269 research outputs found

    Decentralized optimal control of a vehicle platoon with guaranteed string stability

    No full text
    International audienceThis paper presents new decentralized optimal strategies for Cooperative Adaptive Cruise Control (CACC) of a car platoon under string-stability constraints. Two related scenarios are explored in the article: in the first one, a linear-quadratic regulator in the presence of measurable disturbances is synthesized, and the string-stability of the platoon is enforced over the controller's feedback and feedforward gains. In the second scenario, H2- and Hinf-performance criteria, respectively accounting for the desired group behavior and the string-stability of the platoon, are simultaneously achieved using the recently-proposed compensator blending method. An analytical study of the impact of actuation/communication delays and uncertain model parameters on the stability of the multi-vehicle system, is also conducted. The theory is illustrated via numerical simulations

    Design, test, and evaluation of three active flutter suppression controllers

    Get PDF
    Three control law design techniques for flutter suppression are presented. Each technique uses multiple control surfaces and/or sensors. The first method uses traditional tools (such as pole/zero loci and Nyquist diagrams) for producing a controller that has minimal complexity and which is sufficiently robust to handle plant uncertainty. The second procedure uses linear combinations of several accelerometer signals and dynamic compensation to synthesize the model rate of the critical mode for feedback to the distributed control surfaces. The third technique starts with a minimum-energy linear quadratic Gaussian controller, iteratively modifies intensity matrices corresponding to input and output noise, and applies controller order reduction to achieve a low-order, robust controller. The resulting designs were implemented digitally and tested subsonically on the active flexible wing wind-tunnel model in the Langley Transonic Dynamics Tunnel. Only the traditional pole/zero loci design was sufficiently robust to errors in the nominal plant to successfully suppress flutter during the test. The traditional pole/zero loci design provided simultaneous suppression of symmetric and antisymmetric flutter with a 24-percent increase in attainable dynamic pressure. Posttest analyses are shown which illustrate the problems encountered with the other laws

    Decentralized optimal control of a vehicle platoon with guaranteed string stability

    Get PDF
    International audienceThis paper presents new decentralized optimal strategies for Cooperative Adaptive Cruise Control (CACC) of a car platoon under string-stability constraints. Two related scenarios are explored in the article: in the first one, a linear-quadratic regulator in the presence of measurable disturbances is synthesized, and the string-stability of the platoon is enforced over the controller's feedback and feedforward gains. In the second scenario, H2- and Hinf-performance criteria, respectively accounting for the desired group behavior and the string-stability of the platoon, are simultaneously achieved using the recently-proposed compensator blending method. An analytical study of the impact of actuation/communication delays and uncertain model parameters on the stability of the multi-vehicle system, is also conducted. The theory is illustrated via numerical simulations

    Optimal Aeroelastic Vehicle Sensor Placement for Root Migration Flight Control Applications

    Get PDF
    An important step in control design for elastic systems is the determination of the number and location of control system components, namely sensors. The number and placement of sensors can be critical to the robust functioning of active control systems, especially when the system of interest is a large high-speed aeroelastic vehicle. The position of the sensors affects not only system stability, but also the performance of the closed-loop system. In this dissertation, a new approach for sensor placement in the integrated rigid and vibrational control of flexible aircraft structures is developed. Traditional rigid-body augmentation objectives are addressed indirectly through input-output pair and compensation selection. Aeroelastic control suppression objectives are addressed directly through sensor placement. A nonlinear programming problem is posed to minimize a cost function with specified constraints, where the cost function terms are multiplied by appropriate weighting factors. Cost function criteria are based on complex frequency domain geometric pole-zero structures in order to gain stabilize or phase stabilize the aeroelastic modes. Specifically, these criteria are based on dipole magnitude and complementary departure angle. In turn, the control design approach utilizes one of the classical methods known as Evans root migration to exploit the pole-zero structures resulting from sensor placement. Desirable complementary departure angles can lead to significant aeroelastic damping improvement as loop gain is increased, while favorable dipole magnitudes can virtually eliminate the effects of aeroelastics in a feedback loop. Appropriate constraints include minimum phase aeroelastic zeros to avoid common problems associated with right-half plane zeros. To achieve desirable flight control system characteristics via optimal sensor locations, different kinds of blending filters for multiple sensors are investigated. Static filters, as well as dynamic filters with fixed or variable parameters and fixed or variable compensator parameters, are considered. For every cost function, there are several local minima indicating many distributions of the sensors are available. By evaluating the cost for each minimum, the global optimum can then be found

    Active control of turbulence-induced helicopter vibration

    Get PDF
    Helicopter vibration signatures induced by severe atmospheric turbulence have been shown to differ considerably from nominal, still air vibration. The perturbations of the transmission frequency have significant implications for the design of passive and active vibration alleviation devices, which are generally tuned to the nominal vibration frequency. This thesis investigates the existence of the phenomena in several realistic atmospheric turbulence environments, generated using Computational Fluid Dynamic (CFD) engineering software and assimilated within a high-fidelity rotorcraft simulation, RASCAL. The RASCAL simulation is modified to calculate blade element sampling of the gust, enabling thorough, high frequency analyses of the rotor response. In a final modification, a numerical, integration-based inverse simulation algorithm, GENISA is incorporated and the augmented simulation is henceforth referred to as HISAT. Several implementation issues arise from the symbiosis, principally because of the modelling of variable rotorspeed and lead-lag motion. However, a novel technique for increasing the numerical stability margins is proposed and tested successfully. Two active vibration control schemes, higher harmonic control 'HHC' and individual blade control 'IBC', are then evaluated against a 'worst-case' sharp-edged gust field. The higher harmonic controller demonstrates a worrying lack of robustness, and actually begins to contribute to the vibration levels. Several intuitive modifications to the algorithm are proposed but only disturbance estimation is successful. A new simulation model of coupled blade motion is derived and implemented using MATLAB and is used to design a simple IBC compensator. Following bandwidth problems, a redesign is proposed using H theory which improves the controller performance. Disturbance prediction/estimation is attempted using artificial neural networks to limited success. Overall, the aims and objectives of the research are met

    Inter-layer adhesion in material extrusion 3D printing: effect of processing and molecular variables

    Get PDF
    There has been extensive research in the field of material-extrusion (Mat-Ex) 3D printing to improve the inter-layer bonding process. Much research focusses on how various printing conditions may be detrimental to weld strength; many different feedstocks have been investigated along with various additives to improve strength. Surprisingly, there has been little attention on how fundamental molecular properties of the feedstock, in particular the average molar mass of the polymer, may contribute to microstructure of the weld. Here we show that weld strength increases with decreasing average molar mass, contrary to common observations in specimens processed in more traditional ways, e.g., by compression molding. Using a combination of synchrotron infra-red polarization modulation microspectroscopy measurements and continuum modelling, we demonstrate how residual molecular anisotropy in the weld region leads to poor strength and how it can be eradicated by decreasing the relaxation time of the polymer. This is achieved more effectively by reducing the molar mass than by the usual approach of attempting to govern the temperature in this hard to control non-isothermal process. Thus, we propose that molar mass of the polymer feedstock should be considered as a key control parameter for achieving high weld strength in Mat-Ex

    Opinions and Outlooks on Morphological Computation

    Get PDF
    Morphological Computation is based on the observation that biological systems seem to carry out relevant computations with their morphology (physical body) in order to successfully interact with their environments. This can be observed in a whole range of systems and at many different scales. It has been studied in animals – e.g., while running, the functionality of coping with impact and slight unevenness in the ground is "delivered" by the shape of the legs and the damped elasticity of the muscle-tendon system – and plants, but it has also been observed at the cellular and even at the molecular level – as seen, for example, in spontaneous self-assembly. The concept of morphological computation has served as an inspirational resource to build bio-inspired robots, design novel approaches for support systems in health care, implement computation with natural systems, but also in art and architecture. As a consequence, the field is highly interdisciplinary, which is also nicely reflected in the wide range of authors that are featured in this e-book. We have contributions from robotics, mechanical engineering, health, architecture, biology, philosophy, and others

    NASA/DOD Control/Structures Interaction Technology, 1986

    Get PDF
    Papers presented at the CSI Technology Conference are given. The conference was jointly sponsored by the NASA Office of Aeronautics and Space Technology and the Department of Defense. The conference is the beginning of a series of annual conferences whose purpose is to report to industry, academia, and government agencies the current status of Control/Structures Interaction technology. The conference program was divided into five sessions: (1) Future spacecraft requirements; Technology issues and impact; (2) DOD special topics; (3) Large space systems technology; (4) Control of flexible structures, and (5) Selected NASA research in control structures interaction

    Functionalization of PS-b-P4VP Nanotemplates: towards optoelectronic applications

    Get PDF
    Self-organization of block copolymers becomes attractive for several branches of the current science and technology, which requires a cheap way of fabrication of well-ordered arrays of various nanoobjects. High ratio between the surface (or the interface) and the volume of the nanoobjects enables development of very efficient devices. The work within this thesis profits from the chemical dissimilarity between blocks of polystyrene-block-poly(4‑vinylpyridine) copolymers, where polystyrene forms “a body” of nanostructures and poly(4‑vinylpyridine) is “a link” for assemblies with low-molar-mass additives. Procedures and phenomena are demonstrated (observed) on few sorts of PS‑b‑P4VP copolymers with respect to their molecular weight and ratio of blocks. Although there are many kinds of nanostructures based on block copolymers, only nanotemplates are involved in the study. Their properties, like an influence of substrate roughness on microphase separation, stability of porous nanotemplates in ionized solutions, or a role of additives in their supramolecular assembly, respectively, are investigated. All of them appears to be important in development of various devices based on the nanotemplates. With respect to optoelectronic applications, electrical current transport and fluorescence are two basic phenomena studied on functionalized nanotemplates, developed in the thesis. DC transport is studied on nanostructures developed via sputtering of chromium into porous nanotemplates. Sputtering process is optimized in dependence of chromium deposition rate, composition and pressure of ambient gas. It is shown that a reactive nature of PS-b-P4VP nanotemplates enables development of resistant organometallic nanotemplates. On the other hand, suppression of the polymer reactivity is achieved by oxidation of a metal during sputtering in a reactive gas, which enables e. g. development of highly ordered TiO2 nanodots. Current-voltage characteristics are measured on “sandwich” devices (like LEDs) with various electrodes and composition. Several recent theoretical models fitting the characteristics are applied together with structural characterization techniques (like AFM or x-ray reflectivity) in order to elucidate relations among surface roughness, distribution of sputtered clusters, and carrier injection and transport. Fluorescence is studied on nanotemplates with organic low-molar-mass dyes, developed either via direct blending with the copolymer or via soaking of porous nanotemplates in dye solutions. Several relations between structure and fluorescence are observed. For instance, excimer emission in pyrene assemblies is supressed after ordering of the nanotemplate. Solvent induced orientation of fluorescein molecules in the nanotemplate results in fluorescence enhancement. Dimerization of Rhodamine 6G is dependent on the way of its impregnation in the nanotemplates (solvent, concentration, speed)
    • …
    corecore