic assembler without those assump-

tions is still a superset of the clonal assembly algorithm. Therefore, a metagenomic

assembler (or scaffolder) should be able to perform well in the context of clonal

assembly.

We assembled the Brucella suis 1330 genome and compared the Bambus 2

assembly to the Celera Assembler [110] (Table 4.3). The results show that Bambus 2

produces scaffolds comparable to those generated by Celera Assembler. Bambus 2

determined the correct orientation for all the unitigs, and accurately positioned 145

out of 151 unitigs (96%).

We further evaluated Bambus 2 in the GAGE [137] assembly bake–off. Table

4.4 shows the resulting assembly contig and scaffold contiguity for eight assemblers.

Note that Bambus 2 is a close second in scaffold length on S. aureus, only being

beaten by Allpaths-LG [45]. It is third on R. sphaeroides. Bambus 2 is also fifth

and second on S. aureus and R. sphaeroides in contig length, respectively. Table 4.5

shows the errors assemblers make in both contigs and scaffolds. Once again, Bam-

bus 2 performs well, tying for first in both contig and scaffold mis-joins on S. aureus

and coming in first and third in contig and scaffold mis-joins on R. sphaeroides,

respectively. These results are especially impressive since Bambus 2 only performs
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Table 4.4: Assembly contiguity on two NGS prokaryotic datasets. Assem-
blies of Staphylococcus aureus (genome size 2 872 915) and Rhodobacter sphaeroides
(genome size 4 603 060). For all assemblies, N50 values are based on the same genome
size. The Errors column contains the number of mis-joins plus indel errors > 5bp for
contigs, and the total number of mis-joins for scaffolds. Corrected N50 values were
computed after correcting contigs and scaffolds by breaking them at each error. See
the GAGE publication [137] for details on how errors were identified.

Genome Assembler Contigs Scaffolds

Num N50 Errors N50 corr (kb) Num N50 Errors N50 corr. (kb)

S. aureus ABySS 301 29.2 14 24.8 246 34 1 28
Allpaths-LG 60 96.7 16 66.2 12 1 092 0 1 092
Bambus 2 164 29.5 15 26.0 16 1 089 0 1 089
CABOG Could not run: incompatible read lengths in one library.
MSR-CA 94 59.2 22 48.2 17 2 412 3 1 022
SGA 252 4.0 6 4.0 456 208 1 208
SOAPdenovo 107 288.2 48 62.7 99 332 8 284
Velvet 162 48.4 28 41.5 45 762 17 162

R. sphaeroides ABySS 1915 5.9 55 4.2 1 701 9 3 5
Allpaths-LG 204 42.5 43 34.4 34 3 192 0 3 092
Bambus 2 376 21.0 25 19.5 92 2 478 2 2 478
CABOG 322 20.2 34 17.9 130 66 5 55
MSR-CA 395 22.1 42 19.1 43 2 976 5 2 966
SGA 3 067 4.5 8 2.9 2 096 51 0 51
SOAPdenovo 204 131.7 414 14.3 166 660 3 658
Velvet 583 15.7 35 14.5 178 353 6 270

scaffolding, it depends on an initial assembly. Comparing the starting point for

Bambus 2 to Allpaths-LG (the best performer), it builds scaffolds from a corrected

N50 that is 4.3 times smaller for S. aureus yes produces a nearly-identical scaf-

fold. On R. sphaeroides, Bambus 2 scaffolds starting with a corrected N50 that is

1.9 times smaller yet produces the second-largest contigs and third-largest scaffold.

Having established that Bambus 2 is a competitive scaffolder on clonal datasets, we

next evaluate it both on real and simulated metagenomic datasets.

4.4.4 Scaffolding of simulated metagenomic datasets

We compared Bambus 2 to CA with default settings and CA-met. While other

assemblers have been used in metagenomic studies (e.g. Phrap (http://www.phrap.org/)

and Newbler [97]), as far as we are aware, they have not been extended to target

metagenomic data. SOAPdenovo has also been used for metagenomic studies, how-
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Table 4.5: Assembly correctness on two NGS prokaryotic datasets. Assem-
blies of Staphylococcus aureus (genome size 2 872 915) and Rhodobacter sphaeroides
(genome size 4 603 060). See the GAGE publication [137] for details on how errors
were identified.
Genome Assembler SNPs Indels Contigs Scaffolds

≤ 5bp > 5bp Mis-joins Inv Reloc Mis-joins Inv Reloc

S. aureus ABySS 258 20 9 5 3 2 1 1 0
Allpaths-LG 79 4 12 4 0 4 0 0 0
Bambus 2 39 12 11 4 1 3 0 0 0
MSR-CA 191 23 10 12 6 6 3 3 0
SGA 32 2 2 4 1 3 0 0 0
SOAPdenovo 246 25 31 17 1 16 8 1 7
Velvet 217 6 14 14 5 9 17 5 12

R. sphaeroides ABySS 692 208 34 21 2 19 3 0 3
Allpaths-LG 218 150 37 6 0 6 0 0 0
Bambus 2 193 136 23 2 1 1 2 0 2
CABOG 536 145 24 10 1 9 5 4 1
MSR-CA 807 179 32 10 1 9 5 2 3
SGA 336 116 4 4 0 4 0 0 0
SOAPdenovo 527 155 406 8 0 8 3 1 2
Velvet 413 148 27 8 0 8 6 6 7

ever, no scaffolding results were reported [129].

We ran Bambus 2 to scaffold unitigs from CA-met and Minimus [154] (Fig

4.6, Tables 4.6–4.8). While CA-met performs well for certain taxonomic compo-

sitions, for example Table 4.7, where one genome is dominant, it shows a greater

variation between different compositions. When the assemblies of the genomes are

averaged across the simulations, Bambus 2 outperforms CA (Fig 4.6). For all but

one genome, Bambus 2 also outperforms CA-met. The only case where CA-met

performs better than Bambus 2 is Escherichia coli O157:H7 EDL933. The closely

related E. coli strains are present at sufficient combined coverage for CA-met to

obtain large scaffolds. However, the low-abundance genomes in the same sample are

not assembled. In scaffolds over 2Kbp, CA-met only includes 10.90% and 13.31% of

the low-abundance genomes, versus 17.24% and 18.37% for Bambus 2 .

Additionally, CA-met constructs a “mosaic” sequence of the two E. coli strains,

masking variation and potentially introducing error. We evaluated the assemblies

of the E. coli genomes in detail. There is a large rearrangement of the genome

from 100Kbp to 250Kbp (Fig 4.7). In Figure 4.8, CA correctly reconstructs the
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Figure 4.6: Assembly results for three simulated metagenomic datasets.
The y-axis represents the minimum number of scaffolds that add up to one percent
of the genome size. Lower bars represent a better assembly. Bambus 2 produces large
scaffolds for a wide range of coverage levels in our simulated datasets. Bambus 2
(CA-met) is Bambus 2 run using CA-met instead of using Minimus unitigs. We
aligned the assembly (all contigs > 2Kbp) to the reference and counted coverage by
reciprocal best matches over 95% identity. We use reciprocal best matches to avoid
double counting Bambus 2 motifs that cover the same genomic region. We divide
the number of scaffolds by the genome coverage and average the results, by genome,
on all three simulated datasets to evaluate performance across varying coverage.
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Table 4.6: Results on simulated metagenomic datasets using Celera As-
sembler and Bambus 2 on Sim1. # Scaffolds: The number of scaffolds larger
than 2Kbp comprising a given species. % Genome: The percentage coverage pro-
vided by the contigs in the scaffolds representing a species.

ASM Organism Coverage # Scaffolds % Genome

CA P. sp CNPT3 2.00X 233 43.77%
P. gingivalis W83 1.97X 180 46.26%
E. coli K-12 MG1655 2.01X 339 43.48%

CA-met P. sp CNPT3 2.00X 48 76.93%
P. gingivalis W83 1.97X 50 76.45%
E. coli K-12 MG1655 2.01X 72 77.57%

Bambus 2 P. sp CNPT3 2.00X 65 74.71%
P. gingivalis W83 1.97X 54 72.47%
E. coli K-12 MG1655 2.01X 116 74.05%

Bambus 2 (CA-met) P. sp CNPT3 2.00X 66 73.96%
P. gingivalis W83 1.97X 45 72.85%
E. coli K-12 MG1655 2.01X 110 73.81%

Table 4.7: Results on simulated metagenomic datasets using Celera As-
sembler and Bambus 2 on Sim2. # Scaffolds: The number of scaffolds larger
than 2Kbp comprising a given species. % Genome: The percentage coverage pro-
vided by the contigs in the scaffolds representing a species.

ASM Organism Coverage # Scaffolds % Genome

CA P. sp CNPT3 5.30X 3 98.75%
P. gingivalis W83 0.56X 29 3.64%
E. coli K-12 MG1655 0.55X 48 2.95%

CA-met P. sp CNPT3 5.30X 1 99.26%
P. gingivalis W83 0.56X 74 12.59%
E. coli K-12 MG1655 0.55X 129 12.27%

Bambus 2 P. sp CNPT3 5.30X 25 98.47%
P. gingivalis W83 0.56X 67 19.93%
E. coli K-12 MG1655 0.55X 130 18.02%

Bambus 2 (CA-met) P. sp CNPT3 5.30X 13 97.93%
P. gingivalis W83 0.56X 64 19.61%
E. coli K-12 MG1655 0.55X 130 17.85%

genome but with is a very fractured assembly. In Figure 4.9, CA-met constructs a

sequence representative of only one E. coli, with a large inversion at approximately

150Kbp. By contrast, in Figure 4.10, Bambus 2 has the forward reconstruction of
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Table 4.8: Results on simulated metagenomic datasets using Celera As-
sembler and Bambus 2 on Sim3. # Scaffolds: The number of scaffolds larger
than 2Kbp comprising a given species. % Genome: The percentage coverage pro-
vided by the contigs in the scaffolds representing a species.

ASM Organism Coverage # Scaffolds % Genome

CA P. sp CNPT3 0.55X 18 1.70%
P. gingivalis W83 0.57X 24 2.60%
E. coli K-12 MG1655 1.68X 283 31.21%
E. coli O157:H7 1.65X 362 37.07%

CA-met P. sp CNPT3 0.55X 92 10.90%
P. gingivalis W83 0.57X 72 13.31%
E. coli K-12 MG1655 1.68X 31 46.51%
E. coli O157:H7 1.65X 54 51.96%

Bambus 2 P. sp CNPT3 0.55X 96 17.24%
P. gingivalis W83 0.57X 72 18.37%
E. coli K-12 MG1655 1.68X 84 46.33%
E. coli O157:H7 1.65X 115 d 53.54%

Bambus 2 (CA-met) P. sp CNPT3 0.55X 94 17.60%
P. gingivalis W83 0.57X 69 18.44%
E. coli K-12 MG1655 1.68X 58 46.50%
E. coli O157:H7 1.65X 83 52.26%

both genomes thanks to the detected variant motifs. Finally, in Figure 4.11, we show

a subset of the E. coli K12 genome (corresponding to Fig 4.2). Here, CA-met has

a large insertion in the assembly due to variation within the strains. By contrast,

both CA and Bambus 2 have a good reconstruction for the reference. Bambus 2

is able to accurately represent both strains through a combination of scaffolds and

variation motifs. As we will show below, on the AcidMine dataset, this “mosaic”

assembly leads CA-met makes more mistakes (chimeric scaffolds) than Bambus 2.

We examined all datasets for variation motifs detected by Bambus 2. A total

of 16 motifs were found in the Sim1 dataset, and 6 motifs in the Sim2 dataset.

Each of the motifs appear to be false positives (all the contigs comprising the motif

originate from the same genome). The analysis of the sequence of the overlapping

unitigs could be used to detect and correct such mistakes. Such analyses will be

127



!

Figure 4.7: Alignment of E. coli K12 (vertical) against E. coli O157:H7.

included in future versions of our software.

A total of 30 variation motifs were detected in the Sim3 dataset. The motifs

detected include genes for ferrochelatase (Fig 4.2(a)) as well as outer membrane

proteins, and integrase for prophage which are known to vary across strains of E.

coli [118] and more broadly, across other enterobacteria.

4.4.5 Scaffolding of the Acid Mine Drainage metagenome

We tested Bambus 2 on an Acid Mine Drainage [165] metagenomic set. These

data represent an ideal benchmark as they comprise a low number of organisms, and

the genomic variation between related members of the community has been exten-

sively studied. We generated unitigs using CA and scaffolded them with Bambus 2.

The Bambus 2 assembly has fewer scaffolds in three of the five organisms present

in this sample when compared to CA-met (Fig 4.12, Table 4.9). In two cases, Lep-

tospirillum sp Group III and Ferroplasma acidarmanus Type I, Bambus 2 more than

halves the number of scaffolds as compared to CA-met while reconstructing a larger

percentage of the reference genome. In one case, Ferroplasma sp Type II, CA-met
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(a)

!

(b)

Figure 4.8: The CA assembly mapping to E. coli O157:H7 (top) and E. coli

K12 (bottom). Both genomes are correctly reconstructed (indicated by forward
matches in red). However, the matches are very short, indicated by the many scaffold
names along the vertical axis in the plots.
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(b)

Figure 4.9: The CA-met assembly mapping to E. coli O157:H7 (top) and
E. coli K12 (bottom). The matches are significantly longer than Figure 4.8.
However, there is no correct reconstruction of E. coli O157:H7 (top). There is a
large inversion in one scaffold corresponding to E. coli K12.
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(b)

Figure 4.10: The Bambus 2 assembly mapping to E. coli O157:H7 (top)
and E. coli K12 (bottom). The matches are longer than those of CA. There
are still correct reconstructions of both genomes due to the differences in motif
mappings (long names on vertical axis). Note several regions where large groups
of motifs are visible in regions where CA-met has a representation of only a single
genome version.
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(c)

Figure 4.11: A subset of the E. coli K12 genome corresponding to Figure
4.2 showing CA, CA-met, and Bambus 2 alignments. Both CA and Bambus
2 have good alignment to the reference (x-axis) but CA-met has a large insertion in
the assembly due to variation within the strains.
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Figure 4.12: Assembly results for the Acid Mine Drainage metagenome.
The y-axis represents the minimum number of scaffolds that add up to one percent of
the genome size. Lower bars represent a better assembly. Bambus 2 produces larger
scaffolds that CA-met in three of the five genomes. We calculated assembly statistics
as in Figure 4.6. In three genomes, both CA and Bambus 2 produced slightly above
100% coverage. This is due to redundancy within the MUMmer alignments.

produces fewer scaffolds than Bambus 2. However, we found that over 61% of the

contigs in the Ferroplasma sp Type II CA-met assembly cannot be uniquely assigned

to a single reference genome. We hypothesize that CA-met combined the assemblies

of Ferroplasma acidarmanus Type I and Ferroplasma sp Type II, creating chimeric

contigs and scaffolds.

We validated our hypothesis by counting the fraction of contigs in chimeric

scaffolds. Chimeric scaffolds either include a chimeric contig or contain contigs from

different organisms (Section C.2.2). Bambus 2 had the lowest rate of chimeras,

5.66%, while CA-met had the highest at 23.07%. This is expected as CA-met was

tuned to maximize scaffold size, possibly merging unrelated organisms. Bambus 2
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Table 4.9: Results on the Acid Mine drainage metagenome datasets us-
ing Celera Assembler and Bambus 2. # Scaffolds: The number of scaffolds
larger than 2Kbp comprising a given species. % Genome: The percentage coverage
provided by the contigs in the scaffolds representing a species.

Acid Mine Organism # Scaffolds % Genome Covered

CA Leptospirillum sp Group II 5-way CG 198 102.42%
Leptospirillum sp Group III 277 82.04%
Ferroplasma acidarmanus Type I 151 91.21%
Ferroplasma sp Type II 342 112.48%
Thermoplasmatales archaeon Gpl 405 87.93%

CA-met Leptospirillum sp Group II 5-way CG 101 97.14%
Leptospirillum sp Group III 234 81.69%
Ferroplasma acidarmanus Type I 62 90.15%
Ferroplasma sp Type II 90 99.46%
Thermoplasmatales archaeon Gpl 179 83.60%

Bambus 2 Leptospirillum sp Group II 5-way CG 109 102.40%
Leptospirillum sp Group III 103 84.78%
Ferroplasma acidarmanus Type I 26 102.13%
Ferroplasma sp Type II 237 112.04%
Thermoplasmatales archaeon Gpl 167 94.90%

built large scaffolds while making fewer mistakes.

The acid mine community used in our analysis is dominated by two genera:

Leptospirillum bacteria, and Ferroplasma archaea. A large extent of genomic vari-

ation, primarily due to recombination, was characterized in both these groups of

organisms [165, 151, 30]. Initial studies of this environment indicated that most

genomic variation can be found in Ferroplasma sp Type II, with no predominant

functional groups being associated with the variable regions [165]. Subsequent pub-

lications with additional sequencing (included in our test), also showed significant

variation in Leptospirillum sp Group II ’5-way CG’ [151]. Here we evaluated whether

Bambus 2 is able to rediscover these results. We detected a total of 99 motifs, of

which 66 represented alternate sequences (two contigs occupying the same positions)

and 33 represent insertion/deletion of sequence. The majority of motifs could be

assigned to regions from the Ferroplasma sp Type II, as expected. However, as a
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percentage of bases contained within variation motifs (the extent, rather than num-

ber of motifs), the most varied organisms appear to be Leptospirillum sp Group II

’5-way CG’ and Leptospirillum sp Group III, followed by Ferroplasma sp Type II.

The difference in the patterns of variation (frequent but small in Ferroplasma and

less frequent but large in Leptospirillum) was also observed by Simmons et al. [151]

and could be explained by different biological mechanisms that drive the genomic

variability. It was hypothesized [30] that recombination frequently occurs within

Ferroplasma possibly due to the fact that that these organisms (as well as many

other archaea) lack the mutS and mutL DNA repair systems. Conjugation or trans-

duction, which produce large events (as they are dependent on the F-plasmid and

phage size) were hypothesized to contribute to the genomic variation in Leptospir-

illum [151].

We compare the genes within variation motifs to those identified in previous

publications. We annotated the assembly by taking non-overlapping best BLASTX

[3] hits for each unitig and assigned a COG [158] functional category to each hit. We

tabulated the counts of each COG category within the assembly and within the mo-

tifs. We then characterized the functional categories that are statistically enriched in

motif regions (Section C.2.4, Table 4.10). The functional category corresponding to

“DNA replication, recombination and repair” (category L) is significantly enriched

(p=0.006, hypergeometric test). Also enriched, (p=0.25, hypergeometric test) is

one of the poorly characterized COG categories, “general function prediction” (cat-

egory R). Our results are consistent with previous analysis of the data [151]. One

specific motif identified within Leptospirillum sp Group II ’5-way CG’, corresponds

to glycosyltransferase, a gene previously characterized as occurring within a mobile

region of Leptospirillum sp Group II and Leptospirillum sp Group III [49]. Thus

it is expected that this mobile element would mutate and recombine independently

within the members of the Leptospirillum sp population, giving rise to the motif.
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Table 4.10: COG categories in the Acid Mine Drainage dataset.The table
shows abundance of COG categories in the Acid Mine dataset. % In Asm: The
percentage of each type of COG in the entire assembled dataset. % In Motifs:
The number of each type of COG within the motifs detected by Bambus 2. RD
(Ratio Difference): % of Motif - % of Assembly. ES (Enriched Significance): The
hypergeometric P-values after Bonferroni correction for enrichment. DS (Depleted
Significance): The hypergeometric P-values after Bonferroni correction for depletion.
See Section C.2.4 for details on how the values are computed.

COG % In ASM % In Motifs RD ES DS

A 0.0677% 0.0000% -0.0677 1 1
B 0.3385% 0.0000% -0.3385 1 1
C 6.7028% 6.1069% -0.5959 1 1
D 1.2864% 1.1450% -0.1414 1 1
E 8.5308% 6.8702% -1.6606 1 1
F 3.5884% 2.6718% -0.9166 1 1
G 4.3331% 2.6718% -1.6614 1 1
H 5.8903% 6.1069% 0.2166 1 1
I 2.3697% 1.5267% -0.8430 1 1
J 9.4110% 7.2519% -2.1591 1 1
K 6.1611% 4.9618% -1.1993 1 1
L 7.5829% 13.3588% 5.7758 0.006 1
M 3.7238% 3.8168% 0.0930 1 1
N 1.0833% 0.7634% -0.3199 1 1
O 3.3852% 4.1985% 0.8132 1 1
P 3.7238% 3.4351% -0.2886 1 1
Q 1.4218% 1.9084% 0.4866 1 1
R 12.7962% 17.5573% 4.7610 0.25 1
S 11.0359% 9.1603% -1.8756 1 1
T 2.6405% 1.5267% -1.1138 1 1
U 2.3697% 2.2901% -0.0796 1 1
V 1.4218% 2.2901% 0.8683 1 1
W 0.0000% 0.0000% 0.0000 1 1
Y 0.0000% 0.0000% 0.0000 1 1
Z 0.1354% 0.3817% 0.2463 1 1

4.4.6 Scaffolding the output of NGS assemblers

Finally, we tested Bambus 2 on four dataset comprised of next-generation se-

quencing reads. The first dataset, comprising the gut microbiome of twins [163], was

assembled using Newbler [97] followed by Bambus 2. Our assembly combined all 18
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Table 4.11: Contiguity results on four NGS datasets. #Scaffolds: The number
of scaffolds > 2Kbp. Mean: The average length of scaffolds. Max: The maximum
length scaffold in the assembly. Scaffold at 5Mbp: We sort the scaffolds in decreas-
ing order by length and count the number and size of the smallest scaffold required
to reach 5Mbp. The #ORFs measures the number of ORFs identified by MetaGen-
eMark [93] in the assembly. The counts are normalized by total sequence length
in the assembly. The # Scf in 1% is reported as in Figures 4.6 and 4.12 using a
reference identified by BLAST [3], lower scores are better. The errors are reported
by dnadiff from the MUMmer 3.20 package [82]. The GUT dataset did not include
paired-end information and we relied on the Newbler contig graph to perform scaf-
folding with Bambus 2. Therefore, the Newbler results are reported on contigs not
scaffolds as no scaffolds were generated by Newbler on this dataset.

Dataset ASM # Scfs Mean Max # Scf Len at 5Mbp # ORFs # Scf in 1% # Errors

GUT Newbler 11 012 4 115.1 46 150 275 12 769 0.00217 19.18 7
Bambus2 11 450 4 778.9 80 512 134 25 370 0.00204 15.24 10

V1.CD-2 SOAPdenovo 5 794 4 889.0 84 000 230 14 207 0.00186 15.54 51
Bambus2 4 057 5 680.6 237 167 166 18 210 0.00200 7.28 67

V1.UC-8 SOAPdenovo 15 029 5 371.3 176 511 87 39 282 0.00178 1.34 13
Bambus2 12 952 5 954.0 257 939 58 55 905 0.00183 0.80 18

MH0012 SOAPdenovo 27 451 6 470.1 356 312 30 115 466 0.00172 2.67 33
Bambus2 23 994 5 704.7 823 131 35 84 700 0.00180 0.99 43

individual samples from the original study. The assembly generated 3 230 variation

motifs. Since we lacked a reference, we could not map our assembly and tabulate

statistics as with previous datasets. Instead, we evaluated the assembly contiguity.

We sorted the scaffolds in decreasing order by size and counted the number and

size of the smallest scaffold required to reach 5Mbp (Table 4.11). To assess scaffold

correctness, we used BLAST [3] to identify a dominant organism within the dataset.

The best hit was Bifidobacterium longum NCC2705 (AE014295). We mapped the

assembled scaffolds to the reference using MUMmer [82] and calculated the errors

in scaffolds and the number of scaffolds to cover 1% of the reference. We also ran

MetaGeneMark [93] to identify ORFs within the assemblies and include the results

in Table 4.11. We annotated the assembly and evaluated COG functional category

enrichment in motifs as before. The COG functional categories for “amino acid

transport and metabolism” (category E), “nucleotide transport and metabolism”

(category F), “carbohydrate transport and metabolism” (category G), “DNA repli-
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cation, recombination and repair” (category L), and “cell envelope biogenesis, outer

membrane” (category M) were enriched, while categories for “cell motility and se-

cretion” (category N) and “unknown function” (category S) were depleted in the

variation motifs found by Bambus 2. Interestingly, the enriched functional cate-

gories were characterized as “core” for the gut biome (categories universally found

across all subjects) in [163]. Other categories classified by Turnbaugh et al. as core,

such as “transcription” (category K), were also found enriched in our motifs, but

not significantly (Table 4.12).

Turnbaugh et al. noted that while no core microbiome exists at a taxonomic

level, a core can be detected at a functional level. The over-abundance of these core

genes in the detected motifs may explain this observation. We hypothesize that the

core genes can occur in different genomic contexts due to lateral transfer, allowing

a diverse set of organisms to survive within the human distal gut, and thereby

explaining an enrichment of such genes within variation hotspots. These results

would not be apparent from the analysis of the contig consensus sequences and

demonstrate the importance of performing detailed analyses of the data underlying

the assembly (i.e. the assembly graph) to characterize an environment.

We selected three samples at random from the MetaHIT consortium (V1.CD-2,

V1.UC-8, and MH0012) [129]. We re-ran SOAPdenovo to generate unitigs and scaf-

folds. We used Bambus 2 to scaffold the unitigs produced by SOAPdenovo [89] and

compare Bambus 2 scaffolds to those generated by SOAPdenovo (Table 4.11). One

dataset (V1.CD-2), comprising over 51M Illumina reads was analyzed in ≈ 3.5hrs

with a peak RAM usage of 10.0GB. The largest dataset (MH0012) comprising 186M

reads was analyzed in ≈ 20hrs.

In all cases, Bambus 2 produced more contiguous scaffolds than SOAPdenovo,

in two cases more than doubling the largest scaffolds. We again identified a dominant

organism within each dataset and map scaffolds to it. The best hits were Bacteroides
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Table 4.12: COG categories in Human Gut dataset. The table shows abun-
dance of COG categories in the Human Gut dataset. % In Asm: The percentage
of each type of COG in the entire assembled dataset. % In Motifs: The number of
each type of COG within the motifs detected by Bambus 2. RD (Ratio Difference):
% of Motif - % of Assembly. ES (Enriched Significance): The hypergeometric P-
values after Bonferroni correction for enrichment. DS (Depleted Significance): The
hypergeometric P-values after Bonferroni correction for depletion. See Section C.2.4
for details on how the values are computed.

COG % In ASM % In Motifs RD ES DS

A 0.2679% 0.0619% -0.2059 1.0000 0.6600
B 0.2381% 0.0000% -0.2381 1.0000 0.1400
C 5.9821% 6.0062% 0.0240 1.0000 1.0000
D 1.3988% 1.3622% -0.0366 1.0000 1.0000
E 6.9048% 8.7926% 1.8878 0.0004 1.0000
F 2.4107% 3.3437% 0.9329 0.0110 1.0000
G 6.0714% 7.8638% 1.7923 0.0004 1.0000
H 4.2857% 4.8916% 0.6059 1.0000 1.0000
I 2.0536% 2.2291% 0.1755 1.0000 1.0000
J 5.2381% 6.3777% 1.1396 0.0580 1.0000
K 4.3750% 5.1393% 0.7643 0.5000 1.0000
L 5.2976% 7.1207% 1.8231 0.0001 1.0000
M 4.7917% 5.9443% 1.1526 0.0350 1.0000
N 1.9345% 1.1765% -0.7581 1.0000 0.0390
O 3.6310% 3.0960% -0.5350 1.0000 1.0000
P 4.4940% 4.7678% 0.2738 1.0000 1.0000
Q 1.5476% 0.9907% -0.5569 1.0000 0.2200
R 14.6726% 13.0031% -1.6695 1.0000 0.1600
S 17.0536% 10.9598% -6.0938 1.0000 0.0000
T 3.5417% 3.4056% -0.1361 1.0000 1.0000
U 2.4405% 1.8576% -0.5829 1.0000 0.6200
V 1.0714% 1.4861% 0.4146 0.4300 1.0000
W 0.0298% 0.0619% 0.0322 1.0000 1.0000
Y 0.0298% 0.0000% -0.0298 1.0000 1.0000
Z 0.2381% 0.0619% -0.1762 1.0000 1.0000

coprophilus DSM 18228 (NZ ACBW00000000), Methanobrevibacter smithii ATCC

35061 (NC 009515), and Akkermansia muciniphila ATCC BAA-835 (CP001071.1)

for V1.CD-2, V1.UC-8, and MH0012 respectively. Bambus 2 produced more ORFs

per MB of assembly. It also required fewer scaffolds to cover the reference while not

introducing many errors.
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We hypothesize that the improvement in contiguity is due to Bambus 2 over-

coming genomic variation within the data, where we identified 2 763 variation motifs.

To evaluate our hypothesis we aligned Bambus 2 motifs to SOAPdenovo scaffolds

and counted motifs which span multiple scaffolds. Out of the 2 763 motifs in the

assemblies, 2 554 mapped to multiple scaffolds, confirming that Bambus 2 motifs

correspond to scaffold breaks in SOAPdenovo.

4.4.7 Scaffolding single-cells

Single-cell assembly is another example of an assembly target challenged by

widely different levels of coverage for different portions of a genome (Fig 4.13). The

Bambus 2 coverage-independent repeat identification can benefit scaffolding in this

context. Recently, a novel assembler specifically targeting single-cell sequencing has

been developed [17]. The algorithm modifies an existing assembler to tolerate cover-

age differences. Unfortunately, the published assembler does not generate scaffolds

or make use of paired-end data. We assembled two datasets from the Velvet-SC pub-

lication [17] and scaffolded the results using Bambus 2. In Table 4.13, we present

the results from the publication as well as our results running Velvet-SC alone and

in combination with Bambus 2.

The table shows that Bambus 2 is able to generate longer contigs than those

from Velvet-SC alone. The assemblies show a 4.4% and 22% corrected N50 gain while

introducing one and zero errors in E. coli K12 and S. aureus USA300, respectively.

While the gain is small, the datasets only have short Illumina paired-ends (260bp)

and Bambus 2 is still able to improve on the state-of the-art. Based on the assembly

of S. aureus from Salzberg et. al. [137], Bambus 2 contiguity increases 22–fold when

long (3Kbp) Illumina mate-pairs are available (from 50Kbp to 1 082Kbp scaffold

corrected N50). Therefore, we expect Bambus 2 can significantly improve single-cell

assemblies.
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(a)

(b)

Figure 4.13: Single-cells sequenced using MDA have significant bias in
coverage. (a) The coverage of E. coli K12 using clonal sequencing. The mean
(shown in red) is 607X. The coverage is evenly distributed throughout the genome
and the histogram matches the expected Poisson distribution. (b) Coverage of E. coli
K12 using MDA sequencing. The mean (shown in red) is 482X. There is significant
variation in coverage (from 0X to 10 000X) with several regions of the genome at
0X coverage. The histogram has a very long tail, reflecting the biased sequencing of
the genome.
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Table 4.13: Assembly contiguity on two single-cell prokaryotic datasets.
Assemblies of Staphylococcus aureus (genome size 2 872 915) and Escherichia coli
(genome size 4 639 675). For all assemblies, N50 values are based on the same
genome size. The Errors column contains the number of mis-joins plus indel errors
> 5bp for contigs, and the total number of mis-joins for scaffolds. Corrected N50
values were computed after correcting contigs and scaffolds by breaking them at each
error. See the GAGE publication [137] for details on how errors were identified.

Genome Assembler Contigs Scaffolds

Num N50 Errors N50 corr (kb) Num N50 Errors N50 corr. (kb)

E. coli Lane 6 Euler+Velvet-SC [17] 501 32.0 - - - - - -
Velvet-SC 220 56.5 23 52.1 - - - -
Velvet-SC+Bambus 2 204 60.7 24 54.4 193 65.0 0 59.6

S. aureus Lane 7 Euler+Velvet-SC [17] 355 32.3 - - - - - -
Velvet-SC 175 37.5 19 34.9 - - - -
Velvet-SC+Bambus 2 141 45.8 19 42.7 136 48.4 4 40.9

4.5 Discussion

The repeat detection procedures used in Bambus 2 are sensitive without sacri-

ficing specificity, and have been applied to the assembly of clonal, metagenomic, and

single-cell samples. The scaffolds generated by Bambus 2 cover a large percentage

of the genomes in the samples, while largely avoiding mis-joins. The FastA output

of variants motifs facilitates analysis of the full diversity in an environment. Fur-

thermore, the ability to highlight regions of variation has proven useful in detecting

biologically meaningful patterns that match previously published results.

Bambus 2 is not a stand-alone assembler. Instead, it is a drop-in scaffolding

module optimized for non-clonal data and is compatible with the output of many

modern assemblers. Thus, Bambus 2 can be applied to virtually all existing se-

quencing technologies – it is sufficient to start with an assembler that is best suited

for that type of data.
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4.6 Conclusion

Accurately assembling metagenomic datasets automatically is challenging with

current assemblers, and often requires manual tuning of parameters and post-processing.

Our work represents a first step towards automated metagenomic assembly, and is

able to obtain long-range contiguity in metagenomic datasets while also character-

izing regions of variation.
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Chapter 5

An Automated End-end Metagenomic Analysis Pipeline†

5.1 Introduction

Metagenomics has opened the door to unprecedented comparative and eco-

logical studies of microbial communities, ranging from the sea [136, 182, 180] to

the Arctic [167]. Metagenomics has also enables new studies of the human body

[4, 44, 75, 164, 163], eukaryotes and their flora [173, 43], and even a health-care fa-

cility [71]. Next-generation sequencing (NGS) single genome assemblers are rapidly

improving [45], but due to the diverse mix of genomes in a given metagenomic sam-

ple, distinguishing polymorphisms from sequencing error [23] is less obvious. Par-

alogs can be easily mistaken for orthologs, leading to assembly errors [166]. Thus,

due to the ubiquity of NGS data and shortage of metagenomic assemblers, analysis

is commonly limited to metagenomic read classification. However, short reads offer

very limited information to read-based classifiers [10, 11, 102, 99, 18, 79, 116]. As

a result, these methods often classify fewer than 50% of reads and fail to outper-

form BLAST [112]. In addition, given the highly biased phylogenetic distribution

of genome databases [179], classification methods relying on databases fail to ac-

knowledge the majority of novel species present in the dataset. This is especially

true in the case of viral metagenomes where often 60–99% of a sample is unknown

[34, 106]. In an attempt to move away from read-centric analyses, computational

tools based on promising algorithmic and statistical methods for metagenomic de

novo assembly have begun to emerge [84, 94, 117]. However, to date they either

†The text of this chapter is based on the publication T. Treangen*, S. Koren*, D. Sommer,
B. Liu, I. Astrovskaya, A. Darling, and M. Pop. metAMOS: A modular and open source metage-
nomic assembly and analysis pipeline. Genome Biology, In Prep, 2012.
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are ill-suited for large datasets or lack a scaffolding module. In addition, the most

recently developed methods have not been exhaustively compared to one another

(within an assembly bake-off competition such as GAGE [137]) leaving their respec-

tive benefits and drawbacks unclear and hampering their adoption for metagenomic

assembly.

De novo assembly is a small part of metagenomic analysis, which can also in-

clude gene-based analysis and classification methods. Until now, custom and man-

ually intensive metagenomic analysis has impeded biological progress by making

reproducibility difficult and limiting collaboration. The importance of reproducibil-

ity in analysis has been discussed in the context of microarray data [63] and general

bioinformatics [46]. However, setting up a pipeline to analyze a metagenome still re-

quires familiarity with tool-specific parameters and bioinformatics expertise. To the

best of our knowledge there is no comprehensive end-to-end assembly and analysis

toolkit for metagenomics. Thus, there is a current need for efficient yet comprehen-

sive assembly and analysis pipelines for NGS data sequenced from metagenomes.

To address the need for metagenomic analysis, we present metAMOS, a mod-

ular and customizable approach to assembly and analysis of metagenomic samples.

metAMOS can be viewed as an assembly-centric counterpart to QIIME [14] and

mothur [145], which were designed to analyze 16S rRNA metagenomic sequences.

metAMOS also shares similarities with SmashCommunity [4]. However, Smash-

Community supports only 454 and Sanger read data, does not make use of existing

metagenomic assemblers and scaffolders (currently supports just three assemblers:

Arachne, Celera Assembler, and Forge), and does not provide validation methods.

Figure 5.1 outlines the workflow of metAMOS. From our point of view, pro-

viding a customizable end-to-end analysis pipeline addresses the challenges outlined

above. Metagenomic analysis is simply too complex for any individual laboratory

to tackle alone, which is why we believe the right approach harnesses the collec-
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Figure 5.1: metAMOS pipeline overview.
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tive expertise of the community into a single analysis pipeline. metAMOS is built

upon AMOS [127, 154, 123, 142, 162] and follows the philosophy that creating an

open-source and modular framework encourages collaboration in the community.

This approach allows researchers to focus on their areas of expertise while benefit-

ing from the collective expertise and advances from other research groups that have

representation within metAMOS. A secondary but fundamental goal for metAMOS

is to enable rapid analysis of hundreds of millions of sequences. Assembly is a fun-

damental component to achieve this goal as it reduces the data from millions of

short sequences into a much smaller collection of unitigs and contigs, removing re-

dundancy that costs computational cycles in downstream analyses. For example,

for 690 Human Microbiome (HMP) samples [164], the average compression from

sequences to assembled contigs is as high 160-fold and 3–5 fold when unassembled

sequences are included in the analysis. Performing time-consuming analyses such

as gene-calling and taxonomic classification after assembly allows metAMOS to ex-

ploit this reduction. metAMOS packages together over 20 existing metagenomic

tools and combines them with novel analysis tools we have developed, enabling the

user to analyze hundreds of millions of sequences in hours rather than days or weeks.

Included visualization tools and HTML reports provide easy access to results. All

steps are discussed in detail in Section 5.2.2.

5.2 Methods

Our design of the metAMOS pipeline was motivated by two guiding princi-

ples: modularity and robustness. These were inspired by the desire to allow users

to tailor metAMOS to the biological questions they want to answer, not the in-

verse. Given that each metagenome analysis presents a unique set of challenges

and goals, users will take advantage of this modularity and customize their own

pipelines by combining the modules they deem necessary on the fly. metAMOS
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leverages a previously published workflow management system (Ruffus [50]) to keep

track of inputs/outputs/states and checkpoint while running through computation-

ally intensive analyses. While metAMOS offers several novel features specific to

metagenomic assembly, we also leverage existing methods and software for metage-

nomic analysis by creating a collaborative environment for metagenomic assembly

to encourage cooperation among the community.

5.2.1 Install

To retrieve the source code, the user can either download it directly from

the repository or execute following command from the command-line: git clone

git://github.com/treangen/metAMOS.git. Upon download of the metAMOS

source, the user simply has to have python installed (2.5.x-2.7.x) and then run

the INSTALL script. This will automatically configure the pipeline to run within

the users environment and also will fetch any externally required data if a connec-

tion to the internet is available. Once installed, there are two main executables that

comprise metAMOS: initPipeline and runPipeline. initPipeline is used to create

a project environment for runPipeline and is where the user describes their input

files (454/Illumina reads, assembled contigs) and library types. runPipeline takes a

project directory as the input and will initiate the entire metAMOS pipeline (Fig

5.1). Now we will describe each module in the pipeline in detail.

5.2.2 Workflow

5.2.2.1 Preprocess (required)

This is the starting point of all analyses in the pipeline. metAMOS can take

a variety of inputs, including interleaved and non-interleaved FastQ/FastA files,

SFF files, and even a set of pre-assembled contigs. metAMOS supports existing
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read-analysis tools such as FastQC to evaluate the quality of the supplied read

data. Preprocess includes an optional custom aggressive read filter that discards any

read containing Ns or a base below a pre-defined quality value. The idea behind

aggressive read filtration is that read coverage/depth is no longer at a premium

and the quality of reads has a huge influence on the quality of assemblies [137].

This initially may seem extreme, especially since this can discard upwards of 25%

of the reads; however, given the dependency of de Bruijn graph based assemblers

on clean data, we anticipate that our assembly quality will be improved and have

indeed observed this in practice. That said, we also include a read filtration step

based on the fastx toolkit that allows the user to trim and keep reads. Another

important component of Preprocess is the library verification step that will check

whether read pairs are properly aligned and also modify read headers to ensure they

are compatible with downstream tools.

5.2.2.2 Assemble (optional)

Once reads are pre-processed they are passed onto the Assemble step for assem-

bly. Currently metAMOS has support for seven assemblers including SOAPdenovo

[88], Newbler [97], Velvet [183], Velvet-SC [17], Meta-IDBA [117], CABOG [105]

and Minimus [154]. Each of these assemblers has its own (lengthy) set of parame-

ters and required input format, all of which are automatically managed within the

pipeline and transparent to the user. It is our goal to keep growing this list to

include the plethora of existing assemblers and eventually allow the user to combine

assemblies via a meta-assembly strategy (Schatz, Metassembler, In prep), combin-

ing the strengths of each assembler and hopefully avoiding the weaknesses of any

single strategy. Note if the user specified contigs as input to metAMOS, this step is

automatically disabled. Three types of assembly are possible in the current version

of metAMOS: (a) single genome/isolate, (b) metagenomic, or (c) single cell. While
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the main focus is on metagenomic assembly, thanks to the modular nature of metA-

MOS, all three types are supported via the mentioned assemblers and command-line

options.

5.2.2.3 FindORFS (optional)

Immediately following assembly, we pass the contigs onto the metagenomic

gene prediction module. Three metagenomic gene prediction tools that are currently

supported include FragGeneScan [132], MetaGeneMark [9], and Glimmer-MG [68].

The rationale for calling genes after assembly is two-fold. Firstly, most metagenomic

gene prediction tools have significantly increased sensitivity and accuracy once the

fragment is more than 300bp, something that is reasonable to expect once we have

assembled the reads. Secondly, mis-assembles can be potentially inferred from this

stage given the output of the metagenomic gene prediction tool. For example, if we

attempt to assemble contigs that belong to a bacterial genome and the contig spans

several kilobases, we should see fairly regular gene predictions given the expected

coding density in prokaryote genomes [80]. If we observe a region in a contig that

that lacks ORF predictions over a large region, it is either (a) an error of the gene

prediction method or (b) a mis-assembled contig that does not allow a gene to be

called or (c) a pseudo-gene or eukaryotic DNA. Since we support multiple tools,

we can utilize each of them and check if there is a consensus for the region lacking

ORFs. If this is the case, we can preemptively break the contig at this region and

assume chimerism. This indicator can be combined with other mis-assembly signals

[123] to improve specificity. Even though these tools are efficient, we limit the work

by only calling ORFS on contigs with more than 3X depth of coverage and larger

than 300bp (both parameters are configurable by the user).
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5.2.2.4 FindRepeats (optional)

A novel feature in metAMOS, this step takes ORFs (or contigs) as an input.

The step serves two purposes. First, it annotates repetitive contigs that can be

later used to bypass the MarkRepeat step of Bambus 2, which, depending on the

sample, can become computationally expensive. Second, we would like to create

multi-alignments of all predicted ORFs to avoid classifying several copies of near

identical genes. Repeatoire does exactly this, as it is well-suited for identifying

repeat families de novo.

5.2.2.5 Annotate (optional)

This step also takes ORFs (or contigs) as an input. Once we have assembled

contigs and predicted ORFs, we likely want to determine which organisms comprise

a given sample. In order to annotate our ORFs or contigs, we offer five classifica-

tion methods such as: PhyloSift (Darling, in prep), BLAST [3], FCP, PHMMER

[27], and PhymmBL [10, 11], which include homology based methods, phylogenetic

(Bayesian) methods, and Iterative Markov Model training methods. Annotating

each and every read in a several million or even billion read sample can be com-

putationally prohibitive and lead to inaccurate classifications due to a lack of a

discriminatory signal from such short sequences [112]. Thus, our philosophy is to

assemble first and then classify contigs, or even better, ORFs. This allows a more

focused approach to annotation that permits much more reliable classification on

the predicted ORFs compared to individual short reads. However, as not all reads

will find their way into the final assembly, we will still have to invest computational

resources to classify singleton reads to get a complete picture of the composition.
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5.2.2.6 Scaffold (required)

One of the main challenges in metagenomic assembly is the entanglement of

repeats and genomic variation. In isolate bacterial genome assembly, any regions

that tangle the assembly graph are necessarily repetitive regions in the genome; there

exist a variety of strategies for disambiguating and resolving repeats in bacterial

genomes [176]. However, in metagenomic assembly, one cannot assume that tangles

in the graph are due to repeats. Indeed, it is highly likely that they could also

be generated due to variable regions in closely related strains of a bacteria/virus

commonly found in the targeted community. Fortunately, computational tools such

as Bambus 2 [78] exist that allow for metagenomic scaffolding and can disentangle

genomic variation from repeats. One option to the user is to enable a sequence-

based repeat detection (the output of FindRepeats), which can offer a performance

increase over graph-based repeat detection at the cost of an increased rate of false

positives (variant regions instead of repeats). Once repeats have been identified and

classified, Bambus 2 can focus on the variant regions in the assembly. For example,

assume that several strains of a given bacterium are identical with the exception of

a region of variation (e.g. a locus of antigenic variation). Since this structure is local

in the assembly graph, Bambus 2 is able to distinguish it from a repeat which tangles

the assembly graph. Bambus 2 is able to recover the global structure of the genome

by maintaining the ambiguity due to genomic variation throughout the scaffolding

process; motifs due to genomic variation do not affect the long-range structure of

the common backbone shared by related genomes. In addition, Bambus 2 outputs

these variant regions and makes them available to the user for downstream analysis.

5.2.2.7 Propagate (optional)

Another novel piece of the metAMOS pipeline is the annotation propagation

(via mate-pairs) step. Given a traversable assembly graph that has been simplified
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by scaffolding, we query the graph with high-confident annotations. The annotations

are transferred to other previously unclassified regions that are supported via mate-

pair links. Since high complexity metagenomic communities are expected to result in

fragmented assemblies, consisting mainly of relatively small contigs or scaffolds, this

step proves useful in classifying the smaller pieces without requiring more contiguous

assemblies.

5.2.2.8 Classify (optional)

One of the final steps of the metAMOS pipeline is to assign final classifications

to each and every contig/ORF/scaffold in the outputs produced by earlier steps and

store them in subdirectories labelled with the pre-specified taxonomic level. In

addition, all reads that were used in the assembly of the contigs/scaffolds are placed

in each appropriate subdirectory. The benefit of this step is two-fold: (a) organisms

of interest are searchable and able to be targeted for comparative assembly and (b)

all unclassified and potentially novel organisms are grouped together and can be the

starting point for further analysis.

5.2.2.9 Postprocess (required)

The metAMOS pipeline ends by generating an HTML formatted summary

(including charts) of the assembly statistics and estimated abundance information

in addition to an interactive report generated by Krona [114] (based on the An-

notation step) in a single HTML file. The file is self-contained and can be shared

with colleagues via email or a web-server. metAMOS also includes novel assembly

visualization tools targeted to metagenomics. One viewer, a plugin for Cytoscape

[147, 153], can dynamically highlight or hide subsets of the assembly and output

a multi-FastA sequence corresponding to user-selected variants. It is described in

detail below.
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Once finished, if the user prefers to rerun any step (for instance, annotate with

a different method), the pipeline can be re-run with the exactly same command that

was previously used and, thanks to the Ruffus framework, it will only re-run the

necessary steps. This allows for a quick exploratory run to be performed that is later

refined once initial information is gathered on the composition and characteristics

of the metagenomic community.

5.2.3 Visualization

We introduce a viewer, named ScaffViz, that is a plugin for Cytoscape [147,

153]. Assembler output is read in by ScaffViz using the factory design pattern,

abstracting Cytoscape objects from the developer, enabling new assembler support

to be easily added. A layout algorithm positions, orients, and sizes the nodes to

reconstruct the last view an assembler had before termination. The assembly layout

supports user preferences (Figure 5.2c) to narrow the view to only those scaffolds of

interest. The viewer can dynamically highlight or hide subsets of the assembly and

output a multi-FastA sequence corresponding to user-selected variants. Scaffolds

are displayed in decreasing order from the top of the screen to the bottom. For

each node, we compute the bounding rectangle based on its position in the scaffold.

Intersecting nodes are shifted down (Figure 5.2a), forming a stair structure.

5.2.3.1 Motifs and FastA output

ScaffViz tracks subsets of the assembly that the user can dynamically show

(or hide) (Figure 5.2b).

ScaffViz implements the data structures represented by Figure 5.3. The motifs

output by Bambus 2 are automatically loaded [78]. ScaffViz also allows users to

designate an arbitrary set S, at runtime. A subset of nodes S is replaced by a single

node u. Recursion within sets is allowed so a node s ∈ S may itself correspond to
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Figure 5.2: ScaffViz metagenomic visualization screenshot. a) shows the
layout of contigs within a scaffold. Assembly metadata is displayed as node/edge
attributes. These attributes can be used by built-in Cytoscape algorithms. Node
width is proportional to the contig length. When available, node classification (for
example taxonomic assignment) is indicated by color and node height is proportional
to the coverage (the amount of oversampling of a sequence). Otherwise, as here, node
color indicates coverage. b) Available layout settings. Here, the user can filter the
view by scaffold length, total length, and coverage. c) The context menu supporting
FastA output and the display/hiding of subsets of nodes. d) FastA output from
the graph in a). The first sequence (master) is the longest traversal of the nodes.
The remaining five records indicate variants within the set, corresponding to the
five overlapping nodes in the graph.
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Figure 5.3: ScaffViz representation of variations in a metagenome. (left)
Shows the in-memory representation of a motif forest. Nodes A, B, C, D, and I are
contigs. Nodes E, F, G, and H are motifs encapsulating the nodes in their respective
subtrees. (right) Shows an example cut in the motif forest. In this example, the
user would only see nodes E, F, G (which would indicate they group into super-
node H) and I. ScaffViz tracks the level of visibility the user has chosen. The user
could expand node E as well, in which case ScaffViz would show nodes A, B, C,
D (indicating they group into super-node E), and F, G (indicating they group into
super-node H).

another set S ′. The viewer outputs the longest path through a selected subset first.

For any alternate sequence, it outputs an edit directive listing the alternate bases

and their position within the longest sequence (Figure 5.2d), giving visual access to

the motifs output by metAMOS.

5.2.4 Quality control

Given the relative immaturity of metagenomic genome assemblers, quality

control is central for building a reliable assembly pipeline. An assembler may use

a conserved region between multiple genomes to incorrectly join sequences, creat-

ing a chimer. We include optional QC modules in metAMOS to detect chimeric

contig/scaffold formation and split them before downstream analysis. We borrow

techniques from amos-validate [123] and utilize coverage, mate-pair information,

and read mapping results to QC. In addition, we make use of existing gene calls

to identify regions in assembled contigs or scaffolds that were greater than 1Kbp

(in prokaryotes) and devoid of a gene call. While there could be false negatives in

the gene caller, downstream steps (such as scaffolding) can re-join erroneously bro-
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ken contigs. By contrast, false positives would allow errors to pass through and be

compounded. Generally, metAMOS takes a cautious approach to avoid propagating

assembly error through the pipeline. We feel this approach is a reference-free way

to identify problematic regions in metagenomic assembly.

5.3 Results

5.3.1 metAMOS Performance

We begin by evaluating metAMOS performance on datasets varying from 10

million sequences up to 600 million (Fig 5.4). The runtime of metAMOS scales

linearly with the number of input sequences. It is also able to process > 100 million

sequences in less than 3 days of runtime and 600 million in less than a week.

5.3.2 Visualization performance

We evaluated ScaffViz performance on seven datasets of varying size. The

memory and time required is in Figure 5.5. As the figure shows, runtime is close to

linear with respect to the number of elements in the graph (nodes + edges). The

memory scaling is linear with respect to the number of nodes. The largest graphs

on the plot represent real next-generation metagenomic datasets, including a viral

metagenome, as well as a sample from the MetaHIT consortium [129]. ScaffViz can

open all of them in under one minute using less than 1.5GB of memory. Therefore,

ScaffViz is scalable to large graphs, allowing it to run on a laptop.

5.3.3 metAMOS assembly evaluation

Our goal is to analyze the feasibility of using metAMOS with genome assem-

blers that were not intended for use on metagenomic data (e.g. SOAPdenovo) and

compare the results to those of produced by assemblers specifically designed for
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Figure 5.4: Runtime of metAMOS scales linearly with number of se-
quences. Six independent runs of metAMOS on datasets varying in size from
300,000 reads to 600 million. For all points, 16 threads were used and assembly was
performed by SOAPdenovo.
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Figure 5.5: Performance of ScaffViz (memory and runtime) scales linearly
with graph size. All tests were performed on a MacBook Pro (Intel i7 Dual Core
2.66GHz CPU, 8GB of RAM, and OSX 10.6.6). Built-in Java functions reported
wall-clock time and memory. Cytoscape 2.8.0 was used, each dataset was loaded
five times, and the time and memory averaged.
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metagenomic data (e.g. Meta-IDBA). We use both mock datasets generated for the

Human Microbiome Project (HMP) project [164] and real metagenomic samples

from the HMP as well as Metagenomics of the Human Intestinal Tract (MetaHIT)

[129] projects.

5.3.4 Simulated datasets

To compare and evaluate metagenomic assembly accuracy we first rely on

metagenomic samples with known composition, specifically two mock communities

created by the HMP. These communities represent the result of sequencing a mixture

of known DNA fragments from organisms with known genomic sequences, compris-

ing over 50 bacterial genomes and a few eukaryotes. The results obtained on real

metagenomic samples are difficult to evaluate due to the absence of a golden truth

reference. While not without limitations, this dataset has advantages over pure sim-

ulated data since the data were generated through an actual sequencing experiment

from the mixed DNA sample, thereby capturing true artifacts of the sequencing

technology.

Two HMP mock communities were generated: Even and Staggered. The ref-

erence genomes in these mock communities are precisely known, the abundances

are fairly well known, and the reads were sequenced with the Illumina GAII instru-

ment [8] replicating any biases and the error profile associated with the sequencing

technology. Figure 5.6 (mock Staggered in blue color, and mock Even in red color)

shows the average reference coverage (percent of the reference genome covered by

good quality assembled contigs) for both of these mock communities when assem-

bled with seven different methods: SOAP.utg (SOAPdenovo unitigs), MA (metA-

MOS+SOAPdenovo unitigs), midba (Meta-IDBA), Velvet, CA (Celera Assembler

+ metagenomic parameters), CAdeg (CA + degenerates). The CAdeg assembly

warrants additional explanation. Celera Assembler marks certain contigs as de-
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generates if they fail certain quality checks, including if they appear repetitive (in

terms of depth-of-coverage statistics). In metagenomic samples contigs from abun-

dant organisms may, therefore, appear repetitive and be marked as degenerates by

CA. Including these allows us to capture more of the sequence of the community,

however can also lead to increased errors (many degenerates are truly mis-assembled

repeats). All assemblers have lower performance on the mock Staggered community,

which is expected to better model the pattern of taxonomic diversity encountered

in real data [70, 92, 144]. When taking correctness into account (Table 5.2), we

observe that all assemblers make mistakes, especially in the category termed heavy

mis-assembly. Heavy mis-assembly represents contigs with only one alignment in the

reference genome covering less than 90% of the contig’s length, or having multiple

incompatible matches to a single reference. These results indicate that the choice

of assembler has a strong influence on the final assembly results and choosing the

ideal assembler requires taking into account both contiguity and correctness (Tables

5.1, 5.2). For example, while the CAdeg assemblies have the largest max contigs, it

is at the expense of one of the highest error rates. Meta-IDBA has the largest con-

tigs at 10Mbp but also generates more assembly errors than the more conservative

SOAPdenovo assembly. metAMOS matches the best assemblers in terms of refer-

ence representation, having the most genomes over 90% covered with good contigs

(Fig 5.7), while having the lowest rate of error (and chimera) in both datasets (Figs

5.8, 5.9).

It is important to point out that our goal is not to argue that the performance

of metAMOS is better than that of other existing metagenomic assemblers. Our

code, in fact, can use any assembler as a first step. Rather, metAMOS was designed

to augment and improve upon existing methods, using specialized post-processing

routines aimed at the unique set of challenges posed by metagenomic assembly.

In this example, SOAP.utg (SOAPdenovo run without scaffolding information) is
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Table 5.1: Assembly contiguity and mapping statistics for the Mock Even
and Mock Staggered datasets. Assembly evaluation on mock Even (mockE) and
mock Staggered (mockS) datasets. All contigs/scaffolds are mapped using MUMmer
[82] at 97% ID and minimum matching length of 100bp. Contigs are considered good
if they are completely covered except for 15bp on either end (to account for errors at
end of reads). We also attempted to run Genovo [84] on these datasets. However, the
program crashed after completing one iteration (out of a recommended 10 000). The
single iteration required more than 24 hours to complete, indicating that Genovo is
not scalable to large datasets.

Community Assembler # Ctg Good % Good Total (MB) Size @ 10Mbp Num @ 10Mbp Max Ctg

mockE SOAP.utg 69 517 65 230 93.83% 51.9 28 208 195 249 819
mockE MA (SOAP.utg) 63 440 62 971 99.26% 51.6 28 208 195 249 819
mockE SOAPdenovo 64 345 63 796 99.14% 51.6 28 208 195 249 819
mockE Velvet 11 770 11 354 96.47% 21.1 34 642 177 169 453
mockE CA 7 164 6 293 87.84% 40.2 45 618 124 288 938
mockE CAdeg 23 220 21 988 94.69% 48.4 45 618 124 288 938
mockE Meta-IDBA 41 990 33 823 80.55% 49.0 50 595 116 204 186

mockS SOAP.utg 69 633 54 088 77.68% 29.4 5 672 626 186 064
mockS MA (SOAP.utg) 45 143 44 598 98.79% 29.2 5 672 626 186 064
mockS SOAPdenovo 54 078 52 214 96.55% 29.2 5 672 626 186 064
mockS Velvet 9 214 8 799 95.50% 10.6 6 441 499 186 086
mockS CA 4 284 3 792 88.51% 18.4 7 594 475 219 878
mockS CAdeg 17 407 16 534 94.98% 24.4 7 594 475 219 878
mockS Meta-IDBA 72 526 27 285 37.62% 21.2 13 150 368 119 064

Table 5.2: Assembly correctness on the Mock Even and Mock Staggered
datasets. All contigs are mapped as in Table 5.1. Contigs were extracted from
scaffolds, if available by splitting at Ns. Slight mis-assemblies are alignments that
cover 90% or more of the aligned contig in a single match. Heavy mis-assembly are
alignments that cover less than 90% of the aligned contig in a single match or have
two or more matches to a single reference. Chimeras are contigs with matches to
two distinct reference genomes.

Community Assembler Slight Mis-assembly Heavy Mis-assembly Chimeras Errors / MB

mockE SOAP.utg 168 133 1 5.8
mockE MA (SOAP.utg) 167 131 1 5.8
mockE SOAPdenovo 179 135 1 6.1
mockE Velvet 147 174 20 15.3
mockE CA 499 305 12 20.3
mockE CAdeg 648 374 27 21.6
mockE Meta-IDBA 372 163 4 10.9

mockS SOAP.utg 155 138 0 10.0
mockS MA (SOAP.utg) 131 102 0 8.2
mockS SOAPdenovo 161 135 0 10.1
mockS Velvet 110 140 20 25.5
mockS CA 228 173 12 22.4
mockS CA deg 336 236 16 23.5
mockS Meta-IDBA 150 158 1 14.6
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Figure 5.6: Comparison of the average percentage of a reference correctly
assembled in the Mock Even and Mock Staggered assemblies. The average
coverage is the percentage of a reference genome covered by correct contigs in the
assembly. Only matches above a minimum length (100bp) with a high-quality single
match at greater than 97% identity over 90% of the contig length are reported. In
this way, single read matches and chimeric/mis-assembled contigs do not contribute
to an assembler’s coverage statistics.

the starting point for the metAMOS analysis. Compared to the full SOAPdenovo

run, metAMOS has more genomes with 90% representation (or greater) in good

contigs. metAMOS also introduces no new chimera while fixing assembly errors

in both Mock and Even datasets (Table 5.2). Given that SOAPdenovo produced

smaller and more accurate contigs while Meta-IDBA produced the largest contigs

at 10Mbp and is second in terms of error to SOAPdenovo, we compare the two

assembly approaches within metAMOS on a real metagenomic dataset.
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Figure 5.7: Count of the reference organisms with over 90% of the genome
correctly reconstructed by assembly. Higher numbers are better. Matches are
computed as in Figure 5.6.
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Figure 5.8: Count of chimera in the Mock Even and Mock Staggered as-
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single reference genome – in the assemblies. Lower numbers are better, full assembly
correctness metrics are in Table 5.2.

165



!"

#"

$!"

$#"

%!"

%#"

&!"

'()*+,-." /)"

0'()*+,-.1"

'()*" 23456" 78978-" :)" :)48."

;
<<
=
<>
"?
8
<"
/
@
"0
A=
-6
9"
8
<<
=
<>
BA
=
-6
9"
C=
D
E
.
"9
8
D
.
-F
1" !""#"$"%&'$

/=CG";78D" /=CG"'-6..8<84"

Figure 5.9: Number of errors per megabase in the Mock Even and Mock
Staggered assemblies. The errors are reported as the sum of heavy mis-assemblies
+ chimera in Table 5.2. Lower numbers are better. metAMOS has the lowest rate
of error, correcting the errors in SOAP.utg while not introducing new error to the
assembly.
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Table 5.3: Assembly of the HMP tongue dorsum dataset with metAMOS.
Stats comparing two assemblies generated within metAMOS (using Meta-IDBA
and SOAPdenovo, MetaGeneMark and Bambus 2) of tongue dorsum female sample
(HMP, SRS077736). Unitigs indicate initial output of each assembler. Contigs are
reported after scaffolding by Bambus 2 (splitting scaffolds at Ns).

Unitigs Contigs Scaffolds
Assembler Total BP # Max # Max # Max

Meta-IDBA 119075 843 678 034 220 488 673 291 220 488 644 997 443 823
SOAPdenovo 101 769 360 451 765 116 181 292 706 238 051 287 108 238 051

5.3.5 HMP tongue dorsum

Our second analysis was performed on real data (HMP tongue dorsum female

sample). For this sample, the true and complete composition of the community is

unknown; instead we constructed a reference genome set from the genomes identi-

fied by the HMP to have high similarity to the sequences within the sample. This

dataset was previously assembled with Meta-IDBA and the published results demon-

strated that Meta-IDBA was able to generate larger contigs than SOAPdenovo [117].

We used both SOAPdenovo and Meta-IDBA as starting points for the metAMOS

pipeline. The results shown in Table 5.3 show that while Meta-IDBA produces a

significantly larger maximum unitig (doubling that obtained by SOAP.utg), the re-

sulting contigs and scaffolds are much closer in length. Focusing on producing larger

unitigs in an initial assembly leads to higher error rates (Table 5.1) while metAMOS

produces accurate unitigs and contiguous contigs/scaffolds. Figure 5.10 shows the

Krona [114] plot for the sample which is automatically generated by metAMOS.

The figure allows both for an overview of the taxonomic composition in a dataset as

well as allowing interactive navigation to explore specific branches of the taxonomy.

To evaluate the correctness of these assemblies, we aligned them against our

set of reference genomes. In Figure 5.11 we show the percentage of each reference

genome covered by correctly assembled contigs. While both assemblers (SOAP-

denovo and Meta-IDBA) vary in their ability to reconstruct individual genomes,
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Figure 5.10: Human tongue dorsum sample from the HMP project was
classified using PhyloSift and displayed using Krona.. Meta-IDBA was used
for assembly, MetaGeneMark for ORF prediction, and PhyloSift for abundance es-
timates (based on predicted ORFs). The classifications can optionally be colored
by average confidence, distinguishing uncertain from certain classifications.
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metAMOS is able to improve on the starting assembly in all cases except one. In

the case of Rothia mucilaginosa, which is present at over 200X in the sample, both

SOAPdenovo and Meta-IDBA can accurately reconstruct the full genome. Most of

the genomes have over 80% of their sequence correctly reconstructed. Five genomes

from this reference set were poorly assembled (reference coverage of 40% or less)

due their low abundance in the community. Figure 5.12 highlights the strong depen-

dence between overall depth of coverage and ability to reconstruct the full genome

sequence, indicating that genomes below 5X cannot be reconstructed by assembly.

Figure 5.13 shows the same phenomenon using the relative abundance estimates

of the individual organisms obtained with the taxonomic profiling tool MetaPhyler

[91]. The results are highly consistent with those shown in Figure 5.12, and are

nearly identical irrespective of the assembler used. This indicates that taxonomic

profiling data can be used to help fine-tune the assembly parameters even when

adequate reference genome sequences are not available.

5.3.5.1 Biological variant identification

metAMOS, through its use of the Bambus 2 scaffolder [78], is currently the only

metagenomic assembly pipeline able to automatically identify assembly patterns

indicative of genomic variation (termed variation motifs in the following). Figure

5.14 shows one of the top ranked variant motifs (spanning 1 212bp) reported by

metAMOS. This motif is composed of two variant subregions (200bp in length, each),

connecting to two larger nodes (500bp contigs) in the graph. Nucleotide alignments

yield significant hits to Streptococcus oralis Uo5 and Streptococcus sanguinis SK36.

The variant region in the middle contains 12 SNPs (Fig 5.14(b)). The SNPs fall

within a poorly characterized hypothetical protein, distantly related to a glutamic

acid decarboxylase. It is likely the protein varies between closely related strains of

Streptococcus.
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Figure 5.11: Percentage coverage of the references by correctly assembled
contigs in the HMP tongue dorsum sample. Higher is better, matches are
computed as in Figure 5.6. metAMOS improves the reference representation in all
cases except one from the starting assembly.
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Figure 5.12: Comparing depth of coverage versus the percentage of a ref-
erence that is correctly assembled. Genomes above 5X can be accurately as-
sembled, most below this threshold are not.
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Figure 5.13: metAMOS taxonomic abundance estimate on the HMP
tongue dorsum sample. Meta-IDBA was used for assembly, MetaGeneMark
for ORF prediction, and MetaPhyler for abundance estimates (based on predicted
ORFs).
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Figure 5.14: ScaffViz visualization of a variation reported to metAMOS.
A motif within the HMP tongue dorsum dataset. a) The ScaffViz representation of
the motif, indicating the overlapping 200bp contigs. b) The multi-alignment of the
variants reported by Bambus 2 showing 12 SNPs.
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This simple example highlights the utility of variation motifs – typical assembly

software would break the assembly in this region or forcefully merge the two variants.

Instead, metAMOS preserves the contiguity of the genomes backbone while also

outputting the pattern of variation detected in this region. Note that such regions

are difficult to identify within the output of existing assemblers – their identification

requires substantial manual examination of the assembly output [29].

5.3.6 Sexual dimorphism in the human gut microbiome

To demonstrate the types of analyses enabled by metAMOS, we investigate

sexual dimorphism in the human gut microbiome. Microbiome differences between

different genders were previously demonstrated in macaques [100] and mice [143],

and such differences have yet (to the best of our knowledge) to be explored in hu-

mans. To explore whether evidence of sexual dimorphism could be gleaned from

metagenomic data analyzed with metAMOS, we focused on six subjects (three male

and three female), all of the same age (59 years) and from the same country (Den-

mark), whose microbiome was sequenced as part of the MetaHIT project. Before

we proceed with the description of the analysis we would like to stress the fact that

conclusively assessing whether sexual dimorphism within gut bacteria is a real phe-

nomenon in the human population requires extensive studies of much broader scope

than that being performed here. This is especially true given that there is no known

physiological basis for dimorphism. We simply focus on this problem because: (a)

such an analysis has not been previously performed; and (b) the overall analysis

approach is typical of a wide range of comparative metagenomic analyses that are

commonly performed in a clinical setting.

Three male and female samples, comprising more than 70 million sequences

each, were co-assembled with metAMOS in under four days, using 20 cores. The

assembly statistics for both male and female samples are reported in Table 5.4.
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Table 5.4: Assembly of the MetaHIT gut microbiome data for Danish
adults. Assemblies were performed with SOAPdenovo. ORFs were predicted with
MetaGeneMark. Scaffolding was done with Bambus 2.

Contig Scaffold

Sex # Samples # reads length Age Country Total BP # Max # Max

Male 3 72M 75bp 59 Denmark 138 506 290 415 145 67 596 333 141 178 391
Female 3 79M 75bp 59 Denmark 108 975 669 350 327 90 489 279 061 238 222

While the maximum contig and scaffolds sizes are similar, the male sample has

approximately 30 Mbp more assembled bases than the female sample. To explore

the biological reason for this discrepancy, Metaphyler [91] was run both on the

individual reads, pre-assembly, and on the final collection of ORFs, post-assembly.

The taxonomic profiles pre-, and post-assembly are highly concordant (correlation

coefficients of 0.998 and 0.993 for the male and female samples, respectively). We

estimated that the equivalent Metaphyler analysis would require ≈ 300 times the

computational time of the the post-assembly analysis. This result highlights the

power of assembly as a data ‘compression’ tool, and suggests many analyses currently

performed on the reads directly (e.g., functional annotation [48, 103], or pathway

analysis [1]) would be substantially sped up if performed on the assembled data

instead.

In terms of taxonomic composition, male samples were dominated by the Bac-

teroidales order while female samples were dominated by the Clostridiales order.

While not statistically significant at the order level due to our low sample size

(Fisher exact test, p = 0.1192), the difference between male and female samples was

significant at the family and genus levels (Fisher exact test, p = 0.041 and p = 0.022

on family and genus, respectively). Interestingly, an analysis of the macaque data

[100] using MetaStats [177] shows that Bacteroidales is differentially abundant be-

tween males and females, concordant with our observations.
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5.4 Discussion

Overall, our results indicate that the choice of assembler has a strong influence

on the final assembly results and choosing the ideal assembler requires taking into

account both contiguity and correctness. More aggressive assembly approaches can

result in more contiguous assemblies, but that also generates more errors, often of

the most severe kind (chimeras). Thus, given a novel metagenomic dataset with no

knowledge of taxonomic composition, it can be difficult to choose the appropriate

assembler. This motivates our focus on fast end-to-end analysis and inclusion of

multiple assembly methods, allowing the user to tailor the pipeline to their data,

and tailor tools to answer questions rather than answering a limited set of questions

allowed by available tools.

Irrespective of the starting point, the assemblies generated by metAMOS are

similar in quality, suggesting the effectiveness of our approach: conservative as-

sembly followed by error correction and metagenomic scaffolding. The scaffolding

analysis, performed with Bambus 2, is largely unaffected by the specific features of

the underlying sequencing technology. The modular design of metAMOS enables

its adaptation to new types of data by simply incorporating genome assembly tools

tuned to the specific features of the new data. As an example, the combination of

Velvet-SC (an assembler already integrated within metAMOS which is targeted at

data derived from single–cell experiments) and the coverage–independent repeat de-

tection procedures provided by Bambus 2 allows the use of metAMOS in single–cell

projects. Furthermore, the ability to easily switch the metAMOS pipeline between

different assembly and analysis tools allows users to fine–tune metAMOS to the

characteristics of their environment and datasets being analyzed.

Finally, the modular design and open–source licensing model enables researchers

to adapt metAMOS to new applications. We hope that the availability of metA-

MOS will encourage researchers to contribute their own analysis modules, and that
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this framework will accelerate developments in this field by allowing scientists to

focus their attention on individual components rather than having to re–implement

all the components of a metagenomic pipeline. In addition to our primary goal of

providing biologists with an integrated analysis pipeline for metagenomic data, we

also hope that our software will help reduce the duplication of efforts in this field

and allow a larger number of researchers to focus on the difficult analysis challenges

posed by metagenomics and other emerging fields.

5.5 Conclusion

The goal of metAMOS is to provide an integrated environment for metage-

nomic assembly and analysis, relying both on existing and novel algorithms and

software tools. Results on both mock communities with known sequence compo-

sition and real metagenomic data demonstrate that the metAMOS pipeline can

generate accurate and contiguous assemblies of metagenomic datasets. metAMOS

substantially improves upon the quality of initial assemblies constructed either with

conservative assemblers developed for single genomes (e.g., SOAPdenovo), or with

assemblers specifically targeted at metagenomic data (e.g., meta-IDBA).

In addition to assembly, metAMOS provides several features important for

the downstream analysis of the resulting data, including taxonomic profiling, gene

detection, and identification of motifs indicative of genomic variation. Future en-

hancements to our package will include integration with existing pipelines for func-

tional annotation and metabolic analysis (such as HUMAnN [1]). We would like to

stress that currently there are no other tools that provide such integration between

the different steps of a metagenomic analysis while supporting metagenomic specific

tools (such as gene finders, assemblers and scaffolders). Our pipeline enables the

effective, accurate, and efficient conversion of the raw output of a sequencing instru-

ment into refined biological entities (genes, genomic contigs, and genomic variants).
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Furthermore, metAMOS is the only metagenomic analysis pipeline that provides the

ability to automatically detect and analyze genomic variation within metagenomic

assemblies. We have demonstrated above how this feature can be used to pin-

point biologically relevant differences between closely related genomes co–assembled

within a sample.
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Chapter 6

Conclusion

High-quality assemblies are critical for all aspects of genomics, especially genome

annotation and comparative genomics. For example, many microbial genomic anal-

yses depend on finished genomes [37], but producing finished sequence remains pro-

hibitive with the cost of finishing proportional to the number of gaps in the origi-

nal assembly. Eukaryotic genomics requires continuous assemblies to capture long,

multi-exon genes and to determine genome organization and structural polymor-

phisms. In addition, recent work has suggested de novo assembly may be superior

to read mapping approaches for discovering large structural variations, even when

a reference genome is available [90]. This is especially significant for understanding

the genetic variations of cancer genomes and other human diseases such as autism

that frequently contain gene fusions, copy number variations, and other large scale

structural variations [33, 146]. It is clear that higher quality assemblies, with long

unbroken contigs, will have a positive impact on a wide range of disciplines.

The computational tools and methods presented significantly advance the

state-of-the-art in genome assembly and are applicable to other computer science

research areas. For example, the alignment and correct algorithm (Chapter 3) may

be useful for natural language processing. Hazen et al [56] propose to combine

automatically-generated speech transcription with a human-generated approximate

transcript. These are aligned with substitutions, insertions, and deletions and the

approximate transcript is corrected. Our algorithm could be used to combine mul-

tiple automatic transcripts with a human-generated approximate transcript. The

modified betweenness centrality (Chapter 4), scaled by an appropriately defined ex-

pectation (length in our case) can be applied to social networks to find not only the
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most connected nodes but those more connected than would be expected and is the

first OpenMP [20] implementation of k–betweenness to the best of our knowledge.

The viewer (Chapter 5) is applicable to any large graph with positional constraints

and can automatically collapse subsections of a graph.

I have contributed novel computational methods both to utilize emerging se-

quencing for genome assembly and expand its efficiency on novel targets. Together,

these advances form a comprehensive genome assembly and analysis toolset and

enable new avenues of biological discovery.
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Appendix A

Supplementary Data for An algorithm for automated closure during

assembly

A.1 Methods

A.1.1 Reads

The bacterium Escherichia coliO157:H7 str EC4115 was sequenced with Sanger

chemistry and is deposited at the NCBI Trace Archive. The reference [GenBank:

CP001163], [GenBank: CP001165], [GenBank: CP001164] consists of two circular

plasmids and a circular genome of 94 644, 37 452, and 5 572 075 bases respectively.

The bacterium Escherichia coli K12 substr MG1655 was sequenced using 454. The

WGS data is available through the Short Read Archive [SRA:SRA001028]. The

reference [GenBank: NC 000913] consists of one circular genome of 4 639 675 bases.

The bacterium Salmonella enterica subsp. enterica serovar Schwarzengrund str.

CVM19633 was sequenced with Sanger chemistry and is deposited at the NCBI

Trace Archive. The reference [GenBank: CP001125], [GenBank: CP001126], and

[GenBank: CP001127] consists of two circular plasmids and a circular genome of

110 227, 4 585, and 4 709 075 bases respectively. The bacterium Burkholderia mallei

NCTC 10247 was sequenced using Sanger chemistry and deposited at the NCBI

Trace Archive. The finishing reads are also available from the NCBI Trace Archive.

The reference [GenBank: CP000548], and [GenBank: CP000547] consists of two

circular chromosomes of 3 495 687 and 2 352 693 bases respectively. The bacterium

Corynebacterium amycolatum SK46 HMP033 was sequenced using 454 and Sanger.

The WGS data is available through the NCBI Trace Archive and the Short Read
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Archive [SRA:SRR005142]. The ciliate protozoan Ichthyophthirius multifiliis G5

was sequenced using 454 and Sanger. [The data is scheduled to be deposited in

the SRA and the NCBI Trace Archive and is available by contacting the authors]

The 454 reads were generated by the GS FLX Titanium pyrosequencing platform.

They were processed with Celera Assembler to remove duplicates, detect linker, and

split paired ends. For comparison with Dupfinisher, NCBI trace archive was un-

successfully searched for reads with trace type code other than WGS belonging to

Methanospirillum hungatei JF-1, Rhodoferax ferriducens DSM 15236, or Shewanella

baltica OS155.

A.1.2 Finishing reads

The finishing reads were obtained from JCVI databases. For finishing reads

generated from a clone, the clone-end reads were provided to Celera Assembler as

bounding reads. Not all finishing reads had bounding reads.

A.1.3 Software

Celera Assembler software was run using run-time parameters recommended

for each sequencing technology. The Sanger-only assemblies used the unitigger mod-

ule while the assemblies with 454 data used the BOG module from CABOG. The I.

multifiliis assembly used a 10% error rate instead of defaults. The specific version

is marked with CVS tag WGS CLOSURE-6 00- BRANCH and will be packaged

starting with the 6.1 release. Newbler version 2.3 was used with default run-time

parameters as the Alternate pipeline. Dupfinisher was kindly provided by its au-

thors.
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A.2 Analysis

Continuity statistics were gathered from each assembly using analysis of the

FastA output files. The gap statistics were gathered from each assembly using scripts

for analyzing assembly output. The MUMmer package [82] was used to compare

assemblies to the references by running nucmer ---maxmatch. To identify candidate

gaps to evaluate the bounded assembly we focus on gaps caused by genomic repeats,

both with and without consensus sequence in the control. First, we identify regions

of the control assemblies that had zero coverage in reads, a consensus sequence due

to placement of a (repeat) unitig, and coverage in the unitig at least twice that

of the overall scaffold average (Fig 2.1(a)). Separately, we listed gaps that have

no consensus sequence in the control assembly (Fig 2.1(b)). The assemblies were

aligned by using nucmer ---maxmatch and show-tiling was used to look for split

contigs in either assembly. We also looked for any gaps that have no consensus

sequence in the bounded assembly but do in the control. There were none in our

datasets. The show-snps program from the MUMmer package [82] was used to

identify SNPs between the reference and both control and bounded assemblies. The

matches were first filtered by running delta-filter -1 and the results used as

input for show-snps (with no parameters). Regions where the control assembly had

gaps (Ns) in the sequence were not included in SNP counts. The total number of

SNPs in the bounded assembly but not the control assembly and vice-versa were

tabulated.

A.2.1 Comparison to reference

Comparison to Reference. The assemblies of E. coli O157:H7 were examined

and compared to the available reference. Eight alignments of 99% identity over 99%

length of the Bounded assembly contigs cover 99% of the E. coli genome. Nine
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alignments of 99% identity over 99% length of the Standard assembly contigs cover

99% of the E. coli genome. In both cases, there is a mis-join at the end of one contig

due to an inverted copy of the rRNA operon The Standard assembly contained two

surrogate (repeat) unitigs, each placed six times. In the Bounded assembly both

surrogates were placed seven times. An NCBI BLAST [3] search confirmed that

the two surrogates make up the rRNA operon, known to occur seven times in the

wild-type genome [19]. In addition, several other surrogates were placed one more

time in the Bounded assembly than in the Standard assembly. Thus, the Bounded

assembly seems to have a more complete representation of this repeated structure.

The assemblies of E. coli K12 were examined and compared to the available

reference. A total of 313 alignments of 99% identity over 99% length of the Bounded

assembly contigs cover 97% of the E. coli K12 genome. A total of 313 alignments of

99% identity over 99% length of the Standard assembly contigs cover 97% of the E.

coli K12 genome. In this case, the Standard and Bounded assembly has the same

representation of the reference genome, consistent with their assembly statistics in

Table 2.3.

The assemblies of S. enterica were examined and compared to the available

reference. Six alignments of 99% identity over 99% length of the Bounded assembly

contigs cover 99% of the S. enterica genome. Six alignments of 99% identity over

99% length of the Standard assembly contigs cover 99% of the S. enterica genome.

Once again, the Standard and Bounded assembly has the same representation of

the reference genome.

The assemblies of B. mallei were examined and compared to the available

reference. Nineteen alignments of 99% identity over 99% length of the Bounded

assembly contigs cover 99% of the B. mallei genome. Nineteen alignments of 99%

identity over 99% length over 99% length of the Standard assembly contigs cover

94% of the B. mallei genome.
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Appendix B

Supplementary Data for Hybrid error correction and de novo

assembly of single-molecule sequencing reads

B.1 Analysis

B.1.1 Analysis of PacBio sequences

Sequences were aligned to the reference using blasr with default parameters.

B.1.2 Assembly of uncorrected PacBio data

Three commonly available OLC and de Bruijn assemblers were used to assem-

ble the uncorrected PacBio sequences for the Lambda phage. We ran SOAPdenovo

v1.05, Velvet v1.1.06 and CA with the bogart unitigger. For SOAPdenovo, the k-

mer size was varied from 3 to 127 mer and the assembly that covered the largest

percentage of the reference was picked. For Velvet, VelvetOptimizer v2.2.0 was used

to vary the k-mer size from 5 to 63 and the assembly covering the largest percentage

of the reference was picked. For CA, merSizes from 10 (which produced no assem-

bly) to 22 (the default) were used. The CA unitig, overlap, consensus, and cgw

error rates were all set to 25%. The PacBio sequences were also corrected using our

algorithm via 50X of Illumina data and assembled by SOAPdenovo, Velvet, and CA

(Table 3.2). The CA assembly used the parameters (overlapper=ovl merSize=14

unitigger=bogart). As the SOAPdenovo assembly was representative of de Bruijn

assemblers, we used it for subsequent experiments in the paper.
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B.1.3 Comparison of OLC and de Bruijn assemblers

To test the effect of read length on assembly we used real+simulated PacBio+Illumina

data for Saccharomyces cerevisiae S228c. We used SOAPdenovo v1.05 to demon-

strate the de Bruijn approach. Parameters -all -K 63, and -all -K 127 were

used. Celera Assembler was used to demonstrate the OLC approach using param-

eters merSize=14 unitigger=bogart. Contigs were broken on error as outlined in

GAGE [137]. The baseline SOAPdenovo assembly had an N50 of 35Kbp.

B.2 Test Data

We have tested the algorithm using eight hybrid data sets. Whenever sub-

sets of coverage were used, a random subset was selected using the CA gate-

keeper command. First a new gatekeeper store was created using the command

gatekeeper -T -F -o tmp.gkpStore pacbio.frg. A subset was created using

the command gatekeeper -allreads -dumpfrg -randomsubset 0 <total bp>

tmp.gkpStore. A genome size of 5.5Mbp was used for E. coli C227-11 and 5.0Mbp

for E. coli 17-2 and E. coli JM221. For the subset tests of E. coli 17-2 and E. coli

JM221, a random subsets was selected as a percent of total available sequence (up

to a max of 275Mbp corresponding to 50X of a 5Mbp genome).

Lambda PacBio RS sequences and simulated data are available from

http://www.cbcb.umd.edu/∼sergek/PacBio/index.html.

Escherichia coli PacBio RS sequence is available from the PacBio DevNet Por-

tal (http://www.pacbiodevnet.com/Share/Datasets/E-coli-K12-Resequencing). The

Illumina sequences used for correction are available under SRX000429.

The genomes Escherichia coli C227-11, Escherichia coli 17-2, and Escherichia

coli JM221 PacBio RS and PacBio CCS sequences are available from the PacBio De-

vNet Portal (http://www.pacbiodevnet.com/Share/Datasets/E-coli-Outbreak) [130].
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The University of Maryland Institute for Genome Sciences generated the Illumina/Roche

454 sequences. The UMD SOM data as well as the simulated Illumina sequences are

available at http://www.cbcb.umd.edu/∼sergek/PacBio/index.html. For correc-

tion, we generated Illumina data from the assembly published in [130] using wgsim.

The simulated Illumina mate-pairs and paired-ends for Illumina assembly were gen-

erated from the completed outbreak genome by BGI (ftp://ftp.genomics.org.cn/pub/Ecoli TY-

2482/Escherichia coli TY-2482.chromosome.20110616.fa.gz) using wgsim.

Saccharomyces cerevisiae S228c Illumina and PacBio RS sequences were gen-

erated by Cold Spring Harbor Laboratory and can be downloaded at

http://www.cbcb.umd.edu/∼sergek/PacBio/index.html.

Melopsittacus undulatus consisted of Illumina, 454, and PacBio sequencing.

Duke University and Roche generated the 454 sequences. The Illumina sequencing

used for correction was generated by Illumina UK. The Illumina sequence used for

ALLPATHS-LG assembly was generated by the Beijing Genome Institute (BGI).

Pacific Biosciences generated the PacBio RS sequences. The sequences are available

from the assemblathon project (http://assemblathon.org/).

RNA-Seq sequencing of Zea mays B73 was performed using both Illumina and

PacBio RS at the DOE Joint Genome Institute. A total of 125M Illumina GAII

paired-end reads and 388M Illumina HiSeq 150bp reads were generated with a mean

insert size of 248bp. The overlapping paired-end reads were joined together to form

250bp unpaired fragments using the method of Rodrigue et al. [134]. A total of 230M

pairs (460M reads) could be confidently joined. These 250bp sequences were used

for correction. The maize RefGen v2 assembly was used for accuracy assessments

and is available from http://www.maizesequence.org.
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B.3 Assembly

B.3.1 Correction and assembly

The correction pipeline was run using the command pacBioToCA with the

parameters -length 500 -partitions 200 -l pacbio -t 16 -s pacbio.spec (avail-

able as wgs-correction.tar.gz). For short high-identity sequences (< 100bp, only

S. cerevisiae in our dataset) the parameters to the consensus module were modi-

fied to be make-consensus -x removed.seq -w 5 -e 0.03, as suggested by the

AMOS documentation. A maximum of 100X of raw PacBio sequences was used

for correction. Illumina-only assemblies were generated using the Celera Assem-

bler (with the parameters overlapper=ovl merSize=14 unitigger=bogart) and

SOAPdenovo v1.05 (with parameters all -K 63) followed by GapCloser (with de-

fault parameters) with only the best reported in the text. For Melopsittacus undu-

lates, we also ran ALLPATHS-LG using the commands PrepareAllPathsInputs.pl

PHRED 64=True PLOIDY=2 and RunAllPathsLG THREADS=32 PRE=allpaths-lg

DATA SUBDIR=assembly RUN=myrun REFERENCE NAME=.. Hybrid assemblies were

generated using Celera Assembler modified to accept sequences up to 30 000bp using

the bogart unitigger (overlapper=ovl merSize=14 unitigger=bogart) (available

as wgs-assembler.tar.gz). The Celera Assembler includes three unitigger options:

utg, bog, and bogart. The utg unitigger is originally developed for Sanger sequences.

BOG was developed to handle 454 pyrosequencing data [105]. The bogart unitig-

ger (Walenz personal communications) has been developed to better handle high-

coverage datasets, such as those generated by Illumina instruments while matching

BOGs performance on pyrosequencing data. Thus we have focused our modifica-

tions/testing of long-read support within the Celera Assembler on bogart. Our

correction pipeline (as well as bogart) will be distributed with the Celera Assembler

starting with version 7.0.
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B.3.2 Repeat region identification

To further evaluate correctness accuracy, we selected regions of the genome

that appear repetitive and compared the correction error rates within repeat regions

to error rates in the full genome. Repeat regions were identified by mapping Illumina

sequences used for correction to the reference using bowtie 0.12.7 (bowtie --all -p

16) [83]. Any sequence with more than a single mapping was assumed to originate

from a repeat. All genomic regions covered by a mapping of one of these multiply-

placed read were considered repetitive. Any PBcR reads intersecting these regions

were extracted from the full PBcR set.

B.3.3 Correction by coverage

Figure B.1, evaluates the ability of high-coverage to correct for sequencing

errors. With sufficient coverage, even high error rates can be compensated for.

B.3.4 Validation of contigs

The contigs from each assembly were aligned to a reference. For SOAPdenovo,

contigs were obtained by splitting scaffolds at each N. Statistics were tabulated

using custom scripts using a fixed genome size (equal to the reference length when

available) across all assemblies. For evaluating correctness, alignment statistics and

mis-assemblies were tallied using the program dnadiff [123] from MUMmer v3.23

[82]. dnadiff operates by constructing local pairwise alignments between a reference

and query genome using the Nucmer aligner. The aligned segments are then filtered

to obtain a globally optimal mapping between the reference and query segments,

while allowing for rearrangements, duplications, and inversions. This technique

was later described in detail by Dubchack et al. as the SuperMap algorithm [25].

Conveniently, this method identifies both a one-to-one mapping of segments as well
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Figure B.1: Coverage can overcome most random errors. 1000bp reads for E.
coli K12 were simulated with random errors and the resulting consensus accuracy
was measured. Even with high errors, coverage over 10X is sufficient to generate an
accurate consensus. The periodic fluctuation in consensus error rate is an artifact
of the tie-breaking scheme used in the consensus simulation (even numbers of reads
can have ties and odd cannot).

as any duplicated sequences. When applied to assembly mapping, it can be used to

measure the quantity and types of common mis-assemblies.

To create the alignments contigs were aligned using nucmer with the options

(--maxmatch -l 30 -banded -D 5). Combined with its default options, this in-
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vocation requires a minimum exact-match anchor size of 30 bp, and a minimum

combined anchor length of 65 bp per cluster. Clusters are further required to have

no more than 90 bp separation or more than 5 inserted bases between any two ad-

jacent anchors. Acceptable clusters are then used to seed banded Smith-Waterman

alignments [152]. After running nucmer, alignments with less than 95% identity or

more than 95% overlap with another alignment were discarded using delta-filter.

dnadiff [123] was then executed on the remaining alignments with default param-

eters and correctness statistics were tabulated from its output. Average identity

was computed on the one-to-one aligned segments, ignoring duplicated bases. To

calculate a corrected N50, the resulting one-to-one alignment lengths were used. As

alignments are broken at any alignment error, the alignment sizes correspond to

the pieces of the assembly that are error-free. This correctness method has been

previously used to evaluate assemblies for the GAGE project [137].

B.3.5 Zebra finch transcripts

The 15 275 zebra finch mRNA sequences Taeniopygia guttata, NCBI build 1,

assembly version 3.2.4, genome accession ABQF00000000.1 were downloaded. They

were mapped to all contigs in each of the three assemblies, regardless of length,

using gmap [181] with the parameters --cross-species.

B.3.6 Paired-end satisfaction

The Celera Assembler generates a file named asm.posmap.mates specifying the

status of each paired-end within the assembly. There is also an asm.posmap.frgctg

listing each fragments location within the assembled contig. The output files were

parsed to extract paired-ends where both sequence ends fell in one contig (denoted

by a suffix of a or b in Celera Assembler) from the asm.posmap.frgctg file. Next,

the status for each selected pair was extracted from the asm.posmap.mates file.
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The possible statuses include good, badLong (above 3 standard deviations from the

mean), badOuttie (incorrect orientation), badSame (incorrect orientation), badShort

(below 3 standard deviations). All pairs not marked as good were considered bad

for assembly correctness. A total of 3 242 006 paired-ends were marked good in the

454-only assembly versus 3 281 360 in the PBcR/454 hybrid, an increase of 39 354.

Additionally, 1 806 paired-end were bad in the 454-only assembly, vs 1 688 in the

PBcR/454 hybrid.

To test the assembly correctness using an independent technology, we mapped

the BGI 10Kbp jumping library to the 454 and PBcR/454 assemblies using bowtie

0.12.7 with the command bowtie --best -M 1 -p 16.
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Appendix C

Supplementary Data for Bambus 2: Scaffolding Metagenomes

C.1 Methods

C.1.1 Unitig generation

We used the Minimus assembler available as bambus2 v1 0 BRANCH from the

AMOS package to generate unitigs with the command line minimus <prefix>.

The Minimus assembler does not scale to large datasets, therefore, we used the Cel-

era Assembler version 5.1 with default settings (runCA.pl -p asm -d ca) referred

to as CA below for the Acid Mine drainage dataset. We used the Newbler assembler

software version 2.3 – PreRelease – 9/14/2009 from 454 Life Sciences with default

settings (runAssembly <fastaFileName>) for datasets containing pyrosequencing

reads. When no paired-end data was available for pyrosequencing reads, the contig

graph generated by Newbler was converted to Bambus 2 links with mean of 0 and

weight equal to the number of reads joining the contigs. For analysis of Illumina

sequencing data, we used SOAPdenovo contigs as input to Bambus 2. Reads were

mapped to the contigs using bowtie version 0.12.7.

C.1.1.1 Bambus 2 parameters

All tests except the comparison to SOAPdenovo used Bambus 2 available as

bambus2 v1 0 BRANCH from the AMOS package. Unitigs were generated as above

and scaffolded by Bambus 2 using default parameters with the minimum edge-

weight set to one (-redundancy 1). The Brucella suis 1330 dataset set the min-

imum edge-weight to two (-redundancy 2). The pipeline to generate results is
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(1) clk -b data.bnk 2 (2) Bundler -b data.bnk (3) MarkRepeats -b data.bnk

-redundancy X -all repeats (4) OrientContigs -b data.bnk -redundancy

X -repeats repeats -all. The analysis of Illumina data as well as GUT sequence

used for validation used Bambus 2 available from the AMOS git repository as of

8/17/11. For SOAPdenovo comparison, the repeat redundancy was set to 50 and

OrientContigs to redundancy 5 (-redundancy 5) due to the high coverage of the

Illumina sequences. Due to the large dataset size, on MH0012, repeat detection was

restricted to the connected component based approach. The latest Bambus 2 (avail-

able from git) includes an automated module to choose the appropriate redundancy

threshold parameter.

C.1.1.2 Celera Assembler parameters

Celera Assembler version 5.1 was run both with default settings (runCA.pl -p

asm -d ca) referred to as CA below and with the metagenomic settings (runCA.pl

-p asm -d ca-met utgErrorRate=120 ovlErrorRate=0.14 cnsErrorRate=0.14

cgwErrorRate=0.14 merSize=14 utgGenomeSize=2000000 utgBubblePopping=0

doFragmentCorrection=0) referred to as CA-met.

C.1.1.3 Newbler parameters

Newbler software version 2.3 – PreRelease – 9/14/2009 from 454 Life Sciences

was run with default settings (runAssembly <fastaFileName>)

C.1.1.4 SOAPdenovo parameters

SOAPdenovo software version 1.04 was used to assemble the MetaHit sample

with parameters recommended by the MetaHit consortium [129]. The first 25bp of

each read was mapped to contigs using bowtie[83] version 0.12.7 and converted to
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AMOS using custom scripts.

C.2 Analysis

C.2.1 Annotation of repeats in known genomes

We used REPuter [81] version 3.0 with the parameters -f -p -r -l 50 -best

50000 to identify repeats in each genome. Overlapping repeat regions were merged.

The detected repeats for all genomes in a dataset are the gold standard. Finished

reference genomes were used when available. For draft genomes, the entire set of

assembled contigs was provided to REPuter. The repeat sequences were mapped

onto the set of unitigs from an assembly. Those with high-identity (95% identity,

90% coverage) mappings to repeats were marked as repeat. Unitigs composed of

only one read were not used in the analysis.

C.2.2 Validation of scaffolds

We used the MUMmer package, version 3.20. The contigs generated for the

Acid Mine dataset were mapped to the set of references. The best match for each

position of the query was saved (delta-filter -q). Each contig was assigned to

the organism it matched. Any contig having a match to more than one organism

was marked as chimeric.

C.2.3 E. coli mosaic sequence

We used the MUMmer package, version 3.20. The contigs generated for the

CA, CA-met, and Bambus 2 (with motifs) were mapped to E. coli O157:H7. The

best match for each position of the query was saved (delta-filter -q). We also

mapped E. coli K12 to E. coli O157:H7 to obtain comparative structure. The

mummerplot for each run was generated using mummerplot --layout.
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C.2.4 Functional annotation of variation motifs

We used the blastx program from NCBI BLAST version 2.2.23 to annotate

assemblies against the refseq protein database [3]. An e-value cutoff of 0.01 was

used for datasets with simulated data and an e-value of 5 was used for the rest. All

non-overlapping best hits (sorted by e-value) were saved. The COG database [158]

was downloaded on May 8th, 2010. For each COG, we used an indicator variable set

to true if at least one protein from the COG was present in the metagenomic data,

and false otherwise. COGs were assigned to their functional category and the total

number of COGs in each functional category was tabulated. A COG assigned to

more than one category contributed to the count for all its categories. A COG with

no functional category was counted as N/A. We measured the enrichment of a given

functional category F with the hypergeometric test. The enrichment p-value is com-

puted by
∑m

i=k

(

( f

i )(
|N|−f

|M|−i )
( |N|
|M|)

)

where |N | is the numbers of COGs in the assembly,

|M | is the number of COGs in the motifs, f is the number of COGs in the assembly

from functional category F , and k is the number of COGs in the motifs from func-

tional category F . The depletion p-value is computed by
∑k

i=0

(

( f

i )(
|N|−f

|M|−i )
( |N|
|M|)

)

. The

computed hypergeometric p-values are Bonferroni corrected to account for multi-

ple testing. A functional category with a p-value of less than 0.05 was considered

significant.

C.2.5 Motif classification

We classified motifs as either in/del or substitution variants. For each mo-

tif, we evaluate all pairs of overlapping contigs. Motifs where at least one pair of

contigs positions overlap by 80% of the smaller contigs length were considered as

substitutions (since the two matching contigs represent alternate sequence). Other-

wise, motifs were considered in/dels since there is a significant difference of sequence

length within the motif.
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C.2.6 SOAPdenovo scaffold comparison

We mapped the Bambus 2 motifs to SOAPdenovo scaffolds using MUMmer

3.20 with the command nucmer -maxmatch. Then we counted the number of Bam-

bus 2 motifs with mappings to more than one scaffold, implying they cross SOAPde-

novo scaffold ends. We detected 2 544 such motifs. Alternatively, we also evaluated

coverage by matches. We counted matches where a SOAPdenovo scaffold contained

an entire Bambus 2 motif as those with > 95% identity and the match coverage

of the motif was > 95%. There were only 80 such scaffolds. By contrast, looking

at matches with > 95% identity and SOAPdenovo scaffold coverage of > 95% (but

motif coverage ≤ 95%), we counted 1 512 of 2 763 motifs. We used NCBIs nucleotide

web-based BLAST with default parameters against the nr database on the longest

scaffold and picked the best matching reference. We used dnadiff from the MUM-

mer 3.20 package [82] to map the assembly scaffolds to the reference. The errors

were counted by dnadiff (sum of Relocations, Translocations, and Inversions). The

total number of scaffolds mapping to the reference after filtering (delta-filter q)

were divided by the bases of the reference covered as reported by dnadiff.

C.3 Results

C.3.1 Scaffolding of isolate genomes

We use the Minimus assembler - a conservative unitigger to assemble Brucella

suis 1330. This dataset was used to tune Bambus 2’s repeat and motif detection.

The dataset included 36 080 fragments and 16 850 mate pairs (33 700 mated reads)

for a total coverage of 8X and is available from the NCBI Trace Archive (Project ID

320). The dataset was filtered to include only WGS-reads and to remove reads not

matching the reference sequence (presumed contaminants). The reference comprises

two circular chromosomes, accessions AE014291 and AE014292, of 2 107 792 bp and
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1 207 381 bp respectively. We applied Bambus 2 and compared the results to the

results generated with Celera Assembler.

We tested assemblies of Rhodobacter sphaeroides and Staphylococcus aureus

from the GAGE publication [137]. All results, except Bambus 2 were taken from

tables in the paper. Bambus 2 was run as specified in the appendix of GAGE [137],

which we summarize below. An initial assembly was generated by Celera Assembler

using the BOG unitigger [105]. Illumina jumping (mate-pair) libraries were input to

CA as unpaired sequences. Both mate-pair sequences were reverse complemented to

convert from outie to innie orientation. Finally, all pairing information and CA unit-

igs were input to Bambus 2 for scaffolding with the parameters of -noPathRepeats

to MarkRepeats and -redundancy 0 -maxOverlap 500 to OrientContigs. In the

case of Staphylococcus aureus, the mate-pair sequences were too short to be input

to CA directly. They were mapped to assembled unitigs using bowtie [83] and

scaffolded by Bambus 2 as above.

C.3.2 Scaffolding of single-cell

Datasets were generated by the Velvet-SC authors in [17]. Three datasets were

downloaded and analyzed: (1) E. coli K12 from clonal sequencing (2) E. coli K12

lane6 from an MDA sample, and (3) S. aureus US300 from lane 7.

Coverage plots were generated by mapping the sequencing reads to the refer-

ence genome (NC 000913) using bowtie version 0.12.7 with the commands -p 16

--sam -q --best --fr --minins=180 --maxins=250 ecoli normal.fastq and -p

16 --sam -q --best --fr --minins=180 --maxins=360 ecoli mda lane6.fastq.

Coverage was tabulated for each position. Histograms were generated using R with

the command hist(coverage[,2], breaks=100) and plots were generated via the

command plot(coverage[,1], coverage[,2], typ="l", log="y").

The genomes were assembled using Velvet-SC with the parameters -k 55
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-cov cutoff 300 (for E. coli K12) and -k 55 -cov cutoff 600 (for S. aureus ) fol-

lowed by Bambus 2 with the parameters -redundancy 0 -maxOverlap 500 -all

(which were previously used in the GAGE study [137]. Correctness statistics were

tabulated as reported in [137].

199



Appendix D

Supplementary Data for An Automated End-end Metagenomic

Analysis Pipeline

D.1 Results

D.1.1 Validation of contigs

MUMmer [82] version 3.23 was used to align contigs to the references. When-

ever scaffolds were available, contigs were extracted by splitting the scaffolds at

Ns. The last 15bp of contig ends were trimmed before aligning. Alignments were fil-

tered using delta-filter -q to keep only the best matches for each contig. Finally,

statistics were tabulated based on the contig matches. A contig matching a single

reference at over 97% identity over full length was considered good. A contig match-

ing a reference over 90% of its length was considered a slight mis-assembly (but still

contributed to computed reference coverage). Any contig with a match over < 90%

of its length was considered a heavy mis-assembly. Any contig with multiple in-

compatible matches to a single reference was also considered a heavy mis-assembly.

Finally, any contig with matches to two or more references was considered a chimera.

None of the heavily mis-assembled contigs nor the chimeric contigs were included

when tabulating reference coverage.

D.1.2 HMP mock samples

The samples are available from the NCBI as BioProject ID 48475. The mock

samples were assembled using metAMOS (available in git as of 02/29/2012) with the

commands initPipeline and runPipeline with default parameters. The same pa-
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rameters were used for both mock Even and mock Staggered. SOAPdenovo version

1.05 was with the parameters -D -d -R -M 3. CA version 6.1 was run with metage-

nomic settings as doMerBasedTrimming=1 doOverlapBasedTrimming=0 utgErrorRate=0.12

utgErrorLimit=6.5 cnsErrorRate=0.14 cgwErrorRate=0.14 ovlErrorRate=0.14

unitigger=bog utgBubblePopping=0 bogBadMateDepth=30 merSize=14

utgGenomeSize=10000000. Velvet version 1.1.05 was run with k = 63. Meta-IDBA

version 0.19 was run with default parameters.

D.1.3 HMP tongue dorsum

The sample was downloaded from the SRA using ID SRS077736. The assem-

blers were run within metAMOS using the same parameters as above. The motif

was aligned using blastn to identity top-scoring genes.

D.1.4 Sexual dimorphism

We selected three males and three females randomly from the MetaHit project

of the same age (59 years) and the same country (Denmark). We chose samples with

the same enterotype (ET1) [5]. We also chose the samples to have approximately

equal BMI (26.19 for males vs 24.12 for females). The chosen samples were MH0041,

MH0045, and MH0055 for males and MH0002, MH0024, and MH0082 for females.

metAMOS was run on all three samples of each sex using the longer paired libraries

for each sample (ERR011181, ERR011189, ERR011209 for males and ERR011091,

ERR011149, ERR011264 for females), giving a total of 72M sequences for males and

79M sequences for females.

To test for concordance between pre– and post–assembly annotations, we se-

lected the order level classifications and compared the percentage classified at each

order in the pre- and post–assembly male and female samples independently. We

used R (version 2.11.1) and the command cor.test(preAsm, postAsm). Both sam-
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ples were over 99.9% correlated. By comparison, when the male and female samples

were compared to each other they were only 94.28% correlated. To test for signifi-

cance of the difference between samples we used the Fisher exact test on the order,

family, and genus levels with the command fisher.test(x).

D.1.5 Metaphyler runtime estimate

We ran two versions of Metaphyler, one based on the BLAST [3] analysis and

a new version using MUMmer [82]. The new Metaphyler is significantly faster but

at the expense of being unable to process sequences shorter than 60bp. The new

Metaphyler ran in 720 CPU minutes versus 1 506 for the post-assembly analysis

(which used the original Metaphyler). We estimated the runtime of the original

Metaphyler on the pre-assembly dataset based on the published runtime of 70K

reads in 8 hours [91], giving an estimated runtime of 8 000 CPU hours for 70M

sequences. Comparing the 8 000 CPU hours to 1 506 gives the estimated speedup.
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