44 research outputs found

    Fast multi-exposure image fusion with median filter and recursive filter

    Full text link

    Selective Darkening Filter and Welding Arc Observation for the Manual Welding Process

    Get PDF
    An optical see-through LCD (GLCD) with a resolution of n x m pixels gives the ability to selectively control the darkening in the welders view. The setup of such a Selective Auto Darkening Filter is developed and its applicability tested. The setup is done by integrating a camera into the welding operation for extracting the welding arc position properly. A prototype of a GLCD taylored for welding is mounted in the welder's view. The extraction of the welding arc position requires an enhanced video acquisition during welding. The observation of scenes with high dynamic contrast is an outstanding problem which occurs if very high differences between the darkest and the brightest spot in a scene occur. The application to welding with its harsh conditions needs the development of supporting hardware. The synchronization of the camera with the flickering light conditions of pulsed welding processes in Gas Metal Arc Welding (GMAW) stabilizes the acquisition process and allows the scene to be flashed precisely if required by compact high power LEDs. The image acquisition is enhanced by merging two different exposed images for the resulting image. These source images cover a wider histogram range than it is possible by using only a single shot image with optimal camera parameters. After testing different standard contrast enhancement algorithm a novel content based algorithm is developed. It segments the image into areas with similar content and enhances these independently

    Advanced Image Acquisition, Processing Techniques and Applications

    Get PDF
    "Advanced Image Acquisition, Processing Techniques and Applications" is the first book of a series that provides image processing principles and practical software implementation on a broad range of applications. The book integrates material from leading researchers on Applied Digital Image Acquisition and Processing. An important feature of the book is its emphasis on software tools and scientific computing in order to enhance results and arrive at problem solution

    Super resolution and dynamic range enhancement of image sequences

    Get PDF
    Camera producers try to increase the spatial resolution of a camera by reducing size of sites on sensor array. However, shot noise causes the signal to noise ratio drop as sensor sites get smaller. This fact motivates resolution enhancement to be performed through software. Super resolution (SR) image reconstruction aims to combine degraded images of a scene in order to form an image which has higher resolution than all observations. There is a demand for high resolution images in biomedical imaging, surveillance, aerial/satellite imaging and high-definition TV (HDTV) technology. Although extensive research has been conducted in SR, attention has not been given to increase the resolution of images under illumination changes. In this study, a unique framework is proposed to increase the spatial resolution and dynamic range of a video sequence using Bayesian and Projection onto Convex Sets (POCS) methods. Incorporating camera response function estimation into image reconstruction allows dynamic range enhancement along with spatial resolution improvement. Photometrically varying input images complicate process of projecting observations onto common grid by violating brightness constancy. A contrast invariant feature transform is proposed in this thesis to register input images with high illumination variation. Proposed algorithm increases the repeatability rate of detected features among frames of a video. Repeatability rate is increased by computing the autocorrelation matrix using the gradients of contrast stretched input images. Presented contrast invariant feature detection improves repeatability rate of Harris corner detector around %25 on average. Joint multi-frame demosaicking and resolution enhancement is also investigated in this thesis. Color constancy constraint set is devised and incorporated into POCS framework for increasing resolution of color-filter array sampled images. Proposed method provides fewer demosaicking artifacts compared to existing POCS method and a higher visual quality in final image

    A robust patch-based synthesis framework for combining inconsistent images

    Get PDF
    Current methods for combining different images produce visible artifacts when the sources have very different textures and structures, come from far view points, or capture dynamic scenes with motions. In this thesis, we propose a patch-based synthesis algorithm to plausibly combine different images that have color, texture, structural, and geometric inconsistencies. For some applications such as cloning and stitching where a gradual blend is required, we present a new method for synthesizing a transition region between two source images, such that inconsistent properties change gradually from one source to the other. We call this process image melding. For gradual blending, we generalized patch-based optimization foundation with three key generalizations: First, we enrich the patch search space with additional geometric and photometric transformations. Second, we integrate image gradients into the patch representation and replace the usual color averaging with a screened Poisson equation solver. Third, we propose a new energy based on mixed L2/L0 norms for colors and gradients that produces a gradual transition between sources without sacrificing texture sharpness. Together, all three generalizations enable patch-based solutions to a broad class of image melding problems involving inconsistent sources: object cloning, stitching challenging panoramas, hole filling from multiple photos, and image harmonization. We also demonstrate another application which requires us to address inconsistencies across the images: high dynamic range (HDR) reconstruction using sequential exposures. In this application, the results will suffer from objectionable artifacts for dynamic scenes if the inconsistencies caused by significant scene motions are not handled properly. In this thesis, we propose a new approach to HDR reconstruction that uses information in all exposures while being more robust to motion than previous techniques. Our algorithm is based on a novel patch-based energy-minimization formulation that integrates alignment and reconstruction in a joint optimization through an equation we call the HDR image synthesis equation. This allows us to produce an HDR result that is aligned to one of the exposures yet contains information from all of them. These two applications (image melding and high dynamic range reconstruction) show that patch based methods like the one proposed in this dissertation can address inconsistent images and could open the door to many new image editing applications in the future

    Advanced Techniques for Ground Penetrating Radar Imaging

    Get PDF
    Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR–SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives

    Light sheet adaptive optics microscope for 3D live imaging

    Get PDF
    Optical microscopy is still the main research tool for many biological studies. Indeed with the advent of genetic manipulation and specifically, the use of fluorescent protein expressing in animals and plants it has actually seen a renaissance in the past ten years, in particular with the development of novel techniques such as CARS, PALM, STORM, STED and SPIM. In all of microscopy methods one has to look through the sample at some point. The sample thus adds an additional and uncontrolled optical path, which leads to aberrations in the final image. Adaptive optics (AO) is a way of removing these unwanted aberrations which can cause image degradation and even potentially artifacts within the image. This thesis is concerned with the implementation of AO in non scanning microscopes and presents some novel methods both in wavefront sensored and sensorless configurations. A first implementation of AO on the emission path of a light sheet microscope is also presented

    Variational models for color image processing in the RGB space inspired by human vision Mémoire d'Habilitation a Diriger des Recherches dans la spécialité Mathématiques

    Get PDF
    La recherche que j'ai développée jusqu'à maintenant peut être divisée en quatre catégories principales : les modèles variationnels pourla correction de la couleur basée sur la perception humaine, le transfert d'histogrammes, le traitement d'images à haute gammedynamique et les statistiques d'images naturelles en couleur. Les sujets ci-dessus sont très inter-connectés car la couleur est un sujetfortement inter-disciplinaire

    Light sheet adaptive optics microscope for 3D live imaging

    Full text link

    Applied Mathematics and Computational Physics

    Get PDF
    As faster and more efficient numerical algorithms become available, the understanding of the physics and the mathematical foundation behind these new methods will play an increasingly important role. This Special Issue provides a platform for researchers from both academia and industry to present their novel computational methods that have engineering and physics applications
    corecore