40 research outputs found

    Relating vanishing points to catadioptric camera calibration

    Get PDF
    This paper presents the analysis and derivation of the geometric relation between vanishing points and camera parameters of central catadioptric camera systems. These vanishing points correspond to the three mutually orthogonal directions of 3D real world coordinate system (i.e. X, Y and Z axes). Compared to vanishing points (VPs) in the perspective projection, the advantages of VPs under central catadioptric projection are that there are normally two vanishing points for each set of parallel lines, since lines are projected to conics in the catadioptric image plane. Also, their vanishing points are usually located inside the image frame. We show that knowledge of the VPs corresponding to XYZ axes from a single image can lead to simple derivation of both intrinsic and extrinsic parameters of the central catadioptric system. This derived novel theory is demonstrated and tested on both synthetic and real data with respect to noise sensitivity

    Panoramic Annular Localizer: Tackling the Variation Challenges of Outdoor Localization Using Panoramic Annular Images and Active Deep Descriptors

    Full text link
    Visual localization is an attractive problem that estimates the camera localization from database images based on the query image. It is a crucial task for various applications, such as autonomous vehicles, assistive navigation and augmented reality. The challenging issues of the task lie in various appearance variations between query and database images, including illumination variations, dynamic object variations and viewpoint variations. In order to tackle those challenges, Panoramic Annular Localizer into which panoramic annular lens and robust deep image descriptors are incorporated is proposed in this paper. The panoramic annular images captured by the single camera are processed and fed into the NetVLAD network to form the active deep descriptor, and sequential matching is utilized to generate the localization result. The experiments carried on the public datasets and in the field illustrate the validation of the proposed system.Comment: Accepted by ITSC 201

    Generic decoupled image-based visual servoing for cameras obeying the unified projection model

    Get PDF
    In this paper a generic decoupled imaged-based control scheme for calibrated cameras obeying the unified projection model is proposed. The proposed decoupled scheme is based on the surface of object projections onto the unit sphere. Such features are invariant to rotational motions. This allows the control of translational motion independently from the rotational motion. Finally, the proposed results are validated with experiments using a classical perspective camera as well as a fisheye camera mounted on a 6 dofs robot platform

    The Double Sphere Camera Model

    Full text link
    Vision-based motion estimation and 3D reconstruction, which have numerous applications (e.g., autonomous driving, navigation systems for airborne devices and augmented reality) are receiving significant research attention. To increase the accuracy and robustness, several researchers have recently demonstrated the benefit of using large field-of-view cameras for such applications. In this paper, we provide an extensive review of existing models for large field-of-view cameras. For each model we provide projection and unprojection functions and the subspace of points that result in valid projection. Then, we propose the Double Sphere camera model that well fits with large field-of-view lenses, is computationally inexpensive and has a closed-form inverse. We evaluate the model using a calibration dataset with several different lenses and compare the models using the metrics that are relevant for Visual Odometry, i.e., reprojection error, as well as computation time for projection and unprojection functions and their Jacobians. We also provide qualitative results and discuss the performance of all models

    Depth Estimation Analysis of Orthogonally Divergent Fisheye Cameras with Distortion Removal

    Full text link
    Stereo vision systems have become popular in computer vision applications, such as 3D reconstruction, object tracking, and autonomous navigation. However, traditional stereo vision systems that use rectilinear lenses may not be suitable for certain scenarios due to their limited field of view. This has led to the popularity of vision systems based on one or multiple fisheye cameras in different orientations, which can provide a field of view of 180x180 degrees or more. However, fisheye cameras introduce significant distortion at the edges that affects the accuracy of stereo matching and depth estimation. To overcome these limitations, this paper proposes a method for distortion-removal and depth estimation analysis for stereovision system using orthogonally divergent fisheye cameras (ODFC). The proposed method uses two virtual pinhole cameras (VPC), each VPC captures a small portion of the original view and presents it without any lens distortions, emulating the behavior of a pinhole camera. By carefully selecting the captured regions, it is possible to create a stereo pair using two VPCs. The performance of the proposed method is evaluated in both simulation using virtual environment and experiments using real cameras and their results compared to stereo cameras with parallel optical axes. The results demonstrate the effectiveness of the proposed method in terms of distortion removal and depth estimation accuracy

    EXPERIMENTAL ASSESSMENT OF TECHNIQUES FOR FISHEYE CAMERA CALIBRATION

    Get PDF
    Fisheye lens cameras enable to increase the Field of View (FOV), and consequently they have been largely used in several applications like robotics. The use of this type of cameras in close-range Photogrammetry for high accuracy applications, requires rigorous calibration. The main aim of this work is to present the calibration results of a Fuji Finepix S3PRO camera with Samyang 8mm fisheye lens using rigorous mathematical models. Mathematical models based on Perspective, Stereo-graphic, Equi-distant, Orthogonal and Equi-solid-angle projections were implemented and used in the experiments. The fisheye lenses are generally designed following one of the last four models, and Bower-Samyang 8mm lens is based on Stereo-graphic projection. These models were used in combination with symmetric radial, decentering and affinity distortion models. Experiments were performed to verify which set of IOPs (Interior Orientation Parameters) presented better results to describe the camera inner geometry. Collinearity mathematical model, which is based on perspective projection, presented the less accurate results, which was expected because fisheye lenses are not designed following the perspective projection. Stereo-graphic, Equi-distant, Orthogonal and Equi-solid-angle projections presented similar results even considering that Bower-Samyang fisheye lens was built based on Stereo-graphic projection. The experimental results also demonstrated a small correlation between IOPs and EOPs (Exterior Orientation Parameters) for Bower-Samyang lens
    corecore