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ABSTRACT   

This paper presents the analysis and derivation of the geometric relation between vanishing points and camera 
parameters of central catadioptric camera systems. These vanishing points correspond to the three mutually orthogonal 
directions of 3D real world coordinate system (i.e. X, Y and Z axes). Compared to vanishing points (VPs) in the 
perspective projection, the advantages of VPs under central catadioptric projection are that there are normally two 
vanishing points for each set of parallel lines, since lines are projected to conics in the catadioptric image plane. Also, 
their vanishing points are usually located inside the image frame. We show that knowledge of the VPs corresponding to 
XYZ axes from a single image can lead to simple derivation of both intrinsic and extrinsic parameters of the central 
catadioptric system. This derived novel theory is demonstrated and tested on both synthetic and real data with respect to 
noise sensitivity.  
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1. INTRODUCTION  
The extraction of information for camera parameters and scene geometry using vanishing points (VPs) are of importance 
to the application of 3D reconstruction, ego-motion, photogrammetry, etc. With the increasing trend of using catadioptric 
systems in various applications where a wide field of view is required, various techniques for calibration of catadioptric 
cameras are being developed. A catadioptric camera can be calibrated using two or more images of the same scene, e.g. 
Kang1 and Micusik2. Some researchers use planar grids. For example, Scaramuzza3 described the catadioptric image 
projection using a Taylor series expansion. The coefficients of the expansion model are obtained by solving a least-
square linear minimisation problem. In Mei4 and Gasparini5’s work, catadioptric homography is computed using images 
of planar grids. Factors such as misalignment of mirror and camera and camera-lens distortion can be taken into account. 
Another approach for calibrating catadioptric cameras is to use geometric properties such as line projections from a 
single catadioptric image. Ying6 demonstrated the use of line and sphere projections in central catadioptric camera 
calibration. Ying’s work show that the projection of a sphere provides better conic fitting than line projection since 
sphere projection provide a larger portion of a conic. Hence a more accurate calibration resulted. However, the 
requirement of at least three sphere projections in some environments is not easy to satisfy. Previous research7,8 also 
shows that geometric properties of conics (line projections) in the catadioptric image enable camera calibration. These 
methods depend on the accurate fitting of at least three conics.  

Vanishing points are the intersection of a set of parallel lines under camera projection. Since VPs are also a type of 
geometric feature, our work can also be categorised in the last approach (i.e. using geometric properties for camera 
calibration). The most similar work to ours in terms of using vanishing points for catadioptric camera calibration was 
done by Geyer and Daniilidis9. They proposed the use of two sets of parallel lines to locate the vanishing points and then 
developed the relation between the vanishing points and the camera intrinsic parameters. Nevertheless, this method is 
designed for para-catadioptric cameras. The para-catadioptric cameras are composed of paraboloid reflective and 
orthographic refractive. Under para-catadioptric projection, the parallel lines projected on the image plane are circular 
arcs with collinear centres when the aspect ratio is assumed to be unity. Compared to the hyper-catadioptric cameras (i.e. 
composed of hyperbolic reflective and perspective refractive), the mirror equation of the parabolic case is simpler and 
involve less parameters.  
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 =                                                                                       (5) 
  is written as 

                        = 	where	 = 0 00 − 00 0 1                                                       (6) 

 
 changes according to the mirror type and shape,  is the camera calibration matrix and  is the rotation matrix of 

the mirror relative to the camera. The majority of the catadioptric sensors commercially available have their mirror 
accurately aligned with the camera, i.e. the conventional camera is not rotated with relation to the mirror surface. 
Therefore, the rotation matrix = . Generally, the calibration of a central catadioptric system obtains the mirror 
parameters ξ and the intrinsic parameter matrix . The parameter	 = 1 − . For the parabolic mirror case, ξ = 1 
and the calibration is much easier. The lines under the projection of parabolic sensor are mapped to circles in the image 
plane if the aspect ratio of the camera is unity and the skew factor is zero9. Our target is the more complicated hyperbolic 
case where ξ is unknown. = .00 0 1                                                                         (7) 

 
 is the aspect ratio,  is the effective focal length,  is the skew factor and , 	  is the principal point.  

3. CATADIOPTRIC PROJECTION OF VANISHING POINTS 
Section 2 described how a general point  in the 3D world is mapped to the image point  in the catadioptric image 
plane. In this section, the catadioptric projection of the three dominant vanishing points is introduced. The three ideal 
points ,  and  associated with the XYZ axes of the 3D world coordinate system are the so-called dominant 
vanishing points. They are firstly projected on the unit sphere by 
 

 = [ ]                                                               (8) 
 

The centre of unit sphere  can be assumed to be located at [0,0,0], then equation (3) becomes = . The ideal points 
,  and  associated with the XYZ axes of the 3D world coordinate system are located at infinity along the direction 

of their associated axis. As shown in Figure 2, when ,  and  are projected to the unit sphere, their projections are 
simply = [1	0	0], = [0	1	0] and = [0	0	1], respectively. 

 
Figure 2. The projection of the three dominant VPs from 3D world to the unit sphere. 
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We now have  = 1 0 00 1 00 0 1 = [ 	 	 ]                                                            (9) 

 
where ,  and  correspond to the columns of the rotation matrix . We then map the points on the sphere to the 
2D canonical plane using equation (4). Since  
 = _ _ __ _ __ _ _                                                                         (10) 

 
and ‖ ‖ = ‖ ‖ = ‖ ‖ = 1, the vanishing points  on the canonical plane equate to 
 = _ _ __ _ __ + _ + _ +                                                                (11) 

 
The last step in the image formation is to apply the collineation matrix  to  . It is written as  
 = .00 0 1 0 00 − 00 0 1                                                                (12) 

 
If the dominant vanishing points in the image plane are denoted as , then in matrix form we have  
 = .00 0 1 0 00 − 00 0 1 _ _ __ _ __ + _ + _ +                                      (13) 

 
Most commercially available cameras have square pixels with zero skew, hence we can assume = 1 and = 0. The 
vanishing points projected to the image plane can be expressed as 
 

 = __ +                                                                          (14)  

 = − __ +                                                                       (15)   

 
where the index =1, 2 or 3 denote the VPs associated X, Y and Z axes respectively. The superscript ‘+’ indicate the 
vanishing points associated with the positive direction of X, Y and Z axes. 
 
As mentioned before, a set of parallel lines in the 3D world are projected to a set of conics intersecting at two vanishing 
points in the catadioptric image plane. We can use the same procedure to work out the other vanishing points which 
correspond to ideal points [-1 0 0 0], [0 -1 0 0] and [0 0 -1 0] (i.e. ideal points lie at infinity towards the negative 
directions of X, Y and Z axes). 

4. CAMERA CALIBRATION USING VANISHING POINTS  
Based on the relation between the VPs and camera parameters derived above, individual parameters can be obtained by 
following some simple equation manipulation. Figure 3 shows an example of catadioptric projection of lines. There are 
three groups of parallel lines with their associated X, Y and Z axes directions. They are then mapped to the image plane 
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as conics, each group of conics intersect at two vanishing points. For each pair of vanishing points detected in the image 
plane, a line  can be drawn to cross both points. If the vanishing points for each group of conics are expressed in 
homogenous coordinates = 1 and = 1 , then  is obtained by the cross product of 

 and . = ∧                                                                              (16) 
 

The intersection of these three lines computed from each group of conics gives us the principal point  = [ 1]. 
The principal point can be calculated using the cross product of any two lines obtained from equation (16). 
 = ∧                                                                                 (17) 

 

 
Figure 3. The projection of parallel lines in the image plane and their associated vanishing points. 

 
Once the principal point is obtained, the columns of rotation matrix  can be derived. From equations (14) and (15), we 
have  − = __ 	 	 − = − __                                              (18) 

 
Divide the two equations in (18),  = = − __ 	                                                                  (19) 

 

If = =  and we have three pairs of vanishing points, then there are  

 = − __ ,				 = − __ ,					 = − __                                                  (20) 
 
 

Here the properties involved with rotation matrix should be accounted for; that is the norm of each column or row of R is 
1; R is an orthogonal matrix. Now we have sufficient constraints to estimate the rotation matrix R. Once R is obtained,  
and  can be easily calculated.  
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5. EXPERIMENTAL RESULTS 
The calibration procedure illustrated in Section 4 is demonstrated and tested on both synthetic and real data with respect 
to noise.  

5.1 Synthetic data  

For this simulation, the calibration parameters of the catadioptric camera are set to: aspect ratio r = 1, skew factor s = 0, 
effective focal length = 	1000, image centre = 	600 and = 400, image size 1200 × 800 pixels and mirror 
parameter	 = 0.92. The rotation matrix is randomly generated using the formula 
 = cos cos − cos sin + sin sin cos sin sin + cos sin coscos sin cos cos + sin sin sin − sin cos + cos sin sin− sin sin cos cos cos                  (21) 

 
Gaussian noise with zero mean and standard deviation varying from 0.0 to 5.0 pixels is added to each of the simulated 
vanishing points in the image plane. For each noise level, we perform 100 independent trials. The means and the 
standard deviations of the intrinsic parameters , , ,  are computed and shown in Figure 4. The estimated principal 
points and mirror parameter are close to the ground truth as the noise level increase, therefore, it is reliable to use 
vanishing points to obtain the principal points and mirror parameters. Comparably, the focal length error gets larger 
when noise levels increase, this is due to its high magnitude (i.e.10 ) and the multiplication of uncertainty while 
calculating the focal length. However, the error in the focal length still stays reasonably small when the noise level is less 
than 4 pixels. 

(a) (b) 

(c) (d) 

Figure 4. Experimental results of applying proposed calibration approach on synthetic data. 
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5.2 Real data  

The proposed method was also tested on real images. The conics are fitted to the extracted arc segments (i.e. the 
projection of straight lines) using the algorithm proposed by Sturm and Gargollo11; then vanishing points are detected as 
the intersection of ‘parallel’ conics. Figure 5 shows an example of conic fitting and vanishing points detection from a 
catadioptric image. We used a perspective camera with a hyperbolic mirror. The hyperbolic mirror employed is a 
commercially available unit called the 0-360 Panoramic Optic (0-360°.com, Carson City, USA), which has a vertical 
field of view (FOV) of 115° and its vertical maximum visible angle above horizon is 52.5°. Images of five different man-
made environments were taken. For each environment, images were repeated at six different locations. Each image was 
calibrated independently. Compared to the ground truth, the estimation results are as follows: the average error for the 
focal point is ±5.24 pixels, for the mirror parameter is ±0.021, for the principal point  is ±2.21 pixels, and  is ±1.79 
pixels. We know that only accurate calibration enables the rectification of the catadioptric image. In Figure 6, some 
sample rectification results achieved using the calibrated parameters are shown. 
 

 
 

Figure 5, The detected vanishing points and principal points on real catadioptric image. 
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Figure 6. Visual assessment of calibration results: corrected perspectives of man-made environments and human faces. 
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6. CONCLUSIONS 
This paper first showed how vanishing points in the 3D world are projected onto the catadioptric image plane, and then 
we derived the relationship between vanishing points in catadioptric images and the camera parameters. Based on this 
derived relationship, we demonstrated that central catadioptric cameras can be calibrated using vanishing points which 
correspond to the three mutually orthogonal directions of the 3D real world coordinate system (i.e. X, Y and Z axes). 
Compared to current calibration techniques12, the advantage of using vanishing points for calibration is that no planar 
grids are needed; no manual work is involved if automatic conic fitting and grouping are implemented; the calibration 
can be achieved from a single image. However, the disadvantage is that it can be less reliable than calibration using 
planar grids (if they are employed with care) since accuracy depends on the estimation of the detected vanishing points.  
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