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Decentralized optimal control of a car platoon
with guaranteed string stability

Fabio Morbidi, Patrizio Colaneri, Thomas Stanger

Abstract—This paper presents new decentralized optimal
strategies for Cooperative Adaptive Cruise Control (CACC) of
a car platoon under string-stability constraints. Two related
scenarios are explored in the article: in the first one, a linear-
quadratic regulator in the presence of measurable disturbances
is synthesized, and the string-stability of the platoon is enforced
over the controller’s feedback and feedforward gains. In the
second scenario, H2- and H∞-performance criteria, respectively
accounting for the desired group behavior and the string-
stability of the platoon, are simultaneously achieved using the
recently-proposed compensator blending method. An analytical
study of the impact of actuation/communication delays and
uncertain model parameters on the stability of the multi-vehicle
system, is also conducted. The theory is illustrated via numerical
simulations.

I. INTRODUCTION

A. Motivation and related work

Traffic congestion has become a serious issue in modern
cities’ life. In 2010, congestion caused urban Americans
to travel 4.8 billion hours more and to purchase an extra
1.9 billion gallons of fuel, for a congestion cost of $101
billion [1]. Because of such a big impact on productivity,
pollution and human welfare, a considerable effort has
been devoted in the last decades toward devising innova-
tive systems which may reduce traffic jams and improve
driver’s safety and comfort. This research activity, together
with numerous “intelligent highway” initiatives in the U.S.
(e.g., California PATH research program), Japan and Europe,
has led to the development of Adaptive Cruise Control
(ACC) systems, currently available in numerous sedans, and
lately to the design of Cooperative Adaptive Cruise Control
(CACC) systems which extend the functionality of ACC by
leveraging the information exchanged via vehicle-to-vehicle
and/or vehicle-to-infrastructure wireless communication.
The idea of using optimization-based policies for CACC

is not new and dates back at least to the end of 90s. In [2]
the longitudinal control of each car is computed using a
gradient-based descent algorithm, and no communication
with the leading vehicle of the platoon is needed. In [3] a
decentralized overlapping controller is developed using the
inclusion principle: possible extensions to the basic scenario
are also discussed, comprising the use of reduced-order
observers for estimating the state of the preceding vehicle
and the identification of suitable stability-preserving condi-
tions. A similar control framework is adopted in [4], where
the authors analyze the impact of range-limited sensing,
assuming that the lead car broadcasts its state information,
i.e. its speed and acceleration information, to all platoon
members. Recently, we have witnessed a growing interest in
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CACC based on Model Predictive Control (MPC). In [5] an
explicit MPC controller for “Stop-&-Go” ACC is synthe-
sized, and its performance is evaluated by distinguishing be-
tween comfort of the resulting longitudinal vehicle behavior
and behavior due to the traffic constraints. A similar MPC
approach is considered in [6], where the tuning of the cruise
controller is made simple by the parameterization of multiple
performance indices. In [7], a multi-objective MPC-based
CACC strategy is developed for multiple trucks and tested in
realistic traffic conditions. An analogous setup is considered
in [8], where the performance of MPC is compared with that
of a PD and a sliding-mode controller, in a real driving cycle.
A significant stream of research in the CACC literature

has also focused on robustness and stability issues, and
notably on the so-called string stability of a car platoon.
A platoon is said string stable under an assigned control
policy, if oscillations are attenuated upstream the traffic
flow. In [9], [10], early studies were conducted concerning
the effect of communication delays on the string stability.
A similar analysis has been recently carried out in [11] in
the frequency domain with heterogeneous vehicles, under a
simple PD control. In [12], sufficient conditions are given
that imply a lower bound on the peak of the frequency-
response magnitude of the transfer function mapping a
disturbance to the leading vehicle to a vehicle in the chain.
This bound quantifies the effect of spacing policy, inter-
vehicle communication policy, and vehicle settling response
performance. Finally, in [13], the problem of regulating
inter-vehicle distances in a car platoon is approached from
a networked-system perspective. Tradeoffs between CACC
performance and network specifications are pointed out, and
a study of the impact of network-induced effects on string
stability is conducted.

B. Original contributions and organization

After an introductory section devoted to the modeling of
the car platoon that we adapted from [7], Sect. III presents
original results concerning the decentralized optimal CACC
of a team of n vehicles under string-stability constraints and a
constant-time headway spacing policy. The CACC problem
is approached here from two different perspectives. In the
first scenario, an infinite-time linear-quadratic regulator in the
presence of measurable disturbances is synthesized and the
string-stability of the platoon is enforced over the regulator’s
feedback and feedforward gains. In the second scenario, we
simultaneously achieve H2- and H∞-performance criteria,
which respectively dictate the desired group behavior and
string-stable behavior of the platoon, by using the com-
pensator blending method recently proposed in [14]. This
method is more intuitive and simpler to implement than
the classical recursive approaches to mixed H2

/
H∞ optimal

control [15], lately used in [16] to design a constant-spacing
CACC strategy for a chain of trucks.
It is worth pointing out here that unlike the MPC methods

described in Sect. I-A, state and input constraints cannot be
handled by the strategies described in this paper. However,
differently from those methods, the relative simplicity of our
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Fig. 1. Hierarchical control architecture of vehicle i. In the lower-level
controller, a switching logic is adopted to avoid simultaneous actions from
the drive train and braking system (see [7] for more details).

control design procedures allowed us to establish insightful
analytical conditions for the solvability of the optimal CACC
problem with string stability, both in the “nominal case” and
in the presence of actuation/communication delays and, for
the first time, uncertain model parameters.
In Sect. IV, the proposed theoretical results are illustrated

via numerical simulations, and finally, in Sect. V, the main
contributions of the paper are summarized and possible
avenues for future research are outlined.

II. MODELING OF THE PLATOON

A. Compensation of nonlinear longitudinal dynamics

In this paper we consider a platoon of n identical cars
moving in one dimension, where vehicle 1 is the leader of
the platoon and v1, a1, . . . , vn, an denote the velocity and
acceleration of the n cars, respectively. In the following, we
will assume that a1 is an assigned acceleration profile.
As it is known, the longitudinal dynamics of a car is

nonlinear and its main features include the static nonlinearity
of engine torque maps, time-varying gear position and aero-
dynamic drag force. Following [7], we will avail ourselves
of a hierarchical controller for each vehicle, consisting of
a lower-level and an upper-level controller, as illustrated in
Fig. 1. The lower-level controller determines the value of
the accelerator pedal position (ai, accl) and brake pressure
(Pi, brk) of i-th car, i ∈ {2, . . . , n}, so that the desired
acceleration ai,des is tracked by the actual acceleration ai.
On the other end, the upper level controller determines
the desired longitudinal acceleration according to the inter-
vehicle and vehicle i’s internal variables, which include the
engine speed, gear ratio and car’s speed and acceleration.
We assume that the internal variables are all measured by
the on-board car sensors (cf. Fig. 1).
The inter-vehicle variables are the relative distance di

between vehicle i − 1 and vehicle i and the speed er-
ror ∆vi = vi−1 − vi, which are measured by a radar
mounted in front of the car. When designing the lower-
level controller, one of the challenges is the presence of
several nonlinearities coming from engine, transmission, and
aerodynamic drag. To compensate for them, following [7],
the inverse-dynamics control design method is used here. The
lower-level controller together with vehicle i, then yield a
new plant with input ai, des and output ai, called Generalized
Vehicle Longitudinal Dynamic (GVLD) system, described by,

ai(s) =
KL

TL s+ 1
ai, des(s), i ∈ {2, . . . , n}, (1)

where KL > 0 is the system gain (ideally equal to 1), and TL
is the time constant of GVLD.

B. Car-following model

In order to design the upper-level controller, a car-
following model is built by combining the GVLD system
and the inter-vehicular longitudinal dynamics. For the inter-
vehicular dynamics, two state variables are of interest: the
clearance error ∆ di(t) = di(t) − di, des(t) and the speed
error ∆vi, where di, des(t) denotes driver’s desired inter-
vehicle distance (cf. [7]). Various models for di, des have
been proposed in the literature: in this paper, we adopt the
popular constant-time headway spacing policy di, des(t) =
τh vi(t) + d0, where τh is the nominal time headway and d0
is the desired distance at standstill [11].
Note that d0 can be regarded as an extension of the length

ℓi of vehicle i (cf. [11] and see Fig. 2), and we can redefine
the vehicle’s length as ℓ′i = ℓi + d0. Hence, d0 will be
neglected in the rest of the paper. By collecting the inter-
vehicular dynamics and equation (1) together, we end up
with the following linear time-invariant system [7],

ẋi = Axi +Bui +G zi, i ∈ {2, . . . , n}, (2)

where

A =

[
0 1 −τh
0 0 −1
0 0 −1/TL

]
, B =

[
0
0

KL/TL

]
, G =

[
0
1
0

]
, (3)

xi = [∆ di, ∆ vi, ai]
T ∈ IR3 is the state of the system,

ui = ai, des ∈ IR is the control input, and zi = ai−1 ∈ IR is
a measurable disturbance. In the following, we will assume
the transmission of the acceleration ai−1 from vehicle i− 1
to vehicle i.

III. STRING-STABLE OPTIMAL CACC

In this section, we present two decentralized optimal
CACC strategies (see Sect. III-A and Sect. III-B, respec-
tively), which preserve the string stability of the car platoon.

A. LQ regulation with guaranteed string stability

In order to specify the desired behavior of the platoon, let
us introduce the following optimal control problem,

min
ui

∫ ∞

0

(
xT
i Qxi + r u2

i

)
dt,

s.t. ẋi = Axi +Bui +G zi,
i ∈ {2, . . . , n}, (4)

where Q � 0 and r > 0 are suitable weights on the
state xi and input ui of system (2). This is an infinite-
time linear-quadratic (LQ) regulation problem in the presence
of the measurable disturbance zi. If we assume that zi is
constant (cf. [3]), this problem admits the following closed-
form solution [17, Sect. 4.3],

u∗
i = − r−1 BT (Pxi + qi), (5)

ℓid0

ℓ′i = ℓi + d0

Vehicle i− 1 Vehicle i

Fig. 2. Two vehicles in the platoon: ℓi is the actual length of vehicle i,
d0 is the desired distance at standstill, and ℓ′i = ℓi + d0 is the “extended
length” of vehicle i that we will use in our analysis in Sect. III.



whereP � 0 is the solution of the algebraic Riccati equation,

PA + AT P − r−1 PBBTP + Q = 0,

and qi = [(A − r−1 BBTP)T ]−1 PG zi. Note that the
control law (5) can be rewritten more compactly as,

u∗
i = kTxi + kF zi, (6)

where

kT = [k1, k2, k3] � −r−1 BT P,

kF � −r−1 BT [(A− r−1 BBT P)T ]−1 PG.
(7)

By substituting equation (6) into system (2), we finally obtain
the following closed-loop dynamics,

ẋi = (A+BkT )xi + (B kF +G) zi, (8)

which is the basis for our forthcoming developments.
The following definition introduces the notion of string

stability used through the paper.
Definition 1 (String stability [11]): Consider the follow-

ing transfer function,

Λi(s) =
ai(s)

ai−1(s)
, i ∈ {2, . . . , n}, (9)

where ai(s) and ai−1(s), as in Sect. II-A, denote the Laplace
transforms of the acceleration signals ai(t) and ai−1(t),
respectively. A sufficient condition for the string stability
of a platoon of n identical cars is that,

‖Λi(j ω)‖∞ ≤ 1, i ∈ {2, . . . , n}, (10)

where ‖Λi(j ω)‖∞ � supω |Λi(j ω)| denotes the H∞ norm
of the transfer function in (9). ⋄
In other words, the longitudinal dynamics of a platoon is

string stable whether oscillations are not amplified upstream
the traffic flow. The next proposition provides sufficient
conditions on the feedback and feedforward control gains
in (7), for the string stability of the car platoon. These
conditions are successively extended to the case of constant
communication delays among the vehicles and within the
individual GVLD systems.
Proposition 1 (String-stability conditions): Consider sys-

tem (8). The car platoon is string stable if the following two
inequalities are satisfied:

(KLk3 − 1)2 − 2TLKL(τhk1 + k2)−K2
L k

2
F ≥ 0 ,

2k1(KLk3 − 1) + k1KL(τ
2
hk1 + 2 (τhk2 + kF )) ≥ 0 .

(11)

Proof: The last of the three (scalar) differential equa-
tions in (8), is:

ȧi =
(
KL k3−1

TL

)
ai +

KL

TL

[
k1∆ di + k2∆ vi + kF ai−1

]
.

In the Laplace domain (assuming ai(0) = 0), this equation
becomes:[
s−

(
KL k3−1

TL

)]
ai(s) = KL

TL

[
k1∆ di(s)

+ k2 ∆vi(s) + kF ai−1(s)
]
.

(12)

Note now that

∆ di(s) =
ai−1(s)−ai(s)

s2 − τh ai(s)
s , ∆ vi(s) =

ai−1(s)−ai(s)
s .

(13)
By plugging (13) into (12) and collecting similar terms
together, after simple algebraic manipulations, we get:

Λi(s) =
KL(k1 + k2 s+ kF s2)

TL s3 − (KLk3 − 1)s2 + (τhk1 + k2)KLs+KLk1
.

(14)

If we now impose the condition |Λi(jω)| ≤ 1, ∀ω > 0, we
end up with the following inequality in the variable ω:

T 2
L ω

4 + [(KLk3 − 1)2 − 2TLKL(τh k1 + k2)−K2
Lk

2
F ]ω

2+

2KLk1(KLk3 − 1) + [(τhk1 + k2)
2 + 2k1kF − k22 ]K

2
L ≥ 0.
(15)

A sufficient condition for the nonnegativity of the fourth-
order polynomial on the left-hand side of (15), is that all its
coefficients are nonnegative. This leads to (11).
Note that it is generally possible to enforce the conditions

in (11) by properly tuning the weights Q and r in (4).
Next, we will try to repeat the previous analysis in the

more challenging scenario in which the signal zi = ai−1

is transmitted between vehicle i − 1 and vehicle i with
a constant delay θ, and that a constant actuator’s com-
munication delay φ is present in the GVLD system. It is
immediate to verify that under these conditions, equation (2),
for i ∈ {2, . . . , n}, transforms into:

ẋi(t) = Axi(t) +Bui(t− φ) +G zi(t− θ). (16)

Let us now choose a control input of the form,

ui(t) = kTxi(t) + kF zi(t− θ). (17)

Following the same outline of the proof of Prop. 1, from (16)

we obtain [s−
(
KL k3 e−φ s

−1
TL

)
] ai(s) =

KL

TL
e−φs

[
k1∆ di(s)+

k2 ∆ vi(s) + kF ai−1(s) e
−θ s

]
. By using (13), we get the

transfer function:

Λi(s)=
KL e

−φs(k1 + k2 s+ kF s2 e−θs)

TLs3 + s2 +KL e−φs[−k3s2 + (k1τh + k2)s+ k1]
.

If we now impose |Λi(jω)| ≤ 1, ∀ω > 0, we obtain the
following quasipolynomial inequality in the variable ω:

T 2
L ω

4 + 2KL k3 TL sin(φω)ω3 + [1 + (k23 − k2F )K
2
L

− 2KL cos(φω)(k3 + TL(k1τh + k2))]ω
2

− 2[k2 kFK
2
L sin(θ ω) +KL sin(φω)(k1(τh − TL) + k2)]ω

+KL[−k22 KL + 2k1KL kF cos(θ ω) + 2KL k1k3

+KL(k1τh + k2)
2 − 2k1 cos(φω)] ≥ 0.

(18)
The study of the feasibility of (18) is made complicated
by the presence of the sinusoidal and cosinusoidal terms,
and suitable approximations to these functions need to be
introduced in order to establish conditions on the gains of
controller (17), similar to those in (11). A simple option,
consists of using the following Maclaurin series expansions
of the cosine and sine functions cos(αω) ≃ 1 − (αω)2/2!,
sin(αω) ≃ αω−(αω)3/3!, α ∈{θ, φ}, under the assumption
of “small” αω. Inequality (18) can thus be rewritten as:

− 1
3 KLk3TLφ

3ω6+
{
T 2
L + 2KL k3 TL φ+KL[k3 + TL(k1τh

+ k2)] θ
2 + 1

3 [k2 kF K2
L θ

3+KL(k1(τh − TL) + k2)φ
3]
}
ω4

+
{
(KL k3 − 1)2 − 2TLKL(τh k1 + k2)−K2

L k
2
F

−K2
L kF θ (2k2 + θk1)− 2KL [k2 + k1(τh − TL)]φ

+KL k1 φ
2
}
ω2 + 2KL k1(KLk3 − 1)

+ k1K
2
L [τ

2
h k1 + 2(τhk2 + kF )] ≥ 0.

(19)
A sufficient condition for the nonnegativity of the six-order
polynomial on the left-hand side of (19), is that all its
coefficients are nonnegative, from which we deduce the
following four inequalities:



− k3 φ
3 ≥ 0 ,

T 2
L + 2KL k3 TL φ+KL[k3 + TL(k1τh + k2)] θ

2

+ 1
3 [k2 kF K2

L θ
3 +KL(k1τh + k2 − k1TL)φ

3] ≥ 0 ,

(KL k3 − 1)2 − 2TLKL(τh k1 + k2)−K2
L k

2
F − K2

L kF θ ·

(2k2 + θk1)− 2KL[k2 + k1(τh − TL)]φ+ KL k1 φ
2 ≥ 0 ,

2k1(KLk3 − 1) + k1KL(τ
2
h k1 + 2(τhk2 + kF )) ≥ 0 .

These inequalities are approximate sufficient conditions for
the string stability of the car platoon in the presence of the
constant communication delays θ and φ.

B. Simultaneous H2- and H∞-performance achievement via
compensator blending

In this section, we present a decentralized CACC strategy
alternative to that considered in Sect. III-A. By relying on
the compensator blending method proposed in [14], we are
here interested in jointly solving two problems: minimize the
H2-performance index in (4) and achieve an H∞ criterium
(cf. equation (10)) accounting for the string-stable behavior
of the platoon. We will separately design the H2 and H∞

control laws ui = kT
2 xi, ui = kT

∞ xi, i ∈ {2, . . . , n}, and
obtain a (dynamic) compensator of the form,

Ki :

{
żi = AK,i zi + BK,i xi,

ui = CK,i zi + DK,i xi,
(20)

which simultaneously fulfills the H2 and H∞ criteria.
To this end, let us introduce the following system,

Gi :

⎧
⎨
⎩

ẋi = Axi + Bui + xi(0) zi,2 + G zi,∞,

yi,2 = C2 xi +D2 ui, i ∈ {2, . . . , n},

yi,∞ = C∞ xi,

where

zi, 2(t) = δ(t), C2 =

[
Q1/2

01×3

]
, D2 =

[
03×1

r1/2

]
,

zi,∞(t) = zi(t), C∞ = [ 0 0 1 ] ,

xi(0) is the initial state, δ(t) is the Dirac’s delta, 01×3 is an
1× 3 vector of zeros, and the subscripts “2” and “∞” refer
to the H2- and H∞-performance indices, respectively. Note
that the compensator blending procedure in [14], is valid
under the assumption of a stabilizable pair (A, B) (in our
specific case, (A, B) is indeed controllable, cf. (3)), and
of full column-rank matrices [xi(0) G], i ∈ {2, . . . , n}.
An additional requirement is that k2 and k∞ are stabilizing.
Since the regulator k2 can be easily synthesized, in what

follows we will limit ourselves to the design of the more
challenging k∞ = [k∞,1, k∞,2, k∞,3]

T (which we cannot
straightforwardly calculate using state-of-the-art methods
owing to our peculiar choice of the output matrix C∞).
Note that the characteristic polynomial of matrix,

Â = A + BkT
∞ =

⎡
⎣

0 1 −τh
0 0 −1

KLk∞,1

TL

KLk∞,2

TL

KLk∞,3−1
TL

⎤
⎦, (21)

is

det(λI3 − Â) = λ3 −
(
KLk∞,3− 1

TL

)
λ2 +

KL

TL
(k∞,1τh + k∞,2)λ+ KL

TL
k∞,1,

(22)

where I3 denotes the 3× 3 identity matrix. Hence, from the

Routh-Hurwitz stability criterion, Â is Hurwitz (and thus k∞

-2

-1

0

1

22

0

-2

-2

-1

1

2

0

k∞,1k∞,2

k
∞

,3

S

Fig. 3. The set S of all feasible regulators k∞ in [−2, 2]3, for τh = 2.5,
KL = 1 and TL = 0.45. For this parameters’ selection, S (in the front
lower corner of the figure) is completely defined by the two inequalities
in (24), depicted in cyan and red, respectively.

is stabilizing), if the following four inequalities are satisfied:

KL k∞,3 < 1, k∞,1 τh + k∞,2 > 0, k∞,1 > 0,

(KL k∞,3 − 1)(k∞,1 τh + k∞,2) + k∞,1 TL < 0.
(23)

Moreover, we have that (cf. equation (14)):

Λi(s) = C∞(s I3 − Â)−1 G =

KL(k∞,1 + k∞,2 s)

TLs3− (KLk∞,3 − 1)s2 + (τhk∞,1 + k∞,2)KLs+KLk∞,1
.

If, as in the proof of Prop. 1, we now impose that
|Λi(jω)| ≤ 1, ∀ω > 0, for string stability, we end up with
the following two inequalities (which coincide with those
in (11) for kF = 0), which add to those in (23):

(KL k∞,3 − 1)2 − 2TLKL(τhk∞,1 + k∞,2) ≥ 0,

2k∞,1(KL k∞,3 − 1) + k∞,1KLτh(τhk∞,1 + 2k∞,2) ≥ 0.
(24)

Note that (23)-(24) define the set S ⊂ IR3 of all feasible
regulators k∞: as illustrated in the example of Fig. 3, S is
a nonconvex set. Since S contains infinite gain vectors,
one needs an optimal criterion to select k∞, such as, e.g.,
minimizing any vector norm. In the numerical simulations in
Sect. IV-B, we chose the k∞ with minimum squared 2-norm.
Given the regulator k2 and a regulator k∞ ∈ S, by using

Procedure 2.1 in [14], the matrices AK,i, BK,i, CK,i, DK,i

of the compensator in (20) can be simply computed as,
[
DK,i CK,i

BK,i AK,i

]
=

[
kT
2 kT

∞

V2,i V∞

][
I3 I3
Z2,i Z∞

]−1

, (25)

where

V2,i � Z2,i(A+BkT
2 ), V∞ � Z∞(A+BkT

∞), (26)

and
Z2,i � [03×1 Z̃2] [xi(0) Ẽ2,i]

−1,

Z∞ � [03×1 Z̃∞] [G Ẽ∞]−1.
(27)

Ẽ2,i, Ẽ∞ ∈ IR3×2 in (27) are such that matrices

[xi(0) Ẽ2,i], i ∈ {2, . . . , n}, [G Ẽ∞], respectively,

are invertible, and Z̃2, Z̃∞ ∈ IR3×2 are such that matrix[
xi(0) G Ẽ2,i Ẽ∞

03×1 03×1 Z̃2 Z̃∞

]
∈ IR6×6, i ∈ {2, . . . , n}, is invertible.
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Fig. 4. First row, LQ regulation with guaranteed string stability; second row, compensator blending method. (a),(d) Time evolution of ∆di(t), (b),(e) of
∆vi(t), and (c),(f) of aref,i(t) − ai(t), i ∈ {2, . . . , 5}.

We conclude this section with Prop. 2, which provides
sufficient conditions for k∞ to be stabilizing when the
parameters KL and TL are not exactly known (e.g., because
of an inaccurate identification of the GVLD system).
Proposition 2 (Stabilizing k∞ with uncertain KL, TL):

Let us suppose that the parameters KL and TL of the
GVLD system (1) are not exactly known, and lie within
the intervals KL,m ≤ KL ≤ KL,M , TL,m ≤ TL ≤ TL,M
where KL,m, KL,M , TL,m and TL,M are known positive

constants. Then, matrix Â in (21) is Hurwitz if the following
inequalities are satisfied:
KL,M k∞,3 < 1, k∞,1 τh + k∞,2 > 0, k∞,1 > 0,

(KL,m k∞,3 − 1)(k∞,1 τh + k∞,2) + k∞,1 TL,M < 0,

(KL,M k∞,3 − 1)(k∞,1 τh + k∞,2) + k∞,1 TL,m < 0.

(28)

Proof: Note that the roots of the third-order polyno-
mial (22) coincide with the roots of polynomial,
TL

KL
λ3+

(
1

KL
− k∞,3

)
λ2+ (k∞,1τh + k∞,2)λ+ k∞,1. (29)

The range of variation of the coefficients of the third- and

second-order term in (29), is
TL,m

KL,M
≤ TL

KL
≤

TL,M

KL,m
, 1
KL,M

−

k∞,3 ≤ 1
KL

− k∞,3 ≤ 1
KL,m

− k∞,3. From Kharitonov’s

theorem, then we have that the interval polynomial (29) is
Hurwitz if and only if the following four extreme polynomi-
als are Hurwitz,

p1(λ) =
TL,M

KL,m
λ3 +

(

1

KL,m
− k∞,3

)

λ2+(k∞,1τh + k∞,2)λ+ k∞,1,

p2(λ) =
TL,m

KL,M
λ3 +

(

1

KL,M
− k∞,3

)

λ2+(k∞,1τh + k∞,2)λ+ k∞,1,

p3(λ) =
TL,m

KL,M
λ3 +

(

1

KL,m
− k∞,3

)

λ2+(k∞,1τh + k∞,2)λ+ k∞,1,

p4(λ) =
TL,M

KL,m
λ3 +

(

1

KL,M
− k∞,3

)

λ2+(k∞,1τh + k∞,2)λ+ k∞,1.

The application of the Routh-Hurwitz stability criterion to
these polynomials, leads to (28).

Note that the inequalities in (28) reduce to those in (23) for
KL = KL,m = KL,M and TL = TL,m = TL,M , as expected.

IV. SIMULATION RESULTS

Simulation experiments have been carried out to study the
performance of the control strategies described in Sect. III-A
and Sect. III-B. The desired behavior of the platoon is
specified in both cases by the following three performance
metrics for i ∈ {2, . . . , n} (cf. [7]):

1) Distance and velocity tracking: CT, i = r∆d ∆ d2i +
r∆v ∆ v2i where r∆d, r∆v are positive gains.

2) Driver’s comfort: CC, i = ru u
2
i where ru is a posi-

tive gain.
3) Driver’s car following: CD, i = ra (aref,i−ai)

2 where
aref,i is the reference acceleration calculated according
to the linear driver’s car-following model aref,i =
κD ∆ di+κV ∆ vi, and ra, κD, κV are positive gains.

The combination of CT, i, CC, i and CD, i yields the following
weight matrices in the quadratic cost function in (4):

Q =

[
r∆d+κ2

Dra κDκV ra −κDra

κDκV ra r∆v+κ2

V ra −κV ra
−κDra −κV ra ra

]
, r = ru.

A. LQ regulation with guaranteed string stability

Figs. 4(a)-(c) shows the simulation results relative to the
approach described in Sect. III-A. A platoon of 5 vehicles
was simulated for 50 seconds, with a1(t) = 1.5 m/s2 for
t ∈ [20, 22) and a1(t) = 0 m/s2 otherwise, and with initial
conditions x2(0) = [11, 1.5, 3.2]T , x3(0) = [10, −2, 3.5]T ,
x4(0) = [12, 1.5, 3.3]T , x5(0) = [10.5, −3, 3.5]T . The
other selected parameters, are τh = 1.8s, TL = 0.5s,
KL = 1, kD = 0.02, kV = 0.25 and r∆d = r∆v = 4, ra =
0.1, ru = 18 (note that in CACC of cars, τh is typically in the
subsecond time scale in the literature [11]: in our simulations,



we selected a slightly larger τh for improving the readability
of our plots). Using (7), we obtained a feedback control
gain k = [0.4714, 0.7182, −0.6038]T and a feedforward
control gain kF = −0.3110. Figs. 4(a)-(c) show the time
evolution of ∆ di, ∆ vi and aref,i − ai, and Fig. 5 (top)
the time history of ui for i ∈ {2, . . . , 5} and of a1. Note
that with our parameters’ selection, the inequalities in (11)
are satisfied and the platoon is string stable. If, instead, we
set r∆d = 1 and keep all the other parameters unchanged,
the second condition in (11) is not fulfilled anymore, thus
possibly leading to a string-unstable behavior.

B. Compensator blending method

Figs. 4(d)-(f) show the simulation results relative to
the approach described in Sect. III-B. In order to com-
pare the performance of the controller designed with
the compensator blending method and the LQ regula-
tor, we repeated the simulation experiment of Sect. IV-A
with the same initial conditions and parameters. We set
k2 = k = [0.4714, 0.7182, −0.6038]T and determined
the H∞ regulator by numerically solving in Matlab with
an interior-point algorithm (the barrier method), the op-
timization problem min k∞ ∈ S ‖k∞‖22 (the initial condi-
tion is k∞(0) = [1, 0, 0]T ∈ S), which yielded
k∞ = [0.2360, 0.2622, 0.1457]T . The application of
the blending procedure to k2 and k∞, led us to

Z2,2 =
[
0.1298 0.6483 −0.7502

02×3

]
, Z2,3 =

[
−0.1855 0.5255 0.8303

02×3

]
,

Z2,4 =
[
0.1197 0.6648 −0.7373

02×3

]
, Z2,5 =

[
−0.2616 0.1887 0.9466

02×3

]
,

Z∞ =
[
0 0 0
1 0 0
0 0 1

]
, from which the dynamic compensators

Ki, i∈{2, . . . , 5}, were computed using (25) and (26).
Figs. 4(d)-(f) show the time evolution of ∆ di, ∆ vi and
aref,i − ai, and Fig. 5 (bottom) the time history of ui for
i ∈ {2, . . . , 5} and of a1. From Fig. 4 we notice that the two
controllers proposed in this paper achieve comparable satis-
factory performances: however, from Fig. 5 (and consistently
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Fig. 5. Time evolution of ui(t), i ∈ {2, . . . , 5}, for: (top) the LQ regulator,
(bottom) the regulator based on the compensator blending method.

with our choice of k∞), we can notice that the compensator
blending method results in a smaller control effort.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed two novel decentralized
optimal strategies for Cooperative Adaptive Cruise Control
(CACC) of a car platoon under string-stability constraints.
Some variations to the basic problem setup have also been
explored and the results of numerical simulations have been
provided to support our theoretical findings.
Note that the feedforward part of controller (6) does not in-

clude anticipatory characteristics for variable disturbances zi.
Any adjustment to this controller to get improved transient
response usually involves lead-lag networks to replace the
constant gain kF [17]: the design of such networks will be
considered in future works. In future research, we are also
going to verify whether a static controller which optimally
switches between k2 and k∞ may possibly outperform
the dynamic regulator based on the compensator blending
method, we are going to study the case of time-varying
communication delays θ(t) and φ(t) [18], and to test the
control strategies developed in this paper in more advanced
simulation environments (e.g., in IPG’s “CarMaker”).
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