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Abstract

In this thesis we are concerned with iterative identification and control design. We establish 

that, given an initial model which may represent the plant accurately only in the low fre

quency region, the iterative identification and control design paradigm propounded recently 

by Anderson and Kosut [1991] may achieve good closed-loop performance in the sense that 

the closed-loop system has a large bandwidth and good step responses.

We begin our investigation of the iterative identification and control design paradigm 

in the ideal situation where an infinite number of noiseless measurements are available 

for the plant input and output. The resulting iterative model approximation and control 

design procedure combines the Internal Model Control design method [Morari and Zafiriou 

1989] and a control-relevant closed-loop model approximation procedure which employs 

Hansen’s system identification framework [Hansen 1989]. This gives encouraging results 

that are supported by simulations. We then study the iterative identification and control 

design paradigm under realistic situations where only a finite number of noisy input-output 

measurements are available. At this stage we also consider plants that, other than having poles 

in the open left-half plane, may have one pole at the origin. This investigation provides further 

insights into the role of appropriate frequency weighting in the control-relevant closed-loop 

system identification procedure. It also supports the philosophy of iterative identification and 

control design.

Some crucial questions which arise in the iterative identification and control design 

methodology are examined in this thesis. This leads to further understanding of various 

mechanisms that may be helpful or harmful to the iterative identification and control design 

procedure. Furthermore, model validation methods are developed to improve the reliability 

of the closed-loop system identification procedure. The key conclusion is that, given a 

stable strictly proper model of a stable strictly proper plant, we can improve the performance 

robustness of the closed-loop system through iterative identification and control design if 

certain verifiable conditions are satisfied.

The applications of the iterative identification and control design paradigm is extended 

to the situation of unstable plants. This is achieved via a two step control design approach 

where the unstable plant is first stabilized by a strictly proper parallel output feedback

iv



compensator. The iterative identification and control design methodology is then applied to 

the stabilized plant. Simulation results clearly demonstrated the advantages of the two step 

iterative identification and control design procedure in the situation of unstable plants.

Finally, the thesis concludes with a suggestion of future research directions.
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Chapter 1

Introduction

This thesis is concerned with a systematic study of iterative identification and control design. 

We establish in Section 1.1 that there is a need for iterative identification and control design 

procedures. Some general questions that are of interest to any iterative identification and 

control design procedure will also be presented. Recent developments in adaptive control 

and improved understanding of closed-loop system identification that have paved the road for 

iterative identification and control design are highlighted at the end of Section 1.1. We review 

in Section 1.2 two major iterative identification and control design schemes. In Section 1.3 

we briefly explain how the questions posed in Section 1.1 for iterative identification and 

control design can be answered for a reference tracking problem where it is desirable that the 

closed-loop system has a large bandwidth and good step response. An outline of the thesis is 

given in Section 1.4 and a point summary of thesis contributions is provided in Section 1.5.

1.1 Background and Motivation

With reference to Figure 1.1, we consider the situation where it is desired to design a 

closed-loop system such that its output y will track a step reference input r in a well behaved 

manner. We assume that a model G of the plant G is employed for designing the controller K . 

Obviously, step responses of the closed-loop system will depend on the actual closed-loop 

transfer function,

T
G K  

1 +  G K

1



2 Chapter 1. Introduction

Figure 1.1: Closed-loop control system

Therefore, other than requiring T  to be stable, it is desirable that T  has a step response 

with small rise time, small settling time, small peak overshoot, and no steady-state error. 

In general, the control objectives that we have just mentioned are accomplished indirectly 

through designing the designed closed-loop transfer function,

T
G K

l + G K  ’

on the basis of the model G such that T  has a large bandwidth and small (or negligible) 

resonance peak in its frequency response. The set of performance specifications (either in 

time domain or frequency domain) that is achieved by the designed closed-loop system is 

termed the nominal performance of the closed-loop system. It is clear that the achieved 

performance of the actual closed-loop system (which involves G and K) may not be the same 

as the performance of the designed closed-loop system (which involves G and K ), especially 

when G is a poor representation of G. To characterize the behaviour of the actual closed-loop 

transfer function T  in terms of the behaviour of the designed closed-loop transfer function 

T, we say that the closed-loop system has robust performance if the achieved performance 

of the actual closed-loop system is close to the performance of the designed closed-loop 

system. This is more demanding than the requirement of robust stability where stability of 

T  implies stability of T. (Precise definitions for robust stability, nominal performance, and 

robust performance will be provided in the sequel.)

In any closed-loop control system design problem, it is obvious that one would like to 

achieve both high nominal performance and good robust performance. To obtain this is not a 

trivial problem because, in general, the desired nominal performance and robust performance 

of the target closed-loop system may be incompatible with the accuracy of the available plant
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model. In fact, it is usually not known a priori whether the specified requirements on the 

closed-loop system are achievable with the existing model. This is obviously different from 

the robust performance problem studied by robust control researchers, where the question 

of “What should be done if the existing model (and the associated bound on the modelling 

error that is assumed to be known by robust control researchers) does not allow the specified 

nominal performance and performance robustness to be attained simultaneously by the closed- 

loop system?” is left unanswered. Despite this shortcoming, it is undeniable that, starting 

with [Doyle and Stein 1981] and [Zames 1981], robust control research has in the last decade 

brought to the forefront of control engineering the many important concepts and tools for 

dealing with unavoidable model uncertainties. A good tutorial in robust control and Hoo- 

optimization was given recently by Kwakernaak [1993], and a historical review on robust 

control is given in [Dorato 1986].

We have noticed that in robust control, one seeks to guarantee stability robustness and 

performance robustness in the presence of significant modelling errors. However there are 

no attempts to actively reduce the modelling errors that may limit the nominal performance. 

Therefore, from the nominal performance point of view, robust control tends to result in 

conservative design. By taking the inherent shortcoming of robust control as a clue, one 
tends to jump to the conclusion that, by actively improving the model accuracy through on

line parameter estimation and making corresponding adjustment to the controller parameters, 

adaptive control will provide the route to high performance closed-loop control system. 

However, it is well known by now that traditional adaptive control [Goodwin and Sin 1984, 

Äström and Wittenmark 1989, Sastry and Bodson 1989] still has many practical difficulties 

[Ortega and Tang 1989, Bodson 1993], although significant progress was made in robust 

adaptive control in the last decade [Anderson etal. 1986, Äström and Wittenmark 1989, Sastry 

and Bodson 1989]. It is interesting to note that, although many researchers have realized 

that the underlying control design can play a major role in the performance robustness of an 

adaptive control system (especially when it is not known a priori that the desired nominal 

performance can be achieved with the assumed model structure), almost all of the robust 

adaptive controllers are robustified through modifications of the on-line parameter update 

schemes and no attempts were made to improve the robustness by modifying the underlying 

control design procedure. A possible reason for this is that, other than a few exceptions (see, 

for example, [Goodwin et al. 1985], [Tay et al. 1989], [Bitmead et al. 1990], and [Iglesias 

1990]), robust control and adaptive control have been treated separately in their respective
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framework and interactions between these techniques have been minimal. This results in the 

shortcoming that, in an attempt to attain certain specified closed-loop performance objectives 

through adaptation with a model whose structure is fixed a priori, (for example, by trying to 

match the closed-loop transfer function to a given reference model while paying no attention 

to the question of whether the desired nominal performance can be achieved robustly under 

the assumed model complexity), poor nominal performance or poor performance robustness 

are often the end results.

A further serious problem with traditional adaptive control is that extreme transient 

excursions are possible even when global convergence and asymptotic performance are 

guaranteed. These problems are very seldom discussed in the literature. Some of the 

exceptions are [Kosut etal. 1987], [Zang and Bitmead 1990], [Bodson 1993], and [Zang and 

Bitmead 1994]. The most serious criticism of adaptive control from a practical engineering 

point of view is perhaps, as it was pointed out by Ljung and Anderson [1984], that there is a 

lack of qualitative, or semi-quantitative, conceptual aids, especially those invoking frequency 

domain ideas, for designing adaptive control systems.

From the above short review, it is clear that the attitude taken by the traditional adaptive 

control community is too optimistic in the sense that it has relied too much on the assumed 

parametrized model structure being correct. On the other hand, the attitude taken by the robust 

control community is too pessimistic because it only attempts to accommodate, usually, the 

worst possible modelling errors, and has neglected the fact that characteristics of the plant 

could be learned while it is being controlled. We believe that these approaches should be 

able to complement each other and there should be natural ways in which they could be 

blended harmoniously. In the process of doing so, we hope to construct an engineering 

design framework for adaptive robust control. It is in this spirit that we are going to develop 

the new iterative identification and control design methodology.

Irrespective of the nominal performance and robust performance requirements that are 

problem specific, the central questions in the general area of iterative identification and control 

design are:

1. Given a (crude) model of a plant which is stabilized by a known controller (or equiva

lently, the plant is stabilized by a controller designed on the basis of the given model), is
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it possible to improve the nominal performance and robust performance of the closed- 

loop system through the iterative applications of a control design procedure and a 

system identification procedure?

2. In what way should a particular control design method be combined with a certain 

system identification procedure? This is a question of algorithm design and its answer 

will depend, in general, on the objective and performance measure of the target closed- 

loop system. In detail, this question could be decomposed into the next three questions.

(a) For a given control objective and performance measure, what is a suitable (or the 

best) control design method to be adopted?

(b) For a given control objective and performance measure, what is a suitable (or the 

best) system identification procedure?

(c) How could the selected control design method and system identification procedure 

be integrated such that they support each other in the manner that is most beneficial 

for achieving the overall control performance objective?

3. For an iterative identification and control design approach that attempts to answer 

the last set of questions (given that a specific control performance objective is to be 

achieved), are there any performance limitations?

In this thesis we study the above issues for a new iterative identification and control 

design algorithm that is related to a reference tracking problem. Specifically, we would like 

to design a closed-loop system such that it has a sufficiently large bandwidth. Furthermore, 

it is desirable that the step response of the actual closed-loop system has no overshoot and 

little oscillations.

Although the iterative identification and control design methodology that we are going to 

study is not, from the traditional adaptive control point of view, an on-line adaptive control 

algorithm, it is, according to the definition given in [Zames and Wang 1992], an adaptive 

robust control paradigm. Furthermore, although Bitmead et al. [1990] has focussed on on

line adaptive control, their viewpoint is very similar to ours in iterative identification and 

control design.

Another feature of iterative identification and control design that we should mention is 

that the controller is fixed while a system identification experiment is being carried out. It is
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therefore a linear systems problem, as opposed to the nonlinear systems problem in the tradi

tional adaptive control scenario. This has the advantage of eliminating the peculiar behaviour 

of adaptive control that can be observed in ideal and non-ideal adaptive control systems 

[Anderson 1985, Mareels and Bitmead 1987, Bodson 1993]. Shimkin and Feuer [1988] have 

shown that, for traditional discrete-time adaptive control systems, if the parameters of the 

controller are updated only at the end of a block of data while the parameters are estimated 

(without controller updates) at every sample within the block of data, coupling between the 

system identification loop and the control loop is reduced and convergence can be proved for 

a number of adaptive control schemes.

We end this section by emphasizing that good understanding in the frequency domain 

behaviour of system identification methods only became available in the eighties through 

the works of Ljung and co-workers (see [Ljung 1985], [Wahlberg and Ljung 1986], [Ljung 

1987] and the references therein). These have very quickly developed into the modern theory 

for the joint design of identification and control. (See for example, [Skelton 1985], [Gevers 

and Ljung 1986], [Hansen 1989], [Bitmead et al. 1990], [Liu and Skelton 1990], [Anderson 

and Kosut 1991], [Schrama and Van den Hof 1992], and [Schrama 1992a].) It is through 

these researches that the importance of appropriate treatments on system identification in 

closed-loop become appreciated and widely recognized. They have also paved the road for 

iterative identification and control design. For a good tutorial and historical perspective in 

joint design of identification and control, we refer to [Gevers 1993]. It is no doubt that 

these works will have long lasting impacts on forthcoming iterative identification and control 

design methodologies.

1.2 Review of Two Major Iterative Schemes

Iterative identification and control design has become a very active research area of control 

engineering in the last few years. This is evident from the following samples of publications: 

[Liu and Skelton 1990], [Zang et al. 1991, Zang et al. 1992, Partanen and Bitmead 1993c, 

Partanen et al. 1994], [Schrama and Van den Hof 1992, Schrama 1992a, Schrama 1992b, Van 

den Hof et al. 1993], [Anderson and Kosut 1991, Lee et al. 1993], and [Äström 1993], At 

the current stage of development, two of these approaches have emerged as comparatively 

well studied. We briefly review in this section these two major iterative schemes, which
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are known to the control community as the Delft School’s approach and the Zang-Bitmead- 

Gevers scheme. As we concentrate on the broad pictures and main points, fine details and 

many recent developments in these schemes are inevitably omitted. For recent developments 

in the Delft School’s approach, we refer to the journal “Selected Topics in Identification, 

Modelling and Control” (edited by Professor O.H. Bosgra and Professor P.M.J. Van den 

Hof) published by Delft University Press. Latest developments in the Zang-Bitmead-Gevers 

scheme are reported recently in [Partanen and Bitmead 1993c] and [Partanen et al. 1994].

1.2.1 Delft School’s Approach

In the Delft School’s approach [Schrama 1992a, Schrama 19926, Van den Hof et al. 1993], 

the controller is designed by the method introduced by McFarlane and Glover [1990] and 

Bongers and Bosgra [1990]. Its overall control objective is described by the “four block” 

Hoo -optimal control problem, where the controller K  in Figure 1.1 is designed to satisfy

mc.-foiioo < -t '

for a specific value of 7. Here

T< r K\ = \ G K / ( l  + GK)  G/ ( l  + GK)  
v ’ ’ [ K / ( l + G K )  1/(1 +  GK)  \ '

and G represents the plant transfer function. Schrama [19926] has convincingly demon

strated that, ideally the overall control objective should be solved by simultaneous system 

identification and control design but, in practice, an iterative approach is necessary. The 

control design part of the Delft School’s approach is accomplished at the 2th stage of iteration 

by designing a controller such that

AT, =  argmin | r ( a j G t, K/oti)

Observe that the model Gt used in the design of Ki is either obtained in the {i -  1)* stage of 

iteration by performing a closed-loop system identification (to be described shortly) or given at 

the initial stage (i = 0) of iteration by an open-loop system identification. The scalar variable 

is a nominal performance design parameter whose function will be highlighted shortly. 

The model G{+1 identified at the 2th stage of iteration will have a plant-model mismatch. 

In order that this mismatch is well tuned for achieving the overall control objective through
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control re-design, the control-relevant system identification criterion is chosen as

Gx + 1 =  arg mm T{axG , Kx/ a x) -  T(axG, Kx/ a i )
G

Since it is infeasible to deal with Hoo system identification, an £ 2  system identification 

problem,

Gi+ 1 arg min
G

T(atG, Ki/oii) -  T(axG, Ki / ax)

is considered instead. The control-relevant closed-loop system identification problem for

mulated in the last equation is solved by recasting it into an open-loop system identification 

problem via a modified version of Hansen’s system identification framework [Hansen 1989]. 

Specifically, instead of following [Hansen 1989] exactly, right coprime factorization as de

fined in [Vidyasagar 1985a] is employed by Schrama [1992b] and Van den Hof et al. [1993] 

to show that G can be identified through estimating the coprime factors (N  and D ) in a 

fractional description of G (in the form of G =  N / D). They proceed as follows.

With reference to Figure 1.2, assume that the plant G is proper and is stabilized by the 

controller K x = X x/Yi , where X t and Yt are coprime factors of Kx. Let Gx = Nx/ D x be 

an auxiliary proper transfer function that is also stabilized by Kx. (An obvious but may not 

be the best choice is Gx = Gx, where Gx is the model used to design Kx at the 2th stage of 

iteration.) The theory of Youla-parametrization then allows one to write

N = NX + YXR  , (1.1)

and

D = Dx - X xR  , (1.2)

where R  is a stable proper transfer function. Furthermore, by defining an auxiliary signal

x = (Dx -F K{NX) l (u + Kxy) ,

it can be shown that

y = N x  + ( l  + K,G)~'He  , (1.3)

; =  Dx -  K {( 1 +  K,G)~!He , (1.4)

x  = ( D x + KiNx)~lr , (1.5)



1.2. Review of Two Major Iterative Schemes 9

Figure 1.2: Iterative identification and control

where the signals u and y are measured (at the 2th stage of iteration) from the actual closed- 

loop system represented by Figure 1.2, and r = K tr\ -F ri. Observe that the auxiliary signal 

x can be generated by filtering known signals with known transfer functions.

Equation (1.5) clearly shows that x is uncorrelated with the noise disturbance e and 

hence equations (1.3) and (1.4) constitute a framework for performing open-loop system 

identification. Furthermore, it can be shown that

T(G, K x) N
D

1
Dx +  K{NX

K i 1

By defining a parametrized set of models,

the following can be written

Now it is easy to write

T(a,G,K,/a ,)

and

T (aiG(0),Ki/a,) --

N(0)
D(0)

D(0) j  ’

1
Dx -f KlNx

oiiN
D

atN{6)
D(9)

1
Dx +  KtNx

1
Dx +  K{NX

Kt 1

Ki/ot-i 1 

Ki/cti  1
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To identify a plant G, Schrama [1992b] performs sine-wave experiments and measures 

the signals x, y, and u. A frequency spectral analyzer is then employed to estimate frequency 

response of N  and D over a set of discrete frequencies Q = {ui : i — 1,2, • • •, M}.  These 

are then treated as the actual frequency responses for the coprime factors of the plant. Denote 

these frequency response samples as N(ju i )  and D(jui),  and define

aiiN(jui)
D ( M )

ociN(6Jui)
D(d,jui)

2

[Di(jui) +  Kitiu>i)Ni{ju>i) ] - 1

the optimal parameter vector 0* is then obtained by solving the nonlinear optimization 

problem
M

6* = arg mm ^  J(9 , ju i)  [l +  \Kt {juji)/at \2^
i = i

by Newton-Raphson method. The model is then updated as

Gi+i(0*) =
N(9*)
D(9*)

before the iteration process continues.

It is important to observe from equations (1.1) and (1.2) that both N  and D are 
parametrized by a single stable transfer function R. If N  and D are estimated indepen

dently in the presence of noise, their estimates may not be consistent in the sense that they 

may not be parametrized by a single stable transfer function like equations (1.1) and (1.2).

In [Van den Hof et al. 1993] the control-relevant system identification are considered in 

the time domain. The control-relevant system identification criterion adopted is

Gi+i =  arg min \ \T (G,Ki ) -T( G,  K .)|| .
G

With reference to Figure 1.2, it can be seen that T(G, K t) relates the signals in the actual 

closed-loop system as follows

y
u = T ( G , K l ) r\

T2

Corresponding to the last equation, we can write

y
Ü

T ( G , K i )
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It is easy to observe that the effects of closed-loop mismatch T(G, K t) — T(G , K l) will be 

reflected by the error signals

Ay
An

which can be re-written as

Ay ( G - G ) l [ ( l  +  GKi)(\  +  GKi)}
Au — (G — G)Ki/[(l  + GK,)(l  + GKi)]

[T ( G, Ki ) - T ( G, K j)] n
r 2

where

r =  K tr i +  ri .

From the point of view of control design, it is desirable to find a model Gl+\ such that

Gt+1 =  arg min " '
5

l r
Gt+i =  arg min —  / J i(G , juj)®r{u)du> ,

G ^  J —  7T

( 1.6)

where
G G 1

+
1 1

1 + GKt I + GKl 1 + GKi 1 + GKt

and is the power spectral density of r =  K{r\  +  V2 . The problem is how to achieve

this objective through estimating the coprime factors N  and D. By noting that

N
D

G /( l  +  GKi)
1/(1 +  G K l)

(Dx +  K tNx) ,

and if it would be able to construct a parametrization (N(0) and D(6)) that satisfies

(Dx +  KiNx) , (1.7)
. -r

then asymptotic estimate determined by

* T IL, I2 n 1 r m -  N(n\ 1
<S>x(uj)duj

' N(9) ' ' G(6) / [1+G(0)K, }  '

. . 1/[1 +  G(9)Ki]

1 r
6 * — arg min —  / 

e 2n J-*

becomes

[ N -  N(6) ' * r

[ D -  D{9)
-

. 1 r=  arg mm —  
6 2n L

|i , | 2 0

0  | I 2 |2

N -  N(0)  
D -  D(9)

( 1.8)
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where

•W,jw) G G(»)
|£ i |2 +

1 1
1 + G K t 1 +G(6)K, 1 + G K t 1 +G(0)K

\Ll\2 •

Comparing equation (1.8) with equation (1.6) clearly indicated that equation (1.8) represents 

a very flexible approximation criterion for control-relevant system identification.

It was pointed out by Van den Hof et al. [1993] that the coprime factors estimated by the 

above system identification procedure will depend strongly on the chosen N x and Dx, and it 

is nontrivial to parametrize low order N(9)  and D(Q) such that the restriction (1.7) is satisfied 

and accurately estimates can be obtained. However, by taking advantage of the freedom in 

choosing N x and Dx, they presented a normalization procedure in [Van den Hof et al. 1993] 

which allows a normalized coprime factors of G to be approximately identified in the sense 

that for these estimates (N n and Dn), N*Nn +  D^Dn ~  1. It is also shown in the same 

paper that the method has been applied to a mechanical servo system with very good results.

In the following we compare the salient features of the Delft School’s approach to those 

of our approach.

• The bandwidth of the closed-loop system at the 2th stage of iteration is approximately 

given by the gain crossover frequency of a tGt. Therefore a l serves as the tuning 

knob for exercising caution at the beginning of iteration (when the initial plant-model 

mismatch prevents the achievement of high nominal performance) and for increasing 

the nominal performance gradually when the model accuracy improves progressively 

through iteration. Its effects are similar to that of a design parameter Aj used in the 

approach that we will develop in this thesis. It suffice to say at this point that, in our 

case, directly specifies the designed closed-loop bandwidth.

• The system identification criterion employed is induced naturally by the overall control 

objective and hence is control-relevant. It is more general than our control-relevant 

system identification criterion in the sense that it is a mixed sensitivity (or “four block”) 

plant-model mismatch criterion, whereas we consider the complementary sensitivity 

(or “one block”) plant-model mismatch criterion.

• The Tioo system identification problem formulated in the Delft School’s approach is 

not solved in practice. Instead, they employ a least squares identification technique.
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As will be shown in the sequel, we face the same difficulty with 7ioo system identifi

cation and therefore also use a least squares system identification technique.

• As it was mentioned previously, Schrama [1992b] uses right coprime factorization 

to identify the plant indirectly through separately estimating the frequency responses 

samples of the two stable coprime factors (N  and D) that are parametrized by a single 

stable transfer function R. We will use left coprime factorization approach like [Hansen 

1989] to identifying the single stable transfer function R  that parametrizes the plant. 

Although both approaches have the disadvantage of resulting in high order models, 

the approach adopted in [Schrama 1992b] may have the additional difficulty that the 

two estimated stable transfer functions may be inconsistent in the sense that they may 

not be expressible in terms of a single parametrizing transfer function like R. Other 

closed-loop system identification schemes are proposed recently by the Delft School’s 

researchers to overcome this and other difficulties [Van den Hof and Schrama 1994]. 

One of these approaches, which identifies the normalized coprime factors of the plant 

[Van den Hof and Schrama 1993], was described in the above discussions.

• The Delft School’s approach uses a powerful stability robustness test to check the newly 

designed controllers before they are implemented in the actual closed-loop. The robust 

stability test requires Hoo model uncertainty bounds. Schrama [1992b] constructs these 

uncertainty bounds by fitting a high order model to the frequency response samples of 

the plant.

In our case (see Chapter 4), instead of checking stability robustness analytically, per

formance robustness of the closed-loop is verified experimentally by time domain and 

frequency domain model validation methods while the designed closed-loop bandwidth 

is increased carefully.

• The Delft School’s approach uses a multi-pass algorithm in the sense that, for a fixed 

nominal performance design parameter, system identification and control design are 

iterated until there are negligible changes in the consecutive models and controllers.

In our case, the single pass iteration will proceed by several control design steps (each 

with a slightly increased designed closed-loop bandwidth) between single identification 

steps (carried out when experimental performance robustness tests in time domain and 

frequency domain dictate that a model update is necessary).

• Schrama [1992b] has observed that, when a model leads to the design of a high
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performance (both nominal and robust) closed-loop system, the frequency response of 

the model is often a poor representation of the plant under open-loop conditions.

Our simulation experience (see Chapters 3 to 5) does not support Schrama’s observa

tion. In fact, we often find that frequency responses of models approach the frequency 

response of the open-loop plant while the actual closed-loop performance is improved 

through iteration. However, because our simulations are performed for plants different 

from those used by Schrama, further works are necessary to clarify this issue.

1.2.2 Zang-Bitmead-Gevers Scheme

In the Zang-Bitmead-Gevers Scheme [Zang etal. 1991, Zang etal. 1992, Zang 1992, Partanen 

and Bitmead 1993/?], an LQG method is employed for the design of controllers. With refer

ence to Figure 1.1, the global (or overall) control objective to be achieved is the minimization 

of
N

J s‘°u ,  = E J 2 { ( y t - r , ) 2 + Xu2t } .
t— 1

The signals involved in the last equation are defined as before, except that the subscript t is 

used to denote the sampling time index. The design parameter is A.  Decreasing A will allow 

the closed-loop tracking performance to improve at the expense of a large control energy.

Observe that the above global objective involves the actual closed-loop variables y t and 

u t . Since the global control objective depends on the unknown plant, it can only be achieved, 

as we have observed for other approaches, through iterative identification and control design. 

It was shown in [Zang 1992] that a control-relevant system identification criterion is, in this 

case, given by

r ^  = j ^ { ( y t - y ‘)2 + \ ( u t -u<i)2} ,
t= 1

where u ct and ytc are, respectively, the designed control input and the designed closed-loop 

output that can be obtained through simulating the design closed-loop system that involves 

the current controller K t and the current model G t.

In order to employ standard least squares algorithms (for example, the algorithms available 

in MATLAB™ ) to estimate a parametrized model G*+i(0), the last identification criterion
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can be re-written such that the asymptotic estimate satisfies

Gi+i{0*) = arg min f  Js[G{9),ju]<&r(u)duj ,
G(9) ^ 7r d - i r

where

J3[G(0),ju) =
Ki{G-G($)] (l + X\K,\2)

(l + GK,)[l  + G{0)K,]
The above criterion can be compared with the following criterion for direct closed-loop 

system identification [Gevers 1993],

Gi+i(0*) =  arg min f  J4[G{9)Juj}^r{uj)du , 
mo) ^  J—Tr

where

HG{e),  ju) =

G{ff)

K X[G-G{9)] Lx
(1 + GKX) Hx(6)

Lx is a user choice data filter for tuning the model towards the modelling objective, and 

Hx(0) is an estimate for the noise model. By choosing an output error algorithm (with 

Hi(Q) = 1), we observe that criterion formulated in the Zang-Bitmead-Gevers fits into the 

direct closed-loop system identification framework if the data filter is selected such that

l +  A |/f,|2
|£.l'

|l  +  G (0)if,|'

However, the parameter vector 9 is yet to be estimated and hence is not available. To avoid 

this difficulty, the parameter vector estimated in the (i — 1)* stage is used instead. Therefore 

the data filter becomes

Li (z) =  f li(2 )[l +  ,

where the stable transfer function Dx(z) employed in the data filter is obtained by solving the 

spectral factorization problem

D i ( z ) D ^ z ~ l) =  1 +  AK ,( z )K : ( z - ' )  .

At the 2 th stage of iteration, a new model Gi+i is identified on the basis of data measured 

from the closed-loop that involves G and the latest controller Kx according to the method just 

described. Autoregressive models of the spectra Ou(u;), <Jv(u>), d>3/_r (a;), and d>3/c_r (a;) 

are also estimated for later use (which we will describe shortly).
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Although the effect of plant-model mismatch associated with Gx and G on closed- 

loop performance deterioration (especially the initial model Go) can be ameliorated in the 

controller design using G{ (by using a large value for A, provided that Gx is stable), this 

method is not adopted in the Zang-Bitmead-Gevers scheme. They employ a local frequency 

weighted design criterion

J loca‘ = EY, {[Fi (z ) (yct-  r,)]2 +  A[F2(zK ] 2} ■
t— 1

(Here local means the design is carried out on the basis of the current model Gx, and yf and 

uct are designed quantities, as opposed to the actual quantities yt and ut that appeared in the 

global or overall objective.) The linear stable filters F\(z) and ^2(2) are constructed from 

the autoregressive models <£„(2), d v (z ) ,  d>y_r (2), and <&yc_r(z) such that:

« V »  = |F i(em 2<ty_rH  .

and

<t>„M = IFafe2")!2̂ ^ )  .

The controller K x is designed to satisfy

K x =  arg min J local{K) .
K

The objective of including the filters F\ and F2 is to bring the local control design objective 

at the 2th iterative stage to be more in line with the global control objective by taking into 

account the mismatch between the designed and actual closed-loop systems in the (i — 1)* 

stage.

In the following, key features of the Zang-Bitmead-Gevers scheme are compared to those 

of the Delft School’s approach and ours.

• The control design method does not employ a user choice parameter like A for exercising 

caution or increasing nominal performance (recall that the parameter A is chosen only 

once and is held constant throughout the iteration). It relies on the filters F\{z) 

and F2(z ) (which carries the information on closed-loop mismatch at the (z — 1)* 

iteration) to adjust the control design objective at the 2th iteration such that the controller 

will be tightened or detuned automatically for the local (or designed) performance to 

approximate the global (or overall) performance as close as possible while, hopefully,
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performance robustness and stability robustness are maintained. This feature is the 

most important difference from other iterative schemes in the sense that the Zang- 

Bitmead-Gevers scheme is probably the one that needs minimum user intervention and 

is closest in spirit to on-line adaptive control. However this strategy also causes its 

tuning for performance and for accommodating modelling errors to be much less direct 

and transparent than the Delft School’s approach and ours.

• The system identification criterion in this scheme is induced by the overall control 

objective. Furthermore, the control-relevant £2 system identification problem formu

lated is solved exactly through a least squares technique. This is different from using a 

practical least squares procedure to approximate an ideal but infeasible H 0 0  objective 

that is practised by the Delft School and us.

• The system identification procedure in this scheme does not use coprime factorizations. 

The plant is identified directly from closed-loop input-output data. The advantages 

(as compared to those schemes that use coprime factorizations) are that the order of 

the identified model is under direct control of users, and low order models are usually 

obtained. However, it is impossible to obtain unbiased estimates by direct closed-loop 

identification under noisy conditions. Experimental design is described in [Partanen 
and Bitmead 1993b] for securing good estimates in this scheme.

• There is no robustness test (like the one used by the Delft School) or model validation 

steps (like those that we introduced) in the original scheme [Zang et al. 1991]. Recent 

developments in this scheme do, however, include a model validation step that incor

porate user’s a priori knowledge of the plant. It was applied to a sugar cane crushing 

process with success [Partanen and Bitmead 1993a].

• The original scheme uses a multi-pass algorithm in the sense of what we have described 

for the Delft School’s approach. Recent refinements of the scheme [Partanen and 

Bitmead 1993c] have led to a single pass algorithm like ours.

1.3 A Glimpse of the Problems Concerned and Their Solutions

In this thesis we demonstrate that, when an existing model of the plant (due to the associated 

high frequency model uncertainties) does not allow the closed-loop system to have robust
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performance while achieving a large bandwidth, it is possible to increase the closed-loop 

bandwidth progressively and to arrive at the desired specifications eventually through a 

new iterative identification and control design procedure, for which the philosophy was 

propounded in [Anderson and Kosut 1991].

In the face of significant high frequency model uncertainties and the desire to achieve a 

large closed-loop bandwidth, it is necessary to have a control design method that can trade 

off nominal performance with performance robustness before a sufficiently accurate model is 

made available. This problem of incompatible model accuracy and performance requirement 

is resolved by employing the Internal Model Control design method [Morari and Zafiriou 

1989]. The resulting controller can easily tune the bandwidth of the closed-loop system to 

suit the model at hand. This allows the closed-loop bandwidth to be widened progressively 

(and carefully), when better models are identified, so that the high frequency unmodelled 

dynamics associated with the models are not overly excited.

The other major component in the iterative identification and control design algorithm is 

an appropriate system identification procedure. For this purpose, a control-relevant system 

identification problem will be formulated. The corresponding closed-loop system identifi
cation task cannot be accomplished simply by direct applications of well known open-loop 

system identification procedures [Ljung 1987, Söderström and Stoica 1988]. A method for 

transforming a closed-loop system identification problem into an open-loop system identifica

tion problem pioneered by Hansen [1989] is helpful at this point. It will be demonstrated that, 

with due considerations given to the intended application, the resulting frequency weighted 

open-loop system identification procedure is tuned to deliver models that allow the bandwidth 

of the closed-loop system to be widened robustly through controller re-design.

It is important to emphasize that a suitable control design method and an appropriate 

system identification method are necessary but not sufficient for constructing a successful 

iterative identification and control design algorithm. It will be shown through analysis that 

before an improved model can be obtained through the control-relevant system identification 

procedure, it is necessary that a certain closed-loop output error has a sufficiently high 

signal-to-noise ratio. The last condition is satisfied only if the closed-loop system suffers 

a certain level of deterioration in its performance robustness. It should be emphasized that 

the converse is not necessary true. In fact it will be revealed by analysis that although
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there are three mechanisms that can lead to deterioration in performance robustness, robust 

performance may be recovered by re-identification and control re-design (before the closed- 

loop bandwidth is increased further) only if the performance robustness deterioration is 

caused mainly by an increase in the magnitude of a certain phase insensitive factor. For 

the purpose of assessing the validity of an existing model with respect to the closed-loop 

control objective and the signal-to-noise ratio required for good system identification, a time 

domain model validation method and a frequency domain model validation method will be 

developed. These model validation methods will also be employed to evaluate the quality of a 

newly identified model. The fidelity of these model validation procedures plays an important 

role in enhancing the reliability of the iterative identification and control design algorithm.

1.4 Outline of the Thesis

In Chapter 2 we introduce a new iterative identification and control design paradigm. We 

begin our study on the new design paradigm in the ideal situation where an infinite number 

of noiseless measurements are available for the plant input and output. Under these condi

tions, the system identification problem involved reduces to a model (or rational function) 

approximation problem. The main reason for investigating iterative model approximation and 

control design (as opposed to iterative identification and control design) is that, at this initial 

stage of investigation, we are more concerned with the concept of iterative identification 

and control design as applied to adaptive robust control, rather than the details. Simulation 

results for iterative model approximation and control design will be presented to illustrate the 

effectiveness of the new idea.

Encouraged by the simulation results of Chapter 2 under ideal conditions, we investigate 

in Chapter 3 the iterative identification and control design approach under realistic situations 

where only a finite number of noisy input-output measurements are available. We also explore 

further, at the beginning of Chapter 3, a control-relevant system identification criterion 

formulated in Chapter 2. This will provide further insights into the role of appropriate 

frequency weighting in the control-relevant system identification procedure adopted in the 

iterative identification and control design process. It will also be shown that the controller 

design equations and the control-relevant system identification procedure for stable plants 

can be applied without modifications to (Type 1 stable) plants that, other than having poles
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in the open left-half plane, may have one pole at the origin. Two simulation examples will be 

employed to illustrate the applications of the new iterative identification and control design 

algorithm to a stable plant and a Type 1 stable plant.

In Chapter 4 we examine a number of crucial questions which arise in the iterative 

identification and control design methodology. Among the issues considered are:

• When can one re-design the controller and expand the closed-loop bandwidth, without 

re-identifying?

• When should one re-identify?

• What does one want to identify in the re-identification process?

• What can one identify in the re-identification process?

• How can an identified model be verified against the desired purpose?

• Will re-identification and controller re-designs always lead to improved closed-loop 

performance?

The key conclusion of Chapter 4 is that, given a stable strictly proper model of a stable strictly 

proper plant, we can improve the performance robustness of the closed-loop system through 

iterative identification and control design if the plant and the existing model has no unstable 

zeros within the designed closed-loop bandwidth and if the deterioration in performance 

robustness caused by increasing the closed-loop bandwidth results in a sufficiently high 

signal-to-noise ratio for a certain closed-loop output error. Situations that may cause the 

iterative identification and control design process to terminate prematurely are also indicated. 

A simulation example will be used to illustrate the results discussed in Chapter 4.

In Chapter 5 we extend the applications of iterative identification and control design to 

unstable plants. By employing a two step approach, where an unstable plant is first stabilized 

by a parallel feedback compensator, we show that it is possible to design systematically an 

overall closed-loop system that has good step responses with little overshoot by using the 

iterative identification and control design methodology. Specifically, similar to situations 

where the plant is stable or is Type 1 stable, we can design a system with a small initial



1.5. Point Summary of Thesis Contributions 21

overall designed closed-loop bandwidth (after the plant is stabilized by a known parallel 

feedback compensator) such that high frequency unmodelled dynamics of the plant are 

not overly excited. Through iterative applications of a control-relevant closed-loop system 

identification procedure to the stabilized plant, the overall designed closed-loop bandwidth 

of the system can be widened progressively while maintaining good step responses with little 

overshoot. Two examples will be employed to illustrate the method.

In Chapter 6, we conclude the thesis with an indication of some possible further research 

directions.

Most of the theorem proofs are given in the appendices. Programs and information useful 

for performing simulations are summarized in Appendix H1.

1.5 Point Summary of Thesis Contributions

The main contributions of this thesis are summarized below.

• We establish the need of blending robust control and adaptive control harmoniously 

such that, in the face of significant initial modelling errors, a large nominal closed-loop 

bandwidth with good performance robustness may be achieved progressively.

• We formulate a control-relevant closed-loop system identification criterion for high 

performance robust reference tracking.

• We develop appropriate signal (or data) filtering that allows exact transformation of 

the control-relevant closed-loop system identification criterion for high performance 

robust reference tracking into a frequency weighted open-loop system identification 

procedure via Hansen’s framework.

• We transform the adaptive robust control philosophy propounded by Anderson and 

Kosut [1991] into an iterative identification and control design procedure that involves

'Programs for performing simulations described in this thesis are available. Please write (or email) to Dr. Iven 
M.Y. Mareels, Department of Systems Engineering, The Australian National University, Canberra, ACT 0200, 
AUSTRALIA (Email’.Iven.Mareels@anu.edu.au).

mailto:Iven.Mareels@anu.edu.au
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the Internal Model Control design method and the frequency weighted open-loop 

system identification procedure.

• We derive an unified set of equations for iterative identification and control design that 

involves a stable plant or a Type 1 stable plant.

• We establish the relation between the normalized variance of the identified model and 

the signal-to-noise ratio of the closed-loop output error. This relation leads to a better 

understanding of the interactions between performance robustness deterioration and 

successful closed-loop identification, and the mechanisms that may lead to premature 

terminations of the iterative identification and control design process.

• We establish the sufficient conditions that allow robust performance improvement 

through re-identification and re-design.

• We develop model validation methods that improve the reliability of the models iden

tified through the iterative identification and control design procedure.

• We extend the applications of the iterative identification and control design methodol

ogy to unstable plants through embedding the iterative identification and control design 

procedure into a two step control design approach.



Chapter 2

Iterative Model Approximation and 
Control Design

In this chapter we introduce a new iterative identification and control design paradigm. In 

this preliminary investigation, we study the design paradigm in the ideal situation where an 

infinite number of noiseless measurements are available for the plant input and output. Under 
these conditions, the system identification problem reduces to a model (or rational function) 

approximation problem. This simplifies the analysis and allows us to concentrate on the 

essence of iterative identification and control design.

We review briefly, in Section 2.1, the design of adaptive control and robust control for 

inexactly known plants. We outline in Section 2.2 the background philosophy of the iterative 

identification and control design paradigm. In Section 2.3 we elaborate on the new idea 

by considering an adaptive model matching problem. A related control-relevant closed- 

loop system identification problem will also be formulated in this section. Section 2.4 is 

devoted to the application of Hansen’s method [Hansen and Franklin 1988, Hansen et al. 

1989, Hansen 1989] for performing closed-loop system identification. It is demonstrated 

that, with appropriate signal filtering, it is possible to transform the control-relevant closed- 

loop system identification problem into a frequency weighted open-loop system identification 

problem by Hansen’s method. In order to facilitate systematic discussions, we outline 

the Internal Model Control method [Morari and Zafiriou 1989] for designing controllers in 

Section 2.5. In Section 2.6 we examine how to decompose the transfer function to be identified 

in the frequency weighted open-loop system identification problem into the product of an

23
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unknown transfer function and a transfer function that is known by design.

For simplicity, we consider only stable plants and models. Simulation results for iterative 

model approximation and control design will be presented in Section 2.7. In Section 2.8 we 

review the reasons for the effectiveness of the new approach.

Note

Although we are concerned with the simpler iterative model approximation and 

control design problem (where the noise disturbance is absent) in this chapter, 

we will formulate the corresponding iterative identification and control design 

problem (where a noise disturbance is present) with a Hoo system identification 

criterion as a direct consequence of an adaptive Hoo model matching control 

problem. As we do not know how to perform Hoo system identification with 

noisy measurements, we will perform least squares (instead of Hoo) system iden

tification with noisy measurements in Chapter 3. In the sequel, all the conditions 

that involve a Coo-norm should be interpreted either with the understanding that 

noise disturbance is absent or, in situations where noise disturbance must be 

considered, with the understanding that a Cj-norm is implied.

2.1 Two Main Control Design Approaches for Inexactly Known 
Plants

Consider an adaptive control system as shown in Figure 2.1, where G is the unknown transfer 

function of the plant. The time axis is divided into intervals such that during the 2th interval, 

the control input applied to the plant is obtained from K t, where K{ denotes the transfer 

function of the controller designed on the basis of the model, Gl , obtained at the end of the 

(i — 1)* time interval.

In an adaptive control problem, the ulterior objective for finding Gt (an estimate of G 

updated from G,_ i)  is to re-design a controller K t which improves on K {-\. For example, if 

Td represents the desired closed-loop transfer function for a tracking problem, then we may
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Figure 2.1: Adaptive control system

like to have
G K X

~ T d < G K t_!
1 +  GKt

Implicitly, this means we would like to minimize

GKi

1 + Gir,_i ~ T d Vi .

~ T d
1 +  G K t

by selecting an appropriate K x. Since the transfer function of the plant is unknown, we could 

only design K t on the basis of the model, Gx, such that for example,

Gx 7
K x =  arg min

7
- T d Vi .

i + Gn

Here we invoked the principle of certainty equivalence. It is important to realize that

GKi
1 + G K X

~ T d

is not necessarily small, even though

GiKi
1 +  GXK X

~ T d

is a minimum. This partly explains why traditional adaptive control systems [Äström and 

Wittenmark 1989, Goodwin and Sin 1984, Sastry and Bodson 1989], which invariably invoke 

the principle of certainty equivalence, may have unsatisfactory performance robustness.

In the robust control approach [Doyle 1984, Morari and Zafiriou 1989], a controller is 

designed on the basis of a nominal model for the plant with the associated parametric and 

unstructured model uncertainties explicitly taken into account. Therefore stability robustness 

is guaranteed and performance robustness is achieved sometimes. The weakness of this
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approach is that it considers only the a priori information on the model, and neglects the fact 

that characteristics of the plant could be learned while it is being controlled. Therefore, the 

robust control approach tends to result in a conservative design in terms of performance. It is 

likely that a posteriori knowledge about the plant could be used to reduce the conservatism 

inherent in a robust control design.

2.2 Iterative Identification and Control Design - A New Paradigm

By considering how humans learn windsurfing, Anderson and Kosut [1991] made the fol

lowing observations:

1. The human first learns to control over a limited bandwidth, and learning pushes out the 

bandwidth over which an accurate model of the plant is known.

2. The human first implements a low gain controller, and learning allows the loop to be 

tightened.

Based on these observations an iterative identification and control design philosophy is 

propounded in [Anderson and Kosut 1991], It recognizes at the outset that the plant char

acteristics can differ greatly from the estimated model at any one time, particularly during 

the initial learning stage. In the new design paradigm, a low gain controller will first be im

plemented; and the control bandwidth will be small. Based on learning a frequency domain 

description of the plant operating in closed-loop, with the learning process progressively 

increasing the bandwidth over which the plant is accurately known, the controller gain can be 

increased appropriately over an increasing frequency band.1 For details, refer to [Anderson 

and Kosut 1991]. Importantly, in the method suggested, the necessary closed-loop system 

identification task is transformed into an open-loop system identification problem through the 

use of coprime fractional representations as discussed in [Hansen et al. 1989] and [Hansen 

1989].

It was pointed out by Owens and Skelton [1985] (see also [Skelton 1985] and [Skelton 

1989]) that modelling (for control) and control design problems are inseparable. The problems 

‘This design paradigm is known to the control community as the windsurfer approach.
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cannot be solved simultaneously and an iterative approach is necessary. It was re-confirmed 

recently by Schrama [1992a] that the best model for control design cannot be derived from 

open-loop experiments alone. The control task at hand dictates how system identification 

should be performed. Hence, a general solution to the combination of system identification 

and control design is necessarily iterative. A good historical perspective and tutorial in the 

joint design o f identification and control is given recently by Gevers [1993]. It was also 

shown in [Zang et al. 1991] that an iterative approach for model refinement and control 

robustness enhancement can be developed for a W2 control problem. Although the emphasis 

of [Schrama 1992a] is on the problem of modelling for control design, its approach is very 

similar to that of [Anderson and Kosut 1991] (see also [Schrama and Van den Hof 1992]). 

In the next section, we elaborate on the new design approach by considering a Woo model 

matching problem in the context of adaptive control.

2.3 An Adaptive Model Matching Control Problem

Let G be the unknown transfer function of the plant, and let Tj represent the desired closed- 

loop transfer function. We wish to achieve, through iterative system identification and control 

design, the minimization of the cost function

G K  
1 +  G K

where K  is the transfer function of a controller to be designed.

We begin by designing a controller Kfi to stabilize a given initial model Go, which may 

be obtained from an open-loop system identification exercise. Note that we use K{ to denote 

the 7 th controller designed on the basis of the 2th model, which has a transfer function G{. In 

general, L\ denotes a transfer function L that it is either specified or derived at the j*  control 

design iteration on the basis of the 2th model for the plant. We shall adopt a similar system 

of notations for signals generated by the closed-loop system. We will need the following 

definition:

Definition 2.3.1 I f a controller K j stabilizes not only the known model Gt but also the 

unknown plant G, we say that K \ robustly stabilizes G,. We also say that the designed 

closed-loop system involving Gi and K \ has robust stability.
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Since there may be significant modelling error between Go and G, the resulting controller 

K q may not be able to achieve high nominal performance with a small value for

GoK§ t
1 + G0K°J "

while robustly stabilizing Go- In general, we need to consider how to handle the question of 

securing robust stabilization of Gt by Kj.  This is bound up with the question of selection of 

Td. It is in fact to be expected that a sequence of Td will be selected in such a way that the 

end control objective can be approached in stages. We shall therefore proceed as follows.

Associated with each of the models G, ; i =  0,1,2,  •••, we design a sequence of 

controllers { K j  ; j  =  0,1 ,2 ,  • • •} such that

. ■ =  arg min Gt 7
1 +  Gl7 -  {Td)\ V j ,

where the sequence of functions {(Td)] ; j  =  0 ,1,2,  • • •} is specified with (Td){+1 ; j  =  

0,1,2,  • • •■, /  of wider bandwidth than [Td)\, and with (Td)i resulting in a controller K t that 

robustly stabilizes Gl. A stage will be reached (say when j  =  f ) where the bandwidth of the 

designed closed-loop transfer function, t {  =  G { K { / ( \ + G xk { ), cannot be increased further 

without causing the effects of the model uncertainties associated with Gt to be too significant. 

This occurs when the value of Jt /  — T- || is no longer small, where T /  =  GK- / ( 1+ G K {  ) 

is the actual closed-loop transfer function of the system.

At this stage it is necessary to improve the accuracy of the model. Ideally we would like 

to use the control input and plant output measurements to identify a new model, Gl+1 , such

that

G {+ 1 =  arg min 
6

GK°+l 0K?+1
l + G K ? +i 1 +  »K?+l

where Tf+l =  Gi+iK®+l/ ( l  +  Gi+ iK^+l) has the same bandwidth as T- =  GtK { /{1 +  

G iK ( ) .  However Kf+[ is not available since its determination rests on the new model yet to 

be identified. In the absence of Kf+ l , we find an updated model Gl+\ such that

Gl+i =  arg min
9

g k { 6K[

1 + g k { 1 +  0K{
( 2 . 1)

where K.{ is the latest controller available.
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Remark 2.3.1 It is not straightforward to identify G directly from plant input-output mea

surements under closed-loop conditions such that criterion (2.1) is satisfied. The problems 

are:

1. Irrespective of the presence of noise, under closed-loop conditions, there are two 

deterministic relationships between the control input u and the plant output y when 

r = 0. These are

y = Gu ,

and
1

It is therefore not clear which one of the above relationships will be identified. It suffice 

to say that this will depend on the excitation conditions induced by the external inputs 

to the closed-loop. For a more detail discussion on this problem, we refer to [Partanen 

and Bitmead 1993b].

2. With noise disturbances, the plant output and control input are correlated under closed- 

loop conditions. Therefore when the effect of noise disturbance is not negligible, the 
estimated model will be biased.

3. Since the argument in criterion (2.1) is not affine in Gl+i, the problem of finding a 

1 that satisfies criterion (2.1) is a non-convex optimization problem and hence is 

difficult.

4. If criterion (2.1) is rewritten as

G { + 1  = arg min 
0

G - e
l +  g k !l +

we observe that it involves an unknown frequency weighting.

We will show in the next section that these difficulties can be overcome through a system 

identification framework pioneered by Hansen (see [Hansen and Franklin 1988], [Hansen et 

al. 1989], and [Hansen 1989]).

Remark 2.3.2 Equation (2.1) would be the formulation of a frequency weighted rational 

function approximation problem, provided that G were known. In the simulation example
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(see Section 2.7), we shall take this approach by using a known transfer function for G. This 

serves as a benchmark test of the new iterative identification and control design methodology 

as it corresponds to performing system identification with an infinite number of noiseless 

measurements. In later chapters we shall deal with this problem in a realistic system identi

fication setting when only a finite number of noisy input-output measurements are available.

Once Gl+\ is found, we can continue to increase the closed-loop bandwidth by repeating 

the procedure described for Gt previously. However G;+i should be used instead of Gt, and 

we specify a new sequence of functions {(T<f)J+1 ; j  = 0,1,2, • • •} with (7d)^+1 having the 

same bandwidth as (Td){. The iterative process is continued until the end control objective 

is achieved or it is prematurely terminated because of, for example,

1. fundamental performance limitations due to right-half plane poles and zeros of the 

plant and/or models [Freudenberg and Looze 1985],

2. finite control energy and actuator limits.

2.4 Closed-loop System Identification

We review a method for closed-loop system identification developed by Hansen and co

workers [Hansen 1989, Hansen and Franklin 1988, Hansen et al. 1989]. We demonstrate in 

Theorem 2.4.2 that, with appropriate signal filtering, Hansen’s method provides a suitable 

framework to deal with the control-relevant closed-loop system identification problem 

formulated in Section 2.3 (see equation (2.1)). For the sake of expository simplicity we shall 

consider only scalar plants. We begin with the following theorem2:

Theorem 2.4.1 Let K  = X / Y  be a coprime fractional representation of the proper transfer 

function for a controller, where X  and Y  are stable proper transfer functions. I f N  and D 

are stable proper transfer functions that satisfy the Bezout identity N X  -F D Y  = 1, then the

2The stable proper transfer function R in this theorem is now known as the Dual Youla-parametrization [Van 
den Hof and Schrama 1994],
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Figure 2.2: Closed-loop system

set of all plant transfer functions stabilized by K  is precisely the set of elements in

g = { N- t ™
L D -  R X

R is a stable proper transfer function} .

Consider the feedback system shown in Figure 2.2, where y\ and u\ are respectively, the 

measured plant output and the control input, e is an unpredictable white noise disturbance, and 

ri and 7*2 are user applied inputs. It is assumed that k [  (when j  =  f )  is a known stabilizing 

controller, G  is inexactly known and possibly unstable, and, as is standard [Ljung 1987], H 

is imperfectly known, stable and inversely stable. The system identification problem is to 

obtain improved estimates of G and H from a finite interval of measured and known data 

{ y { ( t ) , u { ( t ) , r i ( t ) , r 2 (t) : 0 < t < Tp) ,  where y- and u{  denote, respectively, the plant 

output and control input when G is controlled by K l .

Following [Hansen 1989], we introduce the stable proper transfer functions x( , Y/, 
Ni,  and D t which satisfy k {  =  x{ / y / , Gt =  Nt/ D t , and Ntx{ +  D tY /  =  1. The 

interpretation is that Gx is a currently known (but imperfect) model of the plant which is 

stabilized by k {  . Applying Theorem 2.4.1 as shown in [Hansen et al. 1989] and [Hansen 

1989], there exist stable proper transfer functions R{ and S{ , with S{  also inversely stable,
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Figure 2.3: Closed-loop system identification

such that „ Nj + R{Y/

s f
H  = --------- i- r - j

Di -  Ri X-

( 2.2)

(2.3)

where R{ denotes the parametrization of G using the i* model 6 j and its associated final 

controller, i f / ,  just before performing re-identification.

As a result, system identification of G and H in closed-loop is equivalent to system 

identification of the stable proper transfer functions R{ and S { . Using equation (2.2) and 

equation (2.3), we can represent the feedback system as shown in Figure 2.3.

From Figure 2.3, we can write

ß = r { a  + S(e, (2.4)

where

a =  X (y {  , (2.5)
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and

ß = D,y{ -  . (2.6)

However, as u{ = i f / ( r ,  — y{) + r2 and i f /  =  i f / / y / , equation (2.5) can be re-written as

a  = X,f r l + Y / r 2 .(2.7)

It is important to observe from equations (2.4), (2.6) and (2.7) that a  depends on the 

applied signals r\ and 7*2 operated on by known stable proper transfer functions x {  and 

Y /  respectively, and ß  depends on measured signals y- and u{ operated by known stable 

proper transfer functions Dt and Nt respectively. Moreover, a  is independent of the transfer 

functions G and H  and the noise disturbance e. Hence identification of G and H  in closed- 

loop has been recast into identification of R{ and S /  in open-loop.

We shall next state a result which is highly relevant to solving the control-relevant closed- 

loop system identification problem.

Theorem 2.4.2 With reference to Figure 2.3, let the controller k { stabilize the plant G 
and the model G{ = N i/D i, where N{ and D{ are stable proper transfer functions, and let 

k {  = x {  /Y / , where x (  and Y /  are stable proper transfer functions satisfying the Bezout 

identity N {X (  +  D fY / = 1.

Let be another model ofG, also stabilized by K- and therefore having a description

G {+1
Nt + R { Y /
Di — r{ x{

where R^ is a stable proper transfer function. Also define the filtered output error

Cl = Y / ( ß -  R{a) ,

(2 .8)

(2.9)

where, with 7*2 =  0,

a  =  X( r i  , 

ß = Diy{ -  Niu{ , 

7*1 =  reference signal ,

y{ = plant output under the control of K.{ ,
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u{ = plant input generated by K (  .

Then the filtered output error can be expressed as

6
G K {

1 + g 1 + Gi+lK { )
r i +  w\f

where
1

1 +  GK>
He

is the effect of the noise disturbance at the plant output attenuated by the sensitivity function 

of the actual closed-loop system.

Proof

See Appendix A. □

Remark 2.4.1 Observe that is a frequency weighted error arising in the (open-loop) 

identification of R.{ through an estimate R{ (see equation (2.9)).

Remark 2.4.2 By writing the signal a = x{r\ -I- Y/r2 as

D,(1 + G ,k {)
(X /r i  + r 2)

we can see immediately that rj (as opposed to n )  may be a helpful probing signal for 

identifying r { in the frequency range where the gain of the controller k {  is small.

Remark 2.4.3 Note that in Theorem 2.4.2, it is necessary that k {  stabilizes G when the 

system identification procedure is carried out. This can be assured by increasing the closed- 

loop bandwidth smoothly and cautiously in the controller design stages (to be described 

in Section 2.6). We would always detect a gradual degradation of performance robustness 

(while stability is still being maintained and the system identification procedure is being 

carried out) before the closed-loop system loses stability.
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Suppose that the value of

GK{ g ,k {
1 + GK> 1 +G,K>

(2 . 10)

has become large. As it was described in Section 2.3, we want a new estimate of G, namely 

G{+1, for which
n wf n : , ,  vf

(2 . 11)
GK{ Gi+iK-

1 +  g 1 + GW K{

is minimized. We are going to use the R\ parametrization of Gl+i. By substituting equa

tion (2.2) and equation (2.8) into expression (2.11), and noting that K{  
conclude after simplification that

GK{ Gi+lK(

x ! / y >

1 +  G K\  

should be minimized.

1 +  Gi+iK-
Y / x f ( R { - R { )

we can

(2 . 12)

Remark 2.4.4 The right-hand side of equation (2.12) defines a frequency weighted open- 

loop system identification problem.

Remark 2.4.5 Theorem 2.4.2 and equation (2.12) establish the connection between a control

relevant closed-loop system identification problem and a frequency weighted open-loop 

system identification problem.

By using equations (2.4), (2.9), and (2.12), we immediately see that the appropriate signal 

model for the frequency weighted open-loop system identification procedure is,

ß\ =  R { a l +  w{ , (2.13)

where

01 = Y / 0  , (2.14) 

and

«1 = Y / a  . (2.15)

Remark 2.4.6 Observe that the results of this section are derived without assuming that the 

plant G or models Gt are stable, as opposed to the results that we are going to derive in the 

next section.
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Remark 2.4.7 Note that T- = GK / / ( I  + G K f ) is the actual closed-loop transfer function 

of the system, and 7 /  =  GtK / / ( I  +  GlK { ) is the designed closed-loop transfer function 

of the system. Therefore, using similar substitutions that resulted in equation (2.12), we can 

obtain

Tf -  Tf = y/ x l ( r{ -  .

However, since R{ is the parametrization of G, in terms of x f , Y / ,  Ni, and Di, and hence

R { = 0 ,  v/,vi ,

it follows that
T 1 -  T J y J  x I  R { (2.16)

By comparing the argument of the Tioo norm given in expression (2.10) with the left hand

side of equation (2.16), we see immediately that when the value of T f -  T f has become

large; that is, when the closed-loop property of the actual system (T /) is significantly different 

from the closed-loop property of the designed system (7 /), the value of 

be large.

y / x ! r { will

Remark 2.4.8 We observe that the effect of the noise disturbance on the filtered output error 

(£i =  ßi — R{ai)  is given by w{, the effect of the noise disturbance at the plant output 

attenuated by the sensitivity function of the actual closed-loop system.

In order to further our discussions systematically, we digress to describe, in the next 

section, a control design method that will be employed in the controller design stage of 

the iterative identification and control design methodology. We will return to discuss the 

approximation of the R{ transfer function in Section 2.6.

2.5 Internal Model Control Method

In this section we outline the results of the Internal Model Control (IMC) method [Morari 

and Zafiriou 1989] that are relevant to the control design stage of the iterative identification 

and control design methodology. Whenever possible, we refer to [Morari and Zafiriou 1989] 

for proofs of these results. Firstly we make the following assumptions.
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Assumption 2.5.1 [Not Necessarily Stable Transfer Function] A not necessarily stable 

transfer function has k distinct poles in the open right-half plane, a pole of multiplicity l at 

the origin, and no zeros on the imaginary axis. Furthermore we denote the k poles of the not 

necessarily stable transfer function in the open right-half plane by p\,P2, • • • ,Pk-

Assumption 2.5.2 [Stable Transfer Function] A stable transfer function has no poles in 

the closed right-half plane and no zeros on the imaginary axis.

In the following, we will use the notations n#  and dn  to denote the numerator polynomial 

and the denominator polynomial of a rational transfer function H.

For a model that has a not necessarily stable strictly proper transfer function

we can write

G{ nGx
dGx ’

tig, =  tig, ~  s ) > and d Gt
i

sIdGx n i w  ~  s) 
1=1

where the polynomials n^, and dct have no zeros in the closed right-half plane, and all of 

and have positive real parts.

We can then write G{ =  [Gl]m[Gl]a, with 

^G, I I i «  + s)
[G i],

dGx

and

[Gi]a =

; z* is the complex-conjugate of zt ,

n*(^* -  s)
III« + 5)

We also define an all pass transfer function

[ A ] „
nf=1(p.-S)
n?=i(pf + *)

that is related to the poles of Gt in the open right-half plane.

We can now state the following result:
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Theorem 2.5.1 With reference to Figure 2.4, let Gt be a not necessarily stable model (see 

Assumption 2.5.1) for the plant G. Assume that the collection of open right-half plane 

poles in the Laplace transform of the generalized input, u(t) = r( t) — d(t), is a subset of 

{pi , ps, • • • ,Pk}-1 Denote these as p\, • • • ,p*./, with 0 < k' < k. Furthermore assume that 

u(s) has at least l poles at the origin? Define

Bv n
i = i

Pi -  s

and factor u(s) into an all pass factor va(s) (which contains all the zeros of v(s) in the open 

right-half plane) and a minimum-phase factor um(s) (which includes all the poles ofv(s)  in 

the open right-half plane and at the origin). Then the controller

rs i Q i

stabilizes the model G% if

Qi = [D,\a([G,]mB„vm) - '  {([D,]a[G,\a)-'B„vm) j l  , 

where the IMC filter F- is given by

‘ ~  (s +

(2.17)

with N  > n; n is the relative degree of Gt, and q > l is the number of poles of u{s) at 

the origin. The constants ao, a i , . . . ,  ajt+9- i  in the IMC filter F- are determined from the 

constraints:

F/ ( s ) =  1 at the k poles, s =  pi,f>2, • • * ,Pk> in the open right-half plane,

and

*7(0) =  1 , ifq > 0 ,

and
d mF i
- ^ r ( O )  =  0 for m  = 1 ,2 , . . .  ,q -  1 ifq  > 1 .

(The operator {}* in equation (2.17) denotes that after a partial fraction expansion of the 

operand, all terms involving the poles o f [Gi \ f l are omitted.)

‘As noted in [Morari and Zafiriou 1989], this assumption is necessary to make a well posed problem.
2As noted in [Morari and Zafiriou 1989], this assumption is necessary for the closed-loop system to handle 

plant input disturbances whose Laplace transform may have poles at the origin.
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Figure 2.4: Closed-loop system

Proof

See Theorem 5.2-1 and Section 5.3.1 of [Morari and Zafiriou 1989]. □

Remark 2.5.1 We must emphasize that Kj = Qj/{  1 -  GtQj), with Qj stable, does not 

stabilize Gt generally. However, since the transfer function Qj in the EMC method is designed 

to satisfy the following conditions,

1. Qj has no poles in the closed right-half plane, and

2. (1 — GiQ\)Gt has no poles in the closed right-half plane,

the controller Kj = Qj /(1  -  GtQj ) will stabilize Gi for all Qj designed by the EMC method.

Remark 2.5.2 In the EMC method, the relative degree N  of the IMC filter is chosen to ensure 

that Qj and Kj  are proper. The design parameter Xj is for adjusting the bandwidth of the 

designed closed-loop transfer function Tj = GtQj.



40 C hap ter 2. Iterative Model Approxim ation and Control Design

Remark 2.5.3 We emphasize that the stabilization of Gx by K{ does not imply the stabiliza

tion of G by K \ .

For the discussion of robust stabilization, we need the following well known result.

Theorem 2.5.2 Let the plant G and the model Gt have the same number of poles in the open 

right-half plane. I f K] stabilizes Gl , then K \ stabilizes G if

L,p < 1 (2.18)

where

and

G(ju) -  Gj(ju) 
Gi(ju) < Li {u)  ,

ti GXK\
1 + g xk ;J

Proof

See Theorem 2.5-1 of [Morari and Zafiriou 1989]. □

In the sequel, we shall call a plant (or a model) whose transfer function satisfies As

sumption 2.5.2 as a stable plant (or a stable model). From Theorem 2.5.2 it is clear that if 

Gt and G are stable and if the mismatch between Gx and G is significant only in the high 

frequency region, then robust stabilization of Gx may be secured by designing a sufficiently 

small bandwidth for T / . To make precise the last statement, we consider the situation where 

K \  is designed on the basis of a stable Gx (for a stable G) when the reference input is a step 

function. Under these conditions, Theorem 2.5.1 can be simplified as follows:

Theorem 2.5.3 With reference to Figure 2.4, let Gx be a stable proper model for a stable 

plant G. Let the reference input r to be a step function. Then the controller that stabilizes 

Gx is given by
Qj

i  -  g ,q {
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where

F] =

Qi = IG,
M ' N

s 4- Aj ; M > 0  ,

[Gi]m is the minimum-phase factor of G{, and n is the relative degree of G{.

Proof

Direct consequence of Theorem 2.5.1. □

Remark 2.5.4 Since Gt is stable in Theorem 2.5.3, the only constraint on the IMC filter is 

Ff  (0) =  1. This ensures that the output of the designed closed-loop system tracks a step 

reference input with zero steady state error. Observe that, under these conditions, the IMC 

filter takes the particularly simple form of F / =  [A]/(s +  X?)]N.

It follows from Theorem 2.5.3 that, when Gi is stable, the designed closed-loop transfer 

function is given by T- =  F- [G,]a, where [Gt]a is the all pass factor of Gt. Since [Gt]a 

does not affect T- (ju) , it is apparent that is the designed closed-loop bandwidth with a 

—3N  dB attenuation. Furthermore, the form of F- = [Aj/(s +  Aj)]^ implies that \T- (juj)\ 
is a monotonically decreasing function of u  with T- = |T/ (0)| =  1. Therefore it is

obvious that, if Lt (uj) is a continuous function with L{ (0) /  0, then by choosing a sufficiently 

small \ { , the largest value of

Li(w)Tl(ju)

0. Under these conditions, Theorem 2.5.2 implies that Kjcan be made to occur at a/ =  

stabilizes G if

Hence we have the following:

G(0) -  Gi(0)
Gi( 0)

< 1

Corollary 2.5.1 Let the plant G and the model G{ be stable, then the controller K \ designed 

by the method described in Theorem 2.5.3 robustly stabilizes Gtfor a sufficiently small Xj if

G(0) -  Gj(0)
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Remark 2.5.5 It is obvious that the condition

G ( 0) -G j ( 0 )
Gi( 0)

is not satisfied if G(0) and 0) have different signs. In fact (as we will show in the next 

theorem), when G and Gx are stable, the controller designed by the method described in 

Theorem 2.5.3 may robustly stabilizes Gt with a sufficiently small \ \  only i fG(0) and G*(0) 

have the same sign.

Remark 2.5.6 The condition
g ( 0 ) - g t(0) .

Gi( 0)

given in Corollary 2.5.1 requires the relative error in G{(0) to be smaller than 100%. This is 

stronger than it is necessary when G(0) and G,(0) have the same sign. We will next show 

that, if G is stable and if K ]{ is designed by the method described in Theorem 2.5.3 to have a 

sufficiently small Xj , it is necessary and sufficient to know the sign of G in order to stabilize 

G.

Theorem 2.5.4 With reference to Figure 2.4, let the stable strictly proper plant

G «  =  . "G (0 ) 5̂  o  ,dG{s)

have a stable strictly proper model

G{ = [Gi]m[Gj]a ,

where

[Gj]m =  Gj(0)

nGi(0) 1

G,(0) ^  0 ,

da.(0) n , z *
> 0  ,

I I ■ ( £ '  _ S )
[Gi]a =  „  " ■ ----- - , Zi is the ith unstable zero ofGi  ,

i l t i ^  +  s)
and n o i and dgx have no zeros in the closed right-half plane.

I f K \ is designed by the method described in Theorem 2.5.3 to have a sufficiently small 

Xj, then K j stabilizes G if and only if Gt{ 0) and G( 0) have the same sign.
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Proof

By using the method described in Theorem 2.5.3, we can obtain

Ki
[G,] - 1 A J

>+AJ

Since the transfer function
a; r

[ G i ] a
s +  A?

is stable strictly proper and has an 7Yoo-norm

[ G i ]a
A

+  A?

occurs at the origin, the transfer function

1 -  [ G i ] a
+ A?

in the denominator of Kf  is stable proper and has no zeros in the closed right-half plane other 
than at the origin. In fact, it can be shown that the last transfer function in the denominator 

of Kj  has a simple zero at the origin. After some algebraic simplifications, we can write

K , ( K) Nd0 ,(s)
1 Gl(0)sn^(s)nGt(s)

where the polynomial ra*(s) has no zeros in the closed right-half plane, and n*(0) > 0.

The actual closed-loop system involving G and K\  therefore has the following charac

teristic polynomial,

Gt (0)sn*(s)nGt(s)dG(s) +  ( \ l ) N dGi(s)nG(s) . (2.19)

As Aj approaches zero, all but one pole of the actual closed-loop system approach the zeros 

of n*(s), n Gt (s), and dG(s). The stability of the closed-loop system will therefore depend on 

the remaining actual closed-loop pole. Let so denote this remaining actual closed-loop pole 

that is approaching the origin. After approximating dG(s) and nG(s) in polynomial (2.19) 

by the constant term of their respective Taylor series expansions at the origin, we consider 

the first order polynomial,
(A yrfG,(0) 0(0) 

s n ,(0) nG,(0)Gi’
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whose zero is so- It is apparent from this first order polynomial that K\ stabilizes G for a 

sufficiently small A] > 0 if and only if Gj(0) and G(0) have the same sign.

□

Remark 2.5.7 In situations where the plant G is unstable (and presumably, G is represented 

by an unstable model GO, in addition to the constraint F- (0) =  1 imposed by the requirement 

of tracking a step reference input, F- is constrained to be unity at the open right-half plant poles 

of G2 (see Theorem 2.5.1). Therefore, depending on the multiplicative model uncertainty 

bound Li(u>), there may not exist a value for Aj such that K- robustly stabilizes G{.

2.6 Approximation of the R- Transfer Function

In Section 2.4, we have shown that the closed-loop identification of G can be reformulated 

into an open-loop identification of the stable proper transfer function R{ that parametrizes G 

via the equation
^  Nj + R {Y /  

d , - r ( x {  '
In the following we shall, for simplicity, study situations where the plant G and the models Gt 
are stable. (Situations where the plant and models are not necessarily stable will be studied 

in later chapters.) We assume that the reference input is a step function and use the IMC 

method [Morari and Zafiriou 1989] to design controllers such that Q\ and K\  are bi-proper. 

This is accomplished by setting N  = n for the EMC filter, where n is the relative degree of 

Gi (see Theorem 2.5.3). Specifically, the transfer function

that parametrizes K\  is given by

Q\
Kj

1 +  G.K’
( 2 .20)

Q\ r n ^ ' F ’ ( 2 .21)

F! K
s + Aj

with
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With the controller designed by the above procedure, we shall show that when j  =  / ,  the 

transfer function to be identified (namely, R {) is the product of a known stable proper transfer 

function and an unknown stable strictly proper transfer function. An analysis of the form 

of the unknown factor in R{  indicates how it can be sensibly approximated by a low-order 

transfer function.

Since the model Gt = N i /D t is stable, we may choose Ni — Gt and Di = 1 so that 

equation (2.2) becomes
D/

G —  G{ H-----------------^7— t  . (2.22)
i - r{q{

Furthermore, the equations k {  = x { / y /  and N{X(  +  DtY /  — 1 imply that

x{  =  Q{ .

Notice also that

f /  =  G, 

and

y/  =  i  -  T(.

Let rin and dn  denote, respectively, the numerator polynomial and the denominator 

polynomial of a rational transfer function H. By re-writing equation (2.22) as

R f  G - G .
* 1 +  Q{(G -  Gi) ’

(2.23)

we can obtain, after substituting equations (2.20) and (2.21) into equation (2.23) and per

forming some algebraic manipulations,

R f
i {[Gi]mdFf} d G ^ G  — ^G'n Gx (2.24)

Note that equation (2.24) can also be written as

r { = r { r {, (2.25)

Ri — [Gi]mdF/
where
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is a known stable proper transfer function, and

r{ =  - f a g g  -  r f g n G - ( 2 .26)
d K f d c  +  n K f r i G

is an unknown stable strictly proper transfer function that depends on the unknown transfer 

function G. Therefore the problem of identifying R{ has become one of identifying its
v X

unknown factor f q . We shall summarize this important result in the following theorems.

Theorem 2.6.1 Let the controller k {  he designed as stated in Theorem 2.5.3 with N  = n, 

where n is the relative degree o f Gr, then the unknown stable strictly proper transfer function 

to be identified,
r f G - G i

' 1 + Q {(G -  Gi) ’
can be factorized as

r{ = r{ r{ ,

where R { is an unknown stable strictly proper transfer function, and R\ is a known stable 

proper transfer function given by

R{ = \G,]m(s + A f ) n  ,

where \ (  is the designed closed-loop system bandwidth a —3ndB attenuation) just 

before system identification is carried out.

Proof

See Appendix B. □

Remark 2.6.1 Note that the factorization of R {  given in Theorem 2.6.1 is naturally induced 

by the IMC design procedure.

Remark 2.6.2 Observe from Theorem 2.6.1 that the poles of R {  are the poles of the actual 

closed-loop transfer function, t (  .
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Remark 2.6.3 It is important to note that R{ = 0 if and only if G =  Gt.

Theorem 2.6.2 For the factorization R Jt = R\ R\ given in Theorem 2.6.1, the order and the
v  £

relative degree o f the transfer function R\ are respectively, given by

order of {R { } = order of {G} + order o f {Gt} — (M  + N ) ,

and

rel deg [r { } =  min(rel deg {G},rel deg {Gt}) ,

where M is the number of common zeros in G and G{, and N is the number of common poles 

in G and G{.

Proof

See Appendix C. □

Remark 2.6.4 Observe that the order of R{ is constrained by the degree of the polynomial 

dKfdc ,  which is an unknown (see equation (2.26)).

Remark 2.6.5 The order of R{  would be large generically (see Theorem 2.6.2). However, as 

the control-relevant model approximation criterion is heavily frequency weighted, it may be 

necessary to update the model only in a “small” frequency range. Hence a low-order estimate 

for R{  may suffice. (For the case of system identification, consideration of excitation 

conditions in a “small” band of frequencies implies that only a few parameters may be 

estimated.) Since we are going to identify R{  (actually R {) and update Gt to Gl+ i when 

the step response of the actual closed-loop system exhibits unacceptable oscillations and/or 

overshoot, we expect R{  to have complex-conjugate poles. Therefore a transfer function
v  X

which can serve as an approximation of R  • is at least of second order. Moreover, since the 

smallest possible relative degree of a strictly proper transfer function is one and the relative 

degree of G is unknown, we have to assume that the relative degree of R\ could be one.
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It was shown in equation (2.12) that the frequency weighted open-loop system identifi

cation problem is to find, using the signals a and ß,

R{ =  argnün \\X> -  <r)|U . (2.27)

If we define

r { = r { 1 , ,  (2.28)

where R t is an unknown second-order stable strictly proper transfer function, then by substi

tuting equations (2.21), (2.25), and (2.28) into equation (2.27), we can show that the frequency 

weighted open-loop system identification problem becomes one of finding

R, =  argiiun||(A/ ) > / ( £ {  -  0 ) |U  . (2.29)
<P

Therefore, for the purpose of identifying R {, we can modify equation (2.13) appropriately 

to give the signal model

ßi =  R{ (*2 + w{, (2.30)

with

oc2 = R { oc\, (2-31)

where c*i, ß\ and w{ have been defined previously. The signals ß\ and c*2 in the model 

described by equation (2.30) can easily be generated, using known filters, from the control 

input u{, the measured output y(,  and the reference input r \ .

Remark 2.6.6 Since y /  = 1 — T- is the sensitivity function of the designed closed-loop 

system, we immediately see that the frequency shaping in the identification criterion given 

by equation (2.29) will force the updated model to have small modelling error in the range of 

frequencies where the designed sensitivity function cannot be made small by the controller

Remark 2.6.7 From the signals defined in Theorem 2.4.2, we observed that R{, the transfer 

function to be identified, is excited by the signal a, where a = x { r \ .  Therefore identification 

errors will be heavily weighted in the frequency range where the energy spectrum of a  is 

significant. In the current situation where Gi is stable, we have X- =  k { /(1 +  GtK- ). 

Since this is the transfer function between the reference input r\ and the control input u{, the
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Figure 2.5: Identification of R{

range of frequency where the energy spectrum of a is significant is exactly where the control 

input u\ has appreciable energy induced by the reference input r j. Therefore, for the system 

identification scheme presented, we automatically get the right frequency weighting for the 

input to R {. (See [Hakvoort et al. 1994] and [Rivera 1991] for similar comments on direct 

identification of G .)

Remark 2.6.8 When updating the model using the equation

^ i + i  — G i  +
i - R i Q i

the order of the model may increase. To prevent the model order from increasing indefinitely, 

we use a frequency weighted balanced truncation scheme to reduce the order of Gl+1 . 

Specifically we would like to find, ideally,

Gi+ 1  =  arg min 
v

Gi+iK{
1 + G i+lK { 1 + v k {

where Gl+\ is the reduced order model. In practice, we obtain approximately, under frequency 

weighted balanced truncation,

Gi+ 1 =  arg min 
i

k [  (G,+ 1 -  rj)

(1 +  G j+iif/)2 oo
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If the model is restricted to be of order m , the controller will be at most of order 2m  (see the 

controller design equations given in Theorem 2.5.3). In this way the controller complexity 

will be limited.

2.7 Simulation Results

We shall present some simulation results of applying iterative model approximation and 

control design (where the frequency weighted open-loop system identification procedure in 

the iterative identification and control design process is replaced by a corresponding frequency 

weighted rational function approximation procedure) to the control of a plant with the transfer 

function
9

G ^  ~  ( s +  l)(s2 +  0.06s +  9)
By starting with an initial model whose transfer function is

GoM =
0.8

s -t- 1.2

we will demonstrate that in the face of significant initial model uncertainties, it is possible 

to increase the closed-loop bandwidth through iterative model approximation and control 

design.

We first summarize the procedure in the following algorithm3:

Step 1:

Set G{ = Go, where Go is the transfer function of an initial model of the plant.

Step 2:

Factorize Gj as Gi =  [Gi]m[Gj]a, where [G,]m is the minimum-phase factor of 

Gu and [G*]a is the associated all pass factor of Gt.

'’This provisional algorithm will be modified accordingly when the fine details of the iterative identification 
and control design methodology are described in the sequel.
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Step 3:

For j  — 0, find K\ Q i / (  1 -  GlQJl ), withQ^ =  [Gi\mlF}t where

* - ( M -  < > • •

n is the relative degree of G{, and Xj is chosen such that Kj  robustly stabilizes Gx 
in the sense that the step response of the actual closed-loop system has, at most, 

little oscillations and/or overshoot. Stop here if the robust stabilizing controller 

results in a closed-loop system which meets the specified bandwidth. Otherwise, 

proceed to the next step.

Step 4:

Let j  =  j  +  1 and set Xj = Xj~l -f- e for small e > 0, and re-design the controller 

Kl  using the equations given in Step 3. Stop here if the design produces a 

robust stabilizing controller with the closed-loop system satisfying the specified 

bandwidth. Otherwise, repeat this step if K\  robustly stabilizes Gt ; else proceed 

to the next step. (The index j  at the time to go to the next step has a value of / .)

Step 5:

By using the R{ calculated from the known G, perform frequency weighted 

rational function approximation to obtain

= arg min ||(A{)Uy / ( r { — </>)||oo •
<p

Then update the model using the following set of equations:
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Step 6:

If G{+1 is stable, find the reduced order model

Gl+1 = arg min 
v

k { (G,+ 1 -  rj) 
(1 +  G,+1X /)2 oo

Otherwise, stop here.

Step 7:

Set Gt =  and return to Step 2.

Remark 2.7.1 In the algorithm, rational function approximation has to be carried out when 

||t (  -  r/lloo is no longer small. Broadly speaking, this will correspond to a significant 

difference between the designed nominal performance (depending on Gt and K / )  and the 

actual performance (depending on G and K l ). A user friendly test to identify this situation is 

via the visual comparison of the step responses of the actual and designed closed-loop systems. 
In particular, the observed actual step response may exhibit much more oscillations and/or 

overshoot than the designed values. This is not of course the same thing as guaranteeing that 

the H oo error above has become large, but neither is it unrelated.

To be more precise, define the peak gain of a system, whose transfer function is F  (and 

denote the corresponding unit impulse response by /) ,  by

ii/ii . sup
\\f *w\

where * denotes the convolution operator. This is also equal to the total variation of the 

system’s unit step response [Boyd and Barratt 1989] defined as the sum of all consecutive 

peak-to-valley differences in the unit step response. It can be shown [Boyd and Doyle 1987] 

that, if F  is a stable strictly proper transfer function,

where n is the order of F. Now the peak gain, 

transfer function f f  = T /  -  Tf . Since

H a l l o o  <  l l / l l t  < 2 ^ 1 1 0 0  ,

, corresponds to the error in closed-loop

> / T f
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it follows that, if the observed step response of T- exhibits much more oscillations and/or 

overshoot than the designed step response of ? / ,

>

and hence,

n » 0

Since the peak gain also provides a loose lower bound for the Tioo gain via the relationship

< 2 n ||F ||00, it is likely that T f  -  T f becomes large when the observed actual step

response exhibits much more oscillations and/or overshoot than the desired one.

Remark 2.7.2 The last remark explains why, in the simulation, the models are updated 

whenever the actual step response exhibits unacceptable oscillations and/or overshoot.

The simulation results are presented in Figure 2.6 and Figure 2.7.

We begin by designing a controller, on the basis of Go(s) =  0.8/(s + 1.2), for achieving

a closed-loop bandwidth of 0.02 rad/s. The actual closed-loop unit step response is shown

in Graph (a) of Figure 2.6. Since the closed-loop is well behaved, the designed closed-loop

bandwidth is increased progressively by controller re-design. When the designed closed-loop

bandwidth has reached 0.04 rad/s, the actual closed-loop unit step response is shown in Graph

(b) of Figure 2.6. Note that this step response shows significant oscillations. By performing
f  ' i f

a frequency weighted rational function approximation for R J0 with a Rq whose order is two 

and relative degree is one (see Remark 2.6.5 for the rationale of this choice), we obtain

j f  _  -1.5117s +  2.5293
”  s2 +  0.0422s +  8.9688 '

The corresponding estimate for R q is

~f  _  -1.2094s2 +  1.9751s +  0.0809
0 “  s3 +  1.2422s2 +  9.0194s +  10.7625

By using the above estimate for R q, the model is updated to

/  -0.4094s4 +  1.5496s3 \  /  (  *5 +  2.5427s4 +  10.6541s3 \
y +9.7063s2 +  8.9957s +  0.3444 )  /  \  +21.8522s2 +  13.6265s +  0.5108 J
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Graph (a) Graph (b)

Figure 2.6: Step responses 1 of actual closed-loop system



2.7. Simulation Results 55

Graph (a) Graph (b)

Graph (c)

Figure 2.7: Step responses 2 of actual closed-loop system
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After performing frequency weighted model reduction, we have

-  _  —0.4094s2 +  2.0572s +  7.175
1 “  s3 +  1.3027s2 +  8.9908s +  10.6411

We will set G\ = G\ for the next stage of iteration.

By keeping the designed closed-loop bandwidth at 0.04 rad/s, a controller is designed on 

the basis of G \ . The actual closed-loop unit step response is shown in Graph (c) of Figure 2.6. 

It is obvious that this step response is much better than the one shown in Graph (b). Graph 

(d) of Figure 2.6 shows the unit step response when the designed closed-loop bandwidth is 

increased to 0.1 rad/s. Graphs (a) and (b) of Figure 2.7 show the unit step responses when 

the designed closed-loop bandwidths are 0.5 rad/s and 1 rad/s respectively. Note that there 

is about 10% overshoot in the step response when the designed closed-loop bandwidth is 

1 rad/s. Using the same procedure as before, we obtain

_  -0.082031s -  0.91016 
1 “  s2 +  0.6539s +  11.959 ’

/  -0.033582s4 -  0.73411s3 \  / (  s5 +  1.9566s4 +  21.802s3 \
^ -4.9276s2 -  10.757s -  6.5304 )  /  \  +32.099s2 +  114.48s +  127.26 )  ’

G i

/  -0.44296s10 -  4.3237s9 \
-11.459s8 -  16.883s7 
+257.85s6 +  2042.6s5 
+7485. Is4 +  21325s3 

V +41969s2 +  42357s +  16003 /

/  su  +  14.106s10 +  97.726s9 \
+572.45s8 +  2392s7 +  8230.1s6 
+ 23162s5 +  50342s4 +  88762s3 

\  +114100s2 +  84389s+  25540

After performing frequency weighted model reduction, we have

-  _  -0.40612s2 +  0.80196s +  6.3884 
2 ~~ s3 +  1.0977s2 +  8.882s +  9.3027

Before the iteration continues, we set Gj  =  G2 .

On the basis of G2 , a new controller is designed for a closed-loop bandwidth of 1 rad/s. 

The resulting unit step response is shown in Graph (c) of Figure 2.7. When the nominal 

closed-loop bandwidth is increased to 2 rad/s, the unit step response is shown in Graph (d) of 

Figure 2.7. This example clearly demonstrated that it is possible to increase the bandwidth 

of a closed-loop system by the iterative model approximation and control design procedure.

Remark 2.7.3 We must emphasize that in these simulations, instead of performing frequency 

weighted open-loop system identification using input-output measurements obtained under
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closed-loop conditions, we actually perform the corresponding frequency weighted rational 

function approximation

R, =  argm in ||(A f)V /(Ä f- « | | 00 ,
<P

where R{ is obtained from the known G. The reasons for doing this are:

1. This serves as a benchmark in the sense that it corresponds to performing system 

identification with an infinite number of noiseless measurements.

2. We like to know how serious the problems may be due to employing a low-order 

approximation for R i . This is important for later system identification studies.

3. We are, at this stage, more concerned with the concept of iterative system identification 

and control design as applied to adaptive robust control.

4. Efficient algorithms for performing Hoo system identification are still lacking, and the 

corresponding theory is still not well understood [Helmicki et al. 1991, Parker and 

Bitmead 1987, Partington 1991].

In Chapter 3 to Chapter 5, we shall study the iterative identification and control design 

approach under realistic situations where only a finite number of noisy input-output data are 

available.

2.8 Discussions

We have reviewed in Section 2.1 the strength and weakness of both the traditional adaptive 

control and the robust control design methods. These methods should be able to complement 

each other and there should be natural ways in which they could blend harmoniously. We 

suggested that one way is through the iterative identification and control design philosophy 

propounded by Anderson and Kosut [1991]. We have shown, by simulation, that by starting 

with a (crude) initial model of the plant and a (small bandwidth) robustly stabilizing con

troller, the bandwidth of the closed-loop system can be increased progressively through an 

iterative control-relevant model approximation and control design procedure. We highlight 

the following points which underpin the success of the approach:
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• The use of control-relevant frequency weighting in the model approximation criterion.

• Updating of the model when the effects of its errors are no longer small in the closed- 

loop response. This will ensure that model uncertainties are emphasized in the correct 

range of frequencies.

• When the model has no poles at the origin, the controller designed by the IMC method 

for a step reference input always has an integrator. Therefore it is insensitive to model 

uncertainties at low frequencies, provided the gain of the model at low frequencies is 

of the right sign.

• The controller designed by using the IMC method induces a natural factorization, 

namely R{ = R{ r { , in the parametrization, r { , of the plant. This enables the model 

approximation problem (and in later chapters, the system identification problem) to be 

solved effectively.

In conclusion, we emphasize that only stable plants and models are considered in this 

first study. We address the following issues in the sequel:

• Iterative identification and control design with finite number of noisy input-output 

measurements.

• Signal conditions that are necessary for successful model updates, and possible limita

tions imposed by unstable zeros of plants and/or models.

• Reliable model validation procedures that are in line with the objective of iterative 

identification and control design.

» Extension of the method to deal with unstable plants and models.



Chapter 3

Iterative Identification and Control 
Design

In Chapter 2 we introduced and discussed an iterative identification and control design ap

proach for the closed-loop system as shown in Figure 3.1 under ideal conditions where an 

infinite number of noiseless input-output measurements are available. We also prepared the 

reader for what changes are in store when using £2 identification techniques. Encouraged by 

the simulation results of Section 2.7, we investigate in this chapter the iterative identification 

and control design approach in more realistic situations when only a finite number of noisy 

input-output measurements are available. We explore further, in Section 3.1, the control

relevant system identification criterion formulated in Section 2.3 and highlight its similarity 

to a frequency weighted closed-loop model reduction problem that was investigated in [An

derson and Liu 1989]. This comparison and a concrete example will provide further insights 

into the role of appropriate frequency weighting in the control-relevant system identification 

procedure adopted in the iterative identification and control design process. Sections 3.2 

and 3.3 are devoted to extending the iterative identification and control design procedure 

developed in Chapter 2 for stable plants to (Type 1 stable) plants that, other than having 

poles in the open left-half plane, may have one pole at the origin. Particularly, it is shown in 

Sections 3.2 and 3.3 respectively, that the controller design equations and the control-relevant 

system identification procedure for stable plants can be applied without modifications to Type 

1 stable plants. The iterative identification and control algorithm that is applicable to stable 

plants and Type 1 stable plants will be discussed in Section 3.4. Two simulation examples in 

Section 3.5 illustrate the results. We conclude this chapter in Section 3.6.

59
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Figure 3.1: Closed-loop system

3.1 Frequency Weighted Identification Criterion

We studied in Chapter 2 the iterative identification and control design approach for stable 

plants under ideal conditions where an infinite number of noiseless input-output measure

ments are available. Under these conditions the iterative identification and control design 

problem has become an iterative model approximation and control design problem where the 

required updated model was obtained by solving the rational function approximation problem

G i+1 arg mm 
0

GK> s k {
1 +  g 1 +  6K{

(3.1)

for a known G. In the iterative identification and control design problem to be discussed 

in this and all of the following chapters, as opposed to the iterative model approximation 

and control design problem, we are dealing with a system identification problem where G is 

an unknown transfer function and only a finite number of noisy input-output measurements 

in closed-loop configuration are available. Despite this apparent difference, we observe 

that equation (3.1) is similar to the criterion developed by Anderson and Liu [1989] in the 

controller reduction problem based on closed-loop transfer function considerations, except 

that their plant and reduced-order controller are replaced, respectively, by our controller and 

estimated model. As observed by Anderson and Liu [1989], there is a reduced weighting 

placed on the range of frequencies where the loop-gain is large. This is very appealing as
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it agrees with the well known fact that, for a stable closed-loop system, model errors are 

more tolerable in the range of frequencies where the loop-gain is large. More importantly, 

as we shall explain below, this system identification criterion will enable us to find a new 

model which allows us to design a closed-loop system with a larger bandwidth than what the 

original model would permit.

If we rewrite equation (3.1) into the following form

1 =  arg min 
9 GK>)  (

OK
i  +  g k ! /  V i  +  ok!

G -  0 
0

(3.2)

it can be seen immediately that the argument that is minimized is the product of the actual 

sensitivity function, 1/(1 +  GK!),  and the designed complementary-sensitivity-function 

weighted multiplicative model error

(  g ,+1k {\ ( G - G t+l\
\  1 +  Gi+iK- ) V Gt+1 J

It appears that the frequency weighting function in equation (3.2), which involves the unknown 

actual sensitivity function, cannot be implemented in the system identification procedure. 

However, as we have discussed in Section 2.4, by recasting the control relevant closed-loop 

system identification into a frequency weighted open-loop system identification problem, we 

obtain a system identification criterion which is equivalent to equation (3.2) but involves only 

known frequency weighting functions. Specifically, we have shown in equation (2.12) that

g k [
1 + g k {

g ,+1k {
1 +  g ,+1k ( oo

y/ x { ( r { -  R{)

where R{ is the unknown stable proper transfer function that parametrizes G, and x (  and 

Y /  are stable proper transfer functions known by design. Therefore, for the purpose of 

understanding the effects of the system identification criterion on the identified model, we 

can treat the frequency weighting function in equation (3.2) as a known quantity.

Recall that, as described in Section 2.3, we were using the model Gt to design a sequence 

of controllers {K f ; j  =  0 , 1 , 2 , • • • , / }  such that the closed-loop system has an increasing 

bandwidth. At the stage where j  =  / ,  the closed-loop bandwidth has become so large 

that the high frequency modelling errors between G; and G* have a significant effect on 

the corresponding closed-loop transfer functions. Any attempt to increase the closed-loop
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bandwidth further will cause the magnitude of the designed complementary-sensitivity- 

function weighted multiplicative model error,

(  G J <[\ ( G - G j \
\1  + g ,k ( ) \  G, ) ’

to become too large at certain frequencies such that the system may lose performance robust

ness or even stability robustness. Therefore, the gain of the controller k { will be limited, 

and the actual sensitivity function, 1/(1 -f GK ( ) , will be large beyond the existing limited 

closed-loop bandwidth. From equation (3.2) we notice that it is exactly in this range of 

frequencies, where the actual sensitivity function has large magnitude, that our system iden

tification criterion will penalize the designed complementary-sensitivity-function weighted 

multiplicative model error of the new model Gl+i. We could therefore expect Gt+i to have 

smaller model uncertainties, as compared to Gt, near and beyond the edge of the closed-loop 

bandwidth that can be achieved with Gt. This will allow us to design a sequence of con

trollers {K 3t+l ; j  = 0 ,1 ,2 , • • •} that can lead to larger closed-loop bandwidth than it was 

possible with Gt. This explains why we say that the frequency weighting in criterion (3.2) is 

control-relevant.

To illustrate the above discussions, consider an example where the plant has a transfer 

function
C  9

(s +  l ) ( s 2 +  0.06s -I- 9) 

and an initial model has the transfer function

Go
1

s +  1

By using the IMC method [Morari and Zafiriou 1989], we can design a strictly proper 

controller of the form
=  A2(s +  1) 

s(s +  2A)
by setting the relative degree of the IMC filter as N  =  n + 1 (see Theorem 2.5.3), where, 

in this example, n = 1 is the relative degree of Go. (We shall explain in Section 3.2 why a 

strictly proper controller, instead of a bi-proper controller, is preferred.)

It can be shown that the designed closed-loop transfer function is given by
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Figure 3.2: Frequency weighted multiplicative model errors

Therefore, A is the nominal —6 dB bandwidth of the closed-loop system. As A is increased to 

0.5 rad/s, the actual closed-loop unit step response (as shown in Graph (a) of Figure 3.2) has 

excessive oscillations which differs significantly from the design step response because the 

model uncertainties associated with Go are no longer insignificant. This is apparent in Graph 

(b) of Figure 3.2, which shows the magnitude of the designed complementary-sensitivity- 

function weighted multiplicative model error of Go- We have also shown the actual sensitivity 

function in Graph (c) of Figure 3.2, which indicates that, if it is incorporated into the system 

identification criterion (for which the procedure is already given in Sections 2.4 and 2.6), the 

designed complementary-sensitivity-function weighted multiplicative error in the new model 

G i will be penalized in the range of frequencies near and beyond the existing closed-loop 

bandwidth of 0.5 rad/s. It can be seen from Graph (d) of Figure 3.2, which shows the designed 

complementary-sensitivity-function weighted multiplicative error of the new model G i ,  that 

this is indeed the case. Therefore, the new model G\ will allow us to increase the closed-loop 

bandwidth beyond 0.5 rad/s.
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3.2 Control Design for Type 1 Stable Plants

It is well known that a large class of practical systems involves plants which, except for a 

pole at the origin, have all poles in the open left-half plane. These plants include electro

mechanical actuators for position control systems and level control systems in industrial 

processes like, for example, sugar cane crushing mills. Therefore, it is desirable to show 

that the iterative and control design approach that we have proposed for stable plants is also 

applicable to these plants. Specifically, we make the following assumption:

Assumption 3.2.1 [Type 1 Stable Transfer Function] A Type 1 stable transfer function is 

strictly proper and, other than possibly having one pole at the origin, have no poles on the 

rest of the closed right-half plane and no zeros on the imaginary axis.

In the sequel, we shall denote plants and models that satisfy Assumption3.2.1 by Type 1 stable 

plants and Type 1 stable models, respectively. In this section we shall discuss control design 

for Type 1 stable plants. Control-relevant system identification for Type 1 stable plants will 

be discussed in the next section.

A standing assumption in this and the following chapters is:

Assumption 3.2.2 [Strictly Proper Controllers] In the controller design stage, the transfer 

function Qj that parametrizes the controller K j is designed to be strictly proper.

Remark 3.2.1 The reason for requiring Q\, and hence K j = Q \/{  1 — GtQJ{), to be strictly 

proper is that this is a necessary condition for robustness in the presence of high-frequency 

parasitics or singular perturbation [Kokotovic et al. 1986].

Remark 3.2.2 A large relative degree for Q\ will lead to a large relative degree in the 

designed closed-loop transfer function T/ =  GXQ\. In this situation, the large phase lag 

associated with T- at the high frequency region may cause the designed closed-loop system 

to have poor transient responses. In order to have good transient responses, while requiring
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Q\ to be strictly proper, we let Q\ have relative degree one in the sequel by setting N = n -F 1 

in the IMC filter F} (see Theorem 2.5.1), where n is the relative degree of Gt.

In the following, we will use the notations n #  and dn  to denote the numerator polynomial 

and the denominator polynomial of a rational transfer function H. For a not necessarily stable 

model (see Assumption 2.5.1)

Gt = n Gx
dGt

we can write

k
f i t 2* ~ 5) > ^  d Gt =  s l d G t Y [ ( P i  ~ s) ,

i i= l

where the polynomials u q x and d o x have no zeros in the closed right-half plane, and all of z t 

and pi have positive real parts.

We can then write Gi =  [Gi]m[Gl]a, where 

nGj  n , «  + s )  #
IGi],

dGt

and

[Gi]a

z* is the complex-conjugate of z t ,

n*(^* -  s)
n t ä + s )  '

Furthermore, we can use coprime fractional representations to write Gi = Nl/ D l, with the 

stable proper transfer functions Di and iV, defined as

Di <̂ L , and Ni 
<1*

n G l

where qs is a polynomial with no zeros in the closed right-half plane and has the same degree 

as d o x. Then we have N{ =  [Ai]m[iVt]a, with

r n m =  g ° ‘ n < w + , )
<ls

[Ni]a =  [Gi]a ,

and

[ D i \ m
s l d Gx I l L i i P i  +  s )

Qs
[Di]a

Note that

These notations will also be used in the next section.

nf=1(p.-s)
n ‘=i(p* + s)
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The following results are direct consequences of Theorem 2.5.1 for stable plants and 

Type 1 stable plants, respectively, when the relative degree for the IMC filter F- is set to 

N  = n +  1, where n is the relative degree of Gt.

Corollary 3.2.1 With reference to Figure 3.1, let Gi be a stable strictly proper model for 

a stable plant G. Let the reference input r to be a step function. Then the controller that 

stabilizes Gi is given by

[Gi\m is the minimum-phase factor of Gi, and n is the relative degree of Gi.

Remark 3.2.3 Observe that Corollary 3.2.1 is a special case of Theorem 2.5.3 with N  =

n 4-1.

Corollary 3.2.2 With reference to Figure 3.1, let Gx be a Type 1 stable model for a Type 

1 stable plant G. Let the reference input r to be a step function. Then the controller that 

stabilizes Gx is given by

where

oi = [cy-'ii

1 -  G i

where

Q\ =  [Gi]~lFi

[Gi]m is the minimum-phase factor of Gi, and n is the relative degree of Gx.

Remark 3.2.4 The results of Corollary 3.2.1 and Corollary 3.2.2 imply that the controller 

design equations for stable plant situations can be applied without modifications to Type 1 

stable plant situations when the reference input is a step function.
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Remark 3.2.5 The design parameter X j  is the bandwidth of the designed closed-loop transfer 

function T/ =  GlK Ji / ( I  -f GXK {) with an attenuation of — 3(n -1- 1) dB.

Remark 3.2.6 It can easily be shown that, whenever the model Gx does not have a pole at 

the origin, the controller K \ designed by the IMC method for a step reference input will have 

a pole at the origin. This ensure that the output of the designed closed-loop system tracks a 

step reference input with zero steady state error.

We shall now show that, under very mild conditions, it is possible to initialize the 

iterative identification and control design approach for Type 1 stable plants with low gain 

robust stabilizing controllers.

By using Taylor series expansions of the appropriate functions at the origin and Routh- 

Hurwitz criterion [Franklin et al. 1986], we can easily prove the following theorems.

If it is known a priori that the plant has a pole at the origin, then we have:

Theorem 3.2.1 Let a plant be

G{s) riG(s) 
sd c { s )

where do(s) has no zeros in the closed right-half plane and nc{  0) ^  0. Let the initial model 

of the plant be

Go(s) — — , s
then a controller designed by the method given in Corollary 3.2.2,

(Ag)2
*S(s)

k (s + 2A§)
Ag > o ,

robustly stabilizes G o(s)for sufficiently small Ag if

j  nc(0)
k, and —-----

dc(0)

have the same sign.
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Proof

Similar to the proof of the next theorem. □

Sometimes it may not be known a priori that the plant has a pole at the origin, and it is 

inaccurately modelled as a first order lag. In this case we have:

Theorem 3.2.2 Let a plant be

G{s)
nG{s)
sdG(s)

where dG(s) has no zeros in the closed right-half plane and nc;(0) 0. Let the initial model

of the plant be

GoM T > 0 ,
s +  (1 /r)  ’

then a controller designed by the method given in Corollary 3.2.2,

K§(s)

robustly stabilizes Go(s) if

have the same sign, and if

is suitably small.

(A°)2[S +  (1 /t )] 
k s ( s +  2Aq)

Aq >  0  ,

Ac and nG{ 0) 
dG{ 0)

Aq >
1

2 7 -

Proof

See Appendix D. □

Remark 3.2.7 From the last theorem, we observe that the low frequency mis-modelling (as 

measured by 1 /r) of the plant G{s) by the initial model Gq(s ) (with respect to the pole of 

G{s) at the origin) imposes a limit on the smallest value that the initial closed-loop bandwidth 

Aq can possibly take. Under this condition, an initial robust stabilizing controller may not be 

found if there are also significant high frequency modelling errors.
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3.3 Control-Relevant System Identification for Type 1 Stable Plants

We shall first consider plants that are not necessarily stable (as defined in Assumption 2.5.1). 

It was shown in Section 2.4 that, if the controller K{  in Figure 3.1 (with j  = f ) robustly 

stabilizes G;, then by using the coprime fractional representations Gt = Nl/D l, k { = 
x{/y/ , and the equation N{X(  +  Dzy/  = 1, we have

X -
D, + /

(3.3)

and
Y f = ---------------

‘ D, + N,K /

Furthermore, there exist stable proper transfer functions Rt such that

(3.4)

Nj  +  flf y /
d, - r{x {

(3.5)

Thus, by Hansen’s method [Hansen 1989], the control-relevant closed-loop system iden

tification problem for G can be transformed into a frequency weighted open-loop system 

identification problem for r { and with the model updated via

D, -  ä{ X(

where r { is an estimate of R{ obtained by employing the procedure described in Section 2.4.

The next theorem shows that R i  is the product of a known stable proper transfer func- 

tion and an unknown stable strictly proper transfer function. We follow the notations of 

Theorem 2.5.1.

Theorem 3.3.1 Consider a not necessarily stable G{ with possibly one pole at the origin (that 

is, l < 1). Let a controller with relative degree one be designed according to Theorem 2.5.1 

(by setting N  = n -1- 1, where n is the relative degree o f the model Gt) for a step reference 

input (that is q — 1), then the unknown stable strictly proper transfer function to be identified,

D](G -  Gj)
\ +  DiX’ ( G - G i )  ’
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can be factorized as

where

r { r { ,

m +
-i=i

d-G^G — dGnGt
d G d K f  +  r i G n K f

R{ = ( s + \ f ) k+l

is an unknown stable strictly proper transfer function to be identified, and

R{ = AliV.Ws + Afr

is a stable proper transfer function known by design.

(3.6)

Proof

See Appendix E. □

Remark 3.3.1 Note that

1. For a Type 1 stable G{, by setting k = 0 in the results of Theorem 3.3.1, we have

/  _  (g +  M)(dGtnG ~  d e n e , )
= dcdRf +  n c n Kf

and

R{ = D,[N,]m(s + \{r ■
2. For a stable Gt, other than setting k = 0 in the results of Theorem 3.3.1, we can set 

qs = dcx so that D{ = 1 and [JVj]m =  [Gl]rn. Under these conditions, we have

6/ _ (s + \{){dGxnG -  dGnGx)

and

d c d K f +  r i G n K f

R{ =  [Gi\m(s +  \ { ) n .

Observe that these factorizations are obtained when Q{  and K [  have relative degree one, as 

opposed to the one given in Theorem 2.6.1 where Q{ and k {  are bi-proper transfer functions.

-f
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Remark 3.3.2 When Gx is stable or is Type 1 stable and when the reference input is a step 

function, (that is, k = 0, / < 1, and q = 1), and when Ql and K.{ have relative degree one, 

it can be proved (by using steps similar to the proof of Theorem 2.6.2) that the order and the 

relative degree of the transfer function R{ are respectively, given by

order of [r { } =  order of {G} +  order of {G,} -  (M  +  N) +  1 ,

and

rel deg {R{} =  min(rel deg {G}, rel deg {Gl}) ,

where M is the number of common zeros in G and Gt, and N is the number of common poles 

in G and Gt.

Remark 3.3.3 Although Hansen’s approach enables us to obtain an unbiased estimate of the
v /  v £

transfer function R \ , it should be noted that R\ has more parameters to be estimated than G. 

Furthermore, since the order of R{ (hence the number of parameters to be identified in R{) 

increases while the magnitude of r { decreases with the stages of iteration, we would expect 

that the system identification problem will become harder as the iteration process progresses 

under noisy conditions. (Recall that it is because we want to perform the identification 

more efficiently that r { is factorized into R{ =  R{ =  R{r {, where R,{ is known by 

design, so that less parameters need to be estimated.) There is an obvious analogy in the 

windsurfing situation. The better is the skill of a windsurfer, the harder it will be for him/her 

to improve his/her skill further. In fact, it will take a long time under extreme conditions to 

improve his/her skill. In the system identification problem for R {, the interpretation is that 

strong probing signals and long record of measurements are necessary to achieve even slight 

improvement if the closed-loop system already has good performance and large bandwidth.

We shall next show that the control-relevant system identification procedure for stable 

plants applies without modifications to Type 1 stable plants. We shall consider respectively, 

the criteria for system identification, the signal models for system identification, and the 

model update equations.
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3.3.1 System Identification Criteria

—  f  ~  f  " v  /

If we define R t = R\ R l as in equation (2.28), then criterion (2.27) for frequency weighted 

open-loop system identification becomes

' i f
R, = arg min X { y (3.7)

Since the controller K \  designed by the IMC method is parametrized by Q; via K- =  

Q { /(  1 — GiQ{), we can rewrite equations (3.3) and (3.4) respectively as = Q{/D,  and 

Y /  =  (1 -  GtQ{)/Di.

When Gi is stable (that is, k — 0 and l — 0), we have Dt = 1 and r { = [G.]m(s +  A^)n. 

In this case, equation (3.7) becomes

R t = argmin Q ft (l -  G,Qft )[Gt}m(s + -  <f)
<P

or after simplification,

Rt = arg min
<t>

( \ f An+l
U > ( 1  -  GiQ'^Rf -4>)
S + A-

(3.8)

When Gt is Type 1 stable (that is, k =  0 and l = 1), we have R{ =  )n,

and [iVi]m =  Dl[Gl]rn. In this case, although Dx ^  1, it can be shown by direct substitutions 

that equation (3.7) can be rewritten again as

L j i - r ( i  - g,q{.
S +  A;I oo

V /

Therefore the common criterion for identifying R \ , in both stable plant and Type 1 stable 

plant situations, is given by equation (3.8).

a ! arg min

3.3.2 Signal Models

Now consider the signal model for the purpose of identifying R { . Similar to the signal model
v  X

that we have derived in Section 2.6, the appropriate signal model for identifying R\  can be 

shown to be given by

ßi = R{ a 2 + w{ , (3.9)



3.3. Control-Relevant System Identification for Type 1 Stable Plants 73

where

“ 2 =  R{ Yi X{ r,

ßi = Y / (D ,y{  -N ,u > )  ,

and u'l = (1 +  G K { ) ~ l He is the the effect of the noise disturbance on the filtered output 

error, fr =  A  -  R { a 2.

When G{ is stable, it is easy to show by appropriate substitutions that

a2 = {- ^ - j - ( l - G , Q { ) r  , ( 3. 10)

and

A  =  (1 -  GiQ{)(y{ -  Giu{) . (3.11)

When Gi is Type 1 stable, since R{ = Dl[Ni]m(s +  \ { ) n, Y /  = (1 -  GlQ { ) /D l, and 

X [  = Q{/ Dx, we have again by substitutions,

" G i Q i ) r  ’

and

ßi = (1 -  G,Q{)(y{ -  Giu{).

Therefore the common signal model for the purpose of identifying r { , in both stable plant 

and Type 1 stable plant situations, is given by equations (3.9), (3.10), and (3.11). The 

corresponding block diagram is given in Figure 3.3.2.

3.3.3 Model Update Equations

Now consider the model update equations. When Gx is stable, the model update equation is

G 1!-!-! —  G {  +
\ - r{q{

In this case, by using the equations R{ = R { R t , R{ = [Gi]m(s +  Af)n, Q{ = [Gi]mlF f , 

and F{  =  [X{/(s + \{ )]n+1, we can rewrite the model update equation as

Gi+i — G, -f
(s +  X{)'+1[Gj]m^  

(s +
(3.12)
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Closed-loop system

Figure 3.3: Identification of R{

When Gt is Type 1 stable, the model update equation is

Ni + h{  y/

By noting that X- =  Q{ /£)* and Y ’ =  (1 — GiQ{ )f Dx, the last model update equation can 

also be written as

Gi+1 =

' f  _
Di r {x {  

>/>

Gi+1 — G{ + r!
D}

Since in this case we have R r{~r[, r{
R{q{

D,[N,\m(s + \{r, Q{ [Gi\m'F! • and
F/  = [A{/ ( s +  \{ )]n+1, therefore the model update equation becomes

G{+1 — Gi + (« + A/)w+1[Gi]mÄf
-5/

Note that the last equation is the same as equation (3.12). Therefore equation (3.12) is the 

common model update equation in both stable plant and Type 1 stable plant situations.

Remark 3.3.4 When updating the model using the equation

Gi+i — Gt +
(5 +  Af)"+I[G.]mA

/

■zf
(s + X’ ) - ( X { ) ^ R ,
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the order of the model may increase. To prevent the model order from increasing indefinitely 

during a sequence of iteration, we use a frequency weighted balanced truncation scheme 

[Anderson and Liu 1989] to reduce the order of G t + 1  at the end of each identification. 

Specifically, we would like, ideally, to find

Gi+ 1  =  arg min
i

Gi+1K { r,K<
1 + Gi+lK { 1 + v k {

where Gl+\ is the reduced order model. In practice, we obtain approximately, under frequency 

weighted balanced truncation,

G i+i =  arg min 
v

K [ (Q .+l -  r,)
(1 +  Gi+iK{  ) 2 oo

3.4 Iterative Algorithm for Stable Plants and Type 1 Stable Plants

Before the simulation results are presented in Section 3.5, we summarize the algorithm for 

iterative identification and control design with respect to stable plants and Type 1 stable 

plants.

Step 1:

Set Gi = Go, where Go is the transfer function of an initial model of the stable 

plant or Type 1 stable plant.

Step 2:

Factorize G, as Gi =  [Gi]m[Gj]a, where [Gj]m is the minimum-phase factor of 

Gj with a relative degree of n, and [Gj]a is the associated all pass factor of G{.
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Step 3:

Forj =  0, find k { =  Q \ / [ \ - G lQ3i ), withQ^ =  [G t]^ F( , where the parameter 

A] in the transfer function

F] - i L V * '
s +  K )

is chosen such that K J{ robustly stabilizes Gt and the step response of the 

actual closed-loop system (modulo the effects of the noise disturbance) has, at 

most, little oscillations and/or overshoots. Stop here if such a robust stabilizing 

controller cannot be found. (This may happen if the pole of the plant at the 

origin is incorrectly modelled. See Remark 3.2.7) Also stop here if the robust 

stabilizing controller results in a closed-loop system which meets the specified 

bandwidth. Otherwise, proceed to the next step.

Step 4:

Let j  = j  +  1 and set Aj = -he for small e > 0, and re-design the controller 

K\  using the equations given in Step 3. Stop here if the design produces a 

robust stabilizing controller with the closed-loop system satisfying the specified 

bandwidth. Otherwise, repeat this step if K\  robustly stabilizes Gt \ else proceed 

to the next step. (We assume that it is necessary to proceed to the next step when

j  = /•)

Step 5:

Perform frequency weighted open-loop system identification to obtain R t . For 

this purpose, we apply an algorithm such as least squares to obtain an estimate
' i f  v  t  f  r
Ä, of R\ which satisfies ß\ = R< c*2 -I- w\ . This depends on using the signals

«2 =  L^ L- r ( l  ~G,Q{)r
s-hXi

and

A  =  ( l  ~G,Q{)(y{  .
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(We actually used discrete-time samples of ß\ and c*2 and an output error pa

rameter estimation algorithm to construct a strictly causal discrete-time estimate 

for R t , from which a continuous-time strictly proper was obtained. This

are facilitated by the oe.m file and the contin.m file of MATLAB™ System
'if

Identification Toolbox [Ljung 1988].) Using R t , the model is updated via the 

following equation:

Gi+1 — Gi + (5 +  Af)"+1[G,Ufi,

Step 6:

If G l + 1 is stable or is Type 1 stable, find the reduced order model

k {  (Gi+i -  V)
G i+1 arg min 

v (1 +  g ,+1k ( ) 2

Otherwise, stop here.

Step 7:

Set Gi =  Gi+i and return to Step 2.

Remark 3.4.1 It is important to ensure that the input is sufficiently exciting when we are 

carrying out a system identification experiment.

Remark 3.4.2 Under noisy conditions, the signals to be used in the system identification 

process should be appropriately low-pass filtered. In a discrete-time implementation, this 

can be accomplished by an anti-aliasing filter.

_  * j  ~ *
Remark 3.4.3 The algorithm used to obtain an estimate R{ of R ■ cannot be expected to give 

an optimal Tioo estimate. But efficient algorithms for performing Hoo system identification 

are still lacking, and the corresponding theory is still not well understood [Helmicki et al. 

1991, Parker and Bitmead 1987, Partington 1991].
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Remark 3.4.4 Since the stability robustness of the closed-loop system for each XJt has to be 

checked by using step response tests, the above algorithm is not an on-line procedure. In 

fact, at this stage of our development, the iterative identification and control design algorithm 

under discussion is an off-line procedure.

3.5 Simulation Results

With reference to Figure 3.1, we shall present two simulation examples in this section. 

Example 1 illustrates the application of the iterative identification and control design approach 

to a stable plant. The plant and initial model employed in this example are the same as those in 

the simulation example of Chapter 2, where we investigated the idea of iterative identification 

and control design through an iterative model approximation and control design procedure. 

We shall compare the results of this example with the results obtained in the simulation 

example of Chapter 2. In Example 2 we shall show that the iterative identification and 

control design approach can be applied with equal success to a Type 1 stable plant. In the 

following examples, we have H (s) =  1 and e is a noise disturbance with zero mean and has 

a constant energy density of 0.0025 within the bandwidth of interest. In all of the simulation 

results presented, the graphs on the left show the noisy unit step responses of the actual 

closed-loop systems, and those on the right show the corresponding low-pass filtered signals. 

Bandwidths of the low-pass filters are ten times that of the designed closed-loop systems.

Example 1

In this example, the stable plant has a transfer function

9
^   ̂ (s -F l) (s2 +  0.06s -I- 9)

The simulation results are presented in Figures 3.4, 3.5, and 3.6. We start with an initial 

model which has the transfer function

Go
0.8

s 1.2

Graphs (a) and (b) of Figure 3.4 show the responses of the actual closed-loop system with a 

designed closed-loop bandwidth of 0.1 rad/s. Note that there are no overshoot or oscillations
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1.5 Graph (a) Graph (b)
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Figure 3.4: Simulation results 1 for Example 1

Graph (b)Graph (a)

Graph (c) Graph (d)

Figure 3.5: Simulation results 2 for Example 1
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Figure 3.6: Simulation results 3 for Example 1

for the response in Graph (b). Graphs (c) and (d) of Figure 3.4 are for a designed closed-loop 

bandwidth of 0.5 rad/s. The response in Graph (d) is oscillatory and any attempt to increase 

the designed closed-loop bandwidth further is likely to lead to instability. At this stage, it is 

necessary to improve the accuracy of the model if we wish to increase the designed closed- 

loop bandwidth further. To ensure that the signals are sufficiently exciting, we superimpose 

on the unit step input at least (N / 2) -I- 1 low amplitude sinusoids (not harmonically related) 

that spread across ten times the designed closed-loop bandwidth prior to system identification. 

Here N  is the number of parameters to be identified. The amplitudes of the sinusoids are such 

that each of their effects at the actual closed-loop output is just perceptible. This requires 

the sinusoids to be introduced one by one on the step input so that the marginal change at 

the closed-loop output causing by each of them could be detected. The frequencies of the 

sinusoids that we have introduced are 0.501 rad/s, 1.123 rad/s, 3.013 rad/s, 3.541 rad/s, and 

4.37 rad/s. The corresponding amplitudes are 0.05, 0.1, 0.05, 0.5, and 1.0. The responses 

are shown in Graphs (a) and (b) of Figure 3.5.

To estimate Rq, we use a low-pass data filter with a bandwidth of 5 rad/s. A third order
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model structure is selected for R 0 by specifying the model structure parameter as Nn= [3 31]. 

(Note that the noise model in the output error algorithm is unity.) Using these settings, we 

obtain
_  -0.90396s2 -  0.49698s +  3.997

0 “  s3 +  0.58707s2 +  8.5803s +  5.0335 ’

Bf _  (  -0.72316s3 -  0.75917s2 \  /  (  s4 +  1.7871s3 +  9.2848s2 \
~  ^ +2.9988s +  1.5988 ) / \  +  15.33s +  6.0401 )  ’

and

Gi
(  0.076836s6 -  0.12047s5 \

+9.5183s4 +  27.334s3 
 ̂ +26.069s2 +  9.8166s +  1.208 y

/  s7 +  3.9871s6 +  14.892s5 \
+39.427s4 +  53.772s3 

y +35.895s2 +  10.809s +  1.0926 y

After performing frequency weighted model reduction, we obtain

~ -0.05586s2 -  0.016156s +  8.7487
71 “  s3 +  0.95932s2 +  8.9233s +  8.3058 '

We set G\ = G\  before the iteration is continued.

The updated model G i is used to re-design a closed-loop system such that the designed 

bandwidth is 0.5 rad/s, and the resulting responses are shown in Graphs (c) and (d) of 

Figure 3.5. By comparing Graph (d) of Figure 3.5 to that of Figure 3.4, we observe that 
the response no longer has oscillations. We also notice that the rise time in Graph (d) of 

Figure 3.5 is about twice of that in Graph (d) of Figure 3.4. Since both of Go and G i have 

the same relative degree of n =  1, we would expect Graph (d) of Figure 3.4 and Graph (d) of 

Figure 3.5 to be similar to the unit step response of the designed closed-loop transfer function 

[0.5/(s +  0.5)]2. By comparing with the computed unit step response of the transfer function 

[0.5/(s +  0.5)]2, we have verified that Graph (d) of Figure 3.5 is very close to the desired 

one. If we continue to increase the designed closed-loop bandwidth of the system, we obtain 

the responses shown in Figure 3.6 where Graphs (a) and (b) are for a designed closed-loop 

bandwidth of 1 rad/s, and Graphs (c) and (d) are for a designed closed-loop bandwidth of 

2 rad/s.

The frequency responses of G, Go, and Gi are presented in Figure 3.7. Notice that, 

compared to Go, the updated model Gi has effectively captured the effects of the poorly 

damped resonance of the plant.

We can compare the results in Figures 3.4 to 3.6 with those given in Figures 2.6 and 2.7 

for the iterative model approximation and control design algorithm discussed in Chapter 2.
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rad/s

rad/s

Figure 3.7: Frequency responses of models and plant
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Recall that Figures 2.6 and 2.7 are obtained under noiseless conditions using rational function 

approximations (in the H <*> sense) of the plant instead of identified models. It is also important 

to emphasize that, instead of strictly proper controllers, bi-proper controllers are employed 

in the procedure described in Chapter 2.

Remark 3.5.1 All else being equal, we would expect the noiseless situations to give better 

results than that of the noisy situations. However, by comparing the results given in Figures 3.4 

to 3.6 with those given in Figures 2.6 and 2.7, we observed that, overall, the results given in 

Figures 3.4 to 3.6 appear better than those given in Figures 2.6 and 2.7. We attribute this to the 

fact that strictly proper controllers are less sensitive to high frequency model uncertainties, 

and hence require less frequent model updates when we attempt to increase the designed 

closed-loop bandwidth of the system. This is important because, as we have mentioned 

before, under noisy conditions, the system identification process is becoming progressively 

difficult and it is advantageous to be able to have infrequent but accurate model updates.

Example 2

In this example we consider a system with

9(—s +  2)
G(s)

The plant G(s ) has an unstable zero.

s(s2 +  0.06s -I- 9)

The simulation results are presented in Figures 3.8, 3.9, and 3.10. We start with an initial 

model which has the transfer function

G o  =  —  • s

Graphs (a) and (b) of Figure 3.8 show the responses of the actual closed-loop system 

with a designed bandwidth of 0.1 rad/s. There are no overshoot or oscillations for the 

response in Graph (b). Graphs (c) and (d) of Figure 3.8 are for a designed closed-loop 

bandwidth of 0.5 rad/s. The response in Graph (d) is oscillatory and any attempt to increase 

the nominal closed-loop bandwidth further is likely to lead to instability. At this stage, it is
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Figure 3.8: Simulation results 1 for Example 2

1.5 Graph (a)

sec

Figure 3.9: Simulation results 2 for Example 2
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Graph (b)Graph (a)

Graph (c) Graph (d)

Figure 3.10: Simulation results 3 for Example 2

necessary to improve the accuracy of the model if we wish to increase the designed closed- 

loop bandwidth further. To ensure that the signals are sufficiently exciting, low amplitude 

sinusoids in the relevant frequency range are superimposed on the unit step input just prior to 

system identification (as we have described in Example 1). The frequencies of the sinusoids 

that we have introduced are 0.501 rad/s, 1.123rad/s, 3.013rad/s, 3.541 rad/s, and 4.37 rad/s. 

The corresponding amplitudes are 0.05, 0.1, 0.02, 0.25, and 0.5. The responses are shown in 

Graphs (a) and (b) of Figure 3.9.

To estimate R q , we use a low-pass data filter with a bandwidth of 5 rad/s. A third order
-  f

model structure is selected for R0 by specifying the model structure parameter as Nn= [3 31]. 

Using these settings, we obtain

^ /  
Än

-0.73975s2 -  7.5262s 4- 2.9606 
s3 +  1.1079s2 +  8.7273s +  6.7902 ’

/  -1.1836s3 -  12.634s2 \  /  (  s4 +  1.1079s3 \
-1 .2 8 4 1 s+  2.3685 )  /  \  +8.7232s2 +  6.7902s )  ’
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and

_ /  0.41639s4 -  10.653s3 \  / (  s5 +  1.6079s4 +  9.4621s3 \
G{ ~ y + 7 .5384s2 +  22.58s +  5.4322 ) /  \  -f 13.033s2 +  2.655s )  '

After performing frequency weighted model reduction, we obtain

~ 0.41639s3 -  10.701s2 4- 8.4984s +  23.494
1 ~  s4 +  1.5194s3 +  9.1507s2 +  12.197s

We set G i =  G \ before the iteration is continued.

The updated model G \ is used to re-design a closed-loop system with a designed closed- 

loop bandwidth of 0.5 rad/s, and the responses are shown in Graphs (c) and (d) of Figure 3.9. 

By comparing Graph (d) of Figure 3.9 to that of Figure 3.8, we observe that the response 

no longer has oscillations. If we continue to increase the designed closed-loop bandwidth 

of the system, we obtain the responses shown in Figure 3.10 where Graphs (a) and (b) are 

for a designed closed-loop bandwidth of 1 rad/s, and Graphs (c) and (d) are for a designed 

closed-loop bandwidth of 2 rad/s.

3.6 Summary

We have studied in this Chapter the iterative identification and control design approach for 

stable plants and Type 1 stable plants. Simulation examples are employed to illustrate the 

approach and encouraging results are obtained for both stable plant and Type 1 stable plant 

situations. In particular, we would like to highlight the following points:

•  We have illustrated that the frequency weighted open-loop system identification pro

cedure embedded in the iterative identification and control design algorithm is relevant 

to achieving improved control design.

•  We have shown that the control design equations and control-relevant system identifi

cation procedure developed for stable plants can be applied without modifications to 

Type 1 stable plants.

•  We have illustrated the applications of the iterative identification and control design 

algorithm to a stable plant and a Type 1 stable plant by simulation examples. These
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simulation examples have clearly shown that, starting with an initial (crude) model of a 

plant, the iterative identification and control design procedure is a viable methodology 

for improving progressively the performance of a closed-loop system.

• Comparison of the results obtained in Example 1 with those obtained in Chapter 2 

indicated that strictly proper controllers are less sensitive to high frequency model un

certainties, and hence require less frequent model updates when we attempt to increase 

the designed closed-loop bandwidth of the system through the iterative identification 

and control design process. System identification, under noisy conditions, becomes 

the harder the larger the control bandwidth is. It is therefore advantages to have infre

quent model updates that are able to improve model accuracy significantly rather than 

frequent marginal model improvements.



Chapter 4

Some Key Issues in Iterative 
Identification and Control Design

4.1 Introduction

A practical iterative identification and control design algorithm was presented in Chapter 3. 

The objective is to increase the bandwidth of a closed-loop system, if possible, to a specified 

value, given that the initial model of the plant may involve significant error in the high 

frequency region. Furthermore, as the closed-loop bandwidth is being increased, the closed- 

loop frequency response is to be kept approximately flat in the passband so that the closed- 

loop transient response is not too oscillatory or having excessive peak overshoot. It was 

demonstrated in Chapter 3 by simulations that the bandwidth of a closed-loop system can 

be increased by iterative applications of the Internal Model Control (EMC) method (see 

[Morari and Zafiriou 1989]) and a system identification method pioneered by Hansen (see, 

for example, [Hansen 1989]). In this chapter we examine a number of crucial questions 

which arise in the iterative identification and design methodology that we have investigated 

in Chapters 2 and 3. Among the issues considered are the following:

• When can one re-design the controller and expand the closed-loop bandwidth, without 

re-identifying?

• When should one re-identify?

88
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• What does one want to identify in the re-identification process?

• What can one identify in the re-identification process?

• How can an identified model be verified against the desired purpose?

• Will re-identification always lead to improved closed-loop performance?

Although attention is restricted to stable strictly proper plants with no finite zeros on the 

imaginary axis, the results obtained are also applicable to strictly proper plants with no finite 

zeros on the imaginary axis and may have a simple pole at the origin1. (Extension of the 

iterative identification and control design methodology to unstable plants will be considered 

in Chapter 5.) The key conclusion in this chapter is that, given a stable strictly proper 

model for a stable strictly proper plant, we can improve the performance robustness of the 

closed-loop system through iterative identification and control design if the plant and the 

existing model have no unstable zeros within the designed closed-loop bandwidth and if 

the deterioration in performance robustness caused by increasing the closed-loop bandwidth 

resulted in a sufficiently high signal-to-noise ratio for a certain closed-loop output error. 

Situations that may cause the iterative identification and control design process to terminate 
prematurely are also indicated. A simulation example will be used to illustrate the results 

discussed in this chapter.

The structure of this chapter is as follows. In Section 4.2 we shall show that for the 

iterative identification and control design algorithm discussed in Section 3.4, it is safe to 

increase the designed closed-loop bandwidth gradually if the plant is stabilized by the existing 

controller. Section 4.2 also introduces some of the key concepts and notations that will be 

useful in the subsequent discussions. Properties of good models for iterative identification 

and control design are established in Section 4.3. The control-relevant system identification 

procedure embedded in the iterative identification and control design process is analysed 

further in Section 4.4. Conditions necessary for identifying a good model and methods 

for verifying experimentally that an identified model is suitable for the desired purpose 

(or otherwise) will be given. In Section 4.5 we study mechanisms that may influence the 

iterative identification and control design process. Situations that may lead to the premature 

termination of the iterative process will be indicated. In Section 4.6 two methods for model

‘We have shown in Chapter 3 that control design equations and system identification equations for stable 
plants can be applied without modifications to (Type 1) stable plants that may have a simple pole at the origin.
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validation will be described. A procedure for the identification of a better model while 

avoiding the potential danger of causing instability in the actual closed-loop system will then 

be suggested. Conditions under which the performance robustness of a closed-loop system 

can be improved through iterative identification and control design will be discussed in 

Section 4.7. In Section 4.8 we outline the iterative identification and control design algorithm 

which incorporates the model validation steps that we have discussed. A simulation example 

ends this section. We conclude the chapter in Section 4.9.

4.2 Nominal Performance Improvement and Robust Stability

In this section it is shown that we can increase the designed closed-loop bandwidth of the 

system, while maintaining the stability of the actual closed- loop system, if the increment is 

sufficiently small. Although the concepts of nominal performance and robust performance 

has been broadly defined in a Section 1.1, to facilitate analysis, we introduce towards the end 

of this section precise definitions of nominal performance and robust performance that are 

relevant to the iterative identification and control design methodology under considerations.

For ease of reference, we shall outline in the following the IMC design method when the 

reference input is a step function. Although the IMC method is generally applicable to the 

case where the plant and the models are not necessarily stable, we shall restrict our study in 

this chapter to the case where the plant and the models are stable.

Consider a closed-loop system as shown in Figure 4.1 where G is the transfer function 

of a stable strictly proper plant. A sequence of models (identified from data obtained under 

closed-loop condition) will usually be involved in the iterative identification and control 

design approach. We therefore use Gx to denote the z* member in the sequence of stable 

strictly proper models {Go, G i, G2 , • • •}. On the basis of Gx a finite sequence of controllers 

{ i f , 0 , K \ , • • • ,  k {  }  is designed such that, while keeping the closed-loop frequency responses 

approximately flat within the pass bands, the corresponding closed-loop bandwidths form an 

increasing sequence { A ? ,  A  - , • • • ,  A j $ } .  Note that we shall in general use Kx to denote one 

of the controllers in the sequence {K®, K \ , . . . ,  k { } when it is immaterial to the discussion 

which particular controller is involved. (We shall also apply the same system of notations to
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Figure 4.1: Internal model control structure

other transfer functions.) Figure 4.1 shows that

Q i

K‘ = T ^ q , -
with Ql defined in the IMC method by

Q i  — 7

(4.1)

(4.2)

where [G*]m is the minimum-phase factor of Gt, and

Ft = K
s +

n+ 1
; A, > 0 (4.3)

is a suitable IMC filter when the model is stable and when the reference input is a step 

function. The integer n is the relative degree of G{. The design parameter \  must be chosen 

such that the actual closed-loop transfer function

G K t 
1 + G K {

(4.4)

is stable.

It can be shown easily that the designed closed-loop transfer function Ti =  G {Ki/( 1 +  

GlK l) can be written as

Tt = GiQi (4.5)
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or

Ti = Fl[Gl]a , (4.6)

where [G;]a is the all pass factor associated with G{.

Remark 4.2.1 Since [Gi]a(j^ ) does not affect the magnitude of Tx(juj), it is clear that 

\Tt (juj) I is flat in its passband. Also recall that At is the designed closed-loop bandwidth with 

an attenuation of — 3(n +  1) dB.

Remark 4.2.2 Note that the system becomes open-loop when A, approaches zero. Since G 

is stable, it is always possible to make Tx stable by choosing a sufficiently small A;.

Although the designed closed-loop transfer function Tt is always well behaved, the actual 

closed-loop transfer function Tx may become unstable when \ x is too large. That is, the 

closed-loop system may lose robust stability when A* is increased excessively. (Robust 

stability is defined in Definition 2.3.1.) Since the objective of the iterative identification and 

control design methodology is to increase the closed-loop bandwidth to a specified value, we 
would naturally ask the following question:

When can the closed-loop bandwidth be increased with safety; that is, without losing 

robust stability, while retaining the use of the model Gx?

To answer the above question, we noted from Chapters 2 and 3 that if Tx (corresponding 

to At) is stable, then there exists a strictly proper transfer function Rt such that

G — Gi -T Rj
1-Q,Ä, '

It can then easily be shown that

Ti =  Qi (1 -  Ti) Ri , (4.7)
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where Tt = Tt — Tt is the error in the closed-loop transfer function induced by the error in 

the model Gt when the designed closed-loop bandwidth is Xt.

Suppose that the designed closed-loop bandwidth is increased to A- > Xt, then corre

sponding to A' we can write

where
ß i  ___________ ^ _________

' 1 +  [G,]™1 (F; -  Fi) R, '

Since Q[ and T[ are stable by design, therefore T ' and T( are stable if and only if R[ is stable. 

However, R[ is stable if (A- — A;) > 0 is sufficiently small. Hence we have the following 

conclusion:

C l We can increase the designed closed-loop bandwidth cautiously if the existing 

closed-loop system has robust stability.

Remark 4.2.3 Note that even when Tt is stable, its response to the reference input could be 

significantly different from that of Tt if, relative to the frequencies where Gt has significant 

errors, \ t is not sufficiently small. To address this issue, we need precise definitions of 

nominal performance and robust performance that are relevant to the iterative identification 

and control design methodology under considerations.

Definition 4.2.1 For any two closed-loop systems designed by the IMC design method, we 

say that the one with a larger value of Xt has a better nominal performance.

Definition 4.2.2 We say that, with respect to the given reference input r and a specified 

finite (usually suitably small) a > 0, the closed-loop system has robust performance with 

designed closed-loop bandwidth Xt if and only if

Ji =f M l*  <  o  ,
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where vt = Ttr is the tracking error.

Remark 4.2.4 It is implicitly assumed in Definition 4.2.2 that the control design method has 

invoked the internal model principle [Francis and Wonham 1976] (which is incorporated in 

the IMC design method). Otherwise, a may not be finite.

Remark 4.2.5 Robust performance clearly implies robust stability but not necessarily oth

erwise.

Remark 4.2.6 It is important to note that a closed-loop system may have high nominal 

performance (large At) but poor robust performance (Jx > a ), and vice versa.

Remark 4.2.7 For a model with significant modelling errors in the high frequency region, 

the closed-loop system can be designed to have good robust performance if the designed 

closed-loop bandwidth is sufficiently small.

Remark 4.2.8 While Xt is being increased, a stage can be reached (before the occurrence of 

instability) where, because of the modelling errors associated with Gx making a significant 

contribution to J t, the performance robustness has deteriorated beyond an acceptable level. 

At this stage the designed closed-loop bandwidth is \  =  \ {  and it cannot be increased 

further before a more accurate model G{+\ is identified.

4.3 Properties of Good Models

In Section 4.2 we have concluded that when performance robustness of the closed-loop 

system has deteriorated beyond an acceptable level, it is necessary to identify a model better 

than the existing one before the designed closed-loop bandwidth can be increased further.

It is clear from Section 4.2 that we can increase the designed closed-loop bandwidth as 

long as the closed-loop system has robust performance. Therefore it is natural that, when
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the closed-loop system looses robust performance, we attempt to seek a new model that 

will allow robust performance of the closed-loop system to be restored through controller 

re-design (while the designed closed-loop bandwidth remains unchanged). This prompts us 

to ask the following question:

What WOULD WE LIKE to identify, in order that, with the new model, robust perfor

mance of the closed-loop system can be improved through controller re-design?

Before we proceed to answer this question, we observe that each cycle of the iterative 

identification and control design procedure involves an existing model Gt and an updated 

model Gi+\. Since every stage of the iteration proceeds in a similar fashion, it suffices to 

discuss only the stage where i =  0. Therefore we shall denote the existing model by Go and 

the updated model by G i . This system of notations will carry over to all transfer functions 

and signals involved in the following discussions. We also need the following definition.

Definition 4.3.1 The critical frequency corresponding to a pole (or a zero) is numerically 

equal to the distance o f the pole (or the zero) from the origin.

Suppose that G i is identified when Ao has reached Aq. A new controller K® will then be 

designed on the basis of G\ such that Aj has the same value as A .̂ Obviously we would like 

=  ||Tj r\\\ to be small. By using equations (4.1) to (4.5), with appropriate adjustments 

made to the notations, we can write Tf* =  Ty -  Ty as

(4.8)

Clearly it is necessary that TP be stable. Since G — G\ is unknown, therefore we conclude 

that
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C2 We WOULD LIKE to obtain a model G\ for G of sufficient accuracy such that

G - G  i 
G\

T? <  1 .

oo

This ensures the stability o fT ^  (see equation 4.8), and hence the stability ofT^.

Furthermore we observe that the magnitude of the designed sensitivity function 1 — Tf in 

the right hand side of equation (4.8) could approach a magnitude significantly greater than one 

if G\ has unstable zeros with critical frequencies smaller than the passband of T f  =

In order that T f has a small magnitude, we require in addition to the above robust stability 

condition that

C3 We WOULD LIKE to obtain a model G \for G of sufficient accuracy such that

is sufficiently small for all frequencies above the lesser o f the passband o f f ^ and the smallest 

critical frequency corresponding to the unstable zeros o f f f .

Remark 4.3.1 Note that the unstable zeros of T f  are those of G\  which, in a situation with 

good identification, will be at least approximately those of the plant G.

Remark 4.3.2 If G\  has unstable zeros located within the passband of T^, it is likely that 

there is a range of frequency within the passband of i f  where the magnitude of the designed 

sensitivity function 1 -  is significantly greater than one. It has the following consequences:



4.4. System Identification in the Iterative Identification and Control Design Approach 97

1. There is a range of frequency within the passband of T}3 where the designed system 

has poor disturbance rejection and the measurement noise is not well attenuated.

2. Since the magnitude of the designed sensitivity function is the inverse of the distance of 

the open-loop frequency response curve from the critical point of stability at — 1 +  jO, 

the designed system may have poor stability margins and transient response if the 

magnitude of the designed sensitivity function is excessively large near the edge of the 

system passband.

Therefore, purely from the point of view of control design, we may not want to increase the 

designed closed-loop bandwidth Ai beyond if G\ is found to have unstable zeros with 

critical frequencies within the passband of Tq .

4.4 System Identification in the Iterative Identification and Control 
Design Approach

Notwithstanding the fact that we have established in the last section properties of a good 

model for iterative identification and control design, it is important to ask the following 

question:

What CAN WE identify by using the system identification procedure embedded in the 

iterative identification and control design approach?

In this section we answer the last question in three steps. In Section 4.4.1 we outline 

the control-relevant closed-loop system identification problem that we have formulated in 

Chapter 2. We state a key theorem that relates the control-relevant closed-loop system 

identification problem to a frequency weighted open-loop system identification problem, 

where a stable transfer function, Rq, that parametrizes the plant is to be identified. This
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is a special case of Theorem 2.4.2 when the plant and the model involved are stable. In 

Section 4.4.2 we show that it is possible to identify Rq accurately only if the signal-to- 

noise ratio of a certain closed-loop output error resulting from the existing controller is high. 

Furthermore, by recognizing the relation between the signal component of the closed-loop 

output error and deterioration in robust performance, we can restate the conditions necessary 

for obtaining an accurate estimate of Rq in terms of the level of deterioration in robust 

performance against the effect of noise disturbance. In Section 4.4.3 we show how to verify 

indirectly that an estimate of Rq is unbiased.

4.4.1 Control-Relevant System Identification

It was indicated at the end of Section 4.2 that when the designed closed-loop bandwidth 

has reached a certain value denoted by Ag, the robust performance measure Jq = vo 2 
associated with the closed-loop system designed on the basis of Go would become excessively 

large. It was shown in Section 4.3 that at this stage, we would like to identify a new model 

G\ such that
G{ju) -  Giiju) '

Gi (jw)
is sufficiently small in an appropriate frequency range. Unfortunately it is not clear how 

to process input-output measurements to determine G\ so that this condition is naturally or 

automatically satisfied. To overcome this difficulty we shall use input-output measurements 

and possibly the reference input of the stable closed-loop system as shown in Figure 4.2 to 

identify G i such that

(  GK& g.4 V
\  1 +  G K q y + GiK’J

is minimized. It was shown in Chapter 2 that this control-relevant closed-loop identification 

problem can be transformed into an open-loop identification problem by employing Hansen’s 

framework of identification (see [Hansen 1989]). We shall state this result again in the 

following as special case of Theorem 2.4.2 when the plant G and the model Go are stable.

Theorem 4.4.1 Let K q = Qq/{1  — GqQq) stabilize G and Go, where Qq is a stable strictly 

proper transfer function, so that G can be parametrized by a stable strictly proper transfer
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Figure 4.2: Closed-loop system just before identification

function R q via

G = Go + K
1 —  RqQq

Let

Gi = G0 4- ^
i  -  4 Q o

(4.9)

be another model stabilized by K q, where Rq is a strictly proper stable estimate of Rq.

Also define the filtered output error

fi = ( l - l t f )  ( ß - H * )  . (4 ' 0)

where a = Q^r, ß = — GoUq, and Uq and yq are, respectively, the input and output of

the plant resulting from the application o f K q. Then can be expressed as

where

Zi
( _ G l d _ _ G j d \  
\  1 +  GKq 1 + G i K f0 )

wfo =  (1 -  T$)He

(4.11)

(4.12)

is the effect of the noise disturbance, e, on the actual closed-loop output.
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Remark 4.4.1 If we define H =  Sq/ (1 — RqQq), where Sq is a proper stable and in

versely stable transfer function, then the actual closed-loop system has Hansen’s open-loop 

representation

ß = R f0a +  S{,e . (4.13)

Remark 4.4.2 From Theorem 4.4.1 it is clear that minimizing

GiKl ^i GKr r + w
V1 +  G K q 1 + G \K q

with respect to G\ is equivalent to minimizing ( l  — GoQq) { ß  ~  ^ o a ) 2 resPect t0
R q, provided that G\ is updated according to G\ =  Go +  [Äq/(1 -  RqQq)].

Remark 4.4.3 Since the “input” a  in equation (4.13) is independent of the noise disturbance 

e, identifying R q (and Sg) is an open-loop identification problem.

We can summarise the above discussions as follows:

C4 We can transform the problem of identifying G in closed-loop into a problem of

identifying

in open-loop.

R f  G - G  o
0 1 + Q f0 (GGo)

It was shown in Section 3.3 that for stable plants, the frequency weighted open-loop

system identification problem can be solved effectively by factorizing Rq as Rq =  RqR q,

where R q is a stable proper transfer function known by design and R q is an unknown stable
~ f  ' i f

strictly proper transfer function. After RJ0 is estimated via Rq, we can update the model via
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The equation that describes the open-loop identification of Rq was shown in Section 3.3 to 

be

ßi = + wfQ ,

where

and

/? , =  ( l - T { ) ( y l - G o u f0) ,

, ,  - f / d Ao)"+1“ 2 =  (1 -  Tq ) « , ,
s +

( \ - f f ) S l e  .

Usually data filters are employed to shape the bias-distribution of the estimates (which is 

due to under-modelling) such that the model error is small in the appropriate frequency range 

[Ljung 1987]. If we filter each of the signals ß\ and c*2 by the data filter L , the signal model
v  X

for identifying R J0 becomes

ß = Rf0ä + ¥ 0e,

where

ß = L ß x ,

öi =  L oli ,

and

¥0 = L(i-T{)sf .
v /  X

We shall identify R J0 and by the prediction error method (see [Ljung 1987]) as shown in
v X X

Figure 4.3. Note that Rq and are independently parametrized through the Box-Jenkins 

model structure.

Remark 4.4.4 From the above discussions, it is clear that we can either identify RI directly
v £ t ~ f  v f  ^  f  ~  f  f

or indirectly through identifying R J0. Furthermore, since R J0 = R0R0 and R J0 =  R^Ro^ 

where Rq is a known stable bi-proper transfer function (see Theorem 3.3.1), all discussions
f  ^  f  V f  f

involving Rq and Rq can be rephrased in terms of Rq and Rq, and vice versa. In practice, 

since the order of Rq is smaller than that of Rq , it is more efficient to identify Rq indirectly
v x

through identifying R J0.
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Designed sensitivity function---~

Data filter

Closed-loop system

Prediction error:

Figure 4.3: Identification of Rq and

4.4.2 Accurate Identification of R q

In the following we shall show that the problem of identifying Rq accurately can be solved 

effectively (using a finite duration of input-output measurements) only if the signal-to-noise 

ratio of a certain closed-loop output error (to be defined immediately) is high. Particularly, 

the normalized variance, { R q — R q ) / R q , for an unbiased estimate of R q will be small 

asymptotically if the signal-to-noise ratio associated with the closed-loop output error is 

sufficiently high.

From Figure 4.4, we observe that the closed-loop output error £ q is defined as £ g  = 

yQ — Tq r. By substituting the expressions for a  and ß  into equation (4.10) and noting that

Qfo
1 -  G qQ ]q

j ( r - y To),

we can obtain

R q =  arg min Zl -  pQo( l  -  ? o )  ' (4.15)
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Figure 4.4: Closed-loop output error

Now we can use the fact that y q =  T q  r  4 -  ( l  — T q  ) H e  to write

f o  =  v 0  +  w o (4.16)

where

v o  = ^ o r  • (4.17)

Remark 4.4.5 Note that the tracking error V q cannot be measured directly. It can only be 

estimated from the closed-loop output error £q .

It is apparent that v ^  is the signal component in ̂  that carries the useful information about 

the existing modelling errors under closed-loop condition, and W q is the noise component in 

( I  that will be a hindrance to the determination of R q . Therefore we can draw an immediate 

conclusion:
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C5 We can identify R q only if the signal-to-noise ratio associated with the closed-loop 

output error resulting from the existing controller K q is high.

We shall next show that the normalized variance for an unbiased estimate of R q will be 

asymptotically small in the frequency range where the signal-to-noise ratio associated with 

the closed-loop output error is sufficiently high.

By substituting equations (4.16) and (4.17) into equation (4.15) and noting from equa

tion (4.7) that Tq = ( l  — T({) R^, we can write

Rfo = ^gmm ||Qf0 (l -  Tq ) (äq “  P) r + wo f2 •

In practice we use sampled input-output data to estimate a discrete time model for Rq 

before converting it to a continuous time transfer function. We shall assume that errors 
involved in this conversion are negligible. Following [Ljung 1987], we can write the variance 

of an unbiased estimate of R q approximately as

Rf0{juj) -  Rf0{ju)
M Qo(jw) (* ~ ToU“ ))

where <I> /(u/) is the power spectral density of Wq, under the condition that the order of the

discrete time model for R q (denoted by m) and the number of data (denoted by M ) are large 

and the ratio m /M  is small.

Since = Q^{ju)  | l  — Tq ( ju)  R^ j u j )  <t>r (u;) is the power spectral density

of Vq , we can write the normalized variance of Rq as

H(jw)  ~ Ä6Ü«)
R f0 CM

™  f ( v )TIT Wq V 7

M  <&vf{u)

for the frequencies where R^{ju)  0.
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Remark 4.4.6 For a finite number of data, the normalized variance of R q can be small 

only in the frequency range where the signal-to-noise ratio associated with the closed-loop 

output error is sufficiently high. Furthermore, observe that the normalized variance of Rq is 

asymptotically inversely proportional to the number of data. This implies that, to achieve a 

certain normalized variance, the longer the data record we have the smaller the signal-to-noise 

ratio can be.

Remark 4.4.7 Since R q = R q Rq and Rq = RqRq/ ü is obvious that

l RqUuj) -  Rq(juj) 2\ ™ f (u)
m  W q  v '

\ H  (ju) /
M  ^ / ( w )

for the frequencies where Rq (ju) ^  0.

We now summarise the above discussion as follows:

C6 We can obtain an unbiased estimate of Rq with a small asymptotic normalized 

variance in a certain frequency range oq <  u < uq if and only if

1. the structure of the model set used in the estimation of Rq is sufficiently general,

2. the condition

> /i, for uq <  uj < u>2

is satisfied for a sufficiently large p > 0.

It is clear that nothing comes for free, and it is prudent to ask the following question:
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What is the price that we have to pay, in terms of system performance, before a sufficiently 

high signal-to-noise ratio of the closed-loop output error can be achieved?

We shall next show that it is necessary to have a certain level of deterioration in robust 

performance (relative to the effect of noise disturbance) before the closed-loop output error 

can achieve a sufficiently high signal-to-noise ratio.

By using equations (4.12) and (4.17) we can deduce that,

> p  , for < <jj <  UJ2 ; uji >  0

if and only if

?o (jw) <Mw) > d 1 — Tq (jo;)] H(juj)I <f>eM  , foruq < u  < u>2 (4.18)

where <J>e (^) is the pow'er spectral density of the noise disturbance e. Upon integration we 

get

l~ J  f l  (joj) <Pr(u)du> > ^ J  I [l -  r/(jo;)] H(ju)\ <t>e(u)du> .

By Parseval’s theorem, and note that oj\ >  0, we can write

Jo =  J -  [  \T l( ju)  ® r { u ) d u > -  f  \Tq (jut) <&r(uj)du .
Z7T J — oo TT Juji '

Therefore

Jq > ~ J  I [* l ~ To 0’w)] H ( j u ) j <Pe{u)du.

Now we can restate the conditions necessary for the estimation of Rq as follows:

C7 We can obtain an unbiased estimate of Rq with a small asymptotic normalized 

variance in a certain frequency range of interest (uj\ < uj < u>2; u>\ > 0) only if

1. the structure of the model set used in the estimate of Rq is sufficiently general,
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2. there is a certain level of deterioration in robust performance bounded from below by

for a sufficiently large p > 0.

1 - T*( j u) ]  H ( j u f  <i>e(u)du

Remark 4.4.8 It is obvious that a problem is ill-posed if the value of a that specifies the 

tolerable level of deterioration in robust performance (see Definition 4.2.2) does not satisfy 

the inequality

 ̂/  I t* 1 “ T0 M ]  H ÜU)\ ®e(w)du < ^
for a sufficiently large p > 0.

4.4.3 Practically Unbiased Estimation of R f0

In Section 4.4.2 we have shown that the normalized variance of Rq can be small if the signal- 
to-noise ratio associated with the closed-loop output error is sufficiently high. However 

normalized variance can be used as a measure of the quality of an estimate if and only 

if the estimate is unbiased. It is therefore necessary to verify that R q is a practically 

unbiased estimate (or an unfalsified model as discussed in [Ljung et al. 1991]) of R q. In this 

subsection we shall show that it is possible to verify indirectly that R q is a practically unbiased 

estimate of R q by verifying that G \ K q/(1 4- G \ K q) is a practically unbiased estimate of 

G K fJ ( \  + G K ').

We shall begin by considering

\  1 4- G K q 1 4- G \K q )  1 + g k £

Clearly if G \K q /(1 4- G \K q ) is a practically unbiased estimate of G K q /(1 4- G K q ), then 

the power spectral density of £i should reflect the effects of the noise disturbance only. We 

can perform this verification experimentally after G\ is obtained (as we shall describe in

Section 4.6). Now recall that, if it is necessary to update the model Go, the magnitude of

G K j
1 + G K S0

GqK [
1 +  GqK q q S 0 -  ) 4
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must be significant in a certain frequency range Therefore, before the model Go is

updated, both the magnitude of the frequency weighting Q^ (1 -  and the magnitude of 

Rq cannot be small in [c î, uii]- Since we can write

G Kj
1 +  G K q 1 + G i K*

Q{ { \ - Tf )  ( 4 - R l )

it can be deduced easily that if G iiC g/(l +  GiJTg) is a practically unbiased estimate of 

GKq/ ( I  +  GiCg) in [uji , 0 2̂ ], then Rq is a practically unbiased estimate of Rq in [u q ,^ ]. 

We can therefore conclude that:

C8 We can verify that Rq is a practically unbiased estimate of Rq in [u; 1,^2] 

by verifying experimentally that G \ K q/ { \  +  G \ K q) is a practically unbiased estimate of 

G K q /(1 +  G K q ) in [w1>W2].

4.5 Mechanisms that Influence Performance Robustness and Iden
tification

In this section we shall study mechanisms that influence performance robustness of systems 

designed by the IMC method. We shall show that there are three mechanisms that may lead 

to deterioration in robust performance. However only one of them will contribute to the high 

signal-to-noise ratio needed for a successful estimation of R q . These observations allow us to 

deduce situations where the iterative identification and control design process may continue 

or may terminate prematurely.

Recall that in Section 4.4.2 we have shown that a certain level of deterioration in robust 

performance is necessary before we can attempt to find a good estimate of R q . However we 

should ask
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Does it mean that, irrespective of the causes, deterioration in robust performance is 

always helpful to the identification of Rq ?

The answer is obviously no, as we shall elaborate now.

With appropriate substitutions in equations (4.17) and (4.12) respectively, we can obtain

and

(4.19)

(4.20)

Since Jq = we observe that, disregarding changes in disturbance suppression ability,

deterioration in robust performances is governed by the value of

J ri 1 r°°

We therefore conclude from the right-hand side of equation (4.19) that, for a given reference 

input, there are three factors that contribute to Jq through <t>v/(o;):

1. The effect of the term [(G — Gq)/G q[Tq in the numerator is independent of the phase 

angle of [(G -  Go)/Go]Tg. We shall call this the phase insensitive factor.

2. The effect of the term 1 +  [(G -  Go)/G o]Tq in the denominator depends on the gain 

and phase margins of [(G -  Go)/ Go]Tj(. We shall call this the stability margin factor.

3. The effect of the term 1 — Tq depends on the existence of unstable zeros of Go within 

the passband of Tq = Fq [Go]a- We shall call this the unstable zeros dependent 
factor.

By using equations (4.19) and (4.20) we can write the signal-to-noise ratio associated
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with the closed-loop output error as

wo \H (jU)\2 «M“ )

The last equation indicates that for a given reference input and noise disturbance scenario, only 

an increase in the magnitude of the phase insensitive factor can increase the signal-to-noise 

ratio of the closed-loop output error.

Remark 4.5.1 When the stability margin factor or the unstable zeros dependent factor are the 

main causes of deterioration in robust performance, it may be difficult to obtain an accurate 

estimate of R q. This may lead to premature termination of the iterative identification and 

control design process. In particular, when the existing model Go has unstable zeros within 

the passband of the designed closed-loop transfer function 7j{, the designed sensitivity 

(unstable zeros dependent factor) may have large magnitude in a certain frequency region. 

This fundamental limit in control performance (as discussed in [Freudenberg and Looze 

1985]) will cause deterioration in designed and robust performances with no improvement in 

the signal-to-noise ratio associated with the closed-loop output error. We emphasize that the 

above discussions do not imply that unstable zeros of the model that are within the designed 

closed-loop bandwidth will always lead to premature termination of the iterative process, 

although we have experienced such situations in simulations. It must be pointed out that 

there are situations where unstable zeros of the model do not cause the iterative process to 

terminate prematurely (see the simulation example in Section 4.8).

We shall now summarise the above discussions as follows:

1. There are three factors that can cause the performance robustness to deteriorate. They 

are namely, the phase insensitive factor, the stability margin factor, and the unstable 

zeros dependent factor. Among there factors, only the phase insensitive factor alone 

can contribute to improving the signal-to-noise ratio associated with the closed-loop 

output error.

C9
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2. When the unstable zeros dependent factor or the stability margin factor are the main 

causes of deterioration in robust performance, the signal-to-noise ratio associated with 

the closed-loop output error may be poor and it may be difficult to obtain a practically 

unbiased estimate o f R q with a small asymptotic normalized variance. This may cause 

subsequent difficulties in continuing the iterative identification and control design 

process.

Remark 4.5.2 From equation (4.19) it is clear that (a;) cannot be large in the frequency 

range where the designed sensitivity function has small magnitude. This implies that the 

frequency range [u /i ,^ ]  emphasized in Section 4.4 cannot be well below Aq.

Remark 4.5.3 From the definitions of the phase insensitive factor and the stability margins 

factor, we can deduce that it is possible to estimate Rq accurately only in the frequency range 

where the designed complementary-sensitivity-function weighted multiplicative modelling 

error has large magnitude and small phase lag. This implies that the frequency range [uq, 0 2̂ ] 

cannot be well above Aq (where Tq has small magnitude and large phase lag).

4.6 Identification and Validation of New Models

In Section 4.4.2 we have shown that under noisy conditions, the accuracy of the identified 

model can be improved by increasing the signal-to-noise ratio associated with the closed-loop 

output error. It was also shown that this is equivalent to having a certain level of deterioration 

in robust performance relative to the effect of noise disturbance. It is clearly undesirable from 

the control point of view for robust performance to deteriorate too seriously, while on the 

other hand it is necessary to have a sufficiently high signal-to-noise ratio in the closed-loop 

output error before identification can successfully be carried out. Furthermore it is important 

to ensure that a model with the right properties is identified. We would therefore like to ask 

the following practical questions:
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/ .  When should we try to identify a better model?

2. Have we actually identified a good model for our purpose?

Before we can answer these questions we need methods for validating an identified 

model. In Section 4.6.1 we shall describe a frequency domain method for model validation. 

In Section 4.6.2 we shall give a time domain method for model validation. In Section 4.6.3 

we shall first state some of the facts regarding the two methods of model validation that we 

have observed from simulations. (One of these simulations will be presented in Section 4.8.) 

We will then suggest a procedure for identifying a better model.

4.6.1 A Frequency Domain Method for Model Validation

In the following we shall present a model validation method in the frequency domain. It 

should be emphasized that the model validation procedure is designed with the closed-loop 

control objective in mind.

Recall that, given the existing model Go, it is necessary to identify an improved model G\ 

when J q =  \\v q \\\ is excessively large. Evidently £ q could be large (implying undesirable 

performance) with one or both of and Wq large. If the former is larger, there is a potential to 

reduce it by improved model identification. But this will only work (in a particular frequency 

band [u q ,^ ])  if the signal-to-noise ratio is sufficiently high. Specifically, when only finite 

durations of input-output measurements are available for identifying R^ (which parametrizes 

G), it was shown in Section 4.4.2 that the normalized variance of R q will be small only if the 

signal-to-noise ratio, associated with =  vo +  Wq sufficiently high.

Obviously, then one needs to estimate power spectra for wq and vo (or more precisely £o)- 

We shall proceed as follows.

From vq = (To — To) r and £o =  fo + ^o  we observe that when r =  0, the sole contributor
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to £o is wo- Therefore we can compute <PWo(w) after measuring £o with r = 0. When r /  0, 

we have £o =  vo +  ^o- Assuming that uo and wo are uncorrelated (which follows if r 

and e are uncorrelated, a typical situation), then <t>£0 (u;) =  F„0(u;) +  (a;). By visual

comparison of <I>£0 (u;) with F ^ u ; ) ,  we evaluate the significance of F vo(u;) with respect to 

F^Gu;). If F , / ( ü;) is significantly larger than F  f(u>) in a frequency band spanning one 

decade and centred around Ag (when the designed closed-loop bandwidth is Ag), the model 

Go is invalidated for the design of closed-loop systems with bandwidths larger than or equal

to Aq .

The method just described can also be used to validate Gj after it is identified (both before 

and after model reduction is performed). We simply replace Go by Gi, while retaining K q , 

in the simulation of the designed closed-loop response to the reference input. This allows us 

to compute £i and its power spectrum F^( (u;). By visually comparing F^, (u) with F ^ / (tu), 

we have good confidence that G\ is a reliable model of G (when the designed closed-loop 

bandwidth is Aq) if F^(a>) is comparable to (a;) up to Aq.

4.6.2 A Time Domain Method for Model Validation

We shall now describe a time domain model validation method. This is useful both for 

establishing that Go should be rejected (that is, as a flag for re-identification) as well as for 

validating a new model, G\, replacing Gq.

Referring to Figure 4.3 and equation (4.10), we notice that ep = when Fg =  1, where

ep is the prediction error (also known as the residual). We also observe from equation (4.14)
'zf f

that Gi =  Go when R 0 = 0, and from equation (4.11) that £i =  £5 when G\ = Go-

Therefore we have ep =  L£q when 'Fq =  1 and R0 = 0. This suggests that Go should be

rejected if the cross-correlation of the prediction error ep with the future values of “input” ä

exceed its (3cr) confidence limits when =  1 and Rq = 0. This reasoning is independent

of the true F q. See [Ljung 1987] and [Ljung 1988] for more details of model validation by

residual analysis. (Actually it is also easy to apply the same method to validate a pair of
' zf -  f 'zf

newly identified Rq and F 5 before Rq is used to calculate G\. We simply check that the 

auto-correlation function of ep for non-zero delays as well as the cross-correlation of ep with 

the future values of ä  are within their respective confidence intervals.)
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4.6.3 Identification of A Better Model

The methods of model validation described in Sections 4.6.1 and 4.6.2 were compared criti

cally through many simulation studies. (An example of these simulations will be presented 

in Section 4.8.) The main observations from these simulations are:

• Correlation function estimates and power spectrum estimates are both useful for model 

validation where the goodness of fit is based on a closed-loop control criterion.

• Correlation function estimates are more sensitive than power spectrum estimates in the 

sense that the former tend to invalidate a model before identifying a better model is 

necessary and possible. This does not imply that the correlation method is useless. On 

the contrary, it suggests that the correlation method is useful for detecting incipient 

model errors.

• Power spectrum estimates not only suggest when a model becomes inadequate but 

they also indicate the frequency range in which the signal-to-noise ratio is high for 

identification.

• It was shown in Section 4.5 that a closed-loop system designed on the basis of models 

with unstable zeros within the closed-loop bandwidth may result in a poor signal-to- 

noise ratio for system identification when the closed-loop output error becomes 

large. This may impose limitations on the achievable accuracy in closed-loop system 

identification. (Recall the effect of the unstable zeros dependent factor discussed in 

Remark 4.5.1.)

On the other hand, consideration of the equation

<£ = ( T f - T * ) r  +
1 +  G K q

reveals that, for a given closed-loop modelling error Tg — Tq , the closed-loop output 

error can also become large from the contribution of the noise disturbance if the 

plant G has unstable zeros within the closed-loop bandwidth. This again may result in 

a poor signal-to-noise ratio for system identification.

In general, we do not not know a priori whether G has unstable zeros within the 

closed-loop bandwidth. We can only attempt to deduce this information from the
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zeros of the identified models. Specifically, let uiz be the minimum critical frequency 

corresponding to the unstable zeros of Go, simulation experience confirmed that it may 

be difficult to identify a model better than Go if Aq > u>z/ 2. It should be remarked that 

this is reminiscent of design tradeoffs discussed in [Freudenberg and Looze 1985].

• In general we should update Go if

1. both methods of model validation suggest that it is necessary to do so, and

2. Aq < (jjz / 2, where coz is the minimum critical frequency corresponding to the 

unstable zeros of Go.

We are now ready to suggest a procedure for identifying a better model. Note that in the 

frequency range where the current model Go has significant modelling errors, the signal-to- 

noise ratio of the closed-loop output error can be increased by increasing the magnitude of the 

reference input or by increasing the designed closed-loop bandwidth. If practical operation 

constraints do not allow the magnitude of the reference input to be increased, then the signal- 

to-noise ratio of the closed-loop output error can only be increased by increasing the designed 

closed-loop bandwidth. This, however, has the potential danger of causing instability in the 
actual closed-loop system if the designed closed-loop bandwidth is increased excessively. To 

avoid this danger, we shall proceed as follows:

1. Reduce the rate of increasing the designed closed-loop bandwidth Ao once the correla

tion method for model validation has invalidated Go-

2. Attempt to identify Rq (when Ao =  Aq ) as soon as the power spectrum method for 

model validation suggests that £q has a sufficiently high signal-to-noise ratio, provided 

that Aq < u z/ 2, where uiz is the minimum critical frequency corresponding to the 

unstable zeros of Go-

(a) Use the collected data to identify a set of models by experimenting with the likely 

model structures. Perform model verification on each of these models.

(b) If an identified model is found to be sufficiently accurate, accept it for the next 

stage of control design. Otherwise, increase the designed closed-loop bandwidth 

slightly, collect a new set of measurements and repeat the procedures of model 

estimation and verification.
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(c) Repeat the last two steps until a sufficiently accurate model is obtained and 

verified.

3. Terminate the iterative identification and control design procedure if Aq > o;z/2  and 

although unacceptably large, does not facilitate the identification of a better model.

4.7 Robust Performance Improvement

Now we know what can be identified and how an identified model can be validated. We have 

also indicated in Section 4.3 what we would like to identify. It is therefore logical to ask:

How does the object which we CAN identify relate to the object which we WOULD 
LIKE to identify?

The answer is that the objects are virtually the same, although it is not obvious. What 

we can identify is couched in terms of Rq, and what we would like to identify is couched 

in terms of G\. We need to connect these characterizations. In this section we shall show 

that provided that certain conditions are satisfied, the controller designed on the basis of the 

model G\ updated through an estimate of Rq can improve the performance robustness of the 

system.

Recall from equation (4.18) that just before we attempt to update the model Go through 

identifying R^, it is necessary that

\To ( ju)\2<f>r(u) >  A * | [ l  -  T£(ju)}H(juj)\2<&e(u>) , f o r w i  <  u < uj2

for a sufficiently large [i > 0. Furthermore it is also necessary that \Tq (ju)\ in the above 

inequality is mainly contributed by the phase insensitive factor before an accurate estimate 

of Rq can be obtained. This implies that in order to improve the robust performance through
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identification and re-design, it is necessary that the phase insensitive factor (which is also 

the designed complementary-sensitivity-function weighted multiplicative modelling error) 

associated with the updated model G i and the re-designed controller K® (while keeping 

Aj =  Aq) be small in the frequency range [w i,^ ]. Hence it is relevant to consider the 

magnitude of the ratio
G — G] rfiQ 

G\
G - G p rflf 

Go 1 0

in the frequency range [w 1, 0/2].

Before the main results are presented in Theorems 4.7.2 and 4.7.3, we shall state a result 

(which follows directly from the remarks for stable plant after Theorem 3.3.1) that is relevant 

to the choice of the relative degree of , and establish two lemmas that will be used in the 

proof of Theorem 4.7.2.

Theorem 4.7.1 Let the controller K q and the proper stable transfer function Qq designed 

by the IMC method described in Section 4.2, then the relative degree of

Rf  = G - G o
1 +  Qo (G — Go)

is given by

rel deg{Rq} =min(rel deg{G}, rel deg{Go)) .

Remark 4.7.1 The relative degree of the strictly proper plant G is usually unknown. It is 

therefore necessary to allow, in the identification of R q , the relative degree of R q to take the 

smallest possible value of one.

It is easy to establish the following:

Lemma 4.7.1 Suppose that Go has relative degree n > 1, and Qq = [Go\m[FQ , where 

[Go]m is the minimum phase factor of Go, and

4
s +  Aq

n + 1

F f  r o , \ q >
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Let Rq have relative degree q > 1 and let G\ he updated according to

G { = G0 +
l - Q o « o

then

1. G i has a relative degree k, where

k >  n ; if q =  n , and
k = min(n, q) ; otherwise ,

2. by using the I MC filter

F? 4
s -f- \ l

Jb+l

A6 > 0  ,

Q? =  [G-i]m! F® will have the same relative degree as Qq,

3. if, in additional to the above conditions, G\ has no zeros on the imaginary axis and Go 

has no poles on the imaginary axis, then Q®/Qq is bounded on the imaginary axis. In 

particular, there exists a finite 6 such that

=  6
Qo(jv)

sup
a>i

Remark 4.7.2 Result 1 in Lemma 4.7.1 indicates that we have some control over the relative 

degree of G\ through choosing the relative degree of Rq in identification.

Remark 4.7.3 Although Lemma 4.7.1 is stated for the case where Qq and Q® have relative 

degree one, it can be seen easily that similar results for cases where Qq and Q? are bi-proper, 

or have relative degree larger than one, can be established.

Remark 4.7.4 It will be clear from Theorem 4.7.2 that it is undesirable for 6 to become 

excessively large.

Remark 4.7.5 Since all poles of Go that are also poles of G are always retained by a well 

identified Gi, it is clear that poles of Go that are also poles of G, even if they are near the 

imaginary axis, will not cause 6 to assume excessively large value.
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Remark 4.7.6 Zeros of G\ near the imaginary axis for uq < u < ujj may not appear as zeros 

of Go- However these zeros would be zeros of the plant G if Gi is a well identified model of 

G for uq < lü < u 2. This would happen only if we increase the closed-loop bandwidth to the 

frequency range where the plant has (stable or unstable) zeros near the imaginary axis; and 

the controller has excessively large gain. Therefore we can prevent 8 from being excessively 

large by observing well known design guidelines.

Remark 4.7.7 If Go has poles near to the imaginary axis for < u < u>2 which are 

not poles of the plant G, then a well identified model G\ for G will either have no poles 

at these locations or will have approximate pole zero cancellations at these locations. In 

these situations, 8 may become excessively large. It is therefore important to verify that an 

identified model (such as Go) has no unnecessary poles near the imaginary axis.

Lemma 4.7.2 If Go and G\ are stable strictly proper models of the plant G, and Tq =  GqQq 

is the closed-loop transfer function, where Qq is designed by the IMC method, then there 

exist a finite p such that

Clearly the transfer function G\ — Go is proper and stable. Also from the facts that

Proof

T q — GoQq, and the Q q designed by the IMC method is proper and stable, it is easy to 

conclude that

is proper and stable. Hence

is bounded on the imaginary axis and there exist a finite p such that

□
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Remark 4.7.8 It will be clear from Theorem 4.7.2 that it is undesirable for rj to become 

excessively large.

Remark 4.7.9 r\ may become excessively large if G i has poles near the imaginary axis for 

u\ < to < UJ2 which are not poles of Go, and if Aq is very near to the critical frequencies of 

these poles. However this is impossible because if Gi is a well identified model of the plant 

G, then G would have poles near to ± j  Aq which are not poles of Go- Under these conditions, 

the actual closed-loop system Tq would be unstable or almost unstable. Furthermore, Xq 

cannot be close to the zeros of Go near the imaginary axis for u\ < u < U2 because this 

will result in a controller with an excessively large gain in that frequency range. Hence by 

ensuring that the actual closed-loop system Tq is far from instability (recall the guidelines 

given at the end of Section 4.6.3) and by observing well known controller design guidelines, 

we automatically prevent 77 from taking excessively large values.

Theorem 4.7.2 Let Go be a stable strictly proper model for the plant G. Suppose that 

G is stabilized by the controller K q designed according to the IMC method described in 

Section 4.2 and hence has the description

G G 0 + 4
1 - q&H

(4.21)

where

Qo = [GoL'itf (4-22)

and

[Go]m — minimum-phase factor of Go-

Let G\ be a stable strictly proper model for G updated according to

G\ Go 4-
1 -  QqRq

where R q is an estimate o f R fo-

(4.23)

Suppose that

1. K® is designed according to the IMC method with Aj =  Aq , and
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2. conditions set out in Lemma 4.7.1 is satisfied,

then, for each uj in [ a such that R q ( j u j )  /  0,

[" G(jui) — Go(juj)  I rjif  /  • >

L G o M  J  i 0
I  < n i  +  vY

R f0{juj) -  R f0(ju)

R ;o (jw)

where
6 sup

a»i <u><<̂ 2 QoÜ“ )

Proof

See Appendix F. □

From Theorem 4.7.2 we observe immediately that if

%  ~ Rp ^  1
Rq 62{l +  r])2

in the frequency range [w 1 , 0 2̂ ], then the phase insensitive factor associated with G\ and 

will be much smaller in magnitude than that associated with Go and Tq in the same frequency 

range. We shall now prove a stronger result.

Theorem 4.7.3 Assume that

Ro( ju)  -  R fo( j " )
2

1 ’G( ju)  -  Goijuj)' - 2

R fo(ju) 62 (1 +  77) 2 Go(ju)

for u \ < u  <  UJ2 , then the tracking error v® resulting from T® (with = \ q) designed 

the basis o f

G 1 G0 +
1 - o l H

on

has a power spectrum approximately given by

'G( ju)  -  G i ( j u ) ' 
G\(ju>) f?Uu) 1 -TfOuO

for < u  < UJ2 -



122 Chapter 4. Some Key Issues in Iterative Identification and Control Design

Proof

See Appendix G. □

Theorems 4.7.2 and 4.7.3 together show that if the phase insensitive factor associated 

with Gq and Tq was the main reason for poor robust performance, then the pair G i and Tf, 

with a much smaller magnitude of phase insensitive factor, will attain a much better robust 

performance if G\ has no unstable zeros in the pass band of f f .  We therefore have the 

following conclusion, which should be read in conjunction with conclusions C7 and C9:

CIO If  a practically unbiased estimate R q for Rq with a sufficiently small normalized

variance can be obtained over the frequency range < u> < u>2 , with R q and G\ satisfying

the constraints stated in Lemmas 4.7.1 and 4.7.2, then it is possible to achieve robust perfor

mance improvement through controller re-design if the unstable zeros of G \ are outside the 

designed closed-loop passband.

4.8 Simulation Results

In this section, we first outline the iterative identification and design algorithm which incor

porates the model validations steps that we have discussed. We then show by a simulation 

example that, through the iterative identification and control design approach, it is possible 

to increase the bandwidth of a closed-loop system to its fundamental limits imposed by the 

unstable zeros of the plant, despite that the initial model has significant modelling errors 

in the high frequency region. In the process, we illustrate how the methods and procedure 

recommended in Section 4.6 can be applied.

The modified iterative algorithm is as follows:
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Step 1:

Set G , =  Go, where Go is the transfer function of an initial stable model of the 

stable plant.

Step 2:

Factorize G t as G t =  [Gl]rn[Gl]a, where [Gi\m is the minimum-phase factor of 

G t with a relative degree n, and [Gt]a is the all pass factor of Gt.

Step 3:

For j  = 0, find Kj  = Q\ / ( 1 - GlQ \), with Q\ =  [G i]™1 F \ , where the parameter 

\ \  in the transfer function

F-7
s +

n + l

is chosen such that the closed-loop system has robust stability.

Step 4:

Perform model validation on the existing model by the time domain method 
f

(with R t = 0 and =  1) and the frequency domain method. If the existing 

model is validated by both model validation methods, the closed-loop system has 

robust performance. Stop here if the closed-loop system also meets the specified 

bandwidth. Otherwise, proceed to the next step.

Step 5:

Let j  =  j  +  1 and set Xj = X\ 1 +  e for small e >  0, and re-design the controller 

K ]{ using the equations given in Step 3. Then do one of the following:
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1. Stop here if the design produces a closed-loop system that has robust 

performance with the specified bandwidth.

2. (a) Repeat Step 5 if the closed-loop system has robust performance (by

model validation tests) but X] is smaller than the specified bandwidth, 

(b) Repeat Step 5 with a smaller e and monitor the result of the frequency 

domain model validation test carefully if the closed-loop system fails 

the time domain model validation test but passes the frequency domain 

model validation test.

3. Proceed to the next step if the closed-loop system fails both model validation 

methods. Hopefully, the signal-to-noise ratio associated with the closed- 

loop output error is sufficiently large at this stage for securing a better 

model. We assume that at this stage j  = f .

Step 6:

Perform frequency weighted open-loop system identification to obtain R t and

'Pf. For this purpose, we apply the prediction error method with the Box-

Jenkins model structure as it was described towards the end of Section 4.4.1.

The objective is to obtain the estimates and *P-, where R\ and T1 ■ satisfy

ß = R { ä  +  *Pf e. (Note that the identification of R{  and *pf includes validating 
' z f  -  f

the estimated R t and *Pj by the time domain model validation method.) This 

depends on using the signals

s +  X' 

and

/5 =  i ( l  - T / ) ( y { - G , u{),

where L is an appropriate data filter. (We actually used discrete-time samples of 

ß  and ä  and experiments with the Box-Jenkins algorithm to construct a strictly 

causal estimate for r { ).
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Step 7:

After converting the validated R{ to a continuous-time strictly proper Rt (using 

one of the discrete-time to continuous-time model conversion methods given 

in well known system identification tool boxes, like for example the System 

Identification Toolbox of M  AT LAB™ ), we update the model via

G t+1
(S +  Af)"+»[G,|mÄ,

Then do one of the following:

1. If G{+1 is stable, and if it passes the frequency domain model validation 

test2, find the reduced order model

G{+1 =  arg min v
K j _ (G,+i -  t;) 
(1 + G i+lK{)*

The order of G,+i is to be chosen such that 1 also passes the frequency 

domain model validation test.

2. If G{+1 is unstable, or if Gi+i fails the frequency domain model validation 

test, it may be necessary to increase \ {  slightly (so that the closed-loop out

put error’s signal-to-noise ratio may improve through further performance 

robustness deterioration), collect a new set of data and return to Step 6, or 

to terminate the iterative process prematurely.

Specific guidelines for carrying out Step 5 to Step 7 are given at the end 

of Section 4.6.3.

Step 8:

Set Gi = GI+i and return to Step 2.

Som etim es may have passed the time domain model validation test marginally. To be cautious, we usually
' i f

perform the frequency model validation test on G ,+i after it is computed from Rl .
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Frequency Responses of Model and Plant

Figure 4.5: Frequency response of model Go

Example

In the following, the plant involved is a simulated flexible link robot arm (only one of 

the degrees of freedom for the robot arm is considered here) whose transfer function G has 

poles at -0 .0996±j3.0017, -0 .3339±  jl2.131, -1.845 ±;31.481, zeros at 5 =  -13.162, 

-10.646 ±  j  12.27, 5 =  7.169 ±  j  11.54, and G(0) =  0.5196.

The initial model Go is an open-loop description of G up to and including its first resonant 

frequency (see Figure 4.5). Go has a pair of poles at —0.0903± j  3.0027, azeroats =  —13.31, 

and Go(0) =  0.5188. We would like to achieve, by iterative identification and control design, 

a closed-loop system with a bandwidth that is as large as possible and has approximately 

unity gain in the passband.

We start by designing controllers (using the IMC method) on the basis of Go such 

the designed closed-loop bandwidth is increased progressively. Performance robustness of 

the closed-loop system is monitored carefully while the designed closed-loop bandwidth 

increases. When the designed closed-loop bandwidth is increased to 1.5 rad/s, the method 

of correlations (see Figure 4.6) shows that Go is not a good model of G whereas the method 

of power spectra (compare Figure 4.7 and Figure 4.8) shows that the tracking error is still 

insignificant. In fact, we are unable to identify a better model than Go at this stage. This
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Cross corr. function between input and residual
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Figure 4.6: Validating Go (Aq =  1.5 rad/s)
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Figure 4.7: >̂w(a;) when Ao is 1.5rad/s

is not surprising because, although we have a large number (4000 pairs) of input-output 

data, comparison of Figure 4.7 (power spectrum of noise disturbance) and Figure 4.8 (power 

spectrum of signal plus noise disturbance) indicates that the signal-to-noise ratio of the closed- 

loop output error is negligible3. However, as it was suggested at the end of Section 4.6.3, the 

rate of increasing the designed closed-loop bandwidth is reduced at this stage.

When the designed closed-loop bandwidth has reached 3 rad/s, the method of correlations 

(see Figure 4.9) and the method of power spectra (compare Figure 4.10 and Figure 4.11) both 

indicate that Go is not a good model. In particular, comparison of Figure 4.10 and Figure 4.11 

indicates that the closed-loop output error has a high signal-to-noise ratio at around 12 rad/s.

^Recall from conclusion C7 that we have to pay a price, in terms of deterioration in robust performance, for a 
high signal-to-noise ratio in the closed-loop output error
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Figure 4.8: <J>̂ (u;) when Aq is 1.5rad/s
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Figure 4.9: Validating Go (Aq =  3 rad/s)

To identify R q , we use Box-Jenkins method instead of output error method because we now

have methods for model validation and hence can take advantage of the more general noise

model in Box-Jenkins method. We use a low-pass data filter with a bandwidth of 12/,rad/s.
' z f  -  f

A fourth order model structure for R0 and a fifth order noise model structure for T'q are
r ,selected by setting Nn= [45541]. The identified R q and T'q are validated by the method of 

correlations (see Figure 4.12) before R0 is used to update the model. The results are

J f  _  (  3.5508s3 -  10.4014s2 \  /  /  s4 + 8.5368s3 +  1120.6515s2 \  
o ~  ^ -440.1311 +  198.1459 )  /  \  +1586.672s 4- 133700.08 J  ’

/ 1.249s5 +  16.7129s4 \ 1 / s6 +8.7174s5 +  1131.217s4 \
-164.619s3 -  2601.482s2 / + 1866.101s3 +  144099.841s2

V +5045.107s +2783.073 ) / V + 38465s +  1206563 /
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Figure 4.12: Validating R 0 and T 'q (A q =  3 rad/s)

and

Gi
(  1.6007s6 +  29.2s5 +  331.5s4 

+3895.31s3 +  60854.9s2 
v +794905.8s +  1877894.7

s7 +  11.72s6 +  1125.41s5 \  
5347.59s4 +  153387.8s3 

+470541.4s2 +  1357383.2s 
+36035.7

After performing frequency weighted model reduction, we obtain

Gi
/  1.6008s5 +  24.534s4 \

+259.96S3 +  3137.56s2 
 ̂ +51707.2s +  644176.2 }

/  s6 +  8.8023s5 +  1099.75s4 \  
+2141.62s3 +  147144.93s2 

 ̂ +41588.1 Is +  1236149.5 y

After the resulting G\ is validated by the method of power spectra (compare Figure 4.13 

and Figure 4.10), we set G i =  ö i  before the iteration is continued. This Gi has poles at s =  

—0.0903±  j  3.0027, -0 .3 8 3 6 ± j 12.08, -3 .9272ij30 .36 , zeros a t-13.31, -7 .8 0 9 ± j 10.94, 

6.801 ±  j  11.003, and Gi(0) =  0.5211. Figure 4.14 shows the frequency response of Gj. 

Using G i, it is possible to increase the designed closed-loop bandwidth to 12 rad/s before 

it is necessary to identify a better model. At this stage, the method of correlations (see 

Figure 4.15) and the method of power spectra (compare Figure 4.16 and Figure 4.17) both 

indicate that G i is not a good model. At this stage, the iterative identification and control 

design process has to be terminated because we are unable to identify a better model despite 

considerable efforts and numerous attempts.
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Remark 4.8.1 Notice that the designed closed-loop bandwidth (12 rad/s) is close to the 

critical frequency corresponding to the unstable zeros of G\ (at s = 9.098 ±  j  12.07) and G 
(at s = 7 .169± j  11.54). From the view point of control design, it follows from [Freudenberg 

and Looze 1985] that, due to the unstable zeros of G i and G, both the designed and the actual 

closed-loop systems have reached their fundamental performance limitations (hence it is not 

a premature termination of iteration). This simulation example clearly demonstrated that, for 

this iterative identification and control design methodology, good control performance and 

good identified models go hand in hand.

4.9 Summary

We have examined in this chapter a number of crucial questions which arise in the iterative 

identification and control design approach for the case of stable plants with no zeros on the 

imaginary axis. Among the issues that we have clarified are:

• When can one re-design the controller and expand the closed-loop bandwidth, without 

re-identifying?
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• When should one re-identify?

• What does one want to identify in the re-identification procedure?

• What can one identify in the re-identification procedure?

In order to check whether an identified model is actually good for our purpose, we have 

presented two methods for validating an identified model experimentally before it is employed 

in controller re-design.

The main conclusion of this chapter is that, given a stable strictly proper model of a stable 

strictly proper plant, it is possible to improve the robust performance of a closed-loop system 

through the iterative identification and control design approach if

• the deterioration in performance robustness caused by increasing the closed-loop band

width is mainly contributed by the phase insensitive factor,

• the deterioration in performance robustness caused by increasing the closed-loop band

width resulted in a sufficiently high signal-to-noise ratio associated with the closed-loop 

output error, and

• the designed closed-loop bandwidth has not approached the minimum critical frequency 

corresponding to the unstable zeros of the plant or the existing model.



Chapter 5

Iterative Identification and Control 
Design for Unstable Plants

In this chapter we shall extend the applications of iterative identification and control design 

to unstable plants. We show that by employing a two step approach, where an unstable plant 

is first stabilized by a parallel feedback compensator, it is possible to design systematically 
an overall closed-loop system that has good step responses with little overshoots by using the 

iterative identification and control design methodology. Furthermore, this approach easily 

preserves the simplicity in designing the IMC filter and tuning the overall designed closed- 

loop bandwidth with a single design parameter. Specifically, similar to situations where the 

plant is stable or is Type 1 stable, we can design a system with a small initial overall designed 

closed-loop bandwidth (after the plant is stabilized by a known parallel feedback compensator) 

such that high frequency unmodelled dynamics of the plant are not overly excited. Through 

iterative applications of a control-relevant closed-loop system identification procedure and 

the standard EMC design method (discussed in Chapters 3 and 4) to the stabilized plant, 

the overall designed closed-loop bandwidth of the system can be widened progressively 

while maintaining good step responses with little overshoot. Two examples are employed to 

illustrate the method.

135
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5.1 Introduction

It has been shown in the last two chapters that the IMC method [Morari and Zafiriou 1989] is 

a simple and effective technique for designing the underlying control law in a new approach 

of iterative identification and control design when the plant is stable or is Type 1 stable. 

The control objective is to design a closed-loop system with a specified (or as large as 

possible) bandwidth in the face of model uncertainties. In essence the approach starts with 

designing a controller such that the designed closed-loop system has a small bandwidth. The 

performance of the corresponding actual closed-loop system for a step reference input is 

monitored through closed-loop model validation methods discussed in Section 4.6. If the 

performance robustness of the closed-loop system is confirmed and if the designed closed- 

loop bandwidth is smaller than the specified one, a new controller will be designed such that 

it results in an increase of the designed closed-loop bandwidth. It is obvious that, in this 

connection, it is desirable to have a single design parameter which can be interpreted as the 

designed closed-loop bandwidth. In the case of stable plants, the IMC method is found to 

have the desirable attribute that we have just mentioned. Specifically, the bandwidth of the 

designed closed-loop system is given by the bandwidth of a simple IMC filter with a single 
design parameter (see Remark 3.2.5 and [Morari and Zafiriou 1989]). However, if the plant 

is unstable, the aforementioned single design parameter can no longer be interpreted as the 

designed closed-loop bandwidth even if the plant does not have unstable zeros. This poses 

a problem if the IMC method is to be used in the iterative identification and control design 

method when the plant is unstable. Motivated by the problems discussed above, Campi et al. 

[1994] have studied the design of a new filter when the IMC method is applied to situations 

where the plant involved has no unstable zeros and has one or two unstable poles.

Although the IMC filter design proposed by Campi et al. [1994] resulted in improved 

step responses for the IMC filter, it requires the tuning of two parameters to achieve a spec

ified designed closed-loop bandwidth and tradeoff between the magnitude of the inevitable 

overshoot and the recovery time (after the overshoot has occurred) in the step response. Fur

thermore it will be shown later that, if the model has unstable poles and zeros, unstable zeros 

at undesirable locations and different from those of the model may be introduced into the 

controller by the one step iterative identification and control design approach where, in an 

attempt to apply the iterative identification and control design approach directly to unstable 

plants, the EMC design method [Morari and Zafiriou 1989, Campi et al. 1994] is employed
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Figure 5.1: Closed-loop system structure for the two step approach 

to design controllers directly for unstable plants.

It is well known [Freudenberg and Looze 1985] that open-loop unstable zeros impose a 

fundamental limit on closed-loop control performance. It is therefore important that control 

design methods do not introduce unnecessary performance limiting open-loop unstable zeros 

through the controllers. Furthermore it was also indicated in Section 4.5 that unstable zeros 

in the designed closed-loop transfer function may hinder closed-loop system identification. 

Hence the precaution that we have just mentioned has special significance in iterative iden

tification and control design procedures, like the one that we are considering, which attempt 

to improve the closed-loop performance over an extended frequency range.

In this chapter we study a two step iterative identification and control design approach 

when the plant is unstable. The resulting overall closed-loop system will take the structure 

depicted in Figure 5.1, where r is the reference input and e is the unknown noise disturbance. 

The objective is to increase the overall closed-loop bandwidth progressively while good step 

responses are maintained. In the first step, the unstable plant P  is stabilized by a parallel 

feedback compensator C. Thus even if P  is imperfectly known, sufficient must be known 

about it to allow solution of a C. Typically this means having a good model for P  at least
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over a frequency band including the instability. In the second step, we apply the iterative 

identification and control design procedure to the stabilized plant G =  P/(  1 +  CP).  That 

is, a sequence of series controllers, {K{ ; j  = 0,1,2, • • •} is designed on the basis of a 

sequence of improving stable models, {Gt ; i = 0,1,2, • • •}, obtained by identifying the 

stabilized plant G. Since the IMC design method is employed only in the second step, 

where controllers are designed on the basis of stable models for a stabilized plant G , the two 

step iterative identification and control design approach completely avoids the problems that 

plague the one step control design approach.

Remark 5.1.1 Observe that it is necessary to perform the first step, where C is designed to 

stabilize P, once only.

Remark 5.1.2 Observe that when the plant is stable, it is not necessary to design C and we 

proceed immediately to the second step. This is similar to the situation where someone else 

has stabilized an unstable plant P  before giving us the stabilized plant G. Note that in the 

latter situation we may not be told about the stabilization method, and hence will have no 

knowledge of, for example, the stabilizing compensator C. In either of the above situations, 

we would have performed the second step of the two step iterative identification and control 

design approach exactly as it was described in Chapters 3 and 4.

Remark 5.1.3 Observe that in the second step, we are applying the iterative identification 

and control design procedure to the stabilized plant depicted in Figure 5.2. It does not matter 

whether C  is designed by us or by someone else, we can start the iterative identification and 

design phase (by designing K q) as long as we are given a reasonable stable initial model Go 

of the stabilized plant G. Note that this is equivalent to the situation where

y = Gu -F He ,

with
C p

1 + C P
and

H = H  i
1 +  C P

We note from Figures 5.1 and 5.2 that, since the noise disturbance e cannot affect the 

input to the stabilized plant u\ (which is not the input ü\ of the unstable plant) before the
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Figure 5.2: Stabilized plant before starting the iterative phase

major loop is closed by cascading G and K{,  Hansen’s approach [Hansen 1989] can be 

applied to transform the closed-loop identification of G into a frequency weighted open-loop 

identification problem1 as described in Chapters 3 and 4.

Remark 5.1.4 The fundamental limits imposed by the plant’s unstable poles on the area 

under the logarithmic magnitude of the sensitivity function are well known [Freudenberg and 

Looze 1985]. We shall not engage ourselves into more detail discussions on these issues 

other than to recognize the possibility that, in the process of stabilizing an unstable plant, the 

effects of noise disturbance at the plant output may be accentuated and hence may cause the 

problem of identifying G to become more difficult. This effect will depend on the choice 

of C, and will be studied elsewhere. However, it is important to emphasize that this is, 

in principle, a different issue from the legitimacy of applying Hansen’s method. That is, 

stabilization of P  by C (in the first design step) does not preclude the application of Hansen’s 

method to transform the closed-loop identification of G (in the second design step) into an 

open-loop system identification problem, which involved only the signals u\ (t), y\ (t), and 

r(t) (but not the ü\ (t) that is within the minor loop formed by P  and C).

This chapter is structured as follows. In Section 5.2 we discuss difficulties related to the 

one step design approach when the plant is unstable. A two step iterative identification and 

control design approach for overcoming these difficulties is presented in Section 5.3. Two

'This is possible because it involves only the signals u\(t)  and yl(t)  that are outside the minor loop formed 
by P  and C,  and does not involve the signal ü? (t ) that is inside the minor loop.
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simulation examples are given in Section 5.4. We conclude and highlight two important 

future research problems in Section 5.5.

5.2 One Step Control Design Approach for Unstable Plants

In Section 5.2.1 we highlight the key features of the one step iterative identification and 

control design approach, where the IMC design method is employed to design controllers 

directly for unstable plants [Morari and Zafiriou 1989, Campi et al. 1994]. In Section 5.2.2 

we show by simple examples that there are some problems when the one step design approach 

is applied to unstable plants.

5.2.1 Outline of The One Step Control Design Approach

In this subsection we briefly outline robust control design methods described in [Morari and 

Zafiriou 1989] and [Campi et al. 1994], where the IMC design method is employed to design 

controllers for unstable plants directly. To differentiate these methods from those where the 

unstable plant is first stabilized by a compensator before a performance-oriented controller is 

designed for the stabilized plant (like for example, the method to be discussed in Section 5.3), 

we shall call any such method a one step control design approach.

In the one step approach we are concerned with the design of a series controller, K,  

situated within a control loop which involves a partially known (not necessarily stable) plant 

P. Let P  be a model of the plant P. The controller K  is parametrized in terms of a stable 

transfer function Q as shown in the IMC structure given in figure 5.3. We notice from 

Figure 5.3 that designing the controller

K Q
1 - P Q

(5.1)

is equivalent to designing its parametrization Q. The associated designed closed-loop transfer 

function is easily evaluated as T  — PQ.

Remark 5.2.1 Note that in the IMC design method, not only Q has to be stable, but it is also 

necessary that (1 -  PQ )P  is stable. It is proved in [Morari and Zafiriou 1989] that these
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Figure 5.3: Internal model control structure

conditions ensure that the controller K  defined by equation (5.1) results in a stable designed 

closed-loop system.

Since the plant P  is only partially known in terms of its model P , any practical design 
method must take into account the discrepancies between P  and P. In the IMC design 

method, this is achieved by specializing Q as the product of two transfer functions

Q = QF  ,

such that Q and F  can be designed separately. The transfer function Q is designed with 

respect to the model P  such that, if P = P,  the objective
j'O O

\ \ r - y \ \ 2 = [r{t) -  y(t)]2dt
Jo

is minimized, where r(t) — y{t) is the error signal resulting from some known reference 

input r and unknown disturbance d. At this stage, one is not concerned with the model 

uncertainties involved in P  and/or the properness of the resulting controller as these will be 

taken care of by designing an appropriate IMC filter F.  Specifically, a strictly proper stable 

filter F  with an appropriate relative degree is employed to produce a proper or strictly proper 

Q — QF.  Furthermore it can be shown that, when the generalized input, v(t) =  r(t) -  d(t), 

is a step function and if Q is designed by a method to be described shortly (in Theorem 5.2.1), 

the gain magnitude of the designed closed-loop transfer function (which is also the designed 

complementary-sensitivity function) is given by that of F. If the unknown but bounded
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multiplicative model uncertainties are sufficiently small in the low frequency range (where 

the controller must have sufficiently large gain for the stabilization of P), we can secure robust 

stability of the closed-loop system by specifying an appropriate bandwidth for F (which has 

to be smaller than the frequencies where the effect of the multiplicative unstructured model 

uncertainties is significant).

Remark 5.2.2 It is important to emphasize that we have assumed that the unknown but 

bounded multiplicative unstructured model uncertainties are sufficiently small in the fre

quency range where the controller must have sufficiently large gain magnitude for the stabi

lization of P. Otherwise, it is impossible to find an appropriate bandwidth for F  such that P 

and P  are stabilized simultaneously.

Remark 5.2.3 When the uncertainties of the plant P  permit its poles to migrate across the 

joj-axis, IP ~ l (ju)[P(juj) -  P (ju )]T (ju )\ would be unbounded when the poles of P  are 

on the ju - axis. In this situation, we cannot ensure that using the IMC design method (which 

relies on the sufficient condition for robust stability, namely ||P -1 [P — PjTHoo < 1) results 

in a closed-loop system with robust stability.

A general result related to the design of controllers by the IMC method was given in 

Theorem 2.5.1. We summarize the facts we need for the subsequent discussions in the next 

theorem. Note that because the discussions in this chapter involve an unstable plant, the 

corresponding stabilized plant, and their respective models, we have adopted a system of 

notations slightly different from that of the previous chapters. Specifically, we use P  and 

P  to denote the unstable plant and its model; G and Gt are reserved, respectively, for the 

stabilized plant and the Ith model of the stabilized plant.

Theorem 5.2.1 With reference to Figure 5.3, suppose that P  has no poles on the imaginary 

axis, except those at the origin, and has no zeros on the imaginary axis. Let P  have k poles, 

p i , . . .  ,pk, in the open right-half plane and a pole of multiplicity l at the origin. Assume 

that the collection o f open right-half plane poles in the Laplace transform of the generalized 

input, v{t) =  r ( t ) — d(t), is a subset o f {pi , . . .  ,Pk}-2 Denote these as p i , . . .  ,pj./, with

2 As noted in [Morari and Zafiriou 1989], this assumption is necessary to make a well posed problem.
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0 < k' < k. Furthermore assume that v(s) has at least l poles at the origin.3

Define
k

b p =n
i — 1

P i  -  S  

p* +  s ’
(5.2)

and factor P  into an all pass factor Pa (which contains all the zeros of P  in the open right- 

half plane) and a minimum-phase factor Pm (which includes all the poles of P  in the open 

right-half plane and at the origin) such that

P(S) =  Pm(s)Pa(s) .

Similarly, define

and factor i/(s) such that

I'M = I'mM^M i

(5.3)

where um(s) is a minimum-phase factor that includes all the poles of v(s) in the open right- 

half plane and at the origin, and ua(s) is an all pass factor that contains all the zeros of 

u(s) in the open right-half plane. Then the controller parametrization Q which minimizes 

the objective

-  y II / H<) -  y(t)]2dt
l r° 

2 W _ <
K jw ) -  y( j u) \ 2duj =  (1 -  PQ) v

is given by

Q = B  p(Pm B vVm) 1 | ( B p P a) 1 B u i/m I ̂  (5.4)

where the operator {•}* denotes that after a partial fraction expansion of the operand all 

terms involving the poles of P f 1 are omitted.

It was shown in [Campi et al. 1994] that, when the model is unstable, the standard design 

of the IMC filter F described in Theorem 2.5.1 (which is discussed in detail by Morari and 

Zafiriou [1989]) will lead to an IMC filter that has very large overshoot in the IMC filter’s 

step response. Since the design closed-loop transfer function can be shown to have the form

T  =  FPaQ nm ,

3As noted in [Morari and Zafiriou 1989], this assumption is necessary for the closed-loop system to handle 
plant input disturbances whose Laplace transform may have poles at the origin.
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where F  is the IMC filter, Pa is the all pass factor of the model P, and Qnm is a non-minimum 

phase transfer function that depends on the unstable poles and unstable zeros of P, we could 

expect the transient response of the design closed-loop system to be at least as bad as that 

of the IMC filter. (Unstable zeros of P  and Q nTn  may introduce extra phase lag into the the 

design closed-loop transfer function, for which F  is one of the factors. This may cause the 

step response of the designed closed-loop transfer function to have even bigger overshoot 

than that of F.) Furthermore, the designed closed-loop bandwidth is no longer directly 

specified by the single design parameter of the standard IMC filter. These facts will cause 

difficulties in the use of the IMC design method in the iterative identification and control 

design approach where it is desirable that the designed closed-loop system has step response 

with little overshoot and there is a single design parameter that specifies directly the designed 

closed-loop bandwidth.

A new method for designing the IMC filter that can alleviate these difficulties was 

proposed by Campi et al. [1994]. However, it should be noted that the new IMC filter 

suggested by Campi et al. [1994] requires an additional design parameter (other than the 

one for specifying the designed closed-loop bandwidth) to tradeoff the magnitude of the 
overshoot and the recovery time after the overshoot has occurred in the step response of the 

IMC filter. Furthermore, the IMC filter design method described assumed for the analysis 

that the unstable plant and its model have no unstable zeros.

We shall show by an example in Section 5.2.2 that, when the model has unstable real 

poles and zeros, controllers designed by the one step design approach (using either of the IMC 

filter design methods in [Morari and Zafiriou 1989] or [Campi et al. 1994]) may introduce 

unstable zeros (other than those of the model) into the key transfer functions of the designed 

closed-loop systems. These additional unstable zeros may impose unnecessary limitations 

on the closed-loop performance achievable through the iterative identification and control 

design methodology.

Remark 5.2.4 We shall see in Section 5.2.2 that the above difficulty will not occur when the 

unstable model has no finite unstable zeros.

However, this is still not the main problem with the one step design approach. More 

strikingly, we shall show by a second example that, even in the absence of unstable zeros
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in the model P, step responses of the closed-loop system designed by the one step design 

approach for unstable models can have unacceptably large overshoot when the designed 

closed-loop bandwidth is limited by the presence of high frequency unmodelled dynamics.

5.2.2 Difficulties with The One Step Design Approach

We first show by using a simple example that, when the model P has unstable poles and 

zeros, unstable zeros other than those of the model may be introduced into some performance 

deciding transfer functions designed by the one step control design approach described in 

[Morari and Zafiriou 1989] and [Campi et al. 1994].

Consider an unstable model with the transfer function

- s — 1
(s +  0.5)(s — 2) ‘

According to the procedure outlined in Section 5.2.1, we first calculate

Q -  Bp(PmB uum) \^(BpPa) 1 BuVm,^^ ,

which gives, for a step reference input,

(s +  0.5)(s — 2)(7s — 2)
Q (s +  l)(s  -I- 2)

We can write Q as

where

Q —  Pm Qnm >

p  —-*■ m .  —

s -I- 1
(s +  0.5)(s — 2)

is the minimum-phase factor of P, and

Qy
I s - 2  
s -(- 2

is a non-minimum-phase factor resulting from the {•}* operation.

Note that the non-minimum-phase factor Qnm has a gain magnitude greater than one 

for all frequencies and has a phase lag approaching 2-7r for high frequencies. Furthermore, 

irrespective of the method by which the EMC filter is designed, the unstable zeros of Qnm
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must appear as the unstable zero of Q = QF, K  — Q/{  1 — P Q ), the designed open-loop 

transfer function L = K P ,  and the designed closed-loop transfer function T = FQnmPa. 

This implies that, even though the IMC filter proposed by Campi et al. [1994] provides good 

step response, the designed closed-loop system may have small stability margins and will 

have poor transient response if the designed closed-loop bandwidth is comparable or larger 

than 2/7 rad/s (corresponding to the unstable zero in Qnm)■

Remark 5.2.5 Fundamental limits imposed by open-loop unstable zeros on closed-loop 

performance are well known [Freudenberg and Looze 1985]. They are also discussed in, for 

example, [Doyle et al. 1992] and [Middleton and Goodwin 1990].

Remark 5.2.6 It was indicated in Section 4.5 (where Qnm can be treated as unity) that the 

undesirable phase lag of the all pass factor Pa may hinder closed-loop system identification 

through increasing the designed sensitivity function in the designed closed-loop bandwidth. 

By comparing the frequency characteristics of Qnm and Pa in the above example, we observe 

that Qnm could have more adverse effects than Pa on closed-loop system identification.

Remark 5.2.7 For the above reasons, it is important that factors like Qnm (especially those 

that have zeros nearer to the origin than the unstable zeros of the model) are not introduced 

unnecessarily into the designed closed-loop transfer function.

It should be observed that the additional unstable zero in Q comes from the operation {•}* 

when the model has unstable poles and zeros. In general, consider the situation where the 

model has an unstable real pole at s = p\ p > 0, and an unstable real zero at s = z\ z > 0. 

It can be shown easily that, for a step input, we have

f /  Ä +  p W  s +  z \  n  _  z +  3p ' - s  +  z* '
\  V - s  +  p )  \ — s  +  z j  s / *  p - z  U ( - s + p ) J

with the zero at
PiP ~ z )z* =  ----------- .
z + 3p

Therefore this zero is unstable if p > z . Note that for the purpose of increasing the closed-loop 

bandwidth, the unstable zero at z* may impose limitations more severe than those imposed
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by the unstable zero of the model a ts  =  z i f 0 < 2* < z  [Middleton and Goodwin 1990]. 

Simple algebra shows that 0 <  2* <  2 occurs when -  2 <  z /p  < 1.

The above analysis suggests that the problem of introducing an additional unstable zero 

into the key transfer functions of the closed-loop system exists when the operation {•}* 

is performed on a model with a certain distribution of unstable real poles and zeros. We 

can overcome this problem if the operation {•}* is performed only on stable models. This 

prompted us to study, in Section 5.3, a two step control design approach where the standard 

IMC design method is applied to design series controllers (on the basis of stable models) 

after an unstable plant is stabilized by a parallel feedback compensator.

We shall now present an example which is representative of a more practical situation 

than the previous one. The forthcoming example shows that, even in benign situations where 

the unstable model has no unstable zeros, step responses of the closed-loop system designed 

by the one step design approach can have unacceptably large overshoot when the designed 

closed-loop bandwidth is limited by the presence of high frequency unmodelled dynamics.

Consider the model

P(s) 0.1
—s +  0.1

of an unstable plant

p (s ) - ______Q 'lf i-Z 4 )_______
(s — 0 .1 )(s2 +  0.2s +  4)

We shall design the controller K  (refer to Figure 5.3) by the one step design approach. In 

particular we shall design the IMC filter by the method proposed in [Campi et al. 1994], which 

will result in an IMC filter with better characteristics than those designed by the method of 

[Morari and Zafiriou 1989],

By using the method given in Theorem 5.2.1, we can calculate on the basis of P,
- s  + a i  

v  0.1

According to the guidelines given in [Campi et al. 1994], in order for Q = Q F  to be strictly 

proper, the IMC filter for this example should take the form

F M  = _______ ^(5+a>_______ .
(s +  7  )(s  +  A)(s +  10A)

Furthermore, the designed closed-loop transfer function will, in view of the minimum-phase 

property of P, be identical with F(s).  There are two tuning parameters A and 7 in this filter.
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The constants p and a are determined from the two interpolation constraints: F(p)  =  1, 

where p =  0.1 is the unstable pole of P,  and F( 0) =  1 for a step reference input. The salient 

features of this IMC filter is as follows:

1. The bandwidth of this IMC filter is specified by A.

2. The step response of this filter always has an overshoot. The magnitude of the overshoot 

reduces monotonically for increasing A.

3. The resonance peak in the frequency response of F  can be made small by requiring 

7 <  p <  A, Decreasing the resonance peak in the frequency response of F  will 

help to improve the stability robustness of the closed-loop system to high frequency 

unmodelled dynamics.

4. Although we can decrease the resonance peak in the frequency response by decreasing 

7 , the time to recovery after an overshoot has occurred in the step response of F 

increases monotonically for decreasing 7 . Furthermore, the settling time of the step 

response is determined predominantly by 7 , and can be estimated as 5 /7  seconds. 

A compromise in choosing a value for 7 is therefore necessary. This can usually be 

achieved for some 7 G [0.02A , 0.2A].

In order to keep the overshoot in the step response of the closed-loop system to not 

more than 10% of the magnitude of the step input, we attempt to design F  for A =  5p (see 

[Middleton and Goodwin 1990] for a discussion of this choice). We have discovered that it 

is impossible to design K  for this choice of A =  0.5 such that P  is stabilized (note that P  is 

always stabilized by K). After searching over the two dimensional parameter space of A and 

7 , we found the following partition of the parameter space:

A < 0.26 7 G [0.02A , 0.2A]
A =  0.26 7 G [0.02A , 0.12A]
A =  0.26 7 G (0.12A , 0.2A]
A > 0.26 7 G [0.02A , 0.2A]

P  is stabilized by K  
P  is stabilized by K  
P  is destabilized by K  
P  is destabilized by K

When P  and P  are controlled by K  (designed for A =  0.26 to give minimum possible 

overshoot), the step responses are shown in Figure 5.4 to Figure 5.7. Observe that each of the 

designed step responses (Figures 5.4 and 5.5) has overshoot of about 40%. Furthermore, the 

actual step responses (Figures 5.6 and 5.7) clearly demonstrate that the closed-loop system 

resulting from the one step design approach is highly sensitive to high frequency unmodelled
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Figure 5.4: Designed closed-loop system response for a square wave input (A =  0.26, 
7 = 0.0052)

Figure 5.5: Designed closed-loop system response for a square wave input (A =  0.26, 
7 =  0.0312)
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Figure 5.6: Actual closed-loop system response for a square wave input (A =  0.26, 7 =  
0.0052)
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Figure 5.7: Actual closed-loop system response for a square wave input (A =  0.26, 7 =  
0.0312)
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dynamics even when A is well below 0.5 (the value of A that is expected to keep the overshoot 

of the designed step response to within 10%).

Remark 5.2.8 The last example clearly demonstrated that, when a controller is designed for 

an unstable plant by the one step approach, the limitation imposed on the closed-loop band

width by (relatively mild) high frequency unmodelled dynamics can prevent the overshoot 

from becoming acceptably small (say 10%).

By using the above plant and model, we will demonstrate in Section 5.4 that a two step 

control design approach (to be described in Section 5.3) can give better results.

5.3 A Two Step Iterative Identification and Control Design Ap
proach for Unstable Plants

In Section 5.3.1 we outline a two step iterative identification and control design approach 
for unstable plants. Since the second step involves a direct application of the iterative 

identification and control design procedure to a stable plant or a Type 1 stable plant (or more 

exactly, a stabilized plant) as described in Chapter 3, the emphasis of Section 5.3.1 is on the 

first design step where the unstable plant is stabilized by a parallel feedback compensator. In 

Section 5.3.2 we discuss design guidelines for this stabilizer. The unstable model discussed 

in Section 5.2.2 will then be employed to illustrate the design procedure.

5.3.1 Outline of A Two Step Control Design Approach

In this subsection we shall outline a two step iterative identification and control design 

approach for unstable plants. The relevant system structure is depicted in Figure 5.1.

In the first step, we shall stabilize the unstable plant P  by a parallel feedback compensator 

C. Obviously we have to design C on the basis of an approximate, presumably unstable 

model, P, of P. For this purpose, we shall assume that P and P  have the same number 

of poles in the open right-half plane, and have no poles on the j u -axis. This assumption is
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consistent with the conditions discussed in Remarks 5.2.2 and 5.2.3. In the second step we 

employ the standard IMC design method to design a sequence of series controllers, {K\  ; j  = 

0, 1,2, • • •}, on the basis of a sequence of stable identified models, {Gt ; i = 0,1,2, • • •}, for 

the stabilized plant G = P/(  \ +  CP).  Since each of these IMC controllers is designed on 

the basis of a stable model, the two step iterative identification and control design approach 

completely avoids the problems that plague the one step control design approach.

Remark 5.3.1 The idea of a two step control design approach (namely, employing a minor 

loop to stabilize an unstable plant before the major loop that includes the stabilized plant 

is designed for achieving performance) is not new. It was suggested as early as 1957 by 

Newton,Jr. et al. [1957] and more recently, in [Callier and Desoer 1982] and [Middleton 

and Goodwin 1990]. What is new are the introduction of a pole-placement procedure (albeit 

not thoroughly studied here) that takes into account the effects of high frequency modelling 

errors in the first design step and the application of the iterative identification and control 

design procedure in the second design step.

Remark 5.3.2 The book by D’Azzo and Houpis [1988] contains extensive discussions on 

applying the two step approach to stable plants with poorly damped resonant poles (that is, 

plants with poor relative stability). In this case, the relative stability of the plant is improved 

effectively by a parallel output feedback compensator before a series controller is designed 

for the modified plant to achieve the overall closed-loop performance.

Remark 5.3.3 The sole purpose of the first step is to stabilize P  with C  (designed on the basis 

of P). It is important to emphasize that, other than for the purpose of achieving stabilization, 

it is desirable that C  has minimal adverse effects on the second design step, which is for 

achieving the overall control objective.

Remark 5.3.4 The objective of the second (or iterative identification and control) design 

step is to achieve the desired closed-loop bandwidth and good step response. This is realized 

by designing appropriate series controllers K{ (on the basis of an existing model G, for 

the stabilized plant G ) to increasing the closed-loop bandwidth progressively (in the face of 

model uncertainties) such that high frequency unmodelled dynamics are not overly excited.
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If necessary, a better model G l + 1 may be identified before the closed-loop bandwidth is 

increased further. This second design step, as it was emphasized in Section 5.1, is identical 

to the application of the iterative identification and control design procedure to a stable or a 

Type 1 stable plant discussed in Chapters 3 and 4.

Remark 5.3.5 Since only stable (or Type 1 stable) models are involved in the second design 

step, designing for good overall closed-loop step responses that have small or no overshoot 

will become easier than the case where the models involve are unstable.

As the second step of the two step control design approach is similar to the application 

of the iterative identification and control design approach to a stable plant or a Type 1 stable 

plant (or an unstable plant that has already been stabilized by someone else) discussed in 

Chapters 3 and 4, in the remainder of this subsection, we shall only concentrate on the 

discussion of the first (or stabilization) step.

We shall now briefly delineate the considerations that lead to some of the guidelines for 
designing the parallel feedback compensator C.

In the two step design approach, since we do not like the solution of the first design step 

to cause unnecessary difficulties to the second design step, we would like the solution of the 

first step (that is, the parallel feedback stabilizer) to have the following properties:

1. The introduction of the parallel feedback stabilizer does not cause the noise disturbance 

to affect the stabilized plant G more than the way it affects the unstable plant P, so that 

iterative identification and control design (in the second design step) do not become 

more difficult than they should be.

2. The introduction of the parallel feedback stabilizer does not cause model uncertainties 

to make the design of the series controller (in the second design step) a more difficult 

problem than it should be.

We shall deal with the effects of disturbance (the first point) in the following discussion. 

Considerations with respect to model uncertainties (the second point) will be discussed later.
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Figure 5.8: Parallel output feedback stabilization

With respective to Figure 5.8, we consider the simple situation where an unstable plant is

P(s)  =  —-— , a > 0 , 
s — a

and we wish to use the parallel output feedback controller

C(s) =  k

to stabilize P(s).  We assume for this discussion that the plant is perfectly known and we 

design C(s) = k on the basis of P.

The transfer function between the disturbance d and the closed-loop output y is given by

Z(s) =
s — a 

s +  k — a

and the transfer function between the disturbance d and the input to the plant ü is

L(s) =
k(s — a) 
s +  k — a

Obviously it is necessary that k > a for Z(s)  and L(s) to be stable.

Firstly we consider the transfer function Z(s).  The magnitudes of the asymptotic fre

quency responses for Z{s)  are shown in Figure 5.9 for various values of k. Observe from 

Figure 5.9 (a) that the effect of noise disturbance at the output of the plant is amplified at 

low frequencies by the introduction of the stabilizer for a < k < 2a. When the value of 

k approaches a, this noise amplification effect may become very serious. This may cause 

difficulty to the system identification process in the second design step.
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I Zl

(a) k<2a

IZI IZI

(b) k = 2a (c) k>2a

Figure 5.9: Magnitudes of \Z\ for various values of feedback gain k

I L I

(a) k<2a
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(b) k = 2a (c) k>2a

Figure 5.10: Magnitudes of |L| for various values of feedback gain k

Now we consider the transfer function L(s). The magnitudes of the asymptotic fre

quency responses for L(s ) are shown in Figure 5.10 for various values of k. Observe from 

Figure 5.10 (c) that the effect of noise disturbance at the input of the plant will be amplified 

at high frequencies by the introduction of the stabilizer for k > 2a. Furthermore, this noise 

amplification effect may become very serious when the value of k is much larger than 2a. 

This may cause the actuator of the plant to saturate. Likewise, if the plant transfer function 

P  is replaced by P(1 -I- A), where A models high frequency uncertainties, the sufficient 

condition for robust stability,
C P

1 + CP
< 1

will be harder to satisfy as k becomes larger than 2a.
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From the above discussions it appears that, if we consider the effects of the stabilizer 

C(s) = k on both Z  and L, a reasonable tradeoff is to let k =  2a. Observe that this will lead 

to a stabilized plant G with a pole at s = — a, which is the mirror image of the unstable pole 

of P  at s = a. Furthermore, under this condition, the magnitude of the frequency response 

for G — 1 / ( s  +  a) is the same as the magnitude of the frequency response for P = 1 / ( s  — a). 

In the sequel, we will use the above observation as one of the guidelines for the design of 

parallel output feedback stabilizer. Specifically, given an unstable model P,  we shall design 

the parallel output feedback stabilizer such that the model Go = P/{  1 + CP)  of the stabilized 

plant G retains the poles of P  in the open left-half plane and will have a pole at each of the 

mirror image locations (with respect to the imaginary axis) for the open right-half plane poles 

of P. Other guidelines for designing C will be discussed in Section 5.3.2.

Remark 5.3.6 Although the stabilization method that we are going to describe shortly shows 

encouraging results (as we shall illustrate with the examples in Section 5.4), we could not 

claim that this method is guaranteed to have the advantage of, other than stabilizing P, having 

minimal adverse effects on the second design step (where series controllers are designed).

Remark 5.3.7 Note that C  must have sufficiently large gain in appropriate frequencies to 

stabilize P  and P. In particular, if there is a pole of P  or P  at s = a, C will have to 

have significant magnitude at s = ja . However, in the high frequency range where P  

may have significant unstructured model uncertainties, C  must have a sufficiently small gain 

magnitude such that the unmodelled dynamics are not overly excited. Particularly, when P 

has significant high frequency unstructured model uncertainties, it is helpful to have a strictly 

proper C.

Remark 5.3.8 In order to have robust stability under singular perturbation [Kokotovic et al. 

1986, Vidyasagar 1985/?], it is necessary and sufficient that C  is strictly proper.

In order to secure robustness against high frequency unstructured model uncertainties, 

we shall use a strictly proper parallel output feedback compensator to stabilize P. The order 

of Go =  P / ( l  +  C P) will in general be higher than that of P, and zeros in additional to 

those of P  may be introduced into Go via the poles of G.
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We shall next estimate the multiplicative model uncertainties associated with the initial 

model Go for the stabilized plant G that is induced by the multiplicative model uncertainties 

associated with P  under the influence of the strictly proper parallel output feedback stabilizer.

By expressing the unstable plant transfer function as P  =  P( l  +  Ap), where Ap denotes 

the multiplicative modelling error associated with P,  we can write the transfer function of 

the stabilized plant G =  P / ( l  4- CP)  as

G =  G0(1 + A g ) ,

where

G° =  1 + C P
is the model for G calculated on the basis of the model P  stabilized by the strictly proper 

parallel output feedback compensator G, and

A _______ Ap_____
G “  l +  C P (l +  Ap)

is the multiplicative modelling error associated with Go induced by Ap under the influence 

of C.

Assume that the strictly proper parallel output feedback compensator G stabilizes the 

unstable plant P  and its model P. Observe that if G is designed to have the property that, 

in the high frequency region (to be denoted by Q.) where Ap is significant and the controller 

gain is not necessary to be large for securing stabilization, the condition

C{jw)P( jw)
1 -I- C(jw)P(jw)

A p{juj) «  1 , Vo; G O

is satisfied through requiring

\C( ju)P( ju) \  1 , V w G ß ,

then

|Ag O'w)| ~  |Ap(ju;)| , V w G fl .

Remark 5.3.9 Roughly speaking, the above discussions shows that, to prevent Ac  from 

impinging upon the design of K J0 more seriously than the manner that Ap has impinged upon 

the design of G, it is sufficient that

\C(ju>)P(ju)\ «  1 , Vw G Q .
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In other words, outside the frequency range where \C(ju>) \ has to be sufficiently large for the 

purpose of stabilizing P, we would like \C(juj)\ to roll off quickly.

After a pole configuration is chosen for Go (including those poles that disappear as 

stable pole-zero cancellations in P / ( l  +  CP)), the characteristic polynomial W  for Go can 

be determined. (Guidelines for doing this will be discussed shortly in Section 5.3.2). We 

can then employ simple calculations to compute the strictly proper parallel output feedback 

compensator C such that the initial stable model Go (corresponding to the stabilized but 

unknown plant G =  P /(  1 +  CP)) has the (monic) characteristic polynomial W(s). We shall 

next describe a pole-placement technique for computing G.

Remark 5.3.10 It is important to emphasize that the following pole-placement technique 

will not be employed as a stand alone procedure for the synthesis of G. It will instead be 

integrated into a design procedure, with additional guidelines to be developed in Section 5.3.2.

Consider the inner loop of the system structure shown in Figure 5.1. Assume that the 

model of P  is given by P = B / A, where

A(s) =  s11 -(- A js71 * +  A2an  ̂4- • • • +  An

and

B(s) = B\sn 1 +  B2Sn  ̂ -f • • • +  Bn

are, respectively, the monic denominator polynomial and the numerator polynomial of P. 
We also assume that A and B  are coprime. We would like to find a parallel feedback 

compensator G =  N /D  such that the compensated model Go =  ( P /( l  + CP)  has the monic 

characteristic polynomial W.  This pole-placement problem can be solved [Kailath 1980] by 

finding polynomials N  and D that satisfy the Diophantine equation

A{s)D{s) + B{s)N{s) = W(s) . (5.5)

Recall that we want G to be strictly proper. However we do not like G to have unnec

essarily high order. Let G have order m and a relative degree of one and let the polynomial
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D be morde, then equating the coefficients in equation (5.5) leads tom  +  n linear algebraic 

equations in the 2m unknown coefficients of polynomials D and N.  For a solution to exist, 

in general, we require m  > n. For m = n we can rewrite the linear algebraic equations as

M x  = /  , (5.6)

where
" 1 0 ••• 0 0 0 . . .  0

Ai 1 : B , 0

A 2 Ai **. o b 2 B i 0

M  =
A.n

1 : 

*• A \ B n

0

B ,

0 An **. : 0 B n

0 0 A n 0 0 B n

is the 2n x 2n Sylvester matrix,

X  =  [ Di D2 • •• Dn N { N2 •• • N n }

}  = { W X - A i  lV2 - a 2 ■•• W n - A n Q n + 1 Q n+2

with

D(s) — sn +  D[Sn  ̂ +  D2sn  ̂+  • • • +  Dn

and

for

N(s)  = NiSn~l + Nzsn~2 +  • ■ • +  Nn ,

W(s)  = s2n +  W xs2n“ ‘ +  W2s2n~2 + ■ ■ ■ + W2n ■

Since A(s) and B (s ) are coprime polynomials, by Sylvester’s theorem [Kailath 1980], the 

matrix M  is nonsingular and equation (5.6) has an unique solution.

Remark 5.3.11 In the above discussions we assumed that the relative degree of C  is one. In 

general, a strictly proper C  could have relative degree q for 1 < q < m. For a solution of the 

corresponding Diophantine equation to exist such that C  has the minimum possible order, is 

is necessary that m  = n +  q — 1, where n is the order of the model P. This will result in a 

closed-loop characteristic polynomial W(s) with a degree 2n + q -  1. Observe that if we 

increase the relative degree for C, its order has to be increased correspondingly. This means 

a higher order C  and more degrees of freedom in specifying the poles of W (s).
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5.3.2 Design Guidelines for Parallel Feedback Stabilizer

In this subsection we shall discuss design guidelines for C. These are mostly given in the 

form of rationales in choosing the poles of Go- We will then give an example to illustrate the 

stabilization step of the two step control design approach.

Since the design of C will be carried out on the basis of the model P, we shall begin with 

the consideration of the transfer function

Go
P

1 + C P
(5.7)

Before further guidelines are developed for designing G, we shall first summarize the 

guidelines that we discussed in Section 5.3.1. These are

• Corresponding to the poles of P  in the open left-half plane, assign exactly the same 

poles for Go-

• Corresponding to the poles of P  at o\ ±  juji ; <7i > 0, assign —o\ ±  ju \  as the poles 

of G0.

In order to be able to use the IMC method for designing the series controller K \ in the 

second step, it is necessary that Gt and G cannot have poles on the imaginary axis other than 

those at the origin. Furthermore, in view of the ease of applying the IMC method for step 

reference input to stable plants or plants that, other than having a simple pole at the origin, 

are stable, we suggest the following guidelines:

• If P  has poles at the origin, one of these poles may be retained if so desired (for example, 

for the purpose of rejecting step disturbances that may enter the plant output). The 

remaining poles at the origin are to be assigned according to the next guideline for 

poles on the imaginary axis.

• Corresponding to poles of P  on the imaginary axis (say at ±ju>2 ; u>2 7  ̂ 0), — 0 2  ±  

j u 2 ; 0 2  > 0 are to be assigned as the poles of Go to achieve a degree of stability 

(measured by <7 2 ) deemed appropriate by the designer’s experience for the situation at 

hand.
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Remark 5.3.12 Note that in the last guideline, using a larger value for oi has the advan

tage of improving the relative stability for the pole (or pair of complex-conjugate poles) 

in question. However, this usually comes with an increase in the controller gain. In the 

presence of high frequency unstructured model uncertainties, increasing the controller gain 

may induce destabilizing effects. Therefore it is important to caution against increasing 0 2  

too aggressively.

From the point of view of designing (in the second step) series controllers K j , it is 

desirable that the bandwidth of the overall closed-loop transfer function GK \ /{1 4- GKJ{) 
(where G = P/{ 14- CP)  is the stabilized plant) is not constrained by unnecessary unstable 

open-loop zeros. Therefore C should not unnecessarily introduce these unstable zeros into 

G and Go- It is easy to show that

Go
BD

AD + B N  ’
(5.8)

where the polynomials A, B, D, and N  are defined in Section 5.3.1 when the solution of 

the Diophantine equation (equation (5.5)) is discussed. We observe from equation (5.8) that 

the zeros of Go are given by the zeros of P  and the poles of C if they are not cancelled 

by the zeros of the desired characteristic polynomial W  =  AD  4- BN.  Since the zeros of 

W  are always in the open left-half plane or at the origin, all the unstable zeros of P must 

appear as the unstable zeros of Go- Furthermore, Go will have additional unstable zeros at 

the locations where G has unstable poles. These additional unstable zeros in Go may impose 

limitations on the achievable overall closed-loop performance when series controllers are 

designed in the second step. Therefore it is important to design a stable G, if possible. It is 

well known [Doyle et al. 1992, Vidyasagar 1985a, Youla et al. 1974] that, if the order of G 

is not constrained to some fixed, pre-selected value, then a stable stabilizing G exists if and 

only if the unstable real zeros and the unstable real poles of the strictly proper P possess the 

parity interlacing property. That is, a stable stabilizing G (exists if and only if its order is not 

constrained and the strictly proper P has an even number of real poles between every pair of 

its unstable real zeros). We have the following observations:

1. In the absence of the parity interlacing property, the stabilizing compensator G is 

unstable. In this situation, we should try (but there is no guarantee of success for a 

pre-selected order of G) to design G such that its unstable poles are not closer to the 

origin than the minimum distance between the unstable zeros of P and the origin.
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This attempts to prevent G from introducing unnecessary limitations on the overall 

closed-loop performance.

2. If P  cannot be stabilized by a stable G and if the order of C is not constrained, 

then the unstable real poles in a G that are necessary for the stabilization of P  are 

those which, when augmented with the unstable real poles of P, satisfy the parity 

interlacing property [Vidyasagar 1985a]. Clearly, the range of locations that each of 

these necessary unstable real poles of G should appear is constrained by the parity 

interlacing property. Particularly, it is apparent that the smallest unstable real pole in 

G that is necessary for satisfying the parity interlacing property has to be larger than 

the smallest unstable real zero of P. Therefore the unstable real zero introduced into 

Go (and G) by the smallest necessary unstable real pole of G is always larger than the 

smallest unstable real zero of P  inherited by Go- Hence, if G has unstable real poles 

only for satisfying the parity interlacing property, it is automatically guaranteed that 

no unnecessary limitations are imposed on the overall closed-loop performance by the 

unstable poles of G. We emphasize again that, if the order of G is pre-selected, the 

above results may not be achievable.

We summarize the above observations into the following guideline:

•  After G is designed, examine whether its unstable poles are only those that, when 

taken together with the unstable poles of P, are necessary for satisfying the parity 

interlacing property. Since we do not usually like the order of G to be excessively large 

(so that it can be implemented without too much difficulty using current technologies), 

we may not be able to find a reasonably low order G that has the above desirable 

property. In this situation, the locations of the offensive real unstable zeros introduced 

into Go by G may be used to estimate the extent to which we may push the overall 

closed-loop bandwidth through iterative identification and control design in the second 

design stage.

After we have assigned n poles for Go (recall that n is the order of P) according to 

the above considerations, there are still n more poles in Go to be assigned. It was shown 

in [Leon de la Barra 1992] that if the stable zeros of P  are located well to the right of the 

dominant poles of the transfer function C P / (  1 +  CP),  step-like disturbances at the input of



5.3. A Two Step Iterative Identification and Control Design Approach for Unstable Plantsl63

P may cause the control signal at the actuator input of P to have large excursions. This may 

cause actuator saturation. Assuming that these stable zeros of P  are also the zeros of P, the 

problem can then be alleviated by cancelling these zeros by the poles of C. In this manner we 

obtain a stable pole-zero cancellations in CP/( l  + CP)  at the locations of the problematic 

(open-loop) zeros of P. Since attempting to cancel poorly damped (although stable) zeros 

of P  by the poles of C may, due to modelling error, lead to an unstable G, we should only 

attempt to cancel well-damped stable zeros of P. Summarizing, we have the following:

• It is desirable to cancel, via the poles of C, the stable well damped zeros of P that 

are located within the expected overall designed closed-loop bandwidth. This can 

be accomplished by assigning the stable well damped zeros of P  as the zeros of the 

characteristic polynomial W = AD  4- BN.  The zeros of W  at these locations will 

then disappear as stable (well damped) pole-zero cancellations in CP/ (  1 4- CP)  and 

in G0 =  P / ( l  4- CP).

Remark 5.3.13 Note that Go =  P/{  1 4- CP)  will still have zeros at the locations where P 
has stable well damped zeros. However, these stable zeros in Go are easily handled by the 

IMC method in the second design stage.

Finally, before we can assign the remaining poles for Go (if there are any more left), it is 

helpful to consider the following.

In the guidelines for pole-placement that we have discussed so far, the high frequency 

unmodelled dynamics associated with P  have not been taken into account. In order to 

achieve robust stabilization, such that P  is stabilized by the C designed on the basis of P, we 

would like the open-loop gain \C(ju>)P(ju)\ to become sufficiently small in the frequency 

range where the high frequency unmodelled dynamics may be significant (see Remark 5.3.9 

regarding the advantage of having a quick high frequency roll off for \C(ju)P(juj)\). This 

implies that, from robust stability point of view, we would like |Go(jw)| to roll off at a 

sufficiently low frequency. On the other hand, from the point of view of keeping |Go(ju;)| 
reasonably large for frequencies up to approximately twice the expected overall closed-loop 

bandwidth, it is desirable that |G o(j^)| does not start to roll off at too low a frequency. 

Hence we need to compromise. This may be achieved by placing the remaining poles of
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Go at locations between —2u>5 and -lOa;*,, where u>b is the expected overall closed-loop 

bandwidth.

Now we list the guidelines for designing C as follows:

1. Retain all the poles of P in the open left-half plane as the poles of Go-

2. Corresponding to the poles of P  at g\ ± ju>i ; o\ > 0, assign - o \  ±  ju>i as the poles 

of G0.

3. If P  has poles at the origin, one of these poles may be retained if so desired (for example, 

for the purpose of rejecting step disturbances that may enter the plant output). The 

remaining poles at the origin are to be assigned according to the next guideline for 

poles on the imaginary axis.

4. Corresponding to the poles of P  at ± ju 2, assign -cr2 ±  ju>2 ; > 0 as the poles

of Go to achieve a desirable degree of stability (measured by cr2) deemed appropriate 

by the designer’s experience for the situation at hand. It is important to emphasize 

that increasing cr2 too aggressively may cause instability, especially in the face of high 

frequency unstructured model uncertainties.

5. Cancel stable, well damped zeros of P by the poles of G. This is accomplished by 

assigning the stable well damped zeros of P  as the zeros of the characteristic polynomial 

W . The zeros of W  at these locations will then disappear as stable (well damped) 

pole-zero cancellations in C P /(1 +  CP) and in Go =  P / ( l  +  CP).

6. Assign the remaining poles of Go at locations between —2oJb and — lOc^, where u>b is 

the expected overall closed-loop bandwidth.

7. Examine whether G is stable if the unstable real zeros and the unstable real poles of 

the strictly proper model P  possess the parity interlacing property. If this requirement 

is not met, it is necessary to modify the locations of the poles assigned on the basis of 

guideline (4) to guideline (6) and/or increase the assumed order of C and repeat the 

design procedure. Note that even after the assumed order of C is increased, there is 

no guarantee that the stabilizing G is stable. In the latter situation, the offensive real 

unstable zeros introduced into Go by G may be used to estimate the extent to which 

we may push the overall closed-loop bandwidth through iterative identification and 

control design in the second design stage.
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8. If the unstable real zeros and unstable real poles of the strictly proper model P  do 

not possess the parity interlacing property, examine whether G only has unstable poles 

for satisfying the parity interlacing property. If this requirement is not satisfied, it is 

necessary to modify the locations of the poles assigned on the basis of guideline (4) to 

guideline (6) and/or increase the assumed order of G and repeat the design procedure. 

There is no guarantee that a G with the above desirable property can be found, even 

after the order of G is increased. In this situation, the offensive real unstable zeros 

introduced into Go by G may be used to estimate the extent to which we may push the 

overall closed-loop bandwidth through iterative identification and control design in the 

second design stage.

9. If the designed G, due to high frequency model uncertainties, does not stabilize P, it is 

necessary to modify the locations of the poles assigned on the basis of guideline (4) to 

guideline (6) and repeat the design procedure. This is usually accomplished by moving 

those poles of Go that correspond to the poles of P on the juj-axis nearer to the ju>-axis 

(so that the controller gain is reduced), or by moving those poles of Go between —2ujb 
and — 10o;fc nearer to the origin (so that the magnitude of the complementary-sensitivity 

function, CGq, starts to roll off at a lower frequency).

Remark 5.3.14 It is important to emphasize that what we have described are neither synthesis 

procedures nor rigid design rules. Just like any design method, trial and error may very well 

be necessary in the process of designing a G which stabilizes P  and P.

Remark 5.3.15 The requirements on G stated in guidelines (7) and (8) may not be achievable 

if G is constrained to have the same order as P. It may be necessary for the order of G to be 

higher than that of P  before the requirements set out in in guidelines (7) and (8) can be met. 

In this case, appropriate number of additional conditions have to be imposed on the basis of 

guideline (6) such that a Diophantine equation similar to equation (5.5) will have a unique 

solution. Furthermore we must warn that, because it is necessary to limit the order of G such 

that it is practically implementable with current technologies, it may not be possible to design 

a G that (together with P) satisfies the parity interlacing property under such constraints.

Remark 5.3.16 Before a G that is designed on the basis of P  can stabilize P, it is necessary 

that modelling errors associated with P  are sufficiently small at the critical frequencies
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corresponding to the unstable poles of P.

To illustrate the design method described, we shall use the model,

P = ____ i n i ____  ,
(s 4- 0.5)(s — 2)

that we have discussed in one of the examples of Section 5.2.2. Observe that the unstable 

real zero and unstable real pole of P  do not possess the parity interlacing property. Therefore 

an unstable G is necessary for the stabilization of P.

Since the order of P  is two, the minimum required order for a strictly proper G is two. 

This will result in a fourth order characteristic polynomial W.  Following the guidelines given 

in the above discussions, we shall retain the pole of P  at s = —0.5 in Go. Corresponding to 

the pole of P  at s = 2, we assign a pole of Go to s = — 2. To cancel the effect of the unstable 

zero (of both P  and Go) at s =  1 on |Go(jw)|, we assign a pole of Go to s = — 1. Since 

the unstable zeros in P  and Go are at s = 1, under the assumption that the unstable poles of 

G that we are going to design are further from the origin than s =  1 is from the origin, we 

would design an overall closed-loop system to have a bandwidth not exceeding 2 rad/s. We 

therefore assign the remaining pole of Go to s = —4. Therefore the desired characteristic 

polynomial of Go become

W (s) =  (s +  0.5)(s +  2)(s +  l)(s  +  4) .

By solving an appropriate Diophantine equation as described in Section 5.3.1, we obtain

and

C(s) =
72 (s +  0.5)

( s -  3.2621)(s +  12.2621)

Goto
(s — 3.2621)(s +  12.2621) [s -  1 

(s -f- 0.5)(s +  2)(s +  4) s +  1

The frequency responses of the parallel output feedback stabilizer C(s ) and the complementary- 

sensitivity function C(s)Gq(s) are shown, respectively, in Figure 5.11 and Figure 5.12.

Remark 5.3.17 It is apparent that the unstable real pole of G at s = 3.2621 is further away 

from the origin than the unstable real zero of P  at s = 1 is away from the origin. Therefore 

the unstable real zero of Go introduced by G at s =  3.2621 does not impose unnecessary
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rad/sec

Figure 5.11: Frequency response of the parallel feedback stabilizer C(s)

rad/sec

rad/sec

Figure 5.12: Frequency response of the complementary-sensitivity function C(s)Go{s)
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limits on the overall closed-loop performance, as compared to the unstable real zero at s =  1 

inherited from P.

Remark 5.3.18 The system G =  P / ( l  +  CP)  is guaranteed to be stable if the designed 

complementary-sensitivity-function weighted multiplicative modelling errors associated with 

P  satisfies
P(juj) -  P{ju)  

P{ju)
C{ ju)G0{juj) < 1 .

From Figure 5.12, we can obtain an estimate of the size of tolerable multiplicative 

unstructured modelling errors associated with P  at various frequencies.

Before we end the discussions of the two step iterative identification and control design 

approach, it suffices to say that after P  is stabilized by C, all stabilizing series controllers K- 

for the overall designed closed-loop system are described by the parametrization

'3 Q,
' 1 -  G.Ql

where Gl are stable models for the stabilized plant

G — ? - .
1 + C P

5.4 Simulation Results

We shall present the results of two simulation examples in this section. In both examples, 

the noise disturbance at the output of P  has a constant energy density of 0.0025 over 

the frequency range of interest. Example 1 illustrates the situation where the effect of 

high frequency unmodelled dynamics associated with the initial model of an unstable plant 

is the main obstacle to achieving a large closed-loop bandwidth. By using the two step 

iterative identification and control design approach described in Section 5.3, we successfully 

increased the bandwidth of the overall closed-loop system. In Example 2, the initial model 

of the unstable plant P  is identical to the transfer function P  used in the examples of 

Section 5.2.2 and Section 5.3.2. It should be realized that in this situation, where P and
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P  have unstable real poles larger than unstable real zeros, serious fundamental limitations 

[Doyle etal. 1992, Freudenberg and Looze 1985, Middleton and Goodwin 1990] are imposed 

on the achievable closed-loop performance. The system response will be sensitive to noise 

disturbances when the closed-loop bandwidth is smaller than the largest magnitude of the 

unstable poles, and will have large undershoot when the closed-loop bandwidth is larger 

than the smallest magnitude of the unstable zeros. Furthermore, because the unstable real 

poles are larger than the unstable real zeros, it is impossible to achieve low sensitivity to 

noise disturbances while having a small undershoot in the system response. It is important 

to emphasize that we do not claim to be able to overcome the above-mentioned fundamental 

limitations. The sole objective of Example 2 is to show that, under this adverse situation, 

it is still possible to alleviate the effect of initial modelling errors through the two step 

iterative identification and control design approach where the second step involves the iterative 

identification and control design procedure. The graphs for Example 1 and Example 2 are 

documented in Appendix 5.1 and Appendix 5.2, respectively, at the end of the chapter.

5.4.1 Example 1

In this example we consider an unstable plant with

0.1(s — 4)
P(s)

( s - 0 .1 ) ( s 2 +  0.2s +  4)

and

Hi(s) = 1 .

The noise disturbance e is zero mean and has a constant energy density of 0.0025 within the 

bandwidth of interest.

It is given that a model of P (s) is

P(s)
—s -(- 0.1

The frequency responses of P  and P  are shown in Figure 5.13.

Assuming that it is desirable to have a closed-loop bandwidth of at least 0.5 rad/s. We 

shall show that this design objective can be achieved by the two step control design approach.
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In the first step we stabilize P with a strictly proper parallel output feedback compensator 

G. Following the design guidelines of Section 5.3.2, we assign the characteristic polynomial 

of Go =  P /(1  +  G P) as (s +  0.1)(s + 1). The required C and Go are found to be, respectively,

cw 2.2
s +  1.2

and

Note that G is stable.

G0(s) = -
0.1(s + 1.2)

(s +  0.1) (s +  1)

It can easily be shown that the transfer function of the stabilized plant is

0.1(s2 -2 .8 s  -4 .8 )
r(S “  s4 +  1.3s3 +  4.1s2 +  4.156s +  0.4

with poles at s =  —0.1072, s =  —0.9892 and s =  —0.1018 ± j l . 939, and zeros at s =  —1.2 

and s =  4.0. Note that the unstable zero at s =  4.0 is inherited from P. The corresponding 

noise transfer function H = H i /  (1 +  CP)  becomes

s4 +  1.3s3 +  4.1s2 +  4.376s -  0.48 
S ~  s4 +  1.3s3 4- 4.1s2 +  4.156s +  0.4

Since the negative signs in Go and G can be eliminated easily by cascading an inverter 

with each of these transfer functions, we shall omit them in the following discussions and

assume that

and

G0(s)
0 .1 (s+  1.2)

(5 +  0.1)(s +  1)

0 .1 (-s2 +  2.8s +  4.8)
(s ~  s4 + 1 .3 s3 +  4.1s2 +  4.156s+  0.4 '

The frequency responses of G and Go are shown in Figure 5.14.

To begin the second design step, we apply the standard IMC design method to design, on 

the basis of the initial model Go for the stabilized plant G, a sequence of series controllers 

{K J0 ; j  =  0,1 , • • * , / }  (corresponding to a sequence of increasing overall designed closed- 

loop bandwidth {XJ0 ; j  =  0,1 , * • • , / } ,  where Aq is the final achievable bandwidth before a 

better model G i is necessary). To avoid exciting high frequency modelling errors associated 

with Go, we start with an overall designed closed-loop bandwidth of A§ =  0.1 rad/s. For 

such a small bandwidth, we cannot find any perceptible effects of high frequency modelling
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errors associated with Go on the closed-loop step responses. We then progressively increase 

the overall designed closed-loop bandwidth by re-designing K J0. When the overall designed 

closed-loop bandwidth reaches Aq =  0.75 rad/s, it was found, by using the model validation 

methods described in Section 4.6 that effects of high frequency modelling errors associated 

with Go on the closed-loop step response have become significant. The designed closed-loop 

step response and the corresponding actual closed-loop step response (with and without noise 

disturbances) are shown in Figure 5.15 to Figure 5.17.

By using the control-relevant closed-loop system identification procedure summarized in 

Section 4.8, we set the bandwidth of the low-pass data filter to 2 rad/s, and Nn= [3 663 1]. 

The identification results in

j f  _  -1.2291s2 +  0.1531s-0 .0026 
“  s3 +  0.174s2 4- 3.1384s +  0.133 ’

and

G i  =

-0.1229s4 -  0.2244s3 \  /  l  *5 +  1.274s4 +  3.4298s3 \
-0 .081s2 +  0.0133s-0 .0002  )  /  y +3.6027s2 +  0.4602s +  0.0133 )

-0.0229s5 -  0.1041s4 +  0.2576s3 
+0.6678s2 +  0.3079s +  0.012

/ /  s6 + 2.024s5 +  5.0767s4 \  
/  +6.8494s3 +  3.1381s2

/  \  +0.3514s 4- 0.0101 }

After performing model reduction, a new reduced-order model4 for G is validated as

-0.0102s2 -  0.0939s +  0.4537 
“  s3 +  0.3879s2 +  3.805s +  0.3657 *

The frequency responses of G and G\ are compared in Figure 5.18.

On the basis of G\ we design the sequence of controllers {K\  ; j  =  0, 1,2, • • •}. We start 

with A° =  0.75 rad/s. The resulting step responses are presented in Figure 5.19 to Figure 5.21 

When the overall designed closed-loop bandwidth is increased to a{ =  3.0 rad/s, it was found 

that a more accurate model is necessary for increasing the closed-loop bandwidth further. At 

this stage, the step responses are shown in Figure 5.22 to Figure 5.24.

For the identification, the bandwidth of the low-pass data filter is 3rad/s and Nn= 

[46661]. The identification results in

j f  _  -0.0948s3 +  0.01185s2 -  0.2783s 4- 0.06134 
1 “  s4 +  1.842s3 +  6.018s2 4- 6.685s +  6.2019 ’

4Model reduction was achieved by the method of frequency weighted balanced truncation as mentioned in
Remark 3.3.4.
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and

/  -0.00021s9 -0 .0 1 1 s8 \  
-0.0796s7 -  0.2332s6 
-0.5497s5 -  1.084s4 
-1 .075s3 -  1.386s2 

\  +0.4067s -  0.1648

/  s10 +  2.8045s9 + 15.039s8 \
+ 3 1.566s7 4- 80.018s6 +  121.58s5 
+ 178.74s4 +  175.16s3 +  141.65s2 

 ̂ +56.272s +  4.3212

/  -0 .0104s17 -  0.1839s16 \ /  s18 +  8.0342s17 \
-0 .8227s15 -  2.899s14 +47.786s16 + 209.15s15
-5 .722s13 -  0.9168s12 +739.54s14 +  2208.3s13
+39.96s11 +  197.24s10 / +5579.Is12 +  12270s11

g 2 = +580.02s9 +  1339.5s8 / +23276s10 + 38565s9
+2444.4s7 +  3711.8s6 / +55043s8 +  67743s7
-4531.9s5 +  4508.1s4 +70066s6 +60113s5
+3378.4s3 +  1812.6s2 + 40377s4 +  19988s3

y +520.85s +  36.548 ) V +5934.8s2 +  713.79s+  28.526 /

After performing frequency weighted model reduction, a new model for G is validated as

_  -0.0106s4 -  0.1086s3 +  0.3092s2 +  0.3612s +  0.0125
2 ~  s5 +  1.0896s4 +  4.0596s3 +  3.2852s2 +  0.3924s +  0.0096

Its frequency response is compared to that of G in Figure 5.25. At A °  =  3.0, the step 

responses for the closed-loop system designed on the basis of G2 are shown in Figure 5.26 

to Figure 5.28.

With G 2 , we can easily increase the overall closed-loop bandwidth to 6.0 rad/s. The 

closed-loop step responses when the overall closed-loop bandwidth is 6.0 rad/s are shown in 

Figure 5.29 to Figure 5.31.

5.4.2 Example 2

In this example, the unstable plant is described by

P(s)  = ______M in i)_____
(s +  0 .5)(s2 +  25s +  400)(s — 2) 

and

Hi(s)  =  1 .

The noise disturbance e is zero mean and has a constant energy density of 0.0025 within the 

bandwidth of interest.
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A given model of P  is

P(s)
s — 1

(s +  0 .5 ) ( s -2 )

The frequency responses of P  and P  are shown in Figure 5.32.

Note that P  is the same as the unstable model employed in the examples of Section 5.2.2 

and Section 5.3.2. In Section 5.3.2 we have found that, in the first design step, a strictly 

proper parallel output feedback stabilizer for P  is given by

C(s) =
72(s +  0.5)

( s -  3.2621)(s +  12.2621) '

The resulting stabilized plant and the corresponding model are given, respectively, by

400(s3 +  8s2 -  49s 4- 40)
S ~  s6 4- 32.5s5 4- 533s4 +  1688.5s3 +  8315s2 +  7000s 4- 1600

and

Go(s)
( s -  3.2621)(s+ 12.2621) [ s -  1 

(s 4- 0.5)(s 4- 2)(s + 4) s 4- 1

The noise transfer function H  =  Hi /(1 +  CP)  is given by

(  s6 4- 32.5s5 4- 533s4 -F 1688.5s3 \  /  /  s6 4- 32.5s5 4- 533s4 4- 1688.5s3 \  
-20485s2 +  21400s +  16000 )  /  \  +8315s2 +  7000s 4- 1600 )

Note that both G and Go are stable. The frequency responses of G and Go are shown in 

Figure 5.33.

Following the idea of the iterative identification and control design approach, we start 

with a small overall designed closed-loop bandwidth of A[j =  0.1 rad/s and design the series 

controller K®, on the basis of Go, By the standard IMC design method. The step responses of 

the resulting closed-loop system are shown in Figure 5.34 to Figure 5.36. It was verified by 

the methods described in Section 4.6 that the model errors associated with Go have negligible 

effects on the closed-loop response for =  0.1 rad/s. In fact it was not until Xq = 4.0 rad/s 

that the model errors associated with Go has significant effects on the closed-loop response. 

The step responses at this stage is presented in Figure 5.37 to Figure 5.39. Note that the actual 

closed-loop responses are highly oscillatory. To identify a new model, we set the bandwidth 

of the low-pass data filter to 8 rad/s and Nn= [56651]. The identified transfer functions are

J f  _  /  -0.6351s4 +  8.909s3 -  29.236s2 \  /  (  s5 4- 9.257s4 4- 78.855s3 \
\  4-37.01 I s -  22.298 )  /  \  +231.77s2 +  504.14s +  789.33 )  ’
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and

G i  =

/  0.3649s16 +  18.881s15 \
+452.093s14 +  5982.2s13 

+49363.6s12 +  276796.4s11 
+ 906122s10 +  1509733.7s9 

-2939725.8s8 -  25276457s7 
-79918053s6 -  165528014s5 
-189827015s4 -  88284308s3 
+76724424s2 +  244295487s 

\  +99687505

/  s17 +32.51s16 +  590.01s15 \
+7029.71s14 +  61401.4s13 

+409165.4s12 +  2147784.8s11 
+9104396.9s10 +  31355509.7s9 

+87846147.Is8 +  200230435.5s7 
+367631228.7s6 +  533105850.3s5 

+594271053s4 +  485388286s3 
+265346513s2 +  83420902s 

V +11095195

After performing frequency weighted model reduction and model validation, we have the 

new model

G i(s) =

/  0.3785s11 +  14.58s10 \
+290.521s9 +  2114.88s8 
+  11796.6s7 + 4867 .14s6 
-48554.3s5 -  309692s4 

-581936.1s3 -  195981.1s2 
\  -340906.2s +  1210046.8 )

/  s 12 +  22.156s11 +  312.05s10 \
+2556.3s9 +  16457s8 +  66104.6s7 

+248183s6 +  536823.3s5 
+  1135468s4 +  1227317.3s3 
+ 1378618.5s2 +  569837.6s 

\  +133434

The frequency responses of G and G\ are compared in Figure 5.40.

On the basis of G i, we design i f 0 while keeping the overall designed closed-loop 

bandwidth as A° =  4.0 rad/s. The resulting step responses are shown in Figure 5.41 to 

Figure 5.43. Notice that the oscillations in the actual responses due to model errors associated 

with Go are almost eliminated for the controller designed on the basis of G i .

5.5 Summary and Discussions

In this chapter we have reviewed some difficulties of designing closed-loop systems for 

unstable plants by the one step control design methods discussed in [Campi et al. 1994] 

and [Morari and Zafiriou 1989]. To overcome these difficulties, we have presented a two 

step iterative identification and control design approach for unstable plants. We have shown 

that, after stabilizing the unstable plant with a strictly proper parallel output feedback com

pensator, it is possible to apply the iterative identification and control design methodology 

(embedded with the standard IMC design method and a control-relevant closed-loop system 

identification procedure) to extend the overall closed-loop bandwidth progressively. The 

proposed approach is illustrated with two simulation examples. These examples represent
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two different scenarios. Example 1 has shown that the approach produces very encouraging 

results when high frequency modelling errors associated with the initial model are the main 

constraints to a large overall closed-loop bandwidth. Example 2 indicated that, although 

fundamental limitations imposed on the closed-loop performance by the plant’s undesirable 

unstable pole-zero structure cannot be overcome by any control design method (including 

our two step iterative identification and control design approach), the adverse conditions do 

not prevent the iterative identification and control design methodology from successfully 

alleviating the oscillatory behaviour in the closed-loop response that is due to high frequency 

modelling errors.

Finally we emphasize that, although the two step iterative identification and control design 

approach shows promising results, the following issues have not been investigated thoroughly 

and should be considered for future research:

• We have highlighted in Remark 5.1.4 that, due to the fundamental limitations imposed 

by the plant’s unstable poles on the area under the logarithmic magnitude of the sensi

tivity function, the effects of noise disturbance at the plant output may be accentuated 
in the process of stabilization and may cause the problem of identifying the stabilized 

plant to become more difficult. This effect will depend on the choice of stabiliza

tion schemes and control design methods. This is an important issue that has to be 

investigated carefully. We believe that Hoo control theory has a big role to play here.

• Although the pole-placement technique embedded in the two step iterative identification 

and control design approach shows encouraging results, we must emphasize that the 

question of how to design a low order stabilizer (for example, comparable to the order 

of a given unstable model), not limited to the method introduced here, such that it 

satisfies (together with a given model) the parity interlacing property is still far from 

resolved. This is a very challenging problem that is of major interest in its own right.
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Appendix 5.1: Graphs for Simulation Example 1

Frequency Responses of Unstable Plant and Model

Figure 5.13: Frequency responses of P  and P

Frequency responses of Stabilized Plant and Model

rad/sec

rad/sec

Figure 5.14: Frequency responses of G and Go
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Designed closed-loop response

Figure 5.15: Response of designed closed-loop for a square wave input ( A q

Noiseless part of the actual closed-loop output

Figure 5.16: Noiseless response of actual closed-loop for a square wave input (>

0.75)

I  = 0.75)
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Actual closed-loop output

Figure 5.17: Noisy response of actual closed-loop for a square wave input (Aq 0.75)

Frequency Responses of Stabilized Plant and Model

-100

rad/sec

rad/sec

Figure 5.18: Frequency responses of G and G i
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Designed closed-loop response

Figure 5.19: Response of designed closed-loop for a square wave input (A® =  0.75)

Noiseless port of the actual closed-loop output

Figure 5.20: Noiseless response of actual closed-loop for a square wave input (A? =  0.75)
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Actual closed-loop output

Figure 5.21: Noisy response of actual closed-loop for a square wave input (A® =  0.75)

Designed closed-loop response

sec

Figure 5.22: Designed response of closed-loop for a square wave input (Al =  3.0)
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Noiseless port of the actual closed-loop output

Figure 5.23: Noiseless response of actual closed-loop for a square wave input (Al =  3.0)

Actual closed-loop output

Figure 5.24: Noisy response of actual closed-loop for a square wave input (Al =  3.0)
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Frequency Responses of Stabilized Plant and Model

-100

rad/sec

-400

rad/sec

Figure 5.25: Frequency responses of G and G2

Designed ciosed-loop response

Figure 5.26: Response of designed closed-loop for a square wave input (A® =  3.0)
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Noiseless port of the actual closed-loop output

sec

Figure 5.27: Noiseless response of actual closed-loop for a square wave input (A° =  3.0)

Actual closed-loop output

Figure 5.28: Noisy response of actual closed-loop for a square wave input (A§ =  3.0)
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Designed closed-loop response

Figure 5.29: Response of designed closed-loop for a square wave input (A2 =  6.0)

Noiseless port of the actual closed-loop output

Figure 5.30: Noiseless response of actual closed-loop for a square wave input (A2 =  6.0)
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Actual closed-loop output

sec

Figure 5.31: N oisy response of actual closed-loop for a square wave input (A2 =  6.0)

Appendix 5.2: Graphs for Simulation Example 2

Frequency Responses of Unstable Plant and Model

rad/sec

-o -200

IO"2 10-' 10° 10' 102

rad/sec

Figure 5.32: Frequency responses of P  and P
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Frequency responses of Stabilized Plant and Model

rad/sec

-1000

rad/sec

Figure 5.33: Frequency responses of G and Go

Designed closed-loop response

- 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

sec

Figure 5.34: Response of designed closed-loop for a square wave input (Aq =  0.1)
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Noiseless part of the actual closed-loop output

sec

Figure 5.35: Noiseless response of actual closed-loop for a square wave input (A$ =  0.1)

Actual closed-loop output

0 1000 2000 3000 4000 5000 5000 7000 8000 9000

sec

Figure 5.36: Noisy response of actual closed-loop for a square wave input (A§ =  0.1)
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Figure 5.37: Response of designed closed-loop for a square wave input (Aq =  4.0)

Noiseless part of the actual closed-loop output

Figure 5.38: Noiseless response of actual closed-loop for a square wave input (Aq = 4.0)
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Actual closed-loop output

Figure 5.39: Noisy response of actual closed-loop for a square wave input (Aq =  4.0)

Frequency responses of Stabilized Plant and Model

rad/sec

-1000

rad/sec

Figure 5.40: Frequency responses of G and G\
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Designed closed-loop response

sec

Figure 5.41: Response of designed closed-loop for a square wave input (A® =  4.0)

Noiseless port of the actual closed-loop output

Figure 5.42: Noiseless response of actual closed-loop for a square wave input (A® =  4.0)
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Actual closed-loop output

Figure 5.43: Noisy response of actual closed-loop for a square wave input (A® =  4.0)



Chapter 6

Conclusions and Future Research 
Directions

6.1 Conclusions

In this thesis we have systematically studied an iterative identification and control design 

methodology that has the adaptive robust control design philosophy propounded by Anderson 

and Kosut [1991] as its foundation.

Through a brief review of robust control and traditional adaptive control, we have estab

lished in Chapter 1 the need of blending robust control and adaptive control harmoniously 

such that, in the face of significant initial modelling error, a specified nominal closed-loop 

performance and performance robustness may be achieved progressively. We have reported 

in Chapter 2 a preliminary study of an iterative identification and control design paradigm 

for achieving the above mentioned objective in the ideal situation where an infinite number 

of noiseless measurements are available for the plant input and output. This takes the form 

of an iterative model approximation and control design algorithm and for which encouraging 

simulation results are obtained. We have investigated in Chapter 3 the iterative identification 

and control design methodology under realistic situations where only a finite number of 

noisy input-output measurements are available. We have shown that the controller design 

equations and the control-relevant system identification procedure are the same for stable 

plants and Type 1 stable plants. Good simulation results are obtained when the iterative

192
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identification and control design algorithm is applied to stable plants and Type 1 stable 

plants. These results have shown that control-relevant frequency weighting on the identifi

cation criterion (or equivalently, appropriate data filtering) is instrumental to the matching of 

identified models to the overall control performance objective. In Chapter 4 we have shown 

that, given a stable strictly proper model of a stable strictly proper plant, we can improve the 

performance robustness of the closed-loop system through iterative identification and control 

design if the plant and the existing model has no unstable zeros within the designed closed- 

loop bandwidth and if the deterioration in performance robustness caused by increasing the 

closed-loop bandwidth results in a sufficiently high signal-to-noise ratio for the closed-loop 

output error. Situations that may cause the iterative identification and control design process 

to terminate prematurely are also indicated. An important contribution of this chapter is 

the incorporation of model validation procedures into the iterative identification and control 

design methodology. This has improved the reliability of the iterative process significantly. 

In Chapter 5 we have extended the applications of iterative identification and control design 

to unstable plants by embedding the iterative identification and control design procedure for 

stable plants into a two step control design approach. Specifically, we have shown that by 

first stabilizing the unstable plant with a strictly proper parallel output feedback compensator, 

it is possible to design the overall closed-loop system systematically through applying the 

iterative identification and control design methodology to the stabilized plant. This allows 

the overall closed-loop system to maintain good step responses with little overshoot (that is, 

performance robustness) while its bandwidth is widened progressively.

The analyses and encouraging results presented in this thesis have demonstrated succinctly 

the effectiveness of the iterative identification and control design methodology in robust 

performance improvement. However, it is important to emphasize that a rigorous theory is 

still lacking. We wish the investigations reported in this thesis will stimulate further research 

interests of the control engineering community. In the next section we shall suggest some 

possible directions for future research in this exciting area of control engineering.

6.2 Future Research Directions

It is well known that the solution to a problem is the beginning of other problems. We shall 

now discuss some future research directions. For this purpose, it is convenient to group them
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under the following categories:

1. Immediate extensions

2. Theoretical issues

3. Practical investigations

4. Model error characterization

5. Adaptive control design framework

6.2.1 Immediate extensions

• In the tracking problem that we have studied in the thesis, the main objective is to 

increase the closed-loop bandwidth of a system robustly. Since the closed-loop transfer 

function for the unity feedback structure adopted is the same as the complementary 

sensitivity function, the sensitivity function will be small in the passband of the closed- 

loop system. This implies that widening the closed-loop bandwidth will increase 

the frequency range where the system will have good disturbance rejection property. 

Notwithstanding the last observation, it is sometimes desirable to be more frequency 

selective in the design of the sensitivity function. This is especially the case when 

plant output measurement noise and control input energy consideration may prevent a 

closed-loop system with wide bandwidth from being implemented. These requirements 

not only will affect the control design but also will influence the system identification 

process. This can be a very interesting problem to investigate.

• We emphasize that the Internal Model Control design method is very effective in the 

iterative identification and control design paradigm presented because it is well suited 

for adjusting the design closed-loop bandwidth. The lesson learned is that the control 

design method chosen for an iterative identification and control design methodology 

should be matched to the control problem at hand. As the class of problems considered 

is widened, we should not confine ourselves to the Internal Model Control design 

method. More powerful robust control design paradigms like Generalized Predictive 

Control and T i o o  -optimization should also be considered.
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6.2.2 Theoretical issues

• We have pointed out at the end of Chapter 5 that the applications of iterative identi

fication and control design to unstable plants have merely been touched upon in this 

thesis by employing a two step iterative identification and control design approach, 

where the unstable plant is first stabilized by a strictly proper parallel output feedback 

stabilizer before the iterative identification and control design methodology is applied 

to the stabilized plant. In particular, we recognize that:

-  Due to the fundamental limitations imposed by the plant’s unstable poles on 

the area under the logarithmic magnitude of the sensitivity function, the effects 

of noise disturbance at the plant output may be accentuated in the process of 

stabilization and may cause the problem of identifying the stabilized plant to 

become more difficult. This effect will depend on the choice of stabilization 

schemes and control design methods. This is an important issue that has to be 

investigated carefully. We anticipate that Hoo robust control techniques may have 

a big role to play here.

-  Although the pole-placement technique embedded in the two step iterative iden
tification and control design approach shows encouraging results, the question of 

how to design a stabilizer whose order is comparable to or lower than the order 

of a given unstable model, such that it satisfies (together with a given model) the 

parity interlacing property, is still far from resolved. This is a very challenging 

problem that is of major interest in its own right.

• We have observed that models updated through estimating their respective R  parametriza- 

tion tend to have excessively high order. This difficulty has not been completely over

come by the incorporation of frequency weighted model reduction procedure. To solve 

the problem at the root, it is important to seek effective and efficient parametrization 

of the R transfer function. We may start this direction of research by considering the 

orthogonal function approach [Wahlberg and Lindskog 1991].

• Schrama [19926] has observed that, when a model leads to the design of a high 

performance (both nominal and robust) closed-loop system, the frequency response 

of the model is often a poor representation of the plant under open-loop conditions. 

Our simulation experience does not support Schrama’s observation. In fact, we often 

find that frequency responses of models approach the frequency response of the open-
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loop plant while the actual closed-loop performance is improved through iteration. 

We have observed that for the iterative identification and control design methodology 

considered in this thesis, good control performance and good identified models go hand 

in hand. Further research should be directed to resolve these seemingly contradictory 

observations of Schrama and ours. We believe that better understanding of iterative 

identification and control design in general can be gained by studying this problem.

• Due to the complexity of the algorithm, it is very difficult to prove its convergence. A 

less daunting but equally important task is to establish conditions that guarantee robust 

stabilization is achieved by the controller re-designed on the basis of an updated model.

6.2.3 Practical investigations

• It was indicated by analysis (see Remark 4.5.1 and the fourth observation in Sec

tion 4.6.3) and simulation experience that unstable zeros of the existing model that are 

within the designed closed-loop bandwidth may hinder closed-loop identification of a 

new model. However there is also simulation evidence (see the simulation example in 

Section 4.8) that this may not be always the case. It is therefore important to clarify the 

condition (or conditions) that may hinder closed-loop identification. Our experience 

with this problem seems to indicate that, other than theoretical analysis, extensive 

careful simulation studies are necessary for finding a clue to this puzzle.

• Despite the encouraging results obtained for the iterative identification and control 

design paradigm investigated in this thesis, it is important to study how it performs in 

actual applications like those reported by de Callafon et al. [1993] and Partanen and 

Bitmead [1993b].

• An excellent survey has been conduct recently by Van den Hof and Schrama [1994] in 

the area of approximate identification and model-based control design. Iterative iden

tification and control design paradigms that are currently available were also reviewed 

critically in this survey. It will be interesting to take this step further by comparing the 

various paradigms (including [Partanen et al. 1994], [Van den Hof et al. 1993], [Skel

ton et al. 1994] and ours) on the basis of a common set of plants, initial models, and 

specifications. These benchmark problems and case studies should facilitate further 

interactions and cooperations between researchers interested in this area.
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6.2.4 Model error characterization

• In the face of significant model uncertainties, it is not sure whether an unstable plant 

could be stabilized unless the associated model error is appropriately characterized. 

Furthermore, if we can characterize the modelling error associated with each of the 

identified models in the iterative identification and control design process, the control 

design step could possibly be made more efficient because we could then design, in a 

single step, the most ambitious controller which does not cause instability. Significant 

progress has already been made in model error characterization. (See [Parker and 

Bitmead 1987], [LaMaire et al. 1991], [Partington 1991], [Helmicki et al. 1991], 

[Kosut 1986], [Kosut et al. 1992], [Goodwin et al. 1992], [De Vries and Van den Hof 

1993] and [De Vries and Van den Hof 1994].) Initial attempts to apply some of these 

results were reported by Graebe and Goodwin [1993] and Kosut [1994], We believe 

further research in applications of model error characterization to iterative identification 

and control design could lead to very fruitful outcomes.

6.2.5 Adaptive control design framework

• It is important to observe that the iterative identification and control design paradigm 

that we have studied (and others that are depending on coprime fractional representa

tions) tends to result in excessively high order model. This could be a hindrance for 

its direct applications as an on-line adaptive control algorithm. However it could be 

employed as a platform for designing adaptive control systems through its capability 

in model refinement and the matching of models with the underlying control design 

paradigm.

6.3 Epilogue

It has been a very exciting and satisfying experience to transform the iterative identification 

and control design methodology from an initial concept to its present form. More importantly, 

it is hoped that, together with other iteratorsl , we have moved a step closer to the objective 

'We borrow this term from Van den Hof and Schrama [1994],
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of providing convenient and practical tools for tradeoff among the competing design goals 

of stability, performance and sensitivity2, while we attempt to convince control theoreticians 

that control-relevant system identification and modelling are integral parts of the general 

control design problem and therefore deserve serious attentions from the control research 

community at large.

Our final message is:

Control engineering is very much an experimental science. In practical con

trol applications, it is very likely that we have to get involved with poor initial 

models (from the point of view of control design), noisy plant measurements, 

and ambitious nominal and robust performance requirements. In these situa

tions, we have demonstrated that iterative identification and control design is 

a promising approach for refining the model and the controller in closed-loop 

(with appropriately filtered plant measurements acting as the vehicle through 

which they interact) such that a robust high performance closed-loop system can 

be designed progressively.

'It was pointed out succinctly by Skelton [1989] that modelling and control theory has not yet provide a 
convenient and practical tradeoff among the competing design goals of stability, performance and sensitivity.
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Proof of Theorem 2.4.2 in Chapter 2

Since the controller

stabilizes the model

* Y

r  - N'
and

N,X[  + D,Y/ =  1 , 

solving equations (A.l) and (A.2) simultaneously, we get

(A.l)

(A.2)

and

Substituting x {  and Y /  into

will result in

x! =

y/  =

D, +  N{

1

D, +  N,K‘f  '

Y f i - f f i X f  
' d ,

G i+i

rt + i G i  +

Nj + R{ Y /
D, -  R{X<

K
D i ( D i - R { x { ]

(A.3)

(A.4)
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Solving for , we get

n?(G«+1 ~ g.)
1 + D , x [ (G,+ i -  G;)

(A.5)

From Figure 2.2 of Section 2.4, with 7*2 =  0, we can write for the closed-loop system 

(when j  = / ) ,

and

Therefore we can write

y\
f g k {  1
f  ~  ------------------n  +  ----------z — ( H e  »1 +  g k !  1 +  g k !

l +  G i f f 1 l + G X /

ß = Diy{ -  Niu{

K ‘ H e .

as

and

D i K { ( G - G i ) ,

1 +  g k ; 1 + g k ;
(A.6)

a . =

as

a =
D,(l + G,K{)

r 1 (A.7)

If we form the output error defined by

e = ß -  R 1, a, (A.8)

then by substituting equations (A.5), (A.6), and (A.7) into equation (A.8), and using the 

expression of X-  given by equation (A.3), we can obtain

Di(l + G i K f ) K f ( G - G i+l) + Di(l + GiK [ ) n _
(1 +  GK [)(1 +  Gi+iK-)  r ‘ 1 +  GK-

Since equation (A.4) can also be written as

Di(l + GiK{) ’

it is clear that if we define the filtered output error as

Cl = Y/ e  ,
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then

or

(i
k { (G - r\ 4-

( \+ g k {)(\ + g 1+1k {) 1 + g k {

6 /  g k [ g ,+1k (  \
\  1 +  GK{ 1 + Gi+iK{)

r i +
1

l + GK?
He .
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Proof of Theorem 2.6.1 in Chapter 2

Using the notations established in Chapter 2, we have

and

Therefore we can write

R! G - G j
' 1 + Q{ (G  -  Gi) ’

Q fl
K j

1 + G , K {

1 +  GjK{  
1 +  GK{

( G - G , ) .

We also have

Gt — [Gi]m[Gj]a,

where

and

Since Q{

as

[Gt]m nGx r iz «  + s) 
döt

rr ]  _  U i ( Z j  -  s )

[ lla u z(z: + s) •

we can therefore rewrite the equation

t QfK  =
1 -  Qf, G,

dGxn pf
^Gt[ I I i «  +  s ) ^ / - n i ( ^ - s ) n F/]

(B.l)
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Hence, we can write

/  I L W  +  s)dFf

l +  G , h ‘ =  n,« +  s)dF, -  nF. -  s)nF, ■
(B-2)

By substituting equation (B.2) into equation (B.l) and noting that

dpf — {s +  \ { ) n ,

(Note that by having n, the relative degree of Gt, as the relative degree of F / ,  the transfer 

function q {  will be bi-proper.)

1 +  GK[
f  d ö d K f  +  n G n K f

and

we obtain

where

G -  Gx

d c d Kf

dG l n G ~  d Gn Gi 

dGdGx

r {  =  R{ H  ,

r {  = [ G , } m( s + \ { r ,

is a known stable proper transfer function and

£ /  _  dGin c ~ dcn Gt 
d K f d G +  n K f n G

is an unknown stable strictly-proper transfer function.

(B.3)
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Proof of Theorem 2.6.2 in Chapter 2

V /
To obtain the results on the order and relative degree of R [ , we shall write

[Cjjn

[Gi\a
Pi ( - s )
PM

where each of the polynomials rji(s), 7r,(s), and pl (s) has degree r, n +  r, and m,  respectively. 

We can then obtain

(A|/ )n7Tl (s)/?t (s)
k ;  =

rjl (s)[{s +  \ { ) npz(s) -  (A[)np,(-s)]f  \n ,

If we also write G as

G
a(s)

ß(s)  ’
where 0(5) has degree p, and ß(s)  has degree q, then by substituting all these into equa

tion (B.3), we get

o(s)7Ti(s)/9l (s) -  T]i (s)pl ( -S)ß( s )

ß(s)r}i(s)[{s 4- X{)npl (s) -  (A[)npt (5)] +  (A[)na(s)7rl (s)p,(s)/ \ n , (C.l)

By counting the degrees of the resulting numerator and denominator polynomials of R{  

given by equation (C.l), the required results are established immediately.
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Proof of Theorem 3.2.2 in Chapter 3

By using the K q(s) and the G(s) given in Theorem 3.2.2, we can write the characteristic 

polynomial of the actual closed-loop system as
(\0\2

s2(s + 2 \ q)cIg (s) -1- • (t s +  l)ng(a) .
K T

As Â  approaches zero, all but three poles of the actual closed-loop system approach the zeros 

of cLg {s). The stability of the actual closed-loop will therefore depend on the remainder three 

poles that are approaching the origin.

Let so denote the poles of the actual closed-loop system that are approaching the origin as 

Aq approaches zero. After approximating dc{s) and tig(s) in the characteristic polynomial of 

the actual closed-loop system by the constant term of their respective Taylor series expansions 

at the origin, we consider the stability of the following third order polynomial,

0 2 ,  m 0 n2 n ö ( 0) . (A?)2 n.c?(0)s3 + 2A ^  + ( A ^ - ^ L s +
K d c { 0 )  T kcIg { 0)

whose zeros are so- By applying Routh-Hurwitz criterion to the last polynomial, we imme

diately see that the actual closed-loop system is stable if

k and
dG( 0)

have the same sign, and if

is suitably small.

Aq > 2 r

205



Appendix E

Proof of Theorem 3.3.1 in Chapter 3

Using equations (3.3),(3.4) and (3.5), we can obtain

_  D}(G -  G.)
Lz 1 + D , x ’ ( G - G i )

By substituting equation (3.3) into equation (E.l), and noting that Gt 
obtain

of_ n2 1 +  G M
1 +  GK[

f ( G - G * )

(E.l)

Nt/ D t, we can

(E.2)

Now from Theorem 2.5.1, we have (for q = 1)

Q{ = s[D,UG,]-' Ft

By using the equations
r n l  _  n j= l( P i - s )
[■L'lla — k

and

direct calculation gives

[G,]„

nt=iW + s)

rL(̂ -s)
Y l i t f  + s) ’

S )  ,

where n* represents the resulting numerator polynomial. Therefore we can write

_  dGx__________ ruQi
nF;

no, n.(z,* +  *) n ‘=i(p* +  s) dF>
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and

Now by using

we obtain

q o> = n,(z. ~s) nf/

k !  =  —
1 -  GiQ{ 

dGxn *n Ff

n Gl[ U i ( z :  + S) Ui=i{p* +  s)dFf -  U l (z l -  s)n*nFf]

which in turn allow us to write

k /r ^Gt[n i{z* +  s) Ui=i(Pi +  s)d f ]
1 4 -  G iK .{  =  ------------------------------------------------------- ----------------------------------------------------- ^  .

lK(

The last equation together with

da d , + n Gn , 

1 + G K l =  dGdK, ‘

dGxnG ~ dene ,G - G i

dpf =  (s +  \{ ) fc+n+1 } (since q =  1 and N  = n + 1) , 

and equation (E.2) leads to

dGdGx

r { = r { r {

with

and

R> = (s + AOf \ k+1
n w + s )

L * = l

d G x^G  ~  d c r i G t

d G d K f +  n c r i p f

R{ = D,{N,]m(s + \ { ) n .
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Proof of Theorem 4.7.2 in Chapter 4

By direct substitution we can write

(W £l = 91 (9̂ 1)
( ^ ) t/  Qfo \ G - G o )  ■

Now equations (4.21), (4.22), and (4.23) allow us to write

Rj  =  G - G 0
[Go]m [G0]m + (G -  G0)F' ’

and
81 = Gi -  Go

[Go]m [Go]m + (Gi —  Go)Fq

Direct calculation with the last two equations give

Rfo - R fo ^ _________ (G-GQjGolm
Rfo (G — G0){[G0]m +  (Gi -  Gq)Fq }

(F.l)

(F.2)

Recall that Go =  [Go]m[Co]a, and f /  =  R q [Co]a, we can therefore rewrite equation (F.2) as

G - G i
G - G 0 (^ ) (F.3)

Substituting equation (F.3) into equation (F.l) allows us to write

o ? H-H
( G — G o )  rpf \ Go ) 10 Qo 1 1 v  G o n 4
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Since G i and Go are strictly proper stable transfer function, and Tq =  GoQq with Qq proper 

and stable, it follows from Lemma 4.7.2 that

sup
<X>1 <W<.U>2

G\(ju>) -  Go(ju)'

and

sup
UJ\

1 +

G o(j^) 

’Gi(juj) -  G0{ju)'

T l  (

Go(jv)
Furthermore, from Lemma 4.7.1, we have

T{(ju)

sup
U)\<U)<U>2 Qoiju)

6 .

= 7

< 1  + 7

Therefore

n ^ ) \
<  62(1 + r i ) :

R f0{ju) -  R f0{juJ) 

Rfoiju)

for uj\ < cj < CJ2-
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Proof of Theorem 4.7.3 in Chapter 4

It can be shown easily that the tracking error induced by the model error associated with G i 

and when the designed closed-loop transfer function is Tf is given by

Therefore

Since
R f0{juj) -  R f0(ju)

2
1 ’G(juj) -  G0(ju)' -2

R fo(ju) <§2(1 +  T])2 Go(ju)

for u>\ < u> < UJ2 , we have, from Theorem 4.7.2,

G{ju)  -  Gi(juj) 
Gi(ju)

<C 1

for < ui < u>2 . It follows that

O vo(a;;
G{ju)  -  Gi(ju)

Tf ( ju)  l - f ? ( j u / )  <Pr (u>)

for u\  < <jj < ui.
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Appendix H

Programs and Information for 
Simulations

In the following we describe the programs (or MATLAB™ m-files) used for simulation stud

ies of the iterative identification and control design paradigm discussed in this thesis. These 

m-files run under MATLAB™ version 4.2. This set of programs also requires the supports of 

the Control System Toolbox, the Robust-Control Toolbox, the System Identification Toolbox, 

and the Signal Processing Toolbox. Hints for choices of experimental variables will also be 

given. We proceed chapter by chapter and will start with Chapter 2. This allows systematic 

presentation because many of these programs are shared by simulations in the chapters.

The discussions will proceed in the following fashion. We briefly explain the function for 

each of the m-files (from user’s point of view) when they are first encountered. This will be 

followed by a discussion on how the relevant set of m-files can be executed in the appropriate 

sequence to accomplish the simulations. We follow the notations for transfer functions and 

signals that are defined in the various chapters.

211



212 Appendix H. Programs and Information for Simulations

Chapter 2

Program Descriptions

1. plant.m

This m-file is mainly used to define the plant transfer function G and the noise transfer 

function H.  This is accomplished by defining (or re-defining) the vectors nG and dG 

in the program code that contain, respectively, the coefficients (in descending order) of 

the numerator and denominator polynomials of G. (The noise transfer function H is 

also defined likewise in the program code by nH and dH.) This m-file, when executed, 

also initializes (or re-initializes) the vectors that store data for graph plotting.

To ensure that graphs are plotted nicely with the scale to be set up by the 

init.m program (to be discussed later), it is a good practice to appropriately 

scale the plant transfer function such that its dominant time-constant is about 

1 second.

Noise disturbances (which are defined partially by H ) are not considered in 
the simulations of Chapter 2.

2. target.m

This m-file is used to define a transfer function of the form X/(s  +  A). Subsequently 

(for example, in q.control.m to be described later), this transfer function will will be 

used to define the IMC filter.

The variable A defines the designed closed-loop bandwidth. It should 

be defined, for example, by executing the statement lambda=0.1 (which 

defines the designed closed-loop bandwidth to be 0.1 rad/s) before target.m 

is executed.

3. model.m

This m-file is mainly used to define the transfer function of the initial model Go- This 

is accomplished by defining (or re-defining) the vectors nGi and dGi in the program 

code that contain, respectively, the coefficients (in descending order) of the numerator 

and denominator polynomials of Go-
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We emphasize that nGi and dGi are actually associated with the current or 

existing model Gt. They only represent Go (after model.m is executed) 

before the first model update.

Whenever model.m is executed, the current or existing model is reset to Go- This is 

usually used to prepare for repeating the simulation from the beginning.

4. q_control.m

This m-file calculates the bi-proper Q transfer function that parametrizes the controller 

on the basis of the existing model G{. Its execution will be aborted ifG l is found to be 

unstable.

5. k_control.m

This m-file calculates the controller K  by using the Q-parametrization found by 

q.control.m. The coprime factors of K  defined by X  = Q and Y  =  1 — GtQ 

are also calculated for later use.

6. init.m

This m-file is for initializing auxiliary variables that are used, for example, to set up 

the scale of frequency response plots and the grids in the parameter space where the 

search for the optimal approximation of R  is conducted. This program also calculates 

frequency responses of the plant and the current model, the designed closed-loop 

transfer function and the actual closed-loop transfer function.

7. time-plot.m

This program calculates and plots the (noiseless) step response of the actual closed-loop 

system. To be executed after init.m is executed.

8. rhatJter.m

This program performs the optimal frequency weighted rational approximation for the 

R  transfer function described in Chapter 2. The calculations use the fact that R  can 

be factorized as the product of a transfer function known by design and an unknown 

transfer function. In this program a second order transfer function with a relative degree 

of one is assumed for estimating the unknown part of R  (as explained in Chapter 2). 

The vectors nfilter and dfilter describe the numerator and denominator of the known 

part of R, and the vectors nR and dR describe the numerator and denominator of R  as
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a result of executing this program. These vectors are calculated when the controller is 

designed.

This program takes time to run. Please be patient.

9. update.m

This program updates the current model to a new model through the rational approx

imation of R  produced by rhatJter.m. It then performs frequency weighted model 

reduction on the new model. It shows the Hankel singular values in decreasing mag

nitudes. The user will response by entering through the keyboard the number of states 

to be retained. This defines the order of the reduced-order model.

Model update will not be conducted if R is unstable or if it will result in an 

unstable model. Warnings will be given under these conditions.

This program calls the function fwbalred.m. Therefore it will not be 

executed unless the fwbalred.m function is present.

10. mfres.plot.m

This program plots the frequency responses of the plant and the models on the same 
graph for comparison.

This program can be executed at any time after init.m is executed, provided 

that G and Gt are defined.

Simulation Information

To perform the type of simulations described in Chapter 2, we do the following according 

to the sequence in which it is described.

1. Modify the vectors nG and dG in plant.m to reflect the plant of interest.

2. Modify the vectors nGi and dGi in model.m to describe the initial model of the plant.

3. Choose a small value for A so that robust stability can be achieved. Trial and error may 

be necessary to find a suitable A to begin with. The chosen value of A will be entered 

through the keyboard by defining the variable lambda.

4. Set the value of nm to 0 (through the keyboard) follows by executing model.m.
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5. Execute the m-files in the following sequence:

plant, target, q.control, k_control, init, time.plot

and print (or store) the required graphs for record.

6. If the step response does not show excessive oscillations or overshoot, increase the value 

of lambda and repeat Step 6. Otherwise, execute rhat Jter.m to perform frequency 

weighted model approximation for R.

7. Execute update.m to obtain the reduced-order updated model. We usually truncate the 

order of the model at the point where the Hankel singular value is small and where a 

large decrease (usually by an order) occurs in the Hankel singular values. The resulting 

values for nGi and dGi will be displayed.

8. Perform the iteration by repeating the sequence of program executions starting from 

Step 6. Continue until the desired value of lambda is achieved or until no further 

improvement can be made.
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Chapter 3

Program Descriptions

1. mq_controlss.m

Its function is similar to that of q.control.m, except that a Q transfer function of 

relative degree one (instead of bi-proper) will be calculated.

2. k.controlss.m

Its function is similar to that of k_control.m. To be used with mq_controlss.m.

3. initss.m

Its function is similar to that of init.m. To be used with mq_controlss.m and 

k_controlss.m.

4. deressl.m

This program calculates and plots the noiseless step response of the designed closed- 

loop system. The variable probe is used to turn on (when sets to 1) or turn off (when 

sets to 0) the low amplitude sinusoids that are superimposed on the unit step input to 

the actual closed-loop system. The vector efm defines the amplitude for each of the 

sinusoids. The vector ef defines the angular frequency for each of the sinusoids.

It is necessary to make sure that the vectors efm and ef have the same 

length. The variable probe has to be defined for example, by executing the 

statement probe=l (which turns on the sinusoidal probing signals) before 

deressl.m is executed.

5. time.plotss.m

Its function is similar to that of time_plot.m, except that its output will depends on 

whether deressl.m or deress2.m (to be described later for performing simulations that 

are related to Chapter 4) was executed. If deressl.m was executed, time.plotss.m 

will calculate and plot the noiseless actual step response. If deress2.m was executed, 

time.plotss.m will calculate and plot the noiseless actual square wave response.
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6. noisyt-plotss.m

This program plots the noisy response of the actual closed-loop system. The type 

of response produced will depend on whether deressl.m or deress2.m was executed 

(similar to the way that time_plotss.m responses to deressl.m and deress2.m). The 

variable nm defines the square root of the variance of the zero mean Gaussian white 

noise disturbance e. This noise disturbance passes through the transfer function H 
before it is added to the plant output.

The variable nm has to be defined, for example by executing the state

ment nm=0.05 (which results in a noise energy density of 0.0025) before 

noisyt_plotss.m is executed.

7. siggenss.m

This program generates the signals needed in closed-loop system identification by 

Hansen’s framework. A low-pass data filter is included. The bandwidth of the data filter 

is defined by the variable bw. The signals generated is suitable for the identification 

of the unknown part of R.

We usually (but not always) set the value of the variable bw from two to ten 

times of the value of lambda.

8. mrhat_idenss.m

This program identifies R indirectly by identifying the unknown part of R. Output Error 

or Box-Jenkins model can be selected by making simple (and obvious) modifications 

to this program. The vector Nn defines the structure of the plant model Rt, and the 

corresponding noise model .

The vector Nn has to be defined, for example, by executing the statement 

Nn= [ 4 6 6 4  1] if Box-Jenkins model structure is assumed (or the statement 

Nn= [4 4 1] if Output Error model structure is assumed). Note that T'f =  1 

if Output Error model structure is assumed. (See MATLAB™ System 

Identification Toolbox user’s guide for details.)

9. tupdatess.m

This program updates the current model to a new model through the identified model of 

R produced by mrhat Jdenss.m. Model update will not be conducted if R is unstable 

or if it will result in an unstable model. Warnings will be given under these conditions.
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The current model are saved before model updating is performed. This will allow 

resetting if the updated model is found to be inaccurate.

The possibility of resetting the model from a poor updated model back to the 

model before updating is not used in the simulations of Chapter 3. This will 

be useful in Chapter 4 when model validation methods become available.

10. mreducss.m

This program performs frequency weighted balanced truncation model reduction on 

the updated model. It shows the Hankel singular values in decreasing magnitudes. The 

user will response by entering through the keyboard the number of states to be retained. 

This defined the order of the reduced-order model.

This program calls the function fwbalred.m. Therefore it will not be 

executed unless the fwbalred.m function is present.

Simulation Information

To perform the type of simulations described in Chapter 3, we do the following according 

to the sequence in which it is described.

1. Modify the vectors nG, dG, nH, and dH in plant.m to describe the plant (including 

the noise transfer function H)  of interest. For the simulations in Chapter 3, we have 

set H = 1.

2. Modify the vectors nGi and dGi in model.m to describe the initial model of the plant.

3. Choose a small value for A so that robust stability can be achieved. Trial and error may 

be necessary to find a suitable A to begin with. The chosen value of A will be entered 

through the keyboard by defining the variable lambda.

4. Choose the value of the noise variance to reflect the situation at hand. The value of nm 

should then be entered through the keyboard. For the simulations in Chapter 3, we use 

a noise variance (energy density) of 0.0025. This is accomplished by setting nm=0.05.

5. Execute the program model.m.

6. Execute the m-files in the following sequence:
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plant, target, mq_controlss, k_controlss, initss, deressl, time_plotss, 

noisyt_plotss

and print (or store) the required graphs for record.

7. If the step response does not show excessive oscillations or overshoot, increase the 

value of lambda and repeat Step 7. Otherwise, execute siggenss.m to prepare for the 

identification of R. (We may repeat the previous steps with sinusoids superimposed 

on the step reference input to improve the excitation conditions before siggenss.m 

is executed. The adding of sinusoidal excitations to the step reference input can be 

accomplished by modifying the vectors efm and ef in deressl.m.

8. Execute mrhat Jdenss.m to identify R.

9. Execute tupdatess.m follows by mreducss.m to obtain the reduced-order updated 

model. We usually truncate the order of the model at the point where the Hankel 

singular value is small and a large decrease (usually by an order) occurs in the Hankel 

singular values occurs. The resulting values of nGi and dGi will be displayed.

10. Perform the iteration by repeating the sequence of program executions starting from 

Step 7. Continue until the desired value of lambda is achieved or until no further 

improvement can be made.
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Chapter 4

Program Descriptions

1. deress2.m

This program calculates and plots five periods of the noiseless square wave response.

The variable switch is used to turn on (when sets to 1) or turn off (when sets to 0) the 

square wave reference input to the designed and actual closed-loop systems.

When the square wave input is turned off, the closed-loop output error is 

purely due to the noise disturbance. When the square wave input is turned 

on, the closed-loop output error is due to both the reference excitation and 

the noise disturbance. By comparing the power spectra of these closed- 

loop output errors (under the two different conditions that we have just 

described), we can validate the model in question in the frequency domain 

under closed-loop conditions.

2. testrs.m

This program performs the time domain method of model validation. It calls the 

function mresid.m. This is accomplished by residual analysis as described in [Ljung 

1987], except that it is performed within the Hansen’s framework.

This program will not be executed if the mresid.m function is absent.

3. preset.m
' z f  -  f

This program resets Rt to 0 and to 1. (These notations are defined in Chapter 4.) 

This will allow the current model to be updated.

It is a good practice to execute this program once an accurate reduced order
-  f

updated model is found, and the recent estimated values of /  0 and 

1 are no longer needed.

4. snrchkl.m

This program calculates the power spectrum of the closed-loop output error. This will 

be useful for performing the frequency domain model validation when it is combined 

with the switch variable that was described with deress2.m.
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When the current model is falsified by the frequency domain model valida

tion test, the range of frequency where there are significant signal-to-noise 

ratio for identifying R{ can be estimated. We usually select the bandwidth 

of the (low-pass) data filter to be this frequency range.

5. cloe.m

This program is used to calculate the closed-loop output error before snrchkl.m is 

executed to validate models in the frequency domain.

To prepare for validating an updated or reduced order model, initss.m and 

deress2.m should be executed before cloe.m is executed.

To prepare for validating the current model, execute cloe.m after noisyt_plotss.m 

is executed.

6. recover.m

This program resets the model back to the one before the latest model update was 

carried out. It is used, for example, to prepare for model re-updating after an updated 

model (before or after model reduction) is found to be inaccurate by the frequency 

domain model validation method.

Simulation Information

To perform the type of simulations described in Chapter 4, we do the following according 

to the sequence in which it is described.

1. Modify the vectors nG, dG, nH, and dH in plant.m to reflect the plant (including the 

noise transfer function H ) of interest. For the simulations in Chapter 4, we have set 

H = 1.

2. Modify the vectors nGi and dGi in model.m to describe the initial model of the plant.

3. Choose a small value for A so that robust stability can be achieved. Trial and error may 

be necessary to find a suitable A to begin with. The chosen value of A will be entered 

through the keyboard by defining the variable lambda.
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4. Choose the value of the noise variance to reflect the situation at hand. The value of nm 

should then be entered through the keyboard. For the simulations in Chapter 3, we use 

a noise variance (energy density) of 0.0025. This is accomplished by setting nm=0.05.

5. Execute the program model.m.

6. Set the variable switch to 1.

7. Execute the m-files in the following sequence:

plant, target, mq_controlss, k.controlss, initss, deress2, time_plotss, 

noisyt_plotss

and print (or store) the required graphs for record.

8. Define the bandwidth bw of the low-pass data filter. (We usually choose bw= 

10*lambda at the beginning stage of simulation.)

9. Perform the time domain model validation test (by executing siggenss.m and testrs.m) 

to check the validity of the current model. If the current model passes the time domain 

model validation test, increase the value of lambda and repeat Step 7. If the current 
model fails the time domain model validation test, increase the value of lambda and 

repeat from the previous step. The frequency domain model validation test should be 

carried out and the results should be closely monitored. (This will require the execution 

of cloe.m and snrchkl.m on the basis of data obtained in Step 7 when the variable 

switch is set to 1, and the execution of cloe.m and snrchkl.m on the basis of data 

obtained by repeating Step 7 but with the variable switch set to 0, so that the power 

spectra of the closed-loop output errors with and without the square wave reference 

input can be compared.) Proceed to the next step when the current model fails the 

frequency domain model validation test.

10. To prepare for the identification of R, use the results of frequency domain model 

validation test obtained in the last step as a guide to set the value of bw, such that 

the bandwidth of the data filter includes only frequency range where the closed-loop 

output error has good signal-to-noise ratio. Then execute siggenss.m to prepare for the 

identification of R. The signals to be employed in this step are obtained by executing 

initss.m, deress2.m, time_plotss.m, and noisyt.plot.m in the given order and under 

the conditions where switch is set to 1.
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11. Execute mrhat Jdenss.m to identify R. (It is actually the unknown part of R that is 

estimated.) Once an estimate of R is found, execute testrs.m immediately to validate 

the estimate of R  in the time domain. It is often necessary to experiment with different 

model structures (by defining the vector Nn accordingly) before an estimate of R that 

passes the time domain model validation test can be found. If the identified model for 

R  passes the time domain model validation test, proceed to the next step.

If extensive experimentation with different choices of model structures did not produce 

good models, it may be necessary to increase the value of lambda in an attempt to 

improve the signal-to-noise ratio of the closed-loop output error (assuming the data 

record length remain fixed) before repeating the identification step. This has to be 

performed carefully to prevent instability. If this action still does not improve the 

results of identification, the iterative process may have to be terminated.

In performing simulation experiments, we can estimate the order of the 

unknown part of R  (usually about twice that of the plant) because we know 

the plant exactly. (This is of course not true for a real plant in practice.)

In our simulation experience, we have never need to use such a high order 

transfer function for estimating the unknown part of R.. For example, in 

the simulation example presented in Section 4.8, where the plant is sixth 

order, using a fourth order model structure for the unknown part of R (with 

Nn= [45 5 4 1]) gave very good results.

12. Execute tupdatess.m to update the model. Verify the updated model by executing 

plant.m, deress2.m, cloe.m, and snrchkl.m in the given order. This checks whether 

the closed-loop output error is now mainly due to the effects of the noise disturbance. 

If the updated model fails the above frequency domain model validation test, reset 

the model back to the one before the latest model update was performed (this will 

require you to save the model before tupdatess.m was executed) and repeat the system 

identification exercise as it was described previously. (Collection of new data for a 

larger designed closed-loop bandwidth may be necessary.) If the updated model passes 

the frequency domain model validation test, proceed to the next step.

13. Perform model reduction by executing mreducss.m. We usually truncate the order of 

the model at the point where the Hankel singular value is small and a large decrease 

(usually by an order) occurs in the Hankel singular values. The resulting values of nGi 
and dGi will be displayed.
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Perform frequency domain model validation test on the reduced-order model exactly 

like the way the updated model (before model order reduction was performed) was 

tested. It may be necessary to reset the model to the one before the latest system 

identification was carried out (use recover.m), re-update the model (use tupdatess.m), 

and re-perform model reduction (use mreducss.m) if the frequency domain model 

validation test indicates that the model order truncation was too drastic.

If the reduced order model is validated by the frequency domain model validation test, 

execute preset.m before proceed to the next step.

14. Perform the iteration by repeating the sequence of program executions starting from 

Step 7. Continue until the desired value of lambda is achieved or until no further 

improvement can be made.
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Chapter 5

Program Descriptions

1. usqwnfl.m

This program calculate the Q transfer function for the situation of unstable plants. The 

IMC filter used in this program is the one proposed in [Campi et al. 1994]. A summary 

of the main points for this design method is given in Chapter 5. The design parameters 

are A (which defines the designed closed-loop bandwidth) and 7 (which control the 

tradeoff between the overshoot and the recovery time after the overshoot has occurred).

The variables A and 7 must be defined before this program can be executed.

A is defined through the variable iambda as we have described in the target.m 

program for Chapter 2. The parameter 7 can be defined, for example, by 

executing the statement gamma=0.01*lambda.

2. usk_control.m

This program calculate the controller for the situation of unstable plants.

3. uskJnitss.m

This program performs the same function as initss.m but for the situation of unstable 

plants.

Simulation Information

1. The programs usqwnfl.m, usk_control.m, and uskJnitss.m are useful for performing 

simulations for one step design approach in the situation of unstable plants.

For this purpose, we proceed by executing plant.m, model.m target, usqwnf 1, usk.control, 

initss, deress2.m (after making appropriate modifications to the m-files like plant.m 

and model.m, and initializing the relevant variables like lambda and gamma) to obtain 

results similar to those presented in Figures 5.4 to 5.7.

2. To perform simulations for the two step iterative identification and control design 

approach in the situation of unstable plants, we first design a parallel feedback stabilizer
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C on the basis of a given unstable model P for the unstable plant P (as it was described 

in Chapter 5). The designed parallel feedback stabilizer C will then allow us to calculate 

the stabilized plant G, the noise transfer function H (which includes the effects of the 

unstable plant P, the stabilizer C, and the original noise transfer function H\), and the 

stable initial model Go. (Note that we use the notations defined in Chapter 5.) These 

transfer functions will be used to set up the G and H in plant and the Gx in model.m. 

We can now start the simulation of the second step where iterative identification and 

control design is applied to the stabilized plant G (on the basis of the stable models 

Gx of G). Starting from here, the simulation procedure is the same as what we have 

described for Chapter 4 and we will not elaborate further.
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