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Chapter 1

Introduction
Genome  is  the  genetic  material  of  an  organism,  which  contains  the  instructions

necessary for the proper functioning of a cell. The instructions are coded in the form of

DNA constituted by four nucleotide base pairs: adenine (A), thymine (T), guanine (G),

and  cytosine  (C).  Although  microscopes  can  be  used  to  study  the  structure  of

chromosomes, the actual ordering of the base pairs is determined using specialized

instruments called sequencers. Indeed, DNA sequencing has enabled the determination

of genome sequences of numerous organisms for the reason that sequence information

is essential to understand the biological functions of a cell. A genome will have both

coding genes and non-coding DNA, while in fact the non-coding part makes up most of

the genome. Instead of  just  focussing on individual  genes,  a  focus on the genome

provides an overall view of the organism’s potential biological functions. For example,

before the completion of the Human Genome Project (HGP), the number of genes in the

human genome was estimated to be more than 100,000 (Adams et al. 1991). With the

completion of the genome, the numbers came down to 30,000 to 40,000 (International

Human Genome Sequencing Consortium 2001), and the most recent estimation is close

to 20,000  (Ezkurdia et al.  2014). Also, genomics studies from all  sorts of organisms

were able to be fast-tracked, highlighting the importance of a reference genome. 

1.1 DNA sequencing

The first  step in sequencing a genome is to break the DNA into smaller fragments.

Fragmenting a DNA is necessary, due to limitations in technology to read full-length

chromosomes. The fragments, also called inserts, are independently sequenced using a

sequencer, and the resulting sequence output from a sequencer are called reads, which

are later computationally assembled into contiguous pieces called contigs. From Sanger

of  the  first-generation  sequencing,  through  second-generation  sequencing,  DNA
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sequencing has come a very long way foraging more recently into third-generation,

single molecule sequencing.

1.1.1 First-generation sequencing (FGS)

Sanger is the most famous and the most widely used sequencer from the FGS era. The

first  ever  genome to  be  sequenced was that  of  PhiX174,  a  bacteriophage  in  1977

(Sanger et al. 1977). The phage genome merely possessed a genome size of 5,386 bp.

Even then, that particular sequencing effort was a major breakthrough in the field of

genomics. It took another 18 years for the first living organism to be sequenced, which

was  a  bacteria,  Haemophilus  influenzae,  comprising  of  1.8  Mb  (Fleischmann et  al.

1995). Thereafter, eukaryotes such as Saccharomyces cerevisiae (12.5 Mb) (Goffeau et

al. 1996), Caenorhabditis elegans (100 Mb) (C. elegans Sequencing Consortium 1998),

Arabidopsis thaliana (119 Mb)  (Kaul et al. 2000), and  Drosophila melanogaster (165

Mb)  (Myers et al.  2000) were sequenced within a period of  five years.  The biggest

achievement obtained using FGS is the completion of the HGP in 2001  (International

Human Genome Sequencing Consortium 2001).  The early history of  the sequenced

genomes using Sanger is represented in figure 1.1. The major caveat of FGS is the

heavy consumption of money and time to complete genome projects. For example, the

human genome with a size of 3.2 Gb took around 13 years and 2.7 billion dollars for

completion.
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Figure 1.1. Early history of the sequenced genomes. All images taken from wikipedia.

1.1.2 Second-generation sequencing (SGS)

SGS technologies came into the picture around 2000, and gaining popularity after 2004,

as  they featured massively  parallel  sequencing reactions  (Barba  et  al. 2014).  As  a

result,  the  cost  and the time factors  of  sequencing projects  drastically  came down.

Illumina is the most widely used sequencing technology from the SGS era and like other

SGS  technologies,  short  read  lengths  were  a  major  limiting  factor  restricting  the

computational analysis of the results. Paired-end (PE) and mate-pair (MP) sequencing,

as illustrated in figure 1.2, are commonly used strategies to read both the ends of longer

DNA fragments to overcome the limitation of short read lengths. DNA fragment inserts

of around 200 bp to 600 bp, and 2,000 bp to 40,000 bp can be handled by PE and MP

sequencing  strategies  respectively.  Because  fragments  of  a  fixed  size  are  selected

before sequencing, the insert size is approximately known and can be used to link two

distant read pairs helping in increasing the contiguity of genome assembly. Although,
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SGS  helped  assemble  the  genomes  of  a  numerous  organisms,  the  assembled

genomes were mostly fragmented with long unresolved bases termed as gaps. 

Figure 1.2. PE and MP sequencing.

1.1.3 Third-generation sequencing (TGS)

TGS technologies such as Pacific Biosciences (PacBio) and Oxford Nanopore came

into the picture more recently. TGS is also known as single-molecule sequencing owing

to the longer fragments. In fact, the reads are much longer than most genomic repeats,

paving way for effective assembly resolution compared to the previous generation of

technologies. Sequence reads as long as 882 kb have been reported using Nanopore

sequencing (Jain et al. 2017), and it might be even possible to sequence longer reads

representing  complete  bacterial  chromosomes  in  the  near  future.  Unlike  SGS

technologies, which are sensitive to GC content and produce uneven coverage of the

genome, the TGS technologies can produce even coverage of the genome (Lee et al.

2016). However, sequencing error rates, as high as 15%, are an usual phenomena in

TGS  reads  (Lee  et  al.  2016).  Despite  the  high  error  rates,  the  errors  are  mostly

resolvable using consensus from sufficient coverage of the reads, and the assemblies

achieved using TGS reads can go beyond 99% accuracy. Also, the errors from PacBio

are random which makes it easier for correcting the reads because the possibility of a
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random error to occur twice is minimal. However, it is common practice to use more

accurate Illumina reads to correct the left-out errors from the assembled genome.

1.2 Genome assembly

The  whole  point  of  sequencing  is  to  get  longer  biological  information.  Hence,

sequencing becomes incomplete without assembling the shorter read sequences into

longer contiguous sequences. Briefly, all the sequenced reads are aligned against each

other to see if there is any overlap between them. Then the reads with overlaps are

merged  in  succession  to  form  longer  contigs  and  the  process  is  called  de  novo

assembly  (figure  1.3).  Thus  the  assembly  process  is  largely  dependent  on  the

overlapping regions between neighboring reads, which is ensured by the random nature

of  the  DNA fragmentation  process.  The  three  major  approaches  used  in  de  novo

assembly are Overlap-Layout-Consensus (OLC), de Bruijn graphs, and string graphs.

For a detailed discussion of the three approaches, please refer to manuscripts, Myers

2014 and Simpson and Pop 2015, which are briefly summarised below.
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Figure 1.3. The process of de novo assembly and scaffolding.

1.2.1 OLC approach

As  the  name  suggests,  three  steps  define  OLC  approach:  a)  overlap—finding  all

approximate overlaps among all the reads, b) layout—using the overlap information to

construct an assembly layout, and c) consensus—constructing a consensus sequence

of  all  the  reads  covering  a  particular  region.  In  the  beginning,  decreasing  order  of

overlap lengths was used to build the overlap graphs resulting in several false positive

overlap alignments. Later, when quality values began to be associated with the reads,

high quality base pair overlaps were given preference when joining overlapping regions.

Using such a greedy approach, a set of overlap paths are laid out.  Finally, multiple

sequence alignment is used to construct a consensus sequence from the layout.
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1.2.2 de Bruijn graphs

To construct de Bruijn graphs, first, overlapping k-mers are derived from breaking the

reads. Each k-mer is considered as a node, and the adjacent k-mers are connected by

an edge to create the graph structure. Traversing the graph, visiting each edge in the

graph once (Eulerian tour), will lead to an assembly solution. The most computationally

time consuming step in OLC approach, overlap detection, is non-existent in de Bruijn

graphs, as the overlap information is implicit in the graph structure. The graph can be

constructed,  while  the  sequences  are  being  read  by  the  assembler  saving  a  vast

amount of time in the order of O(N) compared to O(N2) in OLC graphs, where N denotes

kmers and read sequences in de Bruijn and OLC graphs respectively. As the size of the

genome increases, the computational memory needed to store the graph structure also

increases  in  the  order  of  O(N),  where  N  becomes  equivalent  to  the  length  of  the

genome with complete sequence coverage and absence of errors and ploidy. Recent

techniques such as Bloom filters (Melsted and Pritchard 2011) does not store the actual

k-mers and in the process have enabled de novo assembly on desktop computers.

1.2.3 String graphs

If two reads A and C (A → C) are connected in a graph, and also if a third read B has

connections to both A and C, such that A → B and B → C, then the A → C connection is

redundant.  Such  connections  make  the  graph  redundant  and  heavier  and  can  be

removed  entirely  and  the  process  is  called  transitive  reduction.  Another  type  of

redundant  reads  are  those  which  are  shorter  and  are  entirely  contained  within  an

another longer read, which are also removable from the graphs, without any loss of

information.  By  transitively  reducing  edges  and  by  removing  contained  reads,  an

overlap graph can be simplified into what is known as a string graph. For this reason of

simplicity,  string  graphs,  although  with  a  similar  theoretical  space  complexity,  are

memory efficient  compared to  OLC graphs.  Introduction of  techniques such as FM-

index  (Simpson  and  Durbin  2010) have  reduced  the  computation  time  for  overlap

identification, from O(N2) to O(N) allowing string graphs to be applied for SGS read

dataset as well.
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All the above three approaches were already described during the FGS era. But

according  to  the  needs,  shifts  in  the  approaches  were  observed  throughout  the

transitions in sequencing era.

1.2.4 Genome assembly in the FGS era

During  the  initial  days,  when  the  lambda  bacteriophage  was  sequenced,  a  simple

program was used to identify approximate overlaps between reads, but in the end, the

sequences were put together by hand manually to reconstruct the genome. Celera was

the  first  assembler  to  introduce  string  graphs,  by  simplifying  the  complex  graphs

produced using OLC approach. At a time, when it was still doubtful whether it was worth

investing money on smaller genome projects, comparatively larger genomes such as

that of Drosophila melanogaster were successfully assembled using Celera. Again, the

biggest  accomplishment  of  this  era  was  the  completion  of  the  HGP,  which  helped

accelerate various researches pertaining to human diseases and evolution. However,

time  taken  during  the  overlap  detection  step  of  OLC  algorithms  was  critical  and

consumed several weeks for completion. And with increase in data, the time factor only

increased.

1.2.5 Genome assembly in the SGS era

SGS technologies  brought  more  and more  data  into  the  frame and the  time factor

became a serious hurdle with the OLC approaches. Around this time, de Bruijn graph

based approaches started gaining widespread popularity. The fact that almost no time is

spent  on  identifying  overlaps,  which  is  the  most  time-consuming  step  in  OLC

approaches, made de Bruijn graphs an immediate and automatic choice in the SGS era

of de novo assembly. Another breakthrough was the development of algorithms such as

FM-index which greatly decreased the overlap detection time, and in turn making string

graphs applicable to SGS read data in shorter execution times. Both de Bruijn graphs

and string graphs are still a popular choice for SGS data.
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1.2.6 Genome assembly in the TGS era

The  high  error  rates  of  TGS  meant  that  traditional  methods  can  not  be  used  for

identifying overlaps among reads. Often, the reads were not alignable owing to the high

error  rates.  Hence,  approximate  alignment  methods  were  preferred  for  identifying

overlaps and storing the information as string graphs. Instead of a single program, the

assembly  process  was  broken  down  to  several  modules,  with  a  different  program

handling different aspects of the assembly in a hierarchical manner. For example, the

first assembly tool for PacBio data, Hierarchical Genome Assembly Process (HGAP)

used BLASR  (Chaisson and Tesler 2012) for aligning the reads to identify overlaps,

correct  errors  by  consensus  using  pbdagcon,  assemble  the  data  using  a  slightly

modified Celera assembler, and polish the assembled genome using quiver (Chin et al.

2013).  Over  time,  the  focus  of  the  long-read  assemblers  shifted  to  reducing

computational time leading to faster approximate methods to identify overlaps.

1.3. Factors affecting genome assembly

The aim of an assembly program is to reconstruct full-length chromosomes, however

the  assemblies  are  almost  always  fragmented due  to  practical  factors.  A variety  of

factors, which are detailed below, can affect the performance of a genome assembly.

1.3.1 Sequence coverage

The genome need not be fully sampled in every case. Although cost limitations of a

project can result in reduced coverage of the genome, platform dependent limitations

such as technical difficulties on AT- or GC-rich genomic regions are the major reasons

for uneven coverage of the genome  (Lee et al.  2016).  Such regions which are not

covered by sequencing will lead to gaps or fragmentation in the assembly.

1.3.2 Repetitive sequences

Highly identical  stretches of nucleotides can repeat  many times in a genome. Such

repetitive sequences are abundant throughout the taxonomic tree. Repeats can range
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from shorter to longer stretches including microsatellites, macrosatellites, centromeric

repeats, transposable elements, segmental duplications and other repeats (Chaisson et

al.  2015). When the reads are shorter than the repeats, the connection between the

flanking regions of the repeats become ambiguous. How repeats can act as a hurdle for

de novo  assembly is illustrated in figure 1.4. Naturally in a repeat-rich genome, the

ambiguous connections lead to an exponential number of assembly solutions, rather

than just the correct version of the assembly (Chaisson et al. 2015).

Figure 1.4. Effect of repeats in genome assembly. A repeat sequence, if present twice, can

lead to four different assembly possibilities, instead of the two true possibilities. 

1.3.3 Sequencing errors

SGS technologies like Illumina were highly accurate (99.99%), with a small number of

systematic errors accompanying the reads. Low quality reads can also be a result of

unidentified base pairs caused by defects in sequencing. Unlike SGS reads, high error

rates are a standard feature of the TGS reads. Errors generally confound the overlap

detection step and will lead to erroneous or extraneous paths in the assembly graph

(Simpson and Pop 2015). The more the errors, the more the complexity of the assembly

becomes.

1.3.4 Ploidy

An assembly program is employed with a motivation to reconstruct a haploid genome.

In diploid organisms, the allelic differences act in a similar way as sequencing errors,
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leading to extraneous paths in the assembly graph (Chaisson et al. 2015). The situation

becomes even worse with polyploid organisms resulting in a highly complicated graph

and a highly fragmented genome assembly. Allelic differences may pose as repeats,

and  at  boundaries  featuring  similar  and  diverged  sequences,  and  at  such  regions,

contigs are broken without being properly assembled (Chaisson et al. 2015).

1.4. Scaffolding

A complete reconstruction of a genome is practically impossible even for bacterial-sized

genomes, if only short reads are employed. In such cases, PE and MP reads can come

to the rescue to achieve longer contiguity. The long-range information is inherent in the

PE and MP reads, and can thus be used to connect two contigs, which contain either of

the ends of the PE/MP reads. In other words, if one end of the PE read (Read1-front) is

in contig A, and the other end (Read1-back) is in contig B, then both the contigs can be

connected with a fixed number of  Ns (unknown bases) in between the contigs. The

process is called scaffolding and the inserted Ns are termed as gaps. Scaffolding is a

common and an essential procedure to enhance the contiguity of SGS-based genome

assemblies.

1.5 Assembly metrics: N50 and L50

One of the main goals of an assembly is to reconstruct genomes as much as long as

possible. Hence, contiguity is given the main focus when evaluating an assembly. The

mean or median contig lengths are useful statistics when length measures are involved.

However, for genome assemblies, shorter contigs are generally more in number and

may skew the distribution, which would make it difficult to get a clear picture of how

good the assembly is. For this reason, two standard metrics are adopted for genome

assembly known as N50 and L50. To calculate these metrics, the contigs are sorted in

the decreasing order of contig lengths, and by doing so, the shorter length contigs are

not  considered,  adding  weight  to  only  the  longest  contigs.  After  sorting,  N50  is

calculated as the length of the contig at 50% of the assembly length, and L50 as the
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number of longest contigs until the 50% assembly mark. The N50 and L50 measures

are illustrated in figure 1.5.

Figure 1.5. N50 and L50 assembly metrics.

1.6 De novo assembly of a plant genome

Plant  genomes are hardest  to  assemble from sequenced data because of  the high

repetitive content and ploidy. Plant genomes are filled with transposons, which can be in

the range of several kbs, with identical or nearly identical copies spread throughout the

genome.  Such  regions  deeply  confound  the  assembly  process,  which  can  not  be

resolved without long-range information. The genome which was assembled as part of

this thesis was that of the plant, Ipomoea nil, which is highly repetitive with transposons

very much actively mobile. For the assembly project, initially read data (300X coverage)

from Illumina was obtained. However, the quality of the data was poor and the resulting

assembly was also of poor-quality, with the contig N50 not even reaching 1 kb. A push

for new data helped us obtain a new set of PE (300 bp and 500 bp) and MP (3 kb, 5 kb,

and 10 kb) libraries. Several attempts including hybrid approaches were tried, but were

largely unsuccessful in creating an ideal assembly. Although the quality of the assembly

improved from the  last  time,  Assemblathon 2  (Bradnam et  al.  2013) was published
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around this time and the important lesson learned was that longer range libraries can

make  a  drastic  difference  to  the  contiguity  of  assembly.  Hence,  longer  range  MP

libraries (15 kb and 20 kb) were also obtained for the assembly. All the data together

helped improve the assembly drastically. However, the assembly was filled with a large

number of gap base pairs. In the end, the desire for a better quality of the assembly

lead us to get hold of PacBio long-read data. The biggest challenge of assembling the

PacBio data was the lack of resources for guidance, as compared to that of Illumina

assembly. As long-read data was fairly new to the scene, assembly executions required

a lot of trial and error to understand the parameters. Parameter tweaking was not just

essential  for  obtaining  a  higher  quality  assembly,  but  also  to  make  use  of  the

computational resources effectively. After several attempts, the final attempt alone took

almost a month for completion of the assembly. The numerous attempts resulted in a

high quality assembly comparable to those achieved using Sanger sequencing data. As

a demonstration of the quality of the genome, several insights were obtained from the

genome  pertaining  to  mutation-causing  transposable  elements,  evolution  of  the

Convolvulaceae family, and identification of the cause of a mutable phenotype. Without

the availability of a genome, what would take several years was able to be achieved in

weeks time. For instance, identification of the mutation for contracted allele had evaded

researchers  since  1930,  however  with  the  availability  of  a  reference  genome,  the

identification became possible within a couple of weeks. The study is discussed in detail

in  chapter  3,  which also shed light  on how superior  the PacBio assembly is,  when

compared with the Illumina assembly.

1.7 Evaluation of long-read assembly tools

The assembly of I. nil genome was a success, however, the difficulties associated with

the long-read assembly had prompted us to a study to guide researchers on assembly

from the TGS reads. In the meantime, the interest began to spike in the field of long-

read assembly and within a short span of time, around ten long-read assembly tools

were released, prompting us to rethink what would have been the best approach for the

first study. Long-read assembly is still fairly a new concept and whenever a new concept
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is explored in Bioinformatics, benchmark studies are a norm. For example, evaluation

studies on short read mapping tools (Hatem et al. 2013), differential ChIP-seq analysis

(Steinhauser et al. 2016), RNA-seq differential expression (Zhang et al. 2014), variant

calling pipelines  (Hwang et al. 2015), metagenomics tools  (Sczyrba et al. 2017) and

numerous other studies are available to guide researchers in their  respective fields.

Similarly,  at  a  time,  when SGS data was used for assembling genomes,  evaluation

studies  such  as  GAGE  (Salzberg  et  al.  2012),  GAGE-B  (Magoc  et  al.  2013),

Assemblathon  (Earl  et  al.  2011),  and  Assemblathon 2  (Bradnam et  al.  2013) were

published, garnering widespread attention as a guide for assembly using SGS data.

However, no such comprehensive studies had been performed on long-read datasets

as of now, while more and more genomes were starting to be assembled using TGS

data. A comparison of the effectiveness in the quality of the TGS data based assemblies

(Lan et al. 2017; Berlin et al. 2015; Shi et al. 2016; Du et al. 2017), by comparing the

N50 values  with  those of  SGS data  based  assemblies  (Ibarra-Laclette  et  al.  2013;

Steinberg et al. 2014; Li et al. 2010; Schatz et al. 2014) is demonstrated in figure 1.6. 

Figure 1.6. N50 values from SGS and TGS genome assemblies of different organisms
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But it is hard to say which assembler would work the best. For example, PBcR is the

second most used assembler in recent publications (refer chapter 4). This might guide

researchers, who are new to the field, to automatically use PBcR for their assembly.

However, PBcR is an outdated pipeline and is replaced by a new assembler, canu. Thus

all the available long-read assemblers were put to test and therefore the theme for the

second study of  this  thesis  was set.  To be as comprehensive as possible for other

researchers  to  apply  the  results  to  their  study,  four  organisms  from  very  different

taxonomic families were chosen such that they have huge differences in size and other

features  of  the  genome.  The  study  was  a  revelation  to  ourselves  too,  as  it  was

concluded from the study that there are better assemblers, in terms of producing lesser

mis-assemblies, than what we had used for the assembly of  I. nil. However, sufficient

care  was  taken  for  the  first  study  by  extensively  detecting  and  splitting  off  mis-

assemblies, such that  it  did not have an effect  on the quality  of  the assembly.  The

evaluation study was also executed with the belief that researchers might be able to

choose parameters freely, when a guidance on the same is available through this study.

The details of the evaluation study are discussed in chapter 4.
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Chapter 2

Construction of computational pipelines

for de novo assembly
In computational biology, a single problem is usually solved using a variety of programs

employing different techniques. Some of them may share a basic layout but may differ

in critical processes related to improving accuracy, speed, memory requirements etc.

Hence, it is necessary to choose the right programs and right parameters for solving a

computational problem. In this thesis, for the problem of long-read de novo assembly,

there are at least ten available programs. However, de novo assembly using TGS reads

is not straightforward, the assembly process is broken down to several modules, with a

different program handling different aspects of the assembly in a hierarchical manner

and thus may need a series of programs and a trial of several parameters for successful

execution. For example, certain parameters such as those related to read length, in

particular  overlap  length,  can  practically  influence  the  computational  speed  of  the

program, while also influencing the contiguity and correctness of the assembly. In this

thesis,  we  have  constructed  a  computational  pipeline  that  will  execute  an  end-end

analysis  starting  from raw read  data,  through  de  novo  assembly,  until  the  point  of

assembly validation and annotation of genomic features. The initial part of the pipeline

until the end of the genome assembly is illustrated in figure 2.1. 

2.1 Parameters and other aspects in the pipeline

Several parameters affecting individual parts of the pipeline are described below, along

with important aspects of the pipeline.

2.1.1 Error correction and polishing

Errors are probably the most major concern in TGS technologies. Hence, they need to
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be rectified either before and/or after the end of the assembly. Assemblers including

Canu, FALCON, HGAP3, MECAT, PBcR, and SMARTdenovo initiate the assembly with 

Figure 2.1. Pipeline of de novo assembly including parameters affecting the process.

Programs marked in blue are the programs selected as the best based on trials.

the first step being error-correction. Assemblers such as ABruijn, HINGE, miniasm, and

wtdbg do not perform error correction, but have a consensus polishing step as part of

the program to get rid of errors after the assembly. A few parameters, such as overlap

lengths and coverage, can potentially affect the performances. Overlap lengths become

crucial in differentiating an error base from actual differences stemming from repetitive

regions. Because the errors in PacBio technology are random, a consensus can be

derived  when  there  is  ample  coverage  representing  genomic  regions.  The  errors

become unresolvable with lesser coverage. In fact, when the coverage is less than 20X,

it is best not to assemble the data using TGS reads.
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2.1.2 De novo assembly

Again overlap lengths and coverage play a predominant role in  de novo  assembly as

well.  The  shorter  the  overlap  length,  the  more  fragmented  the  assembly  becomes,

because  of  extraneous  connections  from repetitive  regions.  The  longer  the  overlap

length, lesser connections are made, again fragmenting the assembly. Hence, an ideal

overlap length needs to be optimized for each genome, especially in plant genomes

which  are  rich  in  long  transposon  repeats.  A step  by  step  increase  in  sequence

coverage and their corresponding genome assembly revealed that the contiguity of the

assembly gradually  increased until  around 50X coverage,  after  which  the  contiguity

started to plateau (Koren et al. 2017). However, after error correction, the shorter reads

are thrown out and only the longest 25X–30X coverage are kept for assembly. With

different coverages, the assembly quality will also differ. Another important aspect is the

error rate parameter. Even after error correction, a lot of errors are still left behind in the

data.  Hence,  based  on  the  coverage,  this  parameter  also  needs  to  be  adjusted

accordingly to get a better resolution of the repeat specific base changes.

2.1.3 Scaffolding and gap-filling

Both PE and MP libraries are generally used for scaffolding. The libraries are added

sequentially one after another starting from the shortest (300 bp) to the longest (40 kb).

By doing the same, we observed that scaffolding had very little to no effect. The reason

being, the PacBio reads are much more longer than the PE or even some of the MP

insert  sizes  resulting  in  resolved  assemblies  at  such  locations.  Most  of  the

fragmentation was caused by longer repeats which were untenable by PacBio reads.

Hence, the shorter libraries caused mis-connections and because the longest ones are

added finally, conflicts arose in connections leading to no results. Hence, only 15 kb and

20 kb MP libraries were used for scaffolding, which were longer than most of the input

PacBio reads. Coverage of the mate pairs is an another important parameter to fine

tune to obtain better results. For gap-filling, again the PacBio reads were used which

largely relied on overlap lengths. Because, the PacBio reads contributed to a highly

contiguous contig assembly, the scaffolding procedure managed to connect the longer
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contigs resulting in a better N50.

2.1.4 Computational resources

Allocating the right parameters for computational resources is a very important aspect

for long-read genome assemblies, as some of the assemblies might take more than a

month with certain assemblers. If lesser resources are provided, the program will abort.

Whereas, when more than sufficient resources are provided,  the program may take

several months to complete. So choosing the right resources for each of the process as

part of the pipeline was extremely important. Some programs are memory-intensive,

whereas other programs have jobs split over several computational nodes with lesser

memory, however taking longer computational times. All these factors were considered

for all the tested assembly tools.

2.1.5 Assembly validation

Validating assemblies was one of the easiest in terms of adjusting parameters in the

pipeline.  All  available  resources  from  public  DNA  databases,  as  well  as,  newly

sequenced data, were put into use in the pipeline for validating the genome assemblies.

Also, standard assembly validation tools such as CEGMA and BUSCO were used as

part of the pipeline. The only major attempt was fixing the parameter for linkage maps

such that all the markers are separated into exactly 15 linkage groups representing the

actual chromosomes of I.nil. 

2.1.6 Gene prediction

As there is no availability of a reference genome for the Convolvulaceae family, initially,

the cDNA data from NCBI for I. nil was used to train gene models for gene prediction.

However, the lack of sequences meant that the training was not complete. In contrast,

when Tomato from Solanaceae, the sister family of Convolvulaceae, was used as a

reference for  training  gene models,  the predicted  results  were mostly  accurate  and

correlated well with the available cDNA data.
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2.1.7 Repeat prediction

Although,  the  standard  repeats  were  well  characterized  using  repeat  prediction

programs,  Tpn1  transposons, the main feature of  I. nil was not predicted by standard

programs. Hence, a separate program was written in-house to predict and catalog the

transposons. The structure of the Tpn1 transposons is used as the reference, and the

sequence features are mapped using the custom program to find and catalog the Tpn1

transposons. 

Most of the tools used in the pipeline required several trial and errors, before

being applied successfully. Although, the pipeline has parts specific to I. nil genome, the

constructed  pipeline  can  now be  applied  to  any  future  related  projects  without  any

difficulties. For example, currently the common marmoset genome is being assembled

and analyzed using the pipeline.
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Chapter 3

Genome sequence and analysis of the

Japanese morning glory Ipomoea nil
Ipomoea is  the largest  genus in  the family  Convolvulaceae.  Ipomoea nil  (Japanese

morning  glory)  has  been  utilized  as  a  model  plant  to  study  the  genetic  basis  of

floricultural traits, with over 1,500 mutant lines. In the present study, we have utilized

second- and third-generation sequencing platforms, and have reported a draft genome

of I. nil with a scaffold N50 of 2.88 Mb (contig N50 of 1.87 Mb), covering 98% of the 750

Mb genome. Scaffolds covering 91.42% of the assembly are anchored to 15 pseudo-

chromosomes. The draft genome has enabled the identification and cataloging of the

Tpn1 family transposons, known as the major mutagen of I. nil, and analyzing the dwarf

gene,  CONTRACTED,  located on the  genetic  map published in  1956.  Comparative

genomics has suggested that a whole genome duplication in Convolvulaceae, distinct

from the recent Solanaceae event, has occurred after the divergence of the two sister

families.

3.1 Background

The  genus  Ipomoea,  which  includes  600–700  monophyletic  species,  is  the  largest

genus in the family  Convolvulaceae and is  a sister  group to  the family  Solanaceae

(Austin and Huáman 1996; Stefanovic et al. 2002). These species exhibit various flower

morphologies and pigmentation patterns (Clegg and Durbin 2003), and are distributed

worldwide (Austin and Huáman 1996). Morning glory species, including Ipomoea nil, I.

purpurea, I. tricolor, and I. batatas (sweet potato), are commercially important species.

Japanese morning glory (I.  nil),  locally known as Asagao, is a climbing annual herb

producing blue flowers capable of self-pollination (figure 3.1a–l). It is believed to have

been introduced from China to Japan in the 8th century, and has become a traditional
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floricultural  plant  in  Japan  since  the  17th  century.  Most  of  Japanese  elementary

students grow it,  as part  of  their  school  curriculum. The genetics of  I.  nil has been

extensively studied for more than 100 years, and it has been a model plant for the study

of photoperiodic flowering and flower coloration. A number of spontaneous mutants of I.

nil have been identified  since the  early  19th  century.  Most  of  their  mutations  were

related to floricultural traits, and several variants with combinations of mutations have

been developed (figure 3.1m–aa). The unique features of  I. nil, e.g., blue flowers and

vine  movements  (Fukada-Tanaka  et  al.  2000;  Kitazawa  et  al.  2005),  have  been

characterized by using the cultivars carrying such mutations.
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Figure 3.1. The Japanese morning glory. (a-l) The wild-type line Tokyo-kokei standard (TKS).

(a) The individual used for whole genome sequencing. (b) Flower from the front. (c) Flower from

the back. (d) Flower from the side. (e) Flower bud one day before flower opening. (f) Stamens

(five on the left) and carpel (farthest right). (g) Seed pod. (h) Seeds. (i) Seedling from above. (j)
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Side view of a seedling. (k) Leaf from the front. (l) Leaf from the back. (m) The Q1072 line

carrying the recessive a3-f mutation that is the Tpn1 insertion into the DFR-B gene for flower

pigmentation. The mutant produces white flowers with pigmented spots or sectors (right) and

sometimes produces fully pigmented flowers (left). The pigmentation patterns are caused by

Tpn1-inducing somatic mutations and indicate that transposases TnpA and TnpD of Tpn1 family

elements are active. (n-s) Brassinosteroid-deficient mutants. (n) Q848 (ct-1). (o) Q853 (ct-2).

(p) Q220 (ct-w). (q) Q708 (s). (r) Q721 (s). (s) Q837 (ct-1, s). (t-aa) The mutant lines carrying

one of the recessive mutations that were mapped on the classic linkage map. The cd, fe, dy, a3,

mg, dp, and dk-2 mutations were assigned to classic LG1, LG2, LG3, LG4, LG5, LG6, and

LG10, respectively. The recessive mutations of c1 and sp were also assigned to LG3. In this

study, LG3N with dy and LG3S containing c1 and sp were found to correspond to different

chromosomes. (t) Q557 (cd) showing partial transformation of floral petals into sepals. (u) Q459

(fe) showing alteration of organ polarity. (v) Q114 (dy) with dark-colored flowers. (w) AK62/Violet

(mg) with reddish flowers. (x) Q426 (dp), producing double flowers. (y) Q531 (dk-2) with pale-

and dull-colored flowers. (z) AK33 (c1), producing white flowers with red stems. (aa) AK30 (sp)

showing speckled flowers. All I. nil lines are from the National BioResource Project

(http://www.shigen.nig.ac.jp/asagao/).

More than 1,500 cultivars of I. nil are maintained by the Stock Center at Kyushu

University  as  a  part  of  the  National  BioResource  Project.  Our  recent  studies  have

revealed that many of these mutant lines have been the result of mutagenic activity by

Tpn1 family transposons (Fukada-Tanaka et al. 2000; Inagaki et al. 1994; Hoshino et al.

2009;  Morita  et  al.  2014;  Iwasaki  and  Nitasaka  2006;  Nitasaka  2003).  These

transposons are class II elements and members of En/Spm or CACTA superfamily that

can transpose via a cut-and-paste mechanism. The maize  En/Spm elements encode

two transposase genes for TnpA and TnpD, mediating transposition of En/Spm and its

derivatives (Weil and Kunze 2002). TnpA and TnpD bind to the sub-terminal repetitive

regions (SRRs) and terminal inverted repeats (TIRs) of En/Spm, respectively (Weil and

Kunze 2002). The copy number of the Tpn1 family was estimated to be 500–1,000, and

almost 40 copies have been characterized  (Fukada-Tanaka et al. 2000; Inagaki et al.

1994; Hoshino  et al. 2009; Morita et al.  2014; Iwasaki and Nitasaka 2006; Nitasaka

2003;  Kawasaki  and  Nitasaka  2004;  Morita  et  al.  2015).  All  of  the  transposons

characterized thus far are non-autonomous elements, and no elements encoding intact
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transposase genes have been identified. The non-autonomous  Tpn1 family elements

have a characteristic structure and are known to capture genic regions from the host

genome (Kawasaki and Nitasaka 2004; Takahashi et al. 1999). Their internal sequences

are  substituted  with  the  captured  host  sequences,  whereas  their  terminal  regions

necessary  for  transposition  are  conserved.  Some  of  the  internal  genic  regions  are

transcribed; a Tpn1 transposon integrated in the DFR-B gene for anthocyanin pigment

biosynthesis  generates  chimeric  transcripts  consisting  of  both  the  DFR-B and  the

captured intragenic region (Takahashi et al. 1999).

I. nil has 15 pairs of chromosomes (2n = 30) (Yasui 1928). However, the original

classical map from 1956 contained only ten linkage groups, as a result of mapping 71

genetic loci out of 219 analyzed loci to one of the ten linkage groups (Hagiwara 1956).

The genetic information of  I. nil available to date includes the linkage map (Hagiwara

1956),  62,300 expressed sequence tags (ESTs)  deposited to the DDBJ/EMBL/NCBI

databases, Simple Sequence Repeat (SSR) markers (Ly et al. 2012) and a recent large

scale transcriptome assembly (Wei et al. 2015). The availability of a reference genome

sequence would give researchers a standard with which to compare their mutant lines

and would fast track genomic analysis of mutations. The genome of a closely related

species  of  a  wild  sweet  potato,  I.  trifida,  was  recently  sequenced  and  published

(Hirakawa et al. 2015), in which they reported genome sequences of two I. trifida lines

analyzed using Illumina HiSeq platform, with average scaffold lengths of 6.6 kb (N50 =

43 kb) and 3.9 kb (N50 = 36 kb), respectively. However, the assembled scaffolds did not

have chromosomal level information, and were highly fragmented. 

In  the  present  study,  we  report  a  pseudo-chromosomal  level  whole  genome

assembly of a wild-type I. nil line, with an estimated genome size of 750 Mb, sequenced

using  PacBio’s  Single  Molecule,  Real-Time  Technology  (SMRT)  and  Illumina

sequencers. We have also identified two copies of  Tpn1 family transposons encoding

putative TnpA and TnpD transposases, 339 other non-autonomous  Tpn1 transposon

copies,  as  well  as  the  most  likely  candidate  for  the  dwarf  gene,  CONTRACTED,

mapped on the classical genetic map.
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3.2 Results

3.2.1 DNA sequencing and genome assembly

One individual plant of the wild-type line, Tokyo Kokei Standard (TKS), was used for

genome sequencing. Its genome size was estimated to be approximately 750 Mb using

flow cytometry. PacBio sequencing yielded 5.74 million reads (39.4 GB, 52.6× coverage

and N50 of 10.3 kb), with the longest and the average read lengths being 48.1 kb and

6.8 kb respectively, whereas, sequencing using the Illumina HiSeq (table 3.1) included

two short and six long insert libraries. With an initial read length of 150 bp, the short

reads covered approximately 906× of the genome. The work-flow for the PacBio data

assembly consisted of seven steps (figure 3.2). 

Table 3.1. Statistics of raw Illumina reads.

Strategy
Insert 

length

# of reads 

(in millions)

# of bases 

(in Gb)

Sequence 

coverage
Accession number

Paired end 300 bp 602 90 123 ×
DRR013917, 

DRR013918

Paired end 500 bp 652 98 133 ×
DRR013919, 

DRR013920

Mate pair 3 kb 563 85 115 ×
DRR013921, 

DRR013922

Mate pair 5 kb 544 82 111 ×
DRR013923, 

DRR013924

Mate pair 10 kb 584 88 119 ×
DRR013925, 

DRR013926

Mate pair 10 kb 505 76 103 × DRR048755

Mate pair 15 kb 495 74 101 × DRR048756

Mate pair 20 kb 494 74 101 × DRR048757
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Figure 3.2. Assembly work-flow. The assembly pipeline used for assembling the I. nil genome

utilizing PacBio and Illumina sequence reads.

Initial de novo assembly of the PacBio reads resulted in 736.4 Mb of genome assembly,

with  a  contig  N50  of  1.83  Mb.  To  remove  left-over  residual  errors  originating  from

PacBio sequences, the short reads from Illumina were aligned against the assembled

genome to identify homozygous variants. The homozygous variants amounted to 1,532

SNPs, 20,479 deletions, and 6,549 insertions showing that the assembly had 99.99%

base accuracy. The insertion-deletion (in-del) errors had outnumbered the substitution

errors,  similar to the results observed in PacBio-based  Vigna angularis (Sakai et al.

2015) and Oropetium thomaeum (VanBuren et al. 2015) genome assemblies, and were

replaced  with  the  Illumina  sequence  bases.  Mitochondrial  and  chloroplast  derived
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sequences were  identified  to  be  1.15 Mb from 51 contigs  and were  removed.  The

organellar  genomes  were  sequenced  using  a  Sanger  sequencer  and  assembled

separately. Scaffolding using Illumina longer range mate-pair libraries and subsequent

gap-filling using PacBio reads increased the N50 to 3.72 Mb. The assembly statistics at

each step of the work-flow are mentioned in table 3.2. An independent assembly of

Illumina reads using SOAPdenovo2 assembler  (Luo et al. 2012) resulted in 1.1 Gb of

genome assembly. The assembly size was reduced to 768 Mb, with a scaffold N50 of

3.5 Mb and a contig N50 of 9.5 kb, when considering only contigs and scaffolds longer

than 1 kb.  The assembly statistics of  both the PacBio and Illumina assemblies are

compared in table 3.3. The PacBio version of the assembly was chosen for downstream

analysis  owing to  PacBio’s  long read lengths vastly  increasing the contiguity  of  the

assembled genome.

3.2.2 Mis-assembly detection and pseudo-molecule construction

Illumina sequencing employing the RAD-seq (Baird et al. 2008) procedure, yielded 86.1

million reads for the parent samples and 562.2 million reads for the progeny samples

(read  length  of  150  bp).  Filtering  the  SNP  markers  obtained  using  the  STACKS

(Catchen et al. 2011) pipeline resulted in 3,733 SNP markers from 176 samples. Fifteen

linkage  maps  were  constructed  using  the  SNP  and  were  helpful  in  identifying

inconsistent scaffolds which were present in more than one linkage group. To eliminate

the possibility  of  mis-assembled  chimeric  scaffolds,  the  scaffolds  were  split  at  their

junction points into two separate scaffolds using the linkage maps as a reference. In the

case of mis-assemblies at the contig level, each chimeric region was split into three

parts such that the first and the last part would belong to two different chromosomes

from the linkage map, whereas the middle part would still remain chimeric, albeit with a

shorter length (figure 3.3). A first splitting procedure was employed to split 52 scaffolds,

after the scaffolding phase of the assembly process. After gap-filling, another splitting

procedure was used to break 29 additional scaffolds. The major achievement of the

assembly procedure was that, even after splitting chimeric scaffolds, the N50 values

obtained  for  scaffolds  and  contigs  were  still  2.88  Mb  and  1.87  Mb  (table  3.4)

respectively,    which   is   comparable  to   assemblies    achieved   utilizing    traditional
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 Table 3.2. Comparison of the stepwise assemblies of PacBio data, with each step

referring to the step from the assembly workflow (figure 3.2)

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

Scaffolds

Sequences

NA

3367 3495 3345 3345 3416

Total Length of Sequences 734061355 734055648 735418791 734768050 734803190

Gap openings 624 602 544 461 449

Gap length 327148 321441 177095 177012 211647

Longest sequence length 16099154 14441919 14449637 14449637 14449934

Shortest sequence length 638 638 638 638 638

Average sequence length 218016.44 210030.23 219856.14 219661.6 215106.32

N50 4082476 2890004 3727853 3727853 2880368

Sequences (>10 Mb) 7 2 6 6 2

Sequences (>1 Mb) 166 204 182 182 205

Sequences (>100 kb) 299 401 326 326 389

Sequences (>10 kb) 2043 2164 2120 2120 2194

Sequences (>1 kb) 3991 4097 3889 3806 3865

Sequences (>500 bp) 3991 4097 3889 3806 3865

Sequences (>100 bp) 733734207 733734207 735241696 734591038 734591543

Contigs

Sequences 4187 3991 3991 4097 3889 3806 3865

Total Length of Sequences 736457052 733734371 733734207 733734207 735241696 734591038 734591543

Longest sequence length 11504781 11504932 11504932 8729492 11281532 11281532 9127415

Shortest sequence length 638 638 638 638 638 638 638

Average sequence length 175891.34 183847.25 183847.21 179090.6 189056.75 193008.68 190062.49

N50 1830236 1825684 1825684 1584472 1918312 2087487 1873359

Sequences (>10 Mb) 4 4 4 0 3 3 0

Sequences (>1 Mb) 191 191 191 200 189 195 205

Sequences (>100 kb) 649 649 649 724 620 574 625

Sequences (>10 kb) 2773 2648 2648 2746 2650 2567 2629

Sequences (>1 kb) 4169 3973 3973 4075 3873 3790 3853

Sequences (>500 bp) 4187 3991 3991 4093 3885 3802 3865
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Sanger  sequencing data  (Michael  and Jackson 2013).  The mapping of  scaffolds  to
linkage maps not only aided in identifying potential mis-assemblies, but also guided the
generation  of  pseudo-chromosomes  from  the  available  scaffolds.  The  pseudo-
chromosomes accounted for 91.42% of the assembly (N50 of 44.78 Mb), along with
unoriented scaffolds (around 25.53% of the assembly), and are represented in a circular
display,  with  predicted  genomic  features  along  the  15  pseudo-chromosomes (figure
3.4a–f).

Table 3.3. Comparison of the Illumina and PacBio assemblies

PacBio Assembly Illumina Assembly

Sequences 3416 2262957

Total length of sequences 734803190 1106449450

Gap openings 449 132545

Gap lengths 211647 74798170

Longest sequence length 14449934 18182283

Average sequence length 215106.32 488.94

N50 (sequences >1 kb) 2880368 3532667

Sequences (>10 Mb) 2 3

Sequences (>1 Mb) 205 213

Sequences (>100 kb) 389 387

Sequences (>1 kb) 3404 3927

Sequences (>100 b) 3416 2262957

Mis-assemblies were not resolved in the Illumina based assembly.

Table 3.4. I. nil genome assembly statistics

Category Total N50
(Mb)

Longest
(Mb)

Size (Mb) Percentage  of
the assembly

Contigs* 3,865 1.87 9.12 734.6 -
Scaffolds 3,416 2.88 14.4 734.8 100
Anchored scaffolds 321 3.14 14.4 671.7 91.42
Genes 42,783 - - 182 24.77
Repeats - - - 465 63.29
*The gaps in the final version of the scaffolds were split to produce the final version of contigs.
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Figure 3.3. Mis-assembly Breakage Process. Case 1 and 2 depicts breakage using BAC-end

pair information. In case 1, the breakpoint is at the nearest complete BAC-end pair, and in case

2, the breakpoint is at the nearest BAC-end read, whose read-pair is in a different scaffold. Also,

when there is not sufficient BAC-end read information, the SNP marker from the linkage maps

was used as the breakpoint (Case 3). All cases were identified using disputes in linkage maps

and were split into 3 separate scaffolds. The first and last scaffolds were assigned to

corresponding chromosomes from the linkage map.
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Figure 3.4. Genomic characterizations of I. nil. (a) Outer circle displaying the 15 pseudo-

chromosomes in 1 Mb units. TpnA2–4 (blue dashes) and putative centromeric locations (black 

dashes) are also denoted in the outer circle. (b) Location of Tpn1 family transposons. (c) Gene

density per Mb. (d) Coverage of copia (magenta) and gypsy (turquoise) LTRs per Mb. (e)

Repeat coverage per Mb. (f) Syntenic regions containing more than 10 paralogous genes.

3.2.3 Assembly validation

The Core Eukaryotic Genes Mapping Approach, or CEGMA pipeline (Parra et al. 2007)
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and more recently, the BUSCO  (Simão et al. 2015) pipeline have become commonly

used protocols to validate the completeness of assembly projects by examination of

coverage of highly conserved genes. The percentage of completeness for our assembly

was 94.35% and 99.60% for completely and partially aligned core eukaryotic genes

(CEGs) respectively. BUSCO analysis revealed a completeness score of around 95%.

This indicated that most of the evolutionarily conserved core gene set was present in

the I. nil assembly suggesting a high quality assembly. To further validate the assembly,

the  newly  generated  I.  nil ESTs,  BAC-end,  and  RNA-seq  data  were  utilized.

Comparisons against  93,691 ESTs showed that  99.11% of  them were aligned,  with

97.40% of the ESTs having at least 90% of their lengths covered in the alignments.

Using 20,847 BAC-end read pairs, it was found that 94.92% of the reads were paired in

the same scaffold with a mean insert length near the 100 kb mark, and 97.87% of the

reads were paired in the same pseudo-chromosome. RNA-seq reads from six different

tissues including leaf, flower, embryo, stem, root, and seed coat tissues, when aligned

against the assembled sequence, showed that around 94.7% and 96% of the read pairs

were aligned in the embryo sample and the remaining five samples respectively. The

high quality of the assembly verified by CEGMA and BUSCO was corroborated by the

ESTs and BAC-end sequences. Five whole BAC sequences (approximately 100 kb in

length) were also completely covered in the scaffolds with minor in-dels. One of the

BAC sequences included 12.6 kb of the  Tpn1  family transposon,  TpnA2,  suggesting

that repetitive elements with high copy numbers and relatively long sequences were

successfully determined. The SOAPdenovo assembly was also able to cover the five

BAC  sequences,  but  with  large  in-dels  and  an  increased  number  of  mismatches,

indicating  that  per-base  resolution  was better  in  the  assembly  using  PacBio  reads.

Telomeric  repeats,  centromeric  repeats,  and  rDNA arrays  were  identified  to  further

analyze  the  contiguity  of  the  assembly.  Thirty  scaffolds,  with  telomeric  repeat  units

(AAACCCT) in the range of 47.1 to 4,613.9 repeating units, were identified, of which 13

were completely covered by the tandem repeats and could not be incorporated into the

linkage  map.  Pseudo-chromosomes  2,  6,  8,  and  14  were  found  to  have  telomeric

repeats at both the ends, while pseudo-chromosomes 3, 4, 5, 9, 10, 12, 13 and 15 had

telomeric  repeats  at  only  one  end.  Although  SOAPdenovo  assembly  captured  27
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telomeric repeat sequences, the average size of the repeats was five times longer in the

PacBio assembly. The ribosomal DNAs (rDNAs) in the order of 18S, 5.8S, and 25S

rDNAs are found to occur in tandem arrays typically spanning several megabase pairs

in regions called Nucleolar Organizer Regions (NORs)  (VanBuren et al. 2015). Three

scaffolds were found to contain 3 NOR units and 34 scaffolds had 2 NOR units. In total,

1,212 5S rDNA sequences were clustered in 21 scaffolds that were located away from

the  scaffolds  carrying  NORs.  Centromeric  repeats  are  known  to  span  hundreds  of

kilobase pairs to several megabase pairs and are difficult  to be assembled owing to

their repetitive complexity. The centromeric monomer sequence was identified to be 173

bp in length. Using the monomeric sequence as a base, the longest centromeric repeat

stretches were identified for each chromosome and the analysis revealed that two of the

identified centromeric repeat stretches were longer than 100 kb.

3.2.4 Repeat analysis and identification of Tpn1 transposons

Analysis using RepeatModeler showed that LTRs (long terminal repeats) comprised the

largest portion of predicted repeats. The unclassified elements were mined for copia

and gypsy repeats using RepBase. Copia and gypsy elements comprised 12.92% and

14.46%  of  the  assembled  genome  (figure  3.4d).  DNA  class  repeat  elements

represented 5.60% of the genome. Altogether, 63.29% of the genome was predicted to

be repetitive (figure 3.4e). However, RepeatModeler was not able to predict Tpn1 family

transposons (figure 3.5). Hence, an in-house pipeline based on the presence of 5´ and

3´  TIRs  as  well  as  target  site  duplications  (TSDs)  was  used  to  identify  the  Tpn1

transposons. In total, 339 Tpn1 transposons were identified with an average length of

7,081 bp (figure 3.4b). The smallest identified was 161 bp in length, while the longest

was 40,619 bp. All the transposons had 3-bp TSDs, with the exception of one that had a
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Figure 3.5. Structure of a Tpn1 family transposon. The first and last identical 28 bp represent

Terminal Inverted Repeats (TIRs) across all the Tpn1 transposons, flanked by typical 3-bp

Transposon Site Duplications (TSDs). The TIRs are followed by sub-terminal repetitive regions

(SRRs) and the region in-between can have incorporated genes from the host.

5-bp TSD. Fourteen of them had a mismatch in their TSDs. The TSDs tended to be AT

rich, with at least one of A or T bp appearing in 95% of the TSDs. A nucleotide BLAST

analysis  revealed that  most  of  the  Tpn1  transposons carried  sub-terminal  repetitive

(SRR) sequences (figure 3.5) in both 5´ and 3´ terminal regions. Because TIR and SRR

sequences are  cis-requirements for transposition, it can be suggested that the  Tpn1

transposons are capable of  transposition.  However,  thirty-two of  the identified  Tpn1

transposons contained large rearrangements in SRR indicating that they are inactive.

Twenty-nine  Tpn1  transposons  were  found  within  the  5´  UTR  and  introns  of  the

predicted genes, which could disrupt the function of those genes. It could be expected

that  the  autonomous  Tpn1 family  transposons  carry  both  the  TnpA  and  TnpD

transposase coding sequences such as En/Spm and related autonomous transposons

(Weil  and  Kunze  2002).  A translated  BLAST search  against  the  339  Tpn1 family

transposons, using TnpA and TnpD sequences from maize and snapdragon (Nacken et

al. 1991) as queries, revealed that two transposons, named TpnA3 and TpnA4, carried

TnpD homologues, with two copies of  TpnA3 residing in the genome (figure 3.6). No
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obvious TnpA homologues were identified in the 339 transposons. Also, no transcripts

corresponding to  TnpA and  TnpD were found in the predicted genes or  transcripts,

indicating transcription of the transposase sequences was silenced in the line TKS. To

identify autonomous transposons, the cDNA fragments for TnpA and TnpD homologues

were  isolated  by  a  series  of  RT-PCRs  from  the  line  Q1072,  where  Tpn1 actively

transposes  (figure  3.1m).  A nucleotide  BLAST  search,  against  the  whole  genome

sequence using the isolated cDNA sequences as queries, identified two transposons

with  TnpA and  TnpD sequences,  designated as  TpnA1 and  TpnA2 (figure  3.6).  Of

these,  TpnA2 is  truncated in  the genome, while  the 5´  terminus of  TpnA1 was not

completely captured in the draft genome assembly. To characterize the entire  TpnA1

sequence, a BAC clone from TKS carrying TpnA1 was isolated and sequenced. TpnA1

is the putative autonomous element, because it carries apparently functional TIR and

SRR  sequences,  in  addition  to  the  coding  sequences  of  TnpA  and  TnpD.  No

transposons carrying TnpA coding sequences alone were found. In total, the genome

contained two TnpA and five TnpD putative coding sequence copies (figure 3.6). The

deduced  amino  acid  sequences  of  the  transposases  were  highly  conserved  in  the

genome and  shared  conserved  domains  with  known  transposases  of  En/Spm  and

snapdragon Tam1 (Nacken et al. 1991). 

Figure 3.6. The Tpn1 family transposons encoding transposases. The orange, yellow and

blue boxes indicate transposons, untranslated regions, and coding sequences respectively. The

numerals above the blue boxes show exon numbers, and the arrows show the orientations of

the transposase genes. The filled triangles are the 122-bp and 104-bp tandem repeats in the 5′

and 3′ sub-terminal regions respectively. TpnA3 lacks exons 7 and 8, and TpnA4 has a gap
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represented by a white box, as well as three frame shift mutation indicated by the vertical bar

with −1 and +1 in the exon 10 and 13.

3.2.5 Gene prediction and functional annotation

RNAseq data from leaf, flower, embryo, stem, root, and seed coat samples were used

to assist in the process of gene prediction. A total of 42,783 gene models were predicted

along with 45,365 transcripts, with tomato as the reference species, using Augustus

(Stanke and Waack 2003). Of the transcripts, 44,916 contained a complete ORF with a

start and a stop codon and 95.54% of the gene models could be assigned inside the 15

pseudo-chromosomes (figure 3.4c).  Single exon genes accounted for 17.52% of the

total. Two thirds of the transcripts were found to have less than or equal to 5 exons. A

total  of  61.99%  of  the  gene  models  were  annotated  using  the  UniProt-Swiss-Prot

database and in the remaining gene models, 16.93% were annotated using the UniProt-

Trembl database. In addition, 61.92% of the gene models were assigned Pfam domain

annotations. In total, the combined annotation procedure was able to assign annotations

for 79.12% of the gene models.

3.2.6 Genome evolution

Protein  sequences from rice  (Ouyang et  al.  2007) (monocotyledon outgroup),  grape

(Jaillon et al. 2007), kiwifruit  (Huang et al. 2013) (from the Asterid clade), along with

Solanales order members tomato  (Tomato Genome Consortium 2012), potato  (Potato

Genome Sequencing Consortium et al. 2011), and capsicum  (Kim et al. 2014) were

used for gene family clustering using the OrthoMCL pipeline  (Li  et al. 2003) to infer

phylogenetic relationships. A total of 1,353 single copy orthologs corresponding to the

seven species were extracted from the clusters and were filtered to 214 single copy

orthologs.  Phylogenetic  inference  using  RaxML  (Stamatakis  2014) reconfirmed  the

phylogenetic  arrangement  of  I.  nil.  BEAST  (Bouckaert  et  al.  2014) estimated  the

divergence of I. nil from the other Solanales members to be around 75.25 million years

ago (MYA), which was very close to the estimation from the TTOL (Hedges et al. 2015)

database  (figure  3.7a).  Also,  I.  nil was  estimated  to  have  separated  from  kiwifruit
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approximately 105.8 MYA. Divergence time estimates obtained for the other species

also corresponded well with the estimations from TTOL database.

Synteny analysis using MCScanX revealed that 2,275 syntenic gene blocks were

found to contain 17,376 paralogous gene pairs in the assembled pseudo-chromosomes

(figure 3.4f). The number of synonymous substitutions per synonymous site (Ks) of the

gene pairs in the syntenic regions was plotted against the percentage of corresponding

genes to infer and compare whole genome duplication (WGD) events in I. nil. I. nil and

tomato were found to share 47.05% of syntenic orthologs in a 1:1 ratio, whereas, the

percentage of kiwifruit orthologs in a 1:1 ratio across tomato and I. nil were 34.89% and

36.01% respectively. Apart from the 1:1 orthologs, both tomato and I. nil shared large

numbers of syntenic blocks with kiwifruit, possibly because of the two recent duplication

events in kiwifruit  (Huang et al. 2013), which was also evident from the two Ks peaks

specific to kiwifruit (figure 3.7b). A recent WGD event was estimated to have occurred in

Solanaceae members, approximately 71±19.4 MYA (Tomato Genome Consortium 2012;

Potato Genome Sequencing Consortium et al. 2011). A Ks peak from syntenic paralogs

of tomato, corresponding to the above mentioned WGD event, was found to occur after

the speciation peak between tomato and I. nil  (figure 3.7b), suggesting that the event

was specific to the Solanaceae and should have occurred reasonably close, following

the divergence which was estimated to be 75.25 MYA (figure 3.7a). The analysis also

revealed a Ks peak specific to  I. nil indicating that a WGD event had also occurred,

independently, in the Convolvulaceae family (figure 3.7b). 

Gene family clustering showed that 10,549 core gene families were shared by all

four species of the Solanales members (figure 3.8). I. nil contained 2,242 unique gene

families  not  shared  by  Solanaceae  members,  whereas  the  Solanaceae  members

shared 2,681 more gene families than I. nil. I. nil specific gene families had expansions

of paralogs (mean value of 4.92) compared to gene families which had orthologous

relationships with the other Solanales (mean value of 1.79). I. nil specific gene families

were  found  to  be  enriched  with  pollination  and  reproductive  process  related  gene

ontology (GO) terms. 
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Figure 3.7. Genome evolution. (a) Divergence time estimation using BEAST. The scale bar

20.0 corresponds to Myr ago. The node labels indicate estimated divergence times in Myr ago,

with estimations from TTOL in parentheses, and the branch labels indicate the clades within the

branch. (b) Distribution of Ks values against the corresponding percentage of syntenic genes,

comparing I. nil and S. lycopersicum against A. chinensis. The colours violet, magenta, orange,

turquoise, blue, and purple represent the Ks values of I. nil versus I. nil, S. lycopersicum versus

S. lycopersicum, I. nil versus S. lycopersicum, A. chinensis versus A. chinensis, S.

lycopersicum versus A. chinensis, and I. nil versus A. chinensis respectively. Speciation events

among the three species and lineage specific WGDs are highlighted with arrows.
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Figure 3.8. Venn diagram depicting the gene family clustering of the Solanales. 

3.3 Discussion

The  advent  of  second  and  third  generation  sequencers  have  fast-tracked  genome

assemblies of a variety of species. The current study has utilized nearly the complete

potential of recent sequencing tools and has culminated in a highly contiguous genome

assembly of I. nil. A few of the recent genome assembly projects have used PacBio data

to supplement Illumina based contig assemblies, and a mild improvement in the lengths

of the assembled scaffolds have been observed. However, in this study, PacBio data

were used as a base to construct contig assemblies, while Illumina data were used to

supplement  the  assembly,  resulting  in  a  marked  increase  in  the  lengths  of  the

assemblies observed (scaffold N50 length of 2.88 Mb). The average contig N50 length

for all published genomes is 50 kb  (Michael and Jackson 2013), whereas I. nil had a

contig N50 length of 1.87 Mb. The 7-kb size selected inserts of the PacBio sequence

data was especially helpful in resolving Tpn1 transposons, whose average length was

approximately 7 kb, and the assembly also revealed complex repeats like telomeric

repeats, rDNA clusters, and centromeric repeats. However, a better resolution of such
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repeats  was  obtained  in  Oropetium  thomaeum (VanBuren  et  al.  2015) genome

assembly, possibly owing to the 15-kb lower end insert size selection, explaining the

importance of longer read lengths in obtaining near-perfect assemblies. The potential of

PacBio sequence data in long, eukaryotic genomes has been further showcased in the

draft  genomes of  Gorilla  gorilla (Gordon et  al.  2016) (scaffold  N50 of  23.1 Mb),  V.

angularis (Sakai et al. 2015) (scaffold N50 of 3.0 Mb),  O. thomaeum (VanBuren et al.

2015) (contig N50 of 2.4 Mb) and Lates calcarifer (Vij et al. 2016) (scaffold N50 of 1.19

Mb). A rapid increase in PacBio sequencing for similar large-scale assemblies can be

expected in the near future. 

The  draft  genome  has  enhanced  the  understanding  of  the  genetic  basis  of

floricultural traits in I. nil. It was possible to catalog Tpn1 family transposons along with

the  putative  autonomous  element,  TpnA1 (figure  3.6).  The  Tpn1  transposons  were

distributed across all 15 chromosomes and one copy per 126 genes (339 copies per

42,783 genes) was observed. Most of them retain apparently functional  cis  elements,

TIRs, and SSRs suggesting that they are capable of transposition. In addition, TpnA1,

TpnA2,  TpnA3 and  TpnA4 also  encode  putative  transposases  (figure  3.6).  These

features should be the basis for Tpn1 transposons to act as the major mutagen in the

mutant cultivars of  I. nil. The  ct mutation is traditionally called as “uzu”,  and the key

mutation of the barley green revolution was also named after  I. nil’s  uzu (contracted)

because  of  their  common semi-dwarf  phenotypes  (Chono  et  al.  2003).  It  was  also

possible to identify the strong candidate for the CT gene by using the combination of the

draft genome and classical linkage map, demonstrating the capability of the assembled

draft genome. It can be expected that the draft genome will maximize future use of the

abundant mutants and genetic knowledge of I. nil. Comparative analysis revealed that

each of I. nil, tomato and kiwifruit had independent WGD events in their genomes, even

though they all belonged to Asterids. One of the major reasons for the fruit-specific gene

neo-functionalization in tomato is reported to be because of a large number of genes

triplicated from the recent WGD event (Tomato Genome Consortium 2012). It could be

assumed that the lineage specific WGDs, observed in I. nil, tomato and kiwifruit, could

have had a major role in shaping the diverse evolution of these plant species. Being the

only  pseudo-chromosomal  level  genome  assembly  in  Convolvulaceae,  the genome
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sequence, linkage map and DNA clones developed in this study will facilitate not only

future studies on I. nil and its related species, but also aid comparative genomic studies

in Solanales.

3.4 Methods

3.4.1 Plant materials and sequencing

An individual of  I.  nil Tokyo Kokei Standard (TKS) line was propagated clonally and

genomic DNA isolated from the flower petals of young buds was used for whole genome

sequencing. A 20 kb library (BluePippin size selection at 7 kb) for P5-C3 chemistry was

constructed.  Ninety  SMRT  cells  were  first  sequenced  on  PacBio  RS  II  system.

Furthermore,  sequencing  libraries  were  prepared  using  the  Illumina  TruSeq  DNA

Sample Prep kit and Nextera Mate Pair Sample Prep kit. Two paired-end and six mate-

pair libraries were constructed and sequenced on the Illumina HiSeq2500, with a read

length of 150 bp. To validate the accuracy of the reference assembly, end sequencing of

a JMHiBa BAC library was carried out using the ABI 3730xl DNA Analyzer. The TKS line

was also used for construction of cDNA and BAC libraries for EST sequences. The

genome size was estimated using a flow cytometer. For transcriptome analysis, tissues

from flowers, stems, leaves, and seed coat (maternal tissue) of the individual; embryos

and roots of its self-pollinated progeny were used, and the mRNA-Seq libraries were

constructed using the Illumina TruSeq mRNASeq Sample Preparation Kit (version 2)

from 600 ng of total RNA, collected from each of the indicated tissues, according to the

manufacturer’s instructions. Sequencing was conducted as paired end reads of 101 bp

on Illumina HiSeq2000. An F2 hybrid population of I. nil lines TKS × Africa (Q63) was

used to construct a RAD-tag based linkage map. Two double-digested RAD libraries (Ly

et al.  2012) were prepared, as described before  (Sakaguchi  et  al.  2015) with slight

modifications  of  the restriction  enzymes and adapters.  The restriction enzyme pairs

were  NdeI/BglII  and  MseI/BglII  (New England Biolabs).  The prepared libraries were

sequenced on an Illumina HiSeq2500 platform as 151-bp single-end reads. Forty-three

I. nil lines were also used to characterize the CT gene. The a3-flecked mutant, Q1072,
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was used to isolate TnpA and TnpD mRNA, and an authentic s mutant line, Q721, was

used for genetic complementation test for the kbt mutant, Q837.

3.4.2 Genome assembly

Before  assembling  the  Illumina  short  read  data  set,  adapters  were  trimmed  using

Cutadapt v1.2.1  (Martin 2011).  Using k-mer frequencies of the short  insert  libraries,

SOAPdenovo2’s error correction module (v2.01) was used to correct errors with a low

frequency  cutoff  of  80  kmers  and  a  minimum  trimmed  read  length  of  50  bp.  The

processed  reads  were  assembled,  scaffolded  and  gap-filled  using  SOAPdenovo2

assembler v2.04 (Luo et al. 2012) with a k-mer value of 115. The work-flow (figure 3.2)

of  the  assembly  of  longer  PacBio  reads began with  contig  assembly  using HGAP3

pipeline  (Chin  et  al.  2013) from  SMRTanalysis  v2.3.0.  For  HGAP3,  the  following

parameters were used: PreAssembler Filter v1 (minimum sub-read length = 500 bp,

minimum polymerase read length = 100 bp, and minimum polymerase read quality =

0.80); PreAssembler v2 (minimum seed read length = 6000 bp, number of seed read

chunks = 6, alignment candidates per chunk = 10, total  alignment candidates = 24,

minimum coverage for correction = 6, and blasr options = “minimum read length = 200

bp,  maximum  score  =  1000,  maximum  LCP length  =  16,  and  noSplitSubReads”);

AssembleUnitig v1 (genome size = 750 Mb, target coverage = 30, overlap error rate =

0.06, minimum overlap length = 40 bp, and overlapper k-mer = 14); Mapping (Maximum

number of hits per read = 10, maximum divergence = 30%, minimum anchor size = 12

bp,  and pbalign options =  “random number  generator  initializing seed =1,  minimum

accuracy = 0.75, minimum length = 50 bp, useQuality, and  placeRepeatsRandomly”).

The polymerase N50 and the sub-read N50 at the assembly phase was recorded as

12.3 kb and 10.5 kb respectively. The initial assembly was followed by two rounds of

polishing by Quiver. To correct PacBio residual errors, the Illumina reads were aligned

against  the  contigs  using  BWA  v0.7.12  (Li  and  Durbin  2009).  After  sorting  the

alignments  and  marking  duplicates  using  Picard  tools  v2.1.1

(http://picard.sourceforge.net/),  Genome Analysis  ToolKit  v3.5  (McKenna et al.  2010)

was used to perform local  realignment around in-dels and to call  variants using the

module,  HaplotypeCaller.  Variant  filtering  was  performed  using  the  expression:
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“DP<20.0 || QD<2.0 || FS>60.0 || MQ<40.0”. The homozygous in-dels were treated as

errors, while the heterozygous in-dels were replaced with Illumina read bases in the

assembled contigs using FastaAlternateReferenceMaker. MUMmer v3.23  (Kurtz et al.

2004) was used to identify and remove contigs, if more than 50% of their sequence was

either mitochondrial or chloroplast sequence. Smaller contigs, which had greater than

98% sequence coverage in other contigs with at least 98% sequence identity, were also

removed from the assembly. The contigs were then scaffolded with the help of 15 and

20 kb Illumina mate pair read libraries, with a minimum of 10 paired read witness links,

without the default scoring option, using BESST scaffolder  (Sahlin et al. 2014). A first

round of  splitting  chimeric  scaffolds  was performed before  gap-filling.  PacBio  reads

were utilized to gap-fill the scaffolds using PBJelly  (English et al. 2012) with the blasr

options “minimum seed length = 8 bp, minimum percent Identity = 70%, report number

of best alignments =1, number of candidates for best alignment = 20, maximum subread

score = 500, and noSplitSubreads”. If the flanking sequences, at the gap junctions, had

an overlap of more than 1 kb, those gaps were filled by joining the flanking sequences

manually.

3.4.3  Linkage  map  construction  and  pseudo-chromosome

assignment

The RAD-seq  technique  (Baird  et  al.  2008) was  employed  to  sequence  2  parent

samples (TKS and Africa lines) and 207 progeny samples. The Illumina short reads

from the parent samples and progeny samples were aligned against the assembly using

BWA v0.7.12. The reads which were not tagged as uniquely mapped, and those which

did not have the requisite restriction enzyme cut site were filtered out. STACKS v1.37

(Catchen et al. 2011) was used to identify SNP and the following two criteria were used

to filter markers: a) Each marker should be present in at least 80% of the samples, and

b) Each sample should have at least 80% of the markers. Also, 150 bp flanking regions

from either side of each SNP location was extracted from the assembly and was aligned

against  each other using BLAST to check for repetitive regions. Any region with an

alignment length of longer than 150 bp were filtered out.  Onemap  (Margarido  et al.
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2007) was used to create linkage maps with an LOD score of 30. TMAP (Cartwright et

al.  2007) was used to  reorder  the  linkage map, along with  manual  inspection.  The

original  classical  map  contained  10  linkage  groups  (LGs),  although  I.  nil has  15

chromosomes  (Yasui  1928).  The  marker  genes  from  seven  of  the  10  LGs  of  the

classical map (Hagiwara 1956) were mapped in the current RAD-based linkage maps,

and the LGs were named 1 to 6 and 10 correspondingly. Because two LGs in our RAD-

marker based map corresponded to LG3 in the classical map, they were accordingly

assigned as LG3 and LG11 with the corresponding marker genes being  DUSKY and

SPECKLED respectively. This coincided with the fact that the DUSKY and SPECKLED

genes were mapped on the different linkage groups in the older linkage analysis (Imai

1929). LGs 7 to 9 and 12 to 15 were numbered randomly.

3.4.4 Mis-assembly elimination and assembly validation

Before  anchoring  scaffolds  to  pseudo-chromosomes,  chimeric  assemblies  were  first

resolved  using  linkage  maps  and  BAC-end  sequences.  Contigs  were  first  aligned

against  the scaffolds using the NUCmer module within  MUMmer v3.23  (Kurtz  et  al.

2004) to identify the contig locations in the scaffolds. If a scaffold contained a stretch of

linkage markers pointing to two different linkage groups with a scaffold junction (N) in

between, it was considered a chimera and was split into two at the junction. If the mis-

assembly occurred at the contig level, the bac-end alignments were used as a key in

splitting chimeric contigs. Based on the order of the linkage maps, the scaffolds were

merged  using  Ns  as  gaps  to  form  pseudo-chromosomes.  The  orientations  of  the

scaffolds were determined using the marker order, and the orientations of scaffolds with

inadequate markers were ignored but included as part  of the pseudo-chromosomes.

The circular view of the genome was generated using Circos (Krzywinski et al. 2009).

CEGMA v2.5 (Parra et al. 2007) and BUSCO (Simão et al. 2015), two commonly used

genome  assembly  validation  pipelines,  were  used  to  validate  the  completeness  of

genes  in  the  assembly.  BLAT was  used  to  align  ESTs  and  BAC-end  paired  reads

against  the  assembly.  In-house  scripts  were  written,  which  calculated  paired  BLAT

scores from both the BAC-end read pairs and picked up the best paired hits based on

the combined score. RNA-seq reads were trimmed using Trimmomatic v0.33 (Bolger et
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al. 2014) and TopHat v2.1.0 (Kim et al. 2013) was used to align the RNA-seq reads with

default parameters. Tandem repeats finder v4.07b (Benson 1999) was used to identify

tandem repeats by assigning values 1, 1, 2, 80, 5, 200, and 2000 bp to match weight,

mismatch weight, indel weight, match probability, indel probablity, minimum score, and

maximum period size respectively. Inspection of short tandem repeats at the ends of the

contigs  revealed  the  monomer  “AAACCCT”  to  be  the  telomeric  repeat.  Manual

inspection of the tandem repeats also revealed the centromeric repeat monomer to be

of approximately 173 bp in length. A tetramer centromeric repeat sequence was used to

search against the whole output of tandem repeats finder using BLAST. The BLAST

alignment results were screened for monomer sequences closer to 173 bp length to

identify centromeric repeat candidates. Tandem centromeric repeat stretches (> 3 kb)

were merged, when they were within a distance of 50 kb and the longest stretch for

every  chromosome  was  identified  to  approximate  the  putative  position  of  the

centromeres.  Infernal  v1.1.1  (Nawrocki  and  Eddy 2013) was  used  to  identify  rDNA

clusters by searching against Rfam v12.0.

3.4.5 Repeat analysis and gene prediction

De novo repeat identification was done using RepeatModeler v1.0.7 which combines

RECON and RepeatScout  (Price  et  al.  2005) programs,  followed by  RepeatMasker

v4.0.2 to achieve the final results.  Tpn1 family transposons were detected using the

following approach: The TIRs of the Tpn1 transposons (28 bp in length) were searched

using BLAST; the aligned TIR coordinates were sorted by their locations; if two nearby

TIRs  contained  the  same TSDs  (3  to  5  bp),  they  were  nominated  as  Tpn1  family

elements. The sub-terminal repeats were also identified using BLAST to determine the

orientation  of  the  Tpn1 elements.  A translated  BLAST search  against  the  identified

transposons using TnpA and TnpD sequences from maize and snapdragon as queries

revealed  non-autonomous  TpnA3  and  TpnA4.  To  isolate  autonomous  Tpn1

transposons, the cDNA fragments of  TnpA and  TnpD  homologue were isolated from

Q1072. Using the isolated cDNA sequences as query, TpnA1 and TpnA2 were identified

by screening against the assembled scaffolds using BLAST. As the 5´ terminal of TpnA1

was  not  assembled  completely  in  the  genome  sequence,  a  BAC  clone  from  TKS
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carrying the entire TpnA1 sequence was isolated and characterized. Repeats obtained

by both the above mentioned approaches were masked for gene prediction. The genes

harboring Tpn1 transposon insertions were identified using the gene and the transposon

co-ordinates and were annotated using the web version of BLASTX. Gene models were

predicted using Augustus v3.2.2 (Stanke and Waack 2003) with tomato as the reference

species,  using  hints  from  RNA-seq  alignments,  and  also  allowing  prediction  of

untranslated regions (UTRs). Because of the scarcity of complete CDs of I. nil in public

databases,  independently,  Augustus  was  also  used  to  predict  gene  models,  after

training using CEGMA predicted genes, and the procedure resulted in more than 55,000

gene  models.  The  189  complete  CDs  sequences  already  available  in  NCBI  were

downloaded and compared against  the  predicted gene models  using  BLAT.  Tomato

based gene models showed that 116 out of 189 CDs were perfectly complete, whereas

CEGMA trained gene models showed that only 61 out of 189 CDs were complete and

hence, the tomato based gene predictions were used for further analysis. The gene

models were translated to  proteins and were aligned against proteins from UniProt-

Swiss-Prot and UniProt-TrEMBL databases using NCBI BLAST+ v2.2.29 (Altschul et al.

1990). Using an e-value cut-off of e-5 for annotation, alignments from the Swiss-Prot

database  were  given  preference  ahead  of  the  TrEMBL database.  In  other  words,

TrEMBL  annotations  were  assigned  for  only  those  entries  without  a  Swiss-Prot

annotation. To extract protein domain annotations, InterProScan v5.19-58.0  (Jones et

al.  2014) was  used  to  assign  Pfam domains  to  the  gene  models.  GO terms were

extracted from the Pfam annotations as well as UniProt annotations.

3.4.6 Comparative analysis

Protein sequences were downloaded from tomato, potato, capsicum, grape, and rice.

OrthoMCL v2.0.9 (Li et al. 2003) was used to construct orthologous gene families, with

an inflation parameter of 1.5. Prior to OrthoMCL, an all-vs-all BLAST was performed to

find similar matches from different species, and the BLAST results were filtered with an

e-value cut-off of e-5, a minimum alignment length of 50 bp, and a percentage match

cut-off of 50. AgriGO  (Du et al.  2010) was used for finding GO enrichments in  I.  nil

specific  gene  families.  MAFFT  v7.221  (Katoh  et  al.  2002) was  used  for  multiple
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sequence alignments of the resultant single copy orthologs, and trimAl v1.4  (Capella-

Gutiérrez et al. 2009) was used to remove poorly aligned regions and to back-translate

protein alignments to CDs alignments. The alignments were filtered using the criteria

that coding sequences from each of the species should have covered at least 95% of

the multiple sequence alignments, thereby, reducing the gaps to less than 5% of the

alignments. RAxML v8.2.4  (Stamatakis 2014) was used to build Maximum Likelihood

phylogenetic trees using the GTRGAMMA model,  with rice as an out-group. BEAST

v2.3.1 (Bouckaert et al. 2014) was used to estimate the divergence times with the Jules

Cantor substitution model, with a lognormal relaxed clock and Yule model. The chain

length of MCMC analysis was 10,000,000. TimeTree  (Hedges et al. 2015) is a public

database containing  divergence time estimates from various publications  along with

their own estimation. These estimates, ignoring the outliers, were used for selecting the

range of lower and upper uniform calibration priors. The lower and upper calibration

values,  in  million years,  were chosen as 1.9–12.8,  15.6–41,  58.6–95.1,  93.3–128.3,

101.2–156.3,  and  110–216  for  the  most  common  ancestor  of  the  seven  species

belonging to  Solanum,  Solanaceae,  Solanales,  asterids, dicotyledons,  and all  plants

respectively.  FigTree  (http://tree.bio.ed.ac.uk/software/figtree)  was  used  to  view  the

phylogenetic  trees.  Synteny  analysis  of  the  15  pseudo-chromosomes  against  the

chromosomes of other species was performed using the MCScanX toolkit (Wang et al.

2012) utilizing options such as maximum gaps = 15 genes, minimum evalue = 1e-10,

and  minimum  match  score  =  50.  PAML’s  (Yang  2007) yn00  module  was  used  to

calculate the Ks values of the orthologous and paralogous gene pairs in the syntenic

regions using Nei-Gojobori method. The assembled genome was compared against the

genome of I. trifida.

3.4.7 Data availability

All sequencing data used in this work are available from the DNA DataBank of Japan

(DDBJ)  Sequence  Read  Archive  (DRA)  under  the  accession  numbers  DRA001121,

DRA002710,  and DRA004158 for  PacBio  and  Illumina  sequencing,  DRA002647 for

RNA-seq,  and  DRA002758  for  RAD-seq.  The  genomic  assembly  sequences  are

available  from accession  numbers  BDFN01000001–BDFN01003416  (scaffolds),  and
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two  organelle  DNA sequences  are  available  from  accession  numbers  AP017303–

AP017304. The EST and BAC-end sequences are available from accession numbers

HY917605–HY949060 and GA933005–GA974698, respectively. Accession numbers for

the CONTRACTED gene, its mutant alleles, and Tpn1 family elements are LC101804–

LC101815. All the above data has been released for public access, as of August 31,

2016, and the accessibility has been verified by the authors.
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Chapter 4

Comprehensive evaluation of non-hybrid

genome  assembly  tools  for  third

generation  PacBio  long-read sequence

data
Long reads obtained from third generation sequencing platforms can help overcome the

long-standing challenge of the de novo assembly of sequences for the genomic analysis

of non-model  eukaryotic organisms.  Numerous long read-aided  de novo  assemblies

have  been  published  recently,  which  exhibited  superior  quality  of  the  assembled

genomes in comparison to those achieved using earlier second-generation sequencing

technologies. Evaluating assemblies is important in guiding the appropriate choice for

specific research needs. In this study, we evaluated ten long-read assemblers using a

variety  of  metrics  on  PacBio  datasets  from  different  taxonomic  categories  with

considerable differences in genome size. The results allowed us to narrow down the list

to a few assemblers that can be effectively applied to eukaryotic assembly projects.

Moreover,  we  highlight  how  best  to  use  limited  genomic  resources  for  effectively

evaluating the genome assemblies of non-model organisms.

4.1 Background

Pacific Biosciences (PacBio) Single Molecule Real Time (SMRT) and Oxford Nanopore

sequencing  technologies  are  the  two  widely  used  third-generation,  single-molecule

sequencing (SMS) technologies, which can generate average read lengths of several

thousand  base  pairs.  SMRT  sequencing  technology  suffers  from  high  error  rates

reaching up to 15% (Lee et al. 2016); however, since these errors are random, high-

quality error-corrected consensus sequences can be generated with sufficient coverage.
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Application of SMRT sequencing to eukaryotic genomes (Hoshino et al. 2016; Korlach

et al. 2017; Allen et al. 2017; Lan et al. 2017; Gordon et al. 2016; Sakai et al. 2015;

Conte et al. 2017; Vij et al. 2016; Weissensteiner et al. 2017; Bickhart et al. 2017; Shi et

al. 2016; Jiao et al. 2017; Pendleton et al. 2015; Du et al. 2017; VanBuren et al. 2015;

Jiao  et  al.  2017;  Steinberg  et  al.  2016) has  already  demonstrated  the  obvious

advantages provided by long reads in  de novo assembly,  such as higher contiguity,

lesser gaps, and fewer errors. The assembled contigs of recently assembled plant and

animal genomes can be routinely seen to achieve an N50 of 1 Mb using SMS data.

Hence a significant rise in the number of genomes sequenced using SMS technologies

is  imminent,  raising  the  need  for  evaluation  of  the  available  long-read  assemblers.

Large-scale evaluation studies such as GAGE (Salzberg et al. 2012), GAGE-B (Magoc

et al.  2013),  Assemblathon  (Earl  et  al.  2011),  and Assemblathon 2  (Bradnam et  al.

2013) have  been  attempted  with  short-read  assemblers,  providing  conclusions  that

serve as a useful guide for the de novo assembly of a given target organism. Although

such evaluations have also been attempted for SMS data, these studies were either

focused on bacterial and smaller eukaryotic genomes  (Sović et al. 2016; Istace et al.

2017), or were not sufficiently comprehensive to cover all of the available non-hybrid

long-read assemblers  (Koren et al.  2017; Vaser et al.  2017; Xiao et al. 2016), while

others are already outdated because of  continuous improvements in the technology

(Cherukuri and Janga 2016; Liao et al. 2015). Also genome size was found to correlate

with contiguity in long-read assemblies (Jiao et al. 2017), hence, diverse genome sizes

can help differentiate the effect of the assemblers on each dataset. In this study, we

attempted  to  comprehensively  evaluate  three  important  features—contiguity,

completeness, and correctness (Lee et al. 2016)—of long-read assemblers (table 4.1),

using  SMRT  data  of  a  bacterium  (Escherichia  coli,  ~5  Mb),  protist  (Plasmodium

falciparum,  ~23  Mb),  nematode  (Caenorhabditis  elegans,  ~105  Mb),  and  plant

(Ipomoea nil, ~750 Mb). We also designed a pipeline (figure 4.1) for assembling the

data and evaluating the results of different assemblers, which can be applied to both

model organisms as well as to non-model organisms with limited genomic resources.
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Figure 4.1. Evaluation pipeline.

4.2 Materials and methods

4.2.1 Long-read assembly pipelines

Overlap Layout Consensus (OLC) approach, de Bruijn graphs, and string graphs are

the commonly used algorithms for  de novo assembly (Myers 2014; Simpson and Pop

2015; Chen et al. 2017; Chaisson et al. 2015). The advent of SMS data introduced a

new challenge in de novo assembly because of the high error rates. Hence, application

of de Bruijn graphs was rendered unfeasible  (Kamath et al. 2017), bringing back the

OLC approach along with the string graphs to higher prominence. The longer the reads,

the more efficient the assembly using the OLC approach, resulting in a linear increase

in contiguity (Koren et al. 2012). Although second generation sequencing (SGS) reads

were initially used for correcting long reads (Chin et al. 2013), most of the current long-

read OLC pipelines follow a hierarchical approach (figure 4.2), exclusively using SMS

data as follows: a) select a subset of longer reads as seed data; b) use shorter reads to

align  against  the  longer  seed  data  as  reference,  and correct  sequencing  errors  by

consensus of the aligned reads; c) use the error-corrected reads for a draft assembly;

and d) obtain a polished consensus of the draft assembly (Chin et al. 2013; Li 2016).

The  procedure  to  identify  overlaps  has  been  the  key  difference  in  most  long-read
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assemblers,  and  some  of  the  overlap  detection  methods  have  been  evaluated

previously (Chu et al. 2017). 

Figure 4.2. Hierarchical pipeline for OLC assembly approaches. Errors are displayed in

Step C, which become reduced in number in the corrected reads. After assembly, a consensus

polishing step, which is not shown in the figure, will also be performed as part of the hierarchical

pipeline.

The long-read assemblers assessed in the present work are briefly summarized below.

4.2.1.1 Hierarchical Genome Assembly Process (HGAP)

HGAP (Chin et al. 2013) was one of the first hierarchical pipelines to exclusively use

SMS reads for assembling a genome. Higher-quality pre-assembled reads with around

25–30× coverage are generated by aligning shorter reads against longer seed reads.

The pre-assembled reads are then fed to the celera assembler  (Myers et al. 2000) to

obtain a draft assembly, followed by applying a consensus polishing procedure called

quiver.  BLASR  (Chaisson and Tesler  2012) is  used for  aligning candidate overlaps,

which are identified using an FM-index search and clustering of k-mer hits. The slower

BLASR-based  pipeline  was  replaced  by  FALCON  in  the  latest  version  (v4).  To
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distinguish between HGAP v3 and v4, the version used in the present evaluation is

referred to as HGAP3.

4.2.1.2 PBcR

PBcR  (Berlin  et  al.  2015) also  follows  the  hierarchical  approach  using  MinHash

Alignment Process (MHAP) for overlap detection. To identify k-mers shared between

overlapping  reads,  without  performing  any  alignments,  k-mers  of  query  reads  are

converted to integer fingerprints using multiple hash functions. The minimum values

from the multiple hash functions are used to create a set called MinHash sketch, for

each  read.  MHAP  then  calculates  the  Jaccard  similarity  index  by  comparing  the

sketches of query reads to identify overlap candidates. Like HGAP3, the assembly of

the corrected reads is performed using the celera assembler.

4.2.1.3 Canu

Canu (Koren et al. 2017) is a fork of the celera assembler and improves upon the earlier

PBcR pipeline into a single, comprehensive assembler. Highly repetitive k-mers, which

are abundant in all the reads, can be non-informative. Hence term frequency, inverse

document  frequency  (tf-idf),  a  weighting  statistic  was  added  to  MinHashing,  giving

weightage to non-repetitive k-mers as minimum values in the MinHash sketches, and

sensitivity  has  been  demonstrated  to  reach  up  to  89%  without  any  parameter

adjustment.  By  retrospectively  inspecting  the  assembly  graphs  and also  statistically

filtering out repeat-induced overlaps, the chances of mis-assemblies are reduced.

4.2.1.4 FALCON

FALCON (Chin et al. 2016) is a hierarchical, haplotype-aware genome assembly tool.

The sequence data are split into blocks for comparison using daligner  (Myers  2016).

Daligner  first  compiles  a  list  of  k-mers,  along  with  their  read  identifiers  and  read

coordinates, and then sorts them lexicographically. Identical k-mers from each block are

merged into a new list containing both the query identifiers and their coordinates. A

second sorting  procedure,  accounting  for  the query coordinates,  places neighboring

matches adjacent to each other, resulting in the identification of overlap candidates. A

directed string graph is created from the alignment of the overlaps, with a collapsed

diploid-aware layout, while maintaining the heterozygosity information.
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4.2.1.5 HINGE

HINGE  (Kamath  et  al.  2017) is  one  of  the  few assemblers  not  requiring  an  error-

correction  step.  Dalinger  is  used  for  overlap  detection.  The  key  innovation  of  this

assembler is the placement of hinges to mark repeat regions that are not spanned by

longer reads. Repeats are identified using the coverage gradients of the alignments,

and an in-hinge and an out-hinge are marked on the reads, which are on the boundaries

of unbridged repeats. Only two reads per repeat region, which have the longest overlap

within the repeat, are chosen for placing the hinges. When a repeat is spanned by a

completely bridged read, the other overlapping reads are marked as poisoned and not

considered for hinge placing, thereby separating bridged repeats. Hinge-aided greedy

graphs are used to resolve repeat junctions before obtaining a consensus.

4.2.1.6 Miniasm

Miniasm (Li 2016) was the first long-read assembler to not employ error correction and

hence is fast. Minimap is used for overlap detection, which indexes subsampled k-mers,

by the principle of minimizers (Roberts et al. 2004), from all the reads in a hash table,

against which the query minimizers are then compared. The matches are sorted and

clustered to find the longest collinear matching chains to identify overlap candidates. An

assembly  graph  layout  is  subsequently  constructed from the  collinear  matches and

output  as  the  assembled  contigs,  without  building  any  consensus.  Because  error-

correction  and  consensus  procedures  are  not  executed,  the  error  rate  of  the  final

assembly is equivalent to that of the raw reads. To circumvent this, Racon (Vaser et al.

2017),  a  consensus  module,  was  shown  to  generate  high-quality  contigs  within

reasonable  run  times  and  is  included  in  the  present  study  as  part  of  the  miniasm

pipeline.

4.2.1.7 SMARTdenovo

SMARTdenovo  (https://github.com/ruanjue/smartdenovo)  is  another  fast  assembler,

which  can also  work  without  error  correction  of  the  raw reads.  Similar  to  minimap,

SMARTdenovo searches subsampled query k-mers in indexed hash tables, which are

then sorted and merged into collinear matches. Alignment using a dot-matrix alignment

method  is  performed  for  adjacent  matches,  and  the  overlap  candidates  are
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subsequently  input  to  a  string  graph  layout.  The  consensus  module  can  reach  an

accuracy of up to 99.7%, albeit taking up much of the entire computational time.

4.2.1.8 ABruijn

A de Bruijn graph is a directed graph that is generally constructed from k-1 overlaps of

adjacent k-mers. Rather, a set of solid strings (frequent k-mers), instead of all k-mers, is

used to construct the ABruijn graphs (Lin et al. 2016), because of the high error rates in

SMS reads. A fast dynamic programming approach is used to find the longest common

subpaths to obtain a rough estimate of the overlaps between two reads. Overlapping

read  vertices  are  added  onto  the  graph  and  the  draft  assembly  is  subsequently

constructed.  After  aligning  reads  against  the  draft  assembly,  ABruijn  graphs  are

constructed again to obtain a polished consensus assembly.

4.2.1.9 Wtdbg

Wtdbg (https://github.com/ruanjue/wtdbg) is another assembler that uses the framework

of de Bruijn graphs. Unlike ABruijn graphs, overlapping k-mer hits are identified among

the  reads  using  a  sorting  approach  similar  to  that  adopted  in  minimap  and

SMARTdenovo,  and the hits  are used to  add on and construct  the fuzzy de Bruijn

graphs.  The  resulting  graphs,  in  comparison  to  ABruijn  graphs,  have  reduced

complexity and thereby consume lesser memory.

4.2.1.10 Mapping, Error Correction and de novo Assembly Tool

Mapping,  Error  Correction and  de novo  Assembly  Tool  (MECAT)  (Xiao  et  al.  2016)

scans for identical  k-mers, in blocks of sequences among query reads, to calculate

distance difference factor  (DDF) between neighboring k-mer hits.  When the DDF is

within a specified threshold, scores are assigned to the blocks of k-mers and extended

to neighboring blocks. With the scoring mechanism, a large number of irrelevant read

overlap candidates are filtered out, significantly reducing the computational time before

alignment. After error correction, the corrected reads are pairwise-aligned and fed into a

modified canu pipeline to construct contigs.
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4.2.2 Datasets for evaluation

The evaluation datasets were broadly chosen in such a way that i) data are available for

public use, and ii) genomes are of diverse sizes.

Initially, the standard bacterial model organism Escherichia coli was chosen, and

the sequence data (1 SMRT cell:  approximately 140× coverage) of P6-C4 chemistry

(figure  4.3A)  was  downloaded  from  the  PacBio  DevNet  website

(https://github.com/PacificBiosciences/DevNet/wiki/Datasets).

Plasmodium falciparum  (protist) is one of the few smaller eukaryotic genomes

with  long-read data available.  Although the genome is only  approximately 23 Mb in

length, it contains 14 chromosomes with a relatively high repeat content of 51.8% and a

very high AT% of 80.6%  (Girgis 2015).  P. falciparum sequence data (9 SMRT cells:

approximately 180× coverage) of P6-C4 chemistry (figure 4.3B) were downloaded from

the  National  Center  for  Biotechnology  Information’s  Sequence  Read  Archive

(SRA360189) (Vembar et al. 2016).

In contrast to  P. falciparum,  Caenorhabditis elegans (nematode) has a genome

size of approximately 105 Mb, but with only six, although much longer, chromosomes.

The genome is also estimated to contain approximately 20,000 genes making it more

complex  when  compared  to  those  of  E.  coli and  P.  falciparum,  which  have  only

approximately  5,000  genes  each.  There  are  also  relatively  fewer  transposons

(approximately  12%),  although  they  are  sufficiently  long  (1–3  kb)  to  confound  the

genome assembly  (Tyson et  al.  2017).  C. elegans  sequence data (11  SMRT cells:

approximately 45× coverage) of P6-C4 chemistry (figure 4.3C) were also downloaded

from the PacBio DevNet website.

Next,  we  tackled  the  main  challenge  of  focus  for  this  evaluation  using  the

genome of a non-model plant with a high repetitive content and longer repeats. For this

purpose, Ipomoea nil (plant) data (Hoshino et al. 2016) of P5-C3 chemistry (figure 4.3D)

were  obtained  based  on  our  previous  work  (90  SMRT  cells:  approximately  50×

coverage; DRA002710). I. nil has a highly repetitive (64%) genome of an estimated size

of 750 Mb, with limited available genomic resources,  providing a good measure for

similar  repetitive  plant  genomes.  To  evaluate  the  correctness  of  the  I.  nil genome

assemblies,  restriction  site-associated  DNA  (RAD)-seq  (DRA002758),  expressed

sequence  tags  (ESTs;  HY917605–HY949060),  and  bacterial  artificial  chromosome

(BAC)-end data (GA933005–GA974698) were used.
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PacBio RSII was the sequencer employed in all cases. The P6-C4 chemistry, in

comparison to P5-C3, has shown an increase in average read lengths and therefore the

average read lengths of the  I. nil  data set are slightly shorter than those of the other

data sets (figure 4.3). The reason for choosing only SMRT data for the present study is

that one of the aims was to evaluate long-read assemblies without depending on SGS

data, whereas the non-random errors of Nanopore data may still have to rely on more

accurate Illumina data (Schmidt et al. 2017; Jain et al. 2017). All four datasets were pre-

processed  using  HGAP3  to  obtain  filtered  subreads  for  assembly.  Two  rounds  of

consensus  polishing  were  applied  to  all  assemblies  using  quiver.  The  jobs  were

executed on a node with a Intel Xeon E7-8870 processor (2.40 GHz) consisting of 160

cores and a memory of 2019.8 Gb under the operating system of RHEL v6.5. SGE was

used for job management and the qacct command was used to access the maximum

RSS and CPU time registered by the jobs. 

Figure 4.3. Read length distributions of A) E. coli, B) P. falciparum, C) C. elegans, and D)

I. nil datasets. The binwidth used for the plotting was 50.

4.2.3 Criteria for evaluation

For assessing the assembly results, we considered various metrics (figure 4.1). Apart

from N50 and L50 measures, the average contigs-to-chromosomes (ctg/chr) ratio was

calculated for assessing contiguity. For gene-level completeness, BUSCO (Simão et al.

2015) and CEGMA (Parra  et al. 2007) were used. In eukaryotic contigs, the terminal
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regions were scanned using tandem repeats finder (Benson 1999) for the presence of

telomeres. Peak computational memory in the form of Maximum resident set size (RSS)

and  CPU  time  were  determined  to  compare  computational  requirements.  When

complete  reference  sequences  were  available,  single  nucleotide  variations  (SNVs),

indels,  and  structural  variations  (SVs)  were  analyzed from QUAST  (Gurevich  et  al.

2013) and Assemblytics  (Nattestad and Schatz 2016) to evaluate correctness; unique

SVs  provided  a  relative  measure  of  assembly  errors.  In  addition,  dot  plots  were

visualized for rearrangements. The percentage of reference sequences covered by the

assemblies was calculated using MUMmer (Kurtz et al. 2004) alignments.

For the non-model organism I. nil, linkage maps were constructed from RAD-seq

(Baird et al. 2008) data using STACKS (Catchen et al. 2011), to identify mis-assembled

contigs. Because the marker density of the linkage maps was low, this also provided a

good  measure  for  contiguity,  as  larger  contigs  have  a  better  chance  of  being

incorporated in the linkage maps. ESTs and BAC-end reads were used for assessing

completeness. Longer contigs had a better chance of concordantly mapping the 100-kb

insert-sized  BAC-end  read  pairs,  whereas  discordant  mapping  rates  provided  an

indirect measure of mis-assemblies. Whole BAC sequences, of approximately 100 kb in

length, were used to assess contiguity and completeness, and also to identify SNVs and

indels. Tpn1 transposons, a unique feature of I. nil flowers (Hoshino et al. 2016), were

also considered to assess completeness.

For  E. coli, all  the assemblers reconstructed the bacterial chromosome in one

piece.  Therefore only,  the following metrics were taken into  account  for  ranking the

assemblers:

● Circularity resolved or unresolved
● Number of mismatches per 100 kb from QUAST, in decreasing order
● Number of SVs, in decreasing order
● Length of SVs, in decreasing order
● CPU time, in decreasing order
● Maximum RSS, in decreasing order

For  P.  falciparum  and  C.  elegans,  the  following  criteria  were  used  for  ranking  the

assemblers:

● Number of assembled contigs, in decreasing order
● N50 values, in increasing order
● L50 values, in decreasing order
● Number of mismatches per 100 kb from QUAST, in decreasing order
● Number of SVs, in decreasing order
● Length of SVs, in decreasing order
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● Number of SVs unique to the assemblers, in decreasing order
● Mean of percentage of chromosomes covered by contigs, in increasing

order
● Number of telomeres, in increasing order
● Number of complete genes from BUSCO, in increasing order
● CPU time, in decreasing order
● Maximum RSS, in decreasing order

For the non-model organism, I. nil, the following metrics were used for ranking:

● Number of assembled contigs, in decreasing order
● N50 values, in increasing order
● L50 values, in decreasing order
● Number  of  BAC-end  read  pairs  mapped  onto  the  same  contigs,  in

increasing order
● Number of discordantly mapped BAC-end read pairs, in decreasing order
● Number of mapped ESTs, in increasing order
● Number of transposons, in increasing order
● Number of telomeres, in increasing order
● Number  of  contigs  incorporated  in  linkage  maps,  in  decreasing  order

(longer and hence fewer contigs are incorporated in the linkage maps)
● Length of contigs incorporated in linkage maps, in increasing order
● Number of mis-assembled contigs, in decreasing order
● Length of mis-assembled contigs, in decreasing order
● Average per base accuracy observed in five whole BAC sequences, in

increasing order
● Number of complete genes from BUSCO, in increasing order
● CPU time, in decreasing order
● Maximum RSS, in decreasing order

The ranks for all  criteria were summed up for  each assembler.  The summed

score, in the decreasing order, was used for assigning an overall rank. Also, z-scores

were  calculated  for  all  observed  metrics,  so  that  significant  observations  received

rewards or  penalties  (Bradnam et  al.  2013).  The average  of  the  z-scores,  from all

metrics,  for  each assembler  was plotted  to  observe z-score  based rankings,  which

displayed high and low scores for better  and worse performances,  respectively.  For

assemblies which failed during execution, either they were left out from the rankings or

assigned arbitrary low rankings.
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4.3 Results

4.3.1 Contiguity

All of the assemblers reported good contiguity (table 4.1).

4.3.1.1 Escherichia coli

A single contig representing the complete bacterial genome was reconstructed by all the

assemblers (table 4.2).

4.3.1.2 Plasmodium falciparum

Fewer  number  of  contigs  (15–43  contigs),  high  N50  values  (1.2–1.7  Mb),  low  L50

values (5–7), and low ctg/chr ratios (1–2.27 ratios) were generally observed in all the

assemblies, representing high level of contiguity,  despite the repetitive nature of the

genome. MECAT, in particular, reconstructed every chromosome in one piece, whereas

miniasm, SMARTdenovo, and wtdbg produced comparatively fragmented or redundant

contigs (table 4.3).

4.3.1.3 Caenorhabditis elegans

The N50 exceeded 1 Mb in all, but the PBcR assembly. Canu had the best N50 (3.6

Mb) and L50 (11) values, while PBcR had low N50 (847 kb) and high L50 (38) values. In

general,  six  contigs,  on  an  average,  were  found  to  be  sufficient  to  represent  a

chromosome (table 4.4).

4.3.1.4 Ipomoea nil

HGAP3  obtained  the  best  contiguity  (N50=1.53  Mb;  L50=120)  and  was  the  only

assembler to have contigs more than 10 Mb in length. Canu and FALCON shared the

next best N50 (934 and 904 kb respectively) and L50 values (191), while both wtdbg

and miniasm had fragmented assemblies (table 4.5).

The shorter the genome, the lesser the differences observed in contiguity among

the assemblers.  However,  with longer genomes, the contiguity  profiles progressively

started to differ among the assemblers.
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Table 4.1. Summarized statistics of the assemblies

Organism # Contigs

Assembly

Size (Mbp)

Longest

Contig

(Mbp)

N50

(Mbp) L50

CPU

time

(hours)

Max  RSS

(GB)

E. coli

(4.6 Mb)

Maximum 1 4.7 4.7 4.7 1 83.9 44.5

Minimum 1 4.6 4.6 4.6 1 2.2 3.6

Mean 1 4.7 4.7 4.7 1 19.4 15.7

P.

falciparum

(23 Mb)

Maximum 43 23.8 3.3 1.7 7 2012.6 43.9

Minimum 15 23.1 2.1 1.3 5 20.1 4.5

Mean 26.3 23.4 2.9 1.5 6.1 441.7 22.7

C.

elegans

(105 Mb)

Maximum 452 106.9 7.1 3.7 38 6733.8 251.7

Minimum 68 101.9 2.7 0.8 11 13.4 10.1

Mean 166.7 104.2 5.1 2.2 19.4 1221.4 56.9

I. nil

(750 Mb)

Maximum 8751 752.7 11.5 1.8 1194 28504.7 331.2

Minimum 1697 642 2.5 0.1 104 129.7 16.2

Mean 4288 702.7 6.2 0.7 439.4 10065.8 78.2

L50 and N50 represents the number of contigs and the length of the contig, respectively, crossing 50%

mark of the assembly. Higher N50 and lower L50 values indicate highly contiguous assemblies. Max RSS

represents the peak memory usage of the computational node.

4.3.2 Completeness

4.3.2.1 Escherichia coli

In  all  the  cases,  the  assembly  size  was  slightly  larger  than  that  of  the  reference

genome, with 99.9% BUSCO completeness (table 4.2).
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Table 4.2. E. coli assembly statistics after Circlator and two rounds of polishing by quiver.

ABruijn Canu FALCON HGAP3 HINGE MECAT Miniasm PBcR SMARTdenovo Wtdbg

# Contigs 1 1 1 1 1 1 1 1 1 1

Total length 4642496 4642496 4642497 4681591 4642496 4679737 4642496 4642496 4642497 4695247

# mismatches per 100 kbp 0.09 0.09 0.09 0.11 0.09 0.09 0.09 0.09 0.09 0.41

# indels per 100 kbp 0.11 0.11 0.09 0.41 0.11 0.41 0.11 0.11 0.09 3.25

GC (%) 50.79 50.79 50.79 50.74 50.79 50.75 50.79 50.79 50.79 50.79

Insertions (Count) 3 3 3 24 3 26 3 3 3 135

Insertions (Total bases) 780 780 780 801 780 803 780 780 780 944

Deletions (Count) 2 2 2 23 2 26 2 2 2 183

Deletions (Total bases) 2 2 2 25 2 28 2 2 2 244

Tandem expansions (Count) 1 1 1 1 1 1 1 1 1 1

Tandem expansions (Total bases) 181 181 181 181 181 181 181 181 181 181

Tandem contractions (Count) 1 1 1 1 1 1 1 1 1 1

Tandem contractions (Total 

bases)
113 113 113 113 113 113 113 113 113 113

Repeat expansions (Count) 0 0 0 0 0 0 0 0 0 0

Repeat expansions (Total bases) 0 0 0 0 0 0 0 0 0 0

Repeat contractions (Count) 1 1 1 0 1 0 1 1 1 1

Repeat contractions (Total 

bases)
2 2 1 0 2 0 2 2 1 171
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Table 4.3. P. falciparum assembly statistics after two rounds of polishing by quiver.

ABruijn Canu FALCON HGAP3 MECAT Miniasm PBcR SMARTdenovo Wtdbg

# contigs 18 23 20 27 15 43 27 30 34

Total length 23358918 23113319 23170402 23756014 23282583 23223896 23116444 23580097 23633779

Longest contig 3294952 2433823 3274628 3293149 3295200 2885033 2112509 2255642 3298739

Contig to chromosome ratio 1.20 1.53 1.33 1.80 1.00 2.87 1.80 2.00 2.27

N50 1590706 1380424 1658395 1722570 1682661 1268890 1393365 1338823 1390642

N75 1322391 1212433 1314993 1345118 1420518 875865 1174904 935228 999885

L50 5 7 5 5 5 7 7 7 7

L75 9 11 9 9 9 12 12 13 11

GC (%) 19.31 19.34 19.18 19.44 19.26 19.06 19.15 19.32 19.31

# mismatches per 100 kbp 5.05 5.82 5.03 5.69 4.31 4.76 4.95 5.99 7.11

# indels per 100 kbp 32.48 32.92 31.26 31.12 30.28 33.93 31.26 36.89 44.44

Insertions (Count) 7707 7652 7702 8043 7651 9663 7587 8361 11941

Insertions (Total bases) 11630 11805 11835 12236 11718 14074 11526 12710 17036

Deletions (Count) 546 573 667 846 532 1113 530 784 2125

Deletions (Total bases) 1917 1866 1978 2351 1742 2442 1731 2763 3885

Tandem expansions (Count) 23 26 22 30 24 26 25 23 23

Tandem expansions (Total bases) 17747 19320 18897 44815 19261 23646 19289 18513 14990

Tandem contractions (Count) 7 8 7 9 8 8 7 8 7

Tandem contractions (Total bases) 9893 966 646 1144 1054 941 715 1072 1036

Repeat expansions (Count) 4 5 6 6 6 4 4 5 6

Repeat expansions (Total bases) 1139 1597 2407 2408 2407 1139 2348 1952 8035

Repeat contractions (Count) 1 1 1 2 2 2 1 2 2

Repeat contractions (Total bases) 810 810 810 925 914 899 810 916 8162

SVs unique to assemblers 389 384 583 914 311 3045 332 1176 6448

CEGMA completeness (%) 68.95 70.16 69.76 69.35 69.35 68.95 68.95 68.95 69.76

BUSCO completeness (%) 68.4 67.4 68.4 68.8 67.9 68.8 68.4 68.9 68.8
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Table 4.4. C. elegans assembly statistics after two rounds of polishing by quiver.

ABruijn Canu FALCON HGAP3 MECAT Miniasm PBcR SMARTdenovo Wtdbg

# contigs 68 107 95 452 100 108 272 128 170

Total length 102198820 106924671 101860568 105433602 101981214 105235071 103377354 105906666 104656824

Largest contig 4905601 6865821 6911456 4285935 3700778 7083682 2667744 3707098 5325592

Contig to chromosome ratio 11.33 17.83 15.83 75.33 16.67 18.00 45.33 21.33 28.33

N50 2841666 3694474 2660163 1592494 1675869 3140582 847486 1737100 1860672

N75 1692214 2099774 1482622 770707 1035355 1910694 445476 901376 866559

L50 14 11 13 23 22 12 38 23 19

L75 26 21 26 47 42 24 80 44 42

GC (%) 35.49 35.93 35.5 35.85 35.48 36 35.79 36.07 36.06

# mismatches per 100 kbp 15.68 16.39 14.54 15.17 16.89 15.18 10.42 14.97 16.37

# indels per 100 kbp 23.11 19.22 20.17 23.71 20.09 23.84 21.25 24.71 33.47

Insertions (Count) 9003 5552 5194 6523 5127 8210 3994 10105 19057

Insertions (Total bases) 96305 92578 78466 85237 73150 99955 60654 89745 137376

Deletions (Count) 29576 23048 24046 27848 22596 28896 22960 29509 36429

Deletions (Total bases) 43829 34728 35073 41362 33203 44748 35431 42701 53885

Tandem expansions (Count) 337 337 317 297 321 329 250 314 276

Tandem expansions (Total bases) 556384 561758 480122 357164 507875 517687 273897 460610 345345

Tandem contractions (Count) 41 39 38 49 38 55 36 43 61

Tandem contractions (Total bases) 28738 20281 28188 42896 18358 64948 12434 21196 112977

Repeat expansions (Count) 73 65 65 55 65 73 42 70 70

Repeat expansions (Total bases) 186691 171802 172052 123543 172320 181680 97462 187370 156187

Repeat contractions (Count) 27 23 27 32 27 34 26 27 39

Repeat contractions (Total bases) 19847 5393 7107 18896 17750 38847 7216 13177 27248

SVs unique to assemblers 69 49 69 115 93 60 191 99 112

CEGMA completeness (%) 97.18 96.77 97.18 97.58 95.97 97.58 97.58 96.77 94.76

BUSCO completeness (%) 98.9 98.2 98.7 99.1 98.9 98.8 99.2 98.9 97.2
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Table 4.5. I. nil assembly statistics after two rounds of polishing by quiver.

Canu FALCON HGAP3 MECAT Miniasm PBcR SMARTdenovo Wtdbg

# contigs 1697 2030 5678 3365 6772 4417 3175 8751

# contigs (>= 1 Mb) 169 171 195 99 52 136 93 16

# contigs (>=5 Mb) 5 3 14 2 0 2 1 0

# contigs (>=10 Mb) 0 0 2 0 0 0 0 0

Total length 701070001 676319005 746608706 693078889 752718457 725755666 694182782 642008886

Largest contig 7370807 6459633 12514902 5654447 3041154 7746741 5220514 2501541

Contig to 

chromosome ratio
113.13 135.33 378.53 224.33 451.47 294.47 211.67 583.40

N50 934355 904306 1532223 443860 251632 575269 402510 126410

N75 462826 431538 651327 189611 110987 244401 189208 57292

L50 191 191 120 351 747 315 422 1194

L75 461 463 312 946 1868 804 1048 3090

GC (%) 37.08 36.98 37.7 37.04 37.34 37.08 37.08 36.67

CEGMA 

completeness (%)
94.76 93.55 93.95 94.76 93.95 94.35 94.76 92.34

BUSCO 

completeness (%)
93.8 93.5 93.7 93.9 93.7 93.9 94 92.9
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4.3.2.2 Plasmodium falciparum

On average, the contigs covered the 14 chromosomes in the range of 95.67–99.90%.

Excluding ABruijn, the apicoplast genome was assembled by all the assemblers, while

the mitochondrial genome was only present in the HGAP3 assembly. Canu was able to

reconstruct 23 of the 28 telomeres, whereas the PBcR and wtdbg assemblies resolved

less than 10 telomeres (table 4.6). Intriguingly, Miniasm was unable to resolve even a

single  telomere.  BUSCO  analysis  showed  67.4–68.9%  completeness  for  all  the

assemblies, while it should be noted that the original reference sequence also yielded

only 68.8% completeness.

4.3.2.3 Caenorhabditis elegans

At  least  99% of  all  the  chromosomes  were  covered  by  the  assembled  contigs  on

average,  excluding  the  wtdbg assembly.  Canu  and HGAP3 produced  10 out  of  12

telomeres,  whereas  wtdbg  produced  only  a  single  telomere  (table  4.7).  All  the

assemblies also showed high BUSCO (97.2–99.2%) completeness ratios.

4.3.2.4 Ipomoea nil

Most of the assemblies fell  short of the expected genome size of 750 Mb, however

BUSCO reported completeness ratios in the range of 92.9–94%. Most of the assemblies

mapped around 99% of  the ESTs and BAC-end reads (table 4.8).  PBcR (314)  and

HGAP3 (311) resolved the largest number of Tpn1 transposons, followed by canu (307)

and MECAT (307). MECAT (18), FALCON (16), and SMARTdenovo (16) were better at

resolving telomeres (table 4.8).

Some smaller PBcR contigs were present redundantly and were covered within

larger contigs with short overhangs. The high BUSCO and CEGMA ratios indicated that

the gene regions were captured effectively, despite differences in the assembly sizes.

The shorter, circular, and high-copy nature of the mitochondrial genomes could have

possibly confounded the assemblers and were largely unassembled.
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Table 4.6. Telomere composition of P. falciparum assemblies.

Chromosome ABruijn Canu FALCON HGAP3 MECAT Miniasm PBcR SMARTdenovo Wtdbg

1 1 2 1 1 0 0 1 2 1

2 1 1 1 2 2 0 0 0 0

3 2 2 0 1 0 0 0 2 0

4 2 1 2 2 2 0 0 1 1

5 1 2 0 1 2 0 1 1 1

6 2 1 1 2 2 0 1 2 1

7 2 2 1 2 1 0 0 2 0

8 1 2 1 1 2 0 0 2 0

9 1 2 1 0 2 0 0 1 1

10 1 1 0 0 1 0 0 2 0

11 2 2 0 2 2 0 1 2 1

12 1 1 1 1 2 0 0 2 1

13 1 2 1 1 1 0 0 1 0

14 2 2 1 2 2 0 1 2 1

Total 20 23 11 18 21 0 5 22 8
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Table 4.7. Telomere composition of C. elegans assemblies.

Chromosome ABruijn Canu FALCON HGAP3 MECAT Miniasm PBcR SMARTdenovo Wtdbg

1 2 1 0 1 1 1 1 1 0

2 2 2 1 2 2 1 1 2 0

3 1 2 1 1 2 1 0 1 0

4 1 1 2 2 1 1 1 1 1

5 1 2 0 2 1 2 1 2 0

X 1 2 1 2 2 1 2 1 0

Total 8 10 5 10 9 7 6 8 1

Table 4.8. Mapping of Bac-end reads, ESTs, and Tpn1 transposons against I. nil assemblies.

Canu FALCON HGAP3 MECAT Miniasm PBcR SMARTdenovo Wtdbg

Bac-end 

reads

# mapped read pairs 20832 20832 20828 20832 20830 20830 20832 20830

% of mapped read pairs 99.93 99.93 99.91 99.93 99.92 99.92 99.93 99.92

# read pairs mapped in the same contigs 19319 18341 19679 17766 16213 17933 17492 11525

% of read pairs mapped in the same 

contigs
92.67 87.98 94.40 85.22 77.77 86.02 83.91 55.28

# discordant read pairs 851 1325 1152 981 528 967 867 217

% of discordant read pairs 4.08 6.36 5.53 4.71 2.53 4.64 4.16 1.04

ESTs

# mapped ESTs 92864 92697 92860 92813 92826 92759 92847 91988

% of mapped ESTs 99.12 98.94 99.11 99.06 99.08 99.01 99.10 98.18

# mapped ESTs with >90% coverage 91984 91586 91989 91844 91898 91855 91948 90670

% of mapped ESTs with >90% coverage 98.18 97.75 98.18 98.03 98.09 98.04 98.14 96.78

# Tpn1 transposons 307 299 311 307 296 314 291 226

# Telomeres 8 16 13 18 14 12 16 8
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4.3.3 Correctness

After two rounds of consensus polishing of the draft assemblies, the indel rates were

drastically reduced.

4.3.3.1 Escherichia coli

Analysis using QUAST showed that all contigs had mis-assemblies. However on closer

inspection using Assemblytics, the source of the mis-assemblies reported by QUAST

was revealed to be because of 3 structural variations, which are likely strain-specific

differences  rather  than  mis-assemblies  (table  4.2).  For  instance,  in  the  ABruijn

assembly,  the contig  length was equal  to  the  reference length when the  SVs were

tallied. However, most other assemblies still had a large number of SVs (an average of

68.8 SVs compared with 9 SVs of ABruijn), even after two rounds of polishing.  

4.3.3.2 Plasmodium falciparum

More than 5,000 SVs were shared among all the assemblies. Wtdbg (6448) produced

the largest number of unique SVs, whereas ABruijn (389), canu (384), MECAT (311),

and PBcR (332) performed better by producing a relatively smaller share of the unique

SVs.  Dot  plots  were  used  for  observing  rearrangements,  which  displayed  small

rearrangements only in ABruijn and wtdbg assemblies. In other cases, an approximate

straight diagonal line was observed with strong congruity.

4.3.3.3 Caenorhabditis elegans

A total of 17,893 SVs were shared among all the assemblies. Wtdbg (30,622) produced

the largest number of unique SVs, whereas canu (2,374), FALCON (3,337), MECAT

(2,358), and PBcR (4,179) produced a relatively smaller share of unique SVs. A single

or a couple of mis-assembled contigs were visible in the dot plots of all  assemblies,

barring MECAT and SMARTdenovo.

4.3.3.4 I. nil

Miniasm  (1.2  Mb)  and  wtdbg  (5.8  Mb)  assemblies  had  the  shortest  of  the  mis-

assembled contigs, while HGAP3 (128 Mb) showed the largest share of mis-assembled
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data. HGAP3, FALCON, and MECAT had more than 100 Mb of mis-assembled contigs,

whereas canu offered the best balance in incorporating longer contigs (593.3 Mb) into

the linkage maps, with shorter (20.9 Mb) mis-assemblies (table 4.9). Wtdbg (1.04%) and

miniasm (2.53%) had the least discordantly mapping BAC-end read pairs. Surprisingly,

FALCON (6.36%)  had  the  highest  discordant  mapping  rate  (table  4.8).  When BAC

sequences were completely covered by contigs, the per-base accuracy was 99.9% in

four of the five BAC sequences (table 4.10), while mismatched bases were almost non-

existent. Fragmented contigs were not considered for assessing per-base accuracy, as

they had unresolved errors in overlapping terminal regions.

A lot  of  SVs  were  shared  among  all  the  assemblers  which  may  be  actual

variations  rather  than  assembly  errors.  Unlike  the  SMRT data,  the  Illumina  based

assembly was found to have large indels, and plenty of mismatches covering the five

BAC sequences in  I. nil (Hoshino et al. 2016). The evaluated assemblers, which are

based on the overlap information of the longer reads, had benefited not just in terms of

contiguity, but also in per-base accuracy for a repetitive genome like I. nil.

4.3.4 Circularity and overlapping fragmented contigs

With the application of Circlator (Hunt et al. 2015), it was evident that the circularity of

some of the  E. coli assemblies was clearly not resolved, and hence the presence of

additional base pairs, which were subsequently trimmed out. The increased indel rates

were  originally  concentrated  on  the  overlapping  terminal  ends  of  the  circularly

unresolved  contigs.  As  a  result,  the  indel  rates  became  almost  identical  in  all  the

circularly resolved assemblies (table 4.2). However, Circlator was unable to resolve the

circularity for HGAP3, MECAT, and wtdbg assemblies. Similarly, when the contigs were

fragmented in repetitive regions, sometimes, the breakpoints happened in such a way

that  two nearby contigs  shared considerable  overlapping terminal  ends.  Consensus

polishing did not have an impact in such overlapping regions leading to unresolved and

high amount of indel errors.
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Table 4.9. Linkage map based analysis of I. nil assemblies.

Canu FALCON HGAP3 MECAT Miniasm PBcR SMARTdenovo Wtdbg

# contigs 756 761 552 1129 1466 979 1202 1813

Length of contigs 593380023 566851695 639061741 499698582 454749164 535258438 495980623 326128807

Percentage of contig size 84.64 83.81 85.60 72.10 60.41 73.75 71.45 50.80

# mis-assembled contigs 14 76 38 86 3 47 54 17

Length of mis-assembled 

contigs
20985814 102369939 128150514 103449124 1261012 74298762 45306443 5802006

Percentage of mis-

assembled contig size
2.99 15.14 17.16 14.93 0.17 10.24 6.53 0.90

Table 4.10. Alignments of whole BAC sequences against I. nil assemblies.

BAC sequence Features Canu FALCON HGAP3 MECAT Miniasm PBcR SMARTdenovo Wtdbg

JMHiBa010C11

Mismatches 0 0 0 0 0 0 0 0

Query Gap openings 3 3 3 3 3 3 3 3

Query Gap bases 3 3 3 3 3 3 3 3

Target Gap openings 6 6 6 5 6 6 6 7

Target Gap bases 9 9 9 8 9 9 9 11

Perbase accuracy 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99

JMHiBa038C09

Mismatches 0 0 1 1 NA NA NA NA

Query Gap openings 5 6 6 6 NA NA NA NA

Query Gap bases 5 7 6 6 NA NA NA NA

Target Gap openings 4 3 2 2 NA NA NA NA

Target Gap bases 12 10 8 8 NA NA NA NA

Perbase accuracy 99.99 99.99 99.99 99.99 NA NA NA NA

JMHiBa037J13
Mismatches 0 0 0 0 0 0 0 0

Query Gap openings 10 10 10 10 10 10 10 10

72



Query Gap bases 384 382 382 376 374 374 376 379

Target Gap openings 6 6 6 5 5 5 5 5

Target Gap bases 9 9 9 8 8 8 8 8

Perbase accuracy 99.63 99.64 99.64 99.64 99.64 99.64 99.64 99.64

JMHiBa001L04

Mismatches 0 0 0 0 0 0 0 0

Query Gap openings 9 7 6 7 5 9 8 9

Query Gap bases 17 16 11 17 8 17 16 120

Target Gap openings 7 6 5 7 6 6 7 7

Target Gap bases 13 10 7 13 10 11 13 115

Perbase accuracy 99.97 99.97 99.98 99.97 99.98 99.97 99.97 99.77

JMHiBa001I06

Mismatches NA 0 0 0 NA 0 NA NA

Query Gap openings NA 4 4 4 NA 4 NA NA

Query Gap bases NA 4 4 4 NA 4 NA NA

Target Gap openings NA 7 8 8 NA 7 NA NA

Target Gap bases NA 15 16 16 NA 16 NA NA

Perbase accuracy NA 99.98 99.98 99.98 NA 99.98 NA NA
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4.3.5 Resource usage

Figure 4.4. Computational resource requirements. Computational requirements are

represented as (A) log CPU time and (B) maximum RSS, a measure of peak memory

usage, for all assemblers.

4.3.5.1 Escherichia coli

HINGE and wtdbg assemblies were quickly obtained, while HGAP3 was the slowest, as

expected (figure 4.4A). Miniasm was actually the fastest of all assemblers, and finished

in about 16 min of CPU time; however, two rounds of RACON execution required a total

of 25.81 CPU h, making this pipeline the second slowest. SMARTdenovo consumed the

maximum peak memory usage, while HGAP3 consumed the least amount of memory

(figure 4.4B).
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4.3.5.2 Plasmodium falciparum

Wtdbg  was  the  quickest  assembler,  closely  followed  by  MECAT.  Other  assemblers

generally consumed hundreds of CPU hours, with HGAP3 being almost 100-fold slower

compared to the speed of wtdbg (figure 4.4A). ABruijn, SMARTdenovo, and wtdbg were

memory-intensive, whereas canu, FALCON, and MECAT were memory-efficient (figure

4.4B).

4.3.5.3 Caenorhabditis elegans

Wtdbg followed by MECAT were the fastest in producing assemblies, while PBcR was

the slowest (figure 4.4A). ABruijn consumed a huge amount of memory, while canu was

the most memory-efficient, followed by MECAT and HGAP3 (figure 4.4B).

4.3.5.4 Ipomoea nil

Wtdbg was again the fastest assembler (129.7 CPU h). It should be noted that HGAP3

took 83.9 CPU hours even for a bacterial genome. MECAT was also fairly quick, while

the celera-dependent pipelines were the slowest (figure 4.4A). Wtdbg consumed 331.15

Gb of peak memory. MECAT was the best with respect to both CPU time and peak

memory usage, while canu also showed a reasonable balance in resource usage (figure

4.4B).

4.3.6 Ranking

Figure 4.5. Rankings for all assemblies. The lower the rank, the better is the assembly.
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4.3.6.1 Escherichia coli

The assemblers ABruijn, canu, and FALCON in the order were top-ranked in both the

rankings  (figures  4.5,  4.6A).  The  rankings  were  heavily  influenced  by  whether  the

assemblies were circularly resolved or not, and hence MECAT, HGAP3, and wtdbg were

pushed to the bottom of the table.

4.3.6.2 Plasmodium falciparum

Although  HGAP3 had  the  highest  N50  value,  it  was  not  the  top-ranked  assembler

(figures 4.5, 4.6B). Four assemblers in the order of MECAT, FALCON, ABruijn, and canu

were top-ranked according to their z-scores (figure 4.6B), corroborating that N50 should

not be the sole factor in choosing an assembly. HINGE assembly was excluded from

the rankings, as it resulted in a segmentation fault and therefore was not tested for the

other eukaryotic datasets too.

4.3.6.3 Caenorhabditis elegans

Canu ranked  at  the  top,  followed  by  FALCON and  MECAT (figure  4.6C).  Although

miniasm was eighth in the ranking (figure 4.5), it surprisingly ranked fourth according to

the z-scores, as a result of obtaining considerably high z-scores for contiguity metrics

(figure 4.6C). Without error correction, it would be difficult to distinguish duplications and

repeats  (Li 2016); however, the repeat-sparse nature of the  C. elegans genome likely

contributed to the better contiguity achieved by miniasm.

4.3.6.4 Ipomoea nil

ABruijn  assembly  resulted  in  a  segmentation  fault  and  was  not  considered  for

evaluation. The highly repetitive nature and the shorter insert size of the  I. nil dataset

prevented all of the assemblers from reaching a 1-Mb contig N50, excluding HGAP3.

Nevertheless, canu ranked first, ahead of HGAP3, in either of the rankings (figure 4.5,

4.6D). If mis-assemblies were given additional penalties, the ranking of HGAP3 might

come down further. For the first time, SMARTdenovo was ranked among the top five

assemblers.
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Figure 4.6. Z-score-based rankings. Average z-scores of all ranking metrics are plotted for (A)

E. coli, (B) P. falciparum, (C) C. elegans, and (D) I. nil. Higher the average z-value, the better is

the assembly performance. The failed ABruijn assembly is left blank for I. nil data set.

4.3.6.5 Mean ranking of the three eukaryotic assemblies

When the  rankings  of  the  eukaryotic  assemblies  were  averaged  (figure  4.5),  canu,

MECAT, FALCON, and HGAP3, in that order, were on the top of the rankings. Similarly,

in  the  z-score  based mean rankings,  canu,  MECAT,  FALCON,  and HGAP3,  in  that

order, displayed better performances with positive mean z-scores (figure 4.7).

Figure 4.7. Mean z-score-based rankings. The mean scores of the individual average z-

scores obtained from E. coli, P. falciparum, C. elegans, and I. nil are plotted. Higher the average

z-value, the better is the assembly performance.
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4.4 Discussion

De novo  genome assemblies using SMRT data, when compared to earlier versions,

have been shown to increase contiguity by several hundred-folds (Korlach et al. 2017;

Gordon et al. 2016; Weissensteiner et al. 2017), and resolve fragmented regions into

contiguous, gapless sequences  (Gordon et al. 2016; Berlin et al. 2015). The average

and median contig N50 values of recently assembled plant and animal genomes using

long reads are 6.24 Mb and 3.60 Mb (table 4.11), respectively. In the current study, the

three important features—contiguity, completeness, and correctness (Lee et al. 2016)—

of long-read assemblers were evaluated.

Canu ranked the best in the average rankings of all the assemblies from all the

datasets. Canu, because of its efficiency to handle repeats  (Koren et al.  2017), had

fewer  assembly  errors,  sometimes  trading  contiguity  for  correctness.  Indeed,  it  is

essential to prioritize correctness rather than contiguity, which would otherwise defeat

the purpose of building a reference genome for future studies.

Canu  and  MECAT showed  the  best  balance  in  computational  requirements.

MECAT requires longer reads to effectively distinguish non-repetitive overlaps, and was

found to underperform in the case of I. nil, whose transposons can be longer than the 7-

kb average insert size of I. nil data.

FALCON, the only diploid-aware assembler, showed reasonable performance for

genomes  up  to  100  Mb  in  length,  similar  to  MECAT.  The  FALCON assembly  was

surprisingly filled with mis-assemblies for the I. nil data, probably because of the repeat

filtering steps, leading to further loss of coverage in input data. An increase in insert

sizes and coverage could yield better performance from both FALCON and MECAT.
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Table 4.11. A list of recently assembled genomes using PacBio’s SMRT data

Organism Technology Assembly tool

Contig

N50/NG50 Study

Taeniopygia guttata PB FALCON 5.8 Mb (Korlach et al. 2017)

Calypte anna PB FALCON 5.4 Mb (Korlach et al. 2017)

Drosophila serrata PB PBcR 0.94 Mb (Allen et al. 2017)

Utricularia gibba PB HGAP3 3.42 Mb (Lan et al. 2017)

Arabidopsis thaliana PB PBcR 11.16 Mb (Berlin et al. 2015)

Drosophila melanogaster PB Canu 21.31 Mb (Koren et al. 2017)

Homo sapiens CHM1 PB Canu 21.95 Mb (Koren et al. 2017)

Vitis vinifera PB FALCON 2.39 Mb (Chin et al. 2016)

Ipomoea nil PB + Illumina + LM HGAP3 1.87 Mb (Hoshino et al. 2016)

Vigna angularis PB + Illumina + 454 Sprai, Celera 0.8 Mb (Sakai et al. 2015)

Oreochromis niloticus PB + RH map + RAD map Canu 3.1 Mb (Conte et al. 2017)

Gorilla gorilla PB + BAC-end + Fosmid-end FALCON 9.56 Mb (Gordon et al. 2016)

Lates calcalifer PB + OM + LM HGAP3 1.72 Mb (Vij et al. 2016)

Capra hircus PB + OM + HiC PBcR 18.7 Mb (Bickhart et al. 2017)

Arabis alpina PB + OM + HiC PBcR, FALCON 0.9 Mb (Jiao et al. 2017)

Euclidium syriacum PB + OM PBcR, FALCON 3.3 Mb (Jiao et al. 2017)

Conringia planisiliqua PB + OM PBcR, FALCON 3.6 Mb (Jiao et al. 2017)

Corvus corone PB + OM FALCON 8.91 Mb
(Weissensteiner et al. 
2017)

Zea mays PB + OM PBcR, FALCON 1.19 Mb (Jiao et al. 2017)

Homo sapiens NA12878 PB + OM PBcR, FALCON 1.4 Mb (Pendleton et al. 2015)

Homo sapiens HX1 PB + OM FALCON 8.3 Mb (Shi et al. 2016)

Oropetium thomaeum PB + OM HGAP3 2.4 Mb (VanBuren et al. 2015)

Oryza sativa indica PB + Fosmids + OM + LM PBcR 4.43 Mb (Du et al. 2017)

Homo sapiens NA19240 PB + OM FALCON 7.25 Mb (Steinberg et al. 2016)

HGAP3  was  found  to  be  the  most  contiguous  assembler,  but  with  the

disadvantage of  extremely  slow computation  times.  Mis-assemblies  were  also  most

abundant in the HGAP3 assemblies, possibly because of the greedier nature of celera’s

algorithm at the layout stage (Chin et al. 2013). In addition, as previously observed for

PBcR in the rice genome assembly  (Du et  al.  2017),  the celera-based assemblers,

PBcR and HGAP3, were found to have redundant contigs.

PBcR is the second most widely used long-read assembler (table 4.11); however,

it  is  no longer maintained, since the focus has shifted to its successor canu, which

seemed to outperform PBcR in almost every analysis.
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SMARTdenovo, although not the best, produced moderately good results in all

metrics and would be a suitable choice for obtaining larger genome assemblies quickly.

Leaving out the consensus module, miniasm was the fastest available assembler

for  all  genomes  evaluated,  excluding  I.  nil.  Miniasm  requires  as  much  as  13%

divergence for repeat resolution, whereas canu and FALCON require only 3% and 5%

divergence,  respectively  (Koren et  al.  2017).  Hence,  miniasm produced fragmented

contigs for repeat-rich genomes, but obtained reasonable rankings otherwise.

HINGE may not be ideal for assembling large genomes, but would be a good

choice for assembling highly repetitive bacterial genomes.

As observed in the assemblies of the slightly smaller yeast genome (Istace et al.

2017), ABruijn, despite its good contiguity, was chimeric. ABruijn failed to assemble the

I. nil dataset; however, when the error-corrected reads of canu were used, the assembly

was possible but only after consuming almost 500 Gb of maximum RSS.

Similarly, wtdbg was also memory-intensive, and both the assemblers will need

high-end servers for handling larger genomes. In the case of repetitive genomes, both

assemblers  could  collapse  repeats,  leading to  loss  of  information.  In  particular,  the

wtdbg assembly was found to be more than 100 Mb short of the expected genome size

in  I. nil. Wtdbg assemblies, which always ranked last, mostly because no consensus

procedure was executed, and would need additional rounds of consensus polishing to

effectively  compete  with  other  assemblers.  Wtdbg  assemblies  also  had  fragmented

contigs.

Mitochondrial  genomes  were  generally  left  unassembled.  Hence  it  might  be

necessary to either extract i) reads that do not align to the assembled contigs, or ii)

reads  that  align  to  an  available  or  a  closely  related  mitochondrial  genome.  The

extracted  reads  could  be  used  to  perform  an  additional  round  of  assembly,  for

reconstructing  extra-chromosomal  genomes  (Vembar  et  al.  2016).  In  addition,

redundancy at the ends of contigs can be a major obstacle for polishing the genome, as

it might become difficult for the reads to be aligned at such regions, leaving out errors

stranded in the terminal portions of the contigs. Indeed, when whole BAC sequences of

I. nil were covered by completely spanning contigs, the error rate was approximately

homogenous across all  the  assemblers,  whereas when contigs  were in  overlapping

fragmented pieces, the terminal overlapping regions were found to have increased error

rates.  The  same  phenomenon  was  observed  in  redundant  regions  from  circularly
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unresolved bacterial assemblies. Identifying such regions and trimming the redundant

base pairs may lead to an improved overall per-base correctness.

Dot  plots  showed  that  many  of  the  breakpoints  in  contig  mis-assemblies

originated from different locations for different assemblers. Contiguity profiles were also

found to be different for FALCON and PBcR in plant genome assemblies, and a hybrid

assembly utilising the different  contiguity  profiles was found to  be highly  successful

(Jiao et al. 2017). Hence an alternative solution to increasing the contiguity would be to

combine  different  assemblies  by  using  reconciliation  tools  such  as  quickmerge

(Chakraborty et al.  2016). For example, miniasm had fewer contigs and breakpoints

compared to MECAT for  the  C. elegans assemblies.  Using miniasm assembly as a

backbone for extending the MECAT assembly may result in longer and more accurate

contigs in this case.

Similar to the evaluation of short read assemblers (Salzberg et al. 2012; Magoc

et al. 2013; Earl et al. 2011; Bradnam et al. 2013), the current study did not reveal a

clear winner; a similar result was observed with evaluations of Nanopore sequencing

data  (Istace et al. 2017). That is, an optimal assembler for one dataset may not be

optimal  for  a  different  dataset.  Hence,  it  would  be  ideal  to  try  out  a  variety  of

assemblers,  as  performed  in  the  Solanum pennelii genome project  (Schmidt  et  al.

2017),  and  choose  the  best  assembly  based  on  various  evaluation  strategies.  Any

available  resources  such  as  BAC-end  data,  whole  BAC  sequences,  previously

annotated gene sets, and similar resources could be effectively used for the purpose of

evaluation, as demonstrated in this study.

Based  on  the  results,  we  suggest  that  the  best  approach  in  handling  larger

genomes would be to generate assemblies from at least canu, FALCON, MECAT, and

SMARTdenovo, and basing the final decision on the assembler according to different

evaluation metrics rather than on N50 alone. When time is not a limiting factor, HGAP3

could  also  be  used,  but  care  should  be  taken  in  recognizing  mis-assembled  and

redundant  contigs.  Recently,  scaffolding  techniques  such  as  optical  mapping,

CHICAGO,  Hi-C,  and  linked  reads,  have  been  applied  to  correct  mis-assemblies

(Weissensteiner et  al.  2017;  Bickhart  et  al.  2017;  Shi  et  al.  2016;  Jiao et  al.  2017;

Pendleton et al. 2015; Du et al. 2017; VanBuren et al. 2015; Jiao et al. 2017; Steinberg

et al. 2016), which can also be used for achieving chromosome-scale assemblies.
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Chapter 5

Conclusion and future work
In this dissertation, we have presented two research studies related to long-read  de

novo assembly  of  genomes.  The first  study constructs  the basic  layout  of  de novo

assembly and analysis using long reads from PacBio technology. The result of the study

is a high quality reference genome, not only for I. nil, but also as a representative for the

whole  of  Convolvulaceae  family.  The  impact  of  the  I.  nil reference  genome  was

immediately witnessable. A study published soon after the publication of the assembled

genome of  I.  nil,  hypothesizes that severe stress events,  such as mass extinctions,

must have occurred at different time points in the evolutionary history and such time

points were ideal  for the occurrence of WGD events in plants,  leading to enhanced

adaptation to the modified environment (Van de Peer et al. 2017). The analysis included

the results of  I. nil WGD estimations, which fitted perfectly into their hypothesis, thus

adding furthermore weight to their publication, while also serving as a validation for our

estimations. Another broader impact was that the pseudo-chromosomes of  I. nil  were

used as a synteny reference to create a pseudo-chromosomal map of Ipomoea batatas

(sweet potato), a close taxonomic neighbour of I. nil in the Convolvulaceae family (Yang

et al. 2017). 

The  second  study  improves  on  the  assembly  aspect  of  the  first  study,  by

evaluating the assemblies from different assemblers for various organisms. Contrary to

the previous publications, which may mislead PBcR as an ideal assembly tool, the study

rejects false notions and recommends the right assemblers for respective datasets. The

conclusions of the study would relieve researchers from the pain of looking for the right

parameters and readily apply the recommendations for their assembly projects. Another

important  aspect  of  the  study  is  that  computational  resources  are  measured  for

assemblies of genomes of different complexities. Hence, a researcher can choose an

assembler  which  will  scale  accordingly  to  their  computational  resources  and  in  the

process saving several weeks/months of time. Both the studies will serve as a valuable

reference for de novo assembly and analysis of genomes for other researchers. 
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As for the future works stemming from the studies presented in this thesis, a

couple of projects are in progress. The availability of an assembled reference genome

opens up on a lot of research possibilities. Chapter 3 explained how Tpn1 transposons

can be a major mutagen in I. nil, which are cataloged from the genome as part of the

study. Knowing the potential of the transposons, it will be intriguing if they play a larger

role in mutagenic lines. To study the same, bisulfite sequencing was done for control

and mutagenic plants, while the aim of the study is to observe differential methylation

patterns in genes, and also in the catalogued Tpn1 transposons across the mutagenic

and control lines. By doing so, a genome-wide analysis can be performed which will

pinpoint  active  and  passive  Tpn1 transposon  locations,  elucidating  the  role  of  the

transposons. The results can also be used as a reference for the other mutagenic lines

too. 

From chapter  4,  recommendations for the right  assemblers were chosen and

applied to a different assembly project. Common marmoset’s genome has already been

assembled but with a lot of gaps, paving way for a lot of improvement in the quality of

the genome (Marmoset Genome Sequencing and Analysis Consortium 2014; Sato et al.

2015). The common marmoset with a small body size, sharing similar physiology with

humans, has garnered attention recently as a new non-human primate model organism.

Hence,  a  high  quality  genome  will  be  essential  to  obtain  the  necessary  biological

insights. We have obtained around 50X PacBio data for the common marmoset genome

and are in the process of applying the recommended assemblers from the evaluation

study to assemble the data. From the assemblies, we have identified that more than

90% of the gaps in the previous genome assembly could be filled with  the results.

Another suggestion from the evaluation study is that  hybrid assemblies from two or

more assemblies can result in a better genome assembly. In line with this, we also aim

to develop a tool which would compare individual assemblies and generate a hybrid and

more contiguous assembly. 

Also, insights from both studies can be applied to the improvement of the I. nil

genome.  Optical  mapping  experiments  (Iris  from  Bionano  genomics)  are  currently

underway for I. nil. Combining the idea of a hybrid assembly from the evaluation study,
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along with the optical map data and the linkage map data, we can generate much more

accurate and highly contiguous assemblies for the I. nil genome. 
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Supplementary of chapter 4
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HINGE (commit 4d0c4809f01bcf391d026e7ad1754e0e7969aa2d)

MECAT v1.0 (commit 8675117d0647f31e6bc630662e9d97ceafd4b4a6)

Minimap (commit 1cd6ae3bc7c7a6f9e7c03c0b7a93a12647bba244) 

Miniasm (commit 17d5bd12290e0e8a48a5df5afaeaef4d171aa133)

Racon (commit 0f6d4aa4787cb8278df689e9dc92ac799a839573)

PBcR (wgs v8.3rc2)

SMARTdenovo (commit 61cf13dcaed6bb561129b60eaa833fa9f976f9b1)

Wtdbg (commit 31550398a2859cffe60f603a452cda16fff60681)

Assembly

ABruijn

ABruijn was executed using a kmer size of 21 bp and a overlap length of 5000 bp with 2

rounds of polishing for all organisms. The coverage parameter was set to 140, 180, 45,

and 50 for E. coli, P. falciparum, C. elegans, and I. nil respectively. 
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Canu

The grid options for memory and threads were modified to accept 10 Gb and 10 threads

respectively.  Default  parameters  were  used  along  with  -pacbio-raw  option  and

respective genome sizes.

FALCON

The length cut-offs were chosen as 18,000 bp, 18,000 bp, 10,000 bp, and 6,000 bp for

E. coli, P. falciparum, C. elegans, and I. nil respectively. The DBsplit options were given

“a minimum read length of 500 bp, and a read block size of 50 Mb”, “a minimum read

length of 500 bp, and a read block size of 50 Mb”, “a minimum read length of 500 bp,

and a read block size of 400 Mb”, and “a minimum read length of 500 bp, and a read

block size of 400 Mb”, for E. coli, P. falciparum, C. elegans, and I. nil respectively.

HGAP3

The  following  parameters  for  the  modules  were  used:  PreAssembler  Filter  module

(minimum  subread  length=500  bp,  minimum  polymerase  read  length=500  bp);

PreAssembler  module  (compute  overlap  length  cutoff=true,  number  of  seed  read

chunks=6,  alignment  candidates  per  chunk=10,  total  alignment  candidates=24,

minimum coverage for correction=6, blasr options=”noSplitSubreads, minimum subread

length=500  bp,  maximum  score=1000,  maximum  LCP  length=16”);  AssembleUnitig

module  (default  fragment  minimum  length=500  bp,  coverage=30,  overlap  error

rate=0.06, overlap minimum length=40 bp, mer size=14 bp). All the filtered sub reads

were used as filtered long reads for the pre assembly process, excluding I. nil. For I. nil,

the target chunks were increased to 10. 

HINGE

HINGE was executed with fasta2DB, Dbsplit, HPC.daligner, Lamerge, and DASqv tools

from tools assocaited with daligner. It was followed by filter, layout, clip, draft-path, draft,

correct-head, consensus, and get_draft_path_norevcomp.py from the Hinge package.
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MECAT

The programs MECAT2pw, and MECAT2cns were given default  parameters with 16

threads and corrected sequences of 25X coverage were extracted. For MECAT2canu,

“error rate=0.02 maximum memory=40 Gb maximum threads=16 use grid=0 -pacbio-

corrected” options were given as input, along with respective genome sizes.

Miniasm and RACON

The initial minimap of raw reads were given the options such as minimizer window size

=5  bp,  minimum  matching  length  =100  bp,  and  fraction  of  shared  minimizers  for

merging  two  chains  =0.  The  later  steps  including  miniasm,  minimap  mapping  for

RACON, and the final RACON steps were given default options. RACON was executed

twice for consensus generation.

PbcR

The following options were used for  PBcR: “minimum read length =500,  number of

consensus  partitions  =200,  overlap  memory  =32,  overlap  store  memory  =32000,

overlap  threads  =8,  mer  overlapper  threads  =8,  meryl  threads  =8,  meryl  memory

=32000, fragment corrected concurrency =15, overlap concurrency =15, and consensus

concurrency = 15”.

SMARTdenovo

Default settings were used for SMARTdenovo.

Wtdbg

Wtdbg was executed with the options such as kmer size of 21 bp, kmer subsampling

fraction  of  1.01,  and also  with  homopolymer  compression  turned on.  The minimum

coverage of graph edges was set  to  15,  10,  7,  and 5 for  E. coli,  P. falciparum,  C.

elegans, and I. nil respectively. The accuracy obtained from the consensus procedure
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recommended in the wtdbg github page, did not yield better accuracy and hence, the

draft assembly was directly used for consensus polishing using quiver.

Canu,  HINGE,  SMARTdenovo,  miniasm,  and  MECAT were  given  either  default  or

recommended options from the developer’s site. Some of the programs worked well

with  default  parameters,  whereas other  programs required trial  and errors to  obtain

better results. The jobs were executed on a node with a Intel Xeon E7-8870 processor

(2.40 GHz) consisting of 160 cores and a memory of 2019.8 Gb under the operating

system of RHEL v6.5. SGE was used for job management and the qacct command was

used to access the maximum RSS and CPU time registered by the jobs. 

Consensus polishing

After initial assembly, two rounds of quiver polishing was applied to all assemblies to

improve the quality of the assembly and to reduce errors. Quiver from SMRT analysis

2.3.0.5 was executed with  the following parameters:  P_Filter  module (minimum sub

read  length=500  bp,  read  score=0.60,  minimum  polymerase  read  length=500);

P_Mapping module (maximum hits=10, maximum divergence=30%, minimum anchor

size=12 bp, placeRepeatsRandomly=true, pbalign_options=”random number generator

initializing seed =1, minimum accuracy=0.80, and minimum read length=500 bp).

Evaluations

Quast  v4.4-dev  (commit  9c91befca0dc1b483550059f6541f68f0f63c5c8)  was  used  to

evaluate  the  contiguity  and  mismatch  statistics  of  the  assemblies.  Nucmer  from

MUMmer v3.23 was executed for similarity search. Assemblytics was used to analyze

indels and to create dot plots. Circlator v1.5.0 was used to resolve circularity with canu.

CEGMA  v2.5  and  BUSCO  v2.0.1  (commit

89aa1ab2527f03a87a214ca90a504ad236582a11) were used to assess completeness

of core conserved genes. The 28 bp Terminal  Inverted Repeats (TIRs) of  the Tpn1

transposons  were  mapped  using  BLAST,  which  were  later  sorted  by  the  contig
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locations. If two nearby TIRs contained the same target site duplications (3–5 bp) and

the  total  transposons  length  is  less  than  20  kb,  they  were  nominated  as  Tpn1

transposons. Tandem Repeats Finder v4.07b was used to find telomeric repeats at the

10 kb ends of the contigs by assigning values 1, 1, 2, 80, 5, 200, and 2000 bp to match

weight,  mismatch  weight,  indel  weight,  match  probability,  indel  probablity,  minimum

score, and maximum period size respectively. BLAT v36  was used to align the ESTs,

BAC, and BAC-end sequences.

RAD-seq analysis

The Illumina RAD-seq short reads from the parent samples and progeny samples were

aligned against the assemblies using BWA v0.7.12. The reads which were not tagged

as uniquely mapped, and those which did not have the requisite restriction enzyme cut

site were filtered out. STACKS v1.37 was used to identify SNPs and the following two

criteria were used to filter markers: (a) Each marker should be present in at least 80% of

the samples, and (b) Each sample should have at least 80% of the markers. Also, 150  

bp flanking  regions from either  side  of  each SNP location  were  extracted from the

assembly and were aligned against each other using BLAST v2.2.29+ and regions with

alignment lengths longer than 150 bp were filtered out. Onemap was used to create

linkage  maps  with  a  logarithm of  odds  score  of  30.  Contigs  whose  markers  were

present in more than one linkage maps were considered as mis-assembled contigs. 
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